

Drupal 7 Media

Integrate, implement, and extend rich media
resources such as images, videos, and audio
on your Drupal 7 website

Liran Tal

BIRMINGHAM - MUMBAI

Drupal 7 Media

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1180713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-608-2

www.packtpub.com

Cover Image by Erol Staveley (erols@packtpub.com)

Credits

Author
Liran Tal

Reviewers
Srikanth AD

David Madar

Grigory Naumovets

Michael J. Ross

J.G Sivaji

Janez Urevc

Acquisition Editor
Joanne Fitzpatrick

Lead Technical Editor
Sweny Sukumaran

Technical Editors
Joyslita D'Souza

Mausam Kothari

Sampreshita Maheshwari

Menza Mathew

Zafeer Rais

Project Coordinator
Arshad Sopariwala

Proofreader
Amy Guest

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Liran Tal is a leading software developer, an expert Linux engineer, and an avid
supporter of the open source movement. In 2007, he redefined the network RADIUS
management by establishing daloRADIUS, a world-recognized and industry-leading
open source project.

Liran currently works at HP Software, leading the development team on a
Drupal-based collaboration platform in HP's Live Network R&D group.

At HPLN, Liran plays a key role in system architecture design, shaping the
technology strategy from planning and development to deployment and
maintenance in HP's IaaS cloud. Acting as the technological focal point, he loves
mentoring his team mates, providing a drive for better code methodology and
seekout innovative solutions to support business strategies.

He graduated cum laude in his Bachelor of Business and Information Systems
Analysis studies and enjoys spending time with his beloved wife and soul mate Tal,
playing his guitar, hacking all things Linux, and continuously experimenting and
contributing to open source projects.

About the Reviewers

Srikanth AD is a web developer who is passionate about developing and
optimizing websites for better user experience and search engine visibility. He is
particularly interested in adapting content management systems for developing
structured and scalable websites.

Check out his portfolio at http://srikanth.me. Or feel free to get in touch with him
on Twitter @Srikanth_AD.

David Madar is addicted to technology, which has also caught up his family. He has
came from the mainframe systems, working many years in banking organizations.

He has over ten years of work experience in developing web applications and
websites, as freelancer and as an employee in the leading companies.

He is currently employed at HP Software.

Grigory Naumovets lives in Kiev, Ukraine. His background includes a Ph.D.
in Physics and Mathematics. Since 1996, he has been working as an IT consultant,
an IT specialist, and an ICT coordinator for several international projects, and then
also as a freelance web developer and webmaster. After trying several web content
management systems, he started using Drupal CMS in 2007. Since then, he has
developed, maintained, and supported a number of monolingual and multilingual
websites powered by Drupal 5, 6, and 7. He takes an active part in the community
of Ukrainian Drupalers.

Michael J. Ross creates custom websites for businesses and nonprofits, using
Drupal and other leading web technologies. In addition, he writes technical articles
and book reviews, of which more than 530 have been published in print and online.
For this particular book, he did not perform copyediting, but instead provided
input on its usage of Drupal. This is the fourth Drupal book for which he has done
technical reviewing. Anyone in need of a new website can contact Michael at
www.ross.ws.

I would like to thank my mom and dad, who have always been
supportive of my personal and professional efforts.

J.G Sivaji graduated from college in the year 2009. He holds a bachelor's degree
in Computer Science Engineering from Jaya Engineering College (affiliated to Anna
University). He gave a start to his technical evangelism as a Google Summer of Code
student in 2009. He worked on the Drupal quiz module to improve its features and
fixed several bugs along with other developers. Since then he has been an active
member, contributor to the community in terms of writing patches to core and
maintaining contributed modules. Currently, he is playing the role of Technical
Director at KnackForge.

A technical enthusiast and one among the group of directors and founders of an
exciting Drupal startup, KnackForge Soft Solutions Pvt., Ltd., Sivaji's prime role is
not only confined to be the Lead of the Drupal team, Chennai branch, but also to
hold the accountability for customer relationship and internal quality management.

Sivaji has contributed to a couple of books published by Packt Publishing as
a technical reviewer. The list includes Drupal 7 Module Development, Drupal 7
Themes book, and this book, Drupal 7 Media.

I would like to thank my colleagues at KnackForge for motivating,
realizing, and helping me to bring out the best in me.

Janez Urevc is a Drupal engineer from Slovenia, EU. He has dedicated his life
to free software and open source since high school. He graduated in the field of
software development in the faculty of Computer and Information Sciences at
University of Ljubljana. The topic of his bachelor thesis was implementation of
Scrum methodology in a web development department of a bigger media company.
He has been an active contributor to Drupal for a few years. He contributed to
various contrib modules and Drupal 8 core (full list of his contributions can be
found on http://drupal.org/user/744628).

Besides Drupal, he's passionate about almost everything connected to web, free
software, Linux, and software development. He participated in Google Summer
of code, 2011 and was a mentor in 2012. He is currently working at Examiner.
com, probably the biggest Drupal site on the entire Web. In the past he worked for
Delo, Slovenia's biggest daily newspaper, where he led development of a few of the
biggest Drupal sites in the region.

He maintains a blog at http://janezurevc.name, where he writes about his work
and life.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

To my father, Eli Tal, who set me on this path.

"Thank you for the inspiration, thank you for the smiles

All the unconditional love that carried me for miles

It carried me for miles

But most of all thank you for my life"

Table of Contents
Preface 1
Chapter 1: Drupal's Building Blocks 7

Nodes and entities 8
Nodes 9
Entities 10
Creating a content type 12

Fields 18
Adding fields to Memo 19
Configuring the Memo display 24

Summary 26
Chapter 2: Views, Blocks, and Themes 27

Views 27
Installing the Views module 28
Adding a new Views 29

Blocks and themes 36
Blocks 37

Understanding block regions 38
Assigning blocks to regions 40
Creating blocks 42

Themes 44
Installing a new theme 45
Template engines 47

Summary 48
Chapter 3: Working with Images 49

The Media module 50
Adding a media asset field 51
The media library 53
Remote media assets 57

Table of Contents

[ii]

WYSIWYG 59
Text formats 62
Adding a rich-text editor 65
Embedding images in content 70

Image galleries 72
Enabling an image gallery feature 72
Creating an image gallery 74
Galleries as blocks 80

Summary 81
Chapter 4: HTML5 in Drupal 83

HTML5 form elements 86
HTML5 media 87
HTML5 canvas 90
HTML5 resources 92
HTML5 in Drupal 93
A canvas playground 97

Creating a content type for the canvas field 97
Creating a new DigiDoc 100

Summary 104
Chapter 5: Video Capabilities 105

Adding videos hosted on third-party websites 106
Creating our video content type 106
Adding a new video using the YouTube browser 109
Adding a new video using URL 113
Embedding videos in WYSIWYG editor 114

Customizing videos 116
Customizing video fields 116
Customizing video display modes 119
Customizing YouTube player 121

Adding videos hosted locally 124
Installing an HTML5 media player 125
Uploading videos and playing them 126

Galleries and playlists 130
Video galleries 131
Video playlists 132

Installing the MediaFront module 132
Configuring the MediaFront module 133
Creating a content type for the MediaFront videos 135
Creating a Views-based playlist 138

Summary 140

Table of Contents

[iii]

Chapter 6: Audio Capabilities 141
Supported audio formats 142
Enabling audio play 142

Adding a new content type 143
Customizing audio nodes 145

Aiming for multi-channel playback 145
Creating a drum machine 152

Leveraging audio metadata 158
ID3 158
Installing the ID3 module and library 158
Preparing custom node template 160
Extracting metadata 161
Storing metadata in fields 165

Summary 170
Chapter 7: Leveraging Other HTML5 Features 171

RDFa and Microdata 171
Introducing RDFa 173

Enabling RDF support in Drupal 175
Introducing Microdata 177

Enabling Microdata support in Drupal 178
Testing semantic mark-up 180

Visualizing data with graphical charts 182
Enabling charts in Drupal 184

Visualization API using Views 184
Visualization API developer interface 187

Responsive web design 192
Responsive web design with AdaptiveTheme 195

Summary 198
Chapter 8: Enhancing Media Content 199

Understanding media configuration 199
The filesystem 200
Image toolkit 200
Image styles 201

Colorbox 204
Colorbox for media images 204
Colorbox for WYSIWYG integration 208

Installing colorbox 209
Colorbox for views 210

Multiple file uploads 211
Multiple file uploads for site administrators 211
Multiple file uploads for user's Image fields 212

Table of Contents

[iv]

Extending image style effects 214
Adding your own effects with custom modules 216

Enabling rating of content 221
Adding a rating field for content types 223

Summary 225
Chapter 9: Drupal 8 and Beyond 227

Introduction to Drupal 8 227
Drupal 8 architecture changes 228
Integration with Symfony2 228
Release timeline and when to expect Drupal 8 229

Drupal 8 tour guide 231
Summary 234

Index 235

Preface
Integrating images, video, and audio content on a Drupal site requires knowledge
of appropriate community modules, and an understanding of how to configure and
connect them properly. With the power of up-to-date technologies such as HTML5,
responsive web design, and the best modules available in Drupal's ecosystem,
we can create the best Drupal 7 media website.

Drupal 7 Media is a practical, hands-on guide that will introduce you to the basic
structure of a Drupal site and guide you through the integration of images, videos,
and audio content. Learn to leverage the most suitable community modules and
up-to-date technology such as HTML5 to offer a great user experience through
rich media content.

What this book covers
Chapter 1, Drupal's Building Blocks, serves as an introduction to the building blocks
of Drupal's node structure. Starting with a bit of Drupal's history, we move on
to Drupal's very basic and prominent node structure. You will be introduced to
Drupal's administrator user interface, which will help you create your own Memo
content type.

Chapter 2, Views, Blocks, and Themes, shows how to display content with the use of the
Views module user interface, which enables us to create content listing quite easily.
We then move on to the presentation layer of Drupal and learn how to create and
position content elements (blocks) in the various positions (regions).

Chapter 3, Working with Images, dives into deep water and helps in creating our very
own content type for a food recipe website. We learn about the prominent Media
module and its extensive support for media resources such as providing a media
library, and key integration with other modules such as the Media Gallery. We also
discover the concept of text format profiles and the use of WYSIWYG editors.

Preface

[2]

Chapter 4, HTML5 in Drupal, covers the HTML5 spec, why the Web needs it, and how
to make use of the spec to create cross-browser-compliant HTML code in Drupal. We
also learn about the canvas feature of HTML5, and create a signature management
web application.

Chapter 5, Video Capabilities, explores the myriad of options available to add videos
media to our website. We will learn about integrating with third-party video hosting
websites such as YouTube, and create a YouTube-like video sharing platform.

Chapter 6, Audio Capabilities, covers different ways of working with audio content.
You will learn how to customize an audio presentation, utilize the abundance
of metadata that is potentially stored in audio media, and tie it up with Drupal's
content structure.

Chapter 7, Leveraging Other HTML5 Features, starts off by showing you how to enable
RDF support in our Drupal's website. We also learn how to implement a graphical
chart with the help of the Views user interface and custom code. We also touch upon
advanced theming and responsive web design.

Chapter 8, Enhancing Media Content, reviews Drupal's media configuration and tools,
which aid a site builder in enhancing media-related content. You will learn how to
apply image manipulations and how to build your own effects. You will explore
the use of Colorbox and Plupload modules. Finally, you will learn about the rating
module that adds voting capabilities.

Chapter 9, Drupal 8 and Beyond, reviews the upcoming Drupal 8 release and the changes
it is introducing. Many of these changes are architecture and software design related
changes, such as configuration management, core framework refactoring, better layout,
and general mobile-ready with built-in support for HTML5.

What you need for this book
Drupal 7 requires PHP 5.2.5 or higher to run the Drupal code. You will also need one
of the following databases to run Drupal 7:

• MySQL version 5.0.15 or 5.1.30 or higher
• PostgreSQL 8.3 or later
• SQLite 3.4.2 or later

You can use Apache HTTP, Nginx, or Microsoft IIS for the web server.

We recommend you to use a GNU/Linux, Apache, MySQL, and PHP setup,
also known as LAMP, for best performance and community support.

Preface

[3]

Who this book is for
If you are a Drupal site builder and you wish to spice up your web applications
with rich media content, then this book is for you. A basic understanding of HTML,
JavaScript, and basic PHP module development in Drupal would be helpful, but is
not necessary.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To make sure we understand this style when we use it in other places we will
name it grayscale_thumbnail."

A block of code is set as follows:

name = "Image Effect - Sepia"
description = "Adds a Sepia image effect to image styles"
core = 7.x
files[] = image_effect_sepia.module

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<h1
 property="dc:title" class="node-title" rel="nofollow">
 Live school show
</h1>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "For the
display format, aside from the interactive icons option, the Rating and Percentage
options are pretty straightforward."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Drupal's Building Blocks
Drupal is a free (licensed under the General Public License (GNU), Version 2 or
later), community-powered, open-source Content Management System (CMS),
which allows creating websites of many types. It's a great tool for both, users with
no technical background, as well as top-notch developers, to use it for building
complex websites and web applications.

Some examples for popular companies and organizations that decided
to leverage Drupal as their content management system are FedEx, Symantec,
MTV, and Duke University. The list is long, and you can find out more at
http://drupal.org/case-studies or http://www.drupalshowcase.com.

Drupal's Building Blocks

[8]

In this chapter, we will cover:

• Nodes and Entities
• Creating custom content types
• Managing fields for content types

Drupal began back in 1999 with Dries Buytaert starting to develop his idea for a
forum platform, and has greatly evolved into a leading and award-winning software.
Since then, it has seen significant growth. Today, it powers millions of websites
and has positioned itself as a candidate at the top of the list for websites and web
platform frameworks. Drupal has a company behind it, Acquia, which drives for
further cutting-edge development, keeping the pace with the technology trends,
and serves as a commercial resource for those requiring professional services.

With almost every release, Drupal has managed to reinvent itself, for both its
developer community as well as its users. With Drupal 7, it has even more
transformed itself into a Content Management Framework (CMF), by providing
many abstractions to what content is and how it is handled. This road is setting the
path for a large adoption by developers, to create web applications in many verticals,
and has spurred a variety of platform niches from enterprise software, e-learning,
and e-commerce, to social networking and collaboration software, to name a few.

Drupal 7's technology stack requires PHP5 (5.2.5 or higher) for the application
server; MySQL (5.0.15 or 5.1.30 or higher) as the more favorable option for a
database server, and HTML/jQuery for its presentation layer. The choice for this
technology has no doubt helped in making it popular and easily deployable for
hosting companies.

Nodes and entities
Being a CMS, in Drupal, most of your website probably will be structured around
content. Whether it's managing it or displaying it in different layouts, themes, and
views, content will be driving your website. Even more, content may be associated
with the business logic about your website, which then defines a behavior based on
content. Some examples for that may be, to send an email notification to users when
a new content has been created, or to assign a rating system to content, such as five
star rating or kudos, so that users can like it and in turn, this content receives higher
visibility among your users. The possibilities are endless.

Chapter 1

[9]

You have probably understood by now that content is very much a generic
term for anything. It can be an article or blog if you're planning to run an online
news-magazine website, or it may be a message post limited to 140 characters
(if you didn't recognize, that's Twitter basically). Content can even be the posting of
images by users, aligned in vertical columns with an infinite scroll, or the posting
of videos. Throw into that the ability to rate, tag, create a personalized feed, maybe
a customized bookmark/playlist too, then some of that special sauce we call social
networking, by adding friendships and following the activity of other users in the
website, and you've got yourself what we know today as Pinterest and YouTube.

Nodes
It's been a long time now that the term node has been at the very core of Drupal,
so you have probably heard of it by now. As we've seen, content is very abstract
and can take on many forms and shapes. Due to that reason, you'll often hear or
read that "In Drupal, everything is a node" and that's most often the case. Whether
your content is images, blogs, videos, forums, or polls, they all share very common
characteristics and can be abstracted as a node.

These attributes of content such as title, body, created and modified time, whether
the content may be commented on, and so on, are all pretty common properties
across the different content types. And for this reason Drupal considers all these to
be of the same nature, and so, to provide more flexibility without limiting the content
types, it's simply called a node.

Answer2

Answer3

AnswerN

TitleTitle

BodyBody

Answer1Link

Fields-each content type
defines what field are

relevant to that content, how
they are displayed, whether

they are required, their
length and many more
configuration elements.

An “instance” of a node,
these are actual content

types that a website might
define.

Node, Drupal’s basic data
structure unit.

Article Poll

Node

Drupal's Building Blocks

[10]

When examining specific content types in detail, it becomes clear that
having a specific set of attributes such as Title and Body, is not enough.
A Poll type content would require additional fields, such as text fields,
which will represent possible answers. Download type content may
require a file attachment field, in which a user can upload, and then
another user can download. These additional fields have been developed
as part of contributed modules, by the community, which answer this
exact requirement of adding more fields and field types to nodes than
what Drupal provides out of the box. You may have come to known these
modules as Content Construction Kit (CCK) and Chaos Tools and many
other modules which build upon this field's framework and further enrich
content types. We will go into more details soon enough on this.

Out of the box, Drupal 7 ships with two basic content types: Article and Basic page.

The Article content type is used for blogs or news item, and as such it features
properties such as, a comments area enabled, fields such as images and tags,
displaying of the latest added content of this type in the front page. A Basic Page
on the other hand doesn't have the comments area display, nor any special fields. Its
display doesn't contain any information about the author who created the page and
when it was created, but rather just prints the body of the page. It's easier to see the
distinction between the two content types, and designing your content type's fields
and settings is a very important part of building a website with Drupal.

Entities
Nodes are Drupal's term for any-kind-of-content, but Drupal 7 has taken a further
step in abstraction and possibly coined a new phrase "everything is an entity",
when introducing the entity model.

A thought may have triggered in your head when reading about nodes that while
many content types are similar, they are definitely not the same. Some may not even
require what Drupal would consider as a core field such as a title. This would then
result in redundant data and a schema structure that is not very fit for what you had
in mind for your content type to be.

Chapter 1

[11]

To take this further, much inspired from other Object Oriented Design (OOD)
concepts, Drupal also figured that it's basic schema for users and other objects such
as taxonomy, comments, and so on, may be lacking too, meaning that it may be too
strict, and site builders will eventually want to customize and extend those. With this
thinking in mind, it has been made clear that nodes are not the only objects to take
the even more generalized form of entities. This will rather extend to users and more
objects that Drupal has been making extensive use of, for a while now, as its core
building block (taxonomy, users, and comments, to name a few).

AgeAn entity which is made
up fields and it’s

configuration make a
Bundle

Title

Body

Link

Article

Node User

Tags

File

Entity

You may ask yourself what's new about defining entities because if you
required your own unique data structure you could easily design the
schema for it in your module's install file and decide what fields you
need to create the database table that fits your needs. If you choose to go
this road then those table fields are almost entirely disconnected from
Drupal's built-in hooks system, and you are left on your own to tie them
into Drupal's handlers. With Drupal's entity model you get this Drupal-
awareness connectivity for free and many aspects of Drupal can then
interact with your entities.

Drupal's Building Blocks

[12]

Entities allow us to create a common infrastructure across different objects, such
as nodes and users. Then, if nodes are able to define a content type such as an
article and assign fields to it, this goes the same for the users. This generalization of
objects to a common ground provides software developers better maintenance and
interoperability, and in result we, site builders, gain more features and powerful
tools to customize and create the website as we see fit.

Bundle is the name given for the implementation of an entity type. If we implemented
a node entity (meaning, we create a content type) and called it article, assigned some
fields to it too, we inherently created a bundle called article. Bundles allow for the
grouping of different entity types with their respective fields.

Nodes are not gone nor have they been replaced. For most content types, where
it makes sense to treat something as a content rather than an entity, should not be
abused and one can definitely build on the node's generic structure design with the
envisioned content type and its related fields.

Creating entities is a task which requires defining many properties of it, whether it's
fieldable, its basic fields structure, and so on. Sometimes, one would need to create
an entity type which Drupal doesn't provide out of the box, like nodes or users, this
process is much regarded as "further customization achievable by program code",
hence requiring more in-depth knowledge and technical skills, which we will not
pursue in the scope of this book.

Creating a content type
So far we've introduced the concept behind the entity model, and in specific, the
nodes and their content types. Let's proceed by creating a new content type that
we'll name Memo for keeping personal notes.

What's so special about creating digital "stick it" notes? Even the simplest
ideas can grow into great applications that can affect our everyday
life. Evernote (http://www.evernote.com), which dubbed itself as
"remember everything from saving thoughts and ideas, to preserving
experiences" is the company behind the popular mobile and web app, for
creating and sharing (rich media) notes with your peers, and is valued at
an amazing $1B price tag.

Chapter 1

[13]

We assume a fresh install of Drupal 7 (7.19 is the version available at the time of
writing this book) so the first page should probably look as follows:

When logged in as an administrator user you will see the
administration navigation bar at the top in black color. We will often
refer to this as the administrative navigation bar, mostly throughout
this chapter, since we are just starting out. When otherwise navigation
is being described, such as Structure | Content types, it is always
referring to the menu items from that administrative navigation bar at
the top. For your convenience, we will also often note in parenthesis
the direct URL to access the relevant page.

To create the content type we can either make use of the shortcuts present in the page
content area (this is the center of the page) or the Navigation block (in the left side of
the page). If you are unable to locate neither of these we can use the administrative
navigation bar at the top and navigate to Structure | Content types | +Add content
type (/admin/structure/types/add).

Drupal's Building Blocks

[14]

In the new content type page, we'll provide the content type name, Memo, and an
optional description.

It's a better naming convention to use the singular word for a content
type. As you can see, Drupal has already modified our title for its
internal use, noted by the Machine name field.

More settings for this content type are available but we'll only customize the
Title field name and call it Memo, leave the rest of the default options as they
are, which basically are the same as Drupal's built-in Article content type which
we described earlier.

Last, we will click on Save content type which saves the settings and submits
the form.

Chapter 1

[15]

At this point, we have our newly created content type Memo and we can test how it
works. We want to add content to the newly created Memo content type, so we will
either use the shortcut for Add content, or if they are not present we can use the top
administrative bar and navigate to Content | Add content (/node/add).

Drupal's Building Blocks

[16]

In addition to Drupal's default content types we see our new Memo content type.

After choosing Memo, we will see the Add content form for creating our specific
content type, where we will provide the memo title and a more descriptive
body message.

Once finished with the memo we'll hit the Save button to submit and create our
new memo.

Chapter 1

[17]

Our memo has been submitted and for logged-in users, it looks as follows:

When looking at the preceding submitted memo, you may realize that there is
room for improvements, such as, adding some images would have been more
appealing to the eye. Also, it may be nice to have dedicated links field so that we
can display them the way that we choose to, like a resources listing of them, at the
bottom of the memo.

This brings us to our next topic in this chapter: Fields.

Drupal's Building Blocks

[18]

Fields
With fields, we can customize our content types to our pleasing, by adding select box
dropdowns, file attachments, images, radio buttons, and more. Every content type
may have different fields, and once a field has been created it can be used for other
content types which greatly ease management of fields, for both the user as well as
Drupal's inner working.

We can attach fields to any entity, whether it's a node content type like
an Article, or the user entity. As we mentioned before, the grouping of an
entity type and its fields create a bundle.

Community powered module, CCK, has really helped revolutionize content types by
providing flexible field types, field widgets, validation, and more, in the hands of site
builders. This great effort did not go unnoticed from Drupal's core developers and it
has been introduced in Drupal 7 as part of its core and the fieldable entity concept.

If you are coming with prior Drupal experience, specifically versions prior to
Drupal 7, then you are most probably aware that the need for content types to
support additional custom fields is essential. It makes a perfect example for the open
source development model of scratching the itch where the contributed set of CCK
modules, which introduced the ability to create fields and attach them to Drupal's
content types, had found itself being a core component in many Drupal installations,
and has long been a great tool in a site builder's arsenal.

Scratching the itch is the #1 guideline of The Cathedral and the Bazaar
(http://en.wikipedia.org/wiki/The_Cathedral_and_the_
Bazaar) essay, in regards to the development models and methods in
open source. This guideline relates to a scenario, where due to a rising
need for something that is missing in a piece of software (like a feature,
or maybe a bug in the system) a solution is produced in many forms by
the community. Whether a developer decides to start his own project
to address that requirement, or perhaps contributes a patch to add this
requirement, this new functionality was introduced to an "itch" that the
said developer had and wanted to fix it.

Chapter 1

[19]

Adding fields to Memo
Let's add some fields to our memo content type.

Using the top administrative bar, navigate to Structure | Content types
(/admin/structure/types).

Out of the possible operations we are interested in, is the manage fields option,
so we'll click on that for the Memo content type.

Drupal's Building Blocks

[20]

In this page we are now made aware, more than ever, of the fieldability of Drupal's
node's content types. The Memo content type that we created has a title and body
field (which you can tell by the MACHINE NAME column) and it doesn't come by
any surprise as we've already set those when creating it. Yet, notice that the title field
is an inherent field that is provided by the node entity, and we can't remove it, unlike
the body field which we can customize to our liking, or completely remove it.

Drupal as a CMS truly has one of the most flexible architecture design
and allows developers who are proficient with its internals to really
make (almost) anything happen, including making that title field "go
away" if required.

Other than the fields already present, we can add fields either by defining a new
field type and selecting its widget, or choosing a field type that was already created
before, in this case it's Drupal's field_image and field_tags.

We'll continue with adding two more fields for the Memo content type: Images and
Tags, and we can utilize the already existing options and set their label, starting with
the image field:

After clicking on the Save button, we are presented with the field_image type's
settings which we can customize to our needs, some of which are:

• Allowed file extensions: By default the permitted file types are .png,
.gif, .jpg, and .jpeg.

• Maximum upload size: If we want to enforce it so that our hosting space
is not abused.

• Number of values: By default set to 1, this setting defines how many
instances of this field will be allowed. For example, setting it to Unlimited
will enable an AJAX user interface for adding more and more images when
creating a memo.

Once you're satisfied with the settings click on Save settings button and we'll
continue with adding the second Tags field:

Chapter 1

[21]

The curious of us will notice that there are several widgets to use, for this field,
which define the rendered view for each field when editing content: Autocomplete
term widget (tagging), Check boxes / radio buttons, and a Select list. This is
where we need to put some thinking, tags (in Drupal this concept is referred to as
taxonomy) have characteristics of being free form, and as such may grow to very big
sets, which does not scale well with checkbox/radio HTML elements; and it's a very
poor User Experience (UX) practice, if utilizing large items for a select box, so the
Autocomplete term widget (tagging) option seems to be the most reasonable one,
for a widget.

After saving, we're being presented with the FIELD SETTINGS page and we can
notice how the settings for this field are very different from the previous image field.
One particular setting that is set by default is the Number of values option which
is set to Unlimited and it makes some sense with the use of tags as well as with our
selection of the autocomplete widget.

Also, notice how the Vocabulary option had also been set by Drupal. A
bit on taxonomy in Drupal, also broadly known as Tags, is a core Drupal
module which allows you to classify and organize data around your
site. When should one use taxonomy, and not a field? When hierarchical
structure is required, data needs to be kept as plain text. The vocabulary
word comes from the concept of grouping a set of terms (this is what
Drupal calls tags) together. Moreover, with the entity model in Drupal,
taxonomy is an entity too, like nodes and users, which as you probably
guessed right, allows us to attach fields to vocabularies.

Drupal's Building Blocks

[22]

Let's add another field to store links that we may want to add in our memos. Since
links are really plain text, we can use the Text field type and its default (and only)
widget is Text field too.

The default setting of 255 characters length limit is probably enough for most cases,
including our purpose of this field for links, so we can leave it like that, and click
on Save field settings. After which, we are then presented with the new text field's
settings and we should probably change the Number of values option to Unlimited
for this field too and click on Save settings.

Observing our new structure for the Memo content type we can see the newly added
fields at the bottom of the list.

This listing also hints on the ordering of the fields, so if we wanted to make some
changes there, such as bringing the Tags field beneath the Memo field, we can
simply drag and drop this item by using the grey color arrow icon to the left of the
label in the LABEL column. Once finished with reordering, we need to click on the
Save button.

Chapter 1

[23]

Adding a memo now will result in the following:

Viewing the form with our newly added fields looks as follows:

Drupal's Building Blocks

[24]

Configuring the Memo display
While the above fields' ordering dealt with managing the display of the form fields
when adding or editing memos, we might also be interested in changing the overall
appearance of an actual posted memo.

To do this we navigate to the Memo content type's configuration page again, which
is at Structure | Content types | Memo | manage display (/admin/structure/
types/manage/memo/display), and we're presented with a new configuration page:

Displaying of content types may be different, depending on which view mode is
being utilized. These view modes are for example, Full content, which is equivalent
to the Default display mode for most purposes, and represents the mode for viewing
the full page of the content type (this is for example, when in content listing, like in
blogs, when you click on the "read more" link and view the full article on a dedicated
page). Another view mode can be Teaser, which is often used when doing the
content listing, similar to a blog, where you don't want to put too much content
but rather a sort of summary for the content.

On the upper-right corner of the MANAGE DISPLAY configuration tab, we can
see sub tabs for each view mode that we want to customize. By default, there's the
Default and the Teaser mode. If we want to customize more view modes we can
simply expand the CUSTOM DISPLAY SETTINGS link, choose any of the options
there, and they will be added as subtabs.

Chapter 1

[25]

Sticking with the Default view mode and taking a closer look at the fields table we
can see the fields being used in this view (notice how all fields are being used, and
none of them is hidden from the layout) and the Label and Format settings. The
Label column configures where the field's label shows up, if at all, and the Format
settings specify what kind of formatting rule to apply on the content that is being
displayed for this field. If we examine the Format options for the Body field, then
some options such as Trimmed or Summary or trimmed, makes sense for short
content listings, like in the Teaser view mode that we mentioned.

There is definitely some room for improvements on the Default view mode for our
memo, so here are some ideas for styling the view better:

We can remove the Image label next to the image as that's pretty self-explanatory,
and put the Tags field at the top with the LABEL column displayed as Inline,
to eat up less space.

Instead of having the image laid out as its own field and space, in the
view, we can put it inline to the text. Unfortunately, there's no Drupal
way of doing this out-of-the-box function and this requires one of the
many handlings, such as using the Insert module (http://drupal.
org/project/insert) to put customized HTML image tags on
the Body's WYSIWYG editor, or utilizing the Media module
(http://drupal.org/project/media).

Once you're done setting up the field's display settings click on the Save button,
and watch the new layout of your Memo content.

To practice on this, let's revive Drupal's front page node's listing. It uses the Teaser
display mode, so we'll go ahead and update the fields listing. In the Image field,
add a <hidden> label by drag-and-drop, and set the Image style dropdown to
thumbnail by clicking on the gear icon, and setting the select box accordingly, then
click on Update. And for Tags, drag and drop this field upwards as well, and set its
Label to Inline. When done click on Save (feel free to further customize the teaser
display mode to your liking), and view the home page to review your changes.

Drupal's Building Blocks

[26]

Summary
This chapter served as an introduction to the very building blocks of Drupal's
node structure. Beginning from the very start, we have introduced Drupal's software
stack, and tracked its origin back as an early open source project. We then continued
to learn about Drupal's very basic and prominent node structure, which evolved in
Drupal 7 and extended into powerful and abstract entities. Having created our own
Memo content type, we have made acquaintances with Drupal's administrator user
interface, which enables the site builders to build their custom content types, manage
their fields as well as their display too.

In the next chapter, we will take a look at another aspect of Drupal's basic
functionality, dealing with views, and the over-all presentation layer.

Views, Blocks, and Themes
After we covered the basics of Drupal's building blocks, nodes, and how is content
handled in Drupal, we will learn about the presentation layer of a typical Drupal
website and some of its essential components.

In this chapter, we will cover:

• The use of the Views module
• Understanding and making use of the blocks system
• Learning about themes and installing a new theme

Views
Up to this point we have discussed how content is structured, how are fields added
to it, and even the actual styling of it's view and creating content.

An important aspect of working with content is not just about creating, editing, or
deleting but also retrieving this content and displaying it as a list of items in many
different styles (although do not confuse this with a content type's view modes).

Views, another powerful community-contributed module, aids in this task of
providing an administrative user interface (UI) for building content listings, among
many other tasks. If you have a little bit of database background then you can think
of the Views module as a tool to create the SQL queries that retrieve and build
content, which is exactly what Views is doing behind the scenes.

With Views you can create content listing as follows:

• Recent Memos that were created by users
• Reports about Memos used in your website
• Upcoming events mentioned in Memos

Views, Blocks, and Themes

[28]

The Views module is one of tens of thousands of modules available to download,
from the Drupal project homepage (http://drupal.org). While Drupal itself ships
with some modules, these are considered core modules which provide very basic
and essential functionality for Drupal websites to work (we can find these modules
in Drupal's top level /modules directory). To extend this functionality, Drupal has
been designed to be very modular and flexible so that community members can
develop and contribute their own modules.

Installing the Views module
To begin, we'll need to first install the Views module. Navigate to http://drupal.
org/project/views, scroll down and download the Drupal 7 version listed under
Recommended releases option (at the time of writing this book, this was 7.x-3.5).

It is good practice to avoid mixing Drupal's core modules and contributed modules
(or those of which you develop on your own). For this reason, you should unpack
the archive in your contributed modules directory, which is in sites/all/modules
directory of your Drupal's 7 install path.

Drupal 7 features a new way of installing modules and themes via the
administrative interface itself. To make use of it, enable the Update
Manager module in the Modules page (/admin/modules), after which
you will see a new link at the top of that page to install modules just by
providing it the URL for the direct download of the module or theme
(which you usually grab from http://drupal.org module's page).

Views is dependent upon another module being present, the Chaos Tool Suite (also
known as CTools), which is a developer's helper code module. If you don't have this
module installed, then download it from http://drupal.org/project/ctools and
extract it to the contributed modules directory too.

Navigate in the top administrative bar to Modules and scrolling down you'll see a
new section called View with a couple of modules Views and Views UI. You can
also notice the version detected for these modules as well as the useful information
regarding the dependencies of this module, such as if this module requires other
modules to be enabled. To continue, just toggle on the Views modules and click on
Save. If any dependencies of the disabled modules have been found, you'll be asked
to confirm enabling those modules so comply and then click on Continue.

The Views module, much like CCK, had a tremendous impact on Drupal
and while attempts to add it to Drupal 7's core did not succeed it will be
included in Drupal 8.

Chapter 2

[29]

Adding a new Views
Views is now installed and we can start using it to configure content listing. Access it
from the top administrative bar via Structure | Views (/admin/structure/views).

In the main Views page we see a listing of Views that were already created by
default with the Views module but remain disabled, including a helpful description,
tags to categorize and filter quickly through the list, the path to access a particular
view, and the actions that we can perform; enable and edit, being the most common
of them that we will work with.

Installing the Advanced Help module will greatly help around when
dealing with Views in specific, as well as other areas of Drupal.

At the top of the page we can also see more general actions to perform, out of which
we care most about the Add new view, so let's click on it and continue with creating
our first view as shown in the following screenshot:

Views, Blocks, and Themes

[30]

Let's follow on how we filled the details for this view.

We've chosen helpful texts for the view name and it's description. Next, we decided
what is our primary content type that we want to list. The select box features listing
of users, comments or even files but we're interested in content in general, and
specifically of type Memo. Notice how we can cherry-pick specific Memo content
types that are tagged with one of the tags that have been submitted. Lastly on that
row we see the sorting options.

Before we continue with the rest of this settings page let's recap on what vViews
are all about. We have described the Views module as a tool for easily creating
(complex) queries on the database and generating an output. What format is this
output exactly? Views has a feature called Displays where it is able to create
different kinds of outputs, depending on your needs. Some examples are
as follows:

• Page: Probably the most common display mode, a page output represents
an HTML page output. As such, a page has some settings unique for it like
the URL path to access the page, the title that would be set, and can even
integrate well with Drupal's menu system to also add a menu entry which
will display this page view.

• Block: We will understand this topic very soon but we'll just point out
that blocks represent components of information that can be placed
anywhere in a theme. The Views module enables to generate actual
blocks of content information.

• RSS: Turns your content listing into RSS feeds.

To continue, in the next configuration block we further refine the settings for the
view that we are about to create.

We toggle on the page display and set the title, the path, and updated the Display
format to Unformatted list of fields. By toggling the menu link option we added
a menu entry for this page too. Let's finish by clicking on Save & exit.

Once we created a view and saved it, we'll be redirected to the Views page.

You can see how it looks now, taking notice of the path that was also created
and the left-hand side menu entry to access Recent Memos as shown in the
following screenshot:

Chapter 2

[31]

That listing is nice but it's very basic and we can probably add more information
like who created each Memo, when was it and maybe add a little eye candy with
attached images.

To edit the view go to Structure | Views, you'll notice the newly created Recent
Memos fields at the top as an enabled view.

Drupal has support for contextual actions. Meaning that on every piece
of content that the user is able to modify via a configuration interface you
will see a gray gears icon with a down arrow which if you hover on will
also create a border across the related object.

Interesting to note in this page that under the view name we also see more helpful
information as follows:

• Display mode: We're seeing page as this is the only mode we've chosen for
this view.

• The source of the view: Because we created this view from the user
interface that the Views module provides, it will be saved to the database,
which is why it says In database. The Views module exposes an application
programming interface (API) which allows developers to create and
manipulate views by writing code. If we had gone that road then it
would have said In code.

Views, Blocks, and Themes

[32]

• Type: The primary type of content that the view is based on. Content can be
node content types, in which case that means actual content like our Recent
Memos view, or it can also be a view that deals with users, for example
showcasing a list of newly registered users.

In the operations we can click on the selected edit action to resume with our
progress of editing the view. Once opened, the page may seem overwhelming
with the amount of settings and configuration and indeed we can dedicate an
entire book on the Views module to cover all of its features and capabilities
(one book on this subject is Packt Publication's Drupal 7 Views Cookbook available
at http://www.packtpub.com/drupal-7-for-views-module-cookbook/book).

We will logically break that views edit page into parts so that it will be easier for
us to understand.

At the top we have on the left-hand side, the list of displays that are available in
this view. The only display output is Page and it's also selected by default. We can
click on the Add button and choose to add more displays like feeds or blocks but
we won't do that now.

To the right we have a generic actions button to handle this view, for example to
change the name, description and tags that were set for this view, or to perform
more advanced actions like exporting or cloning the view as shown in the
following screenshot:

At the bottom of the view we have an automatic preview generated for us every time
we make some changes to the settings so that we can see what it looks like.

Specifically it shows general details such as the view's Title and Path in the mid of
that section and beneath it the output page's title text and output content. It is also
possible to debug the SQL query that is generated by the view by navigating to
/admin/structure/views/settings and toggling on the option Show the SQL
query, after which the SQL query will be displayed in the view editing page as
shown in the following screenshot:

Chapter 2

[33]

Concentrating on the very heart of the view's page settings, at this point, it looks like
the following screenshot:

We will begin customizing our view by setting up the FIELDS section where the
content's title is the only field and what we really want is to add a few more fields.
In order to this, perform the following steps:

1. Click on the add button to the right of the FIELDS section.
2. In the opened dialog screen we can browse through the different fields

and either use the Search text box or the Filter select box to focus on fields
relevant to us. Out of that list toggle the following options:

 ° Content: Image
 ° Content: Updated/commented date

Views, Blocks, and Themes

[34]

Once selected, click on Apply:

3. A configuration dialog screen will open now for each field we chose to add to
further configure that field's settings:

 ° For the Content: Image field toggle off the Create a label setting
and choose the thumbnail option for the Image style select box
and finally click on Apply.

 ° For the Content: Updated/commented date field toggle off the
Create a label setting and choose the Time ago (with "ago"
appended) option for the Date format select box. We are now
done so clicking on Apply for this last field will bring us back
to the main views edit page.

We also want to add the username of the user who created each Memo but if you
search on the listing of the possible fields to add you might have noticed that there
is no such field. This is because our primary entity for this view is a (node) content
type, hence there's no mentioning of users, comments or taxonomy. To pull in this
further information we need to declare a relationship of other entities to the node's
Memo content type.

Relationships are very much a representation of database's JOIN queries
where a base table exists (this is our primary entity for the view) is
joined against more tables (more entity types) which result in creating
relationships, out of which we gain more fields to use.

Chapter 2

[35]

To declare relationships, toggle the Advanced field set to the right of the page and
click on the add button to the right of the RELATIONSHIPS section. We can now
choose the Content: Author from that list and click on Apply, another relationship
configuration dialog will display but the defaults there are fine. hence we'll click on
Apply again as shown in the following screenshot:

By now we can open the fields option again and locate a field called User: Name.

In the field's configuration page we can clearly see that this field is a result of the
author relationship we created. Let's set the label name to by and click on Apply.

Once we're satisfied with the collection of fields we can choose to rearrange their
order by clicking on the down arrow on the add button of the FIELDS section and
selecting rearrange. In the Rearrange fields dialog display let's set the image field at
the bottom.

Views, Blocks, and Themes

[36]

Most important part—to save this view's settings we need to click on the top right
Save button and see how our content listing looks now:

Views is very powerful and we have only scratched the very surface of it. In
evidence of it's flexibility you can find many modules on Drupal.org that build
on it more and more functionality and we will indeed re-visit some of them in the
upcoming chapters.

Blocks and themes
Themes are a very important aspect of every website as they create the look and feel
and are expected to convey a very intuitive and user friendly presentation of the
underlying functionality.

Drupal's theme layer is very flexible and powerful, among many things it is
composed from a collection of web assets like CSS, JavaScript, images, and of
course the HTML template layouts.

Chapter 2

[37]

Blocks
When looking at a website, it is often very common to notice a sort of pattern that
emerges in the overall website's layout. Taking the US government's white house
website (http://whitehouse.gov) for example, we can break it's layout into the
following parts:

• The header which is at the top has to the left of it the White House's title, if so
to say, along with a logo at the middle and some useful links to the right like
contacting them

• The horizontal menu is the main navigation area of the website, right after
the header line

• The middle top parts wins with image rich content and even wraps around a
search area

• Then the main content area is divided into two columns, the left side has
several blocks of content like popular topics and others beneath it and to
the right of the content area there's an automatically updating feed of news,
tweets and others as shown in the following screenshot:

Views, Blocks, and Themes

[38]

In Drupal, these so called parts which we have just dissected, are called regions and
have been introduced back in Drupal 4. They enable a site builder to place different
kinds of content in the site's layout.

By the way, whitehouse.gov is a website powered by Drupal.

Understanding block regions
Let's look at our Drupal 7 site, can you tell which regions are used?

If you've identified at least the header, left side bar, right content area, and the
bottom footer then you've done a great job!

As we've introduced themes before, they are very powerful, flexible, and possibly
very different from one another. One of these differentiating aspects is the fact that
each theme defines its own content regions and its main content area.

Chapter 2

[39]

Blocks are Drupal's way of describing units of content and through the use of blocks
we assign content to the different regions (you may also know blocks named as
widgets for example in other frameworks but the concept is the same).

To understand which block regions are available for us, let's navigate using the
top administrative bar to Structure | Blocks (/admin/structure/blocks) and the
blocks settings page shows up. Click on the link Demonstrate block regions (bartik)
at the top and you will now see the regions highlighted within the theme as shown
in the following screenshot:

Views, Blocks, and Themes

[40]

Only now, we realize the potential of the default theme. Some ideas to utilize these
regions are as follows:

• Use the top Featured region for placing an image like the White House
website's, or maybe even a full slideshow of images

• The three columns Triptych region can be used for placing contents of short
blocks with images

• The four columns Footer area is commonly used for breaking apart the
website's navigation into different sections

To go back to the blocks settings page click the top left link Exit block
region demonstration.

Assigning blocks to regions
Looking at the main blocks settings page we can learn several things:

The top-right tabs of this page show the block settings for each enabled theme and
the main page lists the available blocks and the regions they apply to. If we take a
careful look we can see that the page is split, at the top there are all the regions listed
with the enabled blocks in each of them, and at the very bottom of this table we see a
list of disabled, yet more available blocks.

Chapter 2

[41]

Let's go ahead and enable one of these blocks. The Who's new block sounds
interesting so to enable and assign it to a region we'll choose one of the options,
specifically the sidebar first option, from the select box in the REGION column.
Upon choosing it the block has been immediately moved in the UI to the sidebar
first region and should be visually noticeable using a highlighted bar. Moreover,
let's reorder the blocks in that sidebar, as it contains more than one, and place our
Who's new block at the top.

The blocks settings should look something like the following screenshot:

To finish we'll click on Save blocks at the bottom of the page and closing this
configuration page we can immediately see the new block applied in our
website's layout as shown in the following screenshot:

Views, Blocks, and Themes

[42]

Creating blocks
Sources for these blocks may be many, such as other modules that we've
downloaded and installed, which introduce new blocks content. Blocks themselves
may have been created via programming code, or they may have been created by the
Views module. It's even possible to create very generic and simple blocks through
the user interface in the blocks settings.

We'll start by adding a static content block, for example, our contact information
which is very common, and we can then place it in the footer.

Navigating to Structure | Blocks we'll click on the link for Add a block above the
blocks listing. The Title and Body fields of the block are those which set the title
of the block (if the theme chooses to make use of that in its presentation layout)
and the body field is used to display the content for the block. Adding our contact
information, it should look like as shown in the following screenshot:

Chapter 2

[43]

You may have noticed the Text format select-box which offers the filtered HTML as
a default formatting. In later chapters we will learn how to use a rich text editor and
then we'll be able to format the contents of this block better, such as adding a mailto
address link and using bold or italic markup.

It is possible to enable a PHP Filter module which adds the capability of
hard-coding PHP code in the blocks content area (among other places as
well) which seems to provide you with more dynamic content, although
this method is often frowned upon and is not recommended due to
many reasons, some of which are: mixing up programming code with
the presentation layer, security aspects, managing of such code blocks
inside Drupal's CMS, and internal database handling. Also, due to the
fact that PHP code resides inside Drupal's logic this way (as opposed to
being programmed using the module development facilities), it is being
evaluated by Drupal on the fly which means that it does not get cached
using OP Code caches like APC or others.

In the REGION SETTINGS we can set right there in the creation of the block page
which region this block will show up on for each theme. The default theme shows
up first and we'll choose the Footer option for that.

At last, we can fine tune who this block will be visible for in the Visibility settings
field set, which adds the option to control who sees this block, and where with the
following options:

• Pages: Defines either a whitelist (only the listed pages) or a blacklist (all
pages except those listed) of page URLs, including the use of a wildcard
character to control visibility

• Content types: When viewing a specific node content type, deciding
whether to display this block or not

• Roles: Defines which roles this block content will be visible for
• Users: Provides the ability for users to configure whether they want this

block visible or not, and the default visibility of this block for users which
didn't yet customize this option

We will leave the defaults as they are (although feel free to experiment with this)
which means that the block is always visible, to all users, in all pages. Once you're
ready, click on Save block and return to the homepage to see the newly created
block in the footer.

Views, Blocks, and Themes

[44]

Themes
By default, Drupal 7 is shipped with several themes, out of which Bartik and
Seven themes are enabled (if you're wondering why both are enabled we'll find
out soon enough).

In essence, themes are a bundle of web assets like CSS and JavaScript but they also
maintain their own settings, like regions which we learned about earlier. To find
out which themes we have, as well as to configure their settings we'll navigate to
Appearance (/admin/appearance) from the top administrative bar.

We can enable as many themes as we'd like and use them in different contexts. One
use case for that is that Drupal 7 by default enables the Bartik theme as the default
front-facing user theme and the Seven theme as the administrator's theme, which
is the theme that you see when viewing administration pages (those popup dialogs
which Drupal calls overlays). To change the administrative theme scroll to the
bottom of the Appearance page and select a different theme.

While theme settings exist as site-wide default we can override these with each
theme, depending on the provided theme's flexibility. To change the default Bartik
theme we'll go ahead and click on it's Settings link in the ENABLED THEMES
listing (or we can navigate via the tabbed interface and click on Settings | Bartik).
as shown in the following screenshot:

Chapter 2

[45]

Some of Bartik's theme featured customizations are as follows:

• Color set: It provides a color theme to choose from. The previous screenshot
shows the Firehouse option selected which already sets the preview as
well as the different color elements of the theme already such as border,
background, and text color.

• Toggling on/off the logo, site name, and site slogan. User pictures in posts
and other themed elements which are reflected across the site's theme.

Themes for frameworks
Just like module development in Drupal has a common structure, so do
themes. This structure organizes and streamlines theme development to
create a solid ground for themers (theme developers) to further build and
extend, much like in object-oriented programming.

Base themes, as they are called in Drupal, mandate such theme structure which
enable developers to avoid starting from scratch and use a common convention
to build on. This effort then results in what is known as sub-themes. By using
sub-themes, developers can customize the site's look and feel and benefit from
provided templates for nodes and blocks, re-using CSS classes, cross-browser
compatibility, and more, all without breaking compatibility which will allow
upgrading the base theme and stay up to date with current versions.

While it's possible to make use of base themes as the default site theme this is mostly
not the case, nor the intention, but rather sub-themes are provided as default site
theme and are required to be enabled along with the base theme.

Installing a new theme
Never let the defaults disappoint you. You're probably not really blown by Drupal's
default theme and it's "sleek" user interface. That's ok, it's just a default out of tens of
thousands out there for you to enjoy.

The official Drupal's website (http://drupal.org/project/themes) is one place
to find your future theme, among many other free as well as paid resources on
the Internet.

Zen, Omega, and a few other themes have made a name for themselves already as
leading Drupal themes but you can find one more option, such as AdaptiveTheme,
which became another great theme project aimed for modern HTML5 applications
and responsive design.

Views, Blocks, and Themes

[46]

AdaptiveTheme (http://drupal.org/project/adaptivetheme) is a base theme so
enabling and setting it as the default theme is not enough and might actually break
the UI. It has more than a few free, open source, and decent sub themes available
and we'll go with Corolla (http://drupal.org/project/corolla). Download
the latest recommended release of both of these themes (remember to match the
minor version, that is, if you're downloading 7.x-3.x of AdaptiveTheme make
sure to download the 7.x-3.x of Corolla too).

Once downloaded, unpack to sites/all/themes directory and navigate to
Appearance settings, in which both themes should now be listed at the bottom with
the rest of the disabled themes. Enable the theme called AT Core, and then click on
Enable and set default for the Corolla theme. Then click on the Settings link for the
Corolla theme.

As opposed to Bartik theme settings, Corolla's enormous settings page might be
overwhelming to take all at once and shows how many theme tweaking options
exist, especially with such professional and well-build themes. You can probably
notice some interesting configuration options there like mobile related theming with
the tablet and smartphone layouts. Even for the standard layout (which basically
means a desktop browser resolution) we can define the columns sidebar positions
and each column's width. We will visit many of these characteristics of modern
HTML5 in following chapters.

While we can spend a week tweaking these layout options, for now we will
configure images alignment in teaser view to show up to the left of text instead of
having no alignment at all. You can find this option in the Extensions section under
the Image Settings vertical tab and make this change. We're only making this change
so we're done, click on the Save Configuration button at the bottom to visit your
site's home page which should now resembles this screenshot:

Chapter 2

[47]

Template engines
When presenting content, the actual content like a block or view's output is rendered
into a template file (which may be wrapped by other template files).

In older days of PHP and web development in general, one could find program
code and HTML markup together in one file which was bad practice in so many
levels like separation of concerns, tightly coupling the view of a page with
server-side code, harder maintenance and so on. Sometimes it's referred to as
spaghetti-code but since then, design patterns and programming practices has
evolved and methodologies like Model-View-Controller (MVC) have found
themselves more and more employed by programmers and their frameworks and
that goes for Drupal too. In turn, the presentation layer is indeed separated from the
business logic and Drupal does it with the help of a PHP library called PHPTemplate
which is shipped with it by default.

Views, Blocks, and Themes

[48]

One of the values of using such MVC structure is that a developer who is working on
writing a Drupal module can focus on the relevant programming without worrying
how a block of content will be designed, which colors will be used etc, and the
themer whose job is to work on styling the user interface can focus their work on
CSS, JavaScript and HTML code for designing the website's look and feel and they
can treat the underlying content with placeholder variables like $content without
caring how this content is being produced (this is the developer's job).

Drupal's template engines are placed in themes/engines directory.

Summary
In this chapter we learned how to display content with the use of the Views module
user interface which enables us to create content listing quite easily, without writing
code, and without any knowledge of database.

We then moved on to the presentation layer of Drupal and learned how to create and
position content elements (blocks) in the various positions (regions) which our theme
allows for and even install a new theme of our choosing to introduce a completely
new look and feel.

In the next chapter we will start working with the very first and primary media
resources in websites, images. We will explore how to work with images on a
Drupal website, such as embedding them correctly, managing image content
across a website, and more.

Working with Images
It's time to begin with our very first and long-time media resource on the
Internet—images. Images are not only a requirement that a site builder needs
to meet according to some spec, but rather they should be thought of from the
ground up when designing a website.

On the web, a picture really is worth a thousand words (if not more) as they
contribute to a website's lively look and feel. Can you think of Facebook without
images? Instagram is a billion dollar venture based solely on taking images and
sharing them with your peers. Pinterest is another good example of taking a concept
such as bookmarks, adding some eye-candy images to it, and there's another startup
for you.

In this chapter we will cover:

• Adding image fields to custom content types
• Understanding the Media module for site-wide media

resources management
• Installing and understanding the use of WYSIWYG and text formats
• Embedding images in content via WYSIWYG
• Creating image galleries, configuring them, and using them as blocks

Our theme content type for working with images in this chapter will be food recipes.
Who knows? Maybe you can wrap your next venture based on this idea.

Working with Images

[50]

Because we have already learned in the previous chapter how to create new node's
content types, how to add fields to them, and style the fields, we will not dwell
into this again. Instead, I will show the new content type, called rezepi, which is a
combination of the English word recipe and it's Polish translation przepis. Like it?
That alone is probably worth a startup.

The Media module
In previous versions of Drupal, the basic image field type didn't exist by default nor
did another facet of image handling—the Imagecache module, which enabled the
management of different image pre-sets (thumbnail, large, and so on). As we've seen
with the Memo content type, this is no longer the case in Drupal 7, and at least a very
basic support for images that already exist.

While there are many ways to build image integration into Drupal, they may all
stem from different requirements and also each option should be carefully reviewed.
Browsing around over 300 modules available in the Media category in Drupal's
modules search for Drupal 7 (http://drupal.org/project/modules) may have
you confused as to where to begin.

Chapter 3

[51]

We'll take a look at the Media module (http://drupal.org/project/media)
which was sponsored by companies such as Acquia, Palantir, and Advomatic and
was created to provide a solid infrastructure and common APIs for working with
media assets and images specifically.

To begin, download the 7.x-2.x version of the Media module (which is currently
regarded as unstable but it is fairly different from 7.x-1.x which will be replaced
soon enough) and unpack it to the sites/all/modules directory like we did before.
The Media module also requires the File entity (http://drupal.org/project/
file_entity) module to further extend how files are managed within Drupal by
providing a fieldable file entity, display mods, and more. Use the 7.x-2.x unstable
version for the File entity module too (as of the time of writing this book at least) and
download and unpack as always.

To enable these modules navigate to the top administrative bar and click on
Modules, scrolling to the bottom of the page we see the Media category with a
collection of modules, toggle on all of them (Media field and Media Internet sources),
and click on Save configuration.

Adding a media asset field
If you've noticed something missing in the rezepi content type fields earlier, you
were right—what kind of recipes website would this be without some visual
stimulation? Yes, we mean pictures!

To add a new field, navigate to Structure | Content Types | rezepi | manage fields
(/admin/structure/types/manage/rezepi/fields). Name the new field Picture
and choose Image as the FIELD TYPE and Media file selector for the WIDGET select
box and click on Save. As always, we are about to configure the new field settings,
but a step before that presents first global settings for this new field, which is okay to
leave as they are, so we will continue, and click on Save field settings. In the general
field settings most defaults are suitable, except we want to toggle on the Required
field setting and make sure the Allowed file extensions for uploaded files setting
lists at least some common image types, so set it to PNG, GIF, JPG, JPEG. Click on
Save settings to finalize and we've updated the rezepi content type, so let's start
using it.

Working with Images

[52]

When adding a rezepi, the form for filling up the fields should be similar to
the following:

The Picture field we defined to use as an image no longer has a file upload form
element but rather a button to Select media. Once clicked on it, we can observe
multiple tabbed options:

For now, we are concerned only with the Upload tab and submit our picture for this
rezepi entry. After browsing your local folder and uploading the file, upon clicking
Save we are presented with the new media asset form:

Chapter 3

[53]

Our picture has been added to the website's media library and we can notice that it's
no longer just a file upload somewhere, but rather it's a media asset with a thumbnail
created and even has a way to configure the image HTML input element's attributes.
We'll proceed with clicking on Save and once more on the add new content form
too, to finalize this new rezepi submission.

The media library
To further explore the media asset tabs that we've seen before, we will edit the
recently created rezepi entry and try to replace the previously uploaded picture
with another.

Working with Images

[54]

In the node's edit form, click on the Picture field's Select media button and browse
the Library tab which should resemble the following:

The Library tab is actually just a view (you can easily tell by the down-arrow
and gear icons to the right of the screen) that lists all the files in your website.
Furthermore, this view is equipped with some filters such as the filename, media
type, and even sorting options.

Straight-away, we can notice that our picture for the rezepi that was created earlier
shows up there which is because it has been added as a media asset to the library.
We can choose to use it again in further content that we create in the website.

Chapter 3

[55]

Without the media module and it's media assets management, we
had to use the file field which only allowed to upload files to our
content but never to re-use content that we, or other users, had
created previously. Aside from possibly being annoying, this also
meant that we had to duplicate files if we needed the same media
file for more than one content type.

The numbered images probably belong to some of the themes that we experimented
before and the last two files are the images we've uploaded to our memo content
type. Because these files were not created when the Media module was installed,
they lack some of the metadata entries which the Media module keeps to better
organize media assets.

To manage our media library, we can click on Content from the top administrative
bar which shows all content that has been created in your Drupal site. It features
filtering and ordering of the columns to easily find content to moderate or investigate
and even provides some bulk action updates on several content types.

More important, after enabling the Media module we have a new option to choose
from in the top right tabs, along with Content and Comments, we now have Files.

The page lists all file uploads, both prior to the Media module as well as afterwards,
and clearly states the relevant metadata such as media type, size, and the user who
uploaded this file. We can also choose from List view or Thumbnail view using the
top right tab options, which offers a nicer view and management of our content.

Working with Images

[56]

The media library management page also features option to add media assets right
from this page using the Add file and Import files links. While we've already seen
how adding a single media file works, adding a bunch of files is something new.
The Import files option allows you to specify a directory on your web server
which contains media files and import them all to your Drupal website.

After clicking on Preview, it will list the full paths to the files that were detected
and will ask you to confirm and thus continue with the import process. Once
that's successfully completed, you can return to the files thumbnail view (/admin/
content/file/thumbnails) and edit the imported files, possibly setting some title
text or removing some entries.

You might be puzzled as to what's the point of importing media
files directory from the server's web directory, after all, this would
require one to have transferred the files there via FTP, SCP, or some
other method, but definitely this is somewhat unconventional these
days. Your hunch is correct, the import media is a nice to have
feature but it's definitely not a replacement for bulk uploads of files
from the web interface which Drupal should support and we will
later on learn about adding this capability.

Chapter 3

[57]

When using the media library to manage these files, you will probably ask yourself
first, before deleting or replacing an image, where is it actually being used? For that
reason, Drupal's internal file handling keeps track of which entity makes use of each
file and the Media module exposes this information via the web interface for us.

Any information about a media asset is available in its Edit or View tabs, including
where is it being used. Let's navigate through the media library to find the image
we created previously for the rezepi entry and then click on Edit in the rightmost
OPERATIONS column. In the Edit page, we can click on the USAGE tab at the
top right of the page to get this information:

We can tell which entity type is using this file, see the title of the node that it's being
used for with a link to it, and finally the usage count.

Using URL aliases
If you are familiar with Drupal's internal URL aliases then you know
that Drupal employs a convention of /node/<NID>[/ACTION], where
NID is replaced by the node ID in the database and ACTION may be one
of edit, view, or perhaps delete. To see this for yourself, you can click
on one of the content items that we've previously created and when
viewing it's full node display observe the URL in your browser's address
bar. When working with media assets, we can employ the same URL
alias convention for files too using the alias /file/<FID>[/ACTION].
For example, to see where the first file you've uploaded is being used,
navigate in your browser to /file/1/usage.

Remote media assets
If we had wanted to replace the picture for this rezepi by specifying a link to an
image that we've encountered in a website, maybe even our friend's personal blog,
the only way to have done that without the Media module was to download it and
upload using the file field's upload widget.

Working with Images

[58]

With the Media module, we can specify the link for an image hosted and provided
by a remote resource using the Web tab. I've Googled some images and after finding
my choice for a picture, I simply copy-and-paste the image link to the URL input text
as follows:

After clicking on Submit, the image file will be downloaded to our website's files
directory and the Media module will create the required metadata and present the
picture's settings form before replacing our previous picture:

Chapter 3

[59]

There are plenty of modules such as Media: Flickr (http://drupal.org/project/
media_flickr) which extends on the Media module by providing integration with
remote resources for images and even provides support for a Flickr's photoset or
slideshow. Just to list a few other modules:

• Media: Tableau (http://drupal.org/project/media_tableau) for
integrating with the Tableau analytics platform

• Media: Slideshare (http://drupal.org/project/media_slideshare) for
integrating with presentations at Slideshare website

• Media: Dailymotion (http://drupal.org/project/media_dailymotion)
for integrating with the Dailymotion videos sharing website

The only thing left for you is to download them from http://drupal.org/modules
and start experimenting!

WYSIWYG
WYSIWYG stands for What You See Is What You Get and in the computer world
this term is mostly associated with WYSIWYG editors. These are web based editors
with support for text mark-up capabilities, such as bold, italic, underline, bullet
points, and more, that transform an ordinary HTML text input into a rich text
editor, such as Microsoft Word.

While it's possible to think of web applications that may not require WYSIWYG-like
capabilities, it still is a prominent element in most Drupal sites for areas such as forums
and blogs which makes it a desired component among site builders.

An example for a WYSIWYG editor (which we will learn more about later in this
chapter) is the CKEditor library that aims to ease the creation of web content by
enriching HTML text input with a tool-bar for text formatting.

Working with Images

[60]

Demo of CKEditor (http://ckeditor.com) in action for site content editors:

In regards to the WYSIWYG editor, taking a closer look at how our rezepi entry
looks like, we can tell that the recipe Body field is pretty much a plain text entry
lacking any mark-up:

Chapter 3

[61]

This comes as no surprise due to how the recipe Body field looks like when we
edited it and added content:

Working with Images

[62]

If you're paying a close attention to the recipe description field in the edit mode of
the previous screenshot, you can notice a select box for choosing the text format for
that input field. In case this had puzzled you before, we will cover this functionality
next and how it ties up to the WYSIWYG support.

Text formats
Specially crafted user input may inject malicious data that will put your website
in risk and may expose your users to threats. When dealing with user supplied
text input, security actions must be taken to ensure that the provided input is not
harmful. One way of attacking this problem is by filtering the user supplied input
and allowing only a trusted set of characters. This is basically the essence of "never
trust user input", a fundamental and important principle in software security.

Mitigating this security consideration, Drupal provides text formats (previously
referred to as input filters) which define a set of filters that will be available for
configured roles. Such filters may be used to specify a white list of HTML tags which
form an allowed list of options, where anything not defined there is regarded as not
allowed. For example, allowing the anchor tag (<a>) or the strong tag ()
which are considered vital for users to share links and decorate their text in bold.
Other filters may perform different kind of filtering task—instead of limiting tags,
they may modify the user input completely. For example, an input filter may convert
any line breaks that the user entered by pressing the Return key and turns them into
an HTML
 tag which creates breaks.

Drupal by default provides some text formats such as Filtered HTML and Full
HTML which you've seen when working with long text input types such as the
description fields. To review the settings for these text formats, we'll navigate to
Configuration | Text Formats which shows the configuration page for the available
text formats and the roles they are available for (/admin/config/content/formats):

Chapter 3

[63]

Except for adding a new text format and configuring or disabling the existing text
formats, it is possible to control the default text format that will be set for users by
using the drag-and-drop arrow icon and reordering the format options.

To understand why and how text is rendered into the view of some content when
users save an input text which uses one of the input formats (like we did with the
rezepi description field), we will edit the Filtered HTML text format. To view it's
configuration, click on configure in the text formats list page (/admin/config/
content/formats/filtered_html).

Roles which are allowed for this text format are by default all enabled roles, which
Drupal supports out of the box and this makes sense too, because this is the Filtered
HTML format which is supposed to be the safe type to let users use.

Working with Images

[64]

The filters that are enabled for this format comply with our definition for it—they
mostly allow some basic functionality such as the first filter to allow limited set of
HTML tags as well as modify the entered input and replace line breaks with actual
HTML
 tags for better readability.

Due to the fact that filters tamper with the user input and modify the actual input,
it is crucial to define which filters run first so that the user input isn't handed out
"broken" for following text formats. For this reason, we can define the process
ordering of the enabled filters:

Lastly, each filter may define its own settings to further fine-tune how the filter works.

For example, the filter for limiting the allowed HTML tags exposes this configuration
setting to allow the site administrator to define the list of allowed tags and override
the defaults for this filter.

Chapter 3

[65]

In summary, the use of text formats enables us, as site administrators, to define the
behavior of text rendering when user supplied data is typed-in to our input widgets.
It is required to pay much attention to the configuration of text formats as improper
settings may result in security vulnerability.

Adding a rich-text editor
There are many WYSIWYG libraries to choose from (FCKeditor, TinyMCE, YUI
editor, and more) and Drupal allows for most popular of them to be plugged
straight into it, yet you might find it difficult to choose the right one. It's a matter
of preference as configuration and user interface differs, but also the roadmap and
community around each library is quite important so we will follow best practices
and work with the CKEditor library.

Drupal 8's WYSIWYG library of choice has been decided to be CKEditor
according to Dries' announcement (http://buytaert.net/from-
aloha-to-ckeditor) for many reasons, but probably mostly for its
upcoming support for in-place editing which is a great UI for site content
editors. So rest assured that the skills you've gained in this book with
CKEditor as well as your user's experience will persist in your future
upgrades with Drupal.

Working with Images

[66]

To provide flexibility with these third-party libraries we will make use of a base
WYSIWYG module which acts as a bridge to connect Drupal's input widgets and
any other library. First, we'll need to download and install this module's 7.x version
(http://drupal.org/project/wysiwyg), followed by enabling this module from
the modules page (/admin/modules).

Once this module is enabled, we can consult it's configuration page at Configuration
| Wysiwyg profiles (/admin/config/content/wysiwyg).

The page lists all the WYSIWYG editor libraries it supports with information of
whether they are installed, where to download them, and how to install them.
At the moment we have no library, so next it's required to download the CKEditor
(or any other you've set your mind to) and place it in Drupal's root directory's
sites/all/libraries which probably doesn't exist for you if you haven't
done something similar before, so you will need to create it.

From CKEditor's website (http://ckeditor.com/download/releases), we will
use Version 3.6.5 and not the latest version from the main download page. The
reason for this is that at the time of writing this book, the WYSIWYG module
had issues detecting versions of newer library versions.

After downloading and unpacking this library make sure that the following path exist
in your Drupal's root directory: sites/all/libraries/ckeditor/ckeditor.js.

Chapter 3

[67]

By now, you have installed all the WYSIWYG related components (the module and
the library) and it is required to associate the CKEditor with one of the text formats
that are available. If you are still on the Wysiwyg profiles page, simply reload this
page otherwise navigate to it.

While it is possible to install and add to your Drupal site more than one
WYSIWYG editor and configure different text formats and roles to use
each one, it is not a common practice and unless there's good reason this
is not advised.

There is a consideration to be made when deciding which text format to associate the
CKEditor with. If we associate the CKEditor with the default Filtered HTML, only a
tiny portion of the editor's functionality will be used because that format only allows
a very limited set of HTML elements. It is tempting to associate the editor with the
Full HTML format and really opening up support to most, if not all, of the editor's
functionality but because by default that format is only available for the administrator
role, it's not really helpful to the rest of your users. At this point you might consider
changing the text format's role settings to allow your site users to make use of it too,
but that will introduce major security threats to your website. Security threats such
as embedding external JavaScript code using the <script> tag, embedding external
resources with the <iframe> tag, or any type of cross-site scripting (also known as XSS
attacks) will put your site and your users in harm's way.

Working with Images

[68]

To mitigate such security issue as well as provide good user experience, we can
employ various configurations, here are some options:

• Use the Filtered HTML text format for members which will only use it for
commenting on blogs and alike, where rich text support isn't really required.
Create a new text format and assign the CKEditor to it for allowing rich text
experience to content authors, but add allowed tag filters to only permit tags
for functionality that is enabled through the CKEditor.

• Assign the CKEditor to the Full HTML text format, enabling fully functional
rich text editor, but make sure the only roles who have access to this format
are co-administrators or content authors which are part of the site's staff,
hence, they are trusted people.

Other configurations may exist, especially with the help of extra modules which can
be found on the Drupal site.

For the sake of demonstrating the WYSIWYG features and upcoming Media module
capabilities, we will assign the CKEditor library to the Full HTML text format. To
do that, select it as the editor from the dropdown list and click on Save. Removing
an association is possible by clicking on the Delete link in the OPERATIONS
column (this might be confusing but it's not going to delete the text formats, just the
association). We'll proceed with configuring the editor by clicking on the Edit link.

There are many configuration options, grouped in their own field sets for easy
administration, which enable better customizing level of the editor profile. The
default settings are same for most options so we will focus on the areas which
require the administrator's intervention the most.

The BUTTONS AND PLUGINS field-set is the crucial configuration which
determines which functional buttons will be enabled and exposed to the user in
the WYSIWYG editor. Let's go ahead and enable some of them, such as Bold, Italic,
Image, Link, Align left, Align right, Underline, Numbered list, and others.

Chapter 3

[69]

Once you're satisfied with the setup, save the profile settings and search for
our previous rezepi entry and edit it. If the edit mode opened with the Filtered
HTML text format as default, change it to Full HTML from the select box and the
WYSIWYG editor will show up. This is the time to experiment with it and re-edit
the recipe description.

Working with Images

[70]

Embedding images in content
Providing content authors with the ability to add pictures to their posts is not a
feature to underestimate. It is a vital feature that goes a long way and your users
will appreciate a good user experience.

You might have noticed that the CKEditor configuration page featured a button for
working with images in the BUTTONS AND PLUGINS field-set, where we toggled
on some other buttons previously. If you have already enabled it just out of curiosity
before, that's good (and keep up the creativity and curiosity thing, it will do you only
good), otherwise navigate back to Configuration | Wysiwyg profiles and edit the
Full HTML text format to toggle on the Image button and save these settings.

When clicking on the square Image button from the WYSIWYG toolbar, you should
see the following pop-up dialog for adding an image:

Chapter 3

[71]

If you really liked the media library support that we earned with enabling the Media
module then you surely may realize that the out-of-the-box support of CKEditor for
adding images to content may have some shortcomings. The image popup itself is
very configurable. By typing-in a link to an image resource on the Internet, the user
immediately sees a preview and can further tweak the height and width, border,
picture alignment verses text, specifying if the image will also be clickable, and
even some advanced settings such as specifying a CSS class or an ID attribute. Still,
one cannot wonder why are we required to always provide a URL address to add
images? If these are internal links in your Drupal site then even a stronger argument
is— why shouldn't we be able to browse them and reuse those files?

The Media module had already concluded that such a use case (of integrating with a
WYSIWYG editor) will exist and for this purpose they created a filter that makes use
of special media tags which the media browser plugin for the WYSIWYG editor will
be using. All of these extensions and integrations are already provided by the Media
module, the user just needs to enable them and configure accordingly.

The filter, which as we discussed earlier, is being used by text formats to define
an allowed behaviour (or character set) and enforce user input security, for texts
that are typed-in by the user. Due to the fact that we have chosen to work with the
Full HTML text format for the WYSIWYG editor, we will need to edit it (/admin/
config/content/formats/full_html) and toggle on the filter called Convert
Media tags to markup to enable it, and then click on Save.

As far as the WYSIWYG editor settings are concerned, it's required to edit the
desired profile (/admin/config/content/wysiwyg/profile/full_html/edit),
in our case it's Full HTML which is bound to the CKEditor library, and in the
BUTTONS AND PLUGINS field-set options toggle off the Image checkbox (if it
was toggled on previously), toggle on the Media browser and click on Save. It's not
strictly required to remove the Image button but it's probably desirable as we rather
not confuse our users and provide them with very intuitive interface.

Even if you have worked before with the Image button for the CKEditor
toolbar, by removing the Image button and adding the Media browser
button the images being used in content that was already created will
remain intact. Moreover, when users will edit their content and double-
click their images in the WYSIWYG editor, the same Image button popup
will appear and enable them to edit these settings.

When adding new content or editing an existing rezepi entry, you will now notice
a new button to the right of the toolbar, which when clicked upon, will present the
same popup dialog that the user have been using previously with the dedicated
image field we added.

Working with Images

[72]

Try adding an image using the new media browser button on the toolbar and you
will notice that after selecting an image which already exists in the library you
are required to specify the display formatting for this file. Because we haven't yet
configured display formatters for the different file types, the default format named
Default is actually less suitable and will simply display a filename link to the picture.
Instead, choose either Teaser or Preview and click on Submit to save your options
and then click on Save to finish editing. Don't worry, we will cover managing file
types and their display formats soon enough.

If it's required to further fine-tune image properties or reveal information on how
the image will be used in terms of resolution and other aspects, it's possible to just
right-click on the added image and choose Image Properties which will present
CKEditor's image handling popup dialog, which you should already be accustomed
to. This functionality is inherent to the CKEditor and doesn't depend on the Image or
Media browser button that we enabled.

Image galleries
With image galleries as site builders, we would like to enable our users to create sets
of images which are grouped together and can be viewed in a streamlined manner.
There are many ways to present image galleries and many ways exist to approach
the technical requirement. One example would be to reuse our knowledge of the
Views module. To do it, we might need to create a new content type called Picture
Gallery, or maybe a better name would be Albums (if that sounds familiar, it's
because that's how the big social network players are calling it). For this content type,
we will probably add fields such as title, description, dates for when these pictures
were taken as well as location field for where the pictures were taken, and finally, an
image field for file uploads which allows for unlimited instances of this field. Once
we have the content type structure defined, we can create a new view to represent
a grid view display of content nodes of this type. Further customization can then be
applied and extended as we please though the example should suffice.

Enabling an image gallery feature
Just like the view module example, there are many modules in Drupal which enable
such gallery functionality yet we will focus on the Media Gallery module which has
been developed by Acquia, the same company that sponsored the creation of the
Media module, which as we've seen is of high quality, integrated well, and builds on
good flexibility and modularity concepts for future extensions of this functionality
with other modules.

Chapter 3

[73]

The Media Gallery module is still under heavy development (at the time of writing
this book) so we will use it's 7.x-2.x-dev version (http://drupal.org/project/
media_gallery). The Media Gallery also depends on other modules which we will
need to download, unpack, and install too:

• Multiform (http://drupal.org/project/multiform) – This is a module
which exposes API for developers to create multiple forms for Drupal to
handle as a single form element.

• Colorbox library (http://colorpowered.com/colorbox) – This is a
jQuery lightbox plugin which provides a popup dialog user interface to
navigate through pictures. Note that Colorbox is a library, similar to the
CKEditor library that we needed to install, so it should be unpacked into the
sites/all/libraries directory. From their website download the latest
version, referred to as master (respectively, the downloaded filename will
probably be master.zip). After unpacking it, your directory name might be
colorbox-master, if so, rename it to plain colorbox. By now you should
have the directory sites/all/libraries/colorbox and the file sites/
all/libraries/colorbox/jquery.colorbox.js. Unfortunately, due to
the Media and Media Gallery's 7.x-2.x branch still being in development
there are some bugs. One of which is that while the CSS file for displaying
the Colorbox is being loaded from the sites/all/libraries/colorbox/
directory, the JavaScript file is loaded from the sites/all/libraries/
colorbox/colorbox directory. The fix is quite simple, although not very
elegant, and that is after unpacking the colorbox directory in the sites/
all/libraries directory, copy the ZIP file and unpack it once more inside
the sites/all/libraries/colorbox directory. To make sure you've
followed this correctly, the end result should provide you with the following
file paths: sites/all/libraries/colorbox/example1/colorbox.css and
sites/all/libraries/colorbox/colorbox/jquery.colorbox-min.js.

It is possible and even likely that this bug might have been fixed by this book is
published, in which case you can ignore creating the previous duplicate directory
structure. After installing and enabling (from /admin/modules) all of these modules
we are now ready to start using the gallery feature.

Working with Images

[74]

Creating an image gallery
The Media Gallery module created a new node content type called Gallery. To start
creating a new gallery, we'll click on the Add Content from the top (/node/add)
and click on the new Gallery option that appears in the list. The Create Gallery
page that shows up now sets our new gallery settings, first of which, is its name
and description:

The behaviour of the gallery, it's presentation and other settings are administered in
the Gallery Settings field-set:

Chapter 3

[75]

By specifying the Number of columns over Number of rows, we are actually
affecting the layout of the media inside the gallery. The Media information select
box defines whether the title of each media resource (our images) should be
presented, and if so, where to place it—below the image or only show it as a
tooltip when hovering over the image.

Working with Images

[76]

The presentation settings allow further refinement for how our images should
be displayed:

• Allowing the download of the original image.
• Showing the media on a full page resembles a full node view (that is,

node/<NID>) while showing the media in a lightbox means that once
an image is clicked upon, it will open up in a popup dialog and allow
navigation (back and forward) through the rest of the images in the
gallery. The Colorbox library that we installed earlier comes to play
in this feature—that's the meaning of the term lightbox.

• Showing the title and description will provide extra metadata on the
lightbox popup dialog.

If we had chosen to show the media on full page, there's no meaning for this
checkbox, as anyway the full page node view displays the title, description,
and the rest of the fields for that content type, if any.

You will notice that if you click around in-between the presentation of the
media style buttons, the left thumbnail will change to give you an idea of
how it would look.

The defaults are very useful and are in-par with other popular web social
networks so they are a safe bet to go with if you're unsure what would make
a good user experience.

Go ahead and click on Save and you should now see your gallery view, although
it's empty of any media resources. To remedy this, we'll click on Add media which
will display the media browsing popup dialog which we are already familiar with,
and we can choose to upload new images, link images from existing websites, or
use the Library tab to create an album gallery from images you've already uploaded
or linked previously. In the Library tab, you can choose multiple images simply by
clicking on each of them. When you're done, click on Submit and it will add the
images to the gallery we've just created (if you are seeing another instance of the
Media browser popup window, simply disregard and click on Cancel, this is yet
again, due to a known bug in this version).

Chapter 3

[77]

While in the gallery view, you can take actions upon the added images by hovering
over one of them:

• Click on the down-arrow with the gear to the right of the image, and choose
whether to Edit or Delete this image.

• Simply drag-and-drop the image to rearrange the pictures order.

Working with Images

[78]

When we created the gallery, we set the presentation settings to show media in a
lightbox, for which we also installed the Colorbox library. If you click on one of the
images in your gallery, you should see it opening up in a popup view, which is often
referred to as a lightbox, similar to this one:

In the lightbox view, we can navigate back and forth through images (using the
arrow keys too, which is handy), as well as see the image title and description, as
we've set in the gallery settings or download the original image. We can also enable
the slideshow mode which will automatically load the next image every 3 seconds.

The Image Gallery module, upon installation, created a main menu entry to show all
the galleries in your site:

Chapter 3

[79]

To access this view, navigate to /galleries and you will see the album gallery
that we have created just now. Galleries show up with thumbnail of the first media
resource in that specific gallery, as well as provide additional information on each
gallery when hovering over which displays the title and the type and count of media
resources. This galleries view supports the same drag-and-drop behavior which
we've seen with images, so by hovering-and-dragging galleries we can rearrange
their order. There's even an RSS feed created for all galleries view.

We can further customize the galleries view page by clicking on Edit all galleries tab
and set the following:

• Title and description text for this page
• The URL for the galleries view, for example change /galleries to /

rezepiz-gallery to be SEO-friendly
• The layout of gallery thumbnails and title text placement

Working with Images

[80]

Galleries as blocks
Among the usual node settings that we are used to see when adding or
editing a node, we can find yet another capability that the Media Gallery
module provides—creating blocks for our galleries, which we can then be
placed anywhere we'd like, through the use of Drupal's block systems and
the available regions the theme defines.

To explore this capability, let's return to the gallery that we've created previously.
Locate the Edit gallery tab at the top and click on it. We've seen this settings page
before, when we first added the gallery. Scroll down and in the Blocks field-set,
toggle on the option to create a block and feel free to change the default columns
and rows as you wish and click on Save (usually blocks are placed in thin columns
so it's probably best to limit the columns to no more than three).

The Media Gallery module has created the block for this gallery but we'll need to
use the blocks configuration page to enable it and place it in one of the regions our
theme allows.

Navigate to Structure | Blocks (/admin/structure/blocks) and locate a new block
named similar to Recent gallery items: My Cooking! and should probably be placed
in the Disabled blocks area at the bottom of the page. We'll add it to the left sidebar
regions so in the REGION column choose the Sidebar first option for this block
and click on Save blocks. Then locate our galleries block and click on the configure
link in the rightmost table column labeled OPERATIONS. Now we can further
customize the block, most important of which is the columns and rows, the block's
title and the visibility settings at the bottom (you might want to remove the pages
listed there for the sake of this example, so that you will see this block in every page).

Chapter 3

[81]

When visiting your site's homepage (or other pages), the cooking gallery block will
be featuring the latest images and will benefit from the lightbox support too, when
clicking on each image.

Summary
In this chapter, we dived into deep water with creating our very own content type
for a food recipe website. In order to provide better user experience when dealing
with images in Drupal sites, we learned about the prominent Media module and its
extensive support for media resources such as providing a media library and key
integration with other modules such as the Media Gallery.

With hope of formatting our text inputs better, we have also discovered the concept
of text format profiles and the use of WYSIWYG editors to enable a much better
experience for content authors.

In the next chapter, we will explore HTML5 specification and how to leverage its
features in Drupal to keep our site up-to-date with current technology standards.

HTML5 in Drupal
HTML5 transitioned from yet another buzzword that's been circling the web, and a
draft spec by the World Wide Web Consortium (W3C) http://www.w3c.org, to an
implemented set of tools that is truly changing the way we interact with the web.

What were we using before HTML5? Well, that would technically be HTML4, which
had released its spec back in 1997, with some revisions later on, and other specs such
as XHTML. Since then, we counted on numerous JavaScript libraries and browser
plugins, to push browser capabilities to its limits. But all of this is ancient history
now since HTML5 has revolutionized the web cyberspace once again.

In this chapter, we will cover:

• Introducing HTML5
• HTML5 spec, features, capabilities
• Using HTML5 in Drupal

Why another HTML spec update? It's just to name a couple of issues that
HTML5 targets:

• Compatibility: The browser ecosystem is very fragmented, with each vendor
implementing only parts of the spec that they see relevant, and still, their
implementation has its own quirks across different browsers. To remedy this,
the spec strives to detail as much as possible and promote native in-browser
support for most features, to avoid third-party plugin dependency.

• Separate presentation from content: HTML5 attempts to set a path for
semantically structured documents, by providing proper elements to
represent content instead of generic placeholders (like the famous <div>
tag). With this approach, it hopes to leave presentation task to CSS and has
deprecated the elements like <center>, <big>, and <u>, as well as many
attributes such as height and width, from specific elements.

HTML5 in Drupal

[84]

HTML5 introduces semantic elements which further help to structure a website
using markup. If we used to have the <div> elements with different classes or
IDs, which defined their purpose earlier, HTML5 provides new elements such as
<section>, <article>, <header>, and <footer>, now. Frontend developers, those
who are associated with developing client-side technologies, which run and render
in the user's browser, use the same <div> element approach to structure menus and
for navigation. HTML5 meets this requirement as well, by introducing elements such
as <nav> and <aside>, just to name a few.

Header

Navigation

Section

Article

Header

Content

Footer

Footer

Example of an HTML5 basic page skeleton:

Downloading the example code:
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf8">
 <title> Drupal HTML5 Examples </title>
 </head>
 <body>

 <header>
 <h1> Drupal Basic Skeleton HTML5 Page </h1>
 </header>

Chapter 4

[85]

 <nav>

 Recipz
 Memos

 </nav>
 <section>
 <article>
 <header>
 <h1> Recipe Content Type article </h1>
 </header>
 <p> Recipe content type article text </p>

 </article>
 <footer>
 <p> Read more articles here </p>
 </footer>
 </section>

 <footer>
 <address>
 email us at test@example.com
 </address>
 <p> Website created by PacktPub's Drupal 7 Media book
 users </p>
 </footer>

 </body>
</html>

When opening this in the browser, it will look as plain text, much like a
document. This is because we haven't included and made use of any CSS,
for styling our HTML code.

It's not all about new HTML elements, but also providing APIs for other features,
just to name a few:

• drag and drop, of objects into the browser
• playing music and videos, natively in the browser
• drawing graphics
• real-time communication between browser and server (beyond AJAX),

through web socket feature
• offline browser storage, structured and unstructured, beyond cookies
• geolocation
• application caching manifests

HTML5 in Drupal

[86]

It should be noted that HTML5 spec is still considered to be in draft, and there are
bits and pieces of it which are being decided upon, on-the-fly, much influenced
by how the web is evolving. Moreover, as with all the new things, insecure and
improper use of HTML5 properties may lead to security vulnerabilities, which
haven't yet been addressed.

Internet Explorer is likely to get the least score for supporting HTML5
features. IE7 and IE8 are definitely out of scope for HTML5, as they offer
very limited support. Latest versions of Opera, Firefox, and Chrome,
however, are considered up-to-date with most of HTML5 spec. Some
websites like HTML5 test (http://html5test.com), offer insight to
such information, as well as http://www.browserscope.org and
http://caniuse.com.

HTML5 form elements
You probably remember the times when we turned to JavaScript libraries to
implement a horizontal or vertical range bars. How about implementing a widget
for the user to input the time, colors, or even email addresses? We've always turned
to old faithful JavaScript, but not any more.

With HTML5, we gain semantic elements, such as the following input
element examples:

• A form input element for specifying a range:
<input type="range" min="0" max="100" value="50" />

• A form input element for specifying the time:
<input type="time" />

Chapter 4

[87]

• A form input element for specifying a color:

<input type="color" />

HTML5 media
It was not so long ago that Shockwave Flash technology by Adobe was not
supported on the iPhone. This had directly impacted the users—with the inability
to surf those websites, which depended on it, to stream content. This, among many
other reasons, gave merit to open standards, and the need to have compatibility
across the various end user devices such as tablets, smartphones, and desktops,
without vendor lock-in.

To understand this better, one needs to realize that music and movies were not as
popular as an on-demand service, a few years back. YouTube, which contributed
to the rise of video sharing, was founded only at 2005, and showed great potential
growth by late 2006.

Browsers were not equipped with the ability to play and manage the streaming
of video or audio media. Adding to that, the plethora of file containers and codecs
(you know these as divx, xvid, mpeg2, mpeg4, and so on), it's understandable
why this was a task that browsers did not take upon themselves. Adobe's Flash
technology and Microsoft's Media Server solutions dominated the video and audio
streaming capabilities that ruled the web, and as you know, users were mostly
dependent on installing the required browser plugins to consume this content.

HTML5 in Drupal

[88]

In the media arena, HTML5 provides the <video> and <audio> tags, which modern
browsers like Opera, Chrome, or Firefox support, and thus provide the capability
to simply specify the media resource file, and files will natively play in the browser,
without the need for the user to install a plugin in the client side, nor the website
builder to install streaming software in the server-side.

Example of using HTML5's <video> element:

<video
 src="my_movie.ogg"
 poster="my_movie.png"
 controls>
Your browser does not support HTML5's video media
</video>

The above code snippet of HTML5 markup specifies the following:

• src: The video source file to play, most probably this will always be a
resource on a remote server

• poster: The picture to display as the thumbnail of the video
• controls: Tells the browser to show movie navigation controls like back,

forward, and the timeline

Assuming you have provided a sample OGG movie and any PNG or JPG images will
do for the poster attribute. Adding the preceding code snippet of the <video> tag to
our HTML5 basic page skeleton from earlier, you should see something as follows:

Chapter 4

[89]

If the browser does not support playing video natively, the contents between the
opening and closing <video> tags will render, in our example, it will notify the
user of their browser's lack of HTML5 support.

Not every media format is supported using these media tags, and it's not just
about implementing every possible codec, but rather about promoting those which
adhere to good compression quality and low processor cycle demands, which is
an even stronger argument when mobile devices come to play. The current draft
suggests that browsers should be able to play Theora video, Vorbis audio, and the
OGG container format, and it prefers those which are patent-free for best cross-
compatibility thus freeing the user from license issues.

Nowadays, the formats used throughout the web are divided due to commercial
parties' interests. Google wishes to promote its own WebM format which is open
and free too, while Apple and Microsoft gain patent royalties from users of the H264
format. As site builders, you will often find yourself in a need to play well with all
browsers, and the video tags make this possible by allowing to specify more than
one source file and it's format, which browsers can then choose which out of the
listed items they support, and use that as the media source.

Containers versus Codecs
Codec, shorthand for compressor-decompressor, is responsible for
compressing data from raw input. This action is usually referred to as
encoding. The codec acts to decompress data too, which usually happens
when you're viewing a video or listening to an audio file. A container is
used to wrap the compressed data and all its metadata. Popular video
containers for HTML5 are H264 and OGG, along with their supported
codecs: H264, MP4 and Theora. Supported audio containers are H264 and
OGG, while their codec's support is: AAC, MP3, and Vorbis.

Example for support fall-back media:

<video
 poster="my_movie.png"
 controls>
<source src="my_movie.ogg" type="video/ogg; codecs=
 'theora, vorbis'" />
<source src="my_movie.webm" type="video/webm; codecs=
 vp8.0, vorbis'" />
Your browser does not support HTML5's video media
</video>

HTML5 in Drupal

[90]

Another way of dealing with browsers' support for different codecs
is to convert video media that has been uploaded to other supported
codecs. This requires a lot of consideration, such as infrastructure
availability due to CPU-hungry resources that such task requires as
well as storage capacity and bandwidth planning. Luckily, if you
want to add such capability there are a few Drupal modules that
can help with this: https://drupal.org/project/media_
derivatives and https://drupal.org/project/video.

HTML5 canvas
Canvas is a 2D bitmap drawing capability (3D canvas context can be used by Web
Graphics Library (WebGL)) that browsers provide and expose, JavaScript APIs, to
interact with. It's completely integrated into HTML5 documents, controlled using
JavaScript, and styled using CSS. As opposed to vector systems like Scalable Vector
Graphics (SVG), which is not part of the HTML5 spec, bitmap objects are drawn
non-layered, as a flat picture, thus modifying objects, already on the canvas, will
affect the entire canvas element.

Uses for canvas technology can vary from providing, in-browser, free-style drawing
(think Microsoft Paint in your browser), create games, and create graphs. All of
which is natively supported, within the browser, without requiring the use of
Flash or other third-party plugins.

Using the canvas feature is possible by simply stating a new element as follows:

<canvas height="800" width="600" id="freestyle_draw">
Your browser does not support HTML5 canvas
</canvas>

The canvas is only manipulated using JavaScript programming API,
which means that just placing the <canvas> element, as stated
in the preceding code snippet, will not give you a "whiteboard" to
draw on, but rather just prepares the ground for later JavaScript
work that needs to be done.

https://drupal.org/project/media_derivatives

Chapter 4

[91]

When it comes to drawing, you can think of the canvas as a Cartesian coordinates
system, where objects that are being drawn upon it, should be specified in respective
X and Y coordinates, along with width and height properties.

(3,3)

y

(0,3)

(0,1)

(0,0)
(1,0) (3,0) x

To experiment a little, let's add the following code snippet to our HTML5 basic
page skeleton:

<script>

//Controlling the canvas using javascript:
var canvasObject = document.getElementById("freestyle_draw");
var canvas = canvasObject.getContext("2d");

//Define the canvas background
canvas.fillStyle = "rgb(255, 0, 0)";
//Define the drawing color
canvas.strokeStyle = "rgb(255, 255, 255)";

//Draw a rectangle somewhere at the top
//fillRect(x, y, w, h)
canvas.fillRect(50, 50, 100, 100)

</script>

HTML5 in Drupal

[92]

This should produce a result as follows:

More ideas for what could be done with the canvas feature:

• Embedding images into the canvas, and manipulating them.
• Moving objects, because we can create and control everything in the canvas

using JavaScript API. We can animate graphics; this is how movies and
games are made.

• Canvas brings in new possibilities for web applications. To meet these new
standards, and provide tools to leverage such HTML5 features, game, and
drawing engines are being developed to accommodate this evolving future.

HTML5 resources
There are many resources on the web where one can find information about HTML5;
specifically, we chose to note the following:

• http://html5doctor.com: A website and a blog, which aims to educate
and promote HTML5 spec through articles hosting HTML5 elements
resource information

• http://caniuse.com: A website that provides information about desktop
and mobile browsers capabilities, around HTML5

Chapter 4

[93]

• http://www.html5rocks.com: A website and blog that is run by HTML5
advocates and web developers, who work at companies like Google,
deusingntART, Adobe, Incapsula, and others, who aim to promote
HTML5 through articles, tutorials, and other online resources

For those who wish to boost their HTML5 knowledge through the means of
professional and focused books, you can find the following books by Packt
Publishing, among many others:

• HTML5 Canvas Cookbook (http://www.packtpub.com/html5-canvas-
cookbook-recipes-to-revolutionize-web-experience/book)

• HTML5 Multimedia Development (http://www.packtpub.com/html5-
multimedia-development-cookbook/book)

• HTML5 Web Application Development by example (http://www.packtpub.
com/html5-web-application-development-using-css3-jquery/book)

HTML5 in Drupal
With the growth of HTML5, modules are beginning to ramp up. They utilize HTML5
features like support for a geolocation field, video and audio media elements, and
online drawing, through the canvas. It's not all about modules, but also themes are
already available to provide up-to-date support with HTML5 standards such as
responsive design through the use of media queries, structuring the HTML page
itself, and much more.

We'll examine a Drupal module, which adds support for some of the HTML5 fields
that we covered (it introduces other HTML5 capabilities, but we can focus on the
fields for now). The module is called HTML5 Tools and we'll download and install
Version 7.x-1.2 (http://drupal.org/project/html5_tools), but notice that it
depends on the module (7.x-1.3) too, which we'll need to download and install as
well (http://drupal.org/project/elements) for HTML5 Tools to work.

HTML5 in Drupal

[94]

After installing both modules we will proceed to add some HTML5 fields to the
rezepi content type that we've already created. Navigate to Structure | Content
Types | rezepi | manage fields (/admin/structure/types/manage/rezepi/
fields), and we'll begin by adding a range field for users to be able to specify the
amount of cooking time. In the Add new field row, we'll call the new field Cooking
Time, set the FIELD TYPE option to Integer, and choose Range Field for the
WIDGET column. Click on Save, in the field settings set Minimum to 1, Maximum
to 180, Prefix to 1, Suffix to 180 minutes, and click on Save settings. We've now
created a range field with allowed values of 1 to 180, and set the prefix and suffix
text to be used when the widget draws, so that the actual range that is being used,
is clear to the user.

Chapter 4

[95]

For the sake of an example, we'll add a number field to be used for the oven
temperature degrees. In the content type's configuration page add a new field
Cooking Temperature, choose the Integer option as FIELD TYPE again, and now
set the WIDGET column to Number field, and click on Save. We can set the field
settings as, Minimum to 1, Maximum to 300, which guides the user regarding the
range of values to be typed in.

HTML5 Tools module provides other fields too. If you look closely on the Text
field type, you can see that we now have some new options such as Email field,
URL field, and Telephone number field. If you're wondering what's the point of
a telephone field then think of mobile devices, if they detect a telephone field type
then the keyboard that will pop up on the mobile device will be all digits. It's more
convenient to the user, and also less error-prone.

Let's add a new rezepi content type and see the new fields in action:

HTML5 in Drupal

[96]

Like we mentioned earlier, HTML5 Tools comes with more options to make your
Drupal site HTML5-ready than just form fields. These options can be configured in
Configuration | Development | HTML5 Tools (/admin/config/development/
html5-tools), and they feature a settings which hook into the page layout and
modify how the HTML page is structured. Some of these options modify the
<html> tag, others just clean out the <script> tags:

Chapter 4

[97]

For the rest of the book it might be best if you disable HTML5 Tools module as
it may conflict with the theme we have already enabled, which supports HTML5
standards, so at the very least, there's no need for both of them installed with their
default configuration settings.

A canvas playground
If you ever wanted to add a feature for drawing in your site, or even possibly, create
a web application all around the ability to simply draw, then we're going to explore
this functionality.

Some ideas for web applications related to drawing:

• Provide a mechanism to digitally sign on everything. With the rise of mobile
and tablets adoption, now more than ever, what used to be just a website
operated by a mouse and keyboard to navigate, are now getting the stylus
and fingertips, dimension which spices up things.

• Provide the ability to simply draw. That sounds too ordinary for you?
Something that is too easy? Well, the mobile app Draw Something, will
disagree, and it has popularity and download statistics, to back it up. Just
spice up your web application with some gamification, social networking
sharing, and you're probably on your way to forming a cool web application.

After we've established that, there are at least some use cases for using an in-browser
drawing capability, let's start leveraging that to our own needs, starting with
installing a module that should do the job: Canvas field.

As always, we'll need to download the Canvas field module (http://drupal.org/
project/canvas_field), and install it. At the time of writing this book, there's only
a development version available (7.x-1.x-dev) so we'll use that. Download, unpack,
and enable this module, either manually, using Drush, or by using Drupal 7's GUI
for installing modules.

Creating a content type for the canvas field
Our plan is to go with the signature idea, enabling users to supply their signatures
when creating content. The use case will be as follows: a user uploads a document,
like an NDA (Non-disclosure agreement), for example, which require other parties
to provide their signatures after they reviewed the document.

The Canvas field ties into this requirement very closely because under the hood it
introduces a new Drupal field type, which we can add to a new node content type
that we will create.

HTML5 in Drupal

[98]

Based on the above, we will name our new node content type DigiDoc because it
sounds cool, and fits well with our description of the use case. Aside from the usual
title and description fields, it will need to have a file upload field to store the actual
documents, and then an unlimited amount of Canvas field instances, so that we can
collect more than one signature.

We won't cover the step by step actions required to create this content type as you
are probably familiar with this process by now (you could quickly read through
Chapter 1, Drupal's Building Blocks to remind yourself of how we went about doing
this). A quick look into our almost ready DigiDoc content type, which lacks the
canvas field (we will focus on that in a minute), is as follows:

Our next field will be named Signatures and it will use the Image field type, and for
the widget we'll use the newly provided option, Canvas Widget, and click on Save.

You may now see the initial and short, FIELD SETTINGS page, continue with that
by clicking on Save field settings, which will bring us to the field settings page to
update all of the settings.

Chapter 4

[99]

Except for the default settings that we know, such as setting a Help text field for this
field (which in our case is probably something you should know, to make it obvious
to the user), or toggling the Required field option to on or off, the canvas field
module added a few more settings here, first of which are the STYLE settings which
determine the canvas size, colors, and overall layout. It's probably good to choose a
canvas size that is small, and fits a rectangle shape that resembles a signature field
that you see in documents.

The latest version of the canvas module has a bug where the color settings
it accepts for Background Color and Border Color, must be prefixed with
the hash (#) tag, and not as stated in the example, yet the input text is
limited to 6 characters only. The workaround is to specify the hex color
code using the shorthand notation using only three characters, including
the hash tag, that's four, and it will work ok. A bug on this has already
been opened, and a patch exists in the issue queue.

HTML5 in Drupal

[100]

We'll also toggle on the Allow Color Selection checkbox to spice up the signatures.
This can actually open up a cool feature in your web application where the users
that sign get a unique color each .Next set of options that the canvas field module
provides, allow to define the behavior of the canvas field when adding or editing
content. With the default settings, when adding a new DigiDoc content the canvas
field will actually render as a drawable canvas, while when editing an existing
DigiDoc content the canvas field will render as an image that would not allow
for editing the already-drawn canvas picture. The defaults are ok for now so we
will continue with the suggested behavior, where a signed picture turns into a file
download and is not editable after submitted.

Lastly, to meet our use case of allowing more than one party to sign the document
we will need to set the Number of values field at the bottom of the screen to
Unlimited, and then click on Save settings.

Creating a new DigiDoc
Now we're ready to start using our new DigiDoc content type.

To add a new DigiDoc navigate to the Add content page (/node/add) and click on
the DigiDoc content type to proceed with creating it.

Set the Title and Body fields with some text for our new DigiDoc:

Chapter 4

[101]

Next field is the file upload Document field, which as you can see I've set it as
a required field when configuring this content type, as well as configured some
common file extensions for the Allowed file types setting:

And finally, the canvas field module lives up to the promise of providing in-browser
drawing capability:

A couple of things you can notice straight away about the canvas drawing board:

• It is set to the height and width that we configured when creating the
DigiDoc content type

• It includes basic drawing tools like the pencil, a button to clear out the canvas
completely, and buttons for changing the background and foreground colors
(which we also enabled and configured earlier)

HTML5 in Drupal

[102]

I bet you are goofing around now with the drawing board! And to think you
thought, what's the fun in that, just a short while ago. So take your time to work
on that vice-president signature of yours, and when you're done, instead of
submitting the form we'll click on Add another button to see how easy it is to
manage these signatures.

After clicking on the Add another button, our drawing was saved as a PNG picture
and uploaded to our website, and it's been added to the SIGNATURES listing,
which features a thumbnail of the picture that shows our signature in a smaller
form scale, and options to Remove or Edit it.

Chapter 4

[103]

Assuming we want to change the signature we've just saved, let's click on the
Edit button:

The Edit button renders the picture right there in the SIGNATURES listing, and
allows you to make changes. You can notice that while the drawing toolbar is quite
thin on features, it's just a matter of extending it if we choose to. Moreover, now
when you're actually doing the drawing, you can notice the big difference between
Canvas and SVG, where Canvas is just a flat drawing board, as opposed to SVG
which is layered and you can make discrete changes to objects on the drawing board.

HTML5 in Drupal

[104]

Once we're done playing around with the signatures, let's click on the Save button,
and see how it looks like in the full node view:

Summary
In this chapter, we learned about HTML5 spec, why the web needed it and how
to make use of the spec to create, cross-browser, compliant HTML code in Drupal.
We furthermore dived into the canvas feature of HTML5, which enable browsers to
render picture drawing support with no additional third-party components. With
this knowledge, we have even created our very own signature management
web application.

In the next chapter, we will look at video support and management in Drupal,
and adopt other HTML5 spec features to aid in providing consistent video
playing support across browsers.

Video Capabilities
In the previous chapters we've talked much about images, and using them in
various ways—from embedding them in WYSIWYG editors used by content
authors, to creating image galleries. Let's start exploring the use of videos
as well, in all of its aspects.

In this chapter, we will cover:

• Adding videos to your site
• Using videos which are both locally hosted on your personal Drupal site as

well as hosted on remote services such as YouTube
• Creating video galleries and playlists

With the rise of storage solutions and available capacities, in addition to the
increased bandwidth in every house-hold, the popularity of on-demand rich-content
media, such as videos, was a sure thing to come. Whether it's video on-demand
solutions to stream TV broadcasting, or Internet websites such as YouTube which
contributed to this evolution, it is definitely more than a mere trend. To put this in
perspective, YouTube started with 100,000,000 daily video views in 2006 and saw
growth to a massive 4 billion daily video views by 2012.

The ability for every house-hold to enjoy high-resolution video content is not
confined only to the movies industry but it is also changing education. Nowadays
one can freely and easily attend MIT's or Stanford University's classes through the
web by simply accessing their recorded class sessions through their websites.

Video Capabilities

[106]

Adding videos hosted on third-party
websites
In most cases, if your website is not about hosting video content there is almost no
need to enable users to upload videos to your website. Instead, you would rather
be more interested in providing the best interoperability as possible with other
third-party websites such as YouTube, so that your users can share video content
from such popular websites.

In this section we will explore how it is made possible to integrate with other websites.

Creating our video content type
Most commonly, users will want to link, embed, or include in some way, videos that
have already been made available through third-party websites, such as YouTube,
Vimeo, and Metacafe.

Our use case will be to create video content around the music industry, such as
sharing videos of favorite bands. Some ideas on how you can take this concept
forward and develop it further are as follows:

• By adding social features such as rating, thumbs-up, and some gamification
where you can create a sort of band-battle where two bands's video-clips are
placed one besides the other and users can vote which is better.

• With the surplus of cover song videos on YouTube, maybe it requires its own
niche website? Create a website dedicated for cover songs by artists.

• Create a social networking website where bands form the main entity and
give them tools to manage their band, tour dates, band members personal
blogs, fan club communication and, so much more can be added.

We have previously introduced the use of the Media module and its companion
Media Gallery which helped us create and manage image-based content. These
basic modules will continue to serve us for the video content as well as other media
content in following chapters.

Building on the Media module, we require integration with additional modules
to bring support for embedding content from third-party websites. With YouTube
being a popular resource for video media we'll make use of the module that provides
this integration. We'll start off by downloading and enabling the Media: YouTube
module (http://drupal.org/project/media_youtube).

Chapter 5

[107]

The Media module strives to provide APIs for modules to integrate with,
using its Media Internet Sources module bindings, to enrich its media
functionality. The Media: YouTube module is one of those but it's not the
only one. There are dozens of other modules available on drupal.org to
provide this integration that you might be looking for, some of which are
TED, Flickr, Facebook, and Vimeo, just to name a few.

To share a band's music videos we'll create a new node content type called Vidz
which aside from the usual title and description field will also have a field to include
videos. Go to Structure | Content Types | + Add content type (admin/structure/
types/add) and after naming this new content type Vidz (you may choose your own
cool name for it too) and click on Save and add fields which will take us straight to
the MANAGE FIELDS tab for this content type so that we can get to work.

We'll call our new field Video (it's generic enough to accommodate future changes
too to our site's purpose) and choose the Multimedia asset field type along with the
only widget available for that right now, which is Media file selector as shown in the
following screenshot:

After clicking on the Save button we're headed over to the general field settings
page, as usual we'll continue forward by clicking on Save field settings to edit the
actual field's settings.

Video Capabilities

[108]

We'll need to configure the field settings for enabling video content from YouTube
for our users, first of which is the Enabled browser plugins as shown in the
following screenshot:

There's no interest for now to allow users to upload video files but only to link them
through sites such as YouTube, which is the only integration bridge we enabled at
this point. So the only options you should toggle on for this setting is the Web and
YouTube browsing options, when the media browser pop-up dialog shows up.

Next we will allow specifying only video content type links so Video is the only
option that is toggled on as shown in the following screenshot:

Chapter 5

[109]

For the Allowed URI schemes setting we'll toggle off the public:// option so that
users would not be able to link to videos that have been uploaded somehow to our
local Drupal site (at least, we're not interested in that for the time being) as shown in
the following screenshot:

Leaving the default setting for Number of values field of 1, we're now done, so click
on the Save settings button and let's navigate to creating a new Vidz entry via Add
content | Vidz (/node/add/vidz).

Adding a new video using the YouTube
browser
In the Create Vidz page, scroll down to the Video field and click on Select media to
review our media browser options as shown in the following screenshot:

Video Capabilities

[110]

Because we enabled the YouTube browsing options when we configured the Video
field earlier, it's now available for us and provides very basic browsing through
YouTube videos right there in the tab. Type-in a search text and click on Apply,
let's see how results render as shown in the following screenshot:

I've typed in dream theater, one of my favorite bands and always a good choice for
me as background music when I write code. Because we've enabled only one value
to be chosen it's impossible to multi-select a couple of videos. If you want to keep
navigating the search results click on the next link, otherwise select one of the videos
and click on Submit.

If you're wondering what are those random characters beneath every
video then these are the video ids as they are saved by YouTube, unique
for each video.

As you probably remember from previously working on images with the Media
module, it provides further addition of fields to media assets, in our case it added
Title, Description, and Tags fields as shown in the following screenshot:

Chapter 5

[111]

Once we have filled in all the details and clicked on Save for the selected video we
can see that the Media module also took care of grabbing a thumbnail for the video
which makes a nice addition when this gets displayed later on in various display
modes as shown in the following screenshot:

Video Capabilities

[112]

And finally, when viewing our Vidz content in full view display mode, the video
we chose renders into YouTube's embedded player, including a thumbnail preview.
Clicking on the player's play button will start streaming the video straight from your
Drupal site as shown in the following screenshot:

Chapter 5

[113]

Adding a new video using URL
While browsing through the YouTube browser option for adding videos seems like
a nice feature, and it is, it's still not functional enough for users to really make use of
it. For example, you can't play the selected video from the browsing pop-up dialog
box. Picking and choosing the video you need, unless you know exactly which video
you're looking for just by the thumbnail, this will be rather hard.

For this reason, most chances are that you've got a YouTube link for a video,
or simply the video itself opened in another browser tab or window. From that
point, the easiest thing to do is simply to copy and paste the URL. Let's see how
that is done.

Create a new Vidz content type or simply edit the one we had just created (I chose
the latter as it's simpler). Clicking now on the Select media button and choosing the
Web tab in the popup dialog we can specify the URL for the video, just as it shows
up in our browser's address bar when viewing the video from YouTube's website as
shown in the following screenshot:

Notice how the Web tab also lists the allowed providers, from which you can copy
and paste a URL. Using YouTube is possible because we installed the integration
module for it. If we wanted to support more third-party video providers, we can do
it by installing their related modules and all of them will be listed to notify the user
which providers are supported.

Video Capabilities

[114]

After clicking on Submit we see the same video settings form which sets all the
fields, although notice how when using the URL copy and paste option the video
name was already retrieved for us:

Embedding videos in WYSIWYG editor
It might be desired for content authors to embed videos using the WYSIWYG editor
and placing these media resources and styling them in their own way, around their
text. Because we have previously enabled the Media Browser functionality and
integrated it with our CKEditor WYSIWYG editor we gain this functionality now
with zero effort.

Create or edit an existing Vidz content type entry and switch the Body field to
use the Full HTML option for the Text format field. Now the plain text area input
field should have rendered into a rich text editor and the Media Browser button
is available. Clicking on it, will open the Media Browser and allow you to add
YouTube media as we've done before with the dedicated video field, so we
won't be going over this procedure again as shown in the following screenshot:

Chapter 5

[115]

You may have noticed that the Media Browser popup dialog shows all available
options to add media, whether it's the YouTube and Web tabs that we've just been
using or the other options like Upload and Library tabs which we've seen when
creating images before.

You may be wondering why this happens because when we configured the video
field for the Vidz content type we strictly defined which Media Browser options to
display. The answer is that this happens because the Media Browser WYSIWYG
editor button is de-coupled from the fields that are assigned to the content type or
their configuration. The configuration for the Media Browser WYSIWYG editor button
happens in a site-global configuration option at Configuration | Media | Media
browser settings (/admin/config/media/browser) which probably looks as follows:

Video Capabilities

[116]

As you can see, the Enabled browser plugins options are all toggled off, which
means that all of them will be showing up. If we had wanted to only display the
Web and YouTube tabs on the Media Browser dialog then we need to select them
(and possibly also remove the Image and Audio options from the Allowed types in
WYSIWYG field). Consider carefully if this is the desired configuration for your site
because these settings apply site-wide to all content types that the Media Browser
WYSIWYG button appears for.

Customizing videos
Being able to add videos to your Drupal site is nice and it really opens up lots of
possibilities but this functionality out of the box may not be enough at times.

You may often find yourself required to extend videos with your own custom fields
that suit your content type target audience, or if you're using a third-party videos
provider you may want to customize the look and feel of the embedded player for
that provider.

Customizing video fields
Due to the Media module providing us with file-type specific configuration, we can
take advantage of that, and configure each file type's behavior and setup. Between
extending its fields, to managing its display mode, we gain pretty much complete
control over how these media resources are handled.

The fact that the video field we created is actually a File entity, allows us to extend it
with our own fields that will attach to the video that the user provided. In our case,
we'd like to extend the default Title, Description, Tags, and License settings for
this audio fields for a Video file type with some of our own which are relevant to
music videos.

Targeting for music videos, there are some obvious fields for us to add, such as
the year it was recorded, whether it was recorded at a studio or a live performance,
the music composer(s) and the lyricist(s).

Chapter 5

[117]

To manage the Video file type fields we'll navigate to Structure | File Types |
Video | manage fields (/admin/structure/file-types/manage/video/fields)
as shown the in the following screenshot:

We'll add our own fields, as mentioned previously and the final fields configuration
is as follows:

Video Capabilities

[118]

When adding a new YouTube video now, the fields settings options which show up
before we save the video would be as shown in the following screenshot:

Some ideas for more fields if you wish to build on this are as follows:

• Band members: A field with a list of band members in each music video, you
can then link to their user profile page on your site, and users can rate them,
leave comments on their wall. Each band member can have a history of the
bands he was on, tours, and so on.

• Rig: Bands can include the rigs their using, whether it's drums, keyboards,
amps, guitars, guitar pedals, and so on. This will probably attract interest for
more discussion around each of them and it may even pave the possibility
for a business model around sponsored ads for each manufacturer.

Chapter 5

[119]

• Location: By adding a location field you can then provide suggestions to
upcoming shows or history of shows and bands in that location. Show these
items on a Google Maps layer (yes, there's a Drupal module for that too), add
some location-specific analytics and this begins to take on a really cool form.

Customizing video display modes
While the full node view of our Vidz content type shows the embedded YouTube
video, this may not be the case for all display modes. If you were hoping to create
views later on for this content type or even just simply take a look at your site's home
page you would have noticed that there's no trace of media attached to this content:

Video Capabilities

[120]

To solve this, we'll need to make some modifications by heading over to the Vidz
content type display settings at Structure | Content Types | Vidz | manage display
| Teaser (/admin/structure/types/manage/vidz/display/teaser) where you
can see the Video field is actually hidden. To fix this, we'll drag-and-drop the Video
field below the Body field using the arrows icon to the right of the row. At this point
we can also hide the Video label as it's really not contributing anything if the video
is already showing up there. Once you're done click on Save, and your configuration
for the teaser display mode should look like the following screenshot:

Because we chose the Default file view mode, if you go to your site's home page
you'll see that the video shows in full, including all the Video fields we added
earlier (Year, Performance Type, and so on). Not exactly what we hoped for, possibly
a bit too much information for a content's teaser view. To fix that we'll go back to the
manage display page we were on and click on the gear icon to the right of the Video
column and choose one of the available options:

• Default: It shows a full width of the video as you'd see it if you clicked on it,
including all of the configured Video fields.

• Teaser: It shows the video in a slightly smaller size, and allows playing it
from the view listing without requiring to see the full node view. It will not
list any fields attached to the content.

• Preview: It shows a thumbnail of the video, no attached fields, and no ability
to play it from that view either.

If you installed the lightbox library from earlier chapters then you'd probably see a
bunch of display options that it provides too.

Chapter 5

[121]

It would probably be best to either choose the Teaser or Preview mode from the file
view mode options, remember to click on the Save button after you select one of the
options to save the display mode settings.

Customizing YouTube player
If we had wanted to further customize the display mode options it can be done
pretty simply. Let's modify the Preview file view mode with our set of fields and
further even customize the YouTube player settings.

Navigate to Structure | File Types | Video | manage display | Teaser (/admin/
structure/file-types/manage/video/display/teaser) and drag-and-drop
the Year and Performance Type fields below the File field and change their Label
column setting to <Inline>. For the sake of simplicity, we chose an integer field type
to represent the year but in practice it would have made a better choice to use a date
field module (one that is based on HTML5 too makes an even better choice). Because
of this, the formatter for the Year field display is probably one of space, decimal
point, or comma, as a thousand marker but we're not really interested in any of
these for this case so we'll click on that gear icon to configure it and set this option to
<none> and click on Update, followed by Save as shown in the following screenshot:

Video Capabilities

[122]

We'll next jump to the MANAGE FILE DISPLAY tab (/admin/structure/file-
types/manage/video/file-display) and click on the Teaser tab inside the page
to configure the teaser view mode for video type fields. Let's figure out what this
configuration is all about:

The Enabled displays lists the available options to format the file view. For example,
if the field was an image it would have made sense to use the Image display option
or, if you had wanted to simply place a link to the file you could have used the
Generic file display or maybe the URL to file option.

In our case, the YouTube Preview Image and YouTube Video options are set, where
the former is used to simply display a thumbnail view of the YouTube video and the
latter is the actual display formatter that renders the YouTube video into an actual
playable content.

Why both of them are enabled you may wonder. The idea is that we can set a
fallback logic using the Display precedence order setting, which shows that if the
YouTube Video field is available and working, then use that, but if that module may
be disabled, or some error that causes this display format to not render the content
then it falls back to the YouTube Preview Image format and will just display a
thumbnail of the video. This allows a graceful fallback mechanism when rendering
the display formatters.

Chapter 5

[123]

The second part of this configuration page provides the display formatter-specific
configuration, that is, Display settings. Starting with the YouTube Preview Image
field, we're able to select which Image style to use. We've visited this configuration
previously when we worked with images, and this setting basically allows you to
define the image style (at /admin/config/media/image-styles) which commonly
defines the dimensions an image will be scaled to and possibly apply some other
image effects too as shown in the following screenshot:

Next in the vertical tab options is the YouTube Video display settings. There, we can
really fine tune how YouTube's embedded player behaves and looks like.

Beginning with the width and height settings, we can tune the teaser option to
a smaller dimension, like that of a thumbnail image for example. Basic theming
functionality allows us to define the overall theme color of the player – black or
white and progress bar color and functional buttons during playback. More options
that the Media: YouTube module provides allow to further tune the player's settings
yet they're pretty self-explanatory so we won't dwell on covering each of them
(except possibly the last JavaScript API related option which enables programmers
to interface with YouTube for further fine-grained control over the video player's
behavior as shown in the following screenshot:

Video Capabilities

[124]

Once we save these settings, let's visit our site's front page and see how our changes
affect the content type's listing look, specifically for the Vidz content type:

Adding videos hosted locally
Having good integration facilities with third-party sites around your niche content,
and sharing capabilities are pretty basic features you will find in most apps today.
You may still want or even need to provide your users with the ability to upload
their media content to your site directly.

Uploading video files to your site means that the media is right there in your
website to play, but how will you play it? Pre-HTML5 era browsers had to rely
on third-party plugins such as QuickTime to play Apple's MOV format, or Adobe's
Shockwave Flash format to play the popular SWF format. Due to the fact that movies
are naturally not encoded in any of these formats but rather using popular codecs
such as DIVX, XVID, MPEG2, or MPEG4, it required to transcode videos from their
original format to SWF to be playable over the web, which then introduced demand
for more resources (transcoding is a CPU-intensive task).

If all that sounds a bit scary and complex, do not worry, because HTML5 is here
now! It pushed browser vendors to provide built-in support for agreed-upon video
formats. With this video playing support, browsers provide JavaScript-based API to
interact with the media in play. As with everything around open source and open
standards, this spawned a myriad of JavaScript libraries wanting to tap into this
and feature players that can be skinned, tweaked, and customized in many ways.

Chapter 5

[125]

Not blind to this, Drupal's modules eco-system soon enough offered relevant
solutions, probably most popular are the MediaFront and MediaElement modules,
which offer HTML5 video playing, and even feature fallback for Flash capabilities
for browsers which lack proper HTML5 support.

By providing HTML5 media players in your site you're giving
guarantee that mobile devices like smartphones and tablets are
mostly supported too.

Installing an HTML5 media player
It's a tough choice between media players, each with its own strength. The
MediaElement module has better integration with the Media Gallery module
so we can seamlessly create galleries, even mixed kinds with pictures and videos,
but it isn't as advanced as MediaFront which is packed with advanced theming
administration support out of the box, support for playlists and many more.

We'll be using Drupal's MediaElement module which is a light-weight
HTML5 video and audio player, based on the MediaElement.js library
(http://www.mediaelementjs.com) and out of the box provides great
customizing capabilities, support for playing both video and audio, and fallback
for Flash. All of which, makes it a pretty decent selection as our media player.

Because the MediaElement's Drupal module depends on the actual MediaElement.
js JavaScript library we'll need to get that, so we're better of starting with that one.
Surf over to http://www.mediaelementjs.com and download the latest edition
(at the time of writing the book this was 2.11.0) and place it in the sites/all/
libraries/ directory. If it downloaded as a master filename, that's ok, simply
unzip it however it is named and rename the directory it unpacked to (probably
something like johndyer-mediaelement-3ee7a7d) to mediaelement. End result
is that the MediaElement.js file should exist in this path sites/all/libraries/
mediaelement/build/mediaelement.js.

Download the MediaElement's module (http://drupal.org/project/
mediaelement), unpack, and enable the module as always, via your favorite
method of installation. The module depends on the Libraries API module as
well, (http://drupal.org/project/libraries) so download it too and
enable both of them.

Video Capabilities

[126]

At this point, we're ready to test that everything has been installed correctly.
Navigate to MediaElement's module configuration page at Configuration | Media |
MediaElement.js and you should see a playable video. If you see it and it plays well
then everything has been installed correctly and if you inspect that page a little closer
you can see that it's playing an MP4 file that's located on your site and has been
included in the MediaElement.js library when you downloaded it as shown in
the following screenshot:

The only real configuration item that the MediaElement module provides is whether
or not to include the MediaElement.js library in every page load, which is probably
not required, unless you're really using it with your own custom code/modules.

Uploading videos and playing them
Even after installing the required modules, if we were to actually upload a video
to our Vidz content type, even if this may have been possible to do, we did not
configure a file display format to render the uploaded file with an actual media
player and it would just render out as a link to the file.

First we need to edit our content type and enable file uploads. Navigate to Structure
| Content Types | Vidz | manage fields and click on edit on the Video field row
(/admin/structure/types/manage/vidz/fields/field_video).

Chapter 5

[127]

Because we have previously only worked on having video files play from third-party
hosting providers using their APIs, we did not yet enable the option to upload files
to our Drupal site. To fix that, let's change the Allowed file extensions for uploaded
files field to include video formats and also the Enabled browser plugins so that
we can have the Upload and the Library tabs in addition to embedding files from
external sites such YouTube as shown in the following screenshot:

In the same page, we'll also allow the public:// scheme which means we can
reference files located in our local Drupal install:

Video Capabilities

[128]

Now it's time to tell Drupal how to render video files which are hosted locally.
Navigate to Structure | File Types | Video | manage file display and for the
Default file display mode we'll also toggle on the MediaElement Video display
option as shown in the following screenshot:

Chapter 5

[129]

You will notice that once the MediaElement Video display has been enabled,
it also added Display settings for it, much like we had seen with the YouTube
Video display settings, where we can decide whether it will feature the controls
bar, width and height dimensions, and possibly a download link too as shown in
the following screenshot:

When you're satisfied with this configuration click on Save. Do the same process
for the Teaser, Preview, Gallery Thumbnail, and Gallery Lightbox tabs too, as this
will serve us later. For the Gallery Thumbnail display you might want to adjust the
width and height settings to match the image style for it too.

All configuration is finished and we're ready to play locally hosted video files.
Create a new Vidz content, you'll notice that when selecting media you're now
able to upload a new file or choose from existing files in your library, along with
the option to still embed videos from YouTube.

Video Capabilities

[130]

Once you have submitted the video, you can see already MediaElement's video
player in action when saving the video format fields that we've setup earlier:

And finally when saving this Vidz entry you will also be able to play the video,
whether in full node view or in teaser or preview modes (if you have indeed
enabled the video player display format when we've set this up).

Galleries and playlists
Just as we've seen with pictures, we can create collections of videos and put them in
a gallery, with slideshow, and so on. Unlike pictures, with videos it comes handy to
provide a playlist where users can create their own personal watch list.

Chapter 5

[131]

We will explore a couple of ways to enhance plain video content by adding galleries
and playlists features.

Video galleries
Much like with images and thanks to a seamless integration of the MediaElement
module, whether it's third-party hosted videos or locally hosted videos, we can
make use of the Media Galleries module to create video galleries too.

First, we need to make sure that the Galleries content type which the Media Galleries
module created is able to support video media. While it's possible to create yet
another Galleries content type that will be used for video galleries, for simplicity's
sake we can go ahead and edit the existing Galleries content type, the configuration
remains the same.

Navigate to Structure | Content Types | Gallery | manage fields and click on edit
on the Gallery Media field (admin/structure/types/manage/media-gallery/
fields/media_gallery_file)—this is the actual field that is being used when
adding any type of media to a gallery. For the Enabled browser plugins we can
toggle on all required browsing fields but because we want to be able to both upload
files as well as embed files from third parties which is basically toggling on all of
the options, it's ok to leave none of them toggled on, as it is by default, which means
that all of them will appear. If the Allowed file extensions for uploaded files field
is missing video formats you'll need to specify them. Make sure Allowed remote
media types field has the Video option toggled on, and Allowed URI schemes
field allows for both public:// and youtube:// URI schemes.

If you hadn't configured the MediaElement Video display format to render in the
MANAGE FILE DISPLAY page (/admin/structure/file-types/manage/video/
file-display) as we did earlier when setting up the MediaElement module then
consult the Uploading videos and playing them section and make sure it's enabled.

Let's begin by creating a new gallery for band videos at Add Content | Gallery
(/node/add/media-gallery). Add a Title and customize the gallery settings, look
and feel to your liking and click on Save. Now that the gallery has been created, it's
empty so click on Add media and try adding both an upload video and later on a
YouTube video.

Video Capabilities

[132]

Congratulations! Finally this should look as follows, including a slideshow and
lightbox functionality when clicking on each video:

It doesn't really matter what type of media is involved, pictures, video
or audio, you can really blend all of them together in the same gallery.

Video playlists
The MediaElement module doesn't have built-in support for playlists, so we'll be
using Drupal's MediaFront module, which is based on the Open Source Media
Player library (http://www.mediafront.org/osmplayer) and out of the box
provides great customizing capabilities, support for playing both video and
audio, and fallback for Flash. All of which, makes it a pretty decent selection
as our media player.

Installing the MediaFront module
Download the MediaFront's module 7.x-2.x's branch (http://drupal.org/
project/mediafront), unpack and enable the module as always, via your favorite
method of installation. The module ships with some sub modules so make sure you
enable all of the following: MediaFront and Open Standards Media Player, both of
which are listed in the Modules page (/admin/modules).

Chapter 5

[133]

The player which MediaFront displays for media content can be customized to an
overwhelming degree. It allows to create player configurations, called presets, which
can be assigned to different content types, their fields, or even display modes. For
example, you may want to display a very small player window, without any controls
and have a specific look and feel, all of which when you're viewing a teaser's node
view. But when viewing a full node's view you'd probably want to see it in a bigger
screen size, maybe even play a video file before playing the actual uploaded video
(for example, playing a sponsored commercial), and so on.

Configuring the MediaFront module
When the MediaFront module installs, it doesn't create any such preset by default
so we'll need to create one before doing anything else. Navigate to Structure |
MediaFront Presets | ADD PRESET (/admin/structure/mediafront/add) and
give the preset a name and click on Next as shown in the following screenshot:

Video Capabilities

[134]

Moving on to the next screen we see the many configuration options that the preset
allows to set for this player:

The PLAYER SETTINGS field set features the important parts of the player
configuration, some of which are as follows :

• Presentation Settings: Due to MediaFront's integration with jQuery UI
it allows setting the player's theme to match that of jQuery's. It further
more allows to create custom templates, as well as other player
presentation options.

Chapter 5

[135]

• Media Settings: It define the behavior of the played media, whether to
play a specific media file before or after the main media file (that which is
contained in the upload field), as well as the default volume and default
loading options, for example, Auto Load will have the browser request the
media file from the server, which may not be the best thing to do in terms of
bandwidth consideration if you're going to use this preset for displaying a
list of 10 or more items.

• Playlist Settings: It enhances the playlists support, look, and feel, and play
behavior, such as whether media files should automatically play when a
previous file ends, or if the playlist should randomly selects media files
to play.

There are more settings which you can easily browse through and customize to your
own extent.

We will create two presets which we will make use of later on: one preset will be a
large video player view so it's ok to leave the defaults sizes (100 percent width and
450px height) and the second preset will be used as a thumbnail player so that it
doesn't take a lot of screen real-estate and we can display a listing of more than just
one or two (you can probably name that second preset player_thumbnail).

Once you're satisfied with the player settings click on Save Preset and we'll get on
with our demo.

Creating a content type for the MediaFront videos
To demonstrate the use of the MediaFront's module, we'll create a new content type
called Concertz which will list concert music videos. For our video field, we won't
use Media module's Multimedia asset field type, but rather the File field and set the
widget type to Media file selector (so we can still make use of the Media's uploading
and library browser type interface). The field's configuration should look as shown in
the following screenshot:

When you're ready click on Save followed by another Save field settings for the
intermediate field settings page.

Video Capabilities

[136]

Due to the way that the MediaFront module attaches to content type's in the
field level, you may notice that we've got some new configuration options now
that is, MEDIAFRONT SETTINGS. We can choose out of a few of options to let
MediaFront figure out what kind of media is this File field all about, so for our case
we'll set it to Media, and make sure the default Media Content option is set for the
Media Type field as shown in the following screenshot:

Also, make sure that the Allowed remote media types field has the Video option set,
and Allowed file extensions for uploaded files field has some videos formats listed,
some options are MP3, MOV, MP4, M4A, M4V, MPEG, AVI, OGG, OGA, and OGV.
When you're finished, click on Save.

Using the file field we added our Concertz field for us to upload files but we haven't
yet told Drupal how to render this field. If you can recall from previous sections,
without specific display configuration, an uploaded file will simply show up as a
link to download it. So let's fix that – navigate to the MANAGE DISPLAY tab of the
Concertz content type (/admin/structure/types/manage/concertz/display)
and set the FORMAT column for the Video field to use MediaFront Player and then
click on the gear icon to configure the settings for format and choose the preset that
we created. Finally, the MANAGE DISPLAY tab should look as follows:

Chapter 5

[137]

After saving our new Concertz content type let's create a few content items
with it which will compile our playlist. A successful configuration will yield
the MediaFront's video player rendering when the node is viewed as follows:

Video Capabilities

[138]

Creating a Views-based playlist
The MediaFront module doesn't play well with the Media Gallery module but that's
fine, as at least it plays pretty well with the rest of Drupal's, and specifically with the
Views module.

With the use of Views we can create galleries of videos, or even playlists. Due to
MediaFront's module awareness of the view's structure, such as which items it
is displaying, as well as which fields are being displayed, it enables a very aware
integration of filters and other view handlers to be used in a view and much
associated with the actual content that's being displayed.

We'll create a view that lists all Concertz content type items in a grid view mode.
It will make use of the player_thumbnail preset we created but we'll also add
MediaFront's global player handler to play all the videos in the view. By doing that,
we actually turn the view listing to be the playlist itself. To begin, we'll navigate to
Structure | Views | Add new view (/admin/structure/views/add) to add the
view and fill-in the basic settings, such as the name of the view, what kind of content
type are we listing, and the display format which we set to Grid of fields instead of
the default option. Click on Continue & edit to further fine-tune the view's settings
as shown in the following screenshot:

Chapter 5

[139]

By default, the grid display format uses four columns, which is too large for our
theme so in the FORMAT field set we clicked on Settings next to the Grid option
and modified the Number of columns to two instead of four.

You can click on Save now and see a preview of how the view will look like in the
bottom of the page. At this point it lists just the basic fields of each item, we'll add
the Video field there too so that it adds a bit more color to our view listing.

Instead of having a player render for each content item, you could
also create another field for image uploads to Concertz content type
to be used as picture covers for the videos, and then list the grid with
the picture cover.

In FIELDS field set the node's Title field is added by default when listing fields, so
click on the add button to the right and toggle on the Content: Video option which
appears in node:concertz content type. When the new field settings show up toggle
off the Create a label checkbox and we'll modify the Formatter to use MediaFront
Player and player_thumbnail option for the MediaFront Presets setting. In the
MEDIAFRONT SETTINGS field-set, toggle on the Link to Player checkbox and
set the Media option for the Field Type setting, as well as the Media Content for
the Media Type setting. After clicking the Apply button you can already see the
preview updates to list the playable videos.

If you had wanted to create just a gallery of videos it would have
been enough to simply stop here, customize the view if you'd like,
even customize the MediaFront preset player too and you've got
yourself a videos gallery.

Next thing we'll do is add the MediaFront Player handler to the header part of the
view and by doing that we're adding a player which is aware of all listed items and
will play them one by one, without requiring user interaction.

In the HEADER field set click on the add button and choose the first option Global:
MediaFront Player. In the MEDIAFRONT SETTINGS field-set, set the Media
option for the Field Type setting, as well as the Media Content for the Media
Type setting and click on Apply.

Video Capabilities

[140]

Save the view, and we're ready to navigate to the new view by browsing to
/music-videos, which is the path that was set for us automatically by the view,
based on the title we choose for it. It should look as follows, and you'll notice that
the bigger player, moves to the next item in the view when the current one ends.

Summary
In this chapter we've explored the myriad of options to add videos media to our
website. We have learned about integrating with third-party video-hosting websites
like YouTube, as well as creating our very own YouTube-like video sharing platform
by enabling users to upload videos to our Drupal hosted website. We have further
explored options to customize video uploads with new fields, using media player
libraries, and creating play lists and galleries.

In the next chapter we will proceed to another type of media resource on the
Internet, audio content, and find out how to integrate it with Drupal websites.

Audio Capabilities
While the web has been growing in regards to the amount of visual content, in the
form of pictures and movies of all sorts, audio content is under-estimated.

Music streaming has been quietly preserving it's spot on the web, such as Internet
radio stations or social networks such as SoundCloud, which enable users to share
their own music and collaborate with one another.

In this chapter we will cover:

• Adding playable audio fields
• Using media libraries such as MediaElement to play audio
• Understanding HTML5 Audio element and making use of the audio

JavaScript API
• Learning about the ID3 standard for audio files metadata and how to make

use of this to enrich information on MP3 audio file uploads
• Leveraging ID3 metadata to persist MP3 audio file in Drupal fields storage

by creating your own custom module

We have previously known music around the Internet with the long-living MP3
format, which is used for distributing audio content among peers. It has evolved
due to the need to share, which was quite impossible with the raw WAV format and
most default file extensions among many operating systems. Back then, bandwidth
wasn't as generous as today, with a ratio of about 10 megabytes for 1 minute for CD
quality sound that took its toll on Internet speeds. This problem gave rise to some
compression formats, yet the popular MP3 prevailed and became an un-official
standard among users. Its one thing to share audio files, but bringing audio content
as a streaming media to the web is quite another. As with most things pre-HTML5,
it required browser plugins and as we've seen already with HTML5, we can make
use of the spec's <audio> tag to play some formats which are being advised as
standard audio codecs and formats. That, coupled with leveraging a JavaScript API
which browsers expose to interact with the media in play, provide a richer and more
streamlined experience for both developers as well as end-users.

Audio Capabilities

[142]

Supported audio formats
The HTML5 spec is a bit vague on proposing recommended audio formats
(remember that it's still a draft). While at some point, Vorbis format was supposed
to be a sought after standard due to it being free of patents and such, the popularity
of formats such as MP3 might actually make them the official standard. For the
time being, while Chrome is now leading the browser charts and it supports a wide
variety of formats (Ogg Vorbis, WAVs, MP3, AAC, WebM, and others), it is probably
best to provide audio files in both Vorbis as well as MP3 or AAC to make sure all
browsers support playing the audio content.

Browsers support matrix for the <audio> field formats provided by Wikipedia
(http://en.wikipedia.org/wiki/HTML5_Audio), as shown in the
following screenshot:

Enabling audio play
Our first task will be to enable audio uploads with audio play capabilities.
Formerly, this was accomplished using a dedicated audio field type which
third-party modules provided to extend content types using the Content
Construction Kit (CCK) framework.

We've already been using the Media module for pictures and videos and we can
make use of it to provide our audio content as well. Doing so will allow us to manage
all of our media resources in the same place, using the media browser. Keeping in
mind that the Media module is only about setting the grounds for managing media
resources, we will need to enable a media player that will be able to stream those
audio formats. Luckily, both MediaElement and MediaFront provide this support
using HTML5's <audio> tag.

Chapter 6

[143]

Adding a new content type
Tracks will be the name of our new content type, for users to be able to upload their
songs, vocals, instrumental music tracks, or audio content in general. Once uploaded,
they will be able to play it just as if it were a video.

Note that you may need to adjust your PHP settings upload_
max_filesize and post_max_size to allow large file uploads.
These settings are usually placed in the site-wide php.ini file (you
can find out where it is located on your filesystem by running the
command php --ini).

To create our Tracks content type, we'll navigate to Structure | Content types |
+ Add content type (/admin/structure/types/add) and name it Tracks, then click
on Save, and add fields. We'll name our new audio field simply Track, choose the
Multimedia asset as FIELD TYPE and Media file selector as WIDGET and click on
Save. Our content type should be structured as follows:

We can continue to edit our new field settings (/admin/structure/types/manage/
tracks/fields/field_track), where we'll need to make sure that the Allowed file
extensions for uploaded files field lists the audio extensions we want to support.
Probably, most common of which are MP3, WAV, and OGA (the OGA extension is
basically an OGG container for the Vorbis format with an audio stream only).

Audio Capabilities

[144]

And also make sure the Allowed remote media types field has the Audio option set.

That's basically it, click on Save and we're done with setting up the field settings,
but we still need to make sure that along with the audio media field it will bind to
a media player that will render the file into a player widget.

Navigate to Structure | File types | Audio | manage file display (/admin/
structure/file-types/manage/audio/file-display) and we'll need to choose
the display formatters for an audio media field type. Go ahead and toggle on the
MediaElement Audio option.

Chapter 6

[145]

It will be added as the only enabled display, if this is a fresh new configuration, and
populate the settings with defaults such as 300 by 30 pixels player widget with audio
controls and no download link for the actual audio file.

The end result should look as follows with the MediaElement's audio widget player
rendering the file as an actual player.

Customizing audio nodes
Let's break-out from the common module usage of audio player widgets and their
configurations and customize the node view for a couple of use cases which can
definitely evolve to complete web and mobile apps, if you really put your mind
to it.

We will leverage HTML5 Audio field, along with some JavaScript code to
manipulate the audio playback, and tie this into the node view rendering
within Drupal.

Aiming for multi-channel playback
When music is recorded, each instrument is placed in it's own channel, forming a
layered and isolated instance for each one. This can then be used for easily adding
or deleting instruments later on when processing the song, or possibly modifying
a single channel's sound during the song, without affecting everything else. This is
very similar to how drawings are often sketched in layers.

Imagine if we could create a sort of multi-channel player web application where
musicians could upload their tracks, each channel of recording in it's own file, and
users can then play the track channel by channel, possibly muting the vocals and
singing along the played audio track, just like a karaoke machine.

Audio Capabilities

[146]

To first go about doing that we'll need to enable our Tracks content type to allow
more than one media resource upload widgets. Navigate to Structure | Content
types | Tracks | manage fields and click on edit on the Track field (/admin/
structure/types/manage/tracks/fields/field_track). Scroll down to TRACK
FIELD SETTINGS and make sure the Number of values setting is set to Unlimited
(or the amount of channels you wish to allow, for the sake of the example an
unlimited value is okay) and click on Save settings.

Once that's done, we can edit or add a new Tracks content item and see that it's
allowing multiple (actually, unlimited) audio tracks to be submitted and then
displayed and played in the node view:

Viewing the node we created with multiple audio tracks, we can see that it displays
the audio player for each of them, but if you try to play all of them together you will
notice that this is not working. When one player starts, it stops the rest of the widget
players (technically, it pauses them) and it's not really aligned with our use case of
being able to play multiple audio tracks simultaneously and allowing users to pause
or change volume levels to a single track when other tracks are being played.

To this end, we'll avoid using the MediaElement library and leverage the HTML5
Audio standard to simply allow the browser to render its own player according to
the specs. For this purpose, and to serve yet another use case to come along, we will
customize the Tracks node content type theme with our own version.

Chapter 6

[147]

To override the node's theme with our own code, we will create the following file in
our theme's directory sites/all/themes/corolla/node--tracks.tpl.php. If you
have decided to work with another theme (the default theme name is Bartik), you
will need to create the same file in that theme directory and add the following code
to the file:

<article id="node-<?php print $node->nid; ?>" class="<?php print
$classes; ?> clearfix"<?php print $attributes; ?>>
 <div class="node-inner">

 <?php print $unpublished; ?>

 <?php print render($title_prefix); ?>
 <?php if ($title || $display_submitted): ?>
 <header<?php print $header_attributes; ?>>

 <?php if ($title): ?>
 <h1<?php print $title_attributes; ?>>
 <?php if (!$page): ?>
 <a href="<?php print $node_url; ?>" rel="bookmark"><?php
 print $title; ?>
 <?php elseif ($page): ?>
 <?php print $title; ?>
 <?php endif; ?>
 </h1>
 <?php endif; ?>

 <?php if ($display_submitted): ?>
 <p class="submitted"><?php print $submitted; ?></p>
 <?php endif; ?>

 </header>
 <?php endif; ?>
 <?php print render($title_suffix); ?>

Until this point, the preceding code snippet is taken from the stock node.tpl.php
file and is basically responsible for the generic parts of header, submission date, and
node title.

Audio Capabilities

[148]

Next, we will introduce our own code. It begins by inspecting the $content variable
for a field called field_track, which is the internal name our Tracks field was
created under, and counts the number of items in its #items array. Using this, we
can print the number of audio content that were uploaded. We then continue to loop
through the array of items and using information that is stored there, we create an
<audio> HTML5 element, specifying the source of the file on our server, as well as
providing a download link for users to simply right-click on and save the audio file
if they wish to.

<?php
 // Grab all of the uploaded audio files. Using this
 // information, we later on print the amount of audio channels
 // for this Tracks content item.
 $items_count = 0;
 if (isset($content['field_track']['#items']))
 $items_count = count($content['field_track']['#items']);
?>
<h4>
<?php echo $items_count?> audio channels in this track compilation:
</h4>

<?php
 $count = 0;

 // Loop through the Tracks' field items array to grab the
 // information stored for each item.
 if (isset($content['field_track']['#items'])):
 foreach ($content['field_track']['#items'] as $item):
 // While the $item['file']->uri holds Drupal's generic file
 // uri for this file (such as public://some_file_name.mp3)
 // we need to convert this to an actual valid URI and
 // scheme to apply as the file source for the audio
 // elements

 $filename = file_create_url($item['file']->uri);
 $fid = 'fid'.$item['file']->fid;

 // Increment generic audio channel count
 $count++;
?>

<!--
Using the populated $filename and $fid variables we can set an HTML5
audio element, along with the thematic break <hr> tag to separate the
audio fields to give it a channel look
-->

Chapter 6

[149]

<hr>
Channel <?php echo $count; ?>:
<audio src="<?php echo $filename?>" controls id="<?php echo $fid?>">
</audio> <a href="<?php echo $filename?>"> Download audio channel

<?php
 endforeach;
 endif;
?>
<hr>

And finally, we will alter the footer part of the stock node.tpl.php file to comment
the rendering of content (as you can see in the highlightedd part of the following
code), and leave the footer part as it is, for information such as comments or any
node links that modules extend.

We comment this highlighted part of the code because the $content variable holds a
lot of information regarding the content that is being displayed for rendering and we
are not interested in presenting it to the user.

 <div<?php print $content_attributes; ?>>
 <?php print $user_picture; ?>
 <?php

 hide($content['comments']);
 hide($content['links']);
 /**
 * Commenting the $content variable so that modules that plug
 into the node fields do not render (such as the MediaElement)
 and we basically remove any information Drupal has to print for
 this node.
 print render($content);
 */

 ?>
 </div>

 <?php if ($links = render($content['links'])): ?>
 <nav<?php print $links_attributes; ?>><?php print $links;
 ?></nav>
 <?php endif; ?>

 <?php print render($content['comments']); ?>

 </div>
</article>

Audio Capabilities

[150]

As with most things in Drupal, it's possible to accomplish a task in more
than one way. One way to override node templates is to make use of the
templating system which seeks out the template file to use for displaying
a node by going through the most specific occurrence to the most generic.
For example, to display the Tracks content type node view, which is saved
as the tracks machine-readable name within Drupal, it will seek
out a file named node--<NODE_ID>.tpl.php, then node--tracks.
tpl.php, and finally, node.tpl.php as the most generic node view. It
searches for these files in the currently used theme's directory, which in
our case happens to be the Corolla theme that we installed earlier in the
book. There are other ways to theme a node, such as implementing one of
the theme_preprocess functions and others.

After saving the new node template file with its code content, make sure to clear
your Drupal's cache so that the theming system gets rebuilt and is aware of the new
template. Navigate to Configuration | Development | Performance and click on
Clear all caches (/admin/config/development/performance) which does the
job. Then visiting that multiple audio content items node that we created earlier,
it should look as follows:

Chapter 6

[151]

Our customized node template now shows the built-in web browser player widget
(the look-and-feel may differ from browser to browser), that allows us to play each
audio file that was uploaded. Moreover, it's possible to play the audio tracks all
together without one of them stopping the other one from play.

Because we have already got a JavaScript media library installed and ready to use,
we can make use of it very simply by altering the node template and applying the
correct JavaScript to instantiate the MediaElement Audio player for each of the
<audio> elements we have. Before adjusting the code, we will make sure that the
MediaElement library is being loaded site-wide, which means that its JavaScript
classes will be available for us. Navigate to Configuration | Media | MediaElement.
js (/admin/config/media/mediaelement) and toggle on Enable MediaElement.js
site wide and click on Save configuration.

Next, append the following code before or after our modified highlighted code in the
node--tracks.tpl.php file:

<script>
jQuery(document).ready(function($) {
<?php
 foreach ($content['field_track']['#items'] as $item):
 $fid = 'fid'.$item['file']->fid;
?>
 $('#<?php echo $fid ?>').mediaelementplayer({features: ['playpause',
'loop', 'current', 'progress', 'duration', 'volume']});
<?php
 endforeach;
?>
});
</script>

The code snippet is made up of both PHP and JavaScript. The PHP part is being used
to loop through the audio content items, exactly as we did before, to get the file IDs
for each audio element (that is also why we've made use of the ID attribute earlier for
the audio elements). Inside that loop, we instantiate the MediaElementPlayer object
which turns each of the <audio> elements into a themed and controlled widget using
that JavaScript library.

Audio Capabilities

[152]

The result should look as follows with the MediaElement Audio player widget being
rendered, instead of the browser's own widget:

Knowing how to do this, you can make use of any other JavaScript media library and
render your audio nodes with custom players.

Some suggestions to build on this idea:

• With the use of external JavaScript audio libraries, you can add more sound
effects such as fade in and fade out, sound altering effects, and so on. This
further enriches the experience of user's in-browser remixing of audio.

• Add social features such as allowing several users to collaborate on a single
track, each contributing his or her own audio channels. For example, to
create the virtual band web applications, one user can provide the drums
background music, while another guitar player user can then build some
rhythm channel to add to that and so on.

Creating a drum machine
Building further on HTML5's audio element, we can make use of the JavaScript API
to manipulate the played media. Our next use case will be to create a drum machine
web application, where users can upload their own drum-kit audio samples to
compose their own drum machine, and then be able to click-away their drum beats.

Chapter 6

[153]

Because we're using HTML5, the drum machine template
will be rendering on mobile devices too and enabling us to
grow our audience reach.

It's possible to create yet another node content type, much like the Tracks content
type that we created, but since we have it already and even provided custom node
template for displaying it, we will make use of this asset again for the drum machine
use case.

To begin, we need some sound samples to work with. While it's possible to just put
any song you might have already existing use on your computer, your experience
will be much more real for this use case if you actually use drum sound samples.
They are easily found on the web just by Googling the phrase free drum machine
samples or alike which will yield at least one website where you can freely
download a few WAVs. One such site is http://www.freedrumkits.net. After
gaining a few drum WAVs, create a new Tracks content item and upload some
of them.

While we can use the same in-browser widget player or even a JavaScript media
library, there are a few inherent limitations with that which don't suit us:

• An audio player widget doesn't make a good user experience for users as
we don't really care that much about the progress bar, the time measures or
even that much about the volume. If we consider our mobile users too then
operating an audio player widget for drums becomes a terrible task in terms
of user interface.

• The play or pause button has no justification because we never really need to
pause the drum sound. Moreover, we need an interface that allows the user
to click on it several times, where upon each click it will rewind the sound
sample and play it again. This way the user can "hit" a drum multiple times.

Due to the previous points, it seems that we need to change the in-browser widget
with something else as well as add some JavaScript code to respond to drum hits.

Design-wise it would have probably been better to make use of actual drum element
pictures (such as a snare, a hi-hat, and so on) in collaboration with proper JavaScript
and CSS code to really style it, but we can get right to business with using an
HTML's button element and a bit of inline CSS to create our drums' "hit" interface.

Once again, we will customize the sites/all/themes/corolla/node--tracks.
tpl.php file with our own code that will draw clickable HTML buttons, which
makes use of JavaScript code to rewind the sound loop and play it:

Audio Capabilities

[154]

We begin by copying over the header part of the code from the stock node.tpl.php
file:

<article id="node-<?php print $node->nid; ?>" class="<?php print
$classes; ?> clearfix"<?php print $attributes; ?>>
 <div class="node-inner">

 <?php print $unpublished; ?>

 <?php print render($title_prefix); ?>
 <?php if ($title || $display_submitted): ?>
 <header<?php print $header_attributes; ?>>

 <?php if ($title): ?>
 <h1<?php print $title_attributes; ?>>
 <?php if (!$page): ?>
 <a href="<?php print $node_url; ?>" rel="bookmark"><?php
 print $title; ?>
 <?php elseif ($page): ?>
 <?php print $title; ?>
 <?php endif; ?>
 </h1>
 <?php endif; ?>

 <?php if ($display_submitted): ?>
 <p class="submitted"><?php print $submitted; ?></p>
 <?php endif; ?>

 </header>
 <?php endif; ?>
 <?php print render($title_suffix); ?>

Then, the following JavaScript code snippet receives the ID attribute's value of an
<audio> element as an HTML object to work with and if successful, it rewinds it
back to the beginning of the audio sound and plays it.

<script>
/**
 * JavaScript function to rewind and play an audio element
 * @param string the HTML element's id attribute value
 * @return bool FALSE on errors
 */
function play_audio_sound(element_id) {
 if (!element_id) {

Chapter 6

[155]

 return FALSE;
 }

 // Check if the browser supports HTML5's audio element
 try {

 // Create an audio object variable from the element's id
 var audio_object = document.getElementById(element_id);

 // Rewind the audio sound to the start and play the audio
 audio_object.currentTime = 0;
 audio_object.play();
 }
 catch (exception) {
 alert('there was an error playing the audio: '
 + exception.message);
 return FALSE;
 }
}
</script>

Our next PHP code, which is similar to the multi-channel use case, loops through the
audio upload items and extracts the filename and file ID as well as the file's name
that the user provided, when uploading the file. It creates both an <audio> element
as well as a <button> element that calls our JavaScript function to play the audio.

<?php
 foreach ($content['field_track']['#items'] as $item):
 $filename = file_create_url($item['file']->uri);
 $fid = 'fid'.$item['file']->fid;
 $file_name = $item['file']->filename;
?>

<audio src="<?php echo $filename?>" id="<?php echo $fid?>"> </audio>

<button onClick="javascript:play_audio_sound('<?php echo $fid ?>');"
 style="height:80px; width:120px;"><?php echo $file_name ?></button>

<?php
 endforeach;
?>

Audio Capabilities

[156]

Notice how we stripped the controls attribute from the <audio>
element this time, as we don't want the browser to render the audio
player widget for each item. Moreover, while the onClick JavaScript
function handler is being used here, we recognize that this may not be
modern JavaScript example, especially with the use of jQuery and Drupal
behavior pattern but it's being used for the sake of simplicity. The source
code available for this book offers better JavaScript implementations.

And finally, the part left in this template file is related to the footer. We modify it
slightly by commenting out the $content variable printing as we're not interested
in this:

 <div<?php print $content_attributes; ?>>
 <?php print $user_picture; ?>
 <?php

 hide($content['comments']);
 hide($content['links']);
 // print render($content);
 ?>
 </div>

 <?php if ($links = render($content['links'])): ?>
 <nav<?php print $links_attributes; ?>><?php print $links;
 ?></nav>
 <?php endif; ?>

 <?php print render($content['comments']); ?>

 </div>
</article>

There is no need to clear the cache for the template to pick up this file if you've done
this already in the previous chapter, otherwise please do so at /admin/config/
development/performance and navigate back to view the node in its new theme,
it should look as follows:

Chapter 6

[157]

Some ideas to further build on this:

• Style the user interface to provide a much more slick and intuitive
experience. For example, you can randomly color the buttons or
better yet replace them with a picture of a drum instrument.

• Allow users to collaborate and create their own drum kits and contribute to
one another.

• When using JavaScript to call the play function, it's then possible to record
these events and in turn record a history of all clicked events, which really
means to record the drum sounds that were played and re-use it as a
beat-machine or re-play a recorded rhythm over and over in a loop.

Audio Capabilities

[158]

Leveraging audio metadata
With regards to audio, metadata has long been a useful addition which was directly
associated with MP3 audio files. Back then, the MP3 format was heavily used to
store audio files but it lacked a way to describe the file's content. Information such as
artist name, track title, album name, year of release, and genre, are powerful assets
which allow users to organize and structure their music collection. It's not just about
organizing but also about providing basic data. While it's possible to name an MP3
audio file using the <artist name>-<song name>.mp3 convention, which is actually
the widely used format, it's not really efficient.

ID3
With this problem among the community, came rise of the ID3 standard as a way
to attach metadata to MP3 files, enabling users to tag their files, and describe their
audio tracks using dedicated fields.

You can find more information on ID3 tags at http://id3.org,
http://getid3.sourceforge.net, and http://en.wikipedia.
org/wiki/ID3.

The ID3 standard had re-invented itself numerous times to accommodate demand
for better metadata support. One example for this is where ID3v2 was created to
enable variable-length fields, as well as support for Unicode characters, all of which
placed in the beginning of the file to allow for streaming media services to make use
of this metadata without having to seek through the entire file.

The ID3 PHP library, we will work with, is able to do more than just basic metadata
fields but also supports the following:

• Reading and writing to other formats than just MP3 such as Ogg Vorbis.
• Reading metadata from video formats such as MKV, AVI, MPEG1, MPEG2,

and others, as well as reading from image formats such as JPEGs, PNGs,
BMPs, and others.

Installing the ID3 module and library
We will be using a Drupal module called getID3 as well as a PHP library called
getID3, which will aid us in extracting metadata from multimedia files.

Chapter 6

[159]

We will begin by downloading the ID3 PHP library which is located at http://
www.getid3.org, simply browse there and make sure you download the latest 1.x
stable version (at the time of writing this book it was 1.9.5). Once you've got it, create
the directory sites/all/libraries/getid3 and extract the contents of the getID3
library archive that you downloaded to that directory and extract it there, which
should result in the following file being accessible: sites/all/libraries/getid3/
getid3/write.php.

The getID3 library comes with some working-code demos, documentation, and
other resources. To avoid any security issues, you should proceed with deleting
the demos directory at sites/all/libraries/getid3/getid3/demos. To make
sure it is definitely not accessible and you removed it correctly, try accessing the
URL /sites/all/libraries/getid3/getid3/demos/demo.browse.php and make
sure it fails to load and render that file.

Download the getID3 Drupal module (http://drupal.org/project/getid3)
and use the 7.x branch (at the time of writing this book we made use of the 7.x-1.0
version). Once downloaded, enable the module (at /admin/modules) and navigate
to Configuration | Media | getID3() which hosts a very minimal configuration page
(/admin/config/media/getid3) for the getID3 Drupal module:

Audio Capabilities

[160]

While it's possible to configure a different path for the getID3 library, in practice
this configuration page will actually help you figure out if the library was installed
correctly or not using the Version field which shows the version it detected.

We're making use of the getID3 module for Drupal but it's really
just a wrapper for instantiating the getID3 library among some other
insignificant functionality. If you plan to use the getID3 library in large
Drupal-based projects then you're probably better off with only installing
the library, in hope of minimizing the amount of Drupal modules the
website uses (due to performance reasons).

Preparing custom node template
To build on our Tracks content type using the custom node template we created
(sites/all/themes/corolla/templates/node--tracks.tpl.php), we should be
able to introduce more information on each file that we list for audio playback, more
specifically, this will be metadata information that we pull off from each file using
the getID3 library.

To continue from where we left off, we need to adjust back the code for the custom
Tracks content type node template to list each audio file along with its player widget
(either the built-in browser or the JavaScript library). For that, simply adjust the
custom part of the code as follows:

<?php
 $items_count = 0;
 if (isset($content['field_track']['#items']))
 $items_count = count($content['field_track']['#items']);
?>

<h4>
<?php echo $items_count?> audio channels in this track compilation:
</h4>

<?php
 $count = 0;
 if (isset($content['field_track']['#items'])):
 foreach ($content['field_track']['#items'] as $item):
 $filename = file_create_url($item['file']->uri);
 $fid = 'fid'.$item['file']->fid;
 $count++;
?>

Chapter 6

[161]

<hr>
Channel <?php echo $count; ?>:
<audio src="<?php echo $filename?>" controls id="<?php echo $fid?>">
</audio> <a href="<?php echo $filename?>"> Download audio channel
<?php
 endforeach;
 endif;
?>
<hr>

And also make sure that the $content variable is commented so it doesn't
get rendered:

// print render($content);

If you haven't been using this custom node type template file up to now then after
creating and updating it you will need to clear cache to make sure the theming
system registers new hooks and accounts for new template files. To do that, navigate
to Configuration | Development | Performance (/admin/config/development/
performance) and click on Clear all caches.

To confirm we have a working custom template to work with, either navigate back to
one of the Tracks content items that we created or create a new one, with a bunch of
MP3 audio files (those with ID3 tags preferably) and make sure it displays a player
widget and allows you to actually play the files.

Extracting metadata
The getID3 module we installed will allow us to extract metadata from files,
based on their path. The actual code that does it is pretty simple:

/* getid3_analyze will instantiate a getid3 object and provide the
constructor with a path for the file, existing and accessible on the
file system.

$file is assumed to be a Drupal's $file object which contains the uri
information that drupal_realpath() makes use of to resolve to real
file system path for that file.
*/
$file_metadata = getid3_analyze(drupal_realpath($file->uri));

Audio Capabilities

[162]

That single line of code will extract metadata, given a $file Drupal object. One place
to make use of it is inside our foreach() loop where we go through all the uploaded
audio files and extract their information. Such as:

<?php
 foreach ($content['field_track']['#items'] as $item):
 $filename = file_create_url($item['file']->uri);
 $fid = 'fid'.$item['file']->fid;
 $count++;

 // Extrat file metadata
 $file_metadata = getid3_analyze(drupal_realpath($item['file']-
>uri));
?>

In this loop, we have the $item array which populates each of the $file object
through the file array key.

We're now ready to extract metadata from the audio files we uploaded and we can
assume that there are some metadata fields, but how do we know which fields we
are able to extract and which fields are we interested in?

While you can go through the documentation or test the ID3 library on audio files
outside of the Drupal, I would like to introduce a simple way to debug data to the
page output, strictly to provide context as to how we learned about the metadata
fields, it is in no way a method for debugging your code.

Drupal 7 introduced a convenient way of debugging data using the debug()
function, where modules can hook into and do things such as pipe the output to a
log file, send it over the network to a log server, and so on. By default, it makes use
of the status message systems and anything you debug will be printed out to the
screen in the form of a status message. Due to the use of the status message systems,
any output from that function will only be presented in the next page refresh (this is
related to session messages, but we won't go into that now).

To print out the metadata, we will simply make use of the debug() function:

<?php
 foreach ($content['field_track']['#items'] as $item):
 $filename = file_create_url($item['file']->uri);
 $fid = 'fid'.$item['file']->fid;
 $count++;

 // Extract file metadata
 $file_metadata = getid3_analyze(drupal_realpath($item['file']-
 >uri));
 // Print $file_metadata array to the screen
 debug($file_metadata);
?>

Chapter 6

[163]

After saving the file, you will need to refresh the Tracks content item you chose to
view, twice probably, for the debug output to kick in. Once you do so, you should
see a lot of debugging information printed to the page:

This part can be deleted. Do we really need to mention the entire thing?

As you can see in your debug output, that's quite a long list of fields and their values,
adding up to a bloat of information about each audio file.

You can pick and choose any of them to display, for this example, I've gone ahead
with the following: artist, title, album, year, and song track time length. Lets update
our code to accommodate for the change of getting this metadata:

<?php
 $count = 0;
 foreach ($content['field_track']['#items'] as $item):
 $filename = file_create_url($item['file']->uri);
 $fid = 'fid'.$item['file']->fid;
 $count++;

 // Extract file metadata

Audio Capabilities

[164]

 $file_metadata = getid3_analyze(drupal_realpath($item['file']-
 >uri));

 // Assign specific metadata fields to array
 $metadata['artist'] = $file_metadata['id3v1']['artist'];
 $metadata['title'] = $file_metadata['id3v1']['title'];
 $metadata['album'] = $file_metadata['id3v1']['album'];
 $metadata['year'] = $file_metadata['id3v1']['year'];
 $metadata['time'] = $file_metadata['playtime_string'];

?>

<hr>
Channel <?php echo $count; ?>:
<audio src="<?php echo $filename?>" controls id="<?php echo $fid?>">
</audio> <a href="<?php echo $filename?>"> Download audio channel
<div>
 <div>
 <label style="display: inline;"> Artist: </label> <?php echo
 $metadata['artist']; ?>
 </div>
 <div>
 <label style="display: inline;"> Title: </label> <?php echo
 $metadata['title']; ?>
 </div>
 <div>
 <label style="display: inline;"> Album: </label> <?php echo
 $metadata['album']; ?> (<?php echo $metadata['year'];?>)
 </div>
 <div>
 <label style="display: inline;"> Time: </label> <?php echo
 $metadata['time']; ?>
 </div>
</div>
<?php
 endforeach;
?>

As you can see, we are making use of the array of metadata fields, $metadata,
that we extracted in the HTML foreach() loop part, to print this information
to the screen.

Chapter 6

[165]

When working with the 1.x version of the ID3 library, if there was an
error in analyzing the provided data, expect to find this information in the
returned array's error key. Similarly, less critical errors will be returned
in the array's warning key.

Printing it to the screen will look as follows:

Of course, there is much work to be done in the area of proper HTML5, CSS, and
JavaScript, to style this view better, but this paves the way to providing so much
more information on media resources that users share, whether they are images,
videos, or audio files.

Storing metadata in fields
Extracting metadata on-the-fly, as we did previously with our own custom node
template, might be suitable for some situations but it might prove more efficient to
create dedicated fields for each metadata item that we're interested in extracting.
This, among other advantages, would be better for the following reasons:

• We would not need to analyze files for their metadata information each time
they are viewed

• We can make use of these fields later by displaying them in Views and
filtering based on these items

Audio Capabilities

[166]

Our plan to store the metadata fields is to first create the additional fields for the
audio file type fields, then to create our own basic module which will populate the
fields in the media forms when adding new audio files.

We have seen by now how each media resource such as images, videos, and audio
have additional fields defined for them. These fields can be viewed at Structure |
File types (/admin/structure/file-types) for each file type. For the audio file
type, click on manage fields on the Audio row (/admin/structure/file-types/
manage/audio/fields). You probably already recognize some fields there, such
as the License settings for this audio field which showed up when we created
or updated our media assets earlier. It is even quite possible that there are some
duplicate fields there. Feel free to organize these fields, add others or remove
existing, as you see fit. For our use case I have created the required fields for the
metadata that we extracted earlier, ending up with the following result:

Next up, we'll need to prepare our own very basic module that will extract metadata
from the uploaded file and populate the fields we created to store them in. As this
is not a Drupal module development book, we will create a very simple and basic
module that gets the job done and briefly explains through the code.

Chapter 6

[167]

A very basic module can be composed of two files only, a .info file which provides
some generic information (often referred to as metadata too) about the module,
and a .module file which actually contains the code. Both of these files reside in
the module's directory which can be of any name, and their filename prefix is the
same. Therefore, let's call our module store_id3 and proceed to create the module's
directory at sites/all/modules/store_id3. Starting with our module description
metadata, we will create the file sites/all/modules/store_id3/store_id3.info
and add the following code to it:

name = "Store id3"
description = "store_id3 extracts metadata information from media
resources and stores them into Drupal fields"
core = 7.x
files[] = store_id3.module

As you can see, the metadata in the form of a key=value structure, which provides
some information that describes this module. The underlying Drupal system
makes use of this information which is used to display the module in the modules
administration page.

The second file we need is the actual Drupal code, which we will put in the file
sites/all/modules/store_id3/store_id3.module:

<?php

/**
 * Implements hook_form_alter().
 */
function store_id3_form_alter(&$form, &$form_state, $form_id) {

 /* Only "jump in" if this is the actual form that we're looking to
 hook into */
 if ($form_id === 'file_entity_edit') {

 /* Get the file id from the $form array and load it into a $file
 object */
 $fid = $form['fid']['#value'];
 $file = file_load($fid);

 if ($file->type === 'audio') {

 // Retrieve file metadata
 $file_metadata = getid3_analyze(drupal_realpath($file->uri));

Audio Capabilities

[168]

 /* Assign the metadata information that we're interested in to
 the $form array */
 $form['field_artist'][LANGUAGE_NONE][0]['value']['#default_
 value'] = $file_metadata['id3v1']['artist'];
 $form['field_title'][LANGUAGE_NONE][0]['value']['#default_
 value'] = $file_metadata['id3v1']['title'];
 $form['field_album_name'][LANGUAGE_NONE][0]['value']['#default_
 value'] = $file_metadata['id3v1']['album'];
 $form['field_album_year'][LANGUAGE_NONE][0]['value']['#default_
 value'] = $file_metadata['id3v1']['year'];
 $form['field_time'][LANGUAGE_NONE][0]['value']['#default_value']
 = $file_metadata['playtime_string'];

 }
 }
}

This snippet of code is enough for us to hook into the specific form which shows up
when a media asset has been uploaded (specifically, an audio file type). At that point,
we call the getid3_analyze() function, to extract metadata from the uploaded file,
using the file object that we observed in the $form array. With the metadata array
that we extracted, we can then set each of the Drupal audio file type fields that we
created before and populate them with their respective metadata information.

There are better ways to structure the module, for example by using
the Features module and installing these extra metadata fields along
with the module, instead of "relying" on these fields hard coded into
the module. General error checks are also missing but this is for the
sake of code readability.

Because this is a new module that we've created, we need to enable it. Visiting the
modules page (/admin/modules), we can see our new module listed there, so just
toggle it on and click on Save configuration to enable the module:

Chapter 6

[169]

Finally, let's remove our own custom Tracks node content type custom template
as we don't really need to rely on it anymore, since we will be using the generic
node view.

Proceed to clear the cache as we did before to make sure Drupal re-reads the
templates directory (/admin/config/development/performance).

Now that the module is enabled, proceed to editing an existing audio file entry that
you've created before or add a new one. After uploading your audio media file or
editing an existing audio media file, the audio field settings form should show up,
along with our new metadata fields, which should have their values populated with
the information we extracted from the file:

The actual node view is no longer using our customized node template file, so it is
expected to show up as earlier with the MediaElement Audio widget rendering the
audio file, and it's now also displaying the metadata fields that we extracted from
the file.

Audio Capabilities

[170]

Some ideas to take this forward:

• You might see fit to extract more metadata from the file, and this isn't bound
to audio files only—video and image formats may have some interesting
data too.

• Create views to list and manage your music collection. With the help of
metadata fields you can now filter, search, and sort by each of the fields
that you extracted.

Summary
In this chapter, we have covered different ways of working with audio content
and learned how to customize audio presentation. We have employed HTML5
technology which browsers support nowadays in favor of allowing audio playback
without requiring any special plugins to be installed. Then, we have further utilized
the abundance of metadata that is potentially stored in audio media and tied it up
with Drupal's content structure.

In the next chapter, we will focus on HTML5 related tools such as semantic
HTML and creating visual charts, and further empower our toolbox in Drupal
and HTML5 applications.

Leveraging Other
HTML5 Features

Now that we have acquired knowledge of HTML5, we will look further to see how
it can empower Drupal web applications. We will explore more visual eye candy
content such as graphs and charting, as well as HTML metadata for interoperability
with third-party websites and introduce mobile compatible web layout support.

In this chapter, we will cover:

• More HTML5-related modules to enrich your arsenal for media such as
charting and presentation applications

• RDFa and Microdata for more semantic HTML
• The concept of Responsive Web Design (RWD)

RDFa and Microdata
One of HTML5's primary goals was to provide a more semantic web, replacing all
the <div> and other elements with their class and ID attributes with better-suited
elements, such as <article>, <section>, <nav>, and others. In doing that, it was
intended to achieve a more semantic document, but what does it mean exactly? In
Tim Berners-Lee's own words "the Web will be a place where the whim of a human
being and the reasoning of a machine coexist in an ideal, powerful mixture".

Leveraging Other HTML5 Features

[172]

This basically means that by creating a more structured web, machines will also be
able to understand it and put it into a relative context. Let's identify some real-world
examples as follows:

• A pre-HTML5 website might have used the <input type="text"/> element
to specify a text field for users to provide their phone number. While a
desktop user would not mind this, mobile users would find it quite annoying
to fill such a field using the full keyboard. Furthermore, on most occasions
it requires the developer to also program client-side code to allow only
numbers to be typed into this field. With HTML5's <input type="tel"/>
element, computers are made aware that this is a phone field, which
probably only takes numeric values and some special characters and may
offer an appropriate popup widget. Even desktop applications such as
a program that fills a website's forms automatically can now better
understand the purpose of this field and offer better functionality.

• When an HTML page is being indexed by search engines, it's a machine
program that scans the text, attempts to make sense out of those bits and
pieces, applying all sorts of (machine learning) algorithms to classify that
page and categorize it somehow so that it can later be found when you type
in a few keywords on a search engine's website.

The second example brings into context a field in web technology called
Search Engine Optimization (SEO) which you have probably heard of by
now. Some may refer to it as an art which one needs to master, employing
a set of skills and knowledge to fine tune the structure of web pages in
order to reach the ultimate result in a search engine's indexing algorithms.
Drupal out of the box, attempts to optimize as much as possible for this
goal, one very obvious method is the use of URL aliases for nodes which
create a path of /content/how-install-drupal which come a long
way in aiding machines classify web pages. As one can expect with
Drupal, there are a plenty of other third-party modules in the Drupal
eco-system to better fit a website for SEO-friendliness, some of which are
the Metatag module (http://drupal.org/project/metatag), SEO
Checklist, and XML Sitemap.

If semantic mark-up is about describing and providing metadata about the
mark-up itself, then how do we achieve this in a more programmatic fashion?
With the rise of protocols like Resource Description Framework in Attributes
(RDFa) and Microdata, this process has become quite streamlined and standardized.

Chapter 7

[173]

Both RDFa and Microdata make use of vocabularies to describe resources and can
make use of locally generated or remotely hosted vocabularies, which are also
known as ontologies. The reason for working with such vocabularies is that while
one might describe a person using the keyword person, another website might define
it as man, and another as individual, all of which mean the same thing. By working
with common vocabularies the terms used to describe the meaning of metadata are
standardized, and as such, applications can easily interact with one another, as they
know what to expect.

Introducing RDFa
RDF in attributes (RDFa) is not a new kid on the block. It actually started as RDF
almost a decade ago but became a W3C recommendation a few years later, following
a first public draft in work.

RDF serialization is simply a form to represent an RDF data model,
much like PHP's own serialize() function. While RDFa deals with
embedding RDF with XHTML documents, there are other serializations
such as RDF/XML, RDF/JSON, and others.

RDF data model makes use of subject, predicate, and object triples to achieve
a mapping between metadata and its description, where any metadata can be
represented as a resource. An example for such triple is the following pseudo-code:

pfx:Me pfx:EmployedBy pfx:Bob

Take for example, a news item posted on a news website, for us humans it's very
easy to interpret who submitted it, when, and what is this news item about. A
stripped-down version of an HTML code for such item might look as follows:

<html>
 <head><title> Breaking news in open source</title></head>
 <body>
 <h1>Oracle Buys Sun</h1>
 <p>Submitted by John Doe … </p>
 </body>
</html>

Leveraging Other HTML5 Features

[174]

With RDFa and HTML5, the HTML document can be extended with attributes
which explain the meaning of each piece of information that is trivial for us
humans to understand as follows:

<html
 prefix="dc: http://purl.org/dc/elements/1.1/"
 lang="en">
 <head><title> Breaking news in open source</title></head>
 <body>
 <div
 about="http://example.org/#news">
 Oracle Buys Sun
 <p>Submitted by
 <span property="foaf:name"
 resource="sioc:User"
 about="/user/2600">
 John Doe

 </p>
 </div>
 </body>
</html>

The HTML document begins with an <html> element that contains an additional
attribute prefix, which includes popular vocabularies like FOAF (Friend Of A
Friend) and does not require developers to explicitly declare this vocabulary using
XML Namespace (xmlns) as would be the case when HTML4 is involved. The <div>
element is also extended with an attribute which expresses the subject in this web
page and finally the paragraph element makes use of several other attributes to
explain the meaning of the text John Doe. The previous RDFa code snippet shows
the use of the triples, using the following new attributes that may be applied to
HTML elements:

• about: It is a URI that expresses what is the metadata about. RDF data model
defines this as subject.

• property: It is a URI that expresses the relationship between the subject and a
metadata. RDF data model defines this as predicate.

• resource: It expresses the resource which is associated with the subject, but is
not a navigable link rather a text literal link. RDF data model defines this
as object.

Chapter 7

[175]

Existing attributes in XHTML can be used as well, some of which are as follows:

• typeof: It indicates the vocabulary language that is used to describe and
associate with the subject

• rel: It expresses the relationship between two resources, can be often replaced
by a property attribute

RDF was worked on long before HTML5 spec and for this reason
its RDFa extension is largely based on the XHTML documents,
working with existing attributes as well as introducing new
attributes for HTML elements.

You might have noticed the prefixes used in our code example, such as foaf, dc, and
sioc. As you can imagine, there are many types of resources that can be described,
and therefore many vocabularies that can be used to do so. Some of which that
Drupal 7 supports are as follows:

• dc (Dublin Core): This describes generic information about resources such as
it's title, time, or date it was created and such.

• foaf (Friend Of A Friend): This vocabulary describes people, their
relationships, and their activities.

• sioc (Semantically Interlinked Online Communities): It describes the
relationship between collaboration platforms such as blogs and forums.
It includes resources like item, post, comment, and number of replies.

Enabling RDF support in Drupal
Drupal 7 ships with RDFa support out of the box and includes default RDF
mappings for nodes, comments, taxonomy, and users with support for developers to
extend these even further if required. The RDF module may or may not be enabled
in your installation of Drupal 7, depending on your deployment, and whether you
chose a minimal or standard profile when installing Drupal 7. Whichever the case,
let's proceed to enable this module (/admin/modules), which doesn't require
any configuration.

Leveraging Other HTML5 Features

[176]

The core RDF module doesn't provide any administrative
configuration pages to tweak the RDF mappings or vocabularies
being used. It only offers developers API through which they can
create their own settings for node entities and other data structures
in Drupal. Due to this limited support of the core RDF module,
there's another module that came into the picture, called RDF
extensions (http://drupal.org/project/rdfx) which offers
an administrative UI which allows you to configure specific RDF
mappings for nodes and their fields among other features.

Once enabled, we can examine some of the changes introduced by the RDF module
to our generated HTML source code by inspecting it using browser tools. Doing so
for the Concertz type node for example, we can notice how the <html> tag has been
extended to include the required prefix which defines the vocabularies it uses
as follows:

<html lang="en" dir="ltr"
prefix="content: http://purl.org/rss/1.0/modules/content/ dc: http://
purl.org/dc/terms/ foaf: http://xmlns.com/foaf/0.1/ og: http://ogp.
me/ns# rdfs: http://www.w3.org/2000/01/rdf-schema# sioc: http://rdfs.
org/sioc/ns# sioct: http://rdfs.org/sioc/types# skos: http://www.
w3.org/2004/02/skos/core# xsd: http://www.w3.org/2001/XMLSchema#"
class="js"><!--<![endif]--><head>

We can easily identify Dublin Core and FOAF which we mentioned earlier, among
other vocabularies such as Simple Knowledge Organization System (SKOS)
available at http://www.w3.org/TR/skos-reference/.

Next, we can see how the node mapping to an RDF object shows up in our HTML
as follows:

<article id="node-16" class="node node-concertz node-promoted
article odd node-full ia-n clearfix"
about="/drupal7/node/16" typeof="sioc:Item foaf:Document"
role="article">

The use of the about attribute hints the subject of this RDF resource and the
typeof attribute defines which kind of resource is this using the SIOC and
FOAF vocabularies.

Chapter 7

[177]

And taking a look at the actual node's information such as the title, we can see
that it is also now making use of the RDF attributes to explain the meaning of
the metadata there:

<h1
 property="dc:title" class="node-title" rel="nofollow">
 Live school show
</h1>

That's it! RDFa support provided by Drupal 7 core module is doing all the heavy
lifting for us by default. Yet, notice that it relies on the theming system to support it so
making use of the widely adopted themes that follow Drupal's guidelines is advised.

Readers who wish to focus even more on SEO capabilities may look at
the Schema.org module (http://drupal.org/project/schemaorg)
which provides integration with http://www.schema.org as its
vocabulary. Google, Bing, Yahoo!, and others are known to understand
and rely on schema.org structure which would probably yield in better
results than the core RDFa module, such as Google's rich snippets in
search engine results.

Introducing Microdata
While W3C has released an official specification RDFa 1.1 support in HTML5
(http://dev.w3.org/html5/rdfa), Microdata (http://www.whatwg.org/specs/
web-apps/current-work/multipage/microdata.html) was initially developed
as part of the HTML5 design spec. Based on the roots of RDFa, it aims to provide
a semantic web by annotating elements in a more simplified manner. It is also the
recommended data mark-up structure by Google to enhance search results using
Google Rich Snippets (http://support.google.com/webmasters/bin/answer.
py?hl=en&answer=99170) as shown in the following screenshot:

Leveraging Other HTML5 Features

[178]

Microdata makes use of attributes for items and their properties. For example,
a recipe is an item which has properties, like the time it takes to make the dish.
Whereas properties are commonly set to use text literals (text strings), they can
also describe another item. For example, the author of a recipe is a property
which describes another item—the actual person.

In Microdata syntax we use the attribute itemprop to set item properties and
the itemscope attribute to put the properties into context or so called containers,
so that parsers know for which item those properties are set for. To further allow
machines which parse this data to understand what kind of item is this, the use
of the itemtype attribute is employed.

Enabling Microdata support in Drupal
To take this into a more practical approach, let's see how we can improve our
HTML pages to be more semantic, and describe it better to bots such as search
engine crawlers. For the Microdata protocol we will work with our recipes content
type, but first we will need to download and enable the Microdata module
(http://drupal.org/project/microdata) for Drupal.

Once we have decided upon the content type we will need to make sure that there
is an appropriate vocabulary for this item type. In our example, the quite standard
vocabulary at schema.org features a recipe item at http://schema.org/Recipe and
by examining its support for item properties we can see that it supports some of the
fields that we already added to our content type:

Now that we have obtained this knowledge, we can proceed to configure our rezepi
content type and make use of this information. Navigate to Structure | Content
types | rezepi | edit (/admin/structure/types/manage/rezepi) where you
should see the newly added Microdata settings field-set and notice that each
setting description text is quite helpful here as shown in the following screenshot:

Chapter 7

[179]

We have already identified the item type so we know to set it to http://schema.
org/Recipe. The use of tokens is very handy here as it replaces the [node:url]
string with the URL for each node with its actual URL which gets set as the item
type. And lastly the properties to set for this item type for which we chose simply
the name property, the value of which will be the name of each node's recipe.

So far we have only configured the item type, we still have to configure
the properties for it, which are identified as our fields for this content type in
Drupal's terms. To do so, navigate to the MANAGE FIELDS tab of the rezepi
content type (/admin/structure/types/manage/rezepi/fields) and edit the
Cuisine field type which maps to recipeCuisine item property on schema.org.
Scrolling to the very end of the field's configuration page we can see this setting
added by the Microdata module and we'll set it appropriately as shown in the
following screenshot:

You are encouraged to go ahead and setup more fields, at the very least, the basic
elements such as description, image, and the rest of the supported text fields.

Leveraging Other HTML5 Features

[180]

Ideally, one should take efforts to configure every content type's fields
as much as possible to provide the best interoperability, as well as
SEO compatibility. With that said, some fields such as dates, should be
annotated in a very specific format which schema.org demands. This
means that field formatters or the Microdata module itself should provide
support for identifying such cases.

Now that our item and it's properties have been defined we can inspect the HTML
source code for a rezepi content that was added earlier. Paying a close attention,
we can see that both the item type, as well as its Cuisine property, are showing up.

The Cuisine item property is as follows:

<section class="field field-name-field-cuisine field-type-
list-text field-label-above view-mode-full"><h2 class="field-
label">Cuisine: </h2><div class="field-items" id="md15"><div
class="field-item even" itemprop="recipeCuisine">Iraqi</div></div></
section>

The Recipe content type is as follows:

<div>
 <meta itemscope="" itemtype="http://schema.org/Recipe"
 itemid="http://sites-dev.hp.com/drupal7/node/3"
 temref="md1 md3 md5 md7 md9 md11 md13 md14 md15 md16 md17 md18
 md19 md20" />
 <meta itemscope="" itemref="md21" /><meta itemscope=""
 itemprop="ingredients" id="md3" itemref="md2" />
 <meta itemscope="" itemprop="ingredients" id="md5"
 itemref="md4" />
 <meta itemscope="" itemprop="ingredients" id="md7"
 itemref="md6" />
 <meta itemscope="" itemprop="ingredients" id="md9"
 itemref="md8" />
 <meta itemscope="" itemprop="ingredients" id="md11"
 itemref="md10" />
 <meta itemscope="" itemprop="ingredients" id="md13"
 itemref="md12" />
</div>

Testing semantic mark-up
To accommodate the embedding of semantic mark-up for web builders, more than
a few tools and online web services have been made available to test and provide
feedback, as well as visualization, of semantic HTML.

Chapter 7

[181]

For Microdata, some of these tools are as follows:

• Microdata JS (http://gitorious.org/microdatajs which hosts an
online tool to test live sites called Live Microdata ;http://foolip.org/
microdatajs/live)

• SEO Moves (http://tools.seomoves.org/microdata)

And for RDFa one can try out http://rdfa.info/play/. Even Google has an
online service at http://www.google.com/webmasters/tools/richsnippets
which provides a lot of feedback for site builders, displaying how data is being
parsed out of your HTML source code, including displaying a sample search
results for the purpose of rich snippets.

Since we have been working on our Microdata recipe item, let's see how machines,
which parse our HTML source code, attempt to understand it. I've made use of the
Live Microdata tool (http://gitorious.org/microdatajs) which enables you to
copy-and-paste the HTML code and parse it:

Leveraging Other HTML5 Features

[182]

Visualizing data with graphical charts
These days, more than ever, the web is making use of graphical charts to visualize
data. Tools which provide information about trends, analytics and statistics have
been made available for users to leverage insights.

The rise of big data technology (http://en.wikipedia.org/wiki/Big_data)
enables computers to perform complex analysis and produce insights on large
scale data. With the help of smart algorithms, information can be visualized in
a simple manner using graphical charts. Evidence to this can be see in Google's
Trends tool (http://www.google.com/trends), and other services such as Google
Analytics or Google Adsense. YouTube's video statistics are a common use and even
SoundCloud, where a user can take a look at his or hers audio tracks popularity
trend as shown in the following screenshot:

Versions prior to Drupal 7 featured charting modules based on open source libraries,
such as open flash charts which required browser's Adobe Flash plug-in support
to render the charts. Other, non-Flash solutions existed, and still do today, such as
Google's Chart API (which was deprecated a while ago in benefit of a newer version)
on-top of other open source libraries but those were mostly based on creating
JavaScript or image-based charts. The problem with such solutions is that images
won't be interactive, and won't be supported well on mobile devices.

Scalable Vector Graphics, also known as SVG, has been adopted by HTML5 and
forms a key part in the spec, for the purpose of providing two-dimensional vector
or raster graphics. Due to its vector nature, SVG is resolution independent which
basically means that the same image will look good on any screen size, whether
it's a desktop or a mobile device.

Chapter 7

[183]

SVG is actually a language that is expressed by XML in order to create
an image and is well supported by popular tools such as Inkscape,
Illustrator, and browsers are able to render them easily. Vector graphics
can be mixed with raster images such as PNG and JPG as well as text
and even create animations and provide user interactivity. Moreover,
because bandwidth consideration is crucial for solid web performance,
SVG makes a great adoption for HTML5, because it can be entirely built
by simply creating XML documents and even compressed by the popular
GZIP protocol for transfer over the wire.

With modern browser's support for HTML5 we can make use of the SVG images to
provide graphical visualization for charts. While there are many options to use, a
popular charting solution is Google's new Chart Tools API (https://developers.
google.com/chart) which provides a JavaScript interface for web builders to
implement and create charts as shown in the following screeshot:

We chose Google Chart Tools API as it is a mature and established
product that is used both internally and by other third-party
developers. The API offers support for many types of charts among
the popular column (commonly known as bar charts) and line charts.
For example, you can create geo charts which make use of visual
maps, as well as animated gauges.

Leveraging Other HTML5 Features

[184]

Enabling charts in Drupal
Our module of choice is Visualization API (http://drupal.org/project/
visualization) which has been adopted by another module called Commerce
Reporting (http://drupal.org/project/commerce_reports) and makes a good
customer reference to observe the charting capabilities made possible.

For the Visualization API module, proceed to download the 7.x-1.x-dev release,
which to this date only contains documentation updates, but we're going to make
use of its API later, so it's a good decision to go with. Once downloaded and
enabled we only need to configure the charting library API of choice. Navigate to
Configuration | System | Visualization (/admin/config/system/visualization)
and make sure Preferred charting library is set to Google Visualization API and
click on Save configuration.

You may find another charting module useful, based on SVG and the
JavaScript library Raphael.js (https://drupal.org/project/
raphael).
Although open source charting solutions exist, such as Google's
Chart Tools API, organization may wish to use commercial products
to host the code locally, to benefit from developer support channel,
or other reasons. One popular option in this case is Highcharts
(http://www.highcharts.com/) which is a well-established
library and is also supported by our choice of Drupal's Visualization
API module.

The module supports both a developer's API for programmatically creating charts as
well as built-in Views support to render charts easily using the UI and nothing but
the Views module. We will investigate both options at hand, starting with the
Views UI.

Visualization API using Views
Building a view requires some planning, with regards to what fields we need to pull
in from the database. To begin with, we should ask ourselves, what are we trying to
graph and whether there's a way to get this information from views? In most cases,
charts create graphs out of numeric data.

To work with our existing content types, we can make use of the Cooking Time
field for the rezepi content type to show a trend graph for submitted recipes
and their cooking time. With this in mind we may proceed to create this chart
using views.

Chapter 7

[185]

Navigate to Structure | Views | Add new view (/admin/structure/views/
add) and let's begin with naming the view; Cooking Time Trend seems to nail it.
Set the same value for the Page Title too and update the Display format to use
Visualization of type fields and click on Continue & edit.

In the created view settings we need to make use of the fields which will make our
x and y axis. The x axis will show each recipe's name and the y axis will show the
cooking time for it.

Back to the view's page display, the content node's title field is already showing up
by default in the FIELDS section as Content:Title. Click on the add button and locate
the Content: Cooking Time field to add and click on Apply. The default settings for
this field serve us well, so click on Apply (all displays) to finish. To make sure we're
only querying rezepi content type click on the add button in the FILTER CRITERIA
section and toggle on the Content: Type filter type.

To set the actual visualization related configuration click on Settings for the Format
Visualization section and a configuration pop-up window will display. Our
previous planning regarding the x and y axis as well as specifying the chart type
happens in this form. We will use the Line chart option for Chart type and enable
the FIELD_COOKING_TIME option with the X-axis labels set to Content: Title
and Y-axis title set to Cooking time. The result should look the following screenshot:

Leveraging Other HTML5 Features

[186]

To further enhance our Cooking Time Trend chart let's also add filters to it and
expose them to the user to manipulate. We can do this with no considerable effort
as the view module creates the query for us.

In the FILTER CRITERIA section click on the add button and search for Content:
Post date, toggle it on and click on Apply (all displays). For its operators setting, use
the is between option and toggle on the option Expose this filter to visitors, to allow
them to change it, and finally click on Apply (all displays) once more to save the
field settings.

The final configuration for the Cooking Time Trend chart view should look like the
following screenshot:

We're done with the view settings. Make sure you don't forget to click on Save now
at the top right. To view the results of the chart that we created click on the view
page button or if you've followed our naming convention for this view, simply
navigate to /cooking-time-trend.

Chapter 7

[187]

As you can see, we created a stand-alone page using the Views module UI that
displays an interactive chart which also supports user exposed filters as shown
in the following screenshot:

The integration of the Visualization API's module with the Views module is not
limited to only one chart per page. One can also create such views and define
them as blocks and then place them anywhere on the page which the theme's
defined regions allow. One can further more make use of more than one view
by programmatically calling views from code.

Visualization API developer interface
While Visualization API module has decent integration with the Views module, for
most analytics metrics that you'd be interested in pulling out of your Drupal site, you
might find that you really want that freedom to create your own database calls and a
very specific SQL query to yield the data out.

Let's make use of the module's developer API to create a chart that will show us
as site builders, the content creation trend on a daily basis. With the help of this
analysis, we will get insights regarding the busier days of the week where content
gets created. Moreover, we will use Drupal's blocks system to declare this chart as
a block, which will then allow us the freedom to display it wherever we want in the
theme's regions.

Leveraging Other HTML5 Features

[188]

Starting out with building our new module for this chart, we will need to create
the module's directory and two essential files for the module: the .info file and
the .module file. I've named the module packtpub_charts which maps to the
following directory and files structure:

• sites/all/modules/packtpub_charts as the module directory
• sites/all/modules/packtpub_charts/packtpub_charts.info as the

module's metadata information file
• sites/all/modules/packtpub_charts/packtpub_charts.module as the

module's code file

Once you have created the previously mentioned files structure we will begin with
creating the .info file for the module and adding the following contents to it:

name = PacktPub Charts
description = Example module to create charts using the Visualization
API
core = 7.x
dependencies[] = visualization

As we mentioned before, when building custom modules through-out this chapter,
this file is used as a general information, which Drupal counts on to figure out which
version is the module for, what its name, and whether it depends on other modules
or not. As we can clearly see there's a dependencies[] directive set which informs
Drupal that this module depends on the Visualization API module. Moving on to
the .module file we will begin with implementing Drupal's block hooks which will
create the block entry for us and define a callback function which creates the charts
as the content of the block as follows:

<?php

/**
 * Implements hook_block_info().
 *
 */
function packtpub_charts_block_info() {
 $blocks['content_creation_trend'] = array(
 'info' => t('Chart: Content Creation Trend'),
 'cache' => DRUPAL_NO_CACHE,
);

 return $blocks;
}

Chapter 7

[189]

/**
 * Implements hook_block_view().
 *
 */
function packtpub_charts_block_view($delta = '') {
 $block = array();

 switch ($delta) {
 case 'content_creation_trend':
 $block['subject'] = t('Content Creation Trend');
 /* Define a callback function which will return an array that
 Drupal uses to figure out how to render the content for
 this block */
 $block['content'] = packtpub_charts_chart_content_creation_
 trend();
 break;
 }
 return $block;
}

Finally, moving on to the more interesting part of our chart module, our callback
function which create the charts. Visualization API developer interface expects to
receive its data points as a hashed array with labels and their values. For example,
if we wanted to create a chart for weather in some countries (specified in Celsius
metric) we would use the following code:

$data = array(
 array('country' => 'Israel', 'weather' => 26),
 array('country' => 'Barcelona', 'weather' => 15),
 array('country' => 'Cluj', 'weather' => 3),
);

That code creates a dataset array which holds other arrays of points. Each point array
is composed of a country key which indicates the country label as well as a weather
key which indicates the value for each country.

In reality, you would almost never have such hard-coded data points but would
rather need to get this information from a data-store (like a database) or maybe by
querying a RESTful service. In our case, we will need to query the database to return
information about the number of nodes that were created in each day of the week.

Leveraging Other HTML5 Features

[190]

The following code snippet shows callback which creates the chart, let's examine the
code first and explain the flow afterwards:

/**
 * Callback to create chart data array for content creation trend
 *
 */
function packtpub_charts_chart_content_creation_trend() {

 $sql = "SELECT COUNT(n.nid) AS count, DATE_FORMAT(
 FROM_UNIXTIME(n.created) , '%a') AS day FROM
 {node} n GROUP BY day";
 $result = db_query($sql);

 $data = array();
 foreach ($result as $item) {
 $nodes = array();
 $nodes['day'] = $item->day;
 $nodes['count'] = $item->count;
 $data[] = $nodes;
 }

 $chart = array(
 'title' => t('Content Creation Trend'),
 'fields' => array(
 'count' => array(
 'label' => t('Count'),
 'enabled' => TRUE,
),
 'day' => array(
 'label' => t('Day'),
 'enabled' => TRUE,
),
),
 'xAxis' => array(
 'labelField' => 'day',
),
 'data' => $data,
 'type' => 'pie',
);

return array(
 '#theme' => 'visualization',
 '#options' => $chart,
);
}

Chapter 7

[191]

The code does the following:

• Defines the query to pull the information from the database. As you can
see, the query already organizes the counts and days in a key=value type of
resultset. Because the node table defines a created field in Unix timestamp we
make use of MySQL's data_format() and from_unixtime() functions to
convert this data to MySQL's date/time notation and format it to return the
text literal for day of the week.

• The foreach() statement loops through the resultset values and creates the
array data points such as in our country weather example.

• The $chart associative array defines the following charts properties:
 ° title: It sets the title for the chart as a string
 ° fields: It is an associative array which defines the fields for the chart.

xaxis – sets the field to be used on the X axis, which is each day.
Y-axis will show the actual counts.

 ° data: It sets the data points array wrapper that we created through
the foreach() loop that is, $data

 ° type: It sets the type of the chart, which as you can see, this chart will
be rendered as pie

• As the last step, we return an associative array where the #theme key
tells Drupal to format this data with the Visualization API's module
visualization theme and the #options key passes it our data to render.

The module is now finished and we need to enable it first and then navigate to the
blocks administration page (/admin/structure/blocks), locate the block called
Chart: Content Creation Trend and set it to one of the theme's regions. Once you
refresh the front page or another Drupal page (depending on the theme region you
picked up) you should see the following chart in the screenshot show up as a block:

Leveraging Other HTML5 Features

[192]

If you'd like to experiment with things, try to simply change the pie type in the
$chart array code to say column. Now that you've obtained the skills to create
your own charts from Drupal's database nothing stops you from realizing your
own unique ideas for site analytics.

Responsive web design
In responsive design, a web layout design implements a theme or template structure
which adapts to the browser's viewport width and resolution. For example, consider
a website which has several horizontal columns and possibly a horizontal menu too.
Loading this website on a mobile smartphone would require the device's browser
to zoom out completely to render the page and force the user to excessively scroll
up and down, left and right to navigate through the website. Instead, if the website
could somehow detect that it's been viewed by a mobile device and even detect
it's measures (height and width) it could then take action to render the HTML
differently so it would create just a single column of content as shown
in the following screenshot:

Adaptive Web Design (AWD) versus Responsive Web Design (RWD)
With the AWD approach, a web builder prepares several page template
layouts before-hand to fit a specific device's resolution which when
detected the web application uses the relevant page template. With the
RWD approach, a web builder makes use of a fluid grid system for the
layout, where using CSS programming techniques (such as media queries
which we will talk about shortly) the browser makes changes to the
layout when the screen resolution changes.

Chapter 7

[193]

Taking http://mashable.com as an example, this website renders along the lines
of the following screenshot if you view it from a desktop (or at least a large enough
resolution to get the three column layout):

Surfing the same website from a mobile devices with a relatively smaller screen size
(320 pixel resolution and even up to 480 pixels) it will render as follows:

Leveraging Other HTML5 Features

[194]

It's not just about mobile devices but also about adapting the layout for
the current screen resolution. You can try this out easily by resizing your
browser size gradually and seeing the layout change on the fly.

The frontend development arena has been stirring quite a lot of noise in the recent
years. Whether it's responsive web design, semantic web, HTML5, or node.js,
the buzz-words keep piling up with technology and mobile devices in particular,
re-inventing themselves year over year.

To put some order in all of this, let's define some basic terms as follows:

• Mobile First: Smartphones, tablets, and other types of hybrid mobile devices
pose a priority in terms of web design strategy, where planning of a given
web application begins with those devices in mind and consider their
support to render the application as a viewable item. This is opposed to the
quite familiar method of designing a web application for desktop browsers
while providing some graceful degradation for some unsupported features
and reduced viewport size.

• Feature Detection: In the beginning we had browser detection, an old
detection method where servers attempt to detect which browser is in use
based on the USER_AGENT HTTP header. Due to many reasons (such as
unreliable header that may be faked as well as others), this evolved into
feature detection which attempts to detect which capabilities the browser
support, such as HTML5 or even CSS features. Using this information, the
server can respond with a web layout which fits best the client's browser.

• Media Queries: These are part of the CSS3 specification and enable website
builders to customize the content rendering based on the device's features.
For example, if a device's resolution has been detected to be smaller than
760x480, then it will apply a different style to some CSS class. It can also
provide a completely different CSS file based on the resolution. Media
queries may help detect different device features such as width, height,
orientation (landscape or portrait on mobile devices), and others.

Chapter 7

[195]

Responsive web design with AdaptiveTheme
While there are many themes available in the Drupal eco-system, primarily the
leading options Omega and Zen, a user can easily get lost while choosing the right
option. yet the AdaptiveTheme project is one of the options at the top of that list. It
offers quite a bit of integration with popular modules such as Panels and Display
Suite. Its rapidly evolving feature set and framework foundation enable developers
to re-use its powerful responsive design methods and cross-browser support to
build on.

AdaptiveTheme (http://drupal.org/project/adaptivetheme) is bundled with
three themes. The AT Core and AT Subtheme which act as a theme package and
enable developers to extend a skeleton and build upon. It also features the at_admin
package which may serve as an administrative theme. To accommodate for a proper
sub theme we made use of Corolla (http://drupal.org/project/corolla) but there
are other supported subthemes available, namely AT Commerce (http://drupal.
org/project/at-commerce) for e-commerce web applications and provides complete
integration with the Commerce module (http://drupal.org/project/commerce).

When choosing sub themes, make sure that their minor versions match.
If you're going to use AdaptiveTheme 7.x-3.x make sure you also use the
7.x-3.x Version of the sub theme you choose.

Before we move on with the theme's configuration, let's first spread our blocks
across the possible regions to make sure that we are using both sidebars. To do this,
navigate to Structure | Blocks (/admin/structure/block) and set some of the
blocks to use the Sidebar first region and others to use Sidebar second region. Once
you're done click on the Save blocks button and visit the frontpage to make sure that
the layout is composed of three columns where one of them is the main content.

To access the Corolla theme configuration page navigate to Appearance and click
on the Settings link next to the Corolla theme logo (/admin/appearance/settings/
corolla). As you can see the theme is abundant of configuration options, from page
responsive layout, to different extensions like fonts, and image styling.

Leveraging Other HTML5 Features

[196]

The responsive layout that the theme provides is broken up across three main
categories, Standard Layout, Tablet Layout, and Smartphone Layout. Each of
these layouts kick-in, depending on the detected resolution (using media queries)
and defines the layout properties, such as how many columns and their positions
(even allowing to configure each column's width length):

• Standard Layout: Basically any desktop-like workstation including laptops
and stationary screens which can't tilt and usually have high resolution

• Tablet and Smartphone Layout: They are relevant for mobile devices and
further enable layout configuration based on the orientation of the device
(portrait or landscape)

Now that we understand this setup, let's configure it so that when viewing our
website from any resolution above 2000px (mine is set at 1920x1080 but if you're
screen is using a higher resolution than pick a larger resolution threshold to use)
it will use the Standard Layout and configure the tablet's layout to kick in for
resolutions within the scope of our screen. This way we will force one of the
mobile layouts to kick in (specifically the Tablet Layout).

To achieve this, go to Standard Layout and set the configuration option Media
query for this layout * to a value of only screen and (min-width:2000px). Then go to
Tablet Layout and set the same configuration option to the value of only screen and
(min-width:769px) and (max-width:1999px) (once again, adjust the 1999px to the
maximum + 1 resolution of your screen). In the Tablet Layout you can also toggle
on one of the other layouts than the default, for example the third option which
sets one sidebar at the left and the other one at the bottom of the page.

Next, we can turn on some debugging to help us figure out screen sizes. Click on the
Debuggers vertical tab option in the Layout & General Settings configuration area.
The Highlight regions option will simply highlight the available block regions when
viewing a page, much like the blocks administration screen can do. Toggle on the
second option, which will let you know of the detected screen size when viewing a
page—Show window size - appears in the bottom right corner.

Web developers often find browser plugins to be a much helpful tool
to ease their life. While you probably know of the popular Firebug tool,
there are tools which come in handy for responsive web design, one of
which is called Window Resizer that you can search for in Chrome's web
store or make use of Firesizer for Firefox (https://addons.mozilla.
org/en-US/firefox/addon/firesizer). It's a small extension that
allows you to resize your browser window to different (standard) sizes
with a click of a button and it also notifies you upon resizing a browser
window screen which resolution are you on.

Chapter 7

[197]

In the same configuration area we can also note the supported layouts and clearly see
the list of media queries which the theme bundles with—a total of five configurable
layouts out of the box.

Click on Save configuration at the bottom on the screen and navigate to the front
page and see how responsive design looks now, adopting the layout which we have
configured to your screen size. If you try to further resize the browser to match a
screen resolution of a smartphone, you should get the following result:

When looking at this page in that resolution you can notice several things:

• The horizontal menu at the top of the page has changed to make it fit the
entire screen width so that you wouldn't have to scroll left and right.

• The content column has resized to the entire screen width so that all elements
show up.

Leveraging Other HTML5 Features

[198]

• The two sidebars that we have assigned blocks for are using the tablet
portrait layout where the two columns are both stacked at the bottom of the
page, one next to the other. This layout is defined by the media query only
screen and (minimum width:481px) and (maximum width:768px) which
is in the range of the browser's screen size as we can see in the bottom
right tool-tip.

By choosing the correct and appropriate theme for our use, we were able to benefit
from its extensive feature set and configure it to support responsive web design so
that our web application renders well on mobile devices too.

You may also consider a base theme that is based on Twitter Bootstrap
framework https://drupal.org/project/bootstrap.

Summary
By enabling RDF support in our Drupal's website we've made sure that it
connects better with other websites, allowing for better interoperability
as well as SEO-optimized state of our website.

We have then explored a more visual world of enabling graphical charts with the
help of the Views user interface as well as our own custom code where we can tie-in
any reports we want by querying the database directly. To make sure these charts
render on any modern browser without the use of third-party plugins as well as on
mobile devices we leveraged an API which is HTML5-based.

To close this chapter we scratched the surface of advanced theming in the vast
world of client-side development where HTML5 plays a key role and learned about
responsive web design and how to configure our theme to accommodate this need.

In the next chapter we will further explore image configuration which Drupal
provides, as well as examine more tools to empower media content such as enabling
a rating mechanism as is very common amongst social networks, and provide better
user experience for our users.

Enhancing Media Content
In this chapter we will be revisiting some media resources such as images and
videos, and enriching the user experience when handling these types of media
assets. We will familiarize ourselves better with a site builder's ability to influence
the underlying configuration and fine-tune settings relating to media resources.

In this chapter, we will:

• Understand the components of media assets and their configuration
• Leverage the Colorbox module to enhance the user's experience with images
• Use the Plupload integration module to enable multiple file uploads

simultaneously
• Understand the use of image styles, extending them with third-party

modules for enabling more image effects, as well as with custom
module code

• Introduce the Fivestar module as a means of rating content and allowing
users to provide feedback on content

Understanding media configuration
Until now we have navigated through a Drupal website across many configuration
pages and settings. In this chapter, we will further elaborate on the key areas which
make up the media configuration for a Drupal site.

The media related plugins that we've installed on our site, as well as Drupal's own
handling for media and files in general, offer configuration settings so that site
builders can modify them to meet their needs. We will review these settings and
examine particularly those which are relevant to how media assets are handled.

Enhancing Media Content

[200]

The filesystem
The filesystem configuration, which can be found by navigating to Configuration |
Media | File System (/admin/config/media/file-system), allows us to tune the
directory paths where files will be stored when uploaded to Drupal, regardless of
whether they are uploaded via Drupal's image widget or the Media module's media
library upload widget.

When working with a public filesystem path, files are placed in a directory accessible
over the Web, for example, http://example.com/files/picture.png (you might
have seen URLs in the form /files/styles/public/picture.png, which we will
elaborate on later). In this case, requests for files are being served directly by the
web server and do not go through Drupal's permission and node access mechanism,
directly rendering them public to the world.

While the public filesystem may be good for starting out with Drupal to build your
site, there are probably good chances you will eventually have to move to a private
filesystem due to security reasons. For example, enabling your users to upload their
recipes and pictures of themselves will be appealing to members of your website, but
this might not be the case if they can't control the visibility of these pictures to only
allow their friends, who are members on your site, to view them. When the private
filesystem is used, the directory path that you should provide exists outside of
Drupal's root directory (the directory where the main index.php file is located), yet
the web server needs read and write permissions to that directory. With the private
filesystem, Drupal creates a placeholder URL that maps to the actual uploaded file in
the filesystem, thus providing access control capabilities to such private files.

A typical configuration of PHP usually allows up to a couple of
megabytes of file uploads. To set a larger file size limit you will need
to set upload_max_filesize and post_max_size, which are the
directives of php.ini.

Image toolkit
Drupal integrates with an image manipulation library to enable tuning of
images that are being uploaded to your site. Most probably, you will have the
GD Graphics Library installed and available for Drupal to use this functionality
exposed through PHP. Otherwise it's possible to install the ImageMagick tool to
provide this functionality.

Chapter 8

[201]

Once an image manipulation tool is integrated, Drupal by default uses it to set
the quality of uploaded pictures. To inspect or modify this setting navigate to
Configuration | Media | Image toolkit (/admin/config/media/image-toolkit).

The importance of the image toolkit functionality is not just about setting the JPEG
quality, but also introduces support for abstracting the way images are manipulated
so that a rule can be created, for example, to resize all uploaded images automatically
to a certain resolution.

Image styles
Image styles are used to create presets of images, defining properties such as sizes
(by resizing or scaling up/down), as well as applying other types of image effects.
Image styles help a site builder by defining a profile which can be used to format
the display of several fields, so when you need to change image properties, you
can change the image style, and it will affect all fields that are using it. This is often
referred to as weak coupling in software development and it's a good thing because
it creates more "freedom" across all moving parts.

There is no need to worry about the changes made to images uploaded to the site.
The styles are applied to a copy of the image, for each relevant style, and are saved
in the filesystem, along with the original image that was uploaded. Upon changing
the properties of an image style, all existing instances that use this image style will be
recreated according to the new style settings.

Image styles pictures are saved to the filesystem using a particular
directory structure which you can easily spot, such as /sites/
default/files/styles/thumbnail/public/picture.png.

In previous Drupal versions this functionality has been provided using modules
such as ImageCache, but in Drupal 7 it is already built-in and provides three default
styles: thumbnail, medium, and large.

Enhancing Media Content

[202]

To manage image styles we'll navigate to Configuration | Media | Image styles
(/admin/config/media/image-styles) and we will notice a few styles, that the
Media Gallery module added, as well as the options to edit them or add new styles.

We will add a new thumbnail image style that has a few properties such as scaling,
resizing, and color effect to make it black and white. To make sure we understand
this style when we use it in other places we will name it grayscale_thumbnail.

Click on Add style (/admin/config/media/image-styles/add), set the new image
style name to grayscale_thumbnail, and click on Create new style, which redirects
us to the new image style configuration page. The top of this page is split into two
panes, the left side showing how an original image would look like, and on the right
side it shows a preview example for our new image style, according to the image
effects that we added.

In the EFFECT configuration choose the Scale effect and click on the Add button.
Configure the sizes you see fit for a thumbnail picture and click on Add effect
when done. Then choose the Desaturate effect and click on Add.

Chapter 8

[203]

After creating this new image style, we will assign it to one of the content types we
created earlier that is using an Image field. This feature should sound familiar as
we've used image styles in the beginning, with our Memo content type, where we
managed the field's display and chose an image style for one of the Image fields. An
image style may be used across our website for different implementations, whether
it's galleries, node display modes, views, and so on.

As you can see, the Image Styles configuration bundles has three default styles:
thumbnail, medium, and large, to accommodate for most scenarios. There are also
some built-in effects such as resizing and cropping. We will later on learn how to
extend these image styles.

Enhancing Media Content

[204]

Colorbox
We have made use of the colorbox library earlier to create a pop-up effect for
pictures. This was mostly focused on galleries, but we will now learn how to
integrate this feature with other parts of a Drupal website.

Colorbox for media images
When we explored the galleries and slideshows functionality before, we made use
of Drupal modules which had the sole purpose of meeting that specific requirement.
While we were able to meet our functionality of creating galleries, content items
that we created did not benefit from the gallery pop-up view, which we later
implemented with the help of jQuery's lightbox module.

To remember what this actually means, let's navigate to one of the earlier content
types we created, rezepi, and take a look at how a node looked like back then.
Taking as an example the Kubbeh Soup content item we added, you can clearly
see that the images showing up are just as static picture contents.

Chapter 8

[205]

By enabling the colorbox functionality for plain images too, we can also better
style our content nodes by displaying thumbnail pictures which take less screen
real-estate, and when users click on them they open up in the lightbox pop up that
we've seen previously with the Media Gallery module.

To begin, we will need to add the Colorbox Drupal integration module. Download
the latest 7.x stable version (http://drupal.org/project/colorbox) and as usual
install and enable the module. The Colorbox module introduces many settings
to customize the lightbox effect, so we will proceed to its configuration page by
navigating to Configuration | Media | Images (/admin/config/media/colorbox).

Toggling on the EXTRA FEATURES options will provide the integration for the
colorbox library and allow leveraging this functionality across your site for other
modules too. These options should probably be toggled on by default, if they aren't,
it's a good idea to do so.

Enhancing Media Content

[206]

In the STYLES AND OPTIONS section we are able to customize the look and feel
of the lightbox that pops up. Some styles are available by default yet we can extend
them for our specific theme's layout if required. While the Options checkbox is set
to Default, you can toggle on the Custom option and notice the very detailed level
to which the lightbox popup can be further customized, whether it's the transition
effect, its speed, its alpha level, and so on.

The ADVANCED SETTINGS section allows for more fine-tuning of the lightbox
behavior, for example disabling it on some pages, such as on the admin and node
editing pages by default and whether to minify the lightbox's library JavaScript code.
The defaults here are most probably best to leave as they are.

At the node content type level, it's required to configure the display format of the
Image field. By default, this uses the Image field formatter and we never changed
that, so it displays the picture using one of the default media styles. Navigate to
Structure | Content Types | rezepi | manage display (/admin/structure/types/
manage/rezepi/display) where we need to let Drupal know that we're interested
in using the colorbox image formatter. For the Picture field, change the FORMAT
column option to Colorbox, which will yield a change in the formatter configuration
settings. Click on the rightmost, grey colored, gear icon to update these settings. For
the Content image style one should probably set a small form size of the image, one
of the existing thumbnail or medium image styles should do it, depending on your
preference. For the Colorbox image style one should probably set a bigger image
style as this will be the image that will show up in the lightbox pop up. I've gone
with None (original image), which obviously shows the original uploaded image.

Chapter 8

[207]

To confirm the result works as expected, edit the Kubbeh Soup content or create a
new one and make sure the picture field is indeed populated with an image (which
should be the case as we've made it a required field previously). Then visit the node
and notice how the image shows up in a small thumbnail form. If you click on it, the
lightbox should pop up and show the image in a bigger size, as you selected.

The Colorbox formatter allows for more configurations such as
supporting multiple images attached to a node. The Gallery setting
defines the lightbox behavior in the case where multiple images
are set for the node, such as enabling slideshow functionality to
navigate across the node's images, instead of clicking and closing
them one by one. Furthermore, the Caption setting defines the
source to use for the image title.

Enhancing Media Content

[208]

Colorbox for WYSIWYG integration
As we've seen earlier, providing proper WYSIWYG support greatly affects the
productivity of users. The problem with adding an Image field is that pictures get
separated from the node's text, and thus disconnect from the context of the content
item's text. This is something we have been through before and we solved it by
integrating the extra media button into the WYSIWYG toolbar. Yet the problem
remains that these images that we add do not benefit from the lightbox pop-up
effect, so the user needs to fine-tune their width and height settings to fit the text
as well as the image.

With the addition of the colorbox library to Drupal, it's possible to utilize the library
and get this to work manually by setting up the HTML element with the
correct attribute settings. Let's see how this works before we find better alternatives.
Heading back to the Kubbeh Soup content item we can see that apart from the Image
field, the node's body field is using the WYSIWYG editor on full HTML text format
and also embeds an image in the text, which does absolutely nothing if you click
on it:

Even without integrating any third-party modules, it's possible at this point to make
lightbox work for that image. To do this, we need to address the following items:

• Set the URL field in the Link tab to point to the original image
• Set the CSS class to also contain colorbox

Chapter 8

[209]

With that in mind, we will edit the Kubbeh Soup node and double-click on the image
in the Recipe field (or right-click on it and choose Image Properties). Copy the URL
in the first Image Info tab and paste it into the URL field of the Link tab with a slight
modification; we're interested in showing up the original image in the lightbox pop
up so it's required to clean up that URL a bit and remove the /styles/thumbnail/
public/ segments so that it looks something like /sites/default/files/picture.
png. Click on Ok in the Image Properties dialog and then reopen it. Navigate to the
Advanced tab and in the Stylesheet Classes field, add colorbox and click on Ok.
Save the node and watch how it's possible now to click on the image and display
it in its original size using the lightbox effect.

This obviously results in a poor user experience, and there are better ways of
achieving this goal, one of which is the popular Insert module. It attaches to the
Image fields and after uploading an image it simply adds an insert button, which
when clicked injects the required HTML tag into a text area, where the cursor
mark is. The problem with the Insert module is that it has no support for the Media
module and only works with the Image fields where the widget is Image too (and
not Media file selector). Then, there's the Media Colorbox module (http://drupal.
org/project/media_colorbox), which might prove to be a better candidate for
cross modules Media and Colorbox integration, but at this point it's not mature
enough to provide proper WYSIWYG support and definitely has some bugs.

Installing colorbox
Download the Media Colorbox module's 7.x development version (http://drupal.
org/project/media_colorbox) and install it. The module aims to simply add
colorbox field formatters for the Image file type so we just need to set that up first.

Navigate to Structure | File Types | Image | manage file display (/admin/
structure/file-types/manage/audio/file-display) where you should see
that there's already a Media Colorbox enabled display. Configure it and adjust the
File view mode to Teaser, the Colorbox view mode to Preview, and Gallery to
No gallery. Add an Image display and set the Image style field to None (original
image). With regards to the Display precedence order setting, make sure that the
Image display is first and the Media Colorbox display is second.

In the Teaser mode of the file display (/admin/structure/file-types/manage/
audio/file-display/teaser) make sure that the Image display is the only one
enabled, and set the Image style field to thumbnail. Similar to that, we'll need to set
up the Colorbox mode of the file display (/admin/structure/file-types/manage/
audio/file-display/colorbox) and set Gallery to No gallery too (the first and
second fields should be left set to Default).

Enhancing Media Content

[210]

We're ready to try this out. Let's edit the rezepi node and add a picture using the
Media Browser button on the WYSIWYG toolbar. After choosing one of the images
there and clicking on Submit, the following screen should appear, in which we
should now change the current format to Colorbox; click on Submit and then save
the node:

The lightbox effect should now show up for the selected images from the WYSIWYG
toolbar. Support for this may still have its bugs and if you're not planning to use the
Media file selector widget, then one can use another module called Insert which does
the job well and is very simple to install too.

Colorbox for views
We can also benefit from the colorbox functionality easily in views.

It requires a simple change in the Image field formatter for existing views, so let's
pick up the Recent Memos view (/recent-memos) that we created earlier. You can
either find it by navigating to Structure | Views (/admin/structure/views), or if
you navigate directly to it via the URL or menu entry that we added, just click on the
rightmost gear icon and choose the Edit view.

In the FIELDS section click on the field called Content: Image, which will open
the configuration screen for this field in a new pop-up window. For the Formatter
field set the Colorbox option, for the Content image style choose thumbnail, for
the Colorbox image style choose None (original image), and for Gallery choose
No gallery.

Click on Apply and then save the view. Now when images are clicked upon, the
lightbox effect will kick-in.

Chapter 8

[211]

Multiple file uploads
We've been using the Media module as a very integral part of building our rich
media content website, and while it does provide a rich user experience, it has its
shortcomings, and it's not a full blown solution.

We will examine how to add multiple files upload support across a Drupal
website, thus providing better user experience for site builders as well as the
site's user audience.

Multiple file uploads for site administrators
When we are mostly dealing with user experience and functionality, it's easy to
forget the fact that you, the site builder and administrator, are a user too and
should also benefit from better experience.

As site administrators we are able to upload media by navigating to Content | Files
(/admin/content/file) and adding files to our site's media library, but clicking on
the Add file link would only allow us to upload files one by one.

To resolve that, we can make use of the plupload library and its Drupal integration
module. For the library, surf over to http://www.plupload.com/download.php and
download the GPLv2 version. Extract it into sites/all/libraries, which should
result in sites/all/libraries/plupload/js/plupload.full.js being accessible.

Enhancing Media Content

[212]

For the Drupal module, we will download the Plupload integration module
(http://drupal.org/project/plupload), which is used by other modules
too to provide a better file upload experience. Once downloaded and enabled,
the functionality should already be provided.

Let's navigate back to Content | Files and click on Add file again. If the installation
was successful we should see a form like the one shown in the following screenshot,
which allows for drag-and-drop as well as multiple file selection:

Multiple file uploads for user's Image fields
Providing a similar functionality for single nodes requires that we work with either
the File or Image field types and with a dedicated upload widget based on the
plupload integration.

To meet this requirement we will need two additional modules: Multiupload
Filefield Widget (http://drupal.org/project/multiupload_filefield_widget)
and Multiupload Imagefield Widget (http://drupal.org/project/multiupload_
imagefield_widget). Download and install both modules (note that the former is a
required module which the Imagefield widget module builds upon).

Chapter 8

[213]

Because we mentioned this upload functionality affects the File and Image type fields
let's work with the Memo content type that we created earlier, which uses the Image
field. Navigate to Structure | Content types | Memo | Manage fields (/admin/
structure/types/manage/memo/fields) and you should see that the Image field
we added makes use of an Image field type as well as an Image widget. To change
this widget, click on the Image link (of the WIDGET column), change the Widget
type setting to Multiupload, and then click on Continue.

We will also need to edit the Image field's settings (/admin/structure/types/
manage/memo/fields/field_image) and make sure that the Number of values
setting has the Unlimited option selected (or another value greater than
one obviously).

Finally, save this node field's settings and proceed to editing an existing Memo
content type or creating a new one. At first, the upload widget may look the same as
before, but notice that you can actually select multiple files in the system files dialog.

Enhancing Media Content

[214]

After selecting the files you can either save the node or click on the Upload button to
see the uploaded files information before you save.

Extending image style effects
Earlier in this chapter we've seen how basic image effects can be applied to pictures
that users upload. We will introduce a new module now that will help us in further
extending the effects pool available for users on a Drupal website.

The module in question is called ImageCache Actions, which originates from earlier
Drupal versions where this functionality was referred to as ImageCache. Proceed
to download (http://drupal.org/project/imagecache_actions) and install it.
Notice that this module comes bundled with a bunch of other modules that should
be enabled too: ImageCache Canvas Actions and ImageCache Color Actions.

You may wonder what's the point in adding image effects? What is there
to it? I'll then remind you of Instagram, a company whose entire product
delivery was to enable users to take pictures from their smartphone and
apply basic image effects to them. By the way, they recently also added a
web application to accompany their mobile app product offering.

Chapter 8

[215]

The module offers quite a handful of image manipulation options to choose from
and build on. We will go about adding two image style presets to set an example
of how to make use of the module.

Navigate to Configuration | Media | Image Styles (/admin/config/media/
image-styles) and add a new image style called effect_reddish. Apply the
following effects:

• Rounded corners: Set the radius to 100
• Color shift: Set the hex value to FF0000

This should result in an effect similar to the following screenshot:

If you're satisfied save this image style or continue tweaking it at your will.

Proceeding to our next example, we will make use of an existing image as a
watermark on uploaded images. For the watermark effect, we need to specify the
path of the image that we will use as the watermark image in Drupal's filesystem
(such as a logo or a signature). From the previous chapters, we can make use of the
DigiDoc pictures as an example here to add signatures to images in our website. If
you decide to do so, then just find the filename for it. Otherwise, you can upload a
new image by navigating to Content | Files (/file/add) and directly uploading
it there.

Create another image style and name it effect_watermark, and add the Overlay
(watermark) effect to it. For the X Offset field set right, for the Y Offset field set top.
While it's possible to use numeric values, using terms such as top right to set the
watermark position is easier and more convenient. Set Opacity to 100 and for the
filename field use the format public://picture.png to specify the image you will
be using, which indicates that the picture.png image we are interested in using
should be found in the public filesystem folder in Drupal.

Enhancing Media Content

[216]

If you're not satisfied with the results in the preview you can change positions
or possibly consider changing an image for one that better suits a watermark.
The end result should look similar to the following screenshot:

There are many more effects that can be created just with those set of configuration
options that the ImageCache Actions module provides, and one can come up with
more than just an Instagram-clone idea for your next web or mobile ventures, one
for example is a greeting card application.

Adding your own effects with custom
modules
If you are pursuing a project which requires a great deal of image manipulation,
chances are that you will not find all of this functionality in contributed modules,
and that's ok. It's expected that third-party modules will give you an immediate
solution for better time-to-market (TTM), and from there on Drupal's immensely
modular and flexible architecture will allow you to use its facilities to create your
own modules.

Drupal's workflow for implementing an image effect is simple and is as follows.
Once an image effect has been declared using the appropriate hook, it is served as a
callback function when an effect needs to be applied. When that occurs, the callback
should invoke an image toolkit (as there may be more than one and it depends
on operating systems and installs, such as whether the library is installed or not),
which applies the appropriate effect implementation and returns the image object.

Chapter 8

[217]

defines an effect callback

calls image_sepia() which in turn
should invoke all supported toolkits
to apply the effect for this image

the gd toolkit s hook callback to
apply the specific effect and return
the $image object

hook_image_effect_info()

image_sepia_effect

image_gd_sepia()

To achieve this image effect add-on, we will create our own module code to
implement an image sepia tone effect. A sepia tone, which you probably have
seen on image related applications such as Instagram, is a picture that has been
manipulated to make use of colors in the brown range tone, which ultimately
gives it a style of old photographs.

Without diving too much into graphics theory we will simply point out that a
certain color can be represented in many ways, one of which is the hexadecimal
notation which is widely and most popularly used around the Web today, for
example #00FF00. The same color can also be represented in its red, green, and blue
tone strength. For our image effect, red, brown, yellow, gold, all with the proper
color tone can be referred to as sepia. There is no one RGB code that is to be used,
but rather one can decide upon the desired values to create the shade of brown that
is most appropriate.

What color is #00FF00? When specifying a color in hexadecimal notation
we can split it in three equal parts, in our example, 00, FF, and 00.
Each part maps to its equivalent red, green, and blue component. Each
component is made up of a byte, so if the notation is hex, its range is from
00 and upwards to FF. If the decimal system is used to note in RGB style,
it ranges from 0 to 255, resulting in 256 color options for each component.
Because we have three components of 256 colors, this adds up to 256 * 256
* 256 = 16,777,216 possible colors that can be specified. Understanding
the color system, we can look into our #00FF00 example. Because 00 is
used for the red and blue components we know that there will be no such
color tone of either. We are now left with green, specified in FF, which is
equivalent to 255; it is now clear that #00FF00 is simply a green color.

Enhancing Media Content

[218]

To begin with our module, we need to create the module's directory and files
structure. Name the directory image_effect_sepia, create the directory sites/
all/modules/image_effect_sepia, and our first file sites/all/modules/image_
effect_sepia/image_effect_sepia.info, which will be used as our module's
metadata information for Drupal. Its content is as follows:

name = "Image Effect - Sepia"
description = "Adds a Sepia image effect to image styles"
core = 7.x
files[] = image_effect_sepia.module

Proceed to create the actual module's code in the module file sites/all/modules/
image_effect_sepia/image_effect_sepia.module. The code that we will use
in this module is stripped down to simply the hooks we need to implement for the
image effect just as we described the process in the flow chart previously:

<?php

/**
 * @file
 * Functions implementing the image effects hooks to provide a Sepia
 color effect
 */

/**
 * Implements hook_image_effect_info().
 */
function image_effect_sepia_image_effect_info() {

 $effects = array(
 'image_sepia' => array(
 'label' => t('Sepia'),
 'help' => t('Sepia converts an image to old images look,
 kinda brown-ish.'),
 'effect callback' => 'image_sepia_effect',
 'dimensions passthrough' => TRUE,
),
);

 return $effects;

}

/**

Chapter 8

[219]

 * Image effect callback; Sepia effect of an image resource.
 *
 * @param $image
 * An image object returned by image_load().
 * @param $data
 * An array of attributes to use when performing the sepia effect.
 * @return
 * TRUE on success. FALSE on failure to turn image to sepia.
 */
function image_effect_sepia_image_sepia_effect(&$image, $data) {

 if (!image_sepia($image)) {

 watchdog('image', 'Image sepia failed using the %toolkit
 toolkit on %path (%mimetype, %dimensions)',
 array('%toolkit' => $image->toolkit, '%path' =>
 $image->source, '%mimetype' => $image->info['mime_type'],
 '%dimensions' => $image->info['width'] . 'x' .
 $image->info['height']), WATCHDOG_ERROR);
 return FALSE;
 }
 return TRUE;

}

/**
 * Our own call back for applying the image effect which will
 invoke any image toolkit's libraries that implement this
 sepia color effect
 *
 * @param $image
 * An image object returned by image_load().
 */
function image_sepia(stdClass $image) {
 return image_toolkit_invoke('sepia', $image);
}

Moving on to create our image effect we will be making use of the API provided by
PHP's GD library (http://php.net/manual/en/book.image.php), which is quite
simple and straightforward. Let's review some examples of general use, where to
begin with, we need to create an image object, which we can either do from scratch,
or from an existing image as follows:

// New image created, specifying its size:
$width = $height = 400;
$image = imagecreate($width, $height);

Enhancing Media Content

[220]

// An image object created from an existing image, specifying its
 filename
$image = imagecreatefrompng($file_path);

With the $image object, we can then apply one of the many image manipulation
functions that the GD library exposes for us. When working with a new image object,
we can set the background color by using imagecolorallocate(), and recursively
use it again to create a color using RGB values, for example:

// This will set the background color to red for initial images that
 were created with imagecreate()
$red = imagecolorallocate ($image, 255, 0, 0);

There are many more functions for you to explore such as writing text, creating
shapes, and employing color manipulations.

For our Sepia effect, we will make use of the imagefilter() function, which
receives an $image object to work on, an image filter type, and optional arguments
for setting the RGB values.

/**
 * Convert an image to sepia color tone
 *
 * @param $image
 * An image object. The $image->resource value will be modified by
 this call.
 * @return
 * TRUE or FALSE, based on success.
 *
 */
function image_effect_sepia_image_gd_sepia(stdClass $image) {

 // PHP installations using non-bundled GD do not have imagefilter.
 if (!function_exists('imagefilter')) {
 watchdog('image', 'The image %file could not be applied the
 sepia effect because the imagefilter() function is not
 available in this PHP installation.', array('%file' =>
 $image->source));
 return FALSE;
 }

 imagefilter($image->resource, IMG_FILTER_GRAYSCALE);
 return imagefilter($image->resource, IMG_FILTER_COLORIZE, 150,
 50, 0);

}

Chapter 8

[221]

As you can see, before applying the brownish color tone we first apply the
grayscale image filter, which turns the image into black and white by calculating
each pixel's intensity, and then apply the brownscale colors tone using the
IMG_FILTER_COLORIZE filter.

Save the module file and we are now ready to enable it. To watch it in action you can
navigate to the Image Styles configuration (admin/config/media/image-styles),
create a new image style, and apply the Sepia effect to it.

Enabling rating of content
Throughout this chapter we've seen how it's possible to extend the functionality of
media assets, primarily images, and user experience when handling them. We have
even covered how to customize this experience using our own module code.

Enhancing Media Content

[222]

Let's not forget that there are other ways to enhance overall media content with
functionality and features which do not surround the actual media handling.
There are many examples of this, such as:

• Enabling comments to stir discussion amongst your web
applications' community

• Enabling the use of hash-tags or @ symbols to mention users, so that
visitors get hooked to your website, and are encouraged to stay longer

• Enabling the rating of content

The list can further grow depending on your use case and imagination.

We will explore the suggested enhancement of enabling users to rate the content,
specifically media related, on your website. It is a very popular feature amongst
social collaboration networks, which sets the path on creating valuable views as
a site builder such as popular and suggested content by your users and most
active users.

To add this feature, we will use the Fivestar Drupal module, which leverages for this
purpose some other Drupal dependencies and JavaScript libraries. To begin, we will
need to download and enable the 7.x branch version of the following modules:

• Fivestar (http://drupal.org/project/fivestar)
• Voting API (http://drupal.org/project/votingapi)

Before proceeding with the actual Fivestar setup, one can visit the general Voting
API configuration by navigating to Configuration | Search and Metadata | Voting
API (/admin/config/search/votingapi) and make any changes to the default
settings. For example, if you wish to count anonymous votes as one vote, even if they
originate from the same computer, then set the Anonymous vote rollover setting to
Never. As you can see, this goes as well for the registered users by default with the
Registered user vote rollover option. The final Vote tallying option refers to the
time when the calculation of all votes should take place to provide the final results.
The default is probably fairly sane if you're just starting off.

To enable anonymous users to cast votes on nodes, you might need to
adjust the permissions at /admin/people/permissions with the rate
content permission for the anonymous user role.

Chapter 8

[223]

The Fivestar rating module can be used in numerous ways, either enabling it using
the fields configuration for a node content type, or by developers making use of
its API. Its general configuration is quite simple, and allows you to enable several
voting per content type if required. Navigate to Fivestar's configuration page
at Configuration | Content Authoring | Fivestar (/admin/config/content/
fivestar) and apply the voting tags name, which is used to specify the voting
categories. On most occasions, the voting is per node content type, so we will be
leaving this as the default option and click on Save configuration.

Adding a rating field for content types
Let's add a rating field for the Concertz content type. Navigate to Structure |
Content types | Concertz | Manage fields (/admin/structure/types/manage/
concertz/fields) and add a new field called Rating. Choose the Fivestar rating for
the FIELD TYPE setting and for the WIDGET TYPE setting choose the first option
Stars (rated while viewing). The WIDGET TYPE option defines the behavior of the
voting widget, such as whether users are allowed to vote when the node is being
viewed or edited, and whether we would like to use a drop-down select list instead
of the rating icons. In most cases it's probably desired to allow users to cast their vote
when they view the node, hence the first option for this setting is our choice, Stars
(rated while viewing). After clicking on the Save button we get forwarded, as usual,
to the settings page, where we can set the following:

• The Number of stars field allows you to set the amount of star icons that
should be drawn and serves as the highest vote that can be specified for
the node

• Allow users to cancel their vote at any point in time after voting
• The Rating field settings field, if it is required to maintain multiple

votes in separate categories, helps you to specify the vote category
using taxonomy tags

Once you are satisfied with those settings click on the Save settings button.

The Fivestar module ships with several widgets that one can use to display the
voting icons, and of course enables developers to extend with their own widgets.
The voting widget hosts more than just formatting, so we will navigate to MANAGE
DISPLAY (/admin/structure/types/manage/concertz/display) now to examine
the possible configuration allowed for this widget.

For the display format, aside from the interactive icons option, the Rating and
Percentage options are pretty straightforward. They will either show a 4/5 text or a
80 percent plain text output, respectively. The more interesting and common use of
the Fivestar module formatting is the Stars view.

Enhancing Media Content

[224]

After choosing the As Stars setting, click on the gray gear icon on the right-hand side
of the page and notice that you can choose from quite a few options for drawing the
stars icon:

Aside from the actual icons for the look and feel, this display format allows us to
configure whether to display the average vote or the user's own vote, as well as
tune the stars text display.

If you wish to further enhance the user's feedback regarding content on
your website there are other modules which extend the Voting API such
as Plus1 and Is Useful.

Chapter 8

[225]

Once you have updated this format with your desired settings, make sure you save
it and navigate to one of the Concertz content types that we created earlier. It should
look like the following screenshot:

Summary
In this chapter we reviewed Drupal's media configuration and tools which aid
a site builder in enhancing media-related content. With image styles, we learned
how to apply image manipulations and how to build our own effects. For better
user experience we explored the use of Colorbox and Plupload modules. Finally,
we learned about the rating module, which adds voting capabilities.

In the next chapter we will take a tour of the upcoming and promising Drupal 8
version, where we will explore new features that it brings and how we should
prepare for it as site builders.

Drupal 8 and Beyond
This chapter will explore the upcoming Drupal 8 release and its overall
changes and features, and review what awaits for website builders in this
next revolutionary release.

In this chapter, we will cover:

• Introduction to Drupal 8
• Drupal 8 tour guide

Introduction to Drupal 8
If you are familiar with Drupal’s release lifecycle, then you should know that there
are always two versions. The officially released and stable version, in our case this is
Drupal 7, which is kept up to date with any bugs or security patches required so it
is fully supported. Once Drupal 7 was officially released, developers were able to
start focusing their efforts on implementing their next version of a brand new and
shining Drupal.

This upcoming version of Drupal 8 is as revolutionary as any of the earlier
major releases.

If you would like to get your copy of the latest version of Drupal 8
then you’d need to set up git (http://git-scm.com), the distributed
version control system, and get a copy of the Drupal repository. From
command line, you can simply run git clone http://git.drupal.
org/project/drupal.git, which will create a drupal/ directory
in the current directory tree. As it is with git, you’d be getting the entire
repository with all branches that were created so you can also easily
switch through any of them. You can find more instructions on using
git with Drupal at https://drupal.org/project/drupal/git-
instructions.

Drupal 8 and Beyond

[228]

Drupal 8 architecture changes
Drupal 8’s core initiatives are organized around topics, with assigned team members
and team leaders to help carry out the objectives. Each core initiative aims to focus
on a topic which Drupal, hopes to improve on, and bridge the gap with the current
demand for advanced web applications. The initiatives for Drupal 8 are:

• Configuration management
• HTML5
• Layouts
• Mobile
• Multilingual
• Views in core
• Web services

You can probably relate to most of these topics and understand why Drupal needs
to provide better support in each area. HTML5, mobile, and views should not be
strangers to you as we have learned about them in the context of Drupal throughout
this book.

Other topics such as Configuration Management Initiative (CMI) have been
addressed due to the problem of separation of configuration from data. Drupal
developers would easily relate to this pain because everything in Drupal is kept
in the database, whether it’s module’s configuration and general settings or actual
data payload like users. In such a design, it is very hard to manage different Drupal
instances which share the same data (the state of the database) but not the same
configuration. For example, you can think of development lifecycle which requires
a test server, a staging server, and a production server.

Integration with Symfony2
While Drupal is a very advanced Content Management System (CMS) and even
somewhat of a framework too (CMF), it is still not employing design patterns
or architecture design, which is stopping it from being up-to-date with current
technology advancements.

Chapter 9

[229]

Drupal 8 has decided to adopt and make use of Symfony2 components in order
to meet design requirements for its internal structure, without having to reinvent
the wheel. Some of these components are HttpKernel, Routing, EventDispatcher,
DependencyInjection, ClassLoader, and others all of which will aid Drupal by using
high quality code-base that has been tested by the very large Symfony community,
and now pairing it with Drupal will even allow for more improvements.

Symfony2 (http://www.symfony.com) is an open source, enterprise-
grade PHP framework for web development by SensioLabs. It provides
a handful of components for web application development, which are
decoupled and reusable, making it an obvious option for other PHP
applications and frameworks to leverage these set of libraries.

One of the benefits of integrating Symfony2 components is that Drupal’s very
unique design structure and development model hinders on new comers who find
it difficult to understand. By integrating with Symfony2 components, it introduces
familiar programming concepts that developers coming from other frameworks have
already learned. Moreover, it provides the ability to easily leverage shared libraries
across developers in the eco system, especially with the establishment of the PHP
Framework Interoperability Group (PHP-FIG).

Release timeline and when to expect Drupal 8
You’re probably wondering when should we expect Drupal 8 to be released and how
soon can we migrate to it if we wanted to.

While code freeze was originally planned for April 2013, its current due date is
probably more along the lines of July 2013, which shortly after Drupal 8 will be
officially released. How long after July, no one knows exactly (it was planned for
September 2013 originally) but it will happen once there are no release-critical issues
pending in the queue. We can estimate due to experience with previous releases that
this time frame would be around two to six months.

Although, even if Drupal 8 will be released by December 2013 this isn’t really
translating to any immediate actions when as site builders will delay in adopting
this new release due to architecture changes and the lack of modules support in this
new version. Developers will probably take some time until they fully grasp the new
internal design of Drupal 8 and catch up with the learning curve to complete their
versions for it.

Drupal 8 and Beyond

[230]

As we can see in the usage chart per Drupal version (which you can always follow
up on for more updates on https://drupal.org/project/usage/drupal), while
Drupal 7 was released around January 2011 it only surpassed site builders adoption
more than a year later at around April 2012.

Drupal’s release cycle visualized by Dries Buytart (http://buytaert.net/drupal-
8-feature-freeze-extended) shows the actions that take place in each phase of the
development lifecycle and will help you figure out what to expect accordingly:

Chapter 9

[231]

Drupal 8 tour guide
Once you’ve loaded up Drupal 8’s installer in the browser you will see that it is
pretty much the same as Drupal 7, in terms of UI as well as installation options
where you can choose different install profiles and setup database configuration.

When the installation process is finished, Drupal’s landing page looks as follows,
and you will immediately notice that the administrative toolbar has been shrunken
to take up less space.

Drupal 8 and Beyond

[232]

Another important aspect of theming that you can immediately notice is that the
default theme has been made responsive from the ground up and now, loading up
your Drupal website from a mobile device will actually render into a usable user
interface. The administrative tool bar menu items have been stripped out of their
descriptive texts and the overall layout has shifted into a single column view to
make sure everything fits into the screen.

Another layout related change that we can notice in the landing page is the
contextual editor. By clicking on the right-most pencil icon that shows up on the
administrative tool bar at the top, all the blocks, views, content, and any other
Drupal element in the layout will immediately display the pencil icon wrapped
around a rectangular container that will enable the respective contextual links.
For example, on a block item we would be able to configure block settings,
and for a view we’d be able to quickly edit the view.

Chapter 9

[233]

This isn’t a newly introduced functionality on its own but it has been streamlined
now and it is setting the grounds for in-place editing, which will greatly improve
content editors’ user experience.

If you are wondering how much emphasis has been put on providing a better
experience for content editors, take a look at the page for creating a new article:

The vertical tabbed options which we’ve seen in earlier Drupal versions were
moved to the right side of the screen in its own column. It resembles WordPress
(http://www.wordpress.com), the popular blog publishing system, quite a bit and
it genuinely looks cleaner. More importantly maybe, we can see that the WYSIWYG
editor CKEditor that we’ve been working with throughout this book is the default
and built-in content editor in Drupal 8.

Drupal 8 and Beyond

[234]

Summary
We have reviewed the upcoming Drupal 8 release and the changes it is introducing.
Many of those changes are architecture and software design related changes such as
configuration management, core framework refactoring, better layout, and general
mobile-ready with built-in support for HTML5.

As we’ve noted previously, it will take some time for Drupal 8 to be adopted by
developers and site builders. While the media initiative group (https://groups.
drupal.org/media/media-initiative) has been working hard on providing better
media support for Drupal, as we’ve seen with the Media module throughout this
book, there are currently no products to work with for Drupal 8, nor is there any
built-in support for proper media handling as we covered in this book. Moreover,
there are currently no media management related modules on Drupal’s modules
ecosystem (to be exact there are only six modules in the media category and none
of them is of relation to the topics in our book).

Index
A
AAC 142
about attribute 174
AdaptiveTheme

about 195
Smartphone Layout 196
Standard Layout 196
Tablet Layout 196
URL 45, 195

application programming interface (API) 31
architecture changes, Drupal 8 228
Article content type 10
AT Commerce

URL 195
audio formats

about 142
Vorbis format 142

audio metadata
custom node template, preparing 160, 161
extracting 161-165
ID3 158
ID3 module, installing 158
ID3 PHP library, installing 159
leveraging 158
storing, in fields 165-169

audio nodes
customizing 145
drum machine, creating 152-156
multi-channel playback 145-152

audio play
enabling 142
Tracks content type, adding 143-145

AWD
versus, RWD 192

B
Bartik theme 44
Bartik theme customizations

about 45
color set 45

Basic Page 10
big data technology 182
blocks

about 37, 38
assigning, to regions 40, 41
block regions 38-40
creating 42, 43
visibility settings 43

bundle 12

C
Canvas field module

content type, creating 97-100
DigiDoc content type, creating 100-103
downloading 97
URL 97

canvas playground 97
Chaos Tools 10
Chaos Tool Suite

URL 28
charts, in Drupal

creating, views used 184-187
enabling 184

Chart Tools API
URL 183

CKEditor
URL 59

ClassLoader 229

[236]

colorbox
about 204
enabling, for media images 204-207
enabling, for views 210
enabling, for WYSIWYG integration 208
installing 209, 210

Colorbox Drupal integration module
URL 205

Colorbox formatter 207
Colorbox library

URL 73
Commerce module

URL 195
Configuration Management Initiative (CMI)

228
Content Construction Kit (CCK) 10, 142
Content Management Framework (CMF) 8
Content Management System (CMS) 7, 228
content types

about 9
Article content type 10
Basic Page 10
creating 12-17
memo 12
rating, enabling 221, 222
rating field, adding 223, 224

Corolla
URL 46, 195

CTools. See Chaos Tool Suite
custom effects, image style effects

adding 216-221
custom node template

creating 160, 161

D
data

visualizing, graphical charts used 182, 183
DependencyInjection 229
Displays, Views module

block 30
page 30
RSS 30

DIVX 124
drum machine

creating 152-157

Drupal
about 7
audio capabilities 141
audio formats 142
audio metadata 158
audio nodes, customizing 145
audio play, enabling 142
blocks 37
charts, enabling 184
colorbox 204
content type, creating 12-17
entities 10
fields 18
HTML5 83, 93-97
HTML5 Tools module 95
image style effects 214
media configuration 199
Media module 50
Microdata support, enabling 178-180
multiple file uploads 211
nodes 9
RDF support, enabling 175
release cycle 230
template engines 47
themes 44
Views 27
Visualization API module 184

Drupal 7
downloading 28

Drupal 7 vocabularies
dc (Dublin Core) 175
foaf (Friend Of A Friend) 175
sioc (Semantically Interlinked Online

Communities) 175
Drupal 8

about 227
architecture changes 228
release timeline 229
Symfony2, integrating with 228
tour guide 231-233

Drupal theme
installing 45, 46

Duke University 7

[237]

E
entities 10-12
EventDispatcher 229
Evernote

URL 12

F
FCKeditor 65
FedEx 7
fields

about 18
adding, to memo content type 19-23

File entity
URL 51

filesystem configuration 200
Fivestar module

URL 222

G
GD Graphics Library 200
General Public License (GNU) 7
getID3 Drupal module

downloading 159
installing 160
URL 159

getID3 library
installing 159

graphical charts
used, for visualizing data 182, 183

H
Highcharts

URL 184
HTML4 83
HTML5

about 83
basic page skeleton 84, 85
canvas 90-92
data, visualizing with graphical charts

182, 183
features 83-85
form elements 86

media 87-89
Microdata 177
RDFa 173
real-world examples 172
resources 92
responsive web design 192

HTML5 Canvas Cookbook
URL 93

HTML5, in Drupal 93
HTML5 markup 88
HTML5 media player

installing 125, 126
HTML5 Multimedia Development

URL 93
HTML5 Tools module 93-97
HTML5 Web Application Development by

example
URL 93

HttpKernel 229

I
ID3 module 158
ID3 PHP library

about 158
downloading 159
installing 159

ImageCache 201
about 214
URL 214

ImageCache Canvas Actions 214
ImageCache Color Actions 214
image galleries

about 72
blocks, creating 80, 81
creating 74-79

ImageMagick 200
image style effects

color shift 215
custom effects, adding 216-221
extending 214, 215
rounded corners 215
watermark effect 215

image styles
about 201

[238]

managing 202, 203
image toolkit 200, 201
Insert module

URL 25
Instagram 49, 217

M
Media Colorbox module

URL 209
media configuration

about 199
filesystem configuration 200
image styles 201-203
image toolkit 200, 201

Media: Dailymotion
URL 59

MediaElement.js library
URL 125

MediaElement module 125
downloading 125

MediaFront module 125
configuring 133, 134
installing 132, 133
media settings 135
playlist settings 135
presentation settings 134

MediaFront videos
content type, creating 135-137

media images
colorbox, enabling 204-207

media images configuration
about 205
ADVANCED SETTINGS section 206
EXTRA FEATURES options 205
STYLES AND OPTIONS section 206

media library
about 53, 54
Library tab 54
Web tab 58

Media module
about 50
File entity 51
image galleries, enabling 72
media asset field, adding 51-53
media library 53-57
remote media assets 57-59

URL 25, 51
WYSIWYG editor 59

Media: Slideshare
URL 59

Media: Tableau
URL 59

memo content type
display, configuring 24, 25
fields, adding 19-22

Metatag module 172
Microdata

about 173, 177
semantic mark-up, testing 180
syntax 178
URL 177

Microdata JS
URL 181

Microdata support
enabling, in Drupal 178-180

MP3 142
MPEG2 124
MPEG4 124
MTV 7
multi-channel playback

aiming for 145-149
Multiform

URL 73
multiple file uploads

for site administrators 211
for users image fields 212, 214

Multiupload Imagefield Widget
URL 212

N
nodes 9, 10

O
Object Oriented Design (OOD) concepts 11
Ogg Vorbis 142

P
PHP Framework Interoperability Group

(PHP-FIG) 229
Pinterest 49

[239]

Plupload integration module
URL 212

plupload library 211
Poll type content 10
property attribute 174

R
rating field

adding, for content types 223, 224
rating, of content types

enabling 221
RDFa

about 173, 174
attributes 174
RDF support, enabling 175, 177

RDFa attributes
about 174
property 174
rel 175
resource 174
typeof 175

RDF data model 173
rel attribute 175
resource attribute 174
Resource Description Framework in

Attributes. See RDFa
responsive web design

about 192
creating 192-194
creating, with AdaptiveTheme 195-198
example 193, 194

rich-text editor
adding 65

RWD. See responsive web design

S
Scalable Vector Graphics (SVG) 182, 90
scratching the itch model 18
Search Engine Optimization (SEO) 172
semantic mark-up, Microdata

testing 180
SEO Checklist 172
SEO Moves

URL 181
Sepia effect 220

serialize() function 173
Simple Knowledge Organization System

(SKOS) 176
smart algorithms 182
SoundCloud 141, 182
Symantec 7
Symfony2

about 229
URL 229

Symfony community 229

T
tags 21
template engines 47
text format, WYSIWYG editor

configuring 62-65
themes

about 44
Bartik theme 44

time-to-market (TTM) 216
TinyMCE 65
Trends tool

URL 182
Twitter Bootstrap framework

URL 198
typeof attribute 175

U
User Experience (UX) practice 21

V
video customizations

performing 116
video display modes, customizing 119, 120
video fields, customizing 116-118
YouTube player, customizing 121-124

video galleries 131
video playlists 132
videos

playing 129, 130
uploading 126, 127

videos, hosted locally
adding 124

[240]

videos, hosting on third-party websites
adding 106
adding, URL used 113
adding, YouTube browser used 109-112
embedding in WYSIWYG editor 114-116
video content type, creating 106-108

Views-based playlist, videos
creating 138, 139

Views module
about 27, 28
content listing, creating 27
display mode 31
Displays 30
download link 28
FIELDS section, setting up 33
installing 28
RELATIONSHIPS section 35
source of view 31
type 32
views, adding 29, 30

Visualization API module
about 184
developer interface 187-192
views, using 184-187

Vorbis format 142
Voting API

URL 222

W
WAVs 142
web assets

CSS 36
HTML template layouts 36
images 36
JavaScript 36

Web Graphics Library (WebGL) 90
WebM 142
WordPress

URL 233
WYSIWYG editor

about 59-61
images, embedding in content 70, 71
rich-text editor, adding 65-69
text formats 62-64

X
XML Sitemap 172
XVID 124

Y
YouTube module

URL 106
YouTube player

customizing 121-124
YouTube video statistics 182
YUI editor 65

Thank you for buying
Drupal 7 Media

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Drupal 7 Development by
Example Beginner’s Guide
ISBN: 978-1-84951-680-8 Paperback: 366 pages

Follow the creation of a Drupal website to learn, by
example, the key concepts of Drupal 7 development
and HTML5

1. A hands-on, example-driven guide to
programming Drupal websites

2. Discover a number of new features for Drupal
7 through practical and interesting examples
while building a fully functional recipe
sharing website

3. Learn about web content management, multi-
media integration, and e-commerce in Drupal 7

Drupal 7 Themes
ISBN: 978-1-84951-276-3 Paperback: 320 pages

Create new themes for your Drupal 7 site with a clean
layout and powerful CSS styling

1. Learn to create new Drupal 7 themes

2. No experience of Drupal theming required

3. Discover techniques and tools for creating and
modifying themes

4. The first book to guide you through the new
elements and themes available in Drupal 7

Please check www.PacktPub.com for information on our titles

Drupal 7 Business Solutions
ISBN: 978-1-84951-664-8 Paperback: 378 pages

Build powerful website features for your business

1. Build a Drupal 7 powered website for your
business rapidly

2. Add blogs, news, e-commerce, image galleries,
maps, surveys, polls, and forums to your
website to beat competition

3. Complete example of a real world site with
clear explanation

Drupal 7 Cookbook
ISBN: 978-1-84951-796-6 Paperback: 324 pages

Over 70 recipes that will advance your Drupal skills
from novice to pro

1. Install, set up, and manage a Drupal site and
discover how to get the most out of creating
and displaying content

2. Become familiar with creating new content
types and use them to create and publish
content using Views, Blocks, and Panels

4. Learn how to work with images, documents,
and video and how to integrate them with
Facebook, Twitter, and Add this

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Drupal's Building Blocks
	Nodes and entities
	Nodes
	Entities
	Creating a content type

	Fields
	Adding fields to Memo
	Configuring the Memo display

	Summary

	Chapter 2: Views, Blocks, and Themes
	Views
	Installing the Views module
	Adding a new Views

	Blocks and themes
	Blocks
	Understanding block regions
	Assigning blocks to regions
	Creating blocks

	Themes
	Installing a new theme
	Template engines

	Summary

	Chapter 3: Working with Images
	The Media module
	Adding a media asset field
	The media library
	Remote media assets

	WYSIWYG
	Text formats
	Adding a rich-text editor
	Embedding images in content

	Image galleries
	Enabling an image gallery feature
	Creating an image gallery
	Galleries as blocks

	Summary

	Chapter 4: HTML5 in Drupal
	HTML5 form elements
	HTML5 media
	HTML5 canvas
	HTML5 resources
	HTML5 in Drupal

	A canvas playground
	Creating a content type for the canvas field
	Creating a new DigiDoc

	Summary

	Chapter 5: Video Capabilities
	Adding videos hosted on third-party websites
	Creating our video content type
	Adding a new video using the YouTube browser
	Adding a new video using URL
	Embedding videos in WYSIWYG editor

	Customizing videos
	Customizing video fields
	Customizing video display modes
	Customizing YouTube player

	Adding videos hosted locally
	Installing an HTML5 media player
	Uploading videos and playing them

	Galleries and playlists
	Video galleries
	Video playlists
	Installing the MediaFront module
	Configuring the MediaFront module
	Creating a content type for the MediaFront videos
	Creating a Views-based playlist

	Summary

	Chapter 6: Audio Capabilities
	Supported audio formats
	Enabling audio play
	Adding a new content type

	Customizing audio nodes
	Aiming for multi-channel playback
	Creating a drum machine

	Leveraging audio metadata
	ID3
	Installing the ID3 module and library
	Preparing custom node template
	Extracting metadata
	Storing metadata in fields

	Summary

	Chapter 7: Leveraging Other HTML5 Features
	RDFa and Microdata
	Introducing RDFa
	Enabling RDF support in Drupal

	Introducing Microdata
	Enabling Microdata support in Drupal
	Testing semantic mark-up

	Visualizing data with graphical charts
	Enabling charts in Drupal
	Visualization API using Views
	Visualization API developer interface

	Responsive web design
	Responsive web design with AdaptiveTheme

	Summary

	Chapter 8: Enhancing Media Content
	Understanding media configuration
	The filesystem
	Image toolkit
	Image styles

	Colorbox
	Colorbox for media images
	Colorbox for WYSIWYG integration
	Installing colorbox

	Colorbox for views

	Multiple file uploads
	Multiple file uploads for site administrators
	Multiple file uploads for user's Image fields

	Extending image style effects
	Adding your own effects with custom modules

	Enabling rating of content
	Adding a rating field for content types

	Summary

	Chapter 9: Drupal 8 and Beyond
	Introduction to Drupal 8
	Drupal 8 architecture changes
	Integration with Symfony2
	Release timeline and when to expect Drupal 8

	Drupal 8 tour guide
	Summary

	Index

