

Drupal Rules How-to

Discover the power of the Rules framework to turn
your Drupal 7 installation into an action-based,
interactive application

Robert Varkonyi

BIRMINGHAM - MUMBAI

Drupal Rules How-to

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2012

Production Reference: 1161112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-998-4

www.packtpub.com

Credits

Author
Robert Varkonyi

Reviewers
Veturi JV Subramanyeswari

Liran Tal

Acquisition Editor
Mary Jasmine Nadar

Commissioning Editors
Yogesh Dalvi

Shreerang Deshpande

Maria D'souza

Meeta Rajani

Technical Editor
Jalasha D'costa

Project Coordinator
Priya Sharma

Proofreader
Lesley Harrison

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Cover Image
Conidon Miranda

About the Author

Robert Varkonyi is a senior Drupal developer who was involved in successful Drupal
projects across the globe, including US, UK, Spain, Portugal, Netherlands, Belgium, France,
Germany, Sweden, and Hungary. He's been working with Drupal since 2007 and gained deep
experiences in enterprise level Drupal development. He enjoys developing custom modules
and is a true fan of clear code, structured work, and coding standards.

During his career, Robert has worked for clients such as, NBC Universal, ITV, Ericsson, iVillage,
CMC Markets, and Avanti Communications.

I'd like to thank to my friend David Toth, who introduced me to Drupal
development and my girlfriend Alexandra Ujvary who accepted the change
of priorities in our life during the writing of this book.

About the Reviewers

Sree (a.k.a Veturi JV Subramanyeswari) is currently working as a Solution Architect
at a well known software consulting MNC in India. Prior to joining this company, she served
few Indian MNCs, many startups, and R&D sectors in various roles such as, programmer,
tech lead, research assistant, Architect, and so on. She has around more than eight years
of working experience in web technologies covering media and entertainment, publishing,
healthcare, enterprise architecture, manufacturing, public sector, defense communication,
gaming, and so on. She is also a well known speaker who delivers talks on Drupal, Open
Source, PHP, Women in Technology, and other such topics.

She reviewed other tech books such as:

 f DevOps

 f Twitter Bootstrap

 f Drupal 7 Multi Sites Configuration

 f Building Powerful and Robust Websites with Drupal 6

 f Drupal 6 Module development

 f PHP Team Development

 f Drupal-6-site-blueprints

 f Drupal 6 Attachment Views

 f Drupal E-Commerce with Ubercart 2.x

 f Drupal 7: First Look

 f Twitter bootstrap

 f Drupal SEO

 f and many more

I would like to thank my family and friends who supported me in completing
my reviews on time with good quality.

Liran Tal is a leading software developer, expert Linux engineer, and an avid supporter
of the open source movement. In 2007, he has redefined network RADIUS management
by establishing daloRADIUS, a world-recognized and industry-leading open source project.

Liran currently works at HP, leading the development team on a Drupal based collaboration
platform in HP's Live Network department.

At HPLN, Liran plays a key role in system architecture design, shaping the technology strategy
from planning and development to deployment, and maintenance in HP's IaaS cloud. Acting
as the technological focal point, he loves mentoring his team mates, drive for better code
methodology, and seek out innovative solutions to support business strategies.

He graduated cum laude in his Bachelor of Business and Information Systems Analysis
studies and enjoys spending his time playing the guitar, hacking all things based on Linux,
and continuously experimenting with and contributing to open source projects.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Drupal Rules How-to 7

Understanding the basics of Reaction Rules (Must know) 7
Displaying a message on the site (Must know) 10
Sending e-mail notifications (Must know) 12
Sending notifications if someone comments on a node created
by another user (Must know) 14
Using loops and lists (Must know) 17
Components – Reusing Rules, Conditions, and Actions (Must know) 18
Using the Rules Scheduler (Must know) 23
Debugging Rules (Must know) 25
Using PHP in Conditions and Actions (Should know) 27
Using condition groups (Should know) 29
Subscribe to comments on a node using Rules and Flag (Should know) 31
Adding a taxonomy term to a node using Views Bulk Operations
and Rules (Should know) 35
Loading a list of objects into Rules using VBO (Should know) 38
Rules Bonus Pack (Should know) 42
Providing new Events, Conditions, and Actions (Become an expert) 45
Providing new entity tokens (Become an expert) 52
Executing Rules programmatically (Become an expert) 54
Providing new variables for Actions (Become an expert) 56
Providing default rule configurations (Become an expert) 58

ii

Table of Contents

Preface
This book will demonstrate the power of the Rules framework that enables you to turn your
Drupal 7 installation into an event- and action-based, interactive application. Drupal Rules
How-to is a practical, hands-on guide that provides you with a number of clear step-by-step
exercises, which will help you take advantage of the real power of the Rules framework, and
understand how to use it on a site builder and developer level.

What this book covers
Understanding the basics of Reaction Rules (Must Know), demonstrates the basic use
of Reaction Rules by creating a simple rule configuration and explaining how Events,
Conditions, and Actions work.

Displaying a message on the site (Must Know), describes the steps to be taken in order
to display a custom message on the site after creating a new article.

Sending e-mail notifications (Must Know), explains how to send a customized e-mail
notification to all administrators when a new user registers on the website.

Sending notifications if someone comments on a node created by another user
(Must Know), explains how to send a new comment notification e-mail to a node
author using replacement patterns.

Using loops and lists (Must Know), demonstrates the basics of loops and lists by creating
a list of objects in Rules and executing an Action on each item.

Components – Reusing Rules, Conditions, and Actions (Must Know), explains the
benefits of using Rules components by creating a Condition that can be re-used in
other rule configurations.

Using the Rules Scheduler (Must Know), demonstrates the Rules Scheduler by creating
a rule configuration that sends a reminder e-mail to all users who haven't signed in for a week.

Preface

2

Debugging Rules (Must Know), explains how to use the built-in Rules Debug feature and
provides hints and best practices.

Using PHP in Conditions and Actions (Should Know), demonstrates how to use PHP input
in Conditions and Actions and provides hints regarding security and usage.

Using condition groups (Should Know), describes the usage of Condition groups and the
ability to combine Conditions by creating a rule configuration that sends an e-mail to the
administrators if either a new article or any content type gets posted on the site that has
an image field

Subscribe to comments on a node using Rules and Flag (Should Know), explains how to use
Rules and Flag to send out e-mail notifications to users when someone comments on a node
users are subscribed to.

Adding a Taxonomy term to a node using Views Bulk Operations and Rules (Should Know),
demonstrates how to execute Rules components on a Views Bulk Operations (VBO) view and
explains how to expose components for VBO to work with.

Loading a list of objects into Rules using VBO (Should Know), describes how to add a specific
taxonomy term to a list of nodes using Views Bulk Operations (VBO) and Rules.

Rules Bonus Pack (Should Know), demonstrates the Rules Bonus Pack module, which is a
set of extensions and integrations with other modules to extend Rules to provide additional
Events, Conditions and Actions, and also integrate with other modules, such as CTools.

Providing new Events, Conditions and Actions (Become an Expert), explains how to create
custom Events, Conditions, and Actions for Rules by providing an example scenario where
the number of times a view gets rendered is tracked by Rules.

Providing new entity tokens (Become an Expert), explains the basics of entity tokens and
demonstrates how to create a new one that can be used in rule configurations.

Executing Rules programmatically (Become an Expert), explains how to execute Actions,
Rules or rule sets programmatically by creating a new rule configuration and executing
it from code.

Providing new variables for Actions (Become an Expert), explains how to modify existing or
provide new variables and data for Rules in Actions by extending a previously defined Action
that provides additional data to Rules after the Action is executed

Providing default rule configurations (Become an Expert), explains how to provide default rule
configurations in code so that configurations can be maintained in code and version control,
such as SVN or Git.

Preface

3

What you need for this book
A fully functional Drupal 7 installation is needed in order to complete the exercises in this
book. Also, the following modules need to be installed and enabled:

 f Rules

 f Rules UI

 f Rules Scheduler

 f Views

 f Flag

 f Views Bulk Operations

 f Rules Bonus Pack

While the exercises in this book are written in a manner that aims to clearly and deeply
explain each step, they presume that the reader has got basic understanding of the Drupal
user interface.

Who this book is for
This book is for Drupal site builders and developers who want to take full advantage
of the Rules framework's power and flexibility.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "It is also possible to modify a default rule
configuration in code. For that we could use hook_default_rules_configuration_
alter() in our *.rules_defaults.inc file."

A block of code is set as follows:

/**
* Implements hook_rules_event_info()
* Define our new custom event for Rules
*/
function custom_rules_event_info() {
 return array(
 'custom_views_render' => array (
 'label' => 'A view is rendered',
 'group' => 'Rules Custom',
 'variables' => array(
 'view' => array(

Preface

4

 'type' => 'custom_view_datatype',
 'label' => t('View being rendered')
)
)
)
);
}

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: " In the MESSAGE field,
we've used REPLACEMENT PATTERNS to insert chunks of data from the objects available
in our current rule configuration.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note
in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the errata submission form link, and entering
the details of your errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded on our website, or added to any list of existing errata, under
the Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it

mailto:copyright@packtpub.com

Drupal Rules How-to

Welcome to Drupal Rules. This book aims to present site builders and developers with
tutorials that help them leverage the power of the Rules framework and turn their Drupal
sites into event – action-based, interactive applications.

Rules can be used for building complex and flexible systems that respond to various
system events, such as node creation, user registration, or viewing a comment. This book
demonstrates the Rules framework in a learning curve style: from the basics, such as
Reaction Rules, Events, Conditions, Actions, Components, and Scheduler, through advanced
features such as using PHP in Conditions and Actions, combining Rules with other modules
such as Views Bulk Operations and Flag to further extend the flexibility, to expertise API
examples such as providing custom Events, Conditions, and Actions, creating new entity
tokens and default rule configurations, and executing rule configurations programmatically.

Understanding the basics of Reaction Rules
(Must know)

This section describes the basics of Reaction Rules, Events, Conditions, and Actions.

We'll create a simple rule that makes newly created articles sticky.

Getting ready
Enable the Rules and Rules UI modules on your site.

Drupal Rules How-to

8

How to do it...
1. Go to Configuration | Workflow | Rules.

2. Click on Add new rule.

3. Enter a name for this rule configuration, as shown in the following screenshot:

4. Enter values for Tags if required (they can be useful for categorizing
rule configurations).

5. Set the Event to Node, after saving new content.

6. Go to the Condition, Node | Content is of type and set the value to Article
by selecting it in the select box.

Drupal Rules How-to

9

7. Add an Action, Data | Data selector and select the sticky field of the node.

8. Hit Continue.

9. Tick the Value checkbox.

10. Click on Save.

How it works...
With the following steps, we're telling Rules to do the following: whenever a new content
has been created and its content type is Article, set its sticky value to TRUE. This rule
configuration will be executed every time a new article has been created.

There's more
Let's have a look at the way Events, Conditions, and Actions work.

Events
A reaction rule always needs a specified event to happen on the site so it will execute. This can
be done when a user logs in, when a node is created, or various other Events are provided by
Rules (or other contributed/custom modules). Events may provide variables that can be used
in the configuration. For example, if the event is Node | After saving new content, the created
content object will be available in the rest of the rule configurations for Rules to work with.

A reaction rule can have multiple triggering Events. For example, we can execute the same
Action when we delete a node or when we delete a comment.

Drupal Rules How-to

10

Conditions
We can use Conditions to check some data, that's available in our current configuration,
because we usually want to execute an Action only if certain criteria are matching.
For example, we might want to check a node's type (Content is of type), whether a node
has a particular field (Entity has field) or a truth value (Data comparison). There are a
number of Conditions provided by default, but it's also possible to create our own
Conditions in our custom module.

Conditions can be grouped into AND or OR groups. These groups can be used to
create complex Conditions and each group may have additional AND and OR groups.

Actions
Rules Actions are tasks that Rules may perform. There are a number of Actions that Rules
provides by default, such as setting a value, publishing a node, or creating a new entity.
Other than the core Actions, we can also create Actions in a custom module.

Displaying a message on the site
(Must know)

This recipe describes the steps to be taken in order to display a custom message on the site
after creating a new article.

Getting ready
All recipes in this book assume that the reader is familiar with the Rules UI and/or has
read the first recipe in this book, Understanding the basics of Reaction Rules (Must know).

How to do it...
1. Create a new rule configuration and set the event to Node | After saving

new content.

Drupal Rules How-to

11

2. Add a condition, Node | Content is of type and set CONTENT TYPES to Article,
as shown in the following screenshot:

3. Add an Action and select System | Show a message on the site.

Drupal Rules How-to

12

How it works...
By using the Action, After saving new content, we're asking Rules to react on content creation.
This means that the rule will fire every time a new content has been created in the system. By
using Conditions, we can tell Rules to only fire the action if the created content type is Article
(or any other content type). In the MESSAGE field, we've used REPLACEMENT PATTERNS to
insert chunks of data from the objects available in our current rule configuration.

Sending e-mail notifications (Must know)
This recipe explains how to send a customized e-mail notification to administrators when
a new user registers on the website.

How to do it...
1. Create a new rule configuration and set the event to User | After saving new

user account.

2. Add an action System | Send mail to all users of a role.

3. Select the role you want the e-mails to be sent to.

Drupal Rules How-to

13

4. Enter the subject of the mail in the Value section under SUBJECT.

5. Enter the body of the e-mail in the MESSAGE | Value section.

How it works...
In this rule configuration, we're telling Rules to act on new user registrations and send
e-mail notifications to the site administrators when this event occurs. In the e-mail body
we've used REPLACEMENT PATTERNS to display the new user's username, the date
and time the account was created, and the site's name will be used as the signature.

There's more...
While this example is very useful and easy to configure, site builders are advised to use it with
care. It is not advised to use this action to send e-mails to a large number of users. Because
every action is executed right after an event occurred, it can put a serious load on the
server(s) and can cause the site to go down.

Drupal Rules How-to

14

Sending notifications if someone comments
on a node created by another
user (Must know)

If we want to send e-mails to individual users, it's better to use the Send mail Action in our
rule configuration. A good use case could be when we want to notify a node's author when
someone leaves a comment on a node created by them. We could then use the Event
Comment | After saving a new comment, then add two Actions.

How to do it...
The following steps will help you send notifications if a user comments on a node created
by another user:

1. In the first Action, we need to load the author of the node that's being commented on.
For that we can use Data | Add a variable Action and set the value of TYPE to User:

2. We then set the value to the node's author.

Drupal Rules How-to

15

3. Optionally, we can set the label of the variable, so we can easily identify it in the
next step:

4. We add another Action, System | Send mail and use REPLACEMENT PATTERNS
to make use of the variable we added in the previous step.

5. We can then use node-author:mail in the To field which is the e-mail address
of the original node author.

6. If we don't want the author to be notified of their own comments, we can add
a Condition, Data | Data comparison and set the DATA TO COMPARE value
to the user ID of the node author, as shown in the following screenshot:

Drupal Rules How-to

16

7. Next, we hit Continue and set the data value to the user ID of the comment author,
as shown in the following screenshot:

8. This configuration is of course incorrect at this stage, as Rules would only send
an e-mail if the Node author and the Comment author are the same, which is the
opposite of what we're looking for. A really good feature in Rules is Negate. This
setting basically sets TRUE values to FALSE and vice versa, which is just what we
currently need. The Negate feature is shown in the following screenshot:

This way the rule will only fire if the author of Node is not the same as the author
of Comment.

There's more...
The following section will throw light on how to send notifications only to users wanting to
receive them.

Sending notifications only if the user wants to receive them
For usability or to avoid our site users from feeling spammed, ideally we would want to
add a new Boolean checkbox field to the user object that is used as a switch to indicate
whether the user wants to receive these notifications from our site or not. Then in our rule
configuration, we can use the Condition, Data | Data value is empty and set the Data
selector value to that field. Assuming that the name of the field is field-notifications,
it would look like the following screenshot:

Drupal Rules How-to

17

This configuration is of course incorrect at this stage, as Rules would only send an e-mail if
the field is empty (the user does not want notifications), which is the opposite of what we're
looking for. So we need to use Negate.

This way the rule will only fire if that particular user has checked the Notifications field on
his/her user account page.

Using loops and lists (Must know)
This recipe explains the basics of lists and loops, creating a list of objects, and executing
an action on each item.

How to do it...
1. Create a new rule configuration and set the Event to Node | After saving

new content.

2. Add a Condition, Node | Content is of type and set it to Article.

3. Add a new loop and set Data selector to node:field-tags.

4. Add a new Action System | Show a message on the site and set a message.

Drupal Rules How-to

18

How it works...
Using lists and loops in Rules is the way to handle multiple value fields and execute Actions
on each individual item. While this particular recipe is not too useful in the real world, it can
be used as a basis for more advanced features, for example, when using a node reference
field to provide reference to a list of related nodes. We can then load that list of referenced
nodes and create a loop that will send a customized e-mail notification to the authors of the
referenced nodes.

There's more...
We can also add items to a list by adding an Action, Data | Add an item to a list. An example
use case could be to automatically add a taxonomy term to the newly created node or add a
user to a user reference list.

Components – Reusing Rules, Conditions,
and Actions (Must know)

This recipe explains the benefits of using Components by creating a Condition that can be
re-used in other rule configurations.

In this scenario, we want to perform some action when a node is being commented on.
But we only want to execute the action if the node was not created by the super admin
(that is, user 1) and the node is either an article, or has an image field (field_image).

How to do it...
1. Go to Configuration | Workflow | Rules | Components.

2. Add a new component and set the plugin to Condition set (AND).

3. Enter a name for the component and add a parameter Entity | Node.

Drupal Rules How-to

19

4. Add a Condition, Data comparison, set the value to the author of the node,
set OPERATOR to equals, enter 1 in the Data value field and tick Negate.

Drupal Rules How-to

20

5. Add an OR group by clicking on Add or, as shown in the following screenshot:

6. Add a Condition, Node | Content is of type and set it to Article.

7. Add a Condition, Entity | Entity has field, set Entity to node, and select the field,
field_image, as shown in the following screenshot:

8. Organize the Conditions so that the last two Conditions are in the OR group
we created before.

Drupal Rules How-to

21

9. Create a new rule configuration and set the Event to Comment | After saving
a new comment.

10. Add a new Condition and select the component that we created. An example is shown
in the following screenshot:

11. Select comment:node as the parameter.

12. Add a new Action, System | Show a message on the site and configure
the message.

Drupal Rules How-to

22

How it works...
Components require parameters to be specified, that will be used as placeholders for the
objects we want to execute a rule configuration on. Depending on what our goal is, we can
select from the core Rules data types, entities, or lists.

In this example, we've added a Node parameter to the component, because we wanted to
see who is the node's author, if it's an article or if it has an image field. Then in our Condition,
we've provided the actual object on which we've evaluated the Condition. If you're familiar with
programming, then you'll see that components are just like functions; they expect parameters
and can be re-used in other scenarios.

There's more...
The main benefit of using Rules components is that we can re-use complex Conditions,
Actions, and other rule configurations. That means that we don't have to configure the
same settings over and over again. Instead we can create components and use them
in our rule configurations.

Other benefits also include exportability: components can be exported individually,
which is a very useful addition when using configuration management, such as Features.

Components can also be executed on the UI, which is very useful for debugging and can
also save a lot of development time.

Other component types
Apart from Condition sets, there are a few other component types we can use.
They are as follows:

 f Action set

As the name suggests, this is a set of Actions, executed one after the other.
It can be useful when we have a certain chain of Actions that we want to execute
in various scenarios.

 f Rule

We can also create a rule configuration as a component to be used in other rule
configurations. Think about a scenario when you want to perform an action on a list
of node references (which would require a looped Action) but only if those nodes were
created before 2012. While it is not possible to create a Condition within an Action,
we can create a Rule component so we can add a Condition and an Action within the
component itself and then use it as the Action of the other rule configuration.

Drupal Rules How-to

23

 f Rule set

Rule sets are a set of Rules, executed one after the other. It can be useful when we
want to execute a chain of Rules when an event occurs.

Parameters and provided variables
Condition sets require parameters which are input data for the component. These are the
variables that need to be specified so that the Condition can evaluate to FALSE or TRUE.

Action sets, Rules, and Rule sets can provide variables. That means they can return data after
the action is executed.

Using the Rules Scheduler (Must know)
In this recipe we create a rule configuration that sends a reminder e-mail to a user that hasn't
logged in to the website for a week.

Getting ready
We need to make sure that the Rules Scheduler module is enabled.

How to do it...
1. Create a new Action set component and provide a user object as a parameter.

2. Add a new Action, System | Send mail and configure the various fields, set the To
field to [user:mail], enter a subject and fill in the MESSAGE field with something such
as Hey, you haven't logged in to our site for a week now....

3. Add a new rule configuration and set the Event to User | User has logged in.

4. Add an Action, Rules scheduler | Schedule component evaluation.

5. Select the component which we created in step 1.

6. Click on Switch to direct input mode and enter +7 days.

Drupal Rules How-to

24

7. Set a unique identifier to this scheduled component.

8. Provide the account object to the component.

How it works...
In this example we wanted to send reminder e-mails to individual users, who haven't logged
in to the website for a week. For that we've created a component (that executes the Send
mail Action), which we use in our rule configuration as a scheduled component. In the rule
configuration, we set the Event to User has logged in because we want to set the scheduled
date to a week from the user's last login. Please note that you'll need cron running for the
scheduler to work.

There's more...
Additionally, we would probably want to add an Action Delete scheduled tasks, using the
same identifier we've used for the scheduled component and place it before the Schedule
component evaluation Action.

This way we make sure that the scheduled date always gets updated when the user logs in
and new reminders get scheduled.

Drupal Rules How-to

25

Schedule UI
Rules Scheduler provides a user interface through the Views module which can be
found at Configuration | Workflow | Rules | Schedule. This interface can be very useful
as it displays all the components that are scheduled for execution. It is also a very useful
tool for debugging scheduled components.

Debugging Rules (Must know)
This recipe explains how to debug the rule configurations using the user interface.

How to do it...
1. Go to Configuration | Workflow | Rules | Settings.

2. Set Show debug information to Always.

3. Save the form.

Drupal Rules How-to

26

How it works
Rules provides a very useful debugging system. This allows us to follow all the steps of a rule
configuration as it's being executed. The following screenshot will show you if the Conditions
evaluate and how long each step takes:

This is useful when our rule configuration doesn't work the way we want it to. It's always
advised to use the debugger to see if the Conditions we used to evaluate the way we want
them to. It's also useful that we're able to see how long each step takes. In this case, 16
ms is not a huge overhead when creating a node. However, if our rule configuration is set
to fire Actions on each page load, it might lead to problems and it's advised to refactor that
particular configuration.

There's more...
Despite there being user permissions related to the display of debugging information, it's
advised that on production sites we don't display debug information on the UI. Instead, we
make Rules write the logs into the log file by setting the value Log debug information to the
system log on the Settings page, as shown in the following screenshot:

The following recipes describe some more advanced features of the Rules framework,
including the usage of PHP in Conditions and Actions and explains how to use Rules
together with other modules, such as Flag, Views Bulk Operations, and Rules Bonus Pack.

Drupal Rules How-to

27

Using PHP in Conditions and Actions
(Should know)

This section explains how to use PHP input in Conditions and Actions.

In this simple example we'll display a message on the front page every Monday. To do that,
we'll use a PHP input in our Condition to evaluate to TRUE if we're currently on the front page
of our site, and if it's Monday today.

Getting ready
Enable the PHP Filter module on Drupal's module list page and assign relevant
permissions if necessary. Take extra care as to whom you assign these permissions to,
as the PHP input may cause security concerns so you probably don't want everyone on
your website to be able to use it.

How to do it...
1. Add a new rule configuration and set the Event to System | Drupal is initializing.

2. Add a new Condition, Data | Data comparison and set it to site:current-date.

3. In the DATA VALUE field set, click on Switch to data selection and enter
site:current-date.

Drupal Rules How-to

28

4. In the PHP EVALUATION field, enter the Code value, as shown in the following
screenshot, and save the Condition:

5. Add a new Condition and set the handler to PHP | Execute custom PHP code
and enter this code in the text area:

6. Add a new Action, System | Show a message on the site and enter the following
Value, as shown in the screenshot:

How it works...
In the first Condition, we compare the current date value to figure out what day it is today.
In the PHP Evaluation field, we always receive the value of the selected field in the $value
variable, which in this case is a timestamp of the current date. We're using this value in
Drupal's format_date() function to return TRUE if it's Monday today.

Drupal Rules How-to

29

In the second Condition, we're returning TRUE if the current page we're visiting is the front
page of our website.

There's more...
PHP can be put to use in many other ways too. Some are described as follows:

Using PHP in Actions
We can also use PHP in Actions to execute functions, update database entries, and perform
other tasks as required. To do that we can add an Action, Execute custom PHP code, and
enter the PHP code we want to execute.

Best practice
Using a PHP input in Rules is a very effective way to create custom Conditions and Actions
if we don't want to programmatically create new ones in our custom module (more on that in
the Providing new Events, Conditions, and Actions (Become an expert) recipe in this book).
However, there are a number of things we want to keep in mind:

 f Permissions

It is highly advised that we don't let regular users use the PHP input filter,
as it is a high security risk.

 f Never use delimiters

We should never use the <?php ?> delimiters in our custom code. Rules takes
care of that for us. If we use the delimiters in our Condition or Action, it won't work.

 f Always test on a development site

Of course, it is advised that all Rules configurations are tested on a development site
before using them on production sites. This is particularly valid for configurations that
include the PHP code in Conditions or Actions. We always want to make sure we enter
code without typos, execute the right database commands, or update the right
user information.

It is also advised that Debugging is turned on on our development site, that way
we can save a lot of time testing our configuration.

Using condition groups (Should know)
This recipe describes the usage of condition groups and the ability to combine Conditions.

We'll create a rule that sends an e-mail to the administrators if either a new article or any
content type gets posted on the site that has an image field (field_image).

Drupal Rules How-to

30

How to do it...
1. Create a new rule configuration and set the Event to Node | After saving

new content.

2. Add a new Condition, Entities | Entity is new.

3. Add an OR Group.

4. Add a new Condition to the group by clicking on Add condition in the group's row,
as shown in the following screenshot:

5. Add the Condition, Node | Content is of type and set the content type to Article.

6. Add another Condition to the OR group, use Entities | Entity has field and set the
field to field_image.

7. Add an Action to the rule configuration, use System | Send email to all users of a
role, select the administrators role and fill out the SUBJECT and MESSAGE fields.

How it works...
To create complex Conditions, in Rules we can use condition groups. This way we can create
a chain of Conditions using AND or OR groups. AND groups require all Conditions within the
group to evaluate to TRUE, while OR groups require only one Condition to evaluate to TRUE.

There's more...
The following section describes combining of conditional groups:

Combining condition groups
We can also combine condition groups, that means we can create condition groups within
condition groups. Again, it is advised that Debugging is turned on when creating nested
condition groups as it can save a lot of time figuring out why a configuration doesn't work
as expected.

Drupal Rules How-to

31

Subscribe to comments on a node using
Rules and Flag (Should know)

This recipe explains how to use Rules and Flag to send out e-mail notifications to users when
someone comments on a node users are subscribed to.

Getting ready
Install and enable the Flag module.

How to do it...
1. Create a new flag configuration at Structure | Flags.

2. Enter a name and set the type to Nodes.

Drupal Rules How-to

32

3. Enter Subscribe as the label for the new Flag and set and Flaggable content
to Article, as shown in the following screenshot, and save the Flag configuration:

4. Create a new rule configuration at Configuration | Workflow | Rules, set the Event
to Comment | After saving a new comment.

5. Add an Action, Flag | Fetch users who have flagged a node, as shown in the
following screenshot:

6. Set the Flag to the new flag configuration we created.

Drupal Rules How-to

33

7. We want to act on the node the comment belongs to, so we'll use the comment's node
in the Data selector field and save the Action, as shown in the following screenshot:

8. Add a new loop in the Actions section and select users in the Data selector section,
as shown in the following screenshot:

9. Optionally, set the variable name to something that's more descriptive, as shown in
the following screenshot, and save the loop.

Drupal Rules How-to

34

10. Add a new Action within the loop System | Send mail and configure the various fields
using REPLACEMENT PATTERNS.

11. Fill in the TO text area. Note, that we make use of a-user:mail token, which became
available to Rules in the previous step, when defining the loop and setting the labels
of the current list item.

12. Enter the subject. Again, the a-user:name token is used, which will be replaced with
the name of the user in the loop.

13. Enter the message. Here we make use of other available tokens. This is shown in the
following screenshot:

Drupal Rules How-to

35

How it works...
In this recipe, we're creating a new flag configuration for article nodes and using that in
our rule configuration to get the list of users that are subscribed to a node that's being
commented on (using the Flag we created), and send them a notification e-mail. Flag provides
a list data type (Fetch users who have flagged a node) that Rules can use to create a loop of
all users who flagged a node, and act on each individual object.

There's more...
Flag provides various Events, Conditions, and Actions that we can use in our rule configurations.

Events
A node can be flagged or unflagged: This acts on Events that involve flagging or unflagging
a node, user, or comment.

Conditions
The following are the Conditions provided by Flag:

Node/Comment/User is flagged: This checks if the entity is already flagged.

Node/Comment/User has flagging count: This checks the number of flags an entity has.

Actions
The Action for fetch users who have flagged a comment/node/user creates a list of users
who have flagged an entity. The data will be provided to Rules as a list type, so it can execute
a looped action on each individual object.

Flag a comment/node/user: This programmatically flags an entity.

Trim a flag: This sets the maximum number of flags an entity can have.

Unflag a comment/node/user: This programmatically unflags an entity.

Adding a taxonomy term to a node using
Views Bulk Operations and Rules
(Should know)

This recipe describes how to add a specific taxonomy term to a list of nodes using Views Bulk
Operations (VBO) and Rules.

Drupal Rules How-to

36

Getting ready
Install and enable Views, Views UI, and Views Bulk Operations. Go to Structure | Views and
create a new table view that lists all nodes posted on the site, and add a Bulk operations:
Content field to it.

How to do it...
1. Create a new rule component, select the Rule plugin and require an Entity | Node

parameter. Name the new component Add taxonomy term to node.

2. Add a Condition, Entities | Entity has field, use node as the entity, and set the field
to field_tags.

3. Add a new Action, Data | Add an item to a list and set the value to node:field-tags.

Drupal Rules How-to

37

4. In the Item to add fieldset, click on the Switch to the direct input mode button
and enter the ID of the taxonomy term to add, as shown in the following screenshot:

5. Go back to the view and click on the Bulk Operations: Content field.

6. In the popup window, select the rule component we created in the SELECTED
OPERATIONS fieldset, as shown in the following screenshot:

How it works...
Views Bulk Operations can use Rules components to execute Actions on a list of entities and
objects. We can create the Rules components with parameters and VBO will make these
components available as operations in our Bulk Operations field configuration, if the field
type matches the component's parameter type. For example, when creating a component
that requires a Node parameter, we need to add the same type of VBO field (Content: Bulk
Operations) to the view, because this is how VBO determines what kind of parameter is being
passed to Rules.

There's more...
If we want this feature to be a bit more flexible and choose a taxonomy term, we want to add
to the nodes instead of always adding a preconfigured term ID, we can do the following:

1. Add a new Entity | Taxonomy term parameter to our component, set the machine
name to the term.

Drupal Rules How-to

38

2. Edit our Action, Add an item to a list, in the Item to add fieldset, click on Switch to
data selection, and enter term. This is given in the following screenshot:

Now when executing the operation, VBO will display a configuration screen where we
can enter the ID of the taxonomy term we want to add to the node.

Loading a list of objects into Rules using
VBO (Should know)

This recipe explains how to load the result of a VBO view into Rules.

We will create a view that lists all nodes that are:

 f Created by user 1 (admin)

 f Promoted to the front page

 f More than two weeks old

We will then demote these nodes from the front page using Rules.

Getting ready
Install and enable Views, Views UI, and Views Bulk Operations.

How to do it...
1. Go to Structure | Views and create a new view that lists all the nodes that are

created by user 1, are promoted to front page, and are more than two weeks old,
and add a VBO field to it. Call this new view Old admin content.

Drupal Rules How-to

39

2. Go to Configuration | Workflow | Rules | Components and add a new Action
set component. No parameters are needed; we will get the objects from the view.

3. Add a new Action, Views Bulk Operations | Load a list of entity objects from
a VBO View and select the view we created in the first step, as shown in the
following screenshot:

4. Optionally, enter a descriptive label for the variables and save the Action.

Drupal Rules How-to

40

5. Add a new loop in the Actions section and select the VBO view result as the list data,
shown as follows:

6. Optionally, enter a descriptive label for the variable to be used in the loop.

7. Add a new Action within the loop Node | Remove content from front page, as shown
in the following screenshot:

Drupal Rules How-to

41

8. Select the current node to be removed from the front page.

Drupal Rules How-to

42

How it works...
VBO views can be used to create a list of objects for Rules to execute an action on. This is a
useful feature for developers and site builders who make extensive use of views on their sites.
The advantage of using this feature is that we can create complex views with relationships
and contextual filters (Rules provides an interface to pass arguments to views) and perform
actions on the results.

In this example, we will create a new view that lists nodes that are created by user 1 (admin),
are promoted to the front page, and are posted two weeks ago or earlier. Then, by adding a
VBO field to the view, we make the results of the view available for Rules to use. Because the
data type provided to Rules is a list, we can create a loop in our action and perform operations
on each individual item.

Rules Bonus Pack (Should know)
This recipe describes some extra Rules functionality added by the Rules Bonus Pack module.
This module is a set of extensions and integrations with other modules to extend Rules to
provide additional Events, Conditions, and Actions and also integrate with other modules,
such as CTools.

In this example, we will act on the node view by modifying the page title to include the node's
associated taxonomy terms.

Getting ready
Download Rules Bonus Pack and enable Rules Bonus: Miscellaneous.

How to do it...
1. Create a new rule configuration, set the Event to Node | Content is viewed.

Drupal Rules How-to

43

2. Add a Condition, Entities | Entity has field, use node as the entity and select
field_tags as the field to check for.

3. Add an Action, Rules Bonus: Miscellaneous | Set page title.

Drupal Rules How-to

44

4. Use REPLACEMENT PATTERNS to modify the page title.

How it works...
In this example we've used a custom action provided by the Rules Bonus Pack module.
We tell Rules to act on a node view by modifying the node's title, if it has any tags associated
with it. For safety, we could also add a Condition, Data | Data value is empty, set it to
node:field-tags, and check Negate to make sure we only do that if the node actually
has terms.

There's more...
Rules Bonus Pack provides a number of essential extensions to the Rules framework.
The following is a list of the main features:

 f CTools / Page manager integration: Rules Bonus Pack provides a bridge between
the Page manager and Rules. It can provide an Event for viewing each custom page
variant, which is useful when using Panels and Rules together.

Rules Bonus Pack also provides integration with the Page manager's Access control
feature. We can create condition components that can be used by the Page manager
to determine whether a user can access the custom page.

 f Blocks and Theme related Actions: Rules Bonus Pack provides various Block and
Theme related Actions. By enabling Rules Bonus: Block and Rules Bonus: Theme
modules, we get access to various Actions, such as, placing a block in a region based
on a condition or adding a custom CSS class to the body.

These recipes target developers who wish to extend Rules with their own custom Events,
Conditions, and Actions. We'll also learn how to provide new entity tokens for Rules to use,
how to execute rule configurations in code, and how to provide default rule configurations in
our custom module.

The code snippets in these recipes are for demonstration purposes only. They are intended
only to explain a specific hook or functionality and do not always provide a generic solution
to a problem.

Drupal Rules How-to

45

Providing new Events, Conditions, and
Actions (Become an expert)

This recipe explains how to create our custom Events, Conditions, and Actions.

In this example, we'll act on a view that's being rendered on the site. We'll create a new
condition, where we set the view that's being rendered, and in our action, we'll update a
custom database table with the number of times the view has been rendered.

Getting ready
Enable the Views and Views UI modules, and create a view of the latest content on the site.
In this example, we'll use the latest content as the view name, and create a block displaying
the latest content by the admin that lists all new content posted by user 1.

We also need to create a new database table where we'll store the information; we'll call it
custom_view_render. We use hook_schema() in our .install file so our custom table
will be available in all supported database engines automatically.

How to do it...
1. Create a new custom module with the following structure:

{modules_folder}/custom/
 custom.info
 custom.module
 custom.rules.inc
 custom.install

2. Define the module's information in the custom.info file:
name = Custom
description = Provides an integration with the Rules framework to
store the number of times a view was rendered
core = 7.x
package = Rules Custom
dependencies[] = rules
dependencies[] = rules_admin
dependencies[] = views
dependencies[] = views_ui

Drupal Rules How-to

46

3. Define our custom database table in the custom.install file:
/**
 * Implements hook_schema()
 */
function custom_schema() {
 $schema['custom_views_render'] = array (
 'description' => 'The base table for custom views render.',
 'fields' => array(
 'view' => array(
 'description' => 'The name and display ID of the view.',
 'type' => 'varchar',
 'length' => '32',
 'not null' => TRUE,
 'default' => '',
),
 'rendered' => array(
 'description' => 'The number of times the view was
rendered.',
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
),
),
 'primary key' => array('view'),
);
 return $schema;
}

4. Define our new custom Event in custom.rules.inc:
/**
* Implements hook_rules_event_info()
* Define our new custom event for Rules
*/
function custom_rules_event_info() {
 return array(
 'custom_views_render' => array (
 'label' => 'A view is rendered',
 'group' => 'Rules Custom',
 'variables' => array(
 'view' => array(
 'type' => 'custom_view_datatype',
 'label' => t('View being rendered')
)
)

Drupal Rules How-to

47

)
);
}

5. Because views are not regular data types natively available to Rules; we provided the
custom_view_datatype type as the variable type. We also need to define this new
data type in our hook_rules_data_info() function:
/**
 * Implements hook_rules_data_info().
 * This hook should be used to define new data types to Rules.
 *
 * In this case, we simply pass on the view object to Rules
 */
function custom_rules_data_info() {
 return array(
 'custom_view_datatype' => array(
 'label' => t('view')
),
);
}

6. We want Rules to invoke our event when a view is being rendered, so we'll use hook_
views_pre_render() in custom.rules.inc and use rules_invoke_event_by_
args() function to notify Rules that the event needs to be invoked:
/**
 * Implements hook_views_pre_render()
 * Invoke our custom event when a view is being rendered
 */
function custom_views_pre_render(&$view) {
 rules_invoke_event_by_args('custom_views_render', array($view));
}

7. Define our new Condition, that will compare a rendered view's name and display ID
with a specified view:
/**
* Implements hook_rules_condition_info()
*/
function custom_rules_condition_info() {
 return array(
 'custom_views_condition' => array(
 'label' => t('View being rendered'),
 'parameter' => array(
 'view' => array(
 'type' => 'text',

Drupal Rules How-to

48

 'label' => t('View and display'),
 'options list' => 'custom_views_list',
 'description' => t('Select the view and display ID'),
 'restriction' => 'input',
),
),
 'group' => t('Rules Custom')
)
);
}

8. In the options list attribute, we define a custom function custom_
views_list that returns an array of the available views on our site:
/**
 * Helper function that returns all available views on our site
 */
function custom_views_list() {
 $views = array();
 foreach (views_get_enabled_views() as $view_name => $view) {
 foreach ($view->display as $display_name => $display) {
 $views[$view_name . '-' . $display_name] =
 check_plain($view->human_name) . ' - ' . check_
plain($display->display_title);
 }
 }
 return $views;
}

9. The array key custom_views_condition, defined in our custom_rules_
condition_info() function, will be used to execute the actual comparison
that will return a Boolean value, so we'll add a function with the same name:
/**
 * Callback function for our custom condition
 * The function name must match the array key defined in hook_
rules_condition_info()
 */
function custom_views_condition($view = array()) {
 $current_view = views_get_current_view();
 $parts = explode('-', $view);
 if (($parts[0] == $current_view->name) && ($parts[1] ==
$current_view->current_display)) {
 return TRUE;
 }
 return FALSE;
}

Drupal Rules How-to

49

10. Let's create our custom Action for Rules:
function custom_rules_action_info() {
 return array(
 'custom_update_table' => array(
 'label' => t('Update "custom_views_render" table'),
 'parameter' => array(
 'view' => array(
 'type' => 'custom_view_datatype',
 'label' => t('Rendered View'),
),
),
 'group' => t('Rules Custom')
),
);
}

11. We also need to add a function that actually gets called by Rules when the action
fires. The name of this function must match the value of the "base" attribute defined
in hook_rules_action_info():
/**
 * The database function that gets called by the Rules Action
 * The function name must match the value in the 'base' attribute
 * defined in hook_rules_action_info()
 */
function custom_update_table($view) {
 if (!is_object($view)) {
 return FALSE;
 }
 $result = db_select('custom_views_render', 'c')
 ->fields('c')
 ->condition('view', $view->name .'_'. $view->current_
display, '=')
 ->execute()
 ->fetchAssoc();

 if ($result) {
 $update = db_update('custom_views_render')
 ->expression('rendered', 'rendered + :one', array(':one' =>
1))
 ->condition('view', $view->name .'_'. $view->current_
display, '=')
 ->execute();
 }
 else {

Drupal Rules How-to

50

 $insert = db_insert('custom_views_render')
 ->fields(array(
 'view' => $view->name .'_'. $view->current_display,
 'rendered' => 1
))
 ->execute();
 }
}

The last step is to create a new rule configuration, set the Event to Rules Custom | A
view is rendered, add a Condition Rules Custom | View being rendered and set it to
our latest content view, and add an Action Update "custom_views_render" table:

12. Set the Event.

13. Add the Condition.

14. Set the view and display ID in the Condition, as shown in the following screenshot:

Drupal Rules How-to

51

15. Add our custom Action:

16. Set the rendered view's Data selector value to the view object provided by our event:

How it works...
In this example, we're creating a custom workflow by providing a new Event, Condition,
and Action. In this virtual example, we want to track how many times a given view has been
rendered. First we create a new database table to store the data in. Then we define our
custom Event (A view is rendered) and our Condition (View being rendered) where we can
choose the view and display that's being rendered. In the last step, we define our Action
(Update "custom_views_render" table) which takes care of the database operations. Then
we go ahead and create the rule configuration using our new Event, Condition, and Action.

It is the best practice to add all Rules hooks to a custom *.rules.inc file. Rules will
automatically detect this file and fire the hooks.

There's more...
The following sections provide more information on creating Events, Conditions and Actions,
and clearing caches.

Events
To create new Events for Rules, we need to implement hook_rules_event_info().
In this hook we need to return an array of Events, with the keys becoming the machine
readable names of the Events. We can define the label, group, and variables this event
will use. We can then fire this event by using rules_invoke_event() or rules_invoke_
event_by_args() in another function or hook.

Drupal Rules How-to

52

Conditions
We can define new Conditions by implementing hook_rules_condition_info(). Again,
we need to return an array of Conditions with the array keys becoming the machine readable
names of the Conditions, and by default, Rules will look for a function with the same name
which will be fired when the Condition is invoked. Therefore, we need to create a function
using the same machine readable name.

We must also define the parameters used by the condition. These parameters will be used in
the custom function that returns either TRUE or FALSE.

Actions
When defining new Actions, we need to implement hook_rules_action_info().
Actions have a similar structure to Conditions, the definition consists of an array with
information about the Action and a callback function that gets fired. The main difference
is that an Action may execute an operation or return additional data for Rules.

Clearing the caches
Rules and the Entity API uses a fair amount of caching in order to increase performance.
Therefore these caches need to be cleared every time a new Event, Condition, or Action
is defined.

Providing new entity tokens
(Become an expert)

This recipe demonstrates how to provide new entity tokens for Rules. Entity tokens provides
a way to use placeholders in Rules (and other modules) and dynamically replace them with
chunks of data.

In this example, we'll provide the current number of registered users on our site as a globally
available token for Rules.

How to do it...
1. Implement hook_entity_property_info() to provide our new entity token:

/**
 * Implements hook_entity_property_info()
 * We extend the natively available 'site' properties
 */
function custom_entity_property_info() {
 $info = array();
 $properties = &$info['site']['properties'];
 $properties['registered_users'] = array(

Drupal Rules How-to

53

 'label' => t("Number of registered users"),
 'type' => 'integer',
 'description' => t("Returns the current number of registered
users on the site."),
 'getter callback' => 'custom_number_of_users'
);
 return $info;
}

2. We've defined custom_number_of_users as the callback function in the getter
callback property, so we'll create this function:
/**
 * Callback function that returns the current number of registered
users
 */
function custom_number_of_users() {
 $result = db_query("SELECT count(*) FROM {users} WHERE uid >
1")->fetchField();
 return $result;
}

3. The newly created entity token will be available to use in Conditions and Actions in
REPLACEMENT PATTERNS:

Drupal Rules How-to

54

How it works...
By implementing hook_entity_property_info(), we're providing the Entity API
information about our new entity token. The function that returns data needs to be defined
in the getter callback property. Implementing this hook makes it possible to use new
tokens in the rule configurations, or any other configuration that uses Entity API.

Executing Rules programmatically
(Become an expert)

This recipe explains how to execute Actions, Rules, or Rule sets programmatically.

In this example, we'll create a simple component that sends an e-mail to the site
administrators and execute this component programmatically.

How to do it...
1. Add a new action set component, call it Send message to all admins:

2. Add a new Action, System | Send message to all users of a role.

3. Select administrators in the ROLES select box:

Drupal Rules How-to

55

4. Enter some text to the SUBJECT text field:

5. Enter a message and save the component:

6. Now that we've created our component, we can execute it in our custom module
using rules_invoke_component():
<?php
rules_invoke_component('send_message_to_all_admins');
?>

How it works...
Components can be executed programmatically using the rules_invoke_component()
function. The first parameter of the function will receive the machine readable name of the
component, followed by any additional parameters that the component requires. This way we
can execute complex Actions, Rules, Rule sets, Conditions, or additional plugins defined by
other modules.

Drupal Rules How-to

56

There's more...
The following section describes the execution of standalone plugins programmatically.

Executing standalone plugins
It's also possible to programmatically execute plugins without combining them into a
component. We can, for example, execute a Condition in the following way:

<?php
$condition = rules_condition('user_has_role', array('role' =>
array('editor')));
$condition->execute($user);
?>

Providing new variables for Actions
(Become an expert)

This example explains how to modify existing or provide new variables and data for Rules
in Actions.

We'll extend our previously defined action with a new one that provides additional data to
Rules after the action is executed. In this case, the data provided to Rules is the number
of currently registered users on the site.

Getting ready
This recipe is based on the recipe Providing new Events, Conditions, and Actions
(Become an expert) in this book.

How to do it...
1. Add a new associative array to our hook_rules_action_info() function

and instead of "parameters" we'll use the "provides" property:
'custom_registered_users' => array(
'label' => t('Get number of registered users'),
 'provides' => array(
 'number_of_users' => array(
 'type' => 'integer',
 'label' => t('Number of users')
),
),
 'group' => t('Rules Custom')
)

Drupal Rules How-to

57

2. Create the callback function that returns an array in the format Rules expects it:
/**
* Callback function that returns the current number
* of registered users and returns it to Rules in an
* array
*/
 function custom_registered_users() {
 $result = db_query("SELECT count(*) FROM {users} WHERE uid >
1")
 ->fetchField();
 // Return an array for Rules with the array key
 // being the machine readable name defined in the
 // 'provides' property
 return array(
 'number_of_users' => $result
);
 }

3. After clearing caches, the newly created action will be available in the list
of Actions:

4. Optionally we can modify the variable's label and suggested machine readable name
in the next configuration screen.

Drupal Rules How-to

58

When adding additional Actions our new variable becomes available to
Rules. For the purpose of this example, we'll add the Action, System | Show
a message on the site and display the results in the MESSAGE field. Note
that the created variable doesn't become available as a token, so we need to
Switch to data selection and select the variable from the drop-down list.

How it works...
Actions can provide new variables to Rules by making use of the provides property in
hook_rules_action_info(). The data structure is almost identical to the way we declare
parameters, the only difference is that user input is not allowed. By providing new variables
to Rules, we can execute complex functions in an action and then work with their return data
while still in Rules.

Providing default rule configurations
(Become an expert)

This recipe explains how to provide default rule configurations in code. The advantage of that
is that we can keep our configurations in code and use version control, such as, SVN or Git.

How to do it...
1. In our custom module's folder, we add a new file called custom.rules_defaults.

inc and declare the rule configuration by implementing hook_default_rules_
configuration(). The contents of the file are as follows:
/**
* Implements hook_default_rules_configuration()
*/
function custom_default_rules_configuration() {
 $rule = rules_reaction_rule();
 $rule->label = 'Default Rule';

Drupal Rules How-to

59

 $rule->active = TRUE;
 $rule->event('node_insert')
 ->condition('data_is', array('data:select' => 'node:type',
'value' => 'article'))
 ->condition(rules_condition('data_is', array('data:select' =>
'node:author:uid', 'value' => 1))->negate())
 ->action('drupal_message', array('message' => 'Hey
[node:author], thanks for creating a new article!'));

 $configs['custom_default_rule'] = $rule;
 return $configs;
}

2. After clearing the caches, our newly created default rule will become available in the
list of configurations, as shown in the following screenshot:

How it works...
Using hook_default_rules_configuration(), we can define our rule configuration
in code using Rules' methods for Events, Conditions, and Actions. Rules will look for a file
*.rules_defatuls.inc in our module's folder, and automatically add our default rule
to the available configurations after clearing the caches.

There's more...
Rules is compatible with the Features module, which provides a centralized API for exporting
and importing configuration from the database. This is also an effective way to manage
configuration in code and version control systems.

Drupal Rules How-to

60

Altering default rule configurations
It is also possible to modify a default rule configuration in code. For that we could use
hook_default_rules_configuration_alter() in our *.rules_defaults.inc file.

 /**
 * Implements hook_default_rules_configuration_alter()
 */
 function custom_default_rules_configuration_alter(&$configs) {
 $configs['custom_default_rule']->condition('data_is',
array('data:select' => 'node:is_new', 'value' => TRUE));
 }

Making changes to the configuration on the UI
Rules tracks the state of a Rule configuration that has been added programmatically. What
that means is that it can determine whether an imported configuration is in its default state
(not modified compared to the code) or overridden (modified using the UI, but not in code).
When a configuration is modified, Rules allows to revert it back to its original state.

By clicking on that, we're telling Rules that it should re-read the configuration that we've
defined in code and revert it to its original state.

Thank you for buying

Drupal Rules How-to

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

LiveCode Mobile
Development Beginner's
Guide
ISBN: 978-1-84969-248-9 Paperback: 246 pages

Create fun-filled, rich apps for Android and iOS with
LiveCode

1. Create fun, interactive apps with rich media
features of LiveCode

2. Step by step instructions for creating apps and
interfaces

3. Dive headfirst into mobile application
development using LiveCode backed with clear
explanations enriched with ample screenshots

FreeCAD [How-to]
ISBN: 978-1-84951-886-4 Paperback: 70 pages

Solid Modeling with the power of python

1. Packed with simple and interesting examples of
python coding for the CAD world.

2. Understand FreeCAD's approach to modeling and
see how Python puts unprecedented power in the
hands of users.

3. Dive into FreeCAD and its underlying scripting
language.

Please check www.PacktPub.com for information on our titles

Intelligent Document Capture
with Ephesoft
ISBN: 978-1-84969-372-1 Paperback: 182 pages

Learn to use open source software to automate the
processing of scanned and digital documents to save
time, save money, and improve accuracy

1. Learn the benefits of intelligent document capture
and how to implement document capture using
Ephesoft

2. Capture relevant information from your
documents, even if they vary widely in format and
appearance

3. Leverage the power of open source software to
implement a cost effective solution for document
capture

Drupal 7 Cookbook
ISBN: 978-1-84951-796-6 Paperback: 324 pages

Over 70 recipes that will advance your Drupal skills from
novice to pro

1. Install, set up, and manage a Drupal site and
discover how to get the most out of creating and
displaying content

2. Become familiar with creating new content types
and use them to create and publish content using
Views, Blocks, and Panels

3. Learn how to work with images, documents, and
video and how to integrate them with Facebook,
Twitter, and Add this

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter: Drupal Rules How-to
	Understanding the basics of Reaction Rules (Must know)
	Displaying a message on the site
(Must know)
	Sending e-mail notifications (Must know)
	Sending notifications if someone comments on a node created by another
	user (Must know)
	Using loops and lists (Must know)
	Components – Reusing Rules, Conditions, and Actions (Must know)
	Using the Rules Scheduler (Must know)
	Debugging Rules (Must know)
	Using PHP in Conditions and Actions
(Should know)
	Using condition groups (Should know)
	Subscribe to comments on a node using Rules and Flag (Should know)
	Adding a taxonomy term to a node using Views Bulk Operations and Rules
	(Should know)
	Loading a list of objects into Rules using VBO (Should know)
	Rules Bonus Pack (Should know)
	Providing new Events, Conditions, and Actions (Become an expert)
	Providing new entity tokens
(Become an expert)
	Executing Rules programmatically
(Become an expert)
	Providing new variables for Actions
(Become an expert)
	Providing default rule configurations (Become an expert)

