

Drupal Web Services

Integrate social and multimedia web services and
applications with your Drupal website

Trevor James

 BIRMINGHAM - MUMBAI

Drupal Web Services

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Production Reference: 1161110

Published by Packt Publishing Ltd.
32 Lincoln Road,
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-98-1

www.packtpub.com

Cover Image by Javier Barria (jbarriac@yahoo.com)

Credits

Author
Trevor James

Reviewers
John K Murphy

Michael L. Ruoss

Acquisition Editor
Steven Wilding

Development Editors
Akash Johari

Meeta Rajani

Technical Editors
Ajay Shanker

Mohd. Sahil

Copy Editor
Lakshmi Menon

Indexers
Hemangini Bari

Monica Ajmera Mehta

Rekha Nair

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Lata Basantani

Project Coordinator
Zainab Bagasrawala

Proofreaders
Aaron Nash

Denise Dresner

Graphics
Nilesh Mohite

Production Coordinator
Kruthika Bangera

Cover Work
Kruthika Bangera

About the author

Trevor James is a Drupal consultant and web developer based in Middletown,
MD, USA. Trevor has been designing websites for 14 years using a combination of
HTML, XHTML, CSS, and ColdFusion, and has been using Drupal intensively for
over 3 years. Trevor’s focus is on building web portals for higher education, public
education (K-12), non-profit, medical systems, and small business environments.

He is interested in best methods of integrating web services with Drupal sites, Drupal
site performance, and using CCK, Views, and Panels to develop frontend interfaces to
support data intensive websites. He loves teaching people about Drupal and and also
about how to use this excellent open source content management framework.

Trevor has designed and developed websites for non-profit, education, medical-based
systems, and small business organizations. He is currently working on a number of
Drupal-related projects.

Trevor co-authored the Packt title Drupal 6 Performance Tips, published in February,
2010. For more on this title visit:

https://www.packtpub.com/drupal-6-performance-tips-to-maximize-and-
optimize-your-framework/book

Trevor created an 11+ hour video tutorial series titled Introduction to Drupal 6 for VTC
(Virtual Training Company) in 2009. The video is available via the VTC website at:

http://www.vtc.com/products/Introduction-To-Drupal-6-Tutorials.htm

Acknowledgements

Without the love and support of my wife Veronica and our twin daughters Clare and
Francesca, this book would not have seen the light of day. I cannot express enough
love and grace to the three of you for your encouragement and enthusiasm for my
writing career.

Thanks (again!) to my father-in-law Tony Gornik for offering his residence in
Hershey, PA as writing space on weekends.

Many thanks to the entire Packt editorial, project, marketing, and production teams
for inviting me to work on this project and for continuing to publish exceptional
titles on Drupal and open source applications. Many thanks to Steven Wilding,
Packt Acquisition Editor, for serving as the lead editor on this title. Steven’s
encouragement and wisdom kept me on task with this book.

Thanks to Zainab Bagasrawala, Project Coordinator; Poorvi Nair, Project
Coordinator; Akash Johari, Development Editor; Meeta Rajani, Development Editor;
Lata Basantani, Projects Team Leader; Mohd Sahil, Technical Editor; and Patricia
Weir, for keeping the project on track and for guiding the construction of this title.

A special thanks to Radha Iyer, Marketing Research Executive at Packt. I’ve worked
closely with Radha on all aspects of marketing my first book, as well as having
the opportunity to write multiple book reviews for Packt under Radha’s guidance
and vision. I am always impressed with Radha’s ability to locate new marketing
opportunities and applications to help increase knowledge about Drupal and
open source.

Thank you to Jim Mason and Eric Condren for their help and knowledge using
Drupal and CiviCRM at Frederick County Public Schools on multiple projects.

Susan Morrison and Ryan Wexler of Medical Business Systems were instrumental
in testing and implementing many of the social application service integrations
documented in this book. While writing the book, I worked closely with them on a
redesign of the MBS website and integrated Twitter, Facebook, and LinkedIn with
their new site. They taught me a great deal about these integrations from the end
user and website manager perspectives.

Last but certainly not least, thanks to my friend and colleague Will McGrouther. Will
is an expert on social web applications and the many discussions we had over the
course of this book’s roadmap inspired the text in many ways.

I look forward to working with you all in the near future. Drupal on!

About the reviewers

John K Murphy is a software industry veteran with more than 25 years experience
as a programmer and database administrator. A graduate of the University of West
Virginia, he began writing computer games in the 1980s before pursuing a career as a
computer consultant. Over the years, John has enjoyed developing software in most
major programming languages while striving to keep current with new technologies.

In his spare time, John enjoys scuba diving, skydiving, and piloting small planes. He
lives with his wife and two children in Pittsburgh, Pennsylvania.

Michael Ruoss is founder of and senior developer at UFirst Group. He holds a
Master’s Degree in Computer Science from Swiss Federal Institute of Technology
in Zurich. After his studies, he worked for Optaros for two years as a developer/
consultant. In 2010, he founded UFirst Group, a company doing system integrations
based on open source frameworks.

During the past years, working for Optaros and UFirst Group, Michael Ruoss gained
much experience in the integration of Drupal, Magento, Alfresco, and other CMS and
eCommerce solutions. Michael also maintains two Drupal community modules, the
SEO Compliance Checker, and the Overlay Gallery.

The book is dedicated to my wife Veronica and our daughters Clare and Francesca.

Table of Contents
Preface	 1
Chapter 1: About Drupal Web Services	 7

What are web services?	 8
XML and web services	 9
The REST protocol	 10

Standards compliance	 11
Why are web services useful?	 12
Why use web services in Drupal?	 12
How Drupal uses web services	 14
Drupal as a service consumer	 14

Mollom	 14
Auto tagging	 16
Flickr and Flickr API	 17
Apache Solr search integration	 17
Facebook	 18

Drupal as a service provider	 18
Services module	 18
RSS	 19
AMFPHP	 20
XML-RPC	 20

Summary	 22
Chapter 2: Consuming Web Services in Drupal	 23

Using SOAP	 24
The SOAP message	 25
Enabling SOAP in PHP	 27

Using the SOAP Client module	 28
Installing and configuring the SOAP Client module	 28

Getting started with FedEx Web Services	 32

Table of Contents

[ii]

Using FedEx Shipping Quotes module	 32
Installing and configuring the FedEx Shipping Quotes for Ubercart module	 33

Confirming your Ubercart store settings	 38
Entering your test credentials in the FedEx module configuration	 38
Testing the FedEx Web Service with our Drupal site	 43

SOAP request/call in the FedEx module file	 48
Summary	 48

Chapter 3: Drupal and Flickr	 49
Accessing Flickr	 50

Your Flickr account	 51
Flickr module	 52

Signing up for a Flickr API key	 52
Configuring the Flickr module	 54
Adding the Flickr filter	 56
Setting Flickr module permissions	 56

Testing the Flickr module	 57
Flickr module blocks	 62
Flickr random photo from photoset	 66
Flickr random photos block	 67
Flickr recent photos and recent photosets	 68
Flickr user page photosets, user page random photos, and recent photos	 68

Summary	 70
Chapter 4: Drupal and Amazon	 71

Accessing Amazon	 72
Signing up for an Amazon Web Services account	 73
Installation and initial configuration of the Amazon module	 73

Testing configuration	 76
Using the Amazon module	 78

Testing the Amazon Example content type	 78
Using the Amazon content type with Views	 80
Using the Amazon filters	 83
Testing the Amazon input filter	 84

Amazon Store module	 85
Using the Amazon Store module	 86
Configuring your Amazon Store	 87

Testing your Amazon Store	 90
Summary	 91

Chapter 5: Drupal and Multimedia Web Services	 93
CDN2 video	 94

Accessing the CDN2 web service	 95
Signing up for the CDN2 web service	 96
Configuring the CDN2 module	 98

Adding videos using CDN2	 101
Uploading videos with CDN2 content type	 104

Table of Contents

[iii]

Using the Kaltura module and web service	 105
Accessing the Kaltura service	 106

Importing and uploading Kaltura video content	 109
Using the Media: Flickr module	 111
Summary	 118

Chapter 6: Drupal Web Services the Easy Way:
The Services Module	 119

The Services module—what is it?	 120
The Services module—why use it and what does it buy you?	 121

Deployment module	 121
Content distribution	 122

Installing and enabling the Services module	 122
Testing a simple service callback	 126

Creating a Services module and running a custom callback	 131
Creating custom Services module	 132

Adding to our function to allow for returning Photo nodes data	 135
Adding a database query to our custom Services module	 136
Adding arguments	 138

Summary	 139
Chapter 7: Drupal, Spam, and Web Services	 141

CAPTCHA and reCAPTCHA	 142
Installing and configuring CAPTCHA and reCAPTCHA	 142
Image CAPTCHA	 146
reCAPTCHA	 147

AntiSpam	 150
Installing and configuring AntiSpam	 150

Additional TypePad/AntiSpam module settings	 152
AntiSpam moderation queue	 154

Mollom module	 156
Configuring the Mollom web service	 156

Choosing the content that Mollom will protect	 158
Mollom reports and statistics	 160

Summary	 163
Chapter 8: Using XML-RPC	 165

XML-RPC and Drupal	 165
Drupal Blog API and Google Docs	 166

Enabling and configuring Blog API	 167
Setting up a Google Documents account	 168
Posting the Google Document to Drupal	 170
Testing and viewing the document on your Drupal site	 173
Removing posts	 176

Syncing content between Drupal sites	 176
Using the Deployment module with Services	 177

Table of Contents

[iv]

The Deployment module	 177
Installing, enabling, and configuring Deployment	 178

Summary	 186
Chapter 9: Twitter and Drupal	 187

Twitter and Drupal	 187
The Twitter API	 188
The Twitter module	 189
Integrating the Twitter module with Drupal	 189
Registering your website with Twitter	 191

Setting up a Twitter application	 191
Configuring the Twitter module once you have your app setup	 196
Setting up OAuth configuration	 198
Setting up your user account to integrate with Twitter	 198

Posting your Drupal nodes as tweets to your Twitter account	 200
Showing tweets in blocks on your Drupal site	 201

Twitter module page and block Views	 203
Actions and triggers with the Twitter module	 206

Tweet module	 208
Configuring short URLs	 209

Configuring the Tweet module	 210
Summary	 214

Chapter 10: LinkedIn and Drupal	 215
LinkedIn and Drupal	 215

Installing the LinkedIn Integration and OAuth modules	 217
Using the LinkedIn Integration module	 218

Status update and promoting content to LinkedIn	 220
Setting permissions	 221
Posting LinkedIn profile data to Drupal	 222
Posting Drupal content to LinkedIn	 226
Checking usage statistics for the LinkedIn module	 228

Summary	 229
Chapter 11: Facebook and Drupal	 231

What is Facebook?	 232
Drupal and Facebook	 232

Requirements for running Drupal for Facebook	 233
Installing and enabling Drupal for Facebook	 234
Installing the Facebook libraries	 237

Setting up Canvas Pages	 238
Creating your first Facebook app	 239

Configuring Drupal to work with your Facebook app	 243
Testing the Facebook application	 244
Editing your Facebook application settings	 247

Summary	 248

Table of Contents

[v]

Chapter 12: Authentication Services	 251
OpenID and Drupal	 251

Enabling and configuring the OpenID module	 252
Setting up the OpenID server/provider	 253

OAuth and OAuth Connector	 258
Using OAuth Connector	 259
Configuring a provider connection for Twitter	 261

Setting up the Twitter developer application account	 265
Summary	 269

Appendix: Modules Used in the Book	 271
Modules used in Chapter 1	 274

CCK	 274
Mollom	 274
Auto Tagging	 275
AMFPHP	 275

Modules used in Chapter 2	 275
SOAP Client	 276
FedEx web services	 276
FedEx shipping quotes for Ubercart	 276
Ubercart	 277
Token	 277

Modules used in Chapter 3	 277
Flickr account and API key	 277
Flickr module	 278
idGettr	 278

Modules used in Chapter 4	 278
Amazon web service and API key	 278
Amazon module	 278
Features	 279
Views	 279
Amazon store module	 279

Modules used in Chapter 5	 280
CDN2 web service	 280
CDN2 video module	 280
Kaltura web service	 281
Kaltura module	 281
Media: Flickr	 281
Embedded media field	 282

Modules used in Chapter 6	 282
Services module	 282

Table of Contents

[vi]

Modules used in Chapter 7	 282
CAPTCHA	 283
reCAPTCHA	 283
AntiSpam	 283

Modules used in Chapter 8	 284
BlogAPI module	 284
Google Documents	 284
Deployment module	 284

Modules used in Chapter 9	 285
Twitter module	 285
Tweet	 285
Shorten URLs	 286
Short URL	 286

Modules used in Chapter 10	 286
OAuth module	 286
Autoload	 287
Input Stream	 287
LinkedIn Integration	 287

Modules used in Chapter 11	 287
Drupal for Facebook	 288
Facebook Connect	 288
Facebook - Auth	 288

Modules used in Chapter 12	 289
Google Apps authentication	 289

Summary	 289
Index	 291

Preface
Drupal is a rich and dynamic open source content management system that can
feed content into its framework from other web applications including Facebook,
Flickr, Google, Twitter, and more, using standard communication protocols called
web services. You may be aware that content can be driven to your Drupal site from
different web applications, but when you think of experimenting with this, you can
get bogged down due to limited knowledge of web services.

This book offers a practical hands-on guide to integrating web services with your
Drupal website. It will compel you to learn more and more about web services and
use them to easily share data and content resources between different applications
and machines. This book also covers the usage of each web service for different
purposes. It provides step-by-step instructions on integrating web services and web
applications with your Drupal-powered website.

Drupal Web Services will show you how to work with all kinds of web services
and Drupal. The book shows you how to integrate Flickr.com and Amazon.com
content into your site; add multimedia and video to your site using video services
including CDN2 and Kaltura. You will learn how to prevent spam using CAPTCHA,
reCAPTCHA, and Mollom. You will also learn to explore the different types of web
services Drupal offers and can integrate with using the Services module and XML-
RPC. Next, you will learn to push content from Google documents, deploying this
text and image-based content as Drupal nodes.

Next, you'll integrate your site with Twitter, Facebook, and LinkedIn and show how
to post content from Drupal to these social networking applications automatically.
At the end, you will learn about authentication methods for integrating web services
with Drupal.

Preface

[2]

What this book covers
Chapter 1, About Drupal Web Services, focuses on web services from an introductory
standpoint and defines what web services are and how they work with Drupal 6.

Chapter 2, Consuming Web Services in Drupal, turns to a discussion of how our Drupal
site can act as a web services consumer. We discuss and show examples of using
SOAP. We also install, configure, and use the FedEx Shipping Quotes module to get
real-time shipping quotes in our Ubercart site.

Chapter 3, Drupal and Flickr, focuses on installing and configuring the Flickr module
to communicate with the Flickr web service and display dynamic Flickr photo
galleries on our Drupal site.

Chapter 4, Drupal and Amazon, focuses on installing and configuring both the Amazon
and the Amazon Store modules to communicate with our Amazon associate account
and practice filtering in specific Amazon products including books, CDs, DVDs, and
other items into our Drupal nodes.

Chapter 5, Drupal and Multimedia Web Services, focuses on other types of multimedia
including video and how we can integrate our Drupal site with two popular video
hosting services, CDN2, and Kaltura.

Chapter 6, Drupal Web Services the Easy Way: The Services Module, focuses on installing
and enabling the Services module and explore what the Services module offers our
Drupal site(s).

Chapter 7, Drupal Spam and Web Services, focuses on installing and using various
modules including CAPTCHA, reCAPTCHA, and Mollom to integrate our Drupal
website with spam prevention web services.

Chapter 8, Using XML-RPC, looks in more detail at how Drupal uses the XML-RPC
protocol and how this protocol can help integrate your Drupal site with external
web service-based applications and servers. We'll deploy content from a Google
Documents account to our Drupal site.

Chapter 9, Twitter and Drupal, focuses on installing and enabling a few Twitter-based
modules to allow for integration with the Twitter web service API.

Chapter 10, LinkedIn and Drupal, focuses on exploring methods of integrating the
popular professional social networking application LinkedIn with our Drupal site.

Chapter 11, Facebook and Drupal, focuses on exploring methods of integrating Drupal
with the popular social networking web application Facebook.

Preface

[3]

Chapter 12, Authentication Services, focuses on exploring methods various web service
authentication methods and protocols for use with your Drupal site including
OpenID and OAuth.

Appendix A, Modules used in the Book, summarizes the contributed modules we've
used in the book and present a listing of modules that allow for integration between
Drupal and web service applications and servers.

What you need for this book
The book assumes you have a working installation of Drupal 6.19 (latest Drupal
6 version at time of this book's release). If you need to install Drupal, you can do
this by first setting up a localhost development environment on your computer.
First, you will need to install a LAMP stack on your computer (Apache web server,
MySQL, and PHP. You will also need to install the latest version of Drupal 6. Drupal
can be downloaded at: http://drupal.org/.

For an easy to install Drupal package that includes the entire suite of Apache,
MySQL, and PHP, you can download the Acquia Stack Installer. This will install
the entire LAMP and Drupal application stack on your computer. The Acquia Stack
Installer can be downloaded at: http://acquia.com/downloads.

The book installs and runs Drupal on a Windows PC but you can easily run the
Acquia Stack Installer on a Mac or Linux computer.

For detailed instructions on installing the Acquia Stack go to: http://acquia.com/
documentation/acquia-drupal-stack.

Who this book is for
If you are a Drupal user, webmaster, or Drupal site administrator who wants to
integrate Flickr, Facebook, Twitter, Amazon, LinkedIn, Kaltura, and Mollom with
your Drupal site then this book will be a good addition to your Drupal library.

You do not need to have programming experience to use this book. Drupal web
services is written for anyone who works with Drupal on a daily basis.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

<?xml version="1.0"?>
<methodCall>
<methodName>examples.getBlogName</methodName>
<params>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[5]

Downloading the example code for this book
You can download the example code files for all Packt books
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

About Drupal Web Services
Besides its core content management functionality, Drupal can also feed content
into its framework from other web applications, including Flickr, Twitter, Google,
Amazon, Facebook, Mollom, and many more. This communication between Drupal
and other web portals is what makes Drupal a feature-rich content management
framework capable of supporting multiple methods of feeding content into its
database and site structure. For example, as a Drupal developer, you can feed
content into your Drupal site using aggregation or RSS feeds. The Drupal FeedAPI
(Application Programming Interface) module allows you to take RSS or XML URLs
from external websites and add these feeds to your Drupal site. This is one robust
method of getting content from other web applications and sites.

How do we take content from all of these different web applications and share
the content with a Drupal site? This is becoming highly important now due to the
wealth of rich content management applications that are both on the market and
also available in the open source community. For example, how can we take all
of the images we upload to our Flickr site and share those images with users on
our Drupal site? In this book, we'll look in detail at the Drupal Services module, a
contributed module that helps you to speed up your connections to web services.
This module will allow us to integrate your Drupal site with external applications by
using interfaces, such as XMLRPC, JSON, JSON-RPC, REST, SOAP, and AMF. These
interfaces will allow your Drupal site to interact with and provide web services.

In this chapter, you will learn the basics of web services and Drupal, including:

•	 What are web services and why are web services useful?
•	 Why do we use web services in Drupal?
•	 How does Drupal 6 use web services?
•	 Standards compliance when using web services in Drupal
•	 Drupal as a service consumer and as a service provider

About Drupal Web Services

[8]

Let's begin our discussion of what web services are and how they work with
Drupal. To get started, we need to define some of the larger concepts and the
Drupal concepts that we'll be talking about.

What are web services?
In order for our Drupal site to communicate and interact with other web
applications, such as Flickr, Amazon, Mollom, or Twitter, we need to use standard
communication protocols in the web development world called web services. Web
service protocols will allow applications that reside on external websites and servers
to interact and communicate with our Drupal website that is running on our own
server. Web services will also allow our Drupal site to pass along content and data to
external web applications existing on remote servers.

When we define web services, we need to point out that this type of communication
provides for interoperability. This means that a web service communication can
happen between two completely different environments but still work because we
use standard protocols to make it happen.

Web services allow us to call another application on a remote server. A good analogy
to this is using your cell phone to call a friend or colleague. You have one type of
cell phone using one type of cell phone service. You call your colleague's cell phone.
They have another type of cell with a different service provider, but the call goes
through and is successful because the two services communicate with each other
using standard cell phone communication protocols.

The web service call happens through coded protocols that are translated into a
language and standard protocol that both computers can understand. Generally,
this is done by using the XML language to translate the programmed request into
the other external applications. Web applications have a standard in which they can
usually read XML files. XML is a text-based format, so nearly all computer systems
and applications can work with the XML format.

The web services protocol also uses a concept called remoting or Remote Procedure
Calling (RPC) that allows one application to initiate or "call" a function inside
of an application on a remote server. Our Drupal site can communicate with an
application on a remote server and call a function in that application. For example,
we might want to make our Drupal website call and interact with our Flickr photo
gallery, or we may want to take all of our Drupal home page content and push it
over to our Facebook account. We can do both of these actions using the web
service protocols.

Chapter 1

[9]

The computer that contains the application—that we will communicate with— can
be anywhere in the world. It could be sitting on a server in the US, Europe, Asia,
South America, or somewhere else.

XML and web services
As mentioned above, the base foundation for web services is a protocol or code
called XML. For our Drupal site residing on our server, to talk and interact with
a website or application on another server, we need to use XML, which is a
language commonly understood between different applications. Our site and server
understands XML as does the application we want to communicate with. We can
do this over the standard HTTP protocol for website communication, as HTTP is the
most standard protocol for Internet communication. The reason we use XML for
communication between the applications and the sites is because XML replaces
the proprietary function (whether the function is in RPC or another programming
language or interface) and formats it into the standard XML code format. This allows
applications to understand each other easily.

An analogy to this is: if we have two people, one from Germany and the other from
France, speaking to one another, and neither person knows the other's language but
both of them know English, then they must speak in English, as it's a language they
both understand and can easily communicate in. It's a similar situation when XML is
used to translate a web service's function into a commonly understood format.

So first we need to send the function call to a remote application. Our calling
application or website creates the XML document that will represent the
programmed function we want to execute. The XML is then transmitted over HTTP
to the remote application and it can then be interpreted and understood by the
remote application. The remote application then executes the function based on the
XML formatting.

Some examples of web service's methods are SOAP (Simple Object Access
Protocol), UDDI (Universal Description, Discovery and Integration), WSDL (Web
Services Description Language), XML-RPC (XML Remote Procedure Call), JSON
(JavaScript Object Notation), JSON-RPC, REST (Representational State Transfer),
and AMF (Action Message Format). We are not going to look at these interfaces in
detail now but we will explore how they work with Drupal later in this book when
we take a more detailed look at how the Services module works. For now, it's helpful
for us to understand that these protocols and platforms exist and that our Drupal
site can provide web services to other applications via these multiple interfaces
and platforms.

About Drupal Web Services

[10]

Here's a diagram that outlines a simple web service request and response. This is a
request sent from our Drupal site (client) over HTTP to an external server to request
data. The data exists on the server (remote) in the form of a URI (Uniform Resource
Identifier) item. The response is sent back to our Drupal site through XML.

The REST protocol
Let's look briefly at one web service protocol and technology, and define it. As
mentioned before, there are many technologies you can use to implement web
services. REST (Representational State Transfer) is one such technology. The reason
REST is a preferred technology within the web development and Drupal community
is due to its flexibility and standards. REST allows us to do the following when we
initiate a web service using its protocol:

•	 Use a standard method such as XML as our message format
•	 Send the message over standard protocol such as HTTP
•	 Provide or connect to specific resources where each resource (image,

document, page, and node) is given a unique resource identifier (a URI)

We can take this concept and try it out on our Drupal site by writing some PHP code
that makes an HTTP request to another web application resource. For example, we
may want to make a call to a Picasa photo gallery and feed a select number and type
of photos back to our Drupal site and display the photos in a Drupal node on our
site. The request targets this specific resource by making a GET request to the URI
of the resource. The application we are communicating with sends a response back
to us in XML format. That XML can then be integrated into our Drupal site using a
module, for example. The request might be made to a user's Flickr or Picasa photo
gallery. The request gets returned to our Drupal site as XML and we parse this XML
into our Drupal site and the user's photos or gallery then get displayed on our site.

Chapter 1

[11]

This is just one protocol example. We'll discuss in detail about the other protocols in
the later chapters.

Greg Hines of pingVision provides a good introductory resource on REST
and Drupal in the document titled RESTful Web Services and Drupal. The
document is available on pingVision's website as a PDF download from:
http://pingvision.com/files/restful_web_services_and_
drupal.pdf

Standards compliance
As discussed in the REST protocol's example, web services and Drupal's use of web
services follow specific standards. In order to maintain as much interoperability and
flexibility as possible, all of the protocols used respond for the most part using XML
as the standard response mechanism and format.

Additionally, all the communication between services, in our example between
a client and a server, happens over HTTP (the standard web protocol). This is a
uniform protocol that is used for transport and communication of the service.
All transports take place uniformly using GET, POST, PUT, and DELETE requests,
for example.

The HTTP requests are stateless, meaning that the request over HTTP happens once
at one given moment and is isolated from all other activated requests. So the request
stands alone. If it succeeds, it gets a response. If it fails, it gets no response from the
server or application it's communicating with. The request can be repeated an infinite
number of times.

Finally, all of the resources we try and access are those that we are sending to
another application using a unique resource identifier (URI) to identify and define
what they are. So images on our site have unique identifiers as well as those residing
in another web application. Each of these unique identifiers allows for addresses
or locations for each node or file in question. So each resource in a web service's
communication has an address. Each resource has one URI and each address has one
URI. Some examples of this would be the following locations on my Drupal site:

•	 http://variantcube.com/

•	 http://variantcube.com/recommended-drupal-resources

•	 http://variantcube.com/node/68

•	 http://variantcube.com/search/node/podcast

•	 http://variantcube.com/rss.xml

About Drupal Web Services

[12]

Another reason we want to be standards compliant, when writing or working
with web services, is for simplicity. We do not need any special tools to program
web services as long as we follow these standards. We can use the web application
modules and PHP, and stick to these coding standards and protocols.

Why are web services useful?
Web services are useful for a number of reasons, especially when it comes to Drupal
and Drupal's relationship and interaction with other web content management
systems and applications. The web has a huge number of web applications, so web
developers and content developers can pass their content to the web browsers and
make it available to the web visitors. This is why the Internet is useful to us. We can
go to a website and view the content. Whenever we do that, we're looking at content
that is proprietary to a specific web application. In Drupal, our content is in the form
of nodes, for example. We may want to share these nodes with other websites that
are non-Drupal, such as a Wordpress-powered site.

Web services are useful because they present us with an architecture where a
resource on a site (an image, textual content, such as a node ID or block ID, a video
or audio file) is given a unique identifier. For example, in Drupal, every node has
an ID. Every file you upload to a Drupal site also has a unique path to it.

This is extremely useful since all applications share this common semantic standard.
We name things similarly on all of our web applications. We can then leverage
this by writing code in PHP, for example, the one that calls these resources. The
application server that houses the resource then responds to our request using an
XML document.

Why use web services in Drupal?
With web services, we can take our Drupal content and share this content with
other web applications and, essentially, with the web at large. Our content is no
longer just our content and it is not specific to our Drupal website. It can be shared
and integrated. Drupal's codebase is PHP-based and many of the popular web
applications being used today, including Wordpress, Joomla!, and Flickr, are also
PHP-based. So we have a common programming language we can work with and
use to integrate these applications.

Chapter 1

[13]

Here are some concrete examples. Perhaps your Human Resources Department
wants to integrate its job postings and applications with another web application
such as Monster.com. Web services can allow this to happen. Your office's payroll
department may want to connect to its bank account in order to pass data from the
payroll reports over to its bank reporting mechanism. Web services can allow this to
happen. You may want to take all of the photos you upload to your Drupal site in
image galleries built with the Views module, and take these photos and send them
to Flickr so that they automatically show up in your Flickr account or on Flickr's
public site. Web services can make this happen.

This leads to another advantage of using web services with Drupal and why we
would choose to use Drupal in the first place. Instead of having to upload our
photos twice—once to our Drupal site and then repeating the procedure to our
Flickr site—web services allows us to upload the images to our Drupal site once and
then automatically send that data over to Flickr without having to upload one (or
even a batch of images) again. It saves us time and speeds up the entire process of
generating web-based content.

Additionally, there may be applications we want to use in our Drupal site, for
example applications where we want to consume content without having to code
again. We can just reuse these applications using the web services protocols and
get this application content into our Drupal site. So we can consume web services.
Examples of this would be converting currency on our site, feeding weather reports
and other weather data into our site, feeding natural disaster scientific data into
our site from services that provide it, feeding language translation services, feeding
music podcasts, and more. Instead of having to reprogram this type of content, we
can grab it from another web application and show it automatically on our site using
web services.

Simply put, this opens up a method of easily sharing data and content resources
between applications and machines that are running on different platforms and
architecture. We have opened up a gold mine of capabilities here because we can
talk to applications that run different software from our Drupal site and on different
computing platforms.

About Drupal Web Services

[14]

How Drupal uses web services
Drupal can use web services following any of the protocols mentioned earlier,
including XML-RPC, REST, and SOAP. Drupal can consume web services by
requesting data from other web applications using RSS and XML-formatted requests.
As a web developer, you can write your own service code in Drupal using PHP.
You can also use the Services module as well as other service-specific contributed
modules to create these web service requests. In this next section, we're going to look
at both these examples. First, we'll see how Drupal works as a service consumer,
where basically it is a client requesting data from an external server.

We'll also look at how Drupal can provide services using the Services module,
RSS, AMFPHP, and XML-RPC. All of these protocols will be explained in detail
in the later chapters.

Drupal as a service consumer
Let's outline some brief examples of how Drupal consumes content and data from
other web applications, including Mollom, Flickr, and Facebook. We're going to look
at these applications in more detail later in the book, but we'll introduce them here
and show some basic examples.

You can configure your Drupal site to consume various web services by using
contributed Drupal modules for each specific task or application you are trying to
consume. Drupal can consume services from applications that will help your website
prevent spam, integrate photos, integrate taxonomy and tags, and enhance your
Drupal free tagging and autotagging abilities, and integrate with applications such
as Facebook and Twitter.

Mollom
Mollom is a web service that will help you to block spam on your Drupal site. It's a
separate application that runs as a web service. Drupal can connect to the Mollom
web service through a contributed module called Mollom. The contributed module
project page is available at http://drupal.org/project/mollom.

Mollom will offer you CAPTCHA options for your Drupal site as well as prevent
and block comment spam and Drupal node form spam, including any spam that
might populate your nodes through content type forms, story, page, and forum
forms. It will prevent user registration from being compromised and prevent fake
users from signing up on your site.

Chapter 1

[15]

The Mollom project was developed and is maintained by Drupal's founder, Dries
Buytaert, and a team of developers very familiar with Drupal, so the integration
between the two applications is seamless. Mollom is included in the Acquia Drupal
packaged installation, so if you use Acquia Drupal you will already have the
Mollom module and service integrated into your Drupal site. If you run a Drupal
6 installation independent of the Acquia package, you'll need to install the Mollom
contributed module to make the service interaction work. You can read the entire
Mollom client API documentation on the Mollom website at http://mollom.com/
files/mollom-client-api.pdf.

The API documentation provides a huge amount of detail on how the service works,
but simply put, it uses the XML-RPC interface. So as explained earlier in this chapter,
Mollom uses Remote Procedure Call protocol, which itself uses XML to encode calls
as its service mechanism. The Mollom API notes that any XML-RPC call to its service
should follow the HTTP/1.0 standard. The documentation also mentions that any
client (our Drupal site in our case) that makes a RPC call to the Mollom service needs
to only make these requests from valid Mollom servers, and using a valid public and
private key encryption for the specific website making the calls. This means that the
communication is encrypted between your Drupal site and the Mollom application.

The RPC calls that Drupal makes to the Mollom application server are HTTP
requests. These are the calls that your Drupal site makes back to Mollom:

•	 mollom.getServerList—this requests which Mollom servers can handle
the call coming in from the Drupal site

•	 mollom.checkContent—this asks Mollom whether the request is legitimate
•	 mollom.sendFeedback—this tells the Mollom application that the spam

message was indeed spam
•	 mollom.getImageCaptcha—this asks Mollom to generate an image

CAPTCHA
•	 mollom.getAudioCaptcha—this asks Mollom to generate an audio

CAPTCHA
•	 mollom.checkCaptcha—asks Mollom to verify the result of a CAPTCHA
•	 mollom.getStatistics—asks Mollom to send statistics
•	 mollom.verifyKey—asks Mollom to return a status value

These calls are routed from your Drupal site over to a Mollom server each time your
Drupal site needs to check whether a specific content post is spam or not.

About Drupal Web Services

[16]

Another interesting concept here is that Mollom actually provides a higher
availability backup server that a Drupal user can sign up for. This server would then
kick in and work if the other Mollom application servers have failed. So Mollom also
provides a fallback, but it will cost you to sign up for it. It's not a free service.

So you can see here that the Mollom-contributed module allows you, as a Drupal site
manager, easy access to set up this web service. We'll look at the code and backend
of this configuration in more detail later, but for now this introduces us to how a
Drupal contributed module can allow our site connections to a web service.

Auto tagging
The Auto Tagging-contributed module allows you to auto-tag your site's content
using a web services-based interface. The services interface provides you with the
tag contexts to use to tag your content. This module allows for integration with
the popular OpenCalais web service as well as the tagthe.net and Yahoo! Terms
Extraction services. OpenCalais is a web service provided by Thomson Reuters
that allows Drupal developers to access a huge variety of tagging and terms that
are continuously updated and added to. It's basically a stockpile of tags and terms
that you can utilize and integrate with your Drupal site content. You can use Auto
Tagging module to make the connection to OpenCalais. More details about the Auto
Tagging module are available on its Drupal.org project page at http://drupal.
org/project/autotagging.

Also check OpenCalais project for other important details at http://www.
opencalais.com/.

To utilize these web services, you first need to install and enable the Auto Tagging
module on your Drupal site. Once enabled, and depending on the web service you
decide to use, you will configure a category/vocabulary that will be populated
with the terms from the service. For example, if you were going to integrate with
OpenCalais, you would first create a taxonomy vocabulary for OpenCalais tags.
You would associate this vocabulary with the content types you want to tag on your
site. The services will read your content that you want to tag and then apply tags
automatically based on the content of your node.

If you are using OpenCalais, you'll need to first create an API key with the
OpenCalais application. Then you'll add this API key to your module configuration.

Chapter 1

[17]

This is a great module to use if you are looking to auto-tag content on your site using
common and popular tags that are being culled, based on other web content using
these tag-based web services. It's another example of how you don't have to reinvent
the wheel or the application when you are building your site. You do not need to
create tags. You can simply use tags that have already been generated for popular
web content.

Flickr and Flickr API
The Flick and Flickr API modules allow Drupal to consume and access photos
that are posted on the Flickr website. In order to use this web service, with Drupal
functioning as the consumer, we'll need to set up a Flickr API key so that we can use
this key in our configuration in our Drupal site. You will become used to this process
when setting up Drupal as a web service consumer. In order for your Drupal site to
communicate with the web service and use its functionality, you'll need to sign up
for API keys for many of these modules and configurations. We'll look at how the
Flickr API works in much more detail in Chapter 3, Drupal and Flickr.

Apache Solr search integration
The Apache Solr Search Integration module takes your Drupal site and integrates
it with the Apache Solr Search web service. There is more information about the
Apache Solr project at http://lucene.apache.org/solr/.

You would use this module if you want to add a more robust and enhanced Search
functionality to your Drupal site besides the core Drupal search module. The service
provides many extra features and better performance than the core Drupal search.
You can have specific searching on content authors, taxonomy, and CCK fields, for
example. This is called faceted search (http://en.wikipedia.org/wiki/Faceted_
browser).

The module provides XML files that you need to have installed in order to make the
web services work. The module also depends on your Drupal core search framework
being in place, so you can run both the core Drupal search and the Apache Solr
search in tandem, or just run one or the other. But the core search needs to be
installed. The Drupal.org website lists many related projects that you can integrate
with this module and the web service.

About Drupal Web Services

[18]

Facebook
Drupal can connect to Facebook and also run Facebook-style applications using
the abundance of recent Facebook applications and contributed modules available.
These include:

•	 Drupal for Facebook (fb)
•	 Facebook Connect
•	 Canvas Page

The Drupal for Facebook module is actually a larger scale module that allows you to
program applications that run on Facebook and/or on your Drupal site but provides
Facebook mechanisms. You can code up applications that run on your Drupal site
and consume Facebook data—these are Facebook Connect-style applications—using
the standards that this web service provides.

Drupal as a service provider
Drupal provides web services using a variety of methods and protocols. Some
of these protocols are supported by using core modules and code that provide
RSS- and XML-based feeds; and contributed modules, including the Services
module that supports various service protocols. Drupal also supports protocols
including AMFPHP XML-RPC. We'll look at each of them briefly in this section.

Services module
The Services module is the latest and newest version of the web services-contributed
Drupal module. The Services module is a standard solution that allows for the
integration of external web applications with your Drupal site. This module supports
service callbacks used with standard service protocols, such as JSON, JSON-RPC,
REST, SOAP, AMF, and more. The Services module allows your Drupal site to
communicate and provide web services via these multiple interfaces using the same
callback programming. So the module provides a large amount of flexibility and
standards that you can use when programming web services to work with your
Drupal site.

We'll be discussing this module in detail in Chapter 5, Drupal and Multimedia Web
Services, but here's a very brief introduction to what the module can do:

•	 Contains an API that allows other modules the ability to create web services
•	 Contains server API that allows modules to create servers such as REST

and SOAP

Chapter 1

[19]

•	 Includes test API and test pages
•	 Provides the ability to manage API keys easily
•	 File, Menu, Node, System, Taxonomy, User, and Views services included

As mentioned earlier, the Services module allows you to plug web services' API
keys into its configuration so that you can set up a communication with various
web service applications. An API key works similarly to a username, allowing you
to access the applications securely by adding your specific API key or code. Many
times an API key comes with a secret passcode that you will also add to the module's
configuration. So when you sign up for a Twitter Developer's account to utilize and
configure the Twitter module in Drupal, you'll be given an API key and secret code
that you'll need to add to your module's configuration page. Many of the modules
that we'll look at in this book use this method of API key and code.

The Services module provides a detailed handbook and documentation on Drupal.
org at http://drupal.org/handbook/modules/services.

RSS
Drupal comes installed with core RSS functionality and support. Your main Drupal
home page can have an RSS feed implemented on it if you post Story nodes to your
home page. You can also create RSS feeds for any node or block in your Drupal site
using the Views module to set up attached feeds. So, Drupal provides a very flexible
environment for allowing other external web applications access to your content
feeds. Many contributed modules also come installed with a default RSS feed.
Using the core Drupal functionality for RSS feeds and also core modules such as
Aggregator, you can post RSS feeds in RSS, RFF, or Atom format. These formats are
all XML-based, again supporting and adhering to the web service standard.

In addition, each term on your Drupal site (using Taxonomy core module)
displays an RSS feed. For example, on my site, I have a Featured term at this
unique identifier at:

http://variantcube.com/taxonomy/term/4.

This term also has a feed attached to it at:

http://variantcube.com/taxonomy/term/4/0/feed.

This feed shows all of the nodes (node title and teaser) for any content tagged
with the featured term. So, Drupal provides many ways for other applications to
call for content. Other web apps can call our site and request these feeds and this
feed's content. Drupal can also act as a client here and call feeds from other web
applications using a module such as the FeedAPI module: http://drupal.org/
project/feedapi.

About Drupal Web Services

[20]

AMFPHP
AMFPHP is an open source PHP-based implementation of the Action Message
Format (AMF), which allows for ActionScript objects to be sent to server-based
services. This allows for web client applications built in Flash, Flex, and AIR to
communicate with PHP-based web applications such as Drupal. There is more
introductory detail about AMFPHP on the AMFPHP website at http://www.
amfphp.org/.

Drupal can use AMFPHP through a contributed module called AMFPHP. This
module (http://drupal.org/project/amfphp) provides support for integrating
the AMFPHP protocol with the Services module in Drupal. So this is a contributed
module that allows for a bridge between AMFPHP and Services. In order to use this
service and module, you need to have the Drupal Services module installed and
you need to install AMFPHP (version 1.9 beta 2) on your server. With this in place,
Drupal can act as an AMFPHP-based client and provide Drupal integration with
Flash and Flex applications.

XML-RPC
Drupal supports the XML-RPC protocol natively. XML-Remote Procedure Call is
one of the basic and simplest web service architectures. It uses XML to encode the
function calls it makes and it makes these calls over HTTP. XML-RPC was created in
1998 by Dave Winer of UserLand Software. More about XML-RPC can be viewed on
the main XML-RPC website at http://www.xmlrpc.com/.

There is also a good introduction to XML-RPC on Wikipedia
at http://en.wikipedia.org/wiki/XML-RPC.

In your Drupal site, you can view the main xmlrpc.php file, which is located in your
root Drupal site folder. The code in this file looks like this:

<?php
// $Id: xmlrpc.php,v 1.15 2005/12/10 19:26:47 dries Exp $
/**
 * @file
 * PHP page for handling incoming XML-RPC requests from clients.
 */
include_once './includes/bootstrap.inc';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);
include_once './includes/xmlrpc.inc';
include_once './includes/xmlrpcs.inc';
xmlrpc_server(module_invoke_all('xmlrpc'));

Chapter 1

[21]

This PHP file provides the default core code for handling any XML-RPC request or
call that is attempted on your site by an external web application. You will notice
that it includes the Drupal bootstrap as well as two xmlrpc-specific include files that
are located in your /includes core folder. It also invokes the xml_rpc server using a
module_invoke_all.

In Drupal, the XML-RPC request is sent from a client (your Drupal site) to an
external host or server. It's a similar type of call as the REST protocol explained
earlier. If your Drupal site is acting as the server receiving the request from an
external client, then your Drupal site provides the xmlrpc.php file to handle this
incoming request. This file handles the incoming call. The incoming request will
most likely be formatted in XML and look something like this:

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getBlogName</methodName>
 <params>
 <param>
 <value><i4>4</i4></value>
 </param>
 </params>
</methodCall>

This request is calling for a user blog on your Drupal site with the method call of
.getBlogName. It's asking for a specific blog value of 4. This is just an example of the
semantics of the code.

The response that is sent back from your Drupal site (client) to the remote server/
application might look like this:

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>Trevor's Blog</string></value>
 </param>
 </params>
</methodResponse>

About Drupal Web Services

[22]

For a very detailed introduction to XML-RPC, refer to Chapter 19,
XML-RPC, of "Pro Drupal Development", John K. VanDyk, APress. We will
also return to a more detailed discussion of XML-RPC and how to write
your own XML-RPC code in Chapter 4, Drupal and Amazon. For now, it's
enough to understand that your Drupal site does support XML-RPC by
default, using the xmlrpc.php file and code.

Summary
In this chapter, we've introduced the concepts and functionality of web services
and how they interact with your Drupal site and applications. Here's a brief recap
of what we learned in this chapter:

•	 We learned what web services are and how they work using a set of
standard protocols, including HTTP, Uniform Resource Indicators,
and the XML format.

•	 We discussed the various protocols and interfaces that web services take
the form of when including the REST, SOAP, XML-RPC, and AMFPHP
interfaces. We talked about how Drupal can integrate and use these
protocols.

•	 We mapped out how a web service protocol works and functions, specifically
looking at the REST protocol and also at XML-RPC, which comes native
to your Drupal core install. Drupal supports web services in its core
configuration using XML-RPC.

•	 We looked in detail at how Drupal uses web services, both as a consumer
of services and a provider of services.

•	 As a consumer of web services, we looked at a number of contributed
modules that Drupal uses to interface with web services when Drupal is the
client in the client/server relationship. These include Mollom, Auto Tagging,
Flickr, Apache Solr, and Facebook.

•	 We looked at how Drupal can serve as a web services provider by looking
briefly at the Services module, RSS, AMFPHP, and XML-RPC.

•	 We looked in detail at some code examples of how Drupal uses XML-RPC,
including the code for sending a call to another server or application, and
for receiving the response back from the web service.

In Chapter 2, Consuming Web Services in Drupal, we will start taking a deeper and
more detailed look at Drupal web services as we discuss how Drupal consumes
web services using the SOAP client module. We'll also take a detailed look at the
SOAP protocol.

Consuming Web Services
in Drupal

In the previous chapter, we learned that our Drupal site can act as a web services
client or a web services provider (or server). Drupal does this by integrating and
using various types of web services code, including XML-RPC, REST, JSON, XML,
and RSS. In this chapter, we're going to discuss how our Drupal site can act as a web
services consumer. This means that we can take our Drupal site and add code to it
in the form of a Drupal module, and make this module connect to an external server
or application that provides a web service that we want to utilize and consume data
from.

We're first going to look in detail at a protocol that Drupal can use to make this
communication happen. This web services protocol is called SOAP (Simple Object
Access Protocol). We'll define SOAP and look at various implementations of
SOAP with our Drupal site. We'll also look in detail at the two contributed Drupal
modules that utilize SOAP for web service integration. The SOAP Client module is
a developer's module and has a higher learning curve. It assumes you know how
to write your own web services remote procedure call code and implement this
code in a custom module. You can then use the SOAP Client module to enable your
custom module to talk to an external web service and load its WSDL (Web Service
Description Language), for example.

WSDL is an XML-based document(s) that describes and outlines a web service and
the model for interacting with this web service. The document specifies where the
web service resides, and the types of operations the web service performs. This
includes specifications defining the web service, port, or the endpoint where the
service is located; the binding style; port type or interface; operations performed;
and the message corresponding to this operation. For more on WSDL, see the
definition at Wikipedia: http://en.wikipedia.org/wiki/Web_Services_
Description_Language.

Consuming Web Services in Drupal

[24]

We'll also look in detail at a contributed module that has already been coded for us
but provides a large amount of functionality, especially for Drupal sites running
e-commerce using Ubercart. The module is the FedEx Shipping Quotes for Ubercart
module and it allows our Drupal site to consume web services from the FedEx
Shipping Services API. For example, this module allows your site visitors to get real
time FedEx shipping quotes returned to them when they proceed to the checkout
from their Ubercart order. With their products in their shopping cart, the site visitor
can get shipping quotes immediately in their checkout screen and the quotes are
up-to-date from the FedEx Web Services. Shoppers can then easily select the quote
they want to use with their order, for example, FedEx Overnight shipping, and this
will automatically add the shipping cost to their Ubercart order.

This module will give you a good practical and easy-to-use example of consuming
web services in Drupal.

So to summarize, in this chapter we will:

•	 Define SOAP and determine how we can use SOAP with Drupal
•	 Use the SOAP Client module
•	 Use the FedEx Shipping Quotes module

Using SOAP
SOAP (Simple Object Access Protocol) is an object-access protocol that allows us
to exchange information within our web services environment. The SOAP protocol
is currently maintained by the XML Protocol Working Group of the World Wide
Web Consortium (W3C). The current SOAP version is 1.2.

Like XML-RPC and REST, the SOAP protocol uses XML as its exchange format.
SOAP is actually called a successor to the XML-RPC protocol, and offers more
functionality and enhancement compared to XML-RPC. SOAP also follows a
consistent and easy-to-use framework, similar to REST that keeps all of its messages
formatted in XML, uses RPC (Remote Procedure Call) to make its function calls, and
HTTP to transfer information. SOAP basically runs as a foundation for your web
services interface and allows you to build up your web services environment on top
of its protocol. This is why you run SOAP within your PHP environment because
PHP is providing your foundational programming backend framework.

SOAP works by making a Remote Procedure Call to an application on an external
server. In this chapter, we're going to look at an example of SOAP being used in a
Drupal site to make a call from an Ubercart installation on your Drupal site to an
external FedEx Shipping API to request shipping quotes for a customer's product
that is in their shopping cart on the Drupal site. So, SOAP will enable this call to
happen, and for Drupal to consume the resulting shipping quote.

Chapter 2

[25]

The way the call works is that it is encoded in XML format by the SOAP client script.
XML was chosen as the format to use for the messaging, as it's a standard markup
language used by many major corporations and open source applications.

The XML is then sent over HTTP transport protocol to the external web application
server. HTTP is a popular method of transporting the messages encoded by the
SOAP client and server because HTTP is the common transport method used by
many networks and firewalls. SOAP can also be used with HTTPS for any secure
transactions, for example, when you are using Ubercart to pass client data over to the
FedEx server API. These transactions should be kept secure so that SOAP supports
this secure framework.

In our FedEx example, the FedEx server returns an XML-formatted document with
shipping quote data based on the remote procedure call that was submitted by the
Drupal client. This data gets integrated directly into our Ubercart installation using
a contributed Ubercart FedEx API module that integrates with the SOAP protocol.
We're going to look at both this Ubercart module and the Drupal-contributed SOAP
Client module in this chapter.

Drupal uses two types of SOAP with its web services consumption. Drupal supports
the PHP 5.x SOAP extension (through various downloaded package versions) and
also the NuSOAP extension. NuSOAP is a not a SOAP extension but rather a set
of PHP classes that allow for the creation and consumption of web services. You
do not need to install any special PHP extensions if you run NuSOAP. NuSOAP
does support the SOAP 1.1 specification and can generate WSDL documents. In
this chapter, we're going to focus on using the PHP SOAP extension rather than
NuSOAP, but you now know that there is another option for using SOAP with your
server and site.

For more on the history and functionality of SOAP, see
the following articles: SOAP Wikipedia article (http://
en.wikipedia.org/wiki/SOAP), SOAP specification and latest
versions (http://www.w3.org/TR/soap/), using SOAP with
PHP through Mac Developer Connection (http://developer.
apple.com/internet/webservices/soapphp.html).

The SOAP message
The following is an example of what a SOAP message looks like in XML. You'll
notice many similarities between this XML-formatted message and the XML-RPC
version we looked at in the first chapter. I'm going to show you again what the
XML-RPC message looked like by way of comparison and to point out some
differences. Here's the XML-RPC:

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/SOAP
http://www.w3.org/TR/soap/
http://developer.apple.com/internet/webservices/soapphp.html
http://developer.apple.com/internet/webservices/soapphp.html

Consuming Web Services in Drupal

[26]

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getBlogName</methodName>
 <params>
 <param>
 <value><i4>4</i4></value>
 </param>
 </params>
</methodCall>

Here is the SOAP message:

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetShippingQuote>
 <m:ShippingType>FedEx Overnight</m:ShippingType>
 </m:GetShippingQuote>
</soap:Body/>

</soap:Envelope>

Notice here that the entire SOAP message is wrapped in an Envelope. The Envelope
includes both Header and Body information. The Body includes the actual call
(similar to the methodCall in the XML-RPC message). The call here is marked
<m:GetShippingQuote>. The call then defines a specific shipping type from which it
wants to retrieve data from. In this example, we're asking the FedEx server to return
data for FedEx Overnight. Notice here that the XML format is basically the same as
the XML-RPC, but uses different tags. Again, this shows the versatility and flexibility
of web service protocols if they use a consistent format.

Chapter 2

[27]

Enabling SOAP in PHP
Before using SOAP in PHP frameworks such as Drupal, we need to make sure
the SOAP extension library is installed and enabled on our server. SOAP runs as
a PHP extension. You can check your PHP info file, or click on your PHP version
link in your Drupal status report to check your PHP configuration and see if SOAP
is enabled. On many shared or dedicated servers, the extension should be auto
enabled, so you'll see that SOAP is indeed enabled by default and you won't have to
do anything special to get it working. However, in case the extension is not enabled,
you'll need to enable it.

Go to your PHP info and locate the following text in your Configure Command area.
You should look for this: --enable-soap.

This command shows you that SOAP is enabled. You can then scroll down on your
info page and look for the specific SOAP extension section and you should see
something that looks like the following screenshot:

This shows you that the SOAP Client and SOAP Server are both enabled in your
PHP configuration, and various SOAP directives are also enabled and working.

Assuming that you have a SOAP package on your server, you can do the following
to enable the SOAP extension. This may change depending on your PHP version, but
I'll assume here that you are using PHP 5.2. If you are running a Fedora or CentOS
Linux server and Apache, you can simply install the extension as long as you already
have the SOAP package on your system, using your Terminal client and running the
following command. Make sure you are logged into the server as the root admin user:

yum install php-soap

Consuming Web Services in Drupal

[28]

We're going to take a look at two examples of how you can use SOAP with your
Drupal site to request data through a web services interaction, with an external
server or application. First, we're going to install and use the contributed SOAP
Client module and then we'll look at using the FedEx Shipping Quotes API
module with an Ubercart installation on our Drupal site to request shipping quote
information from the FedEx Developer's server.

Using the SOAP Client module
The SOAP Client module is a contributed Drupal module that adds a simple API
framework to your Drupal site to allow for communication with either the PHP 5.x
SOAP or NuSOAP extensions. This API will also allow for other contributed Drupal
web services-based modules to access and integrate with external SOAP-based
web servers. So, if you are trying to connect your Drupal site to a SOAP-based web
service and consume its services, then this module is worth using.

I'm going to show you how to install and configure the module, and then we will
use the module to connect to an external web application.

Installing and configuring the SOAP Client
module
Go to the module's project page (http://drupal.org/project/soapclient) and
download the latest version (6.x-1.0-beta2). This is the latest version of the module
at the time of this book's publication. When you go about downloading the module,
you may notice that there is a newer version of the module. Once downloaded to
your desktop:

•	 Upload the module file to your site's /sites/all/modules folder.
•	 Visit your site's module configuration page and enable the module.
•	 Save your module configuration.

Once installed, you'll see a link to the SOAP Client's configuration page through
your site's configuration menu (if you are using the Administration Menu module).
See the following screen:

http://drupal.org/project/soapclient

Chapter 2

[29]

If you do not have the Administration Menu module installed, you can still navigate
to the module's configuration page by first going to your main Drupal Administer
page. The SOAP Client link is in the site's Configuration section.

Click on the Configure link first. If installed correctly and you have a SOAP Client
library installed and enabled, the module should automatically notify you what
library you are using. In this example and on my site, I see that the module has
figured out that I have the Native SOAP extension for PHP 5 installed. If you have
multiple SOAP extensions enabled on your server, you can specify which one you
want to use with the SOAP Client module by selecting the radio button under the
Active SOAP Library section. I'm going to leave this setting on Auto Detect because
I want the module to automatically detect the extension on the server. See the
following screenshot for an example of this.

The next section of the configuration contains fields that ask you to place a Proxy
Host, Proxy Port, Proxy User, and Proxy Password information of the web service
you are going to communicate with. So, here you would enter the web service
application proxy host name, port, and your API username and password, if
applicable, for the web service communication you are trying to configure. You may
not need to use a proxy host for your integration, in which case you could safely
ignore these fields.

Consuming Web Services in Drupal

[30]

There is also a Test/Demo configuration button in the module settings as shown
above. Click on this button and the following screen will appear:

Chapter 2

[31]

This screen asks you to enter the SOAP server endpoint URL. This will be the
absolute endpoint URL of the SOAP server service that you are communicating with.
If the server is providing a WSDL to use, you would enter the WSDL URL here.
There's also a checkbox to select if you are using WSDL.

You can also enter the target namespace URI in the Target Namespace field. You can
specify how the SOAP Client (your site) will encode the message (either encoded or
literal), and the style of the SOAP Remote Procedure Call (either RPC or document).
We'll leave these set to their defaults, which are encoded for the URL, and RPC for
the style of call.

Consuming Web Services in Drupal

[32]

Next, you'll enter the SOAP function that you want to call on the external
application. Then you can add any specific arguments you want to add to the call.

We can use our FedEx Shipping Quote example to test the SOAP Client module.
We'll use the SOAP Client module to test communication and integration with
the FedEx Developer's API and web services in the next section of the chapter. The
FedEx Web Services use WSDLs, so we can test these WSDLs with our SOAP Client.

Getting started with FedEx Web Services
To use Drupal with FedEx Web Services, you'll first need to familiarize yourself
with the FedEx Developer Resource Center at FedEx.com (http://fedex.com/us/
developer), and also sign up for a developer's account. Once you have your account,
you can log in to the Developer Resource Center and download specific WSDLs to
use with your Drupal site integration. FedEx Web Services also provides the sample
code that you can use.

If you use WSDLs with your test integration, with the SOAP Client, you'll need
to locate the WSDL URL on the FedEx Web Service Server so that we can point to
this in our SOAP server endpoint URL field. This is where we'll add the URL to the
FedEx WSDL. You can also download the WSDL and upload it to your Drupal site/
server, and then add that URL to your SOAP Client configuration and test.

You can also get a developer test key to test your FedEx Web Service, and enter this
API key's username and password in your SOAP Client configuration. To run your
FedEx module integration in a real testing environment, you'll want to sign up for a
FedEx Web Service Developer's account so that you can get the API credentials. We'll
cover this in the following sections.

Using FedEx Shipping Quotes module
Let's take a detailed look at using a contributed Drupal module to consume web
services from an external application using the SOAP protocol. This module
integrates with Ubercart, which is one of the Drupal-based e-commerce modules.
To follow along with the examples in this section of the chapter, you should have
a Drupal site with the core Ubercart modules installed and enabled. I'll assume
you already have Ubercart set up in testing mode with a few test products in
your site that you can use for the examples in this section.

http://fedex.com/us/developer

Chapter 2

[33]

Here's an overview of the practical example we're going to walk through in this
section. If you are running an e-commerce website using Drupal and Ubercart, you
may want to gather shipping quotes in real time from a service such as FedEx. FedEx
(as explained earlier in the chapter) provides web services through an API that you
can communicate with and consume in your Drupal site. The example here will be
to get shipping quotes for the products that your customers add to their Ubercart
shopping cart. When they add the products, they will be able to get accurate and
up-to-date shipping quotes from the FedEx service. FedEx will act as a service
provider or server here, and your Drupal site will be consuming these services.
Similar to the earlier section on using the SOAP Client module, you're going to
need to sign up for a FedEx Developer account, so you can get an API key to use
with the FedEx Shipping Quotes module.

The FedEx Shipping Quotes for Ubercart module is a contributed Drupal project
module that allows your Drupal site to communicate with and consume web
services from the FedEx Web Services API. This allows you to get shipping quotes
directly from the FedEx servers. Your store customers and Drupal site visitors will
be able to add a product to their cart and then select a FedEx shipping method (for
example, overnight or second-day delivery) and retrieve the shipping quote for the
respective method in real time from the FedEx API server. As a store administrator,
you can select which FedEx shipping methods to use in your store and what
types of packaging and pickup/dropoff to use. Shoppers will be able to click on a
Calculate Shipping Rate button or add the shipping rate to be returned based on
their shipping address information they have entered into the Ubercart shipping
address form fieldset. The module requires you to have the SOAP extension enabled
in your PHP 5.x installation. We have already confirmed that SOAP is enabled in our
previous chapter section.

Let's get started. We'll first take a look at the FedEx Shipping Quotes module and
how to install and enable it.

Installing and configuring the FedEx Shipping
Quotes for Ubercart module
First, you will need to make sure that you have Ubercart and the Token modules
installed and configured on your site. Once installed, you should add a few test
products to your site that you can use for the examples. The latest version of
Ubercart is 6.x-2.4. and the project page can be found at http://drupal.org/
project/ubercart. The latest version of the Token module for Drupal 6 is 6.x-1.15,
and the project page is obtained from http://drupal.org/project/token.

Once you have Ubercart installed, make sure that you enable the entire core Ubercart
modules, including the Shipping and Shipping Quotes core modules.

http://drupal.org/project/ubercart
http://drupal.org/project/ubercart
http://drupal.org/project/token

Consuming Web Services in Drupal

[34]

Currently, the module is released for Drupal 6 and 5, and the latest Drupal 6.x
version is 6.x-2.0. You can download the module from its project page available at
http://drupal.org/project/uc_fedex. The module has been known as the uc_
fedex module to Ubercart users.

It is recommended that you download the module from the Drupal project page.
The module comes with the following files, including a README.txt file that
contains installation instructions. The module folder includes the following folders:

•	 translations

•	 wsdl-production

•	 wsdl-testing

The wsdl folders contain the respective FedEx WSDLs for production
environment transactions and for testing transactions. In this example, we'll
be using the wsdl-testing folder, which contains the following files:

•	 AddressValidationService_v2.wsdl

•	 RateService_v7.wsdl

•	 TrackService_v3.wsdl

•	 TrackService_v4.wsdl

Finally, the uc_fedex folder contains the following code files that we'll be taking
a closer look at:

•	 uc_fedex.admin.inc

•	 uc_fedex.css

•	 uc_fedex.info

•	 uc_fedex.install

•	 uc_fedex.module

For those of you familiar with Drupal module development, you'll notice that
the module folder contains .info, .css, .install, and .module files. Let's open
up the README.txt file and see what specific install instructions are for the module
so that we can get it installed and working on our site. We'll then take a look at the
module's code.

The README file explains that you need to have PHP 5 on your server and the SOAP
extension enabled. Upload the module folder to your /sites/all/modules directory
and unzip it. Then go to your Drupal site and enable the FedEx module on your
main modules admin page. Save your module configuration.

http://drupal.org/project/uc_fedex
http://drupal.org/project/uc_fedex

Chapter 2

[35]

Once enabled, you can get to the uc_fedex module's configuration page within
your Drupal site by visiting Store Administration | Configuration | Shipping
quote settings | Quote Methods | FedEx, or by going to /admin/store/settings/
quotes/methods/fedex page.

The module's configuration page will load. It's broken up into the following sections:
Credentials, Quote Types & Services, Dropoff and Pickup options, package types,
and Markups. The FedEx Shipping Quote settings form will ask for the following
credential information:

•	 FedEx Web Services API User Key
•	 FedEx Web Services API Password
•	 FedEx Account #
•	 FedEx Meter #
•	 FedEx Server Role

You can get this information by signing up for a FedEx Developer's account
on the FedEx Developer's website at http://fedex.com/us/developer/.

http://fedex.com/us/developer/

Consuming Web Services in Drupal

[36]

To use the module, you'll need to sign up for an account to get an API User Key and
password as well as the Account # and Meter # details. So let's head over to the FedEx
Developer Resource Center page and sign up for a developer's account. Go to the
developer resource URL, as mentioned before, and sign up for a developer's account.

Once signed up, you will receive your FedEx.com user ID, and then be prompted
to start using the FedEx Developer Resource Center. Go ahead and proceed.

There should be a link to get started with the FedEx Web Services Technical
Resources. You should get to this section of the FedEx site and proceed to the
Develop & Test Your Application section to obtain a developer test key and account
information.

As the module README states, in order for the module to work, you need these
credentials. The first set of credentials you'll obtain will be for communication with
the FedEx testing server. You need to test all transactions to the FedEx test server
first before proceeding to production level quote requests. Also, note that your FedEx
test account credentials will not be the same as your eventual FedEx production
account credentials. This is important to note because you need to know that your
company may get specific discounts from FedEx on their production account. These
same discounts will not apply to your developer's testing account.

Go to the Develop & Test Your Application link, which will bring you to:

https://www.fedex.com/wpor/web/jsp/drclinks.jsp?links=techresources/
develop.html

https://www.fedex.com/wpor/web/jsp/drclinks.jsp?links=techresources/develop.html
https://www.fedex.com/wpor/web/jsp/drclinks.jsp?links=techresources/develop.html
https://www.fedex.com/wpor/web/jsp/drclinks.jsp?links=techresources/develop.html

Chapter 2

[37]

Read the introductory material on that page and then click on the Obtain Developer
Test Key button.

Bear in mind that, as you'll be integrating with the FedEx testing server, this server
could experience unexpected downtime and go offline during your testing process.
FedEx continuously tweaks and upgrades their testing API, so you should expect
to receive communication errors at times because it is a web service and a testing
environment. FedEx also posts detailed announcements about any offline status or
other issues with both their testing and production web service environment on their
main home page when you log in to your testing account. They will also send you
e-mail notifications, alerting you to any maintenance they may be running on the test
and production servers.

Click on the Obtain Developer Test Key button and complete all of the required
forms and fields in the Registration for FedEx Test System Access. On the last
Confirmation screen, you'll be given the following data:

•	 Developer Test Key
•	 Test Account Number
•	 Test Meter Number

Consuming Web Services in Drupal

[38]

•	 Test FedEx Office Integrator ID
•	 Test Client Product ID
•	 Test Client Product Version

Make sure to print out this confirmation screen for your records, and also note
down your developer test credentials in a safe place. You will also receive e-mail
confirmations of your test credentials from FedEx. The e-mail will contain your API
password. Congratulations! You now have a test account configured, and we can
now test it out using the uc_fedex module and get a better understanding of how
SOAP web services work with our Drupal site.

Confirming your Ubercart store settings
Before we enter our test credentials into Drupal and start testing, we need to
check one more basic setting in our Ubercart site. In order for this module to work
successfully, you also need to make sure you have configured and set your main
store address settings, as all shipping quote requests are going to use this store
address as the main shipping origination address. So, to confirm that you have set
the store address, go to your main Store Administration | Configuration | Store
Settings page available at /admin/store/settings/store/edit.

Save your store settings configuration.

Entering your test credentials in the FedEx module
configuration
Let's revisit the Shipping quote settings page of the FedEx module and enter our
test credentials. The credentials section of the form looks like this:

http://variantcube.com/admin/store/settings/store/edit

Chapter 2

[39]

Enter the User Key, API Password, Account #, and Meter # that you received
when you signed up for a test account. Also, make sure the FedEx Server Role
is set to Testing. Make sure you enter your API Password that you received in
the e-mail confirmation.

Consuming Web Services in Drupal

[40]

Once you have entered your credentials, go ahead and select the various FedEx
Services you want to receive shipping quotes from. I'm going to stick with selecting
the generic residential and commercial services, including FedEx Ground, FedEx
Home Delivery, FedEx Overnight, FedEx Priority Overnight, FedEx 2nd Day, and
FedEx Express Saver. Make sure the FedEx Quote Type is set to List Prices.

Choose your FedEx Pickup/Dropoff Options, FedEx Package Type, and also choose
whether the destination address is a commercial or residential address. You can
also choose to add any markups your store may require. The markup costs will be
automatically applied to the shipping quote. Also, choose how the packages will be
sent: either each product in its own package or multiple products in one package.
Save your module configuration.

Chapter 2

[41]

Consuming Web Services in Drupal

[42]

Finally, in our main Shipping quote settings in Ubercart, let's make sure we have
checked the boxes next to the following:

•	 Log errors during checkout to watchdog
•	 Display debug information to administrators
•	 Prevent the customer from completing an order if a shipping quote

is not selected

We're now ready to test our web service. We can add some products to our shopping
cart in Ubercart and proceed to checkout. On our checkout page, we can request the
FedEx shipping quotes and test our web services connection.

Also, make sure that you have selected the FedEx's Shipping Method as your
default enabled shipping method for your Ubercart installation. Otherwise, the
quote services will not work.

Chapter 2

[43]

Testing the FedEx Web Service with our Drupal site
Let's go ahead and add a product to our shopping cart and then proceed to checkout.
Make sure you have a Payment Method enabled for testing. Let's use the Test
Gateway. On your checkout form, enter the delivery Information and the billing
information. As soon as you fill in this delivery and billing information, the Shipping
Quotes should automatically be retrieved from the FedEx server. If there is any issue
with the communication between your Drupal client and the FedEx server, you'll
receive an error message on the checkout screen. You should see a progress bar
stating "Receiving quotes …."

If you receive errors, you may also want to check your Recent Log entries in Drupal
to see a printout of a specific error you may receive. For example, when I tried
getting shipping quotes the first time, I received the following error:

Error in processing FedEx Shipping Quote transaction.
ERROR
crs
866
Origin postal code missing or invalid.
Origin postal code missing or invalid.

This error, most likely, points to an issue with our pickup location zip code because
it's telling us that the store origin postal code is missing or invalid. So check to make
sure that you have your Ubercart store settings configured correctly. Fix or address
any issues that could be causing errors and then try again. Also, confirm that you set
a pickup location as the default in your FedEx shipping quotes settings.

Once you have successfully got quotes returned from the FedEx server, you should
see something like this on your checkout screen:

Consuming Web Services in Drupal

[44]

You can now select the quote you want to use for your transaction, and this quote
amount will be automatically applied to the overall cost of the product. I will choose
Home Delivery here, enter test credit card credentials, and then proceed to Review
my order and Complete my transaction.

When you click on Review Order, you should receive a successful FedEx Rate Quote
Transaction message (as you've enabled debug to see errors and messages regarding
this module).

The debug info should give you a successful Request showing you the actual XML
of the request from the Drupal client to the FedEx server, as well as the successful
XML-based response that comes back to your client from the web service. The XML
request should look like this:

Chapter 2

[45]

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:ns1="http://fedex.com/ws/rate/v7"><SOAP-ENV:Bod
y><ns1:RateRequest><ns1:WebAuthenticationDetail><ns1:UserCredent
ial><ns1:Key>r0QLxAKaZsA4egau</ns1:Key><ns1:Password>76nUkRUopsU
JxZRoshS0SkeJk</ns1:Password></ns1:UserCredential></ns1:WebAuthe
nticationDetail><ns1:ClientDetail><ns1:AccountNumber>510087941</
ns1:AccountNumber><ns1:MeterNumber>118511868</ns1:MeterNumber></
ns1:ClientDetail><ns1:TransactionDetail><ns1:CustomerTransactionId>***
Rate/Available Services Request v7 from Ubercart ***</
ns1:CustomerTransactionId></ns1:TransactionDetail><ns1:V
ersion><ns1:ServiceId>crs</ns1:ServiceId><ns1:Major>7</
ns1:Major><ns1:Intermediate>0</ns1:Intermediate><ns1:Minor>0</
ns1:Minor></ns1:Version><ns1:RequestedShipment><ns1:ShipTimesta
mp>2010-05-03T09:10:08-06:00</ns1:ShipTimestamp><ns1:DropoffType>RE
GULAR_PICKUP</ns1:DropoffType><ns1:Shipper><ns1:Address><ns1:Postal
Code>21702</ns1:PostalCode><ns1:CountryCode>US</ns1:CountryCode></
ns1:Address></ns1:Shipper><ns1:Recipient><ns1:Address><ns1:PostalCo
de>21769</ns1:PostalCode><ns1:CountryCode>US</ns1:CountryCode><ns1:Re
sidential>true</ns1:Residential></ns1:Address></ns1:Recipient><ns1:R
ateRequestTypes>LIST</ns1:RateRequestTypes><ns1:PackageCount>1</ns1:
PackageCount><ns1:PackageDetail>INDIVIDUAL_PACKAGES</1:PackageDetail
><ns1:RequestedPackageLineItems><ns1:SequenceNumber>1</ns1:SequenceNu
mber><ns1:Weight><ns1:Units>LB</ns1:Units><ns1:Value>4</ns1:Value></
ns1:Weight><ns1:Dimensions><ns1:Length>1</ns1:Length><ns1:Width>1</
ns1:Width><ns1:Height>1</ns1:Height><ns1:Units>IN</
ns1:Units></ns1:Dimensions></ns1:RequestedPackageLineItems></
ns1:RequestedShipment></ns1:RateRequest></SOAP-ENV:Body></SOAP-
ENV:Envelope>

Notice that our XML request contains our FedEx account credentials as well as
the two distinct postal codes for the requested quote—the origination postal code
and the destination postal code. Also, notice that the XML request is wrapped in
<SOAP-ENV:Envelope> tags that follow the standard SOAP XML request format.
The XML request too contains the various functions that the call is making,
including the rate request <ns1:RateRequest>.

Consuming Web Services in Drupal

[46]

The reply XML code that is returned from the FedEx server is very long,
which I'll excerpt here:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/"><env:Header xmlns:env="http://schemas.xmlsoap.
org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"/><env:Body xmlns:env="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"><v7:RateReply xmlns:v7="http://fedex.com/ws/rate/
v7"><v7:HighestSeverity>NOTE</v7:HighestSeverity><v7:Notifications><v
7:Severity>NOTE</v7:Severity><v7:Source>crs</v7:Source><v7:Code>441</
v7:Code><v7:Message>This shipment met Shipment Weight Minimum
criteria.</v7:Message><v7:LocalizedMessage>This shipment met Shipment
Weight Minimum criteria.</v7:LocalizedMessage></v7:Notifications
><ns1:TransactionDetail xmlns:SOAP-ENV="http://schemas.xmlsoap.
org/soap/envelope/" xmlns:ns1="http://fedex.com/ws/rate/v7"><ns1:
CustomerTransactionId>*** Rate/Available Services Request v7 from
Ubercart ***</ns1:CustomerTransactionId></ns1:TransactionDetail><ns
1:Version xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://fedex.com/ws/rate/v7"><ns1:ServiceId>crs</
ns1:ServiceId><ns1:Major>7</ns1:Major><ns1:Intermediate>0</
ns1:Intermediate><ns1:Minor>0</ns1:Minor></ns1:Version><v7:RateRe
plyDetails><v7:ServiceType>FIRST_OVERNIGHT</v7:ServiceType><v7:Pac
kagingType>YOUR_PACKAGING</v7:PackagingType> </v7:RatedPackages></
v7:RatedShipmentDetails></v7:RateReplyDetails></v7:RateReply></
env:Body></soapenv:Envelope>

Again, this XML reply is wrapped in the <soapenv:Envelope> tags.

When you review your order after submitting it, you should see the FedEx shipping
quote line item in your order summary and the FedEx cost added automatically to
your subtotal. On my screen, the line item reads FedEx Home Delivery.

So you have learned how to consume web services using your Drupal site from an
external server and how a module can be built in Drupal to allow this service to
occur. The module developer has integrated the module seamlessly into the Drupal
code so that the module performs the SOAP-based client call to the remote server
and then integrates the results of the call (the response) into the Drupal-based
transaction in Ubercart. The module uses the most current FedEx API WSDLs in the
module code in order to make this remote call work.

In this specific scenario, the module is using the RateService_v7.wsdl, which is
located on your client server in the /wsdl-testing folder. This WSDL is also in
XML format and contains the XML schema for the actual web service. The WSDL
also contains the URL for the FedEx Web Service application and server that the
remote call from your client will be routed to. This server is http://fedex.com/ws/
rate/v7. Here is what the code for this WSDL looks like (in excerpted format because
it's a long document):

http://fedex.com/ws/rate/v7

Chapter 2

[47]

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:ns="http://fedex.com/ws/rate/v7" xmlns:s1="http://schemas.
xmlsoap.org/wsdl/soap/" targetNamespace="http://fedex.com/ws/rate/v7"
name="RateServiceDefinitions">
 <types>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" at
tributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://fedex.com/ws/rate/v7">
 <xs:element name="RateRequest" type="ns:RateRequest"/>
 <xs:element name="RateReply" type="ns:RateReply"/>
 <xs:complexType name="RateRequest">
 <xs:annotation>
 <xs:documentation>Descriptive data sent to FedEx
by a customer in order to rate a package/shipment.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element minOccurs="1"
name="WebAuthenticationDetail" type="ns:WebAuthenticationDetail">
 <xs:annotation>
 <xs:documentation>Descriptive data to be
used in authentication of the sender's identity (and right to use
FedEx web services).</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element minOccurs="1" name="ClientDetail"
type="ns:ClientDetail">
 <xs:annotation>
 <xs:documentation>Descriptive data
identifying the client submitting the transaction.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element minOccurs="0" name="TransactionDetail"
type="ns:TransactionDetail">
 <xs:annotation>
 <xs:documentation>Descriptive data
for this customer transaction. The TransactionDetail from the
request is echoed back to the caller in the corresponding reply.</
xs:documentation>
 </xs:annotation>
 </xs:element>

Consuming Web Services in Drupal

[48]

SOAP request/call in the FedEx module file
The actual SOAP call that is being initiated is located in the uc_fedex.module
file. If you open up the uc_fedex.module file and look at or around line 331 in
the module code, you should see comments noting the beginning of the SOAP
RateAvailabilityService request code. This code will obtain the rates and
services needed to gather the shipping quotes from the FedEx services server. Also,
notice that the comments specify that all SOAP call parameters follow the same order
in which they appear in the FedEx WSDL file.

Summary
In this chapter, we explored how Drupal can consume web services using the SOAP
protocol. This included:

•	 Defining and introducing the SOAP protocol
•	 Installing, configuring, and using the SOAP Client module
•	 Installing, configuring, and using the FedEx Shipping Quotes module
•	 Looking in detail at the XML-formatted request call and response that the

Shipping Quotes service gives us
•	 Looking in detail at the SOAP remote call/function that is in the actual

module code

In the next chapter, we're going to look at a contributed suite of modules that will
allow our Drupal site to communicate with an external web service provided by the
web application Flickr. This will allow us to consume Flickr photos into our Drupal
website and present photos hosted by our Flickr account within the themed galleries
on our Drupal site.

Drupal and Flickr
In this chapter, we're going to continue our discussion of how Drupal consumes
web services using a specific contributed Drupal module. We're going to practice
integrating our Drupal site with the Flickr photo-sharing web application
(http://flickr.com) using the contributed Flickr module.

Using Drupal with the Flickr module will give us a hands-on look and demo of how
we can use complex web services along with Drupal blocks, CCK, and Views to build
intricate and dynamic frontend displays that present photo data from Flickr on our
Drupal site. We will also look at the awesome flexibility and rich presentation of photo
content that the Flickr module and its web service integration with Drupal can give us.

We will install and configure the Flickr module to communicate with the Flickr Web
Services and display dynamic Flickr photo galleries on our Drupal site.

To summarize, in this chapter we will:

•	 Access the Flickr Web Services using the Flickr module
•	 Use Flickr contributed modules to manipulate and use our Flickr Web

Services with Drupal
•	 Enable and configure Flickr module blocks and display these blocks

on our site

http://flickr.com

Drupal and Flickr

[50]

Accessing Flickr
Flickr is a cloud-based application that allows for the easy uploading and sharing
of photos. You can search for photos on the Flickr website and sort the results by
relevance, that is how recently the photos were posted and how interesting the
photos are. You can also search for specific photographers or groups. For example,
if I do a search for "firehouse", I get about 49,760 results that have been tagged as
firehouse when they were uploaded to Flickr. On the same search result screen, I'll
see links to groups related to this topic or tag. For example, there is a group called
Firehouses. If I click on that Group link, I'll get all the photos that have been posted
to this specific group or pool.

The next screenshot shows the Firehouses Group pool on Flickr:

Chapter 3

[51]

Your Flickr account
If you create an account on Flickr, you can upload photos to galleries within your
account, and you can subsequently tag the photos and create sets of photos in your
account. These images get posted to your photostream. Your photostream is then
available for viewing through the Group pool for a specific topic as long as you have
posted photos to that group and tagged your photos appropriately.

I go by the screenname of backdrifting07 in my Flickr account. You can view my
account at http://www.flickr.com/photos/starlights/. This URL shows all of
my public photos:

If you start posting photos to your Flickr account regularly, you may want an easy
method of feeding your Flickr photos into your Drupal site so that you can display
and share the photos with your Drupal site's visitors and users. To do this, you will
use a variety of modules to connect to the Flickr Web Services.

In this chapter, we're going to learn how to integrate our Flickr photos and photosets
with our Drupal site by installing, enabling, and configuring the Drupal Flickr module.
We'll use this module on our Drupal site to consume the Flickr Web Services.

For more on the history of Flickr, read the detailed Wikipedia article
available at: http://en.wikipedia.org/wiki/Flickr.

http://www.flickr.com/photos/starlights/

Drupal and Flickr

[52]

Flickr module
The Flickr module (http://drupal.org/project/flickr) allows you to connect to
the Flickr Web Services through its API and access your Flickr photos. You can filter
specific photos or photosets as well as photo sizes using this module. This allows you
to share a specific photoset with your Drupal site and render specific sizes, including
a small square, thumbnails, small, medium, large, and original. There are currently
multiple versions of the Flickr module available for both Drupal 6.x and 5.x. We're
going to use the latest 6.x version.

Let's go ahead and download and install the Flickr module on our Drupal site. I'm
going to download the 6.x-1.2 version of the module. I'll upload the module to my
/sites/all/modules directory. Once you upload, go to your main modules admin
page and enable the entire Flickr suite of modules that show up in your Flickr
module's fieldset. These include the following:

•	 Flickr (allows for integration with Flickr Web Services)
•	 Flickr Block (adds blocks to your Drupal site with Flickr content)
•	 Flickr Filter (a filter for accessing and inserting specific photos)
•	 Flickr Sets (support photosets)
•	 Flickr Tags (add tagging capability to the module and service)

Signing up for a Flickr API key
To use the module, you'll need to sign up for a Flickr API key and credentials.
To sign up for a Flickr API key, go to the main Flickr API services site at http://www.
flickr.com/services/api/. Click on the API Keys link, and if you are logged into
your Flickr account when you do this, you should be redirected to a page where you
are asked to create your first app. You should see a link to create the app as well as a
link to access an App Garden FAQ. Click on the Why not create your first? app link
as shown:

This will launch the The App Garden page where you can follow the instructions
to get an API key:

•	 Click on the Request an API Key link to get started.

http://drupal.org/project/flickr
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/

Chapter 3

[53]

You'll be asked to choose whether your app will be a non-commercial or commercial
app. For this example, let's choose to go with APPLY FOR A NON-COMMERCIAL
KEY:

Click on Non-Commercial button.

Drupal and Flickr

[54]

You will need to name your app, so let's name it Drupal Web Site Integration for
this example. You can also add a detailed description of the app you are planning
to build. Agree to the terms of service and click on Submit.

When you click on the SUBMIT button, you'll be redirected to a web page that
shows your API key and secret code:

Make sure to print this page out, and keep the key and code in a safe place. You'll
need both of these to utilize the Flickr module. We're now ready to access Flickr via
our Drupal site. Let's configure the Flickr module.

Configuring the Flickr module
Now visit the module's configuration page by going to Site Configuration | Flickr
or /admin/settings/flickr.

http://variantcube.com/admin/settings/flickr
http://variantcube.com/admin/settings/flickr

Chapter 3

[55]

Enter your API Key and API Shared Secret key details. Select the Update interval
to indicate how often you want to check that the Flickr API cached service calls are
up-to-date. Also, select how many photos you want to show per photoset. So, this
would display 30 photos of a photoset in your Drupal node, for example:

Save your configuration.

Drupal and Flickr

[56]

Adding the Flickr filter
The next thing you need to do, before adding your Flickr photos, is to add the Flickr
filter to your active default input format. On your Drupal site, you will have either
a Filtered HTML, Full HTML, or PHP Filter set as your default site input format.
The input format configuration is located at Site configuration | Input formats or
at /admin/settings/filters. I'm using the Filtered HTML input format on our
example site, so I'm going to visit the configuration page for this input format by
clicking on the Configure link in the Operations column of the Input format table.
On your input format configuration form page, make sure to enable the Flickr linker
filter. This will allow you to embed the Flickr token code into your Drupal nodes to
access photos and photosets:

By enabling the Flickr linker filter, you will be able to enter specific Flickr-based
tokens into your node's content. The format of the token code that you'll be adding
looks like this, for inserting individual photos:

[flickr-photo:id=230452326,size=s]

To insert photosets, you'll be using this code:

[flickr-photoset:id=72157594262419167,size=m]

So go ahead and check the Flickr linker box and then save your Drupal input
format configuration.

Setting Flickr module permissions
Finally, make sure that you have given Flickr module permissions to your
anonymous and authenticated site users. Go to your User Permissions and look
for the flickr module permissions. Enable the preferred permissions for your site:

Chapter 3

[57]

Testing the Flickr module
Let's go ahead and test the module and access our Flickr photos. Here, I'm going to
access one of my photosets. To do this, I will need to know the ID of my photoset.
So I'll open up the photoset in Flickr first. This is my Light Experiments photoset:
http://www.flickr.com/photos/starlights/sets/72157594379081863/.

Let's create a new page in Drupal. I'm going to go to Create content | Create
Page and add a new node to my site. I'll name the node after my photoset Light
Experiments. I'll then paste the following code into my node's body textbox:

[flickr-photoset:id=72157594379081863,size=m].

Notice that this photoset code contains the ID of my photoset and the size is set to m
for medium. The Flickr module supports multiple sizes for the display of the images
in your Drupal site. The sizes are the following, including their size code. The size
code is what is added to the flickr-photoset code as shown above. For example,
in our code we've set the size=m.

•	 s—small square, with 75px by 75px dimensions
•	 t—thumbnail, with 100px on the longest side
•	 m—small, with 240px on longest side
•	 --—Medium, with 500px on longest side
•	 b—large, with 1024px being the longest side
•	 o—original image

So I've chosen to display the photos at the small size m of 240px for one dimension.
You can insert other sizes to experiment here.

http://www.flickr.com/photos/starlights/sets/72157594379081863/
http://www.flickr.com/photos/starlights/sets/72157594379081863/

Drupal and Flickr

[58]

I'll also check to make sure the input format is set to use the input format that has
the Flickr image input enabled. To do this, expand the Input format field set under
your body text editor box and then make sure that the Filtered HTML input format
radio button is selected. I'll then save my page. Here's a screenshot of what you
should see on your Create Page form, including the Title field, Body field, and
Input Format fieldset:

After saving your new page, you should see your images appear in your node. If
you click on one of the images in your Drupal node, it will open a specific image
in Flickr. We have successfully accessed our Flickr images using the Flickr module.

Chapter 3

[59]

Depending on how many photos per photoset you have configured to show, the
node will show this number based on your Flickr module configuration. If you want
to show more photos, you'll need to tweak your configuration. If you change this
number after you've posted the node, make sure to clear your Drupal cache so that
the new amount of photos will get accessed and will show on your node. Go ahead
and try tweaking this.

Drupal and Flickr

[60]

In addition, if you want more control over the layout and display of your image
gallery in Drupal, you can quickly make a tweak to your theme's CSS file and specify
your tweaks to the following CSS variable in your site's main theme CSS file. The
Flickr module adds the following class variable to all Flickr images. The class is
.flickr-photo-img. You'll see this variable in your img src if you view your image using
Firebug. This screen shows you the variable you want to target in your Firebug view:

Now, if you want to tweak this CSS so that your layout of gallery images shows no
padding between each image, you can tweak the vertical-align value to be on top
instead of text-bottom. Making this tweak in your CSS file will cause the images
to display totally flush to each other. With these types of images, this tweak can
enhance the overall impact of the gallery display. So the tweak I made here is:

.flickr-photo-img {
vertical-align:top;
}

When I make this tweak, my corresponding image gallery layout looks like this:

Chapter 3

[61]

Notice that now all the images are flush in their display.

If you want to add padding between your images so that they sit on their own in the
frame of the layout, you can make this addition of padding elements to your CSS:

.flickr-photo-img {
padding:10px;
vertical-align:top;
}

Adding this padding will make the overall layout in my theme become two columns
of images with 10px of padding between the images:

As you can see from these examples, with a tiny amount of CSS tweaking, we can
get some really beautiful gallery layouts.

Drupal and Flickr

[62]

Flickr module blocks
We have successfully displayed our photoset as a Drupal node. Let's go ahead and
enable the Flickr blocks that come with the module. Go to your Site building |
Blocks configuration page, and in your disabled Drupal blocks you'll see a selection
of Flickr blocks that you can use. The following blocks are available:

•	 Flickr group photos
•	 Flickr random photo from photoset
•	 Flickr random photos
•	 Flickr recent photos
•	 Flickr recent photosets
•	 Flickr user page photosets
•	 Flickr user page random photos
•	 Flickr user page recent photos

Each of the Flickr blocks contains its own configuration settings that we'll take
a look at in detail now.

Flickr group photos
This block allows you to show photos from a specific group. Click on the configure
link next to the block and you'll launch the configuration page for the specific block.
Notice that this block allows you to type in a group ID into the Show photos from
this group id text field. You can tell the block to show a specific number of photos
(from 1-30). You can also tell the block to size the photos.

Let's use the following settings:

•	 Add a group ID to the block configuration
•	 Show four photos
•	 Choose the square 75x75 pixel size.

I'm going to use the Polyhedra group from Flickr. The group's URL is:
http://www.flickr.com/groups/polyhedra/pool/.

You may be tempted to just paste the group's URL into the Show photos from this
group id field. The problem with this is that the URL is not the actual group ID. So,
if you copy the URL into the field, you'll generate an error when trying to enable the
block in your theme's regions.

http://www.flickr.com/groups/polyhedra/pool/
http://www.flickr.com/groups/polyhedra/pool/

Chapter 3

[63]

If the ID is wrong in your block configuration, you may get the following error
(notice that I received the following error when pasting the polyhedra group
URL into my group ID field):

Flickr error 1: Group not found

If you are not sure how to get the actual group ID for a photostream
or Group you are viewing in Flickr, you can use this utility to get the
numeric Group ID. It's called idGettr and is available at http://
idgettr.com/. Enter your photostream URL and then click on the
Find button. Consequently, the Group ID will be shown.

Add the correct ID and then enable your block. The block configuration form should
look like this:

http://idgettr.com/

Drupal and Flickr

[64]

You may also receive an error telling you that you do not have permission to view
the group photos in your block—this may be due to a group disallowing permissions
to share photos through the web services. The error will be:

Flickr error 2: You don't have permission to view this pool
If this happens, you may need to create your own Flickr group for your own photos
and then try using this group ID in your block.

The Polyhedra group is a publicly accessible group, so you should be able to show its
photos in your block. After enabling the block, you should see the resulting images
showing up in your block on your site. It should look similar to this:

I've named the block Polyhedra Group, so that's the title that appears in the block
when you enable it. If you set the block title to <none>, the block title will be set by
Flickr automatically and will read Flickr Group photos.

If you enable your block in a different region of your site or tweak the block's CSS,
you can also get some interesting column layouts for the included photos. Here's
an example:

Chapter 3

[65]

As you can see, you can start to build some very interesting and fun photo galleries
on your Drupal site through your Flickr galleries. By combining a node view of Flickr
photos, along with a block view of a specific group's photos, you will start to construct
a beautiful series of galleries on your Drupal site that leverage both Drupal for layout
purposes, and the Flickr API, for its powerful web service. This can act as a nice
supplement to your other image capabilities and the functionality of your Drupal site:

Drupal and Flickr

[66]

Flickr random photo from photoset
Let's go ahead and configure the next Flickr block called Flickr random photo
from photoset. This block will feed in random photos from a Flickr photoset. The
configuration is similar to setting up the Flickr Group Photos block. You add the
following:

•	 Block title
•	 Flickr User Id
•	 Show n photos
•	 Size of photos
•	 Flickr Photoset Id

Go ahead and complete these fields. You can leave the Flickr User Id field blank
because it will use the default user ID set in your Flickr module configuration. Also,
you can set up the number of photos to show in this block. So, if you just want to show
one random photo, you can set the number of photos to 1. Each time a user refreshes
the Drupal page, the block shows on it and feeds in a new random photo from the
Flickr photoset. Remember that here you are entering the ID of a photoset and not a
group. So I'm going to add the photoset ID for my Light Experiments public gallery
and that is 72157594379081863. Your block configuration form should look like:

Go ahead and add your settings to this block to try it out. Enable it to see the results
you get. I have also changed the size of the photos to display at Small – 240 pixels on
longest side.

Chapter 3

[67]

I should now be showing a random photo from my photoset on my Drupal site in
one of the regions, if I've enabled this block:

Do a quick refresh of your site's page in the browser, and you should see a new
random photo appear. Pretty cool!

Flickr random photos block
The Flickr random photos block allows you to show randomly selected photos from
a specific user's photosets. So, for example, you can leave the Flickr User ID field
blank on this block configuration and the block will pull in random photos from
the site's default Flickr API user account. Let's go ahead and try this. Complete the
following items on the block's configuration page and then save the block:

•	 Block title
•	 Flickr User Id
•	 Show n photos
•	 Size of photos

I'm going to enable this block on my site's home page at the top of the main content
region so that these photos appear above my site's posts. I'm going to show four
photos at the thumbnail size each of 100px dimension.

Drupal and Flickr

[68]

Enable the block and you should see something similar to this:

If you do not give the block title field a value, the default that the Flickr module
will provide us is Flickr random photos.

Flickr recent photos and recent photosets
The recent photos block is similar to the random photos block, but it allows you
to filter the photos to just the most recent images you have posted to your Flickr
account. So, if you set this to display two photos, it will grab the two most recently
posted photos from your Flickr account.

The recent photosets is similar to this, but it allows you to show all of the photos
from a specific photoset. You can show your most recently posted photoset.

Go ahead and try out both of these blocks.

Flickr user page photosets, user page random
photos, and recent photos
To use the Flickr user page photosets, user page random photos, and recent photos
blocks, you will first need to make sure that you have added your Flickr user
identifier to the Flickr settings field on your user account profile form. This identifier
is your Flickr username or the e-mail address associated with your Flickr account.

Chapter 3

[69]

These blocks allow each user on your site to configure their own Flickr blocks
of images and show these images on their own user account profile page.

Let's try this. Edit your user profile and add your Flickr identifier to the field:

Save your user profile page and then, as soon as your user page loads, you should
see an entire photoset display, depending on how many photosets you chose to show
in the block configuration. I enabled the block to display in the bottom content region
of my theme and so it shows up at the bottom of my user profile page. The cool thing
about this block display is that if you show the photos at 75x76 pixel dimensions,
the photoset displays very closely to the Flickr photoset display of thumbnails. You
should see a photoset on your user page similar in layout to this:

Drupal and Flickr

[70]

Try this with the two remaining user-based Flickr blocks: Flickr user page random
photos and Flickr user page recent photos. You should get similar results.

Summary
In this chapter, we explored how Drupal can consume photo content from the
popular photo-sharing web application Flickr. We installed and enabled the Flickr
module and explored in detail on how to:

•	 Configure Flickr modules with Flickr API key
•	 Test the Flickr filter functionality by adding Flickr filters to our nodes
•	 Test the Flickr module using the Flickr filter code
•	 Enable and test Flickr module blocks

In the next chapter, we're going to integrate our Drupal site with the Amazon Web
Services and show how we can easily consume Amazon's content into our site, and
display dynamic shopping carts and build a rich e-commerce-based website using
the Amazon suite of web service modules.

Drupal and Amazon
In this chapter, we're going to continue our discussion of how Drupal consumes
web services using specific contributed Drupal-based modules. We'll also look
at consuming web services from the popular shopping marketplace site—Amazon.
com—using the Amazon module and its integration with the Amazon Web Services
(AWS) cloud.

The Amazon and Amazon Store modules will give us a hands-on look and demo
of how we can integrate product data from Amazon and display this data on our
Drupal site. We will also look at the awesome flexibility and rich presentation of
content that these modules and web services can give us on our site.

We'll install and configure both the Amazon and the Amazon Store modules
to communicate with our Amazon associate account and we'll practice filtering in
specific Amazon products, including books, CDs, DVDs, and other items into
our Drupal nodes.

To summarize, in this chapter we will:

•	 Access Amazon Web Services using the Amazon module
•	 Use the Amazon Store module to integrate an Amazon Associate Storefront

with your Drupal site
•	 Access Amazon products and product API using the Amazon module
•	 Sign up for an AWS account and configure our Amazon module
•	 Test our Amazon module configuration by looking up an Amazon product
•	 Use Amazon Example content type
•	 Use Amazon filters

Drupal and Amazon

[72]

Accessing Amazon
Amazon.com provides a web service and a Product Advertising API that you can
leverage and consume with your Drupal site. The AWS provides a huge amount of
data and information about its books, DVDs, and music. The web service allows you
to filter this product data into your Drupal nodes and to set up actual Amazon-like
storefronts within your Drupal site. To do this, you will use the Amazon module and
associated contributed Amazon Web Service-based modules, including the Amazon
Store module.

The Amazon module is a contributed Drupal module that allows for integration with
the Amazon Web Services API (specifically, the Amazon Product Advertising API).
It allows Drupal to consume AWS and integrate these services with a CCK (Content
Construction Kit) based product type. When we install the Amazon module we'll need
to install two required modules, CCK and Features. We'll discuss the installation of
both of these in the next section of this chapter. If you are running a Drupal 5.x site,
you may have been using the Amazon associate tools module (http://drupal.org/
project/amazontools). This module is now only supported for Drupal 5.x, and the
Amazon module has replaced it for Drupal 6.x and Drupal 7.x.

The Amazon module allows for integration with the Views module. The module
supports the AWS to consume Amazon product data, including page counts, MPAA
(Motion Picture Association of America) ratings, price, editorial reviews, customer
reviews, lowest price, Amazon price, ISBN, and more.

Various input filters are available and the module allows for integration with the
Drupal core search functionality. The module also allows for token support for
product data.

You will need an Amazon API key to use this module. To sign up for an Amazon
API account, you need to visit the Amazon Web Services site at http://aws.
amazon.com/. Click on the Sign Up Now button for a free AWS account. You will
also want to sign up for a Product Advertising API account. You can get that account
at https://affiliate-program.amazon.com/gp/advertising/api/detail/
main.html.

Related modules include the Amazon store module that integrates an entire
Amazon storefront with your Drupal site along with a shopping cart.

If you are a developer, you can help contribute to the module by
volunteering your time to improve documentation, provide patches, help
build tests using the Simple Test suite, and Sponsorship module features.

Download the module and install to your /sites/all/modules folder.

http://drupal.org/project/amazontools
http://drupal.org/project/amazontools
http://aws.amazon.com/
http://aws.amazon.com/
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html

Chapter 4

[73]

To connect to products and data about products on the Amazon cloud, you'll need
to know the product ASIN (Amazon Standard Identification Number). This is the
unique identifier that the service will use for integration with your Drupal site. On
any Amazon product, you can locate the ASIN in the Product Details section. The
ASIN is also visible in the URL for the actual product. For books in the Amazon
catalog, the ISBN-10 number is same as the ASIN, so look for the ISBN-10. Generally,
the Amazon product URLs follow this pattern:

http://www.amazon.com/Drupal-Performance-Tips-Trevor-James/dp/
ASIN-NUMBER-HERE.

Here's an example:

Signing up for an Amazon Web Services
account
Go ahead and sign up for an Amazon Web Services account at the AWS website.
You'll be able to sign up with your existing Amazon account if you already have an
Amazon.com account. Once you sign up, you will receive an e-mail with your login
credentials and AWS credentials. The e-mail will also provide you with details on
how to access your unique Access identifiers that are required to make your Drupal
site client send valid web service requests to the Amazon servers.
There will be a link to your access identifiers in the e-mail you receive.

When you visit the Security Credentials section of your AWS account, you'll be
provided with three sets of credentials. Access credentials will include your Access
Key ID and links to creating associated X.509 Certificates and Key Pairs. You
will also have information about your Sign-in/login credentials for your account
and finally your AWS account ID. You should jot down and remember your AWS
account ID and your Access Key ID for using the Amazon module.

Installation and initial configuration of the
Amazon module
Let's go ahead and upload and extract the Amazon module to our server,
and enable it in our module admin area.

Drupal and Amazon

[74]

The modules that are included in the main Amazon module are the following:

•	 Amazon API—the main module for integrating with the AWS
•	 Amazon Examples—gives an Amazon CCK type as a demo/example
•	 Amazon field—this gives your Drupal site a CCK field for Amazon products
•	 Amazon Filter— allows your Drupal users to use the [amazon] filter tag to

embed Amazon product information directly into your site's nodes
•	 Amazon legacy importer—you can use this if you have legacy data to

import into your Drupal 6 site from an older Drupal 5 installation of the
Amazon module

•	 Amazon media—allows you to store data for Amazon products, including
books, DVD, and music

•	 Amazon search—this integrates the Amazon search API for searching
Amazon product information with the core Drupal search module

Let's enable all the modules except for the Amazon legacy importer because
we're not importing Drupal 5.x data.

If you enable the Amazon Examples module, make sure you also install and
enable the CCK (Content Construction Kit) and Drupal Features modules. These
modules are required to use and configure the Amazon Examples module and the
corresponding Amazon Examples content type that this module enables. The CCK
module is available at: http://drupal.org/project/cck and you can find the
Features module at: http://drupal.org/project/features.

Go ahead and install the CCK and Features modules, and then enable the previously
mentioned Amazon modules (all except for the Amazon legacy importer).

Chapter 4

[75]

Once the modules are enabled, go to the main Amazon configuration page at Site
Configuration | Amazon API (/admin/settings/amazon). Drupal will tell you that
you need to configure the module with an Access Key ID and an Amazon AWS
Secret Access Key once you enable the modules. It will also provide you with a link
to the Settings page. On the Settings page, you need to specify the location of the
store you are going to use (US, UK, Japan, and so on). You also need to configure the
Amazon Referral Settings. This allows you to determine who should receive any
percentage of the referral transaction and cost. Set this to use your own associate ID
if you want to receive a bonus when you sell a product.

If you choose to receive a commission, this is where you'll be required to sign up for
an Amazon Product Advertising API. Go to: https:// affiliate-program.amazon.
com for the same. Once you sign up, you'll need to click on your Manage Your Account
link to retrieve your access information and keys for the Drupal module.

https://affiliate-program.amazon.com

Drupal and Amazon

[76]

Also note that until you add your Amazon API keys to the module configuration
page, you will receive a notice on your Drupal status report reminding you to
configure the module.

Go ahead and enter your associate ID, AWS Access Key ID, and Amazon AWS
Secret Access Key. Save your module configuration. You're now ready to use the
module and web service.

Testing configuration
Once you have saved your key credentials, click on the Test link on the module
configuration page to send a test request to the AWS server. This will confirm that you
have configured the web service configuration correctly. On the Test page, you can add
a valid Amazon product ASIN. Click on the Look up Product button and the Drupal
site will request data about the Amazon product and display it if the test is successful.

Chapter 4

[77]

If the test fails, you may get the following error message that gives a link to your
recent log entries: Test failed for this ASIN. Please check the error log for messages.
The error I received was HTTP code 403:

HTTP code 403 accessing Amazon's AWS service: SignatureDoesNotMatch,
The request signature we calculated does not match the signature you
provided. Check your AWS Secret Access Key and signing method. Consult
the service documentation for details.

If this happens, check to make sure you have entered your security credentials
correctly. Notice here that in this case I have left one digit off from my secret access
code. I re-entered this code and then ran the test again.

If a successful test is run, you should get a result on your Drupal site showing the
product data, including the Title of the book, Author, Publisher, and Binding.
You should also receive an Array response, and finally, all of the product details,
including the In Detail and associated product information about the book. It will
look similar to this:

http://variantcube.com/admin/reports/dblog

Drupal and Amazon

[78]

Also notice here that the product title link will go to the Amazon product
page. In this URL, you should see your AWS Account ID. It will follow the
SubscriptionID=&tag URL format.

Using the Amazon module
The easiest way to start using the Amazon module set once you have enabled and
configured it is to use the Amazon Examples functionality. If you have installed
the CCK and Features modules as explained earlier in this chapter, the Amazon
Examples module adds a content type with a specific Amazon content type to your
Drupal site. You can use this pre-built content type on your site. This provides the
easiest method of getting Amazon data to show up linked from your Drupal nodes.

Once you enable the Amazon Examples module, you'll have a new content type
called Amazon Example. You can access this by going to Create Content | Amazon
Example. The Amazon Example content type contains one custom content type field
labeled ASIN. This field allows you to enter the numeric product ASIN item.

Since this ASIN field is a content type field you can leverage the power of the
Amazon Examples module by adding this ASIN custom content type field to any of
your content types via your Manage Fields functionality. For example, if you want
to add this field to your Page type, you can edit your Page content type and then add
the Amazon item: field_asin (ASIN) field to your Page type via the Manage Fields
configuration. For now, we'll just add a product using the actual Amazon Examples
content type.

Testing the Amazon Example content type
To test the Amazon content type, go to Create content | Amazon Example. Add a
title to your node and then add the 10-digit ASIN for a product to the ASIN field.

Chapter 4

[79]

Save your node. If you entered the correct ASIN, you should see a resulting node
that contains the node title and a link to the product. A thumbnail image of the
product will also show.

When you click on the link, the product page will open a corresponding detail node
on your Drupal site showing the product details, including all the specific detail data
consumed through the Amazon Web Services. This includes the item description,
buying options, and Customer Reviews, if there are any available on Amazon.com
for the product in question. You should get a path that is similar to the following and
includes the item ASIN number. For example, for this product the path is: /amazon_
store/item/1847195849.

Drupal and Amazon

[80]

Using the Amazon content type with Views
The Amazon Example content type also includes a default view that you can access
if you have the Views module enabled. If you do not have the Drupal Views module
installed you can download Views from here: http://drupal.org/project/views.
To access the view, go to your Site Building | Views and look for the link to the
amazon_example_view in your Views listing.

Chapter 4

[81]

If you click on this link, you will see the Amazon Example View. This view should
show any results of nodes you have entered into your site using the Amazon
Examples content type. Your view should look something like this:

Notice that the View page displays as a Table style layout and includes the Drupal
node ID, the Amazon ASIN, Product Title, List Price, Publisher, Publication date,
and a product image linked to the Amazon product page if available.

Because this is a page View, you can click to Edit your View and make tweaks to the
View itself to enhance the function of the display. The View edit display will show
you all of the Fields available, any View relationships you have configured, and any
View filters.

With this View you can see how much power and flexibility you have, using
the Amazon module on your site.

Drupal and Amazon

[82]

If for some reason you cannot see the Amazon View or are encountering any other
issues with the View, make sure you have confirmed that the Drupal Features
module is enabled on your site and that you have configured the Features module
to enable the Amazon Examples features. You can do that by going to Site Building
| Features (or /admin/build/features). You should see a tabbed display that looks
like the following screenshot:

Once you have checked the box and saved your settings, you should now see your
Amazon Example View and be able to edit your View. Your View settings for the
Amazon page View should look like this:

Chapter 4

[83]

Using the Amazon filters
Make sure you have enabled the Amazon filters module. This module adds a specific
Amazon filter input type to your Input Types in your Drupal site. Go to your Site
Configuration | Input Formats and configure your site's default input format. You
will see an Amazon Filter checkbox in the Filters section. Check this box to enable
the Amazon filter. This filter will allow your content editors to use the [amazon]
filter tag to embed the Amazon product content directly into a Drupal node through
the body textbox.

Drupal and Amazon

[84]

The [amazon] tag filter will allow you to enter any Amazon-specific product data
that can be filtered. For example, you can use this formatted input tag—[amazon
<ASIN> <action>]—to enter the following types of data:

•	 [amazon 0596515804 thumbnail]—this will show the product name
and thumbnail image

•	 [amazon 0596515804 full]—this will show the full product data
in your node

•	 [amazon 0399155341 author]

•	 [amazon 0596515804 asin]

•	 [amazon 0596515804 isbn]

•	 [amazon 0596515804 publisher]

•	 [amazon 0596515804 productgroup]

The Amazon module's documentation provides a full list of all the tokens available
to you. You can view that list at http://drupal.org/node/595464.

Testing the Amazon input filter
Let's go ahead and test the filtering component of the Amazon module. First, let's
create a new node on our site using the Create Content | Page. Give your page a
title, and then in the body textbox add the following filter tags:

[amazon 1847195849 full]

Make sure that you enter your product's correct ASIN. Save your node. You should
see the product data embedded within your node. Click on edit and add some more
tokens to your node to test their return output from AWS. For example, I added the
following to my node:

[amazon 1847195849 detailpageurl]
[amazon 1847195849 salesrank]
[amazon 1847195849 publisher]
[amazon 1847195849 manufacturer]
[amazon 1847195849 studio]
[amazon 1847195849 label]

http://drupal.org/node/595464
http://drupal.org/node/595464

Chapter 4

[85]

Amazon Store module
The Amazon Store module allows you to connect to the Amazon Product
Advertising API and display an Amazon marketplace store on your Drupal site as
long as you have an Amazon Store account and store marketplace configured. With
your Amazon Associates ID credentials (as explained in the previous sections),
you can get commissions on sales of any products sold through your web services-
connected Amazon store.

To use the Amazon Store module, you'll need to have the Amazon module installed
and enabled (as per the instructions given in the previous section) and you will
also need to be running PHP 5.2.x or higher on your web server. The Amazon and
Amazon Store module require PHP 5.2 due to the SimpleXML library. SimpleXML
gets bundled with PHP 5.2. The other requirement is the hash function used for
preparing keys for the Amazon API. So for the keys to integrate correctly, you need
to have PHP 5.2.

If I check my PHP info through a Drupal status report, I see that with PHP 5.2,
I get the Simple XML libraries:

In addition, Drupal-contributed modules such as Panels and Thickbox extend the
functionality and layout of the Amazon store when it's embedded in your Drupal
site, so it's good to have these modules installed and enabled.

You can download and install the module through its project page at: http://
drupal.org/project/amazon_store. There is also a detailed documentation
about the Amazon Store module at http://drupal.org/node/494402.

Let's go ahead and install the Amazon Store module and also make sure that we
have the Drupal Panels module installed (http://drupal.org/project/panels).
I'll be installing the current versions of both modules. The Amazon Store module is
at version 6.x-2.1-rc2 and the Panels module is at 6.x-3.7. To use the Panels module,
you will also need to install the required CTools (Chaos Tools) module. That project
page is available at http://drupal.org/project/ctools.

http://drupal.org/project/amazon_store
http://drupal.org/node/494402
http://drupal.org/node/494402
http://drupal.org/project/panels
http://drupal.org/project/panels
http://drupal.org/project/ctools

Drupal and Amazon

[86]

Once you have uploaded the two modules, go ahead and refresh your modules
admin page, and enable both Panels and the Amazon Store module.

From the previous sections on the Amazon module, you should already have your
main Amazon module settings configured, including your Amazon credentials in
your Drupal site, so you can continue to use these for the Amazon Store module
and the examples that follow.

Using the Amazon Store module
Once you enable the Amazon Store module, you should now see a new module
settings page available to you through the Site Configuration | Amazon Store
Settings or by going to http://variantcube.com/admin/settings/amazon_
store.

By default, the module ships with a store already configured and displayed in your
Panels. The default panel page for the store is at the /amazon_store URL. If you go
to /amazon_store, you will see an Amazon Store embedded in your Drupal site
along with search functionality that allows your site visitors to search for products
by category, key word (book title, for example), sort (that is, relevance, bestselling,
and so on), and narrow the search (narrow by subject, and so on). So by going to
your Amazon Store page, you would see something similar to this:

http://variantcube.com/admin/settings/amazon_store
http://variantcube.com/admin/settings/amazon_store

Chapter 4

[87]

If you click on the Add to Cart button, you can add the Amazon product to your
shopping cart on the Drupal site. Clicking the View Cart button allows you to go
to your cart and then checkout via Amazon.com. To purchase the item, you'll be
redirected to Amazon.com and you'll notice that the Amazon.com path contains the
associate ID corresponding to your Amazon module settings.

Configuring your Amazon Store
You can configure your Amazon Store Settings to display a more specific set of
product data. Go to your Amazon Store module settings at Site configuration |
Amazon Store Settings. Here you can configure how the actual store display will
be set up on your site. You can choose to display the search form and the specific
search criteria such as narrow by, sort form, and category selection dropdown.
You can allow for the searching of all the Amazon sellers or merchant products
or just Amazon-specific products.

Drupal and Amazon

[88]

You can also specify the default products that will show up on the search layout
page by category and whether the default Amazon search index should show (and
show a random product), or you can specify specific browsenodes by browsenode
ID and also a default item list by ASIN. For this example, I'm going to set the
Default Merchant ID for search to All and the Default search index selection to
Books. I'm also going to select the radio button for the A list of Amazon ASINs
specified next and then note the specific ASINs that I would like to add to my
store. Again, this shows you how flexible the web service is. You can show search
functionality for all Amazon products, or you can go as granular as you like and only
search for a specific sets of ASINs.

Add the product ASINs to your Default Item, list making sure to separate them with
commas. You can add up to 10 products to display on your default store home page.

Chapter 4

[89]

Select the refresh schedule for caching purposes and also select the categories to
include in the search functionality. For the refresh schedule, it's suggested to set
this to to refresh less than every 24 hours so that you keep product data and prices
current. As per the Amazon license agreement, you cannot cache items for more than
24 hours. I have set this refresh schedule to 12 hours.

I'm also going to remove some of the category checkboxes because I'm going to focus
on selling media through the Variantcube.com store. So I'm going to uncheck all
categories except for Books, Digital Music, and DVD. I'll also leave MP3 Downloads
and Music checked. Save your Amazon Store module settings.

Drupal and Amazon

[90]

Testing your Amazon Store
Now that you have tweaked your Amazon Store Settings to customize it to specific
products, let's go ahead and test out the store layout and display. You should now
be able to navigate to the /amazon_store URL and you should see your specific ASIN
products displaying on your storefront. You should also see two hyperlinks under the
title of the product allowing you to Show/hide full description of the item and a link
to See full details. Clicking on these links will then refresh the display of the product
with complete product details on your site. The Show/hide full description link uses
jQuery to show the data directly on your Amazon Store page and the See full details
link will load a node on your site containing the product details.

I can also do a search for the keyword "drupal" in the Search For box and then click
on the Search Amazon button. It will return a list of all of the Drupal book items and
display this list in our Drupal site using the following URL: http://variantcube.
com/admin/settings/amazon_store?Keywords=drupal&SearchIndex=Books.

Also, if you add a product to your shopping cart and then proceed to click on the
Checkout at Amazon button, you'll notice that the Amazon checkout URL will load
and it will contain your associate ID in the URL. For example:

https://www.amazon.com/gp/cart/aws-merge.html?cart-id=178-5653400-
1389741%26associate-id=9068-5531-9855%26hmac=dQKWzdaGEax0J/Tv2/9VEgit
8xM=%26SubscriptionId=AKIAI7P3QWWSCXEOUHWQ%26MergeCart=True.

Chapter 4

[91]

Summary
In this chapter, we explored how Drupal can consume web services using the
Amazon and Amazon Store modules. We installed and enabled each module
and learned how to:

•	 Access Amazon products and product API using the Amazon module
•	 Sign up for an AWS account and configure our Amazon module
•	 Test our Amazon module configuration by looking up an Amazon product
•	 Use Amazon Example content type
•	 Use Amazon filters
•	 Use Amazon Store module.

In the next chapter, we're going to continue our detailed exploration of Drupal-
contributed modules that interact and connect with multimedia-based web service
APIs including the Kaltura and CDN2 video service platforms.

Drupal and Multimedia
Web Services

In this chapter, we're going to continue to look into the Drupal modules that allow
for integration with popular web services. We started an exploration of the Flickr
module and Flickr Web Services in Chapter 3, Drupal and Flickr. We'll return to look
at how we can take our photosets and embed them as full-throttle Flash-powered
slideshows directly on our Drupal site. So, we'll be exploring how Drupal works
with the Flickr Web Services in more detail, using the Media: Flickr module.

We're also going to turn our attention to other types of multimedia, including videos,
and look at how we can integrate our Drupal site with two popular video hosting
services, CDN2 and Kaltura. Both of these services offer a freely available API to use
in our Drupal site, and both offer Drupal-based modules to create the interface and
UI. Both have benefits and drawbacks and we'll explore all of this in detail.

To summarize, in this chapter we will:

•	 Upload video files to the CDN2 web server and use the CDN2 web service
•	 Use the Kaltura module and web service to upload and distribute the video

content on your site
•	 Post photosets to our Drupal site using the Media: Flickr module and embed

these photosets in a dynamic Flash slideshow player through the Embedded
Video Field module

Drupal and Multimedia Web Services

[94]

CDN2 video
Video is a popular media uploaded to Drupal websites. Site developers want
methods of uploading large video files, in multiple video formats including
Flash Video (FLV), QuickTime, Windows Media, and HD. With Drupal, you an
easily upload video files to your nodes and allow them to be downloaded and
viewed locally by your site visitors on their client machine. This is not always the
preferred solution for uploading video content due to file sizes, quality, time spent
in uploading and managing the files on your server, and complexities of module
configurations, using the Flash Node or SWFTools module. Some of these modules
may require more configuration time from your site content editors than they want
to spend. You will want to store your video files on external servers, so these files do
not bog down your own server resources.

The CDN2 Video module has been developed by a firm called WorkHabit
(http://www.workhabit.com). This module allows you to upload multiple video
file formats to the WorkHabit transcoding server and stream the resulting uploaded
video through the WorkHabit web service on your Drupal site. The benefit here is
that the WorkHabit web service takes care of the transcoding and embedding of the
video file, using best practice streaming solutions on their servers and using their
application software. You can then feed this video into your Drupal site using the
web service API. The service uses a SOAP-based web service framework similar to
the Amazon service. So, if you know how to program using SOAP, you can integrate
the CDN2 service into many web-based applications, including Drupal.

CDN2 supports Flash Video (FLV), QuickTime, DVD, Windows Media, and JPEG
(for thumbnail images) formats. Videos are stored on the WorkHabit network, and
use sophisticated caching mechanisms that allow for your video to be viewed and
downloaded quickly. When the video is delivered to your Drupal site, you can still
control all aspects of its playback using module mechanisms such as the Flowplayer
(http://flowplayer.org/) module through SWF Tools. The CDN2 module
seamlessly integrates your videos with Flowplayer. The large benefit to you, as a
Drupal developer, is that you can host your large video files on external servers via
the WorkHabit web service, and this relieves stress from your own server running
your Drupal site.

There is a wealth of information about the WorkHabit API and service on their
website at http://www.workhabit.com/products/cdn2. If you visit the WorkHabit
website, you'll notice that they advertise CDN2 as the world's first video platform
built specifically for Drupal. This service helps you to make the video upload
process easy and fast for your clients and your content editors.

Chapter 5

[95]

The CDN2 web service is free to install and sign up for—you can easily sign up for
the API credentials for your Drupal site for free on the CDN2 website. WorkHabit
does bill you for your video uploads, based on the file size. So, if you have a 1GB file,
it will cost you $2.50 to upload it to the CDN2 web service. They then charge based
on the usage of the video by your site visitors. You can get all the pricing information
on the CDN2 site at http://www.workhabit.com/products/cdn2/pricing. In
addition, the CDN2 FAQ page is a good resource and they explain in detail how the
service is integrated with Drupal. For example, when we install the CDN2 module
on our Drupal site, it integrates the API directly into our content types by making the
video a CCK field. This is a benefit because the service allows you to take the video
file, upload it to their server, and then integrate it into your content type through a
CCK field. The video will then be embedded into your node. This will then allow
you to theme your video nodes and use the same Drupal-based functionalities
(comments, attachments) on these CDN2-powered nodes.

Let's go ahead and sign up for a CDN2 web service account and try embedding
some videos into our Drupal site using the service and module.

Accessing the CDN2 web service
To use CDN2, we'll need to do two things to get started. First, we need to download
the module from the CDN2 project page: http://drupal.org/project/cdn2.

The current version is 6.x-1.10. Upload and extract the module to your /sites/
all/modules directory as per normal module extraction and installation methods.
Refresh your modules admin page and you'll see a new section called Media and the
CDN2 modules will be listed.

Drupal and Multimedia Web Services

[96]

Let's go ahead and enable the CDN2 FlowPlayer and the CDN2 Video modules.
Save your module configuration. The CDN2 Dash Media Player module allows you
to embed your CDN2-based videos in a Dash player utility. This CDN2 Dash Media
Player is another version of a Flash-based video player similar to CDN2 FlowPlayer.
In this chapter and in the examples, we're going to focus on Flow Player instead of
the Dash Media Player.

Signing up for the CDN2 web service
Before we configure the CDN2 module and test it out, let's go ahead and sign up for
the CDN2 web service. To sign up, you can visit this page on the WorkHabit website:
https://signup.workhabit.com/.

Complete the sign-up form. During the sign-up process, you will need to specify the
full URL path to your site's domain of the Drupal site where you want the videos to
appear. You will also need to agree to their beta-hosted services agreement. While
you wait for the confirmation and credential e-mails to show up in your inbox, you
can review the CDN2 documentation in their guide. There are some requirements
you'll need to implement before using the service. The following are required to
make the module run correctly:

•	 Drupal 5 or 6
•	 Drupal CCK module
•	 PHP 5.2 or greater
•	 PHP SOAP extension enabled
•	 jquery_update module installed and working in your Drupal site
•	 PEAR library enabled on your server
•	 PEAR Crypt_HMAC library
•	 MCrypt library

Chapter 5

[97]

Most likely your server based on the first three chapters in the book, will have
these items installed and enabled, but if you need to enable any specific libraries
or extensions including SOAP or PEAR, there are instructions on how to do so in
the CDN2 guide.

You can also check your PHP info page through the Drupal status report to confirm
that you have the mcrypt and soap extensions enabled. You should see the mycrypt
extension as follows:

The soap extention details would look something like this:

Drupal and Multimedia Web Services

[98]

If you refresh your status report in Drupal, you should see green confirmation rows
stating that the CDN2 module is installed correctly:

Configuring the CDN2 module
To configure the CDN2 module, go to your module settings page at Site
configuration | CDN2 Settings. The settings page is split into four tabbed sections:

•	 CDN2 Formats—this section launches a page that allows you to choose
which video formats you want the service to support

•	 CDN2 Settings—this section gives you the web service API fields
•	 CDN2 Video Tracking Settings—this section allows you to insert Google

tracking code to enable Google to track your video content
•	 CDN2 Workflow settings—this section allows to you set auto publishing

and set cron configuration

Under the CDN2 Workflow settings, let's set our nodes to "Do not automatically
publish". We will want to upload the video file and then preview our node before
publishing. You can also decide to enable cron or not. You may want to enable cron
to run if you are serving a large amount of video content through the CDN2 web
service because this will help you to get the most recent cached content from the
CDN2 server. The CDN2 Settings are as follows:

Chapter 5

[99]

The CDN2 Video Tracking Settings allow you to enter your Google Analytics
account number so that Google can track statistics on how many people are viewing
your videos. You can also add a tracking path that Google will use when running its
statistics. This path will show up in your Google account when you run reports, as
shown in the following screenshot:

Drupal and Multimedia Web Services

[100]

The CDN2 Settings tab will launch a form where you can enter your CDN2 web
service Client ID and Secret Key. You should receive both of these API credentials
from WorkHabit through an e-mail. The CDN2 web service's SOAP endpoint will
also be noted as a server URL automatically and a URL where you'll be uploading
your video content.

Finally, click on the CDN2 Formats settings link and the Formats form will load.
This page will list all the Allowed Presets that the CDN2 web service allows for
transcoding your video files as shown in the following screenshot. These include
iPod, Flash, MPEG, Windows Media, QuickTime, and Flash Video:

Chapter 5

[101]

Let's go ahead and choose the Flash Video high resolution as our format (as shown
in the previous screenshot) because we'll be uploading Flash FLV files in the next
screenshot. The module will use the Flow Player as the preferred Flash player to
embed the Flash video. Save your configuration as shown:

Adding videos using CDN2
To add video files to our Drupal site, the first thing we'll need to do—once we have
configured the CDN2—is to create a content type for our video content. If you are
already posting videos to your site using another content type or the Flash node, this
is fine. You can create a brand new content type to support your CDN2 videos. Let's
walk through this process step-by-step.

Drupal and Multimedia Web Services

[102]

First, let's create the content type. We'll call this type Video. Go to Content
management | Content types | Add content type. Type Video as the human-
readable name and video as the Type. Then add a description. Save your content
type as follows:

Now, click on edit next to your content type. Click on the Manage fields link. Add a
new field with the following info:

•	 Label: CDN2 Video
•	 Field name: field_cdn2
•	 Select the CDN2 field type from the Field Type select box
•	 Make sure your field Form element is set to CDN2 Field

Chapter 5

[103]

Click on the SAVE button. The details are as shown in the following screenshot:

When you configure your CDN2 video field, the module is going to test the
connection to the web service. If you have not added the API credentials to your
Drupal site yet, you'll receive an error stating: Unable to contact CDN2 service.
Video uploads are currently disabled. Make sure you enter your CDN2 service
credentials before continuing.

Also, make sure to check that you have configured the permissions correctly so that
your content editors can upload and view videos on your site. Go to your main
Drupal user permissions page and make sure you set appropriate permissions for
both transcoding and uploading videos, and also for viewing your CDN2 videos, as
shown in the following screenshot:

Drupal and Multimedia Web Services

[104]

Uploading videos with CDN2 content type
Let's go ahead and test the CDN2 video upload field with our new Video content type.

Go to Create Content | Video, and this will open the Video content type form. Give
your video node a title. Add a description for your video to the Body field. This is
optional. But again, it shows you how you have the same flexibility to add metadata
and other content to your CDN2 Video content type just as you do with other Drupal
content types.

On your CDN2 Video form, you'll see your custom content type field directly under
the File Attachments section of your form. It should provide an Upload a video label
followed by a Browse… button. You'll also see checkboxes for the various formats
you chose in your CDN2 module settings. In our case, we will see a checkbox for
Flash Video high resolution and Default web standard video thumbnail as follows:

Browse for a Flash video you want to upload. Click the Upload button. You will
see an Upload Progress bar as the video uploads to the CDN2 web server. Once
uploaded, you may get a message from CDN2 stating:

Your video has been uploaded. It can take some time to process, so be patient.

Please make sure you submit this page before continuing, otherwise your video
will be lost.

Chapter 5

[105]

Go ahead and Save your video page so that you do not lose any node data. Bear
in mind that because we are using a web service to process and post our video file,
it may take a while to see the results on your Drupal site. The CDN2 web service
needs to transcode and process the file as well as the CDN2 notes in their guide
because this process can take quite a bit of time. So check back often on your site to
see the status; you can also contact WorkHabit with your account to check on the
status of your upload. This is the only drawback of using a web service to host your
video file. You are ultimately on the web service's timetable and schedule as far as
when the video will be posted. You may also run into more issues posting video to
a web service if they do not receive the video file correctly at their end or if there's
another issue or error in the transcoding or uploading of the file. Just be aware that
these issues can crop up since you are relying on another web server and service to
provide this functionality.

This is the resulting node I see, once I post my video file to the CDN2 server:

Using the Kaltura module and web service
Like the CDN2 module and web service, Kaltura Open Source Video is a project that
offers a web service that you can integrate with your Drupal site. The module offers
hosting on Kaltura servers for streaming versions of video at a cost. You can get the
first 10GB of uploaded video and streaming as part of a free trial. You can also connect
to the web service via the community-supported self-hosting version for free.

Drupal and Multimedia Web Services

[106]

The module allows you to upload video in any format, same as CDN2. Videos are
transcoded in the the Flash FLV format. You can also import videos from your other
video application sites such as Flickr. The video content is uploaded and hosted by
Kaltura's servers and the module allows you to connect to its web service. Like CDN2,
you can also add a video upload field to your content types and the module allows for
integration with other Drupal functionalities and modules such as Views, Comments,
Statistics, and Taxonomy. There are both Drupal 5 and Drupal 6 versions currently
available.

Signing up for the hosted solution will give you 10GB of free hosting and streaming.
You can get more information on this once you sign up on the Kaltura website at:
http://corp.kaltura.com/

The biggest difference between this service and CDN2 is that Kaltura also allows
you to host videos using their application on your own servers so that you can set up
your own version of the Kaltura web service on your servers.

In this example, we're going to walk through setting up a trial version of Kaltura
hosted on the web services' servers.

The documentation of the module, including a downloadable PDF of the Kaltura
Drupal manual, is at http://drupal.kaltura.org/documentation. This document
contains the entire Kaltura Drupal specification and technical architecture outlined
and explained for the Drupal developer. There is also a basic usage tutorial available
at http://drupal.kaltura.org/node/147.

Accessing the Kaltura service
Let's first go ahead and install the Kaltura module on our site. Follow the same
process you have used in the earlier chapters to install the module. Once you install
the module (currently the latest version is 6.x-1.4), refresh your modules admin page
and enable the associated Kaltura modules that will be showing under the Kaltura
Media Management section. The modules include the main Kaltura, the Kaltura as
CCK field, Kaltura Media Comments, Kaltura Media node, Kaltura remix node,
and Kaltura Media Views. Kaltura allows you to integrate with CCK and Views
through these modules as shown:

Chapter 5

[107]

Once you enable the Kaltura modules, you will see a message telling you that you
need to sign up for a Kaltura Partner ID to complete the installation. To do that,
click on the link that the module provides: Get a Partner ID. Kaltura has built a
registration form right into your Drupal site that you can use to sign up. Complete
the form and then click on the Complete Installation button.

Once you click to complete the installation, the Server Integration Settings page will
launch and it will give you a report on whether the Drupal to Kaltura web service
integration was successful. A test request will be sent to Kaltura and the status of
that request will be submitted back. Cron will also run and a test will be performed
to see if you have the required CrossDomain.xml file in your site's root directory.

Drupal and Multimedia Web Services

[108]

Your Partner information will also be shown including your Partner ID and your
e-mail address. The details are as shown in the following screenshot:

If you see the error message about the crossdomain.xml file being missing, you
can locate this file in your module's directory. Copy the XML file to your site's root
directory and this should fix the error message. Refresh your Server Integration
Settings page and the cross domain status should be resolved.

Chapter 5

[109]

You should also receive an e-mail from Kaltura that contains your Partner ID,
Sub-Partner ID, Admin password, Web service admin secret, and Web service
secret keys. You do not need to add the keys to your Drupal Kaltura configuration
because the module does all this for you through the automatic partner sign-up
process that we just walked through.

One of the benefits of using Kaltura over CDN2 is that Kaltura builds its API
registration process directly into the module configuration so that you do not need to
leave your Drupal site to complete the registration process. In addition, there are no
user permissions to define for the Kaltura module's functionality.

Importing and uploading Kaltura video content
The Kaltura module gives your site two new content types automatically. Go to
Create Content | Kaltura Media Node to create a new node that contains your
uploaded video file. This content type form will open up in a pop-up style modal
LightBox window. You can browse to select the video file you want to upload. I'm
going to browse for and select a Flash (FLV) file. Once you browse for the video file
and add it to the Upload Videos modal screen, click on the Upload! button.

Drupal and Multimedia Web Services

[110]

An upload progress screen will show as follows:

Once the upload is completed, you can click on the Next button. Once you do that,
it will launch a detail page where you can add Tags for your videos and the Title
of your video, as shown in the following screenshot. Click on the Finish button
when done.

As soon as this is done, a dialog box will appear asking you to confirm that you
are not violating any terms of use per Kaltura's agreements. You also need to
state that the media is user submitted media license under the Creative Commons
licensing specifications. For more information on Creative Commons licensing, see:
http://creativecommons.org/. Click on OK. Another progress menu will show.
Kaltura will then show you a confirmation screen telling you that the files are being
converted and that the process is complete. Click on the Finish button.

Chapter 5

[111]

You will be redirected to a View page that shows you thumbnail images of your
uploaded video(s). You can click on the Video title link to open up the node that
contains the embedded video file.

Using the Media: Flickr module
In Chapter 3, Drupal and Flickr, we used the Flickr module and its set of associated
Flickr web server-based modules. This allowed us to embed photos from our Flickr
photosets, photostreams, and groups into our Drupal website through the Flickr
web service API. In this chapter, we're going to return to our discussion of Flickr's
web service by trying out another Drupal module called Media: Flickr. This module
will allow us to map our Flickr photosets into an embedded media field in our
custom content type. The module works in tandem with the Embedded Media Field
module. Once you have both modules installed, you can add your photoset URL into
the embedded media field and your photoset will then be displayed as a navigable
slideshow on your Drupal site.

So we're going to install and configure two modules here—the Embedded Media
Field and the Media: Flickr modules.

Currently, the Media: Flickr module is released for Drupal 6 (version 6.x-1.11 is
the most current version). Download the module from its project page here at:
http://drupal.org/project/media_flickr.

Note here that in order to use the Media: Flickr module, you'll need
to sign up for a Flickr API key which you may have done already in
Chapter 3, Drupal and Flickr. So you should be good to go.

Drupal and Multimedia Web Services

[112]

The Embedded Media Field module is available at: http://drupal.org/project/
emfield. Go ahead and install that module as well. Once you have installed the
modules, navigate to your modules admin page and enable the Embedded Media
Field and Embedded Video Field modules in your CCK section as well as the
Media: Flickr module in your Media section as shown in the following screenshot.
Save your module configuration.

You should see a status message stating: Media: Flickr's tables have been
installed successfully.

Now, you need to configure the Embedded Video Field. To do this, go to Content
Management | Embedded media field configuration. Scroll down on the
configuration form page until you see the Embedded Video Field section. Expand
it and then look for the Flickr Photosets configuration. Expand that. Here, you will
see a default checkbox checked for allowing content from the Flickr photosets. Leave
that checked. You can also choose to store images locally on your server. For now,
let's leave this unchecked, so we'll store our images over on Flickr's server.

Finally, you can set the maximum local saves per page load. This allows you to
control how many files can be stored locally from your Flickr set on your local
server. So, for example, you can load the first 10 images (the default) locally on
your site and server location, and then the remaining photos in the set will be
stored on Flickr's server.

Below this, you will need to add your API credentials again for your Flickr
Developer's account. You need to add them again here so that you can use the
Media: Flickr web service. Go ahead and enter your credentials and then click
on the Save Configuration button.

Chapter 5

[113]

Drupal and Multimedia Web Services

[114]

If, for some reason, you do not see the Flickr API credential fields available in the
Flickr Photosets configuration fieldset, scroll up on the configuration page until you
see the Embedded Image Field fieldset. Depending on the version of the Embedded
Media Field module and the Media: Flickr modules you are using, the API fields
may be in this Image fieldset. Go ahead and check the Allow content from Flickr
box inside the Flickr Configuration fieldset and then add your credentials. You
should see a fieldset screen like this:

Now, you can go about editing the content type that you want to add the embedded
video field to. I'm going to use the same Video content type I've already created on
my development site for the CDN2 Videos and I'll add the embedded video field to
it. Click on your Manage fields button and add a new field named Flickr Photoset.
Give the field a field_name, and then select the Embedded Video field type and the
3rd Party Video operation as shown in the following screenshot:

Chapter 5

[115]

Click on Save. You will be redirected to a new form page titled Flickr Photoset.
This is the form that allows you to select which provider you want to use. Check
the Flickr Photosets box for the Flickr provider as follows:

Next, you can expand the Media: Flickr settings section. This contains the
configuration for the web service. You can simply leave the configuration set to the
defaults for our examples as shown:

Drupal and Multimedia Web Services

[116]

Save your field settings.

Now, let's go ahead and post a new node with an embedded Flickr photoset. Go to
Create Content | Video and give your node a title. You'll see a new video upload
field labelled Flickr Photoset. This is the field you will paste your Flickr photoset
URL into. Go ahead and grab a Flickr Photoset URL path, and then paste it into
your field. Here's the photoset URL I'll be using: http://www.flickr.com/photos/
starlights/sets/72157594379081863/

Click on your Save button and then you'll see your refreshed node. Your node will
load with the embedded photoset slideshow. I used the default module player
settings for a Flash-based player. Click on the Play button icon that's overlaid on the
first image to start the slideshow as shown in the following screenshot:

Chapter 5

[117]

Also, since you are using the Embedded Video field here, make sure that your
anonymous users and authenticated users have the correct field permissions to view
the Embedded Video field. So, check the permissions boxes to allow your users to
view field_flickphotoset as shown:

You should now be able to view the slideshow and navigate through it using the
embedded player controls as follows:

So, we have completed our example of embedding a Flickr photoset directly into our
Drupal node using a custom content type that contains the Embed Video field. We
pasted our photoset URL and now we have a beautiful Flickr-based Flash player of
our images embedded in our site. The embedded Flash player allows you to navigate
through each slide and also toggle to full-screen view mode.

Drupal and Multimedia Web Services

[118]

Summary
In this chapter, we explored how Drupal can consume multimedia-based web
services using contributed modules including CDN2, Kaltura, and Media: Flickr. We
installed and enabled each module and explored in detail the following functionality:

•	 Enabled and configured the CDN2 module and integrated with the CDN2
web service

•	 Added video content to our Drupal site using a custom content type and
CDN2 video field

•	 Enabled and configured the Kaltura Video module and integrated with the
Kaltura web service

•	 Uploaded a video file using the Kaltura video module
•	 Enabled and configured both the Media: Flickr and the Embedded Media

Field modules
•	 Added a video field to our custom content type and posted a URL to our

Flickr photoset

In Chapter 6, Drupal Web Services the Easy Way: The Services Module, we're going to
look in detail at the Services module and test some simple service callbacks using this
module. We will also show a simple example of building a custom callback module.

Drupal Web Services the
Easy Way: The Services

Module
In this chapter, we're going to turn our attention to the Drupal Services module.
The Services module is a contributed module that gives you a variety of built-in
custom service modules to test and use. This will allow you to enable both servers
and services on your Drupal site from one main module backend configuration and
administration area. The included services allow you to call content and output data
from Drupal's default and contributed comment, file, menu, node, search, system,
taxonomy, user, and views modules. Calling these services will allow you to get
content from your Drupal site and display it on another Drupal site, both on your
server and externally. In our examples, we'll be focusing on consuming and feeding
content from one Drupal site to another, however you could also use the Services
module to integrate with external web service applications that are not Drupal based.

The Services module also contains flexibility so that you can program your own
custom service module and integrate it with the method calls that already come
packaged with the main Services module. In this chapter, I'll show you how to
program your own custom module and integrate this with the Services module,
and subsequently, to return a list of nodes from one of your content types.

To summarize, in this chapter we will:

•	 Install and enable the Services module and explore what the Services
module offers our Drupal site(s)

•	 Test simple default Services module callbacks
•	 Program our own custom callback module that will return a simple text

string such as hello world
•	 Expand our custom module to return a list of nodes of a specific content type

Drupal Web Services the Easy Way: The Services Module

[120]

The Services module—what is it?
The Services module is currently at version 6.x-2.2 and is available through its
module project page at: http://drupal.org/project/services. Note that if
you are using a version of the Services module that is pre-6.x-2.2 (2.0.x or below),
there have been significant changes in the 2.1+ release. You can fix your previous
installation by going to: http://drupal.org/node/800590 and reading the
documentation. This offers fixes to address security issues with the earlier releases
of the module.

The module provides a standardized API method of integrating external web
services (to consume web services) and internal web server modules (that provide
services) with your Drupal site. In our previous explorations, we've looked at
specific Drupal modules such as the Amazon and the Flickr modules that allow
for integration with those specific web applications through the Drupal interface.
The Services module expands the web services and Drupal integration frontier
by presenting one module to use that can integrate the web service callbacks with
external server applications such as XMLRPC, JSON, JSON-RPC, REST, SOAP, AMF,
and more. Each of these servers provides specific modules at drupal.org that you
can install and enable to work with the Services module. Some examples of these
pluggable server modules are:

•	 JSON server: http://drupal.org/project/json_server
•	 JSONRPC server: http://drupal.org/project/jsonrpc_server
•	 REST server: http://drupal.org/project/rest_server
•	 SOAP server: http://drupal.org/project/soap_server
•	 AMFPHP: http://drupal.org/project/amfphp

All of these server modules require the Services module to be installed and enabled
in order to work. We will look at the use of three of these servers in this section:
AMFPHP, SOAP, and REST. The module also provides authentication mechanisms
that allow for integration with your Drupal user base and permissions.

The benefit to using the Services module is that it allows for web service integration
with multiple applications, while using the same standard module code and
programming. The other large benefit is that the module is supported and
developed widely throughout the Drupal community. The module provides
the following features:

•	 Service API that allows other Drupal modules to consume Drupal content
and integrate with external applications

•	 Server API that allows your Drupal site and server to act as a web service
to provide services using the REST and SOAP protocols

Chapter 6

[121]

•	 Provides a user friendly administrative interface
•	 Provides a testing environment and allows for easy management of API keys
•	 Integrates with core Drupal including Drupal files, nodes, taxonomy, users,

and the Views and system modules

The module provides a detailed handbook at drupal.org: http://drupal.org/
handbook/modules/services. There is also a Services user group available
through the Groups.Drupal.org website: http://groups.drupal.org/services.

For a list of servers that work with the Services module, go to: http://drupal.org/
node/750032.

Here is a list of web services—many of which have Drupal modules
developed—that integrate with the Services module: http://drupal.org/
node/750036.

The Services module—why use it and what
does it buy you?
The Services module helps to reduce the amount of time you need to spend writing
your own web service modules because this module provides a standard interface
for a number of the common web service application environments. This module
works well for developers who are using Flash and Flex, and who want to integrate
their Drupal site with their Flash applications. JavaScript developers will also benefit
from using this module by using the JSON backend server module integration.

Mobile developers who want to write applications to use with their Android or
iPhone devices will find that the Services module helps to speed up this type of
development. Overall, the module is a great benefit to any developer who is looking
to integrate his/her Drupal site with external web applications and services.

Deployment module
One project that will interest Drupal users and developers is the Deployment module
(http://drupal.org/project/deploy). Drupal developers are often faced with the
challenge of moving Drupal content and structure from a staging or development
site to the client's production version of the site.

Drupal Web Services the Easy Way: The Services Module

[122]

Currently, the best method for this has been to just duplicate the nodes and structure
on your production site as closely as possible. You can export Views and CCK
types and fields, but it's difficult to move over content. The Deployment module
is a framework of modules that allows developers to move and stage content
automatically over to their production site version. This module uses the Services
module to allow for communication with remote Drupal sites. An example of how
this happens is when the Deployment module tracks all changes to your node
content and then uses web services to transfer the edits and changes over to your
production or staging website. The module was developed by teams of developers
from Palantir.net and the Foreign Affairs magazine that needed to move large
amounts of data from one Drupal site to another.

We'll look at using Deployment in detail in this chapter, and try moving Drupal data
from one site to another. This is one of the most promising modules that utilizes the
Services module. It's currently in a development version so we'll need to test it out
and tread lightly, but it can be used in a development environment.

Content distribution
This is another new module that works intensively with the Services module.
The Content distribution module (http://drupal.org/project/content_
distribution) allows for automatic content migration from one Drupal site to
another when that content has been updated. So you can use this module in a way
similar to RSS or aggregation—if you have content on one Drupal site that you want
to push out to one or many other Drupal sites. This uses a one-to-many content
model. You can also queue the updated content to push at specific subscription
instances—based on when the accepting site has subscribed to the content updates.
This module relies extensively on using the Services module.

Installing and enabling the Services module
Let's go ahead and install the module. Grab the latest version from the project home
page and download it. Install the module to your /sites/all/modules folder.

When you upload the module folder—if you look inside the folder—you'll see
two sub-folders: servers and services. The servers folder contains the web
services module code you are going to use. The core module contains support for
the xmlrpc server. The services folder contains modules for providing web
services of Drupal-based content including comments, files, menus, nodes, search,
system, taxonomy, users, and views. Each of these folders is a sub-module of the
Services module.

Chapter 6

[123]

Once installed, go to your main modules administration list in your Drupal site and
look for the Services sections. The module page will contain sections for the main core
Services module, authentication, the server modules, and the services modules. Go
ahead and enable the main core Services module, the Key Authentication module, the
XMLRPC Server, and the Services modules. Save your module configuration.

Once you enable the modules, you will have access to an administration page
in Drupal to view your installed and enabled Servers and Services, and to check
on your main core Services settings. Go to /admin/build/services or visit Site
building | Services. This page allows you to easily browse your installed Servers
and Services modules. You can also view any API keys you have added to your site
to use with your servers and services by clicking on the Keys button, and overall
Services settings by clicking on the Settings button.

Drupal Web Services the Easy Way: The Services Module

[124]

Currently, we only have core Servers and Services modules installed and enabled, so
you'll see a Browse page that looks like this:

The Keys screen lists all of your installed API keys as well as a button to create a
new key:

Chapter 6

[125]

The Create key screen allows you to title your application or web service, add
an allowed external domain that you will be communicating with (the external
web service domain), and then an optional method access if you want to add a
specific Drupal-based functionality, such as searching all of your users or searching
content—the web service you're communicating with can then access your site to
consume these services and access this data.

Drupal Web Services the Easy Way: The Services Module

[126]

Currently, the Settings screen will show you any authentication methods and
settings you have enabled, and whether you want to apply additional content
permissions to your content when it's being consumed. The field permissions on
your content types will not be automatically applied during a web service call. By
default, all the fields will be returned for your content. So, if you want to apply
specific content field level permissions, make sure to check the Apply content
permissions box as shown in the following screenshot:

Testing a simple service callback
We can go ahead and run a basic test by using our Node Service module to get a
node from our Drupal site. To test this, go to your Services | Browse screen,
and under the node service click on the node.get link as follows:

Chapter 6

[127]

The node.get service screen will load. This screen explains what this method call
does. It returns node data, so if you have a node on your site you can call that node
using this screen to test that the call and request works. The node.get function
explains that it uses two arguments in its call. You are required to enter a node ID,
and then the field list to return is optional. So, you can call the node and then request
specific fields from your content (via the content type). Let's test both of these.

I have a node on my site at /node/92. This is a node with one image of a butterfly
uploaded through the content type filefield. Let's call this node through our node.
get screen. In the required nid Value field, I will type in 92 (or the specific nid you
are calling on your site) as shown in the following screenshot:

Click on the Call method button and your method call will run. You should get a
result returned to you for display on the screen with the following code or something
similar, depending on how many fields and values you have in your node that you
are calling. Notice that the return shows you all of your node type field values (nid,
type, language, promote, moderate, sticky, title, body, and so on). It will also
return any field arrays for specific content type fields such as, in this case, the image
field (field_photo):

Result

stdClass Object
(
 [nid] => 92
 [type] => photo
 [language] =>
 [uid] => 1

Drupal Web Services the Easy Way: The Services Module

[128]

 [status] => 1
 [created] => 1276191970
 [changed] => 1276191970
 [comment] => 0
 [promote] => 0
 [moderate] => 0
 [sticky] => 0
 [tnid] => 0
 [translate] => 0
 [vid] => 92
 [revision_uid] => 1
 [title] => Butterfly 7
 [body] =>
 [teaser] =>
 [log] =>
 [revision_timestamp] => 1276191970
 [format] => 1
 [name] => admin
 [picture] =>
 [data] => a:1:{s:13:"form_build_id";s:37:"form-007e566c85152583f81
e77157874f494";}
 [field_photo] => Array
 (
 [0] => Array
 (
 [fid] => 30
 [list] => 1
 [data] => Array
 (
 [description] =>
 [alt] =>
 [title] =>
)

 [uid] => 1
 [filename] => P1100340.JPG
 [filepath] => sites/default/files/P1100340.JPG
 [filemime] => image/jpeg
 [filesize] => 9860
 [status] => 1
 [timestamp] => 1276191968
)
)

 [og_groups_both] => Array
 (
)

 [og_groups] => Array
 (
)

Chapter 6

[129]

 [last_comment_timestamp] => 1276191970
 [last_comment_name] =>
 [comment_count] => 0
 [taxonomy] => Array
 (
)

 [files] => Array
 (
)

 [locations] => Array
 (
)

 [location] => Array
 (
)

)

Drupal Web Services the Easy Way: The Services Module

[130]

So, our initial test of the node ID call worked and returned a successful result. Now,
let's try limiting our method call to a specific field. This time we'll just return the data
for the field_photo, our image array for the photo field. In the fields Value field, type
in the name of the field, in this case field_photo. Click on the Call method button
and you should get a return of just the image field data:

Result

stdClass Object
(
 [field_photo] => Array
 (
 [0] => Array
 (
 [fid] => 30
 [list] => 1
 [data] => Array
 (
 [description] =>
 [alt] =>
 [title] =>
)

 [uid] => 1
 [filename] => P1100340.JPG
 [filepath] => sites/default/files/P1100340.JPG
 [filemime] => image/jpeg
 [filesize] => 9860
 [status] => 1
 [timestamp] => 1276191968
)

)

)

Chapter 6

[131]

So, this shows you the immediate flexibility of the Node Services module. You can
request a node by its node ID and also request the specific field(s) from that node.
If you want to request multiple fields on the call, just type in your field names
separated by a comma. For example, the value field would contain title,field_photo
to call both the title and the photo fields as shown in the following screenshot.
Make sure to not avoid spaces and to separate values with commas, as shown:

Go ahead and test some more of the Services modules. You may want to try file.
get to retrieve attached file data, menu.get to retrieve menu item data, and user.
get to retrieve user data. Test a few of these to see what types of results you get.

Creating a Services module and running
a custom callback
In the last example, we used the Node Service module that comes packaged with the
Services module to query our database and return specific node IDs (and respective
node arrays). We also queried returning specific content type fields using the Call
method of the Node Service module that uses the node.get function to return the
respective node data and specific fields.

Drupal Web Services the Easy Way: The Services Module

[132]

We can also write our own custom module and group this module with the other
Services modules to return a set of data of a specific content type's nodes. So, for
example, we may want to return all of the nodes of a specific content type—in our
case, it will be the Photo gallery type that we queried in our previous examples. But,
this query will return all nodes from this content type. This example will also show
us how to write a custom module for services, how to integrate it with the Services
module, and how to test it to return a simple output such as hello world. This will
be an example of a simple callback that returns a set of nodes eventually. Just like
our previous examples, this custom module will also use the node.get function.
Let's get started writing our custom Services module.

Creating custom Services module
The first thing we need to do is create our custom Services module files. In our
/sites/all/modules/services/services folder, let's add a new folder for
our module and name it photo_service. You'll notice the other service modules
in the services/services folder such as comment_service, file_service, and
more. We're going to place our custom module in this folder.

Once you create the photo_service folder, open up your preferred text editor or
IDE, and create a new file named photo_service.info. Every module in Drupal
needs to have a .info file. This file contains the metadata and the information
needed by Drupal to list the module in the main modules administration page.

Enter the following lines of code into your .info file:

; $Id: photo_service.info,v 1.1 2010/06/28 $
name = Photo Service
description = Services for our Photo content type.
package = Services - services
dependencies[] = services
core = 6.x

; Information added by drupal.org packaging script
version = "6.x-1.0"
core = "6.x"
project = "services"
datestamp = "06282010"

This code tells Drupal the name of the photo service, a description of what it does,
the overall module package the custom module is part of (Services – services),
and any dependencies. In our case, in order for our custom module to work, we'll
need to have the Services module enabled as well.

Chapter 6

[133]

Upload the photo_service.info file to the /services/services/photo_service
folder.

Now, let's go ahead and create our module file. With a text editor or Dreamweaver,
let's create a new file and save the file as photo_service.module.

Let's add some basic function code to our photo service's module file. In this file,
we're going to write our PHP function to return our data array and output our
Photo nodes. The following function implements hook_services(), and if you
need more information on the documentation for this from the Drupal API, visit:
http://drupal.org/node/438416. A basic understanding of Drupal module
development is not required here but certainly will be helpful if you follow along
with this example. Go ahead and add the following code to the .module file:

<?php

function photo_service_service() {
 return array(
 array(
 '#method' => 'photo.all',
 '#callback' =>'photo_service_all'

)
);
}

function photo_service_all() {
 return 'hello world';
}

As this is a PHP function, make sure to contain the function in an opening <?php
tag in your module file code (as shown in the previous code). We'll start by naming
our function after the specific service we're creating here, which is photo_service_
service. We want to return an array, and the method we'll use is to return all of the
Photo content type nodes. The function name we're going to give this module is a
callback function called photo_service_all. We'll define that function in the above
code as well, and return for testing purposes a simple text string of hello world.

Drupal Web Services the Easy Way: The Services Module

[134]

Once we have the .info and the .module files in place in our new custom module
folder, we can try to enable the module in our Drupal modules administration page.
Go to your /admin/build/modules page and look for your custom Photo Service
module. Check the box next to the module to enable it and then save your module
configuration. Our module will not do anything specific yet because we do not
have any functions in the module file, but at least we can see it enabled in our main
Services module section.

Now that you've added the function to your Photo Service module file, try loading
your main Services configuration page at Site Building | Services. You should see
a new service for photos with one method defined as photo.all. This method will be
hyperlinked on your Services configuration page and will look like this:

Click on the method hyperlink and this will load the Call method page for photo.all.
You'll notice that we have not added any arguments to our function yet. This is just a
simple method call that will return text string output. Go ahead and click on the Call
method button to test this as follows:

When you click on Call method, you should get the hello world text string as the
Result displayed on the photo.all method page. Our method call works and so far
our custom module is working as expected.

Chapter 6

[135]

Adding to our function to allow for returning Photo
nodes data
Let's go ahead and add some more code to our module file so that we can start to
return more data besides the simple text string hello world. We want to return our
Photo nodes and just the nodes of the Photo content type.

<?php

function photo_service_service() {
 return array(
 array(
 '#method' => 'photo.all',
 '#callback' =>'photo_service_all',
 '#return' => 'array',
 '#help' => t('Returns a list of the photo content type
nodes.')

)
);
}

function photo_service_all() {
 return 'hello world';
}

Notice here that we're adding two lines of code after hash tags. We add a '#return'
=> 'array' because we want to return an array of data and we also add a help hash
that will show some help text on our method call page. Currently, we have no help
text visible, so this will help administrators know what this method call does. Go
ahead and upload your module file again and then refresh your method page. You
should see the help text appear as follows:

Drupal Web Services the Easy Way: The Services Module

[136]

Adding a database query to our custom
Services module
Now, we'll replace our function photo_service_all with a database query to return
our Photo content type nodes as opposed to the hello world text.

Add the following to your function photo_service_all and remove the previous
return hello world. You should now have this in place of that function:

function photo_service_all() {
 $result = db_query("SELECT nid FROM {node} WHERE type ='photo'");

 $nodes = array();
 while ($node = db_fetch_object($result)) {
 $output .= node_view(node_load($node->nid), 1);
 $has_posts = TRUE;

 }

 return $output;
}

This function is now querying our database and selecting the node ID from nodes,
where the type is equal to the Photo content type. This will return an array of nodes
and load them for display.

Here's a helpful hint for dealing with the node_load function. In our
code, we want to output our node view and show all the nodes of the
Photo content type. To do this, we use the node_load function. You
can learn more about this function in the Drupal API documentation
available at: http://api.drupal.org/api/function/node_load.
If you click on the 45 functions call node_load link, you'll get a list of
the examples you can look at for sample code. I chose to use the blog_
page_user, which displays a Drupal page containing recent blog entries
of a given user. This shows a usage of node_load within a while db_
fetch_object call. The code looks like this in this example: $output
.=node_view(node_load($node->nid), 1);. I can reuse this code
in my function photo_service_all. It's a good practice and habit to
use the Drupal API documentation as much as possible when writing
your functions because it provides the most up-to-date code for Drupal 6.

Chapter 6

[137]

Our entire code should now resemble this:

<?php

function photo_service_service() {
 return array(
 array(
 '#method' => 'photo.all',
 '#callback' =>'photo_service_all',
 '#return' => 'array',
 '#help' => t('Returns a list of the photo content type
nodes.')
)

);
}

function photo_service_all() {
 $result = db_query("SELECT nid FROM {node} WHERE type ='photo'");

 $nodes = array();
 while ($node = db_fetch_object($result)) {
 $output .= node_view(node_load($node->nid), 1);
 $has_posts = TRUE;

 }

 return $output;
}

Drupal Web Services the Easy Way: The Services Module

[138]

Go ahead and refresh your photo.all method call and then click on the Call Method
button. You should get an array output showing the Photo content type nodes that
you currently have on your site. All of the nodes data should be displayed because
you're returning nodes with the "photo" type. Your output should look something
like this:

Adding arguments
Let's go ahead and add an argument to our photo_service function so that we can
specify which fields to return in our output when we run the method call. Currently,
we're returning all of the node data, but we may only want to return specific fields.
To do this, add the following code to your function photo_service_service:

'#args'=> array('array'),

Then, add the fields parameter to our photo_service function. So, the function
will become:

function photo_service_all($fields) {
 $result = db_query("SELECT nid FROM {node} WHERE type ='photo'");

 $nodes = array();
 while ($node = db_fetch_object($result)) {

Chapter 6

[139]

 $nodes[] = services_node_load(node_load($node), $fields);

 }

 return $output;
}

Summary
In this chapter, we explored how to use the Drupal Services module. We installed
and enabled the contributed Services module and looked at the functionality of its
servers and services functionality. We learned that we can add server modules to
integrate with our Drupal site and content and also serve our Drupal content out to
external websites using the pre-packaged Services sub-modules that can be enabled.
We did the following:

•	 Installed and enabled Services module
•	 Enabled and tested the Node Service sub-module and used the node.get

function to return method calls of specific node ID data and arrays
•	 Looked at the authentication methods that are included with the

Services module
•	 Created a custom module that can integrate with our Services module

and extend the default functionality of services
•	 Did a simple method call to return a callback that outputs hello world text

data
•	 Returned a more advanced method call by listing all of the nodes and

data for a specific content type; in this case, all of the Photo content types'
photo nodes

In Chapter 7, Drupal, Spam, and Web Services, we're going to look at multiple
contributed modules that help your Drupal site integrate with spam prevention Web
services and applications including Mollom, CAPTCHA and reCAPTCHA.

Drupal, Spam, and Web
Services

In this chapter, we're going to practice using contributed modules and web services
that will help us to prevent spam submissions on your Drupal site. Currently, one of
the easiest methods of preventing unauthorized access to your site by spambots and
spam scripts is to install the CAPTCHA module. We're going to install and enable
CAPTCHA and also use a web service called reCAPTCHA to enhance the default
CAPTCHA functionality.

We'll also look at the web service modules including AntiSpam (a successor to the
Akismet module) and the Mollom module. We introduced the Mollom module
in Chapter 1, About Drupal Web Services, but we'll take a closer look at the Mollom
functionality in this chapter.

To summarize, in this chapter we will:

•	 Install and enable the CAPTCHA and reCAPTCHA modules
•	 Explore and practice using the Antispam module
•	 Enable and practice using the Mollom module

Drupal, Spam, and Web Services

[142]

CAPTCHA and reCAPTCHA
The Drupal CAPTCHA contributed module allows us to protect our site from
machine-based spambots by forcing the site visitor and user to enter a text or
image-based code into a form field, before logging into the Drupal site or posting
new content to the site. The form field offers a test to the user to confirm that the
user of the site is a human being and not a machine. You will see CAPTCHA
forms in use on many website forms that are public accessible forms, including,
for example, comment post forms and help-desk ticket support requests, to name a
few, and you will also see CAPTCHA fields in use on login pages on websites. The
CAPTCHA module will prevent form submissions by bots and thus prevent your
website from getting filled up with unwanted spam posts.

The CAPTCHA module is currently in its 6.x-2.2 version and you can download it
from its project page at http://drupal.org/project/captcha. In order to use the
reCAPTCHA web service module, you'll need to first install the CAPTCHA module.

The reCAPTCHA module is an extension module of CAPTCHA that allows
you to integrate with the reCAPTCHA web service (http://www.google.com/
recaptcha), which is a web service project sponsored by Google. Google actually
uses reCAPTCHA to digitize books for the Web. You can learn more about the
reCAPTCHA project at its Google project page. Google also allows you to tie into the
reCAPTCHA API by embedding the reCAPTCHA plug-in into your site, and this
will show a widget that will ask your site visitors to type two words into a form field.
By typing in the words, you can get access to that portion of the website because the
site recognizes—through the reCAPTCHA module—that you are a human being
typing in the words as opposed to a spambot or script.

The Drupal reCAPTCHA module is available at its project page for download:
http://drupal.org/project/recaptcha.

Installing and configuring CAPTCHA
and reCAPTCHA
Let's go ahead and install, enable, and configure the CAPTCHA and reCAPTCHA
modules so that we can then get the reCAPTCHA web service installed and try it out.

Chapter 7

[143]

Download the latest 6.x versions of CAPTCHA and reCAPTCHA from their
respective project pages and install them to your /sites/all/modules directory.
Once uploaded, go to your main modules admin page and enable the modules.
For these examples, I'm using the 6.x-2.2 version of CAPTCHA and the 6.x-1.4
version of reCAPTCHA. The modules will show up under a Spam control heading in
your modules admin list. Enable the CAPTCHA, Image CAPTCHA, reCAPTCHA,
and reCAPTCHA Mailhide modules as shown in the following screenshot.

As the module admin page notes, the reCAPTCHA module uses the reCAPTCHA
web service to enhance the default CAPTCHA module. The reCAPTCHA Mailhide
uses the web service to protect e-mail addresses from spammers' scripts. Notice that
reCAPTCHA is dependent on the CAPTCHA module being enabled.

Save your module configuration. Once you save your module configuration, you will
see a message notifying that you can configure the CAPTCHA module on your site.
Click on that link to go to the CAPTCHA configuration settings page or go to User
management | CAPTCHA.

For our examples, I will be adding a CAPTCHA field to the main contact form on
the site. So, make sure you have enabled your core contact module and form, and set
the appropriate level of user permissions so that both anonymous and authenticated
users can submit the contact form. Once you have enabled your site-wide contact
form, the form will be available at /contact.

On your CAPTCHA module's General Settings admin page, go ahead and set the
default challenge type for the site. We'll set this first to Image (from module image_
captcha) type, though you can also choose the Math type that uses the core CAPTCHA
module functionality. This type uses the CAPTCHA image module's functionality.

Drupal, Spam, and Web Services

[144]

Next, you'll see that you can set specific challenge types for specific forms on your
site by their form_id. By default, the module allows you to set the challenge types for
the following forms:

•	 comment_form
•	 contact_mail_page
•	 forum_node_form
•	 user_login
•	 user_login_block
•	 user_pass
•	 user_register

Let's set the challenge type to Image for the contact_mail_page (this is the default
site-wide contact form) and for the user login and register pages.

We'll circle back and change these types to reCAPTCHA once we test out the main
CAPTCHA functionality.

You can also choose to add a CAPTCHA administration link to forms (other content
type forms) on your site if you want administrator roles and users to have a choice to
add CAPTCHA to their specific content type form. Let's go ahead and check that box
for now. Finally, you can add your own Challenge description text and choose the
type of CAPTCHA validation and persistence. I'm going to leave these set to their
defaults for now, as you can see in the following screenshot:

Chapter 7

[145]

You can also choose to log wrong responses, which will give you a detailed log of all
potential spam submissions. Save your CAPTCHA configuration.

Drupal, Spam, and Web Services

[146]

Image CAPTCHA
To tweak your Image CAPTCHA settings, click on the Image CAPTCHA button.
This will launch the specific Image CAPTCHA settings page. Here, you have control
over which characters to show in the code, the code length, fonts, font size, and
character spacing. The entire sub-module is very flexible and customizable. Go ahead
and tweak these settings to your preference. You can also tweak the color settings
that get displayed (background and text colors), the file format for the displayed
image, and the distortion level of the image. Try adding salt and pepper noise and
line noise to your image to see how this renders. When you are happy with your
settings, click on Save configuration.

When you save your configuration, you'll notice that the Image CAPTCHA example
will change to reflect your new settings, giving you an almost real-time example of
your configuration. This allows you to easily refine your CAPTCHA by tweaking
it according to your preferences. For example, if it's too noisy you can lessen the
amount of line noise.

Chapter 7

[147]

Log out of your site and go to your /contact form and try out the contact submission
along with the CAPTCHA field. You need to log out of the site to test the CAPTCHA
field because otherwise the field will only show you to the anonymous users of your
site. Anyone with a site admin account and admin credentials will be able to bypass
the field. So, it's best to test it when you're logged out. You should have something that
looks similar to this:

reCAPTCHA
Let's go ahead and enable reCAPTCHA on the site and integrate the web service
with our CAPTCHA module. To do this, we'll go to your CAPTCHA settings page
again, and this time we'll specify that we want to use reCAPTCHA as the Default
challenge type for our specific forms. I'll make this tweak for the contact_mail_page
first, to try it out. Save your CAPTCHA configuration.

Drupal, Spam, and Web Services

[148]

To tweak the specific reCAPTCHA configuration, click on your reCAPTCHA button
at the top of the CAPTCHA configuration page. In order to use the reCAPTCHA web
service, you need to enter a public and private key on this page. To sign up for keys,
go to the reCAPTCHA website and register for the API keys and for an account. On
the reCAPTCHA site, you'll launch a Create a reCAPTCHA key form. Enter your
website domain into the Domain field and then click on the Create Key button. You
can choose to enable the key on all domains of your server if you select the Enable
this key on all domains (global key) checkbox. If you are logged into your Gmail
account, you'll automatically log in to your reCAPTCHA account as it's a Google-
powered web service:

Click on the Create Key button. You will get a page that shows you the submitted
domain and your new public and private keys and links to reCAPTCHA resources.
Make sure to print this page out for your records.

Enter the Public Key and Private Key details on the reCAPTCHA configuration
form in your Drupal site.

Chapter 7

[149]

You can also choose theme/design settings to use for the reCAPTCHA widget. I'm
leaving it set to the default Red theme, for this example. Click Save configuration.

Now, launch your contact form to test out the reCAPTCHA form. You should see
something similar to this:

Drupal, Spam, and Web Services

[150]

If you want to look at the reCAPTCHA module code, you can access this in the
/sites/all/modules/recaptcha folder. Inside this folder are your Drupal module
files, and another folder named recaptcha. The actual API is wrapped inside the
recaptchalib.php file that resides in the recaptcha folder. This PHP file contains
the code defining the reCAPTCHA web service server URLs; a query string that
encodes the request out to the servers; the function that posts the request via HTTP;
the function that gets and returns the HTML for the actual reCAPTCHA widget
and form fields; the function that checks the answer people type into the form fields
(function recaptch_check_answer); and the part of that function that discards any
spam submissions.

I've attached the code for the recaptchalib.php file as an appendix in this book,
so you can view the code in the code appendices.

AntiSpam
Drupal has a number of contributed modules that control and prevent spam
submissions and posts on your site. The Antispam module is the enhanced version
of the former Akismet web service module. Akismet utilizes the Akismet web service
(http://akismet.com/) but the module is no longer supported. The module
maintainer recommends downloading and installing the AntiSpam module if you
want to patch into the Akismet web service.

The AntiSpam module is available from its Drupal project page at: http://drupal.
org/project/antispam. The current version of AntiSpam is 6.x-1.2. AntiSpam also
supports using web service spam applications such as TypePad AntiSpam (http://
antispam.typepad.com/) and Defensio (http://defensio.com/). Similar to
Mollom, if you use the AntiSpam module with a Defensio account, you can leverage
the spam ratings that Defensio uses to learn as it defends and actually improves your
AntiSpam results.

The AntiSpam module also gives you a new API function named antispam_api_
cmd_spam_check() that allows your site to check all textual node content for
potential spam posts, as long as you have configured the AntiSpam module to
work with an external web service application.

Let's go ahead and install and enable the AntiSpam module.

Installing and configuring AntiSpam
Upload the module to your /sites/all/modules folder and then enable the module
on your main modules admin screen. The module will show up in your Spam
control section along with the previous section's CAPTCHA and reCAPTCHA
modules. Go ahead and enable the AntiSpam module.

http://antispam.typepad.com/

Chapter 7

[151]

Once enabled, you can then enable your AntiSpam module configuration by
going to Site configuration | AntiSpam. If you have specific questions about the
comparison between the functionalities of each integrated spam web service, you
can check out the module developer's documentation for a detailed comparison
table. Go to: http://www.pixture.com/drupal/node/76 to view the comparison
table. There is a charge for the Akismet service for commercial sites but the TypePad
AntiSpam service is supported free of charge. There are some fees involved with
using the module with Defensio or Mollom as your service. Akismet was built for the
Wordpress CMS but the module developer has programmed the AntiSpam module
to work with Akismet. TypePad was developed to work with the TypePad CMS, but
again, the module developer programmed it to work with this Drupal module.

We're going to try setting up the module to run with the TypePad AntiSpam web
service. You'll notice on the AntiSpam configuration page that when you select a
service provider radio button, it conditionally opens the specific service API key
field. Select the TypePad AntiSpam radio button. The TypePad AntiSpam API key
field will appear. In order to get an API key for TypePad AntiSpam, you'll need
to sign up for a free account at the TypePad AntiSpam API Key sign up web page
available at: http://antispam.typepad.com/info/get-api-key.html.

Go ahead and sign up for a TypePad account first. Once you create an account, you'll
be asked to sign in first at the TypePad website. Sign in and you'll be redirected to
the Get an API Key page. Click on the link to Get Your API Key. Your API key will
launch in a pop-up window as shown in the following screenshot. Print this out for
your records.

Drupal, Spam, and Web Services

[152]

Copy the API key and paste it into your TypePad field on the AntiSpam
configuration page. You can leave the service provider connections radio button set
to Enabled. Also, leave the Connection timeout set to its default 10 seconds. Your
screen should look like this:

Additional TypePad/AntiSpam module settings
Scrolling down on the main AntiSpam configuration page will give you more
options to configure, including how the AntiSpam module handles spam generally,
and specifically for your nodes and comments. You can also set your spam counter,
statistics, and anti-spambot options here.

For General Options, I'm going to leave the defaults set for removing spam older
than three days, showing 50 records per page, one spam notification block, and
e-mail notifications will be left enabled.

Under the Node Options, you can select the specific content types you want to
run the AntiSpam functionality on. I'm going to select a few of these, including
Blog, Page, and Story. You can select the types for which you want to check spam
submissions on your site.

Chapter 7

[153]

Scroll down to the Comment Options settings and leave these set to their "enabled"
defaults because we do want to check for comment spam on our site. You can also
set your spam counter options and your Statistics chart width. I'm leaving these set
to the defaults.

You also have various Anti-Spambot Options that you can select including how to
use the web service to identify spambots, and what actions to take against spambots.
We'll leave these set to the defaults. Save your AntiSpam module configuration.

Drupal, Spam, and Web Services

[154]

AntiSpam moderation queue
Node and comment posts will start being monitored now by the AntiSpam module.
To view your spam reports and statistics, you can go to the Content management
| AntiSpam moderation queue report page. The initial Overview screen will show
you a summary of your nodes and comments content and how much spam has
been caught.

Because you're using the TypePad service, any spam will be caught in real time and
your summary will be updated here based on the AntiSpam module cron run that
gets fired.

You can also get reports on your Node spam and comment spam specifically
by clicking on the Nodes and Comments links. This will give you a list of your
unpublished and published Drupal nodes. Finally, if you click on the Statistics link,
you'll launch a page that shows you a statistics graphic that the AntiSpam module
will configure for you showing you Ham, Spam, False Negatives, and False Positives.
There's a pie chart graphic and a tabled graphic.

Chapter 7

[155]

Drupal, Spam, and Web Services

[156]

Mollom module
We've explored using the AntiSpam module. We're going to turn our attention to
another module that works specifically with the Mollom spam prevention web service
application. We introduced the Mollom module in Chapter 1, About Drupal Web Services
of this book but we'll take a closer look at the module now and use its functionality to
see how it catches spam on your site. You can learn more about the Mollom module
on its project page and download it from: http://drupal.org/project/mollom.
In Chapter 1, About Drupal Web Services, we already installed and enabled the module
as well as the Mollom Test module. Mollom Test allows you to test your Mollom
web service functionality without having to worry about getting your own IP or site
reported as a valid spammer or spambot. You do not need to enable this module, as
long as it's installed when you install and enable the main Mollom module. Both of the
modules will show up in your main modules admin listing.

Mollom will also block your comment and contact form spam, and also protect
the user registration form on your site and block spam from node content type
submissions. It also includes CAPTCHA so you can enable just Mollom for both
your spam and CAPTCHA functionality if you choose. There is a detailed handbook
and documentation on how to use the module at drupal.org: http://drupal.org/
handbook/modules/mollom and also on the Mollom website: http://mollom.com/
tutorials/drupal.

Configuring the Mollom web service
First, we need to make sure we have installed and enabled the module. Upload
the Mollom module to your /sites/all/modules directory and enable it in your
main modules admin list. Then, go to Site configuration | Mollom to load the main
Mollom configuration screen.

Once you load the main Mollom screen, click on the Settings tab/link. Similar to the
AntiSpam module, you will need to sign up for an account with the Mollom web
service. You need an account in order to get the public and private API keys. To
do this, go to the Mollom.com website and sign up for a subscription account. You
can do this at: http://mollom.com/user/register. You'll notice that the Mollom
website has been designed and developed using Drupal.

Once you create your account, follow the instructions in the e-mail you receive to
log in for the first time. Now, once you log in to the Mollom site, you'll need to add a
subscription for your website. Click on the Manage sites button and this will launch
the Mollom Site manager. Here, you can click on the Add new site button to link
Mollom to your Drupal site.

Chapter 7

[157]

The Mollom subscription specification page will load, explaining the multiple
subscription levels. For this example, we're going to select the Mollom Free
version. This will give you the default level of Mollom spam filtering, CAPTCHA
functionality, and cover an unlimited amount of spam posts. For a larger enterprise
level website, you may want to select a paid subscription level.

Click on the Get Mollom Free button and you'll then be asked to enter your
website's URL, type, site language, and site software. Go ahead and complete the
form and then click on the Next button.

Drupal, Spam, and Web Services

[158]

Click the Complete subscription button when it appears on the next screen. Once
you add the site to your account, you will be presented with a view keys link. Click
on this link to get your public and private keys. Go ahead and add your public and
private keys to your Drupal site Mollom configuration page.

On your Mollom settings page in your Drupal site, you can also choose to use a
Mollom Fallback strategy. This gives you an option in the event that the Mollom
web service application servers are down or offline. You can choose to block all
submissions on the site until the Mollom servers come back online, or you can leave
all of your forms in an unprotected state and allow all submissions to be posted.

Leave the default to block them all for the moment. Your screen should look like this:

Save your Mollom configuration. You should receive a message stating that:

We contacted the Mollom servers to verify your keys: the Mollom
services are operating correctly. We are now blocking spam.

Choosing the content that Mollom will protect
Now, you need to select the content type forms on your site that will use the Mollom
spam and CAPTCHA protection. First, I'm going to make sure to disable my
AntiSpam and CAPTCHA modules because in this example I'm only going to use the
Mollom web service.

Chapter 7

[159]

I'm going to add the Comment: Comment form to my Mollom configuration. I'll
analyze the subject and comment fields of the comment form.

Save your comment form configuration. I'm also going to add the User: User
registration form. Save your User registration form configuration. You are now
protecting both the comment forms and the user registration form process. User
registration form protection will use CAPTCHA while the comment form will
analyze the form fields for textual spam data.

At any time, you can remove or configure these operations by clicking on the
Configure and Unprotect links. You can go ahead and test the Mollom CAPTCHA
functionality by enabling your user registration settings and form. Log out of your
site and then go to /user/register and you'll see the Mollom Word verification
CAPTCHA field.

Drupal, Spam, and Web Services

[160]

Mollom reports and statistics
You can get a graph statistics report of your Mollom spam activity by going to
Reports | Mollom statistics. The graph will show all Ham (not spam) operations
accepted and any spam posts that have been blocked. Try entering a user and adding
the wrong CAPTCHA. When you enter the wrong CAPTCHA (for example, if you
type the word in with the wrong spelling), Mollom will record this in its statistics.
First, you will receive this error message on the user frontend:

The CAPTCHA was not completed correctly. Please complete this new
CAPTCHA and try again.

Now log in to the site as the admin user and go to your Reports | Recent log entries.
You'll see that the Mollom web service records all incorrect CAPTCHAs in your
recent logs. You'll also see an incorrect CAPTCHA array warning submitted by an
anonymous user. The type should be designated as Mollom:

Click on the Array code and the entire Array message will load. It should look
similar to this:

Incorrect CAPTCHA:
Array
(
 [name] => trevor4admin
 [mail] => drupalbuilders@gmail.com
 [pass] => test
 [og_register] => Array
 (
 [72] => 0
)

 [timezone] => -14400
 [op] => Create new account
 [submit] => Create new account
 [form_build_id] => form-bf28474138716b1ac49f0c40baa8c0b5
 [form_id] => user_register
 [mollom] => Array
 (
 [session_id] => 1278701353-1007093762bf6aa773
 [captcha] => dddssdf
)

)

Chapter 7

[161]

The Mollom application service reports on the username, e-mail, and password that
the user or potential spammer was trying to enter into the user registration form. So,
this gives you a large amount of data about the CAPTCHA attempt. It actually gives
you the CAPTCHA text that the user has entered.

Before you begin testing your content type or comment form submissions, you'll
want to read the following paragraph on how to safely test Mollom without affecting
your site's reputation negatively. You don't want to get blacklisted by Mollom as a
spammer by running some tests on your site.

Mollom allows you to bypass the production version of the web service by putting
the web service into a plugin developer mode so you can run some spam submission
tests. To do this, go to your Mollom site manager within your Mollom account and
click on Edit your Mollom site subscription. You'll return to the site details screen.
On this screen you'll see a checkbox to Activate Mollom plugin developer mode.
Check this box and you will then be able to use Mollom in test mode. When you
enable this developer functionality any request that goes to the Mollom web service
from your Drupal site will be treated as a test call by Mollom. Bear in mind that if
you have just enabled your Mollom account, it can take up to 60 minutes for Mollom
to change your site subscription to developer mode. So you'll need to wait up to one
hour before testing.

Click on the Update button and then return in about an hour to submit a test
spam post.

Drupal, Spam, and Web Services

[162]

Once you submit some test spam posts, and later when Mollom begins catching and
reporting on real spam posts and submissions, you can get a full graphical report
from your Drupal Mollom Statistics. Load the Mollom statistics page and you'll see
a table graphic that shows you all of your spam posts in a graphic visual report. If
you do not have a lot of spam posted to your site the graphic will appear empty and
look like this:

Chapter 7

[163]

Eventually, your visual will look something like this:

Summary
In this chapter we looked in detail at a variety of contributed Drupal modules that
interface with spam prevention web services including the AntiSpam module and
the Mollom module. The AntiSpam allows us to use the Akismet, TypePad, or
Defensio web services, and the Mollom module allows us to interface our site with
the Mollom web service API. Here's a brief summary of what we did in this chapter:

•	 Installed and enabled the AntiSpam module
•	 Interfaced the AntiSpam module with the TypePad spam web service
•	 Installed and configured the CAPTCHA and reCAPTCHA modules
•	 Added the reCAPTCHA web service API to our reCAPTCHA module

configuration
•	 Installed, enabled, and configured the Mollom module and integrated the

module with the Mollom web service API
•	 Tested all the above modules by posting spam and trying to bypass the

CAPTCHA mechanisms on login and user registration

In Chapter 8 , Using XML-RPC, we'll return to a discussion of Drupal content and
how to connect our Drupal site with web applications, including Google documents,
using the XML-RPC protocol.

Using XML-RPC
In this chapter, we're going to look in more detail at how Drupal uses the XML-RPC
protocol and how this protocol can help integrate your Drupal site with external web
service-based applications and servers. We'll set up a Google Documents account
and learn how to leverage the XML-RPC protocol to post our Google text documents
automatically over to our Drupal site and show how these documents will turn into
Drupal-based nodes automatically. This will allow us great flexibility in how we can
publish rich content to our Drupal sites.

While setting up our Google Documents to Drupal integration, we'll explore the
BlogAPI core Drupal module and its configuration.

Then, we'll look in detail at how to sync Drupal node content from one Drupal site
to another using the XML-RPC protocol. We'll return to a discussion about using the
Services module to help set up this sync.

To summarize, in this chapter we will:

•	 Enable the BlogAPI module and configure it
•	 Define how the XML-RPC protocol works in your Drupal site
•	 Take existing Google Documents and populate those documents over to a

Drupal site so that they become nodes and web content on your site
•	 Sync Drupal content between two Drupal sites using XML-RPC, the Services

and Deployment modules

XML-RPC and Drupal
Drupal 6 supports the XML-RPC web service specification by default. In the root
level of your Drupal site, you can locate the XML-RPC PHP file, named xmlrpc.php.
This file contains the code that allows Drupal to respond to remote procedure calls
that are posting data to your site; and also to send GET requests to other servers and
applications using the XML-RPC specification.

Using XML-RPC

[166]

By way of review, the XML-RPC specification allows for remote procedure calls to use
XML as their format and HTTP as the transport mechanism. XML-RPC sends requests
(POST and GET) over the HTTP protocol via your web browser to get and send
content. The actual remote procedure call is encoded in XML to make for a consistent
specification and protocol that multiple websites and applications can use and respond
to. The Drupal core includes the file you need to send and receive XML-RPC. In this
chapter, we're going to look at a few cases for using XML-RPC on your Drupal site.
One of them will show you how to take a Google Document from your Google Docs
account and post that document to your Drupal site as a node. So, you can easily take a
document on the Google server and post it over to your client Drupal site. The benefit
of this is that you can construct your web content using Google's free docs utility and
interface and then post that content to your site as a web page. All this happens via the
BlogAPI web service using XML-RPC and via the XML-RPC file in your root install.

Incoming XML-RPC post requests are handled by the xmlrpc.php file that lies in
the root of your Drupal site install. If you browse to this file via your web browser
(http://yoursitename/xmlrpc.php), you should see a message that states:
XML-RPC server accepts POST requests only. Notice here that the server your
site is on will handle any post requests that come into it, but for security purposes,
the server/site may not allow you to send out POST or GET requests to another
application without some tweaking. If your site only handles POST requests, you
may need to talk with your server/site administrator to tweak the XML-RPC settings
so that you can also send out requests.

First, we're going to try an example using Drupal, BlogAPI, and Google Docs to
POST Google Docs content to your Drupal site. We'll then look at a functionality that
allows us to sync content between two Drupal sites. Both of these methods use the
xmlrpc.php file and framework for providing web services.

Drupal Blog API and Google Docs
Drupal's Blog API module comes shipped with Drupal core and it supports using
multiple XML-RPC-based BlogAPIs including the Blogger API, MetaWeblog API,
and Movable Type API. Google Documents also supports this framework of blog
APIs and allows for integration with your Drupal site.

Blog API is a core module that works in association with the blog content type but
also with other content types on your Drupal site. By using one of the APIs that
Google Docs supports in tandem with the Drupal Blog API, you can publish content
from your Google Docs account to your Drupal site at the click of a button. So, the
pieces that we'll need to make this work are the following:

Chapter 8

[167]

•	 Blog API module enabled in your Drupal site
•	 xmlrpc.php file at the root level of your Drupal site
•	 A Google Docs account set up and configured
•	 A Google Document that you want to post to your Drupal site

A note about the Blog API module: this core Drupal module supports various
XML-RPC-based blog APIs including the methods we listed above. We're going to
interface the Blog API module with the MetaWeblog API. You can learn more about
the Blog API module on drupal.org at http://drupal.org/node/295. For more
information on the MetaWeblog API, you can visit its specification page available on
the XML-RPC website at http://www.xmlrpc.com/metaWeblogApi.

Another detail to keep in mind here is that the XML-RPC file, xmlrpc.php, in your
Drupal root is the API URL of your site's blog(s). So, this is the API URL that you're
going to use to communicate with Google Docs.

Enabling and configuring Blog API
The first thing we need to do on our Drupal site is enable and configure the Blog
API module. This is a core module but it comes disabled by default. Go to your
Site building | Modules and enable the Blog API module:

Once the module is enabled, you can configure it at Site configuration | Blog API.
Go here and you'll be asked to enable the module for external blogging clients. This
is basically allowing you to enable various content types on your site (both custom
content types and the core Drupal types) to allow for external blogging clients to
post to these types. We'll select the Blog entry as the default type we want to allow
external sites to post to:

Using XML-RPC

[168]

Next, you can configure specific file settings for the type of content you want to
allow posts for. We're going to leave this set to the defaults and allow image files and
document files to be posted. Your field should contain the following: jpg jpeg gif
png txt doc xls pdf ppt pps odt ods odp. This will allow Google Docs formats to post
as well.

You can also set the Default maximum file size per upload and the Default total
file size per user. I'll set these to 10 MB and 100 MB respectively. On a production
site, you'll want to use discretion here and be careful as to how much data you're
allowing your users to upload.

Click on the Save configuration button.

Setting up a Google Documents account
The next thing you'll want to do is set up a Google Docs account if you do not
already have one. Go to: https://docs.google.com and sign up for an account.

Chapter 8

[169]

If you already have a Google account for Gmail, for instance, you can access
Google Docs via your Gmail account. I'm going to assume here that you have some
experience using the Google applications including Gmail and Google Docs.

Once you have an account, go ahead and create a document by using the Create new
| Document functionality.

We're now all set up to start posting content from Google Docs. The way this will
work is that we're going to configure our document in Google Docs to post to our
Drupal site through the xmlrpc.php file. Because we have set up our Drupal site to
allow posts to the Blog type (as per the above Blog API settings), this is currently the
only type on our site that we can post to. We're also going to authenticate the Google
Document to post to a specific user account on our Drupal site via the username
and password of that account. We'll create a specific role and user account on our
site to use just for posting Google Documents. This will help to keep the site secure
and prevent the content from being posted by anonymous users or by authenticated
users who do not have permissions to post on the site, using the Blog API module.

Go ahead and create a role called Google Docs and also a user account on your site
to utilize this role. Make sure this role has permissions to access content and create
blog entries.

Using XML-RPC

[170]

In order for the Google Docs role to post content to your site from Google Docs, you
will need to give them a blog API-specific module permission. The permission is
administer content with blog api. Make sure the role you want to allow to post has
this permission checked in the /admin/user/permissions. That permission row
looks like this:

Posting the Google Document to Drupal
Before posting a document from Google to Drupal, you will need to make one
configuration setting tweak in your Google Docs account. The latest version of
the Google Document editor does not support publishing a Google Document to
Blog software automatically yet, so you need to re-enable the older version of the
document editor. To do this, click on the arrow icon next to your Settings link in the
Google Docs header area and then select Documents settings:

Once the Settings screen launches, select the Editing tab. On the Editing screen,
un-check the box next to Create new text documents using the latest version of the
document editor.

Now, create or open up a document that you want to post on your Drupal site. With
the document open in Google Docs, click on the arrow next to the Share button in
the top right corner of the document. Select the Publish as web page... choice:

Chapter 8

[171]

This will launch the Publish this document screen. Google will show you some bold
text stating: This document has not been published to your blog. There will be a
button titled Post to blog, and a link that allows you to change your blog site settings
at any time. You should see this screen at this point:

Click on the change your blog site settings link and a pop up modal window will
appear. The window is titled Blog Site Settings. On this form, we'll enter our Drupal
web service information.

Select the radio button for My own server / custom because we'll be posting to
our own Drupal site. The API we'll want to select is the MetaWeblog API. For the
URL field, we want to add the absolute path to our xmlrpc.php file. So, type in:
http://yoursitename/xmlrpc.php.

In order to authenticate properly and run via a secured connection, we want to add
our Drupal user account information in the Existing Blog Settings section. Here,
enter the Drupal username of the specific user you've created, your user's password,
and then, optionally, you can enter the title of your blog. If you leave the Blog ID/
Title field blank, Google Docs will automatically fill it in with the name of the user's
blog. So, in this example, I'm authenticating to the trevor2 user account and I'll leave
the blog field blank.

Using XML-RPC

[172]

Under Options make sure to check the Include the document title when posting if
you want your Document title to appear in the Drupal blog post title field (as shown
in the following screenshot):

We're now set up to run a test. Click on the Test button. If everything is configured
correctly, you'll see a message that states: Test completed: your settings appear to be
correct.

Click on the OK button on the Attention pop-up box.

Now, click on the OK button of the Blog Site Settings box. This will return you to
your Google Docs Publish this document screen. Now that you have configured the
settings, you're ready to post to your blog. Click on the Post to blog button.

Chapter 8

[173]

Click on the pop up warning that will appear telling Google it's OK to post to your
blog now:

Google will go into Working ... mode and then post the document. Once it posts,
Google will report that This document has been published to your blog. There
will be two new buttons that will appear. Republish post allows you to tweak your
document and settings in Google Docs and then republish the blog post. The new
post will overwrite the existing one on your Drupal site.

You can also click on the Remove from blog button to automatically remove the post
from your Drupal site. The nice thing here is that you can control all of this directly
from Google Docs without having to republish or delete anything on your Drupal site:

Testing and viewing the document on your
Drupal site
Log in to your Drupal site and check your Content listing. You should see your new
Google Docs blog post at the top of your content queue listed as a new post:

Using XML-RPC

[174]

Now, click on the Title of your post and you'll launch the full node of the Google
Docs post:

If there were hyperlinks or images in the Google Document, these will also now
appear in your Drupal node. Formatting may change slightly from the original
document since we're essentially making a web page of the document. Your theme's
HTML code may tweak the formatting of the original document.

Now, go to your blog on your Drupal site and you should see the corresponding
Google Document as a new blog post on your blog. On your blog home page, the
post will come in using the post settings that are configured on your Drupal site. This
will show the teaser in the form of the blog title field linked to the node and a teaser
of the content. You should see something similar to this:

Chapter 8

[175]

The cool thing about this is that your Drupal RSS feed for your blog posts will inherit
and show this new blog post. Click on your RSS icon to view your feed and see your
post's teaser in your RSS feed.

If you view your site's recent log entries, you'll see the entries for the additions of the
blog content from Google Docs. You should see a message in your logs that states
blog: added Title of your Doc using blog API. If you click on that link, you'll get the
details of the log message. On this Details page, you'll see the actual Location URL
showing you how the xmlrpc.php file parses out the request to post. You'll see that
the xmlrpc.php file generates a unique URL path for each post request.

Using XML-RPC

[176]

Removing posts
If you want to remove the document from your Drupal site, there are two methods
of doing this. You can simply click on the Remove from blog button on your Google
Docs Publish this document screen. You can also navigate to your main Drupal
content listing and delete the post from there, or via the node edit form. Since the
post is now a node on your site, you can use all Drupal functionality to edit and
manipulate the content of the post. Note here that if you make changes to the node
on Drupal, it will not make the corresponding tweaks or edits to the document on
your Google Docs account. This is a one-way communication service only from
Google Docs to Drupal.

You'll also notice that the post does get a node ID.

To try removing the post from Drupal via Google Docs, click on the Remove from
blog button. Google will confirm you want to remove the post from your blog. Click
on OK. At this point, the post is removed and if you refresh your post page on your
Drupal site, you will get a "Page not Found" error.

You have successfully posted a Google Document to your Drupal site and can
manage that node on your site. This is a very powerful feature of using xmlrpc
on your Drupal site.

Syncing content between Drupal sites
As a Drupal developer and site manager, you will most likely be running a
development or staging server and a production site and server in tandem. You'll
install your contributed modules and add content on your staging site first to test
it out. You will then want to move this content over to the production site. You can
choose to rebuild the content on the production site based on the configuration,
content, and workflow that you used on the staging site. However, with a huge
amount of content you're going to want an easier method of staging your content
over to the live production site. There are methods of transferring this content from
your staging to your production site at the click of a button, completely dynamically
and automatically. These methods rely on using the XML-RPC protocol and the
Services module. We'll look at this functionality in this section.

Chapter 8

[177]

Using the Deployment module with Services
We're already familiar with using the Services module from Chapter 5, Drupal and
Multimedia Web Services. We're now going to use the Services module again, but
also introduce a new module into our workflow. This module is known as the
Deployment module and its project page is available on drupal.org at: http://
drupal.org/project/deploy/. This module is currently in a development version,
so we're going to use it on a localhost environment. It's a very powerful module in
that it integrates seamlessly with the Services module functionality and also gives
us a method of moving content from a parent staging website to a child production
site. In these examples, I'm going to refer to the staging site as our parent site and our
child site as our production site.

To follow along with the examples in this section, you will want to install Drupal on
your localhost. You'll then want to install a second site so you have two sites to work
from and you can then easily migrate content from one staging site to a production
site example. A good method of getting two sites installed quickly is to use the
Acquia Drupal Stack installer that is available from the Acquia website at: http://
acquia.com/products-services/acquia-drupal. The stack installer is available as
a free download and it easily allows you to set up multiple sites that share the same
common Drupal core. For more on how to install Acquia Drupal, see the Appendix
in this book.

The Deployment module
Deployment is under active development and only has a development release for
Drupal 6.x, so make sure to use only this module on a test server and site platform
until it has a stable release. The module allows you to move Drupal data, including
nodes, taxonomy, files, users, and more, from one site to another. You can also move
all core and some contributed configuration items including content types, views,
system settings, and more. This means you can move your custom content types and
views from one site to another.

You can also push out updates to content. So, you can deploy a node to a second
site and then go back to the staging site and edit that node. You can then deploy
the updated node and the update will override the original deployed node. The
Deployment module offers a wealth of documentation via its project page at:
http://drupal.org/node/408762. The module relies heavily on the use of the
Services module so you'll need to make sure you have Services installed first in order
to use Deployment. The module only works with the current development or latest
versions of the Services 2.x release.

Using XML-RPC

[178]

Deployment works by using XML-RPC and the Services module. This functionality
allows you to push content from a staging site to a second site by means of an API
key, or session ID key if you're just using site admin user #1 logins on both sites.
We'll be looking at this in more detail when we try the example.

Installing, enabling, and configuring
Deployment
First, you need a content type and some content to push from staging to production.
Make sure you have CCK enabled and that you have a custom content type and
some nodes you want to push.

There is a known issue with the Deployment module in the event that
you have the core Drupal upload module enabled on your site. The
service event will still occur when you migrate the content but the node
will not show up on the production site. For this example we're going to
make sure we have disabled the Upload module on our sites so that our
examples will work. This is one of the reasons that this module is still in
active development, because it does contain this bug or issue.

We're going to be installing the Deployment module on a brand new staging and
production site. These are both new installs, so their databases and site structure at
this point match entirely. For these examples, we'll be using this methodology. If you
are using Deployment and Services on a staging and production site that has been
in use for a while, you'll need to follow the instructions for using the modules on
existing sites provided at the module handbook pages. There are slight differences
and the most important issue is that you need to make sure both sites match in terms
of database structure and content type/node structure.

In both cases, we need to make sure that the sites' time zones match because if the
date/time zone settings on both sites do not match this can cause sync issues. To check
this, go to your time zone settings at Site configuration | Date and time. Make sure
the default time zone settings here match the time zone settings on your production
site. As long as they match, you should not experience any issues with this.

You also need to make sure that the Services module is installed and enabled on
your production site so that this site can receive post requests to XML-RPC from
your staging site calls. Make sure you are using the 2.2.x version of Services for
Drupal 6. Go ahead and enable the main Services module and its associated modules
including Key Authentication, XML-RPC server, System Service, Node Service,
UUID service, and User service. To be safe, you can simply enable all of the
Services modules on production.

Chapter 8

[179]

If the Services module prompts you to enable any required dependent modules
go ahead and do this. You now have enabled XML-RPC on your production site
and you should be able to browse to this URL and get an XML-RPC message:
http://production.localhost:8082/services/xmlrpc. The message should
tell you that the XML-RPC server accepts POST requests only.

Now, we're going to install the Deployment module on both of our sites, staging
and production. Download the latest development version of the Deployment
module from its project page and install this module to your /sites/all/modules
directory. If you are using Acquia's multisite capabilities here, you can simply install
the module once to your main site's /root/sites/all/modules and then enable the
module to use on your staging and production sites.

Using XML-RPC

[180]

We want to enable the Deployment module, Node Deployment, User Deployment,
and UUID. You can also enable the other associated Deployment modules such
as Deploy Comments and Deploy Content Type depending on what specific
content you plan to push from your staging site. Make sure to enable Taxonomy
Deployment as well because we want to move any tags and vocabs that are
associated with our nodes. Deploy Dates requires the Date and CCK (Content)
modules to be enabled on your site. Deploy Files requires the Filefield and CCK
modules to be enabled. If you receive errors that you cannot enable these specific
Deployment modules, then make sure you have installed and enabled the required
modules (Date, Filefield and CCK).

If you enable the Deploy Dates module, you may need to tweak the time zone
settings again so that they match between both of your sites. Check your status
report for any errors regarding your Date and time zone settings. I needed to go into
the Date and time zone requirements and set the time zone name on my staging site.
Just make sure to do this on production as well so you can maintain your sites' sync.

Chapter 8

[181]

Save your staging module configuration. Now, on our staging site, we have the
Deployment module enabled. To configure the Deployment server on your sites, go
to your staging sites' Site building | Deployment. Click on the Servers button and
this will launch the deployment servers page:

Using XML-RPC

[182]

Click on the Add a new server button. For the name of your server, type in Production
because we want to deploy content to the production version of our site. For the URL,
you need to type in the URL path to your production's xmlrpc server. So that should be
similar to this: http://production.localhost:8082/services/xmlrpc.

Click on the Save Deployment Server link.

You have now successfully configured your staging site to work with Deployment.

Now, go to your production site and confirm that you have enabled Services; and that
you have installed and enabled the Deployment module on your production site. Now,
on your production site, you need to enable key authentication within your Services
settings so that we can enable authentication for our XML-RPC and our staging site
can successfully communicate with our production. The way we'll do this here in this
example is to enable key authentication for session IDs. Then, if we're logged into both
sites during deployment as the main user or one admin user, the deployment should
work because both user accounts will authenticate across sites through the session IDs.

To do this, go to your Site building | Services page and then click on the Settings
button link. Under the Authentication module settings, select Key authentication.
Then, uncheck the Use keys checkbox but make sure to leave the Use sessid
checkbox enabled. Save your settings.

Chapter 8

[183]

We're ready to deploy content. First, let's add a vocab and some tags to our site. Go
ahead and set up a basic taxonomy that you can associate with your Page content
type. Add some tags:

Go ahead and add some content to your site using the Page type. Make sure to tag
the content when you add. Add a few nodes to use for this example.

Once you have content published to your staging site, go to your main Content
listing page. In the update options for this page, you'll see a new Deploy option in
your drop-down menu. Select the content nodes you want to deploy and then select
the update option Deploy. Click on Update and the Deploy page will load:

Using XML-RPC

[184]

Make sure the server location you want to deploy to is set to Production, and then type
in your user Drupal user #1 username and password. This should be the username and
password of the /user/1 account on your Drupal site. Click on the Submit button.

At this point, you should see various processing screens load—you'll see messages
including Processing deployment plan dependencies (as shown in the following
screenshot) and Pushing deployment plans.

Let these processes run. At the end of the processing, you'll be redirected to a
Deployment Log Details page that shows you the exact deployments that ran. In our
case, you should see a deployment for your taxonomy vocab, the number of tags you
added, and the number of nodes you pushed. You should see a detailed description
of each deployment as well as the status result. In our case, it should say "Success" as
the result.

Chapter 8

[185]

To see if the nodes successfully transferred, open up your production site and go to
your content list. You should see the nodes in your production content listing. The
node should be flagged with New. If you open the Node, you should see the linked
tags on the node page. If you go to your Taxonomy listing, you should see that the
vocab transferred and the specific tags for your vocab also transferred over.

Congratulations! You have successfully deployed node content and Taxonomy
terms from your staging site to your production site. You can see how powerful
this module is and how much you can do using the XML-RPC server. This is a great
method of deploying content and keeping sites synced.

The other thing you can do here is make edits to your recently transferred node on
your staging site. Go ahead and update the node with new content. Then, deploy the
node again and you'll replace and override the production node with your updated
version. It will keep the same node ID but will add the new content. So, you can
use the Deployment module to move new content and update existing content on
production. For example, if you remove a tag from the node content and then push
that node again, the node on the production site will update accordingly. The cool
thing is that the tags will all still be on production but your node will only show the
tag as per your most recent update.

At any time after you run a deployment task, you can view the Deployment Log on
your staging site. The log will show you a table with each of your deployment runs
logged as a row item. It also tells you the server you deployed the nodes to. When
you deploy node content, the deployment plan is titled Nodes Now:

If you click on the Nodes Now link, it will launch the detailed log of that specific
deployment.

You can try deploying other types of Drupal content including custom content
types and Views. There are more instructions for this advanced deployment on
the module's handbook pages. In the future, the module will have functionality
for deploying user accounts as well.

Using XML-RPC

[186]

Summary
In this chapter, we took content from a Google Documents account and deployed
this content over to our Drupal site using the XML-RPC protocol and the Blog API
core module. We also used the Deployment module to enable migration of content
from a staging to a production Drupal site. In summary, we did the following:

•	 Enabled the Blog API module and set up a Google Documents account
•	 Synced content from Google Documents to our Drupal site publishing a

Google text document as a Drupal node
•	 Installed and enabled the Deployment module on a staging site
•	 Configured Services module on our production site
•	 Deployed node content and taxonomy vocabs and terms from our staging

site to our production site

In Chapter 9, Twitter and Drupal, we'll return to a discussion of Drupal content and
how to connect our Drupal site and its nodes and user process to the popular Twitter
social networking application.

Twitter and Drupal
In this chapter, we're going to integrate Twitter with Drupal. If you have a Twitter
account, you can post your tweets to your Drupal site automatically at the same
time you post them to your Twitter home page. You can also post node content from
your Drupal site to your Twitter home page as tweets. We'll look at configuring this
integration in detail and also look at setting up automatic actions and triggers to
occur when you save a new node content on your Drupal site.

In this chapter, we will install and enable a few Twitter-based modules to allow for
integration with the Twitter web service API, including the Twitter module, Daily
Twitter, and Tweet modules.

To summarize, in this chapter we will:

•	 Enable the Twitter module and configure it
•	 Post tweets from our Twitter account to blocks on our Drupal website
•	 Post links to nodes and node content from our Drupal site to our Twitter

home page
•	 Enable and configure the Tweet module

Twitter and Drupal
Twitter is a popular and widely used micro-blogging application and website. You
can sign up for a Twitter account and post tiny snippet-based blog entries, 140
characters or less, to your Twitter home page. You can log in to your Twitter account
and post your 140 character entry into the What's happening? text area box and
then click on the Tweet button to publish it. The tweet will appear on your account's
home page—your default Twitter home page—and it will be shared on the main
Twitter home pages of your followers.

Twitter and Drupal

[188]

To send a tweet to another user, you can use the hash tag in front of their username
in your post. So, for example, if I was going to send myself a tweet, I would add
this in my text area box before adding my post: #jamesweblabs. For more on the
history and functionality of Twitter, check out the Wikipedia entry at: http://
en.wikipedia.org/wiki/Twitter. Twitter also has a detailed Help and support
documentation section on its main site at http://support.twitter.com/.

You may want to integrate Twitter with your Drupal site, to do things such as
posting all of your most recent tweets into a Drupal block that will appear on your
home page. You also may want to run this block automatically via a web service
integration so that the block updates automatically whenever you post a new tweet
to your Twitter account. Drupal and Twitter can easily integrate through these web
services by using contributed modules.

In this chapter, we're going to install, configure, and use the Twitter module so that
we can integrate our Twitter account with our Drupal user account; we can also post
tweets to the sidebar block on our site. With the Twitter module, we'll also expose
some of its fields to the Views module and be able to create more powerful and
dynamic listings of Twitter-based content.

We'll also look at other contributed modules including Tweet.

The Twitter API
The Twitter API and service integration with Drupal uses the REST (Representational
State Transfer) API protocol and a Streaming API protocol. Twitter does state in its
API documentation that the service does not offer unlimited usage. Twitter does
impose limits on the number of requests and updates made to its service API. The
REST service is HTTP-based and uses GET and POST requests. GET is used to retrieve
data so, in our case, this will be used when our Drupal site tries to receive the latest
Tweet posted to your Twitter account. POST requests are used when you submit,
update, or delete node data that you have sent over to Twitter and posted as a Tweet
using the Twitter module.

Using REST as the protocol, the API does support various formats for data
transfer including XML, JSON, RSS, and Atom. For more details on the Twitter
API and how to use it, see the Twitter API documentation for developers at:
http://dev.twitter.com/pages/every_developer.

Chapter 9

[189]

The Twitter module
The Twitter module is available via its Drupal project page at http://drupal.
org/project/twitter. The module allows for integration with Twitter's API web
service. It allows you to integrate your Twitter account with your Drupal user
account; post Tweets to a block in Drupal; and allows your Drupal users to post to
their Twitter account using Drupal node content. Drupal Views also integrates with
the module and you can create your own customized Views-based listings of Twitter
content.

The module gives you a default block called User Tweets and also a user profile
page titled user's tweets. We'll set both of these up in the examples that follow.

Integrating the Twitter module with Drupal
Download the 6.x-3.0-beta2 version of the Twitter module. This is the Other
release version, not the recommended release. The reason we're going to install the
Other release version is that recently Twitter changed their web service API to use
authentication provided by the OAuth protocol. This change happened recently, in
September 2010, when Twitter redesigned their website and made other security
improvements and enhancements to their API.

In order to support OAuth in the integration, you need to make sure to use the
3.0-beta2 version of the Twitter module. You can download it from:

http://drupal.org/project/twitter.

It's listed under the Other releases heading:

Twitter and Drupal

[190]

Once downloaded, upload this Twitter module folder to your /sites/all/modules
location on your web server. You also need to download the OAuth module and add
that to your /sites/all/modules. OAuth is required by the Twitter module, so you
must install it. We'll be discussing OAuth in more detail in Chapter 12, Authentication
Services, but for now, just install it so you can use the Twitter functionality. The
OAuth module is available at: http://drupal.org/project/oauth. Again, with
this module, you need to make sure to use the other release (earlier version) of 6.x-
2.02. This 2.x version is the version that works with the Twitter 3.0-beta2 module.
Make sure you have the correct versions of both of these modules before uploading
to your site. This is very important. If the module versions are not the ones
mentioned here, you may run into errors or other issues with functionality. So, make
sure to install these exact versions.

Go ahead and upload both of these modules to your /sites/all/modules. Once
uploaded, browse to your modules admin page and look for the OAuth and Twitter
module suites under the Other modules fieldset. For OAuth, you're looking for the
Oauth and the OAuth Client Test modules.

Enable the OAuth module as shown in the following screenshot:

Then, scroll down and look for the Twitter, Twitter actions, Twitter Post, and
Twitter Signin modules. Enable all four of these modules:

Save your module configuration.

Chapter 9

[191]

Registering your website with Twitter
Now that we've installed the necessary modules on our Drupal site, we need to set
up the Twitter side of our functionality. In order to integrate the Twitter module
with the Twitter web service, you need to create two Twitter-related items. The first
is a Twitter account. If you do not already have a Twitter account, you can go to
twitter.com and sign up for a brand new Twitter account. Go to:

https://twitter.com/.

Click on the Sign Up button and then proceed through the account sign-up steps.

Setting up a Twitter application
Now, we need to configure a new Twitter developer application. Once you have a
Twitter account, log in to your Twitter account and then go to the twitter.com/
apps URL to sign up for a new developer's application on Twitter. Make sure you
are signed into your Twitter account already when you go to the apps URL. Launch
the apps URL from:

https://twitter.com/apps.

Twitter and Drupal

[192]

This page will show you any applications you have configured in Twitter. For our
site, we're going to set up a brand new application, so, click on the Register a new
application hyperlink:

Clicking on that link will load a Register an Application form as shown in the
following screenshot. Let's fill that out with the following info:

•	 Application Name
•	 Description of application
•	 Application Website (this is the URL of your website)
•	 Organization Name
•	 Website address (again this is the URL/home domain of your website)

Chapter 9

[193]

Scroll down on the form and then complete the form by adding and completing the
following fields:

•	 Application Type—make sure to select Browser here
•	 Callback URL—this is the callback URL that the Drupal Twitter module

provides

Twitter and Drupal

[194]

The Callback URL is information that is provided by your Twitter module settings
inside your Drupal site. To locate the correct Callback URL to add to the application
sign-up form, go to your Twitter setup configuration settings in your Drupal site
by browsing to: Site configuration | Twitter setup (admin/settings/twitter).
On this page, you will see the Callback URL noted at the top of the OAuth Settings
fieldset. You should see something similar to this:

Go back to your Twitter application sign-up form and add this Callback URL.

Now, make sure the Default Access type is set to Read & Write. Finally, make sure
to check the Yes, Use Twitter for login. This will allow you to authenticate your
posts to your Twitter account username and password when you try to post Drupal
content to your Twitter account. So, make sure that box is checked. Your app form
should now look like this:

Chapter 9

[195]

Complete the reCAPTCHA field at the bottom of the form and then click on the Save
button.

Twitter will load a page confirming your application is successfully configured and
show you your application details. This includes your Consumer key, Consumer
secret, Request token URL, Access Token URL, and Authorize URL. For integration
with our Drupal site, we're going to need the Consumer key and secret.

Leave this app details confirmation page open and then open up your Drupal site in
another browser tab.

Twitter and Drupal

[196]

Configuring the Twitter module once you have your
app setup
With your Drupal site open, go back to your Twitter module configuration form in
your Drupal site at the following path: admin/settings/twitter.

Here, you want to copy and paste your Twitter Consumer key and secret code into
the respective fields for OAuth Consumer key and OAuth Consumer secret. Also,
make sure to check the box next to Import Twitter Statuses. This will allow for your
Drupal site to request posts from your Twitter account and add links to these tweets
on your user account page, and also in a User Tweets block in one of your site's
regions. This is what allows for the total cross-pollination and integration of your
Drupal site with your Twitter account. It's very powerful and flexible for running the
Twitter import functionality on your site.

Finally, set the Delete old statuses drop down to 1 week. This will keep your Tweets
block up to date on your Drupal site and show only updated and recent tweets.

Let's go ahead and do that. You should have a screen that looks like this:

Go ahead and Save configuration.

Now, let's check and tweak some of the other Twitter module settings before we test
our posts. Click on the Post link at the top of your Twitter setup page.

Chapter 9

[197]

On this page, you can specify what content types and respective Drupal content you
want to announce and post to your Twitter account. Let's make sure we check the
boxes next to the Blog entry, Page, and Story types. Of course, you can enable all of
your content types if you need to, but for this example, we'll just post our new blog
entries over to our Twitter account.

The Default format string field shows you the format of the link that will be posted
over to your Twitter account announcing your new Drupal content. So, when you
post a node to your Drupal site using the blog type, the post will appear on your
Twitter account in the following format as a hyperlink back to your post on Drupal:

New post: !title !tinyurl

This will show the Drupal node title, !title, value along with a tinyurl formatted
hyperlink back to your Drupal post. So, for example, the resulting post on Twitter
will look like this:

·New post: Testing post to Twitter http://tinyurl.com/33jnclx — 1 hour 53 min ago

Your Post screen should now look like this:

Save your Post page configuration.

Twitter and Drupal

[198]

Setting up OAuth configuration
Now, we need to check our OAuth settings. Go to Site configuration | OAuth or
here:

/admin/settings/oauth.

Make sure you check the box for HMAC-SHA1 OAuth cryptography because this is
the security method that Twitter and OAuth use for this type of integration:

Setting up your user account to integrate with
Twitter
Now, we need to tweak our user account settings so that our logged-in user account
can communicate with its respective Twitter account and utilize all of the settings
and configuration we set in the above instructions.

In our example, we're going to authenticate our main /user/1 admin account with
the Twitter account we are using for our site. In many cases, you may want to allow
each user on your site to post to their own Twitter accounts. This is possible but
these instructions focus on using one account globally for your Drupal site. On a
production level website, you also probably will not want to authenticate the main
super /user/1 admin account over to your Twitter account due to security reasons
(since this is the main admin account on the site). Again, here this will serve as a
good example for our demo.

First, go to your user account page for the account you are currently logged in as. I'm
logged in as the admin account, so I'll go to: /user/1.

Now, on the main user account page for /user/1, click on the Edit tab. When you do
this, you'll se e a new secondary menu of options on the Edit form. You should see a
twitter accounts link. Click on that link:

Chapter 9

[199]

Now, click on the Add account button.

The site will redirect to a Twitter authorization web page asking you to allow your
site's access to your Twitter account. Click on the Allow button:

Twitter should authorize and redirect you back to your Drupal site's /user/1/edit/
twitter page. It knows to do this because you set up your Callback URL to work
with your Twitter account. Now, you will see that your new Twitter account is listed in
a table on your main Drupal account page. You should see a screen that looks like this:

Twitter and Drupal

[200]

This shows us the name of the Twitter account, and the Import status of the
account for whether you want your Twitter tweets imported to your Drupal site
automatically. There will also be a link to make this account global, to be used across
your entire website and by any user logged into your site if you allow the user
permissions. For now, we will not make the account global. We only want to use this
Twitter account with our /user/1 account in these examples.

We have configured our Twitter application, the Twitter module, and our
authentication methods and permissions. We're now ready to test posting our
Drupal nodes announcements over to our Twitter account.

Posting your Drupal nodes as tweets to your
Twitter account
Let's go ahead and post a new piece of content to our Drupal site and post it as a
tweet to our Twitter account. Go ahead and locate a blog post or create a new blog
post on your site. On the edit form of your post, you should now see a fieldset titled
Post to Twitter.com. There is a checkbox in this fieldset titled Announce this post on
Twitter. Check this box if it is not checked by default.

When you check the box, the format of the Tweet URL will appear in the URL field.
If you do not want the New post part of the formatted URL to appear, you can
safely delete that, but make sure to leave the remaining part of the formatted URL:
!title !tinyurl.

Now, Save your node.

Once you click on Save, you should get a notification box that tells you that the node
has been Successfully posted to Twitter:

Chapter 9

[201]

Go ahead and launch your Twitter profile home page, and you should see the new
post at the top of your Twitter timeline:

Click on the tinyurl link and you should be directed back to the node on your
Drupal site. So now, your Twitter readership can easily see that you have tweeted a
new Drupal post and they can click on the link to launch the post on your Drupal site
and read it.

Congratulations! You have successfully taken a Drupal node and announced it on
your Twitter site.

Showing tweets in blocks on your Drupal site
The Twitter module ships with a default block called User Tweets that will show
Twitter tweets and statuses on your site's user profile pages. This means that each
user account that has configured a corresponding linked Twitter account can show
their User Tweets block on their user profile page.

To activate the block, go to your Site building | Blocks admin page and look for
the User Tweets block in your disabled blocks section. Enable that block to show in
a specific region on your site. You can configure this block like any Drupal block to
show for specific roles and on specific pages of the site.

Twitter and Drupal

[202]

Now that we have the user/1 account configured to use the Twitter web service, we
can browse to our user/1 account page and once we have enabled the User Tweets
block, we should see this block of tweets appearing in our right sidebar area. You
should see a block of content that resembles this:

The user's tweets block is configured from a View that the Twitter module installs
on your site in your Views administration area. You get two default Views when
the Twitter module is installed. On your user account profile page, if you click on
the Twitter link or tab in your account, you will get the resulting View page of your
user's tweets. This View display should correspond to the block display of your
user's tweets block. If you launch the path /user/%/tweets for a specific user ID,
you'll get the following page display (or something similar to this):

Depending on how you have the View configured, the user's tweets block will show
a certain number of tweets and potentially use a pager.

Let's go ahead and take a look at the Views configuration for our tweet content and
make some adjustments to both the page and block view so you see how the block
and page displays of your tweets can be enhanced and tweaked.

Chapter 9

[203]

Twitter module page and block Views
The Twitter module ships with a default View called tweets. This provides a huge
amount of flexibility and power when it comes to methods of displaying your user's
tweets on the website. Since you can use Views in block and page formats, here you
can publish and display your tweets in multiple layout options and configurations.
The other great thing about the tweets views is that they use arguments in order
to show tweets for a specific user account. So, you can easily learn how to use
arguments with Views by studying the setup and configuration of the tweets View.
Let's do that now.

If you need introductory material and tutorials on using the Drupal
Views module, the module is covered in detail in two Packt titles: Chapter
3, Getting Started of Drupal for Education and E-Learning (https://www.
packtpub.com/drupal-for-education-and-e-learning/
book); and Chapter 3, Adding Products and Services of Drupal 6 Site Builder
Solutions (https://www.packtpub.com/drupal-6-website-
builder-solutions/book).

The tweets View is configured for both a page and a block view. The View will look
like this in your Views list:

Twitter and Drupal

[204]

Click on Edit and let's look at the View configuration. Notice that the View is split up
into a default Tweets View, a User page, User block, and a Global block view:

The default view Tweets sets some default configuration for all of the Views to
share. It styles the view as a Table, uses a mini pager, and displays ten tweets per
page. It uses a View argument for User: Uid. This sets an argument that the View
should only return tweets for a specific user account when the path typed into a
browser address field is of the following: /user/%/tweets. The title of the resulting
page will be %1's tweets; and the argument type is User ID from URL. If you look at
the argument configuration, you should see this:

Chapter 9

[205]

The default view also filters in the following fields: Twitter: Profile image, Twitter:
Message Text, and Twitter: Created Time. These are the fields that get displayed out
in the block content. So, for example, if you wanted to remove the Created Time text,
you could do that by deleting the field from the View output.

The page and block Views show the same content and use the same argument. The
page version displays 10 items per page, while the block only shows the top 5 tweets.
The page View also displays the Twitter account profile image if there is one in the
Twitter account in question. If you view the user tweets page, you'll see that the
profile image appears in the first column of the table next to each tweet. If you view
the source code for the View table using Firebug, for example, you'll see that the
profile image URL is something similar to this: http://a3.twimg.com/profile_
images/448761483/P1060536_normal.JPG

Twitter and Drupal

[206]

So, all of the profile images are populating via the Twitter service domain (a3.
twimg.com). You can test that this is the correct profile image by going to your
Twitter account and viewing your profile image (as a View image in the browser).
You should get a matching profile image name, with a potentially different scale
version of the image. I get this when I review the URL of the image via Twitter:

https://s3.amazonaws.com/twitter_production/profile_images/448761483/
P1060536_bigger.JPG

You have successfully added a View block and View page of your admin user
account's tweets to your Drupal site. You can now get real time tweet updates on
your Drupal site as they are posted to your Drupal account. You also know how to
configure and tweak your displays of these tweets using the core Twitter module
tweets View as a model. Since you can display your tweets as Views, if you are a
themer you now also have the power to theme these displays. Theming the Views
is a bit beyond the discussion and topics of this book, but for more information on
theming, see the module documentation at: http://drupal.org/node/412748.

Finally, if you want to set up specific rules using the core triggers and actions modules
that post nodes automatically to your Twitter home page without having to check the
box on each node, you can do this. The Trigger module includes a hook to the Twitter
module that allows you to configure a Post to Twitter action. Let's look at that now.

Actions and triggers with the Twitter module
Make sure you have enabled the core Drupal Trigger module and the Twitter actions
module. First, we'll want to configure the action. Go to Site configuration | Actions
and then scroll down all the way to the bottom of the Actions page and in the Choose
an advanced action drop down menu, select the Post a message to Twitter action:

Chapter 9

[207]

Click on the Create button. Now, in order to use this action, you'll also need to add
your Twitter account name and password to this action screen as well. Go ahead and
do that and add a message that will get posted to your Twitter account page when
you post the new Drupal content. The message can include the following tokens:
%site_name, %username, %node_url, %node_type, %title, %teaser, %body. Let's go
ahead and format the message like this: New post: %title, %node_url. This will add
the title of our post and a link to its URL. Your action form should look like this:

Save your action. Now, your action should appear in the main Actions listing at
/admin/settings/actions:

You're ready to configure your Trigger now. Now, you can associate your core
Triggers with this new action. For example, you can set the Twitter action to happen
when you save a new post or update an existing post. Go ahead and assign the Post
a message to Twitter action to your Trigger: After saving a new post:

Twitter and Drupal

[208]

Click on the Assign button. Now, go ahead and create a brand new node on your
site. You can leave the 'Announce this post on Twitter' unchecked since you now
have a trigger set up in your site to post the announcement automatically when a
node is saved. Save your new node. When you save your node, you should go to
your Twitter home page and refresh. The new node title and link to its URL should
be posted as a tweet:

You have learned how to post tweets from Drupal to your Twitter account and also
how to configure these posts to happen automatically using actions and triggers.
You can view your site's recent log entries and actually see the actions type posted in
your log entries. It should state Action Post a message to Twitter saved. If you click
on that log link, you will see the details of the action that ran.

Additionally, for the most recent tweet to appear back in your tweets View block,
you'll need to run your cron on the site so that the View updates with the latest
tweets from your Twitter account.

This is amazing integration. You have now learned how to post your tweets to your
Drupal site and also take Drupal nodes and post announcements about them back to
your Twitter home page.

Tweet module
The Tweet module is another contributed module that allows for integration with
the Twitter web service API. This module puts a link on your site's nodes to allow
for posting node content to Twitter. You can also shorten the URL (to your Drupal
node) that gets posted to Twitter using a combination of the Shorten URLs and the
Short URL module. You may want to customize your URLs and make them your
own formatted short URL instead of relying on the method Twitter uses, which is to
automatically shorten any URL that's over 30 characters in length. For example, when
we posted nodes to our Twitter site using the Twitter module, you'll notice that the
Twitter API automatically created short URLs using the tinyurl format. An example of
this is: http://tinyurl.com/22oy6wf. We may want more control over these URLs
so that we don't have to use the tinyurl formatted link. These modules will enable you
to set up your own formatted short URLs to use with your Twitter posts.

Chapter 9

[209]

We're going to install these three modules and try them out. First, grab the Tweet
module from its project page here: http://drupal.org/project/tweet. Then,
download the Shorten URLs and Short URL modules from their respective project
pages here: http://drupal.org/project/shorten and http://drupal.org/
project/shorturl. Install them to your site as you would any contributed module
to /sites/all/modules.

Go ahead and enable all three modules in your main modules administration page.
This will include the Tweet, Shorten, Record Shorten, and Short URL modules. Save
your modules configuration.

Configuring short URLs
With our modules enabled, go to your Site configuration | Shorten to load the
Shorten module configuration page. You'll see the Shorten Web service methods
and services listed that you can choose from. The first setting we'll tweak is the Use
"www." Instead of http:/ /. We're going to uncheck this so that we continue to create
links using the http:// protocol. This will open up more flexibility for us because
more web services use the HTTP method.

Shorten provides both PHP and cURL methods of retrieving the shortened URL from
the Web service of choice. You can also choose a default and backup service from the
multiple services listed, including but not limited to: is.gd, short.ie, TinyURL, and
so on. For our example, we're going to choose the Drupal ShortURL module for the
service and None for the backup service, for now. We want to leverage the ShortURL
contributed module to create our short URLs so that's why we choose that as our
service. All other settings on this configuration page can be left as their defaults. You
should have a form screen that looks like this:

Twitter and Drupal

[210]

Save your configuration.

Configuring the Tweet module
Now we're going to configure the Tweet module. Go to Site configuration |
Tweet to load the Tweet module configuration. For our configuration, let's set
the following:

•	 Type of link to show on nodes: icon_text
•	 Type of link to show on teasers: icon_text
•	 Open Twitter: In new window with target="_blank"
•	 Node types on which to display link: blog and page

Chapter 9

[211]

You should see a screen that looks like this:

Let's leave the taxonomy terms box blank for now. We'll only use the module with
our node types chosen above. Leave the Twitter image set as the default that the
module gives you.

Twitter and Drupal

[212]

Now, scroll down until you see the Format and Text of link boxes. Here's where
we'll set the format of our shortened URL. By default, the shortened URL will be in
this format: [url] [title] [node-tags]. This means that the node URL will show first,
then the title of the node post, then any tags you have associated with the node. Let's
delete the node tags token and just leave in the URL and the title tokens. Let's also
tweak the Text of link field to just read Tweet. This is the link the user will click on
to actually post the tweet over to Twitter.

Save your configuration. Now, we can test the module out. Load one of your page or
blog nodes and you should now see a new button/link appearing on your node that
says Tweet. The Tweet text should appear next to the Twitter icon. Before clicking
on the link, make sure you are logged into your Twitter account:

Let's go ahead and click on the Tweet link. If you are not currently logged into
your Twitter account, Twitter should open and it will prompt you to log in to your
Twitter account. Go ahead and do this. Next you will be redirected to your Twitter
home page and the Tweet information will be displayed in the What's happening?
text box. This will show the shortened URL format for your link and the title of your
node. In this example, I have the following format:

www.variantcube.com/lqg Packt presents the e-Pub format

Chapter 9

[213]

If you are happy with your tweet format, you can go ahead and post this by clicking
on the Twitter Tweet button. Now, you'll see your new Tweet appear on your home
page. The shortened URL is now a link and you can test it to make sure it opens up
the correct node:

Testing the link does open the node on your Drupal site. You'll notice that the URL
opens on your Drupal site with the /node/id URL. Notice on your Twitter home
page that the URL is shortened to your site's domain URL followed by the shortened
3-character node URL; in this case it's lqg. So, this shortened URL worked for our
Twitter configuration and purposes.

If you want to see a listing of all the shortened URLs on your site using the Shortened
URL module, you can go to Site configuration | Shorten | Shortened URLs. You'll
see a table that shows the original URL and the shortened version and the service
that provides it, in our case, the Drupal ShortURL contributed module:

Twitter and Drupal

[214]

So, we have successfully configured the Tweet module and used our Shortened URL
and ShortURL modules to provide short URL services for our Tweet posts to Twitter.
We have now expanded our repertoire of methods for getting our Drupal node
content over to our Twitter account.

Summary
In this chapter, we looked in detail at setting up web services for integration of
Twitter with our Drupal site. This allows us to post Drupal nodes as Tweets to
our Twitter account, and also to take tweets and post those back to our Drupal site
automatically. We used two main modules including Tweet and Twitter as well as
some helper contributed modules in order to provide our node URLS in a shortened
format. Here's a brief summary of what we accomplished:

•	 Enabled the Twitter module and used it to post Twitter account tweets back
to our Drupal site and make them appear in View blocks

•	 Used Twitter module to post our Drupal node content to our Twitter account
home page

•	 Set up automatic actions and triggers to use with our Twitter module
•	 Enabled the Tweet module to enable easy posting of node content as a Tweet

to our Twitter account
•	 Created shortened URLs for our node URLs so that we can present these in

a shorter format on Twitter and so they meet the Twitter requirement of 30
characters or less for hyperlinked URLs

In Chapter 10, LinkedIn and Drupal, we'll return to a discussion of Drupal content
and how to connect our Drupal site and its nodes and user processes to the popular
LinkedIn professional social networking application and Web service using the
LinkedIn module.

LinkedIn and Drupal
In this chapter we're going to integrate the popular professional and career-based
social networking application LinkedIn with our Drupal Web site. If you have a
LinkedIn account, you can integrate with your Drupal site using a contributed module
called LinkedIn Integration. This allows for authentication of user accounts across
the two applications and sharing of LinkedIn statuses on your Drupal site. You can
also publish content from Drupal over to your LinkedIn account activity stream as an
announcement. We'll look at configuring this integration in detail.

To summarize, in this chapter we will:

•	 Enable the LinkedIn Integration module and the OAuth module suite and
configure each

•	 Post content to your LinkedIn account activity stream
•	 Post your LinkedIn profile abstract to your Drupal user profile page and

enable a tab in your profile to access your LinkedIn abstract
•	 Test the authentication and user login process between Drupal and LinkedIn

LinkedIn and Drupal
LinkedIn is a social networking website and application that is geared towards
business professionals. You can create an account and post a profile to LinkedIn
that describes your professional background including your current jobs, education
history, resume, career and job specialties and skills, websites that you have content
on, and links to your Twitter account. The LinkedIn site functions as a dynamic
social networking community where you can search for colleagues and add them as
contacts, communicate with these colleagues via e-mail using the built in LinkedIn
Web mail application, join groups of common interests, and post presentations
including links to Slideshare presentations you have created.

LinkedIn and Drupal

[216]

For example, the site has multiple groups related to Drupal including the Drupal
Community Network, Drupal, and Drupal Users Group. You can view the group
profile of the Drupal Community Network at: http://www.LinkedIn.com/
groups?mostPopular=&gid=117056.

LinkedIn basically functions similar to Facebook, but it serves professionals and
your career interests more intensively than Facebook does. The Web application and
service has existed since May 2003, and according to the Wikipedia entry, contains
more than 70 million registered users from across the globe. The CEO of LinkedIn,
Jeff Weiner, worked for Yahoo! before joining LinkedIn. LinkedIn was started by
developers who worked at PayPal and Socialnet.com.

In this section, we're going to use two Drupal contributed modules that integrate
with the LinkedIn API and allow your Drupal site to interface with your LinkedIn
account. LinkedIn provides a detailed description and documents about its public
API at the LinkedIn Developer Network: http://developer.LinkedIn.com/
index.jspa. You can read documentation on the API via that link including getting
up to speed on how the authentication process works when integrating with a
LinkedIn account. LinkedIn uses the OAuth Authentication method in order to
allow users from a Drupal site to submit API requests to the LinkedIn web service.
OAuth is a standard open source protocol that allows for API authorization between
desktop software and web applications. There is more on the OAuth protocol at:
http://oauth.net/.

To review the document explaining all of the details of the LinkedIn OAuth process,
go to its official documentation at: http://developer.LinkedIn.com/docs/
DOC-1008.

We'll interface with LinkedIn using two contributed modules, the LinkedIn
Integration module and the OAuth module. Let's get started.

Chapter 10

[217]

Installing the LinkedIn Integration and OAuth
modules
The LinkedIn Integration module is dependent on the OAuth module, so you'll
need to install both. Go ahead and download both modules from their respective
project pages: http://drupal.org/project/LinkedIn and http://drupal.org/
project/oauth. Install both modules as normal to your /sites/all/modules
directory. The LinkedIn Integration module is currently in development, so the
latest version you'll be using is 6.x-1.x-dev. Bear in mind that you'll want to test out
the module first in your development environment before implementing it on a
production Drupal site.

The OAuth module has dependency modules that you'll need to install in order to
enable it. These are the Autoload (http://drupal.org/project/autoload) and
Inputstream (http://drupal.org/project/inputstream) modules. Go ahead and
grab modules and upload them to your modules directory.

Go ahead and enable all of the OAuth modules and their dependencies through your
modules administration page and save your module configuration:

The LinkedIn Integration module README file contains all the installation
instructions. Go ahead and enable the LinkedIn Integration module once you have
enabled the OAuth modules. Save your module configuration.

If you are unable to enable the LinkedIn Integration module because it tells you that
OAuth needs to be enabled even when you have OAuth enabled, you'll need to make
a tweak to the .info file of the LinkedIn module. To do this, open up the LinkedIn.
info file and change the dependencies[] = oauth line to: dependencies[] =
oauth_common. Your resulting code should look like this:

LinkedIn and Drupal

[218]

; $Id: LinkedIn.info,v 1.1.2.1 2010/05/13 12:29:36 bellesmanieres
Exp $
name = "LinkedIn"
core = "6.x"
description = "Provides LinkedIn integration."
dependencies[] = oauth_common

; Information added by drupal.org packaging script on 2010-07-11
version = "6.x-1.x-dev"
core = "6.x"
project = "LinkedIn"
datestamp = "1278834742"

Upload the updated LinkedIn.info file to your server. Now, refresh your modules
page and you should now be able to enable the module:

Using the LinkedIn Integration module
In order to use the LinkedIn Integration module, you'll need to sign up for LinkedIn
API credentials. This will provide you with a Consumer key and secret code that
you'll add to your LinkedIn module configuration. To sign up for the keys, you need
to go to the developer site at LinkedIn and request credentials. Also, your site URL
will need to match the URL you add to your LinkedIn account information at their
developer site. Go to: https://www.LinkedIn.com/secure/developer and sign
into your LinkedIn account on this page.

This will sign you into the LinkedIn Developer Network. You need to click on the
Add New Application link or icon to add your site as a Web service application:

Chapter 10

[219]

Clicking on the Add New Application link will launch a form. Complete the form
in its entirety and then click on the Add Application button. During the sign up
process, you can specify whether you want to use the LinkedIn integration in
Development or Live status. We'll keep this in Development for now while we test
out the status integration, but you can always update your account to move it into
Live status.

For the Programming Tools that you'll specify, make sure to select PHP here. For the
OAuth Redirect URL, you can also add your site's main root URL.

Once you submit your application, a screen will load showing you your new
LinkedIn Developer credentials including your API Key and Secret Key. Make sure
to print this out or note down your credentials and keep them in a secure location.

LinkedIn and Drupal

[220]

Now, let's go back to our LinkedIn integration form on our Drupal site and add our
credentials to the form.

Click on the Save configuration button.

Status update and promoting content to LinkedIn
In the Status update section of the LinkedIn module configuration, you can specify
what content types on your Drupal site can be posted to a user's LinkedIn account
home page as a status update on LinkedIn. So, basically, you can select the node type
you want to be able to post over to LinkedIn as a status update/post. Let's go ahead
and select the blog entry, page, and story types. You can also specify the Default
format string for the actual status post and how that post will appear on your
LinkedIn account. This means that the Drupal content will appear on your LinkedIn
home page as the following string, for example, for page type content: Posted
"!title" on !site : !url. Your form should look something like this:

Chapter 10

[221]

You can also integrate your Drupal site's user profiles with their respective LinkedIn
user account if you enable the user profile display. This will let users share their
LinkedIn profile information on their Drupal account page. We'll go ahead and
enable this for now. There are multiple options for displaying the profile data. Let's
set the profile data to be available via a clickable Tab button on the user's Drupal
profile page:

Now that we have configured our module, we can save our module configuration
and then check permissions to make sure our site users can use this LinkedIn
Integration module's functionality.

Setting permissions
Check to make sure you have enabled permissions for your users to access the
LinkedIn module functionality. You can set this for your authenticated users and
make sure they can display their LinkedIn profile, update their LinkedIn status, and
use custom status text. Let's enable this for our authenticated users:

Save your permissions.

LinkedIn and Drupal

[222]

Posting LinkedIn profile data to Drupal
The first functionality we can test is to bring our LinkedIn profile data over to our
Drupal user account. To do this, go to your user account page and click on the
Edit tab. Then you'll see a new tab for LinkedIn. Click on this. You may receive the
following error immediately when you click on the LinkedIn link:

Fatal error: Class 'OAuthSignatureMethod_HMAC_SHA1' not found in /
sites/all/modules/LinkedIn/LinkedIn.inc on line 106

If you do receive this error, here is the fix you'll need to make to the module code
to get it working. This fix is derived from a support document on Drupal.org in the
LinkedIn Integration module issue queue at: https://drupal.org/node/848646.
When a user or developer reports an issue for a module to the module's issue queue,
another developer will generally provide a method of fixing that bug or issue. This
fix was posted in the issue queue on July 13, 2010, after which time, the issue fix
will be rolled out to a module patch and submitted to the next official release of
the module. At the time this book was put into publication, the issue was still not
resolved or patched into the official module release, so we'll provide this fix here
based on the support document.

In your LinkedIn.inc file, look for the following line of code:

$consumer = new OAuthConsumer($consumer_key, $consumer_secret,
NULL);

Now, move the following line of code, which should be shown just above, under the
above line:

$signature = new OAuthSignatureMethod_HMAC_SHA1();

You are basically moving the $signature line to appear below the $consumer line.
There are actually two locations in the .inc file to add this line of code—around line
20 and line 111 of the .inc file. I'm attaching the entire updated .inc file to the code
files for the book. You'll find the updated code in the attached LinkedIn.inc file.
The first function, once you edit, should look like this:

function LinkedIn_access_token($account) {

 //setting up variables
 $base_url = "https://api.LinkedIn.com/uas/oauth";

 $consumer_key = variable_get('LinkedIn_consumer_key', '');
 $consumer_secret = variable_get('LinkedIn_consumer_secret', '');
 $consumer = new OAuthConsumer($consumer_key, $consumer_secret,
NULL);
 $signature = new OAuthSignatureMethod_HMAC_SHA1();

Chapter 10

[223]

 $random = md5(rand());
 $callback = url('LinkedIn/token/'. $account, array('absolute' =>
TRUE)) .'?action='. $random ; //will be used to discard direct call to
the path

The second, around line 106, should now look like this:

 $consumer_key = variable_get('LinkedIn_consumer_key', '');
 $consumer_secret = variable_get('LinkedIn_consumer_secret', '');
 $consumer = new OAuthConsumer($consumer_key, $consumer_secret,
NULL);
 $signature = new OAuthSignatureMethod_HMAC_SHA1();
 $row = db_fetch_array(db_query("SELECT * FROM {LinkedIn_token} WHERE
uid = %d AND type = 'access'", $account));

Once you make this fix, go ahead and refresh your /LinkedIn profile page. It should
load now. You will see a message telling you that you must first authorize LinkedIn
integration to use related features. There is a Go LinkedIn button you can click on to
take you to the LinkedIn website to complete the integration process. Go ahead and
click on that button:

LinkedIn and Drupal

[224]

When you click on the Go LinkedIn button, you should be redirected to an https
authorized URL that contains the name of your LinkedIn application; in our case, I
named my application Drupal Integration Test. So, this worked. Now, I need to log
in on my application portal page.

You can choose an Access Duration for the length of time you want to grant this
session ID. Let's leave it set to Until Revoked. Now, click on the Grant Access
button. If this works, you'll be redirected back to your Drupal profile page, and now
you will see two additional checkboxes displayed:

•	 The first will ask you if you want to display an abstract of your LinkedIn
page on your current Drupal user profile page

•	 In the second checkbox, you can specify whether you want your profile to be
automatically updated whenever you post new information to your LinkedIn
status. Let's check both of these boxes, as shown here:

Click on the Save button. A message will appear notifying you that your LinkedIn
preferences have been saved.

Chapter 10

[225]

Now go to View your user profile main page. You should now see an additional
tab in your profile menu that is called LinkedIn. Clicking on this tab will launch
the LinkedIn profile page and will display your LinkedIn profile abstract data.
You should see something similar to this:

The profile URL should be: /user/%/LinkedIn. The profile abstract and avatar
image should be clickable to your full public profile on LinkedIn. Go ahead and test
this. When you click on your image or the abstract title you should be redirected to
your public profile:

LinkedIn and Drupal

[226]

You will also see one of your most recent LinkedIn activity posts appear on your
profile abstract page.

Posting Drupal content to LinkedIn
Similar to the Twitter module that we discussed in Chapter 8, the LinkedIn
Integration module allows us to announce posts we make to our Drupal site on our
LinkedIn activity stream. When we configured the LinkedIn module, we specified
that we wanted to announce Page content posts and we also noted the type of format
string we want the announcement to post with. Let's go ahead and try this out based
on our settings.

Go to post a new page on your site by going to Create content > Page. You'll notice
on the Page content type form you now have a fieldset titled Post to LinkedIn. You
can check the Announce on LinkedIn box if you want to add a link back to the
content to your LinkedIn activity stream. Let's make sure the box is checked. Leave
the text format string in the field as the following: Posted "!title" on !site : !url.

Now, go ahead and save your node. If you get the following error, you'll need to
update the LinkedIn.inc file again, similar to the fixes we made earlier in the chapter:

Fatal error: Class 'OAuthSignatureMethod_HMAC_SHA1' not found in /
public_html/sites/all/modules/LinkedIn/LinkedIn.inc on line 142

We need to swap the following line and make sure it's placed after the $consumer
line of code around lines 142-144. The line of code you are looking for is:

$signature = new OAuthSignatureMethod_HMAC_SHA1();

You should end up with something that looks similar to this:

function LinkedIn_put_profile_field($account, $field, $body) {
 $base_url = 'https://api.LinkedIn.com/v1/people/~/';
 $url = $base_url . $field ;
 $xml = '<'. $field .'>' . htmlspecialchars($body, ENT_NOQUOTES,
"UTF-8") . '</'. $field .'>';
 $consumer_key = variable_get('LinkedIn_consumer_key', '');
 $consumer_secret = variable_get('LinkedIn_consumer_secret', '');

Chapter 10

[227]

 $consumer = new OAuthConsumer($consumer_key, $consumer_secret,
NULL);
 $signature = new OAuthSignatureMethod_HMAC_SHA1();
 $row = db_fetch_array(db_query("SELECT * FROM {LinkedIn_token} WHERE
uid = %d AND type = 'access'", $account));
 $token = new OAuthConsumer($row['token_key'], $row['token_secret'],
1);
 $request = OAuthRequest::from_consumer_and_token($consumer, $token,
'PUT', $url, array());
 $request->sign_request($signature, $consumer, $token);
 $header = $request->to_header();
 $response = _LinkedIn_http_request($url, $header, $xml);
 return $response;
}

Once you make this tweak or upload the attached LinkedIn.inc file in the book's
attached code, you can refresh your error page. The node should post and you will
receive a message stating: Posted to LinkedIn.

Once saved, head over to your LinkedIn account and you should see the post show
up in your LinkedIn activity stream. Confirm that the post has shown up there. One
other issue to check and confirm: due to the error we encountered above, you may
have accidentally posted this node twice on your Drupal site. Check this and remove
one of the duplicates.

When I view my activity on LinkedIn, I see the content posted successfully:

If you click on the hyperlink provided, formatted as a /lnkd.in URL, you should
be taken immediately to the node you posted on your Drupal site. Additionally, if
you view your LinkedIn home page, you should see your post show in the Network
Activity section.

You have successfully taken your Drupal node content and posted it as an
announcement to your LinkedIn account activity stream. You have now posted
Drupal content to two major social networking applications and websites, Twitter,
and LinkedIn. The integration is nearly seamless and flexible and provides a great
deal of power as far as duplication of content from one website to another goes. You
have also seen the power of web services and their integration with Drupal.

LinkedIn and Drupal

[228]

Checking usage statistics for the LinkedIn module
You can check the usage statistics for the LinkedIn Integration module via its drupal.
org project page. This is a good practice to engage in when using contributed
modules, especially those in development stages. The usage statistics give you a
very rough estimate of how many sites are using the module on any given day that
is reported out. Statistics only get reported if the site is using the Update Status
module. But, this still gives a general statistical overview of how popular the module
is. It's interesting to view the usage statistics on the LinkedIn module since they
show a steady increase in the amount of sites using the module from February to
August of 2010. Hopefully, the module will get patched and submitted back to CVS
soon, and with all the bugs worked out (as per our testing in this chapter), we can get
this module rolled out as a production level module to the drupal.org community.

Here's a screenshot of the usage statistics for LinkedIn Integration:

Chapter 10

[229]

Summary
In this chapter, we looked in detail at setting up web services for integration of the
popular professional social networking application LinkedIn with our Drupal site.
This allows us to set up user accounts on our Drupal site to authenticate over to the
respective user's LinkedIn account.

By doing this, the user can publish their LinkedIn profile abstract to their Drupal
user profile page, allowing for easy integration of user content from LinkedIn over
to Drupal. This works using the OAuth user account authentication module, which
allows us to keep account authentication secure and stable as per the user account on
our Drupal site.

We also learned how to post Drupal nodes as announcements over to our LinkedIn
account activity stream. We can use any of our Drupal content types to post this
content over to LinkedIn. Here's a brief summary of what we accomplished:

•	 Enabled the LinkedIn Integration and OAuth suite of modules
•	 Tested authentication of our Drupal user account over to our LinkedIn

account using the LinkedIn Integration module configuration
•	 Posted our LinkedIn profile abstract from our LinkedIn account over to our

Drupal user profile page using the authentication methods described above
•	 Enabled our content types to work with the LinkedIn module
•	 Created a node on our Drupal site using one of the integrated content types

and announced this node automatically to our LinkedIn activity stream at the
click of a mouse button

In Chapter 11, Facebook and Drupal, we'll return to a discussion of Drupal content and
how to connect our Drupal site and its nodes and user process to the popular Facebook
social networking application and web service using the Drupal Facebook module.

Facebook and Drupal
In this chapter, we're going to explore methods of integrating Drupal with the
popular social networking web application, Facebook. If you have a Facebook
account, you can easily become a Facebook application developer; you just need
to set up an application in your Facebook account, and then connect to this
application via your Drupal website. Your Drupal site acts as the server and remote
host of the content, and Facebook acts as the web service consuming your Drupal
content. This allows you to take your node content from Drupal and automatically
post the nodes to your Facebook application. The node content floats into Facebook
and retains the Facebook layout and design. Drupal allows this to happen because
it integrates with the Facebook layout and specialty markup code by using a
customized and specially-designed theme. This Drupal theme integrates with,
and supports the Facebook FBML (Facebook Markup language).

The Facebook integration also allows you to integrate your Drupal user base with
your Facebook application and your Facebook account users and friends with your
Drupal site. In this chapter, we're going to focus on how to post content to Facebook,
but you'll also want to be aware of the permissions and user account processes
involved, so we'll touch on that as well.

To summarize, in this chapter we will:

•	 Install the Drupal for Facebook module suite and tweak our Drupal
installation and site to support this suite of modules

•	 Install all of the Facebook client libraries
•	 Create a developer's account on Facebook and set up a Facebook application

environment
•	 Configure the Drupal for Facebook application settings internally to our

Drupal site
•	 Configure and use the Drupal FBML theme specifically for our Facebook

application
•	 Post content from our Drupal site to our Facebook application home page

Facebook and Drupal

[232]

What is Facebook?
Facebook is one of the most popular and well-known social networking websites
and applications. Facebook allows you to create a profile web page that contains
sub-elements including a "Wall", where you can post status updates; an "Info" section
that contains your personal user profile data (much like custom fields in a Drupal
user profile); and a "Photos" section that allows you to upload photos and create
photo galleries to share with your friends.

On Facebook, you can follow friends' accounts and also allow friends to view your
content and post to your Wall. It's a similar application to LinkedIn but Facebook
leans more towards communication amongst friends than professional colleagues.
Facebook was launched in 2004 and by July 2010 it had over 500 million users.
For more on the history and timeline of the Facebook web application, go to its
Wikipedia entry at http://en.wikipedia.org/wiki/Facebook.

Drupal and Facebook
Drupal users and site administrators may want to integrate their Drupal site with
Facebook in order to market your Drupal site and open up your site to new users
who may visit the site through the Facebook settings. Drupal provides a number of
contributed modules that facilitate this integration, including a suite of modules that
we'll be looking at in detail in this chapter. The Drupal for Facebook (fb) module suite
is a group of modules and themes that allow for user and content integration through
Facebook's API; and also paves the way for developers to construct new applications
that allow Drupal to talk to Facebook and vice versa. The module developers of the
Drupal for Facebook suite want to promote Facebook application development,
but they want to make this development happen within the Drupal CMS(Content
Management System) framework. This is a powerful set of tools for anyone who wants
to bridge the Drupal CMS with the Facebook social networking platform.

There are two basic types of apps you can create to integrate with your Facebook
account. These are application types as defined by the Facebook development
community. The Facebook Connect application allows you to run a Drupal site on
your own domain that integrates with Facebook. More information about Facebook
Connect is provided here: http://developers.facebook.com/docs/guides/web.
Canvas Page apps run inside of your Facebook account. These apps appear in the
apps.facebook.com domain. They are web pages that get embedded into Facebook
using iFrames or FBML.

The module's project page is available at: http://drupal.org/project/fb.
The module is currently at version 6.x-2.0-rc2. There is a detailed documentation
provided at: http://drupal.org/node/195035.

Chapter 11

[233]

Drupal also provides a module that integrates Drupal and Facebook user accounts.
The Facebook Connect module (http://drupal.org/project/fbconnect) allows
Facebook users to log in to your Drupal site using their Facebook login information.
This happens by way of using the Facebook Connect API. The module provides
features that help to tie Facebook and Drupal accounts together and expose data
between the two authenticated user accounts. The module is currently in the
development phase and version, so it's recommended that you only install and use
this module in a development site environment and not on a production-level
Drupal site.

This is a huge swath of information to cover and this chapter will not cover all the
details and functionality of the Drupal for Facebook module, but will look at it in
a general overview and point out some areas of detail. This chapter serves as an
introduction to this large suite of modules and integration with the Facebook web
service API libraries.

We're going to go ahead and install the Drupal for Facebook suite as well as the
Facebook Connect module. We'll enable both sets of modules and look at the
functionality of each in detail in the following sections.

Requirements for running Drupal for
Facebook
In order to install and use the Drupal for Facebook suite of modules, you will need to
make sure you have done the following:

•	 Sign up for a Facebook account if you do not have one. You can do that here:
http://facebook.com

•	 It's suggested that you run the Development (Devel) module on your site while
you are developing Facebook applications and integration. The Drupal for
Facebook module includes a version of the Devel module that you can enable
and that will help you to debug your Facebook apps as you work on them. The
Devel (Development) module is a Drupal contributed module suite of helper
applications and functions for Drupal developers. You can learn more about
the Devel module at: http://drupal.org/project/devel.

•	 The Drupal for Facebook modules require you to be running the JSON
extension with your PHP version. If you are running PHP 5.2+, JSON comes
bundled with it. You can confirm this by running your PHP info report via
Drupal's Status Report page. By checking my site's PHP info, I see that I'm
running JSON version 1.2.1, so we're good to go for the following examples.

Facebook and Drupal

[234]

Installing and enabling Drupal for Facebook
Download the latest version of Drupal for Facebook and upload the suite of modules
to your /sites/all/modules directory. You'll see a suite of new modules in your
modules admin list that is split up into three sections. Let's enable all the modules
in the Drupal for Facebook fieldset. This includes the Canvas Pages, Drupal
for Facebook, Drupal for Facebook Applications, Drupal for Facebook Devel,
Facebook Connect, and User Management modules:

In the Drupal for Facebook - contrib section, enable the Extended Permissions,
Friend Features, and Register Users modules. These modules will give us a
fine-grained control over how we integrate Facebook users into our Drupal site:

Chapter 11

[235]

Finally, enable the following modules in the optional fieldset: Drupal for Facebook
Forms, Drupal for Facebook Streams, and Drupal for Facebook Views. These
modules will provide integration with the Facebook Form construct with the Drupal
Form API, and integration with the Drupal Views module:

Save your module configuration.

Facebook and Drupal

[236]

You may be asked to enable the Devel module in order to run the Drupal for
Facebook Devel module. Go ahead and do this while we're in development mode
and are testing out the Facebook modules.

You will receive the following messages once you save the modules. The first will be
in regards to the Facebook libraries. It will state:

Facebook client libraries will not work properly if arg_separator.output is
not "&". Currently the value is "&". Please change this in settings.php
or php.ini.
Drupal for Facebook has been enabled, but not properly installed. Please
read the README.txt.

These two messages warn you that once you have installed the Facebook client
libraries (see the following section), you'll need to then make a change to your
settings.php or php.ini file. This requires opening up those file(s) in a text editor
and tweaking the arg_separator.output. You can go ahead and do this now. You
should also make sure to read the Drupal for Facebook's README file to make sure
you have completed all the steps of the installation process. This module is a bit
more complex to install and enable:

* Drupal for Facebook modules enabled. Be sure to install facebook's
client libraries and modify your settings.php! Read modules/fb/README.
txt and the online documentation for Drupal for Facebook for details.
* Facebook Application module installed. Please grant yourself
permissions and then browse to Admin >> Facebook Applications
to get started.
* The configuration options have been saved.

These messages inform you that the modules have been enabled but you also need to
install all of the Facebook client libraries. Let's go ahead and install the libraries now
and then make the tweak to settings.php.

Additionally, once you have installed the libraries, you can then browse to
the Drupal for Facebook administrative screen. This module contains its own
administrative interface. The interface is: /admin/build/fb.

If you launch this admin path now you'll receive the following error:

Drupal for Facebook has been enabled, but not properly installed. Please
read the README.txt.

If you launch your status report you'll also get this series of errors now:

* Drupal for Facebook has been enabled, but not properly installed. Please
read the README.txt.

Chapter 11

[237]

* warning: include(facebook-platform/php/facebook.php) [function.in-
clude]: failed to open stream: No such file or directory in /home1/variantc/
public_html/sites/all/modules/fb/fb.install on line 52.
* warning: include() [function.include]: Failed opening 'facebook-platform/
php/facebook.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/
lib/php') in /home1/variantc/public_html/sites/all/modules/fb/fb.install on
line 52.

Installing the Facebook libraries
These errors are telling us that we need to install the Facebook Platform web service
libraries that include the facebook.php file. Because we have installed the 2.x
version of the Drupal for Facebook module, we will want to download and install
the REST version of the Facebook web service libraries. The REST libraries are
available at: http://github.com/facebook/platform/raw/master/clients/
packages/facebook-platform.tar.gz. Go ahead and download the facebook-
platform.tar.gz archive to your desktop and then unzip it. I have also included
this code in the code folder for Chapter 10, LinkedIn and Drupal, of this book. In this
folder—you can locate two folders, footprints and PHP. The PHP folder contains the
facebook.php file that is appearing in your error message.

Now, we want to upload the facebook-platform folder into your Drupal for
Facebook module folder that you have already placed in your /sites/all/modules
directory. Go ahead and do this now.

Now, we need to make a tweak to our site's settings.php file to make sure that
our main Drupal configuration recognizes where the Drupal for Facebook module is
located. To do this, open your settings.php file in an editor and add the following
line of code to the bottom of your settings.php file:

require_once "sites/all/modules/fb/fb_settings.inc";

In the same settings.php file, check to make sure that the arg_separator.output
does not contain an &. The Facebook libraries will not work correctly if you have an
& in that line of code. The correct line of code should have a plain &. So, check this
and then make sure you have those lines of arg_separator.output code looking
like this:

ini_set('arg_separator.output', '&');

I checked my settings.php file and realized this needs to be tweaked, so I'm
tweaking it to be '&'.

Facebook and Drupal

[238]

Now, go back to your Drupal site and refresh your status report page. The error
messages should have disappeared. On your status report, you should see two
green, checked messages stating the following:

Drupal for Facebook SettingsIncluded
Facebook Client APIFoundFacebook client API found at facebook-plat-
form/php/facebook.php

So, you have successfully loaded and configured the Facebook REST-based service
APIs. We're now ready to complete our Drupal for Facebook configuration and start
using the module.

You can also test to make sure the module is configured correctly by going to your
Administer | Site Building | Facebook Applications link and that will launch the
Facebook Application admin page at /admin/build/fb. You will see various tabbed
sections here, including Add Application, Canvas Pages, Facebook Connect, and
User Management. We'll come back to look at each of these in detail, but first let's
configure our Canvas Pages theme functionality to work with.

Setting up Canvas Pages
To create Canvas Pages for Facebook, you will need to use Facebook's specific markup
language called FBML along with iframe, which allows for your markup to be iframed
and served from your server. So, your site will be the host that Facebook's web service
will consume. To do this, you'll need to use a Drupal theme that supports FBML. The
module ships with a starter theme for this called fb_fbml. One note to bear in mind
is that FBML is now considered by Facebook, so you can start with this theme's code
but you might want to pay attention to how the code is upgraded for iframe support
with later versions of the Drupal for Facebook module (version 3+). Since we're using
version 2.x, we can continue to use the FBML version of the theme.

Let's go ahead and enable the FBML theme, so that we can develop Canvas Pages-
driven apps. Go to your FB module themes directory at /sites/all/modules/fb/
themes and copy the fb_fbml theme directory over to your /sites/all/themes
directory. Now, you can enable the fb_fbml theme in your themes admin page.
Remember here that you can just enable the FBML theme but not make it your default,
so you can keep your site's default custom theme running at the same time.

The fb_fbml theme on your themes admin page will warn you that you should use
this theme on Facebook FBML-driven Canvas Pages only. Obviously, the access to
this theme should only be given to your site administrators or developers.

Chapter 11

[239]

Enable the fb_fbml theme and then save your themes configuration.

Creating your first Facebook app
Why would you want to create a Facebook app? A Facebook app is basically a space
on the Facebook web application site that contains specific types of content you have
posted. You may want to create an application on Facebook that hosts your book
reviews or music reviews. You can create this app or space on Facebook and then
write all of your reviews on your Drupal site. You can then post these reviews and
content over to your Facebook app space and that space on Facebook will only contain
this type of content. It's a nice method of collecting and organizing similar content on
Facebook and keeping this content separate from your main Facebook profile.

As mentioned earlier in the chapter, in order to create a Facebook application, you
need to first create a Facebook account if you don't have one already. Once you
have your Facebook account, you need to sign up for a developer application. To
do this, go to: http://www.facebook.com/developers/createapp.php. If you are
currently logged into your Facebook account, you'll be asked to grant the Facebook
application access to your Facebook account. Go ahead and allow this access:

Facebook and Drupal

[240]

You will be redirected to your facebook.com/developers account and see the
Developer home page. On this page, you'll see a link to your account and also
to your applications. There will also be a button to Set Up New Application.
Click on this button:

The set up application screen will launch where you'll be asked to name your
application. Give your app a simple name in the Application Name field. Agree to
the Facebook terms of use and then click on the Create Application button as shown
in the following screenshot:

For this example, I'll call my application Firehouses and Fire Stations.

Clicking on the Add application button will direct you to a security check page
where you'll be required to enter CAPTCHA fields. Do this and then click the Submit
button. Now, a detailed application profile page will launch, split into multiple tabbed
screens including About, Web Site, Facebook Integration, Mobile and Devices, and
Advanced, as shown in the following screenshot. Let's go through each of these.

Chapter 11

[241]

The About screen will ask you for more general details about your Facebook
application including the name (as filled out in the previous screenshot),
Description, Icon, Logo, Language, User Support Address (whether you'll provide a
support URL or e-mail address), and any privacy statements or policies that you'll be
providing. Go ahead and complete this screen. You can also add other developers to
your developer access on this About screen if you want other developers who have
Facebook developer accounts to access and interact with your account.

Navigate to the Web Site tab and a screen will load showing you your application
ID and also your app secret key. You can add your site URL and site domain here.
In our case, for this example, my site URL is http://variantcube.com and my site
domain is variantcube.com. You can also add a subdomain to the domain field on
this screen.

Navigate to the Facebook Integration tab and a screen will load. Here, you want to
specify the Canvas Page alias for your Facebook app. Here, the Canvas page will be
http://apps.facebook.com/firehouses and the corresponding Canvas URL on
my site and server will be http://variantcube.com/firehouses/. Make sure to
end your URL with the forward slash /.

Select the FBML Canvas type. You can leave the rest of the settings and configuration
set to their defaults.

Facebook and Drupal

[242]

Save your About application changes and Facebook will launch a screen confirming
that your application changes have been saved. You will see a synopsis of your
application including the number of users, people who like the app, and total users.
You will also see your application ID, API Key, Application secret key, site URL,
domain, and canvas page that you added in the previous screens. Keep the key
information secure as you'll need this API key info to plug into the Drupal side of
the application configuration.

You can also re-edit your Facebook application settings via this confirmation screen
by clicking on the Edit Settings link. You will also get a confirmation that it may take
several minutes for your app to propagate across the Web and to all the Facebook
servers. In addition, your application will not be listed in the Facebook application
directory unless you submit it to the directory. You can click on this link to submit
your app.

You have now completed the initial configuration and setup of your Facebook
application on the Facebook side of the account integration. Now, we'll finish
configuring our Drupal site so that we can publish content to Facebook using this
app. Congratulations on creating your first Facebook app!

Chapter 11

[243]

Configuring Drupal to work with your
Facebook app
Now that we've set up our Facebook application inside of the Facebook environment
and we have our API key, let's complete our integration by setting up the Drupal
side of our application.

Go to your Drupal for Facebook administrative page on your Drupal site at Site
building | Facebook Applications or at /admin/build/fb. Click on the Add
Application button and this will launch the add app form. The form will summarize
the instructions that we ran through in the previous section on how to set up
your Facebook application in Facebook and get your API key. Now that you have
completed that part, we can add the API information to this configuration screen.

First, give your application a Label, which is a machine readable name for your
app. Add your API key, application secret code, and Facebook App ID to the
corresponding fields.

Leave the Set Application Properties Automatically box checked:

Facebook and Drupal

[244]

Leave the Extended Permissions and Register Users settings on their defaults.
Expand the Facebook canvas pages fieldset and make sure that the theme for FBML
pages is set to fb_fbml.

Go ahead and save your configuration. Once you save your settings, Drupal should
show you two confirmation messages:

•	 Created Facebook application Firehouses and Fire Stations (firehouses)
•	 Note that it may take several minutes for property changes to propagate to

all Facebook servers

You will also see a table showing your new Facebook application with its label, a
link to its About page on Facebook; a link to its canvas page that you originally set
up and gave a URL when setting up the app in Facebook earlier; a link to the local
version of your application on your Drupal site; an edit link to edit the application
and a link to its remote settings on Facebook.

Let's go ahead and test our app.

Testing the Facebook application
To test your application and see if your Drupal site's content has been posted to
your Facebook application, click on the link to its path under the Canvas header in
the above table. I'll click on the firehouses link and this will launch the Facebook
application at: http://apps.facebook.com/firehouses/. If the integration has
worked successfully per the above instructions, you should see your site's node
content posted to your Facebook application page. The canvas page will only show
node content that you have posted that can be viewed by anonymous users. It will
not show any content that has restricted access. You should see a screen similar to
this in layout and design. This is the canvas page that Drupal has created using the
FBML theme and integration with Facebook via your API key. You'll also notice that
the URLs are the same on Facebook. If your Drupal node is /node/113, then it will
be posted as /node/113 on your Facebook application as well:

Chapter 11

[245]

If you try to load a restricted node in your Facebook application, you will receive the
following error message:

Application Temporarily Unavailable
Received HTTP error code 403 while loading http://variantcube.com/
node/109
Sorry, the application you were using is experiencing a problem. Please try
again later.

Facebook and Drupal

[246]

You can also test and view all of your Facebook application settings on your Drupal
site by clicking on the local View link. This will launch a page showing you all of
your Facebook application credentials. You'll see a page that looks like this:

You'll see the web service callback URL that your Drupal site is using as well as the
Connection URL. Both should be the root URLs to your site. You'll also see Post-
Authorize Callback URL and Post-Remove Callback URL. These URLs are used
when a node is posted to Drupal or deleted. These callbacks authorize the post or
removal from the Facebook application.

If you click on the Remote Settings link, this will launch the original Facebook
application settings configuration page that you already completed earlier. This is
helpful as you can easily edit your Facebook application settings on Facebook if you
need to via this link:

Chapter 11

[247]

Editing your Facebook application settings
Also remember here that all of my site's posts are showing on the Facebook
application canvas page because I have specified that my canvas URL is the root
level of my site. If I wanted to only pull nodes from one specific path on my website,
I would need to specify this as my canvas URL in my Facebook settings. Go ahead
and tweak the canvas URL setting and change it to only pull one node over from
your site. For example, I'll change my canvas URL to be: http://variantcube.
com/firehouses, referring to the earlier /firehouses node I set up specifically for
this application. Then, if I go to edit my canvas URL setting via the Remote Settings
link in my Facebook application, I can change this URL to the above http://
variantcube.com/firehouses/. Make sure to enclose the closing "/" in the URL.
Click the Save Changes button in Facebook.

Now, via your Drupal site, test the link to your Facebook application canvas URL.
This time you should only see that node's content but not all of the node content
from your website. For example, in this node, I've posted one photo of a firehouse.
When I changed my canvas URL in my Facebook application settings and then
visited this URL, I now see that only this node is being consumed by Facebook:

Facebook and Drupal

[248]

So, you have successfully created a custom Facebook application that allows for
posting your site's node content over to your Facebook application. Your site is
acting as the remote web service server of content here and Facebook is acting as
the consumer of that node content. This is pretty amazing integration and sharing
of content by two highly robust and popular content management systems and
applications. This shows you the power of taking your content from Drupal and
automatically serving it out to Facebook so that you can leverage the Facebook
community's user base.

There is much more about Facebook applications, including tutorials on how to build
complex applications, at the documentation pages for the module on drupal.org:

http://drupal.org/node/205481.

Summary
In this chapter, we looked in detail at setting up Drupal web services for integration
with the popular social networking application Facebook. This allows us to take
our published nodes on our Drupal site and effectively and accurately push them
out to our Facebook application so that our content is duplicated in the Facebook
environment. This allows our content to be accessible to potentially thousands and
thousands of Facebook site users.

We learned how to set up this configuration both on the Facebook side of the web
service environment and also in our Drupal site. We learned how to enable the
Drupal theme that supports the Facebook markup language and that styles our node
content so that it can fit inside the Facebook template. This design and theming also
showed us how powerful this Drupal for Facebook module suite is since it takes
in both the node content and also how the node content should be styled to match
Facebook's style and layout guidelines.

Chapter 11

[249]

Here's a brief summary of what we accomplished:

•	 Installed and enabled the Drupal for Facebook suite of modules
•	 Installed the Facebook libraries on our Drupal server to support the web

service integration
•	 Set up our Facebook application in our Facebook account
•	 Configured the Facebook application to integrate with our Drupal site

by adding the Facebook app API key and our account key to Drupal for
Facebook module configuration form in our Drupal site

•	 Enable the FBML theme for our Facebook content
•	 Posted nodes from our Drupal site to our Facebook application and viewed it

via our app's canvas URL and page

In Chapter 12, Authentication Services, we're going to talk in more detail about user
permissions and authentication methods and modules that support Drupal web
services.

Authentication Services
In this chapter, we will explore various authentication web services to use with
your Drupal site. First, we'll explore the Open ID protocol and module. This
authentication method comes shipped with your Drupal 6.x core, so it's easy to
enable and start using. We'll set up OpenID to work with our Google account and
see what this integration can do for us.

We'll also look at the OAuth protocol in more detail. We used this module in Chapter
9, Drupal and Twitter when we discussed LinkedIn Integration. We're going to return
to using OAuth in this chapter and take a look at the additional OAuth modules that
can help to expand our repertoire of authentication methods. We'll use the OAuth
Connector module to connect to our Twitter account and build a Twitter application
using this authentication method.

To summarize, in this chapter we will:

•	 Enable the OpenID module and configure it on our user accounts
•	 Set up OpenID to interface with our Google account
•	 Install and configure the OAuth Connector and Connector modules
•	 Set up a Twitter application environment
•	 Connect our Drupal site with our Twitter application using the OAuth

Connector module

OpenID and Drupal
OpenID is a web service specifically designed for user logins and authentication.
It allows website users to use the same login credentials on multiple websites they
visit. This means that they do not need to have a separate username or password on
each site but can use the same ones across all the sites they visit if the site supports
OpenID.

Authentication Services

[252]

The OpenID protocol was originally developed in May 2005 by a programmer
named Brad Fitzpatrick. Fitzpatrick was working for Six Apart (http://sixapart.
com/), the company that developed the Movable Type blog software, the TypePad
blog hosting service, when he created OpenID. OpenID became quickly popular after
blogging sites and services such as LiveJournal implemented the service on their
sites. Later in its development timeline, both Symantec and Microsoft announced
their support of the service; and then Google, Yahoo!, and PayPal all announced they
would utilize the service on their portals. There is much more about the history of
OpenID at Wikipedia: http://en.wikipedia.org/wiki/OpenID.

You can create an OpenID account through the openid.net web service site. The
openid.net site recommends multiple hosts and providers for your OpenID
account, including Google, Yahoo!, LiveJournal, Blogger, Flickr, Wordpress, and
AOL. Many of these web service applications already provide an OpenID
authentication framework that you can use with your Drupal site. You can also
host your own OpenID service provider via your Drupal site. We'll look at both the
methods in this section. You can learn more about OpenID at the openid.net
website at: http://openid.net/. The site lists recommended providers of OpenID
accounts at: http://openid.net/get-an-openid.

Drupal 6 supports the OpenID functionality and OpenID ships as a core module
with Drupal 6. If you enable the OpenID module, you will get an additional link on
your user login page and block that allows your site users to log in to your site using
their OpenID account. This means that new users on your site can create accounts
on your site using their OpenID credentials. If a user on your site already has an
account, they can still utilize the OpenID module but they will need to edit their
account and assign their OpenID identity to their account.

The way the authentication web service works is that when a user visits your site
and logs in with their OpenID credentials, your Drupal site communicates with the
OpenID host provider to verify the identity of the user. If the user is subsequently
logged into their OpenID server, the server communicates back to your Drupal site
through the web service and authenticates and approves the login. If the user is not
logged into their OpenID server, the OpenID server will ask for the user's credentials
first before logging them into their Drupal site.

Let's go ahead and try this out.

Enabling and configuring the OpenID module
To use OpenID, you need to enable the module first. Go to your modules' admin
page and enable the OpenID core module. Save your module configuration.

Chapter 12

[253]

Once you enable the module, navigate to one of your user accounts. You will
notice that there is now an additional tab on your user account page titled OpenID
identities. Click on this tab. This will launch the OpenID configuration page for
this specific user account. The following message will be shown at the top of the
configuration screen as shown below:

This site supports OpenID, a secure way to log into many websites using a single
username and password. OpenID can reduce the necessity of managing many
usernames and passwords for many websites.

To use OpenID, you must first establish an identity on a public or private OpenID
server. If you do not have an OpenID and would like one, look into one of the free
public providers. You can find out more about OpenID at the OpenID website at:
http://openid.net/.

If you already have an OpenID, enter the URL to your OpenID server below (for
example, myusername.openidprovider.com). Next time you log in, you will be able
to use this URL instead of a regular username and password. You can have multiple
OpenID servers if you like.

So, the first thing you'll need to do is establish an OpenID account on one of the
listed providers. What I'll do for this example is establish this account with this test
user's Gmail account because I know that Google already supports the Open ID
framework. So first, let's set up the OpenID server at our provider's location.

Setting up the OpenID server/provider
Let's use Google as our provider for this example. I'm going to set up OpenID for one
of my Google Gmail accounts and then use this web service server for my Drupal
OpenID authentication. To do this, I'm first going to log in to my Google Gmail
account and then browse to my account settings. I'm going to create a Google profile
and profile URL if I don't already have one. I can then use this Google profile URL
for my authentication method with the OpenID module in Drupal.

Authentication Services

[254]

To create a profile in Google, first click on the My Account link and then look for the
Create a profile link. Click on that. This will launch the Google Create your profile
form. Complete the profile form to your liking:

Then, scroll to the bottom of the form and you'll notice that Google will
automatically give you a profile URL. This is the most important piece in the
configuration because you'll need this profile URL to add to your Drupal OpenID
identity on the user account you want to use this profile for. So, make sure to copy
this URL now and save it locally. Then, click on the Create a Google profile button
to create and enable the profile. My Google profile URL is:

http://www.google.com/profiles/drupal6performancetips.

Chapter 12

[255]

Once you click on save, Google will launch your profile page at the above URL. You
should see something similar to this:

Now, go back to your Drupal site and launch the user account to which you want to
add this profile. Edit the OpenID identities for this account, and in the OpenID field,
paste in the Google profile URL.

Authentication Services

[256]

Click the Add an OpenID button.

Once you click on the Add an OpenID button, your site will try to communicate
with the Google profile URL and web service server. You will see a Google accounts
page launch and ask you to sign in to your profile account and approve the
authentication and communication. You should see a screen that looks like this:

Click on the Sign in button and leave the Remember me box checked. Once you do
this, you will be redirected back to your Drupal site and the following message will
appear:

Successfully added http://www.google.com/profiles/drupal6performancetips

You will also see that the profile has been successfully added to the user account
in question. Your account screen will look like the following with your saved
OpenID profile:

Chapter 12

[257]

Now you can test the OpenID login for this user account. Log out if you're currently
logged in as another admin user. Now, when you launch the user login screen, you
should see the Log in using OpenID link. You'll want to click on this link to initiate
the Open ID authentication process as shown in the following screenshot:

Once you click on this, the Open ID login field will launch. You can now paste in
the profile URL. If you are currently logged into your Google account profile, then
you should be automatically logged into the Drupal site once you click on the Log in
button on your Drupal site. Try this first:

Authentication Services

[258]

The login process will check to make sure you are logged into your Google account
and then authenticate back to Drupal and allow the login to occur. You should be
logged in and see your Drupal user account screen. If you are not logged into your
Google account when you attempt to login via OpenID, you'll get a prompt screen
via Google asking you for your Google account credentials. Try it both methods to
get used to the login process using OpenID and Google. You'll get a screen similar
to this if you're not currently logged into your Google account:

Again, once you log in to your Google account, you'll be automatically redirected
back to your Drupal account screen, this time logged in. In addition, if at any time
you log out of your Google account, remember that you will not be automatically
logged out of your Drupal account because you've already initiated the Drupal
account session. So, make sure you log out of Drupal when you complete your
account session and work.

Go ahead and try configuring OpenID to work with your Drupal user accounts using
a different host provider besides Google. The process should be similar.

OAuth and OAuth Connector
We have already used the OAuth module in Chapter 9, Twitter and Drupal, when
we looked at the LinkedIn Integration module. LinkedIn Integration uses OAuth
as its authentication method. So, you should already have OAuth module installed
on your site. If you do not have the module installed, you can download it from its
project page at:

http://drupal.org/project/oauth.

You can also learn more about the OAuth protocol at its main website at:
http://oauth.net/.

Chapter 12

[259]

The OAuth module implements OAuth classes on your Drupal site so that you can
integrate your Drupal site with other web applications that support the OAuth
authentication protocol. The current version of the module is 6.x-3.0-beta2. The
OAuth module provides for both web service server functionality and also as a web
service consumer functionality. As we saw in the LinkedIn Integration module,
the OAuth module allows for our site to act as a content server and to allow node
content to be posted to our LinkedIn account which consumes this content.

So, in the case of LinkedIn, the LinkedIn application is a service consumer and allows
access to our Drupal site which is acting as the service provider. A user account on
our Drupal provider site can take node content and publish it out to the LinkedIn
consumer application.

In this section, we're going to hook up our OAuth protocol with additional web
services using a new module called OAuth Connector. The OAuth Connector
module allows you to sign to third-party applications using your Drupal user
account credentials. We've already seen this using the LinkedIn Integration module
with that specific application. Now, we're going to enable this module and test the
process with other applications including Twitter and Digg.

Using OAuth Connector
First, to confirm our OAuth installation from the previous chapter, I'm checking
the modules admin list and making sure that I have enabled the OAuth, OAuth
Consumer UI, and OAuth Provider UI modules:

Now, I need to install the OAuth Connector module, the Connector module, and the
HTTP Client module. You'll also need to make sure you have installed Chaos Tools.
Get the modules from the following project pages:

•	 Connector: http://drupal.org/project/connector
•	 OAuth Connector: http://drupal.org/project/oauthconnector
•	 HTTP Client: http://drupal.org/project/http_client
•	 Chaos Tools: http://drupal.org/project/ctools

Authentication Services

[260]

Connector, HTTP Client, and Chaos Tools Suite modules are all required modules
for the OAuth Connector module to work. OAuth Connector relies on each of these
three additional modules to be installed. Chaos Tools suite is a set of APIs and tools
that assist the Drupal developer. The module contains helper utilities that other
modules rely on and use. Also, bear in mind here that the Connector and OAuth
Connector modules are both in their infancy and development versions. So, you
will want to make sure to test these modules out on your development site before
implementing them in production.

Go ahead and install and enable all of the above modules. Once installed, enable all
of the above modules through your modules admin page. You should enable the
following modules: Under Services - clients fieldset, enable the Http Client and
Http Client OAuth:

Under the Connector fieldset, enable the Connector and OAuth Connector modules:

Save your module configuration.

Once you have enabled the modules, you can access your OAuth Connector
configuration at Site building | OAuth Connector or here:

/admin/build/oauthconnector.

The table will be empty by default. Here, you can add a provider by clicking
on the Add provider link:

Chapter 12

[261]

Let's go ahead and click on the Add provider link and start to configure our
connection.

Configuring a provider connection for Twitter
Once you click on the Add provider link, you'll launch the Add provider configuration
form where you can add your provider application data including any OAuth
consumer key and secret ID that the provider gives you to make the connection using
OAuth. As an example, we're going to connect to a Twitter application using OAuth.
To run the Twitter configuration, we'll need to do two things:

First, we'll need to apply for a Twitter developer account so that we can set up a
Twitter application and get OAuth credentials from Twitter as the provider.

Then, we'll also need to configure our Drupal OAuth Connector to recognize and
communicate with this Twitter application. The OAuth Connector module developers
provide us with some code to get us started with this configuration. If you visit the
OAuth Connector module's project page and click on the Example export link, next
to the Twitter API example, you will get a page of PHP code that shows you how the
connection is made with a Twitter app. The code is available at:

http://gist.github.com/545469.

I've also added the code here for your reference and it's in the attached code files for
the book:

<?php
$provider = new stdClass;
$provider->disabled = FALSE; /* Edit this to true to make a default
provider disabled initially */
$provider->name = 'twitter';
$provider->title = 'Twitter';
$provider->url = 'http://api.twitter.com';
$provider->consumer_advanced = array(
 'signature method' => 'HMAC-SHA1',
 'request token endpoint' => '/oauth/request_token',

Authentication Services

[262]

 'authorization endpoint' => '/oauth/authenticate',
 'access token endpoint' => '/oauth/access_token',
);
$provider->mapping = array(
 'fields' => array(
 'uid' => array(
 'resource' => 'http://api.twitter.com/1/account/verify_
credentials.json',
 'method post' => 0,
 'field' => 'id',
),
 'real name' => array(
 'resource' => 'http://api.twitter.com/1/account/verify_
credentials.json',
 'method post' => 0,
 'field' => 'name',
),
 'avatar' => array(
 'resource' => 'http://api.twitter.com/1/account/verify_
credentials.json',
 'method post' => 0,
 'field' => 'profile_image_url',
),
),
 'format' => 'json',
);

If we examine this code, we'll see that it corresponds to the OAuth Connector
frontend configuration page. The application is named twitter and titled Twitter.
The base URL for the application is the URL of the OAuth provider, in this case
http://api.twitter.com. Then, we see the array for the API fields including the
User ID fieldset, Name fieldset, and Avatar fieldset.

We should also notice that the OAuth Consumer Advanced Settings includes a
Signature method called HMAC-SHA1, and that this advanced setting also includes
an array with Request token endpoint, Authorization endpoint, and Access token
endpoint.

So, we can take this code and insert it into our frontend OAuth Connector Add
provider form. We should have a form that resembles the following screenshot based
on the code we provide:

Chapter 12

[263]

We have not applied for the Twitter developer account yet, so we don't have our
Twitter OAuth Consumer key or Consumer Secret yet, but we can fill out the other
information here.

In the Mapping section of our OAuth Connector configuration page, we can add the
Resource URLs from the code to our User ID Resource field, Name Resource field,
and Avatar Resource field. The field names for all of these respectively are: id; name;
profile_image_url.

Authentication Services

[264]

The method we're using is a POST request and we're using the JSON format for
all three:

Once you have added this data, go ahead and click the Save and proceed button.
When you save, you'll get redirected to your OAuth Connector list page and you'll
see your new provider in the table. You'll receive the following message:

Chapter 12

[265]

Your new provider Twitter has been saved.

You'll also see a warning that tells you that the Consumer Key is Missing and
provides a link to Add one:

That's what we'll do next.

Setting up the Twitter developer application account
In order to complete the OAuth Connector configuration and ultimately test our
Drupal account login and access with our Twitter application, we first need to
configure an application and developer account via our Twitter account. So, first log
in to Twitter and once logged into your Twitter account, click on the Settings link in
the top right header menu area. Then, once your settings configuration loads, click
on the Connections link in the top menu bar:

Authentication Services

[266]

You'll notice the Developers right side bar block and info. Click on the link in that
block to set up the application. That will launch a screen that will look like this:

Now, click on the Register a new application link. This will launch the application
form. Go ahead and complete the form with the pertinent data. Your application
home page can be the root home page of your Drupal site or a specific node on your
site. Keep the application type selected to the Browser type. This will use a Callback
URL to return to your application after successfully authenticated to Twitter. Type
in the Callback URL. This can be the same URL as your application URL. Leave the
Default Access Type set to Read-only, and check the Twitter login box if you want to
set up your application so it uses your Twitter account for log in and authentication
purposes before logging into your Drupal site. If you want to log in directly to your
Twitter application using your Drupal account, you can leave this box unchecked.

Chapter 12

[267]

Authentication Services

[268]

Fill out the CAPTCHA and then click the SAVE button. Once you click the SAVE
button you'll be redirected to an applications details page where you'll see your
Consumer key, Consumer secret, Request token URL, Access token URL, and
Authorize URL. You'll need all five of these settings for your OAuth Connector
configuration so make sure to print out this page and then go back to your OAuth
Connector page on your Drupal site.

Notice here that the token URLs match the consumer_advanced array token paths
in your Drupal OAuth Connector code. Your Authorization URL should also match
your Drupal Authorization endpoint.

Chapter 12

[269]

Open up your OAuth Connector configuration page in Drupal and then click on the
Add link under the Consumer Key heading in the table. Copy your consumer key
and secret code into the fields in your configuration settings.

Save your OAuth configuration once more and you should receive a successful
updated table page with your Consumer key listed. Congratulations! You have
completed the authorization configuration for OAuth Connector with your Twitter
application. Now, it's time to test the connection.

Summary
In this chapter, we looked in detail at setting up a number of authentication protocols
to work with our Drupal web services. We enabled the OpenID module and tested
this integration with our Google Account so that when we log in to Drupal, we can
use our Google credentials.

We also learned how to set up a Twitter application and use this application to
integrate with our Drupal site using the OAuth connector and connector contributed
modules. We then tested this connection. You now know how to set up various
authentication protocols to work with your Drupal site and to make it easier for your
site's users to access and log in to your Drupal website and their corresponding web
service applications.

Here's a brief summary of what we accomplished:

•	 Enabled the OpenID module and configured it on our user accounts
•	 Set up OpenID to interface with our Google account
•	 Installed and configured the OAuth Connector and Connector modules
•	 Set up a Twitter application environment
•	 Connected our Drupal site with our Twitter application using the OAuth

Connector module

Modules Used in the Book
In this appendix, we're going to summarize the contributed modules we've used
in the book and present a listing of modules that allow for integration between
Drupal and web service applications and servers. This chapter will present a concise
and organized listing of modules that access remote servers and services, and that
integrate and install with the Drupal content management framework. This chapter
will serve as a cheat sheet and summary for you to use during your Drupal-based
projects. All modules used in the book are listed and summarized here.

For more information about using Drupal modules, you can visit the main drupal.
org Modules repository at: http://drupal.org/project/Modules. Modules are
listed by popularity, category, and compatibility. There is a search box that allows
you to search for specific modules by keyword and also a sort filter that allows you
to search by relevance, most installed, author, and more. Here, you will find modules
listed with a summary of what the module does, and a table showing the versions,
date of last update, status, and links to download the module. There is also a link
provided that points you to a full index of all Drupal modules available at:
http://drupal.org/project/modules/index. This index lists all 6,000+
modules in alphabetical order.

Modules Used in the Book

[272]

Another good Drupal module resource is Drupal Modules at drupalmodules.com.
This site is an open source community-driven project that lists, rates, and reviews
all Drupal modules. This site allows you to search for modules and restrict your
search to Drupal versions. It highlights new modules and contains a blog that posts
interesting modules, related news, and case studies. It presents links to the highest
rated and most downloaded modules. For example, in September 2010, the most
downloaded module according to Drupal Modules was the Administration menu
module, closely followed by CCK. If we do a search on Drupal Modules for the
Twitter module, we get a page that shows the detailed ratings for the module, a
module overview, and download links.

Appendix A

[273]

I'm also including a link to the usage statistics page for each module via Drupal.org.
Usage statistics show how often the module is being used on a weekly basis. You can
see the number of downloads for the module in both the 5.x and 6.x versions for each
week since the module was released and also stats on the usage per module release
version. This is interesting data in that it shows that the majority of modules are
seeing steady growth in usage and downloads over time. Here's an example of what
a usage statistics graph for the Amazon module looks like:

To summarize, in this chapter we will:

•	 List and summarize all the modules used in the book
•	 Provide a brief summary of the module and why we used it
•	 Provide module project page links and downloads for each module used

Modules Used in the Book

[274]

Modules used in Chapter 1
In Chapter 1, About Drupal Web Services, we introduced web services and explored
the various web service frameworks and protocols including XML, RSS, SOAP,
and REST. We introduced various contributed modules that allow for integration
of popular web service applications with Drupal. Where applicable, I've noted
the project page, maintainers, usage statistics, Drupal Modules page, and current
version. All versions are production site ready unless otherwise noted.

CCK
To run many of the modules and follow along with all of the examples in this book,
you definitely need to install the CCK (Content Construction Kit) module on your
Drupal site. CCK, simply put, allows you to create your own content types and add
custom data fields to these content types. This module extends and expands the
default core Drupal content types of Page, Story, and Blog. With CCK, you can create
and customize content types to work with all of the web service modules that we use
in the book.

•	 Project page and URL: http://drupal.org/project/cck
•	 Maintainers: KarentS, markus_petrux, fago, yched
•	 Usage statistics: http://drupal.org/project/usage/cck
•	 Drupal modules page: http://drupalmodules.com/module/content-

construction-kit-cck

•	 Current version: 6.x-2.8

Mollom
Mollom is a web service that provides spam prevention and spam blocking. The
service is smart in that it responds and learns dynamically from the types of spam
that are being submitted and generated to your Drupal website. Drupal integrates
with the Mollom web service using the contributed Mollom module. The Mollom
web service was developed and designed originally by Dries Buytaert, Drupal's
founder. Mollom provides various spam prevention functionality including its own
CAPTCHAs. It allows for blocking comment spam, contact form spam, and can
protect the user registration process by using CAPTCHA elements.

•	 Project page and URL: http://drupal.org/project/mollom
•	 Maintainers: sun, Dries Buytaert, Dave Reid
•	 Usage statistics: http://drupal.org/project/usage/mollom
•	 Drupal modules page: http://drupalmodules.com/module/mollom
•	 Current version: 6.x-1.13

Appendix A

[275]

Auto Tagging
The Auto Tagging module allows for integration of your Drupal's taxonomy and
tag vocabs with popular tagging web services including OpenCalais, Yahoo! Terms
Extraction, and tagthe.net. We installed this module and then signed up for an API
key account on the OpenCalais web application. We integrated the module and our
Drupal site with the OpenCalais tagging framework.

•	 Project page and URL: http://drupal.org/project/autotagging
•	 OpenCalais application URL: http://www.opencalais.com/APIkey
•	 Maintainers: acstewart
•	 Usage statistics: http://drupal.org/project/usage/autotagging
•	 Drupal modules page: http://drupalmodules.com/module/auto-tagging
•	 Current version: 6.x-1.4-beta3

AMFPHP
The AMFPHP module integrates with the Drupal Services module to provide
support and integration for the AMFPHP protocol and format with Drupal sites.
This can allow for the integration of Flash, FLEX, and Air Web client applications to
interact with Drupal's PHP backend and Services. You'll need to install the Drupal
Services module to integrate the AMFPHP module.

•	 Project page and URL: http://drupal.org/project/amfphp
•	 Maintainers: snelson
•	 Usage statistics: http://drupal.org/project/usage/amfphp
•	 Drupal modules page: http://drupalmodules.com/module/amfphp
•	 Current version: 6.x-1.0-beta2
•	 Requirements: Services module and AMFPHP 1.9 beta 2

Modules used in Chapter 2
In Chapter 2, Consuming Web Services in Drupal, we looked at how Drupal sites can act
as web services consumers. A Drupal site can connect to a web service application
using a contributed module and then consume content from that externally hosted
web application and service. We explored the SOAP protocol that allows this
integration to occur. For an example of this functionality, we installed the FedEx API
module with an installation of Ubercart. We connected to the FedEx web service to
return real time shipping quotes to our Drupal site The FedEx API module allows
for this integration with the FedEx web service.

Modules Used in the Book

[276]

SOAP Client
The SOAP Client module is required by Drupal to integrate your Drupal site with
the PHP SOAP client and server extensions. First, you need to enable these PHP
extensions and then install the SOAP Client module. This module allows your
Drupal site to communicate with the PHP 5.x SOAP or nuSOAP extensions.

•	 Project page and URL: http://drupal.org/project/soapclient
•	 Maintainers: ilo, ebizondrupalservices, BoogieBug
•	 Usage statistics: http://drupal.org/project/usage/soapclient
•	 Drupal modules page: http://drupalmodules.com/module/soap-client
•	 Current version: 6.x-1.0-beta2
•	 Requirements: the PHP 5.x SOAP extensions or nuSOAP extensions need to

be installed and enabled on your server

FedEx web services
FedEx provides a web service API that you can use to integrate with your Drupal
and Ubercart site. You need to sign up for a FedEx API service account at the
following URL: http://fedex.com/us/developer/.

FedEx shipping quotes for Ubercart
In order to get real time shipping quotes from FedEx, we need to install and integrate
the FedEx Shipping quote module. This module gets installed into our Ubercart
module folder and then enabled in Drupal. The module communicates with our
FedEx developer API account to return real time shipping quotes, both domestic and
international, in response to our site shopper's shipping information that they add to
the Ubercart checkout form.

•	 Project page and URL: http://drupal.org/project/uc_fedex
•	 Maintainers: TR
•	 Usage statistics: http://drupal.org/project/usage/uc_fedex
•	 Drupal modules page: http://drupalmodules.com/module/fedex-

shipping-quotes-for-ubercart

•	 Current version: 6.x-2.0
•	 Requirements: Ubercart and Token modules

Appendix A

[277]

Ubercart
We need to install the Ubercart module and configure an online shopping cart in
order to use the FedEx Shipping Quotes module.

•	 Project page and URL: http://drupal.org/project/ubercart
•	 Maintainers: Island Usurper, TR, rszrama
•	 Usage statistics: http://drupal.org/project/usage/ubercart
•	 Drupal modules page: http://drupalmodules.com/module/ubercart-

conditional-actions-sms-integration

•	 Current version: 6.x-2.4
•	 Requirements: Token

Token
The Token module is required by both the Ubercart and the FedEx Shipping Quotes
modules.

•	 Project page and URL: http://drupal.org/project/token
•	 Maintainers: Dave Reid, greggles, fago, eaton
•	 Usage statistics: http://drupal.org/project/usage/token
•	 Drupal modules page: http://drupalmodules.com/module/token
•	 Current version: 6.x-1.14

Modules used in Chapter 3
In Chapter 3, Drupal and Flickr, we continued our discussion of Drupal's interaction and
integration with external web services and applications. We looked in detail at how
Drupal consumes web data from these external hosts. Here, we turned our attention
to using the Flickr modules to enable integration with the popular photo-sharing web
application Flickr.

Flickr account and API key
To follow along with examples in Chapter 3, Drupal and Flickr, it's a good idea to set
up a Flickr account and create some galleries and sets that you can work with. You
can sign up for a Flickr account at: http://flickr.com/

You will also need to sign up for a Flickr API key and developer account at:

http://flickr.com/services/api/

Modules Used in the Book

[278]

Flickr module
We installed and enabled the Flickr module so we can integrate our Flickr photo
galleries with our Drupal site. The Flickr suite of modules includes Flickr Block,
Flickr Filter, Flickr Sets, and Flickr Tags.

•	 Project page and URL: http://drupal.org/project/flickr
•	 Maintainers: paulbooker, ksenzee, KarenS, drewish
•	 Usage statistics: http://drupal.org/project/usage/flickr
•	 Drupal modules page: http://drupalmodules.com/module/flickr
•	 Current version: 6.x-1.2

idGettr
This tool allows us to get the Flickr ID # of a user's photostream or Group pool if
it's publicly available.

•	 idGettr application page: http://idgettr.com/

Modules used in Chapter 4
In Chapter 4, Drupal and Amazon, we integrated our Drupal site with Amazon's web
service API by installing and enabling the Amazon module suite.

Amazon web service and API key
To integrate your Drupal site with the Amazon Web Services, we first need to sign
up for an Amazon API key and web service account at:

http://aws.amazon.com/

Amazon module
The Amazon module includes the following suite of sub-modules: Amazon API,
Amazon Examples, Amazon Field, Amazon Filter, Amazon legacy importer,
Amazon media, and Amazon Search.

•	 Project page and URL: http://drupal.org/project/amazon
•	 Maintainers: rfay, eaton
•	 Usage statistics: http://drupal.org/project/usage/amazon

Appendix A

[279]

•	 Drupal modules page: http://drupalmodules.com/module/amazon-
module

•	 Current version: 6.x-1.1
•	 Requirements: Amazon Examples module requires the Drupal Features

module

Features
This is a helper module for Drupal that is required if you want to enable and use the
Amazon Examples module of the Amazon module suite.

•	 Project page and URL: http://drupal.org/project/features
•	 Maintainers: yhahn, jmiccolis, Adrian
•	 Usage statistics: http://drupal.org/project/usage/features
•	 Drupal modules page: http://drupalmodules.com/module/features
•	 Current version: 6.x-1.0

Views
To use the Amazon Examples module and develop dynamic lists of Amazon
products displayed in table or grid format on your site, you'll want to install and
enable the Drupal Views module.

•	 Project page and URL: http://drupal.org/project/views
•	 Maintainers: dereine, merlinofchaos, chx, dww
•	 Usage statistics: http://drupal.org/project/usage/views
•	 Drupal modules page: http://drupalmodules.com/module/views
•	 Current version: 6.x-2.11

Amazon store module
This module extends the functionality of the Amazon module, allowing you to
integrate a full Amazon marketplace of products and a shopping cart into your
Drupal site. Site visitors can then add Amazon products to their shopping cart on
your Drupal site and purchase them via their Amazon account.

•	 Project page and URL: http://drupal.org/project/amazon_store
•	 Maintainers: rfay
•	 Usage statistics: http://drupal.org/project/usage/amazon_store

Modules Used in the Book

[280]

•	 Drupal modules page: http://drupalmodules.com/module/amazon-store
•	 Current version: 6.x-2.1-rc2
•	 Requirements: Amazon module, PHP 5.2+

Modules used in Chapter 5
In Chapter 5, Drupal and Multimedia Web Services, we continued our discussion of
how Drupal interacts and integrates with external web services and applications,
and consumes web data from these external hosts. Here, we turn our attention to
using multimedia-based web services and modules, including modules that integrate
video-based web services including CDN2, Kaltura, and the Media: Flickr module.
These modules allow our site users to upload video and host the uploaded video via
the web service server, and also to add more multimedia and dynamic components
to our Flickr module, allowing us to map entire photosets into our Drupal site and
present our site visitors with interactive Flickr-based slideshows and videos.

CDN2 web service
The CDN2 web service is available here. You need to sign up for an account before
you integrate and use the CDN2 video module: http://www.workhabit.com/
products/cdn2. WorkHabit also provides documentation on how to use the CDN2
web service at: http://www.workhabit.com/products/cdn2/guide. To use
CDN2, you need to make sure you are using PHP 5.2+ and that you have the SOAP
extension enabled. You also need the Drupal CCK module installed and enabled as
well as various PEAR libraries mentioned in detail in Chapter 4, Drupal and Amazon.

CDN2 video module
The CDN2 module allows for integration with your CDN2 web service account. The
CDN2 suite of modules comes with CDN2 Dash Player and Flowplayer integrations
and the main CDN2 video module.

•	 Project page and URL: http://drupal.org/project/cdn2
•	 Maintainers: kylebrowing, acstewart, akalsey
•	 Usage statistics: http://drupal.org/project/usage/cdn2
•	 Drupal modules page: http://drupalmodules.com/module/cdn2-video
•	 Current version: 6.x-1.10

Appendix A

[281]

Kaltura web service
The Kaltura open source video web service and application allows you to purchase
hosting space on Kaltura's servers to upload and stream your video and multimedia
and then present this video via your Drupal site using the Kaltura module. You
can learn more about and sign up for the Kaltura web service at: http://corp.
kaltura.com/.

Kaltura module
The Kaltura module allows for integration of the Kaltura web service with your
Drupal site and also enables you to integrate your video with Drupal modules
including CCK and Views. The suite of Kaltura modules includes: Kaltura as CCK
Field, Kaltura Media Comments, Kaltura Media Node, Kaltura Media Remix Node,
and Kaltura Media Views.

•	 Project page and URL: http://drupal.org/project/kaltura
•	 Maintainers: grobot, univate
•	 Usage statistics: http://drupal.org/project/usage/kaltura
•	 Drupal modules page: http://drupalmodules.com/module/kaltura
•	 Current version: 6.x-1.5

Media: Flickr
This module allows us to map our Flickr photosets into an embedded media field
in a CCK-powered custom field. So, you'll need both the CCK and the Embedded
Media Field modules to use this module.

•	 Project page and URL: http://drupal.org/project/media_flickr
•	 Maintainers: aaron
•	 Usage statistics: http://drupal.org/project/usage/media_flickr
•	 Drupal modules page: http://drupalmodules.com/module/media-flickr
•	 Current version: 6.x-1.11

Modules Used in the Book

[282]

Embedded media field
This module adds a custom media field to support audio and video content to your
custom content types using CCK. This module supports images, audio, and video
and offers the following support in its suite of modules: image field, video field,
audio field, media thumbnail, inline media, and media import. You need this module
in order to integrate the Media: Flickr functionality.

•	 Project page and URL: http://drupal.org/project/emfield
•	 Maintainers: aaron, Alex UA, Rob Loach, kleinmp
•	 Usage statistics: http://drupal.org/project/usage/emfield
•	 Drupal modules page: http://drupalmodules.com/module/embedded-

media-field

•	 Current version: 6.x-1.24

Modules used in Chapter 6
In Chapter 6, Drupal Web Services the Easy Way: The Services Module, we looked
in detail at using the Drupal Services module suite. The module provides a
standardized API method of integrating multiple external web services and
applications with internal modules to your Drupal site. This includes integration
with the following web server applications and protocols: JSON server, JSONRPC
server, REST and SOAP servers, and AMFPHP.

Services module
•	 Project page and URL: http://drupal.org/project/services
•	 Maintainers: heyrocker, skyredwang, marcingy, Hugo Wetterberg
•	 Usage statistics: http://drupal.org/project/usage/services
•	 Drupal modules page: http://drupalmodules.com/module/services
•	 Current version: 6.x-2.2

Modules used in Chapter 7
In Chapter 7, Drupal, Spam, and Web Services, we looked in detail at using contributed
modules that help to prevent and block spam submissions to your Drupal site. This
included examples using the CAPTCHA and reCAPTCHA modules; the Antispam
module; and a return to our earlier discussion in Chapter 1, About Drupal Web Services
of using the Mollom spam service and module.

Appendix A

[283]

CAPTCHA
This module adds a CAPTCHA field to your Drupal forms including the contact
form, user registration process, and your custom content types to help prevent spam
submissions from machine-based visitors to your Drupal site.

•	 Project page and URL: http://drupal.org/project/captcha
•	 Maintainers: soxofaan, Rob Loach, wundo
•	 Usage statistics: http://drupal.org/project/usage/captcha
•	 Drupal modules page: http://drupalmodules.com/module/captcha
•	 Current version: 6.x-2.2

reCAPTCHA
The reCAPTCHA module extends the functionality of the CAPTCHA module by
providing an integration of your Drupal site with the reCAPTCHA web service.
To use this module, you'll need to sign up for an API key and account at the
reCAPTCHA service application at: https://www.google.com/recaptcha
/admin/create.

•	 Project page and URL: http://drupal.org/project/recaptcha
•	 Maintainers: Rob Loach, kthagen
•	 Usage statistics: http://drupal.org/project/usage/recaptcha
•	 Drupal modules page: http://drupal.org/project/usage/recaptcha
•	 Current version: 6.x-1.4

AntiSpam
The AntiSpam module allows for integration with multiple spam prevention web
services including Akismet, TypePad, and Defensio. All three of these web service
applications are accessible here:

•	 Akismet: http://akismet.com
•	 TypePad AntiSpam: http://antispam.typepad.com
•	 Defensio: http://defensio.com
•	 Project page and URL: http://drupal.org/project/antispam
•	 Maintainers: pixture
•	 Usage statistics: http://drupal.org/project/usage/antispam

Modules Used in the Book

[284]

•	 Drupal modules page: http://drupalmodules.com/module/antispam
•	 Current version: 6.x-1.2

We looked at the Mollom module and its project page and information in the
Modules used in Chapter 1 section of this appendix.

Modules used in Chapter 8
In Chapter 8, Using XML-RPC, we explored how Drupal uses the XML-RPC protocol
for integrating XML-RPC-based web services with Drupal. This included examples
of taking a Google Document and integrating that document to your Drupal site as a
node. We also looked at how to set up an auto-sync of content between two Drupal
sites using the Deployment module with the Services module.

BlogAPI module
The BlogAPI module is a core module that ships with Drupal 6. We need this module
in order to integrate with our Google Docs account. It does not come enabled by
default, so you need to enable it in your modules admin page:

•	 Drupal modules page: http://drupalmodules.com/module/blog-api

Google Documents
You need to sign up for a Google account in order to use Google Documents at:
https://www.google.com/accounts.

Deployment module
The Deployment module is a module under active development that allows for site
managers to deploy content from a staging or development version of their website
over to the production version of their site. So, it allows you to move and migrate
Drupal nodes automatically from one Drupal site to another across one server or
from one to another Drupal server.

•	 Project page and URL: http://drupal.org/project/deploy
•	 Maintainers: dixon, heyrocker
•	 Usage statistics: http://drupal.org/project/usage/deploy
•	 Drupal modules page: http://drupalmodules.com/module/deployment
•	 Current development version: 6.x-1.x-dev

Appendix A

[285]

This module relies on the Services module to be installed and enabled and
specifically the Key Authentication and XMLRPC Server modules that come shipped
with the Services module suite. The Deployment module comes with the following
suite of submodules that will need to be enabled: Deploy Comments, Deploy
Content Type, Deploy Dates, Deploy Files, Deploy Nodereferences, Deploy System
settings, Deploy Userreferences, Deployment, Node Deployment, and more.

Modules used in Chapter 9
In Chapter 9, Twitter and Drupal, we integrated the popular social networking
application Twitter with our Drupal site using multiple contributed modules. This
allows us to post our Drupal nodes and content out to Twitter using our Drupal site
as a web service; and also taking our Twitter content and automatically consuming
that content into our Drupal site.

To follow along with the examples in this chapter, you need to sign up for a Twitter
account at: http://twitter.com/.

Twitter module
•	 Project page and URL: http://drupal.org/project/twitter
•	 Maintainers: eaton, walkah
•	 Usage statistics: http://drupal.org/project/usage/twitter
•	 Drupal modules page: http://drupalmodules.com/module/twitter
•	 Current version: 6.x-2.6

Tweet
The Tweet module also allows for posting Drupal content to your Twitter account.

•	 Project page and URL: http://drupal.org/project/tweet
•	 Maintainers: IceCreamYou
•	 Usage statistics: http://drupal.org/project/usage/tweet
•	 Drupal modules page: http://drupalmodules.com/module/tweet
•	 Current version: 6.x-4.0

In order to use shortened URLs with the Tweet module and format your URLs
specifically to your liking, you'll also want to install and enable the Shorten URLs
and Short URL modules.

Modules Used in the Book

[286]

Shorten URLs
•	 Project page and URL: http://drupal.org/project/shorten
•	 Maintainers: IceCreamYou
•	 Usage statistics: http://drupal.org/project/usage/shorten
•	 Drupal modules page: http://drupalmodules.com/module/shorten-urls
•	 Current version: 6.x-1.9

Short URL
•	 Project page and URL: http://drupal.org/project/shorturl
•	 Maintainers: irakli
•	 Usage statistics: http://drupal.org/project/usage/shorturl
•	 Drupal modules page: http://drupalmodules.com/module/short-url
•	 Current version: 6.x-1.2

Modules used in Chapter 10
In Chapter 10, LinkedIn and Drupal, we integrated the popular career and professional-
based social networking application LinkedIn with our Drupal site using multiple
contributed modules. This allows us to post our Drupal nodes and content out to our
LinkedIn profile page as status posts and also to integrate our LinkedIn content with
our Drupal site.

LinkedIn integration with Drupal relies on OAuth authentication and so you need
to install and enable the OAuth suite of modules to make this integration work. You
will also need to sign up for a LinkedIn account at: http://www.linkedin.com/.

OAuth module
•	 Project page and URL: http://drupal.org/project/oauth
•	 Maintainers: voxpelli, Hugo Wetterberg
•	 Usage statistics: http://drupal.org/project/usage/oauth
•	 Drupal modules page: http://drupalmodules.com/module/oauth
•	 Current version: 6.x-3.0-beta2
•	 Requirements: Autoload and Inputstream

Appendix A

[287]

Autoload
•	 Project page and URL: http://drupal.org/project/autoload
•	 Maintainers: Crell
•	 Usage statistics: http://drupal.org/project/usage/autoload
•	 Drupal modules page: http://drupalmodules.com/module/autoload
•	 Current version: 6.x-1.4

Input Stream
•	 Project page and URL: http://drupal.org/project/inputstream
•	 Maintainers: Hugo Wetterberg
•	 Usage statistics: http://drupal.org/project/usage/inputstream
•	 Drupal modules page: http://drupalmodules.com/module/input-stream
•	 Current version: 6.x-1.0

LinkedIn Integration
•	 Project page and URL: http://drupal.org/project/linkedin
•	 Maintainers: bellesmanieres, greg.harvey
•	 Usage statistics: http://drupal.org/project/usage/linkedin
•	 Drupal modules page: http://drupalmodules.com/search/node/

linkedin

•	 Current development version: 6.x-1.x-dev

To use the LinkedIn Integration module, you will need to sign up for a LinkedIn
Developer network account at: https://www.linkedin.com/secure/developer.

Modules used in Chapter 11
In Chapter 11, Facebook and Drupal, we integrated the popular social networking
application Facebook with our Drupal site using multiple contributed modules. This
allows us to post our Drupal nodes and content out to our Facebook profile page
as status posts and also to integrate our Facebook content with our Drupal site. The
Drupal for Facebook suite of modules enables you as a Drupal developer also to write
applications for integration with Facebook. You can also integrate your Facebook users
and user account credentials with your Drupal account system and user base.

Modules Used in the Book

[288]

Drupal for Facebook
The Drupal for Facebook suite of modules provides you as a Drupal developer with
methods for writing custom applications for integration of Facebook with Drupal.

•	 Project Page and URL: http://drupal.org/project/fb
•	 Maintainers: Dave Cohen
•	 Usage statistics: http://drupal.org/project/usage/fb
•	 Drupal modules page: http://drupalmodules.com/module/drupal-for-

facebook

•	 Current version: 6.x-2.0-rc2

This suite of modules includes: Canvas Pages, Drupal for Facebook, Drupal for
Facebook Devel, User Management, Drupal for Facebook Applications, Extended
Permissions, Friend Features, Register Users, Drupal for Facebook Forms, Streams,
and Views.

Facebook Connect
The Facebook Connect module allows your site's users to log in to your Drupal site
using their Facebook login credentials. This happens by connecting your Drupal site
using this module with the Facebook API.

•	 Project page and URL: http://drupal.org/project/fbconnect
•	 Maintainers: vectoroc, LaNets, budda
•	 Usage statistics: http://drupal.org/project/usage/fbconnect
•	 Drupal modules page: http://drupalmodules.com/module/

facebook-connect

•	 Current version: 6.x-2.0-alpha2

Facebook—Auth
•	 Project page and URL: http://drupal.org/project/facebook_auth
•	 Maintainers: halkeye
•	 Usage statistics: http://drupal.org/project/usage/facebook_auth
•	 Drupal modules page: http://drupalmodules.com/module/

facebook-auth

•	 Current version: 6.x-1.1

Appendix A

[289]

Modules used in Chapter 12
In Chapter 12, Authentication services, we looked in detail at various Drupal web
service authentication processes and protocols. Modules explored in this chapter
included OAuth (previously installed and used in this book) as well as other
authentication modules including the following:

Google Apps authentication
•	 Project page and URL: http://drupal.org/project/googleauth
•	 Maintainers: ssnider
•	 Usage statistics: http://drupal.org/project/usage/googleauth
•	 Drupal modules page: http://drupalmodules.com/module/google-apps-

authentication
•	 Current version: the module is available in production status for Drupal

5.x sites but does have a patch to allow it to work with Drupal 6 at:
http://drupal.org/node/250260.

Summary
In this appendix, we reviewed all of the core and contributed modules we have used
throughout the book that allow for integration and functionality with various web
services and external applications including Flickr, Amazon, Mollom, LinkedIn,
Facebook, and Twitter.

Index
Symbols
--enable-soap 27
<m:GetShippingQuote> 26
<soapenv-Envelope> tags 46
<SOAP-ENV:Envelope> tags 45

A
Access Key ID 73
Active SOAP Library section 29
Add to Cart buttons 87
Akismet web service module 150
Amazon

accessing 72
Amazon Web Services (AWS) account,

signing up for 73
configuration, testing 76-78
module, installing 74
modules, enabling 75

Amazon API 74
Amazon API account

signing up for 72
Amazon associate tools module

URL 72
Amazon content type

using, with views 80
Amazon Example content type

testing 78
Amazon Examples 74
Amazon field 74
Amazon filter

using 83, 84
Amazon Filter 74
Amazon input filter

testing 84

Amazon legacy importer 74
Amazon media 74
Amazon module

about 72, 273, 278
Amazon API 74
Amazon API keys 76
Amazon content type with views,

using 80-82
Amazon Example content type, testing 78
Amazon Examples 74
Amazon field 74
Amazon Filter 74
Amazon filters, using 83, 84
Amazon input filter, testing 84
Amazon legacy importer 74
Amazon media 74
usage statistic graph 273
Amazon search 74
enabling 75
URL, for downloading 72
URL, for installing 72
using 78

Amazon search 74
Amazon Standard Identification Number

(ASIN) 73
Amazon Store module

about 85, 279
configuring 87, 88
installing 85
testing 90
using 85-87

Amazon Web Services (AWS)
about 71
account, signing up for 73

AMFPHP
about 20

[292]

URL 20, 120
AMFPHP module 275
AntiSpam moderation queue 154
AntiSpam module 283

about 150
additional TypePad/AntiSpam module

settings 152, 153
AntiSpam moderation queue 154
configuring 150-152
Defensio 150
downloading 150
enabling 150
features 150
installing 150

Apache Solr search integration
about 17
URL 17

API Shared Secret key details 55
Auto Detect 29
Autoload 287
auto-tagging

about 16
URL 16

Auto Tagging module 275

B
Blog API module

about 166, 167
configuring 167, 168
enabling 167
Google Doc blog post, testing 173, 174
Google Doc blog post, viewing 173, 174
Google Docs account, setting up 168-170
Google Docs, posting to Drupal 170-173
posts, removing 176

BlogAPI module 284

C
Calculate Shipping Rate button 33
Canvas Pages

fb_fbml theme 238
setting up 238
setting up, requirements 238

CAPTCHA module
about 142

configuring 142-144
downloading 142
enabling 143
Image CAPTCHA settings,

tweaking 146, 147
installing 143

CCK 274
CDN2 Video module

about 94, 280
configuring 98-101
features 94
videos, adding 101, 102
videos with CDN2 content type,

uploading 104, 105
CDN2 web service 280

about 95, 280
accessing 95
signing up 96, 97
supported formats 94

Chaos Tools 259
Configure Command area 27
Content Construction Kit. See CCK
content distribution module, services

module 122
Creative Commons licensing specifications

110
CTools (Chaos Tools) module 85
custom services module

arguments, adding 138
creating 132-134
database query, adding 136-138
function for returning Photo nodes data,

adding 135

D
Default Item list 88, 89
Defensio

URL 150
Deployment module 284
deployment module, services module

about 121, 122, 177
configuring 179-185
enabling 179
installing 178
using, with Services 177

Develop & Test Your Application link
URL 36

[293]

Develop & Test Your Application section 36
Drupal

AntiSpam module 150
as, service consumer 14
as, service provider 18
CAPTCHA module 142
CDN2 video module 94
configuring, for working with Facebook

app 243
Facebook 232, 233
Kaltura module 105
Media: Flickr module 111
modules 272
Mollom module 156
reCAPTCHA module 142
services module 119
Twitter module integration 189
videos, adding CDN2 used 101-103
web services, using 14
XML-RPC specification, using 165, 166

Drupal 6
OpenID functionality 252

Drupal, as service consumer
about 14
Apache Solr search integration 17
auto-tagging 16
Facebook 18
Flickr 17
Flickr API 17
Mollom 14, 15

Drupal, as service provider
about 18
AMFPHP 20
RSS 19
services module 18
XML-RPC 20

Drupal integration, with Facebook
about 232, 233
application settings, editing 247, 248
Application Temporarily Unavailable 246
Facebook application, testing 244, 245
Facebook libraries, installing 237
latest version, enabling 234-236
latest version, installing 234-236
requirements 233

Drupal Mollom Statistics
graphical report 162

Drupal nodes
posting, as tweets 200, 201

Drupal ShortURL contributed module
about 213

Drupal site
blocks, activating 201, 202
content, synching 176
Drupal Trigger module, enabling 206
tweets, displaying in blocks 201, 202
tweets View 203
tweets View, configuring 203-206
Twitter actions module, enabling 206
Twitter module page 203

Drupal site registration, with Twitter
about 191
OAuth configuration, setting up 198
Twitter application, setting up 191-195
Twitter module, configuring 196, 197
user account settings, tweaking 198-200

Drupal Trigger module
configuring 207, 208

Drupal-Twitter module integration
about 189, 190

Drupal Web Site Integration 54

E
Embedded Media Field module

configuring 112, 114
downloading 112
installing 111

examples, web services
AMF (Action Message Format) 9
JSON (JavaScript Object Notation) 9
JSON-RPC 9
REST (Representational State Transfer) 9
SOAP (Simple Object Access Protocol) 9
UDDI (Universal Description, Discovery

and Integration) 9
WSDL (Web Services Description Lan-

guage) 9
XMLRPC (XML Remote Procedure Call) 9

[294]

F
Facebook

about 18, 231, 232
Drupal 232, 233
first app, creating 239

Facebook Connect module 288
URL 233

Facebook integration, with Drupal. See
Drupal integration, with Facebook

Features module
URL 74

FedEx.com
URL 32

FedEx Developer Resource Center page 36
FedEx module

SOAP request/call 48
FedEx module configuration

test credentials, entering in 38-42
FedEx Server Role 39
FedEx shipping quote line item 46
FedEx Shipping Quotes module

Calculate Shipping Rate button 33
configuring 35
downloading 34
FedEx module configuration, test creden-

tials entering in 38-42
FedEx Web Service, testing with Drupal site

43-46
installing 33
using 32, 33

FedEx Web Services
starting 32

Find button 63
first Facebook app, creating

About screen 241
Create Application button, clicking 240
Drupal configuration, for working with

Facebook app 243, 244
Facebook Integration tab, navigating 241
homepage 240
need for 239
set up application screen 240, 242
signing in 239
steps 239, 241, 242

Flickr
accessing 50
account 51
about 17
module 52

Flickr API 17
Flickr API Key

signing up 52, 53, 54
Flickr Filter

adding 56
Flickr group photos 62-65
Flickr identifier 69
Flickr linker box 56
Flickr linker filter 56
Flickr module

about 52
configuring 54
downloading, on Drupal site 52
Flickr API Key, signing up for 52-54
Flickr Filter, adding 56
using 111
installing, on Drupal site 52
new page, creating in Drupal 57
permissions, setting 56
testing 57

Flickr module blocks
about 62
Flickr group photos 62-65
Flickr random photo from photoset 66, 67
Flickr random photos block 67, 68
Flickr recent photos 68, 70
Flickr recent photos and recent photosets

68
Flickr user page photosets 68, 70
Flickr user page random photos 68, 70

flickr module permissions 56
flickr-photoset code 57
Flickr photo sharing web application

URL 49
Flickr random photo from photoset 66, 67
Flickr random photos block 67, 68
Flickr recent photos 68, 70
Flickr recent photos and recent photosets 68
FLICKR SETTINGS field 68
Flickr user page photosets 68, 70
Flickr user page random photos 68, 70

[295]

G
Google Doc

posting, to Drupal 170-173
testing 173, 174
viewing 173, 174

Google Documents account
setting up, in Blog API module 168-170

graphical report, Drupal Mollom Statistics
162, 163

Group link 50

H
HTTP Client module 259

I
idGettr 63

URL 278
Image CAPTCHA

enabling 143
Input format table 56

J
JSONRPC server

URL 120
JSON server

URL 120

K
Kaltura

benefits 109
URL 106

Kaltura Drupal manual 106
Kaltura module 281

about 105
features 106
using 105

Kaltura service
accessing 106-108

Kaltura video content
importing 109-111
uploading 109-111

L
LinkedIn 215
LinkedIn Integration module

about 217
content, promoting to LinkedIn 220, 221
downloading 217
Drupal content, posting to LinkedIn 226,

227
installing 217
LinkedIn profile data, posting to Drupal

222-226
permissions, settings 221
status, updating on LinkedIn 220, 221
usage statistics, checking 228
using 218, 219

M
Manage Your Account link 75
Media: Flickr module

configuring 115-117
downloading 111
installing 115

modules
Amazon API key 278
Amazon module 278
Amazon Store 279
AMFPHP 275
AntiSpam 283
Autoload 287
Auto Tagging 275
BlogAPI module 284
CAPTCHA 283
CCK 274
CDN2 Video module 280
CDN2 web service 280
Deployment 284
Drupal for Facebook suite 288
Embedded Media Field 282
Facebook Connect 288
features 279
FedEx Shipping Quotes, for Ubercart 276
FedEx Web Services 276
Flickr 281
Flickr account 277
Flickr API key 277
Flickr module 278

[296]

Google 284
Input Stream 287
Kaltura module 281
Kaltura web service 281
Mollom 274
OAuth module 286
reCAPTCHA 283
Services module 282
shorten URLs 286
Short URL 286
SOAP Client 276
Token 277
Tweet 285
Twitter 285
Ubercart 277

Mollom
about 14
URL 14

mollom.checkCaptcha 15
mollom.checkContent 15
mollom.getAudioCaptcha 15
mollom.getImageCaptcha 15
mollom.getServerList 15
mollom.getStatistics 15
Mollom module

about 156
downloading 156
features 156
Mollom web service, configuring 156-158

mollom.sendFeedback 15
Mollom Test module 156
mollom.verifyKey 15
Mollom web service

application service reports 161
configuring 15-158
content type forms, selecting 158, 159
graph statistic report 160
statistics page 162

N
node_load function 136
NuSOAP 25

O
OAuth

about 216
URL 216

OAuth Connector
about 259
using 259, 260

OAuth module
about 217, 286
downloading 217
enabling 190
installing 217

Obtain Developer Test Key button 37
OpenID 251
OpenID functionality 252
OpenID module

configuring 252, 253
enabling 252, 253

OpenID server/provider
setting up 253-258

P
Panels module

testing 85
photo_service_all function 136
photo_service function 138
PHP

SOAP, enabling 27, 28
pluggable server modules

AMFPHP 120
JSONRPC server 120
JSON server 120
REST server 120
SOAP server 120

Polyhedra group
URL 62

posts
removing, via Google Docs 176

Product Advertising API account
signing up for 72

Product Details section 73
provider connection, for Twitter

configuring 261-264

[297]

R
README file 34
reCAPTCHA Mailhide

enabling 143
reCAPTCHA module

about 142
configuring 142-144
downloading 142
enabling 143-150

registration, FedEx Test System Access 37
Remote Procedure Calling (RPC) 8
REST API protocol 188
REST protocol 10
REST server

URL 120
Review Order 44
RPC (Remote Procedure Call) 24
RSS 19

S
Security Credentials section 73
services module

about 18, 119, 120
benefits 120, 121
content distribution module 122
creating 131, 132
custom services module, creating 132-134
deployment module 121, 122
enabling 123-126
features 120, 121
installing 122
issues 120
service callback, testing 126-131
URL 19

Shipping Quote settings 42
Shorten URLs module 208
Short URL module 208
short URLs

configuring 209
Show photos from this group id field 62
Sign-in/login credentials 73
Sign Up Now button 72
Simple Object Access Protocol. See SOAP
Site Building | Blocks configuration

page 62

Six Apart
URL 252

SOAP
about 23, 24
enabling, in PHP 27
SOAP Client module, using 28

SOAP Client link 29
SOAP Client module

about 32
configuring 29
downloading 28
installing 28
Target Namespace field 31
Test/Demo configuration button 30
using 28

SOAP Client, modules 276
SOAP message 25, 26
SOAP server

URL 120
SOAP server endpoint URL 31
SOAP Wikipedia article

URL 25
standards compliance 11, 12
Store Administration | Configuration |

Store Settings page
URL 38

Streaming API protocol 188
Submit button 54
SubscriptionID=&tag URL format 78

T
Terminal client 27
Test/Demo configuration button 30
The App Garden page 52
Thickbox module 85
tinyurl format 208
Token module 277
Tweet module 285

about 208
configuring 210-214
short URLs, configuring 209

tweets
displaying, in blocks 201, 202

Twitter
about 187
Drupal nodes, posting as tweets 200, 201

[298]

Drupal site, registering with 191
integrating, with Drupal 188
support documentation section 188

Twitter actions module
configuring 206, 207

Twitter API
about 188

Twitter developer application account
setting up 265-269

Twitter module
about 189, 285
integrating, with Drupal 189, 190
URL 189

TypePad AntiSpam
URL 150

TypePad AntiSpam API key field 151
TypePad AntiSpam web service 151
TypePad CMS 151
TypePad website 151

U
Ubercart module 24, 277
uc_fedex module 38
uc_fedex.module file 48
uc_fedex module's configuration page 35
Update interval 55

V
videos

adding, CDN2 used 101-105
Views module 279

W
Web Service Description Language,. See

WSDL
web services

about 8
benefits 12
examples 9
in action 10
Remote Procedure Calling (RPC), using 8
REST protocol 10
using, in Drupal 12, 13
XML 9

WorkHabit
URL 94

World Wide Web Consortium (W3C) 24
WSDL

about 23
URL 23

X
X.509 Certificates 73
XML 9, 25
XML-RPC

about 20, 21
URL 20

XML-RPC message 25
XML-RPC specification 165, 166

Thank you for buying
Drupal Web Services

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Drupal E-commerce with
Ubercart 2.x
ISBN: 978-1-847199-20-1 Paperback: 364 pages

Build, administer, and customize an online store
using Drupal with Ubercart

1.	 Create a powerful e-shop using the
award-winning CMS Drupal and the
robust e-commerce module Ubercart

2.	 Create and manage the product catalog and
insert products in manual or batch mode

3.	 Apply SEO (search engine optimization)
to your e-shop and adopt turn-key internet
marketing techniques

Drupal 6 Social Networking
ISBN: 978-1-847196-10-1 Paperback: 312 pages

Build a social or community web site, with friends
lists, groups, custom user profiles, and much more

1.	 Step-by-step instructions for putting together a
social networking site with Drupal 6

2.	 Customize your Drupal installation with
modules and themes to match the needs of
almost any social networking site

3.	 Allow users to collaborate and interact with
each other on your site

Please check www.PacktPub.com for information on our titles

Drupal 6 Performance Tips
ISBN: 978-1-847195-84-5 Paperback: 240 pages

Learn how to maximize and optimize your Drupal
framework using Drupal 6 best practice performance
solutions and tools

1.	 Monitor the performance of your Drupal
website and improve it

2.	 Configure a Drupal multisite environment for
best performance

3.	 Lot of examples with clear explanations

4.	 Choose and use the best Drupal modules for
improving your site's performance

Drupal 6 Site Builder Solutions
ISBN: 978-1-847196-40-8 Paperback: 352 pages

Build powerful website features for your business
and connect to your customers through blogs,
product catalogs, newsletters, and maps

1.	 Implement the essential features of a business
or non-profit website using Drupal

2.	 Integrate with other "web 2.0" sites such as
Google Maps, Digg, Flickr, and YouTube to
drive traffic, build a community, and increase
your website's effectiveness

3.	 No website development knowledge required

Please check www.PacktPub.com for information on our titles

Drupal 6 JavaScript and jQuery
ISBN: 978-1-847196-16-3 Paperback: 340 pages

Putting jQuery, AJAX, and JavaScript effects into
your Drupal 6 modules and themes

1.	 Learn about JavaScript support in Drupal 6

2.	 Packed with example code ready for you to use

3.	 Harness the popular jQuery library to enhance
your Drupal sites

4.	 Make the most of Drupal's built-in JavaScript
libraries

Drupal 6 Search Engine
Optimization
ISBN: 978-1-847198-22-8 Paperback: 280 pages

Rank high in search engines with professional SEO
tips, modules, and best practices for Drupal web sites

1.	 Concise, actionable steps for increasing traffic
to your Drupal site

2.	 Learn which modules to install and how to
configure them for maximum SEO results

3.	 Create search engine friendly and optimized
title tags, paths, sitemaps, headings, navigation,
and more

Please check www.PacktPub.com for information on our titles

Drupal 6 Panels Cookbook
ISBN: 978-1-849511-18-6 Paperback: 220 pages

Over 40 recipes to harness the power of Panels for
building attractive Drupal websites

1.	 Build complex site layouts quickly with panels

2.	 Combine Panels with other Drupal modules to
create dynamic social media websites

3.	 Get solutions to the most common 'Panels'
problems

4.	 A practical approach packed with real-world
examples to enrich understanding

Drupal 6 Themes
ISBN: 978-1-847195-66-1 Paperback: 312 pages

Create new themes for your Drupal 6 site with clean
layout and powerful CSS styling

1.	 Learn to create new Drupal 6 themes

2.	 No experience of Drupal theming required

3.	 Techniques and tools for creating and
modifying themes

4.	 A complete guide to the system's themable
element

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the author
	Acknowledgements
	About the reviewers
	Table of Contents
	Preface
	Chapter 1: About Drupal Web Services
	What are web services?
	XML and web services
	The REST protocol

	Standards compliance
	Why are web services useful?
	Why use web services in Drupal?
	How Drupal uses web services
	Drupal as a service consumer
	Mollom
	Auto tagging
	Flickr and Flickr API
	Apache Solr search integration
	Facebook

	Drupal as a service provider
	Services module
	RSS
	AMFPHP
	XML-RPC

	Summary

	Chapter 2
: Consuming Web Services in Drupal
	Using SOAP
	The SOAP message
	Enabling SOAP in PHP

	Using the SOAP Client module
	Install and configure the SOAP Client module
	Getting started with FedEx Web Services

	Using FedEx Shipping Quotes module
	Install and configure the FedEx Shipping Quotes for Ubercart module
	Confirm your Ubercart store settings
	Enter your test credentials in the FedEx module configuration
	Testing the FedEx Web Service with our Drupal site

	SOAP request/call in the FedEx module file

	Summary

	Chapter 3
: Drupal and Flickr
	Accessing Flickr
	Your Flickr account
	Flickr module
	Sign up for a Flickr API key
	Configuring the Flickr module
	Adding the Flickr filter
	Setting Flickr module permissions

	Testing the Flickr module
	Flickr module blocks
	Flickr random photo from photoset
	Flickr random photos block
	Flickr recent photos and recent photosets
	Flickr user page photosets, user page random photos, and recent photos

	Summary

	Chapter 4
: Drupal and Amazon
	Accessing Amazon
	Sign up for Amazon Web Services account
	Installation and initial configuration of the Amazon module
	Testing configuration

	Using the Amazon module
	Testing the Amazon Example content type
	Using the Amazon content type with Views
	Using the Amazon filters
	Testing the Amazon input filter

	Amazon Store module
	Using the Amazon Store module
	Configuring your Amazon Store
	Testing your Amazon Store

	Summary

	Chapter 5
: Drupal and Multimedia Web Services
	CDN2 video
	Accessing the CDN2 web service
	Sign up for the CDN2 web service
	Configuring the CDN2 module

	Adding videos using CDN2
	Uploading videos with CDN2 content type

	Using the Kaltura module and web service
	Accessing the Kaltura service
	Importing and uploading Kaltura video content

	Using the Media: Flickr module
	Summary

	Chapter 6
: Drupal Web Services the Easy Way: The Services Module
	The Services module—what is it?
	The Services module—why use it and what does it buy you?
	Deployment module
	Content distribution

	Installing and enabling the Services module
	Testing a simple service callback

	Creating a Services module and running a custom callback
	Create custom Services module
	Adding to our function to allow for returning Photo nodes data
	Adding a database query to our custom
Services module
	Adding arguments

	Summary

	Chapter 7
: Drupal, Spam, and Web Services
	CAPTCHA and reCAPTCHA
	Installing and configuring CAPTCHA
and reCAPTCHA
	Image CAPTCHA

	reCAPTCHA

	AntiSpam
	Installing and configuring AntiSpam
	Additional TypePad/AntiSpam module settings
	AntiSpam moderation queue

	Mollom module
	Configuring the Mollom web service
	Choosing the content that Mollom will protect
	Mollom reports and statistics

	Summary

	Chapter 8
: Using XML-RPC
	XML-RPC and Drupal
	Drupal Blog API and Google Docs
	Enabling and configuring Blog API
	Setting up a Google Documents account
	Posting the Google Document to Drupal
	Testing and viewing the document on your
Drupal site
	Removing posts

	Syncing content between Drupal sites
	Using the Deployment module with Services
	The Deployment module

	Installing, enabling, and configuring Deployment

	Summary

	Chapter 9
: Twitter and Drupal
	Twitter and Drupal
	The Twitter API
	The Twitter module
	Integrating the Twitter module with Drupal
	Registering your website with Twitter
	Setting up a Twitter application
	Configuring the Twitter module once you have your
app setup
	Setting up OAuth configuration
	Setting up your user account to integrate with Twitter

	Posting your Drupal nodes as tweets to your Twitter account
	Showing tweets in blocks on your Drupal site
	Twitter module page and block Views
	Actions and triggers with the Twitter module

	Tweet module
	Configuring short URLs
	Configuring the Tweet module

	Summary

	Chapter 10
: LinkedIn and Drupal
	LinkedIn and Drupal
	Installing the LinkedIn Integration and OAuth modules
	Using the LinkedIn Integration module
	Status update and promoting content to LinkedIn
	Setting permissions
	Posting LinkedIn profile data to Drupal
	Posting Drupal content to LinkedIn
	Checking usage statistics for the LinkedIn module

	Summary

	Chapter 11:
Facebook and Drupal
	What is Facebook?
	Drupal and Facebook
	Requirements for running Drupal for Facebook
	Installing and enabling Drupal for Facebook
	Installing the Facebook libraries

	Setting up Canvas Pages
	Creating your first Facebook app
	Configuring Drupal to work with your Facebook app
	Testing the Facebook application
	Editing your Facebook application settings

	Summary

	Chapter 12:
Authentication Services
	OpenID and Drupal
	Enabling and configuring the OpenID module
	Setting up the OpenID server/provider

	OAuth and OAuth Connector
	Using OAuth Connector
	Configuring a provider connection for Twitter
	Setting up the Twitter developer application account

	Summary

	Appendix:
Modules Used in the Book
	Modules used in Chapter 1
	CCK
	Mollom
	Auto Tagging
	AMFPHP

	Modules used in Chapter 2
	SOAP Client
	FedEx web services
	FedEx shipping quotes for Ubercart
	Ubercart
	Token

	Modules used in Chapter 3
	Flickr account and API key
	Flickr module
	idGettr

	Modules used in Chapter 4
	Amazon web service and API key
	Amazon module
	Features
	Views
	Amazon store module

	Modules used in Chapter 5
	CDN2 web service
	CDN2 video module
	Kaltura web service
	Kaltura module
	Media: Flickr
	Embedded media field

	Modules used in Chapter 6
	Services module

	Modules used in Chapter 7
	CAPTCHA
	reCAPTCHA
	AntiSpam

	Modules used in Chapter 8
	BlogAPI module
	Google Documents
	Deployment module

	Modules used in Chapter 9
	Twitter module
	Tweet
	Shorten URLs
	Short URL

	Modules used in Chapter 10
	OAuth module
	Autoload
	Input Stream
	LinkedIn Integration

	Modules used in Chapter 11
	Drupal for Facebook
	Facebook Connect
	Facebook - Auth

	Modules used in Chapter 12
	Google Apps authentication

	Summary

	Index

