

Drupal 8 Blueprints

Step along the creation of 7 professional-grade Drupal sites

Alex Burrows

BIRMINGHAM - MUMBAI

Drupal 8 Blueprints
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 1150917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78588-756-7

www.packtpub.com

http://www.packtpub.com

Credits

Author
Alex Burrows

Copy Editor
Shaila Kusanale

Reviewer
John Bloomfield

Project Coordinator
Ritika Manoj

Commissioning Editor
Amarabha Banerjee

Proofreader
Safis Editing

Acquisition Editor
Siddharth Mandal

Indexer
Mariammal Chettiyar

Content Development Editor
Aditi Gour

Graphics
Jason Monteiro

Technical Editor
Shweta Jadhav

Production Coordinator
Shantanu Zagade

About the Author
Alex Burrows is a web developer who specializes in Drupal and is based in Surrey, UK. He
is the technical director of a UK-based agency called Digidrop, also based in Surrey, UK. He
set up Digidrop with his best friend, Matthias, in 2017, and the company is growing fast.

He has worked with Drupal since 2008 and has worked on some well-known brands and
large-scale projects; he is also very active within the Drupal community and attends every
European and North American Drupalcon, where he is a mentor as well.

He is also one of the directors of Drupalcamp London CIC, which has been running since
2013, and he has been involved in the organization and its running since the beginning.
Each year, it is becoming a bigger, better, and more popular event, and it has been marked
as the second biggest Drupalcamp in the world.

Writing this book was both an achievement and challenge I wanted to do. I would like to
thank my parents and brother, best friends Matthias Sparshot, Bianca Sparshot, and
Godson Georges, as well as all my family and friends for giving me the time to write this. I
would also like to thank my technical reviewer, John Bloomfield, who I've worked with and
know well, Matt Glaman for his encouragement and support throughout, and everyone at
Packt, especially Aditi Gour (content editor), Shweta Jadhav (technical editor), and
Siddharth Mandal (acquisition editor).

Finally, as this book was in its final review stage, I reached my nine-year Drupal
anniversary.

Thank you for buying this book. You can follow me on Twitter as well at @aburrows.

About the Reviewer
John Bloomfield is a web developer who lives in Oxfordshire, UK. He has been working in
the web industry since 2002. He specializes in Drupal and is the technical director of JRB
Digital Ltd.

He has worked with Drupal since 2009 and has worked on some large-enterprise projects
with BBC Worldwide, PwC, BrightLemon, the Australian government, and CTI Digital.

At BBC Worldwide, he was part of the team that created BBC Store and also worked on the
BBC Top Gear and BBC Good Food websites.

I have worked with Alex on some large-enterprise projects at PwC and BrightLemon and
know him well. His Drupal knowledge is of a high standard, and I thoroughly enjoyed
reviewing this book. Thanks to Alex for asking me to be his technical reviewer.

www.Packtpub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at www.amazon.in/dp/1785887564.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

http://www.amazon.in/dp/1785887564

Table of Contents
Preface 1

Chapter 1: Introduction and Getting Set Up 5

Setting up for local development 6
Setting up on Windows 6
Setting up on macOS 7

What is SSH? 7
Our great development tools for macOS 7

Homebrew 8
iTerm 8
Oh My Zsh 8

Setting up our local development environment 8
Native 9
Acquia DevDesktop 9
Vagrant 9
Docker 9

Terminology 10
Drush and Drupal Console 10
Installing Drupal 10
Getting our basic site 12

Drupal core structure 12
Downloading modules and themes 13
Using themes 14

blueprint.info.yml 15
Getting involved with Drupal 15
Let's get Drupal started! 16

Chapter 2: Telling Your Own Story with Drupal 17

Creating the Post content type 18
Creating our fields 20
Adding our fields 21
Adding taxonomy vocabulary 24
Adding fields to our vocabulary 27
Adding more fields 28
Creating content 29
Creating our view modes 32

What we will need to do 32
How's it done 33

[]

Customizing our Post 35
Displaying content with views 35
Understanding views 37
Using blocks a brief overview 39

Block admin UI 40
How it's done 40
Adding our block 41
Adding a block 42

Relating content 44
What we will do 44
Adding our entity reference field 44
How it works 46
Creating a related news block 46
Using Contextual filters 48
Previewing content 49
Using relationships to show content 49
Adding our new block to our Post content type 51

Making our display look better 52
Adding comments 54

How do comments work 54
Comment types 54
What this means for us 54
Attaching comments 55
Moderation 57

Permissions 59
Listing and filtering content 61

Exposed filters 61
Restricting content by role 65

How to do it 66
Adding restricted content to views 67

Editing content 67
Moving to the frontend 69

Adding CSS and JavaScript 70
Summary 72

Chapter 3: Get Fundraising with Drupal 73

What will we learn? 73
Getting started 74
Creating our fundraising pages 74

Donation content type 74
Fundraising content type 75

Registering users 75
Account settings 76

Creating our users 77
Authenticated users 78

[]

Building the fundraising page 78
Creating a dashboard 80

Understanding view field settings 82
Showing user's their content 84
Allowing users to donate 84

What we will do 84
How modules work 85

Structure of a module 85
Creating our module 85
donate.info.yml 85
What we need 86
How we do it 87
Creating a block 90

Annotations 91
Creating a node programmatically 95

$form state object 95
Sending emails 99

donate.module 99
Donation progress bar 100

donation_progressinfo.yml 100
DonateRangeBlock.php 100
DonateRangeBlock.php 103

Theming our plugin 105
DonateRangeBlock.php 105
donate-range.html.twig 106
Finishing off 108
DonateRangeBlock.php 108
donate-range.html.twig 111
DonateForm.php 112

Chapter 4: Recruit Using Drupal 114

Getting started 114
What is Composer? 115

Using Composer with Drupal 115
What we need 118
Creating user registration pages 121

Candidate role 123
Using Webform 132
Creating our job 134

Jobs module 135
jobs.info.yml 136
jobs.module 136

What we have done 137
Almost there 137

Dashboards for Recruiter 138

[]

Job search 139
Summary 139

Chapter 5: List Properties with Drupal 140

Getting prepared 140
Cleaning up 141
Adding our Property 143
Enhancing our content 144

Display Suite 145
Adding custom fields to our display 154
Property search 161

Generate dummy content 161
Property search 164

Exposed filters as a block 165
Administer our properties 169
SEO-friendly paths 171

Summary 174

Chapter 6: Express Your Event with Drupal 175

Getting started 176
Creating our user roles 179
Creating our session 179

Time and date 180
Room 180
Skill level 180
Tracks 180
Entity reference fields 181

Restricting fields 183
Managing permissions 186
User dashboard 187
User creation 193
User fields 196
Session submissions 196

event_speaker.info.yml 196
event_speaker.module 197

Session management 197
Session display 199

Session sharing 202
Attendees 202

Summary 203

Chapter 7: Get Teaching with Drupal 204

Getting started 205

[]

Categorizing our Lessons 205
Video embed 205
Using Panels 209

Using variants 210
Harnessing the power of variants 214

Organizing our Lessons 218
Creating a listing of Lessons 218

Summary 224

Chapter 8: Go Static with Drupal 225

Getting started 225
What is REST? 226
How does it work in Drupal? 226
Exposing Drupal using REST API 227

Filter endpoint dynamically 232
Let's go React 233

Getting ready for React 233
Creating our frontend 233

Summary 236
There's more in core 236
One last thing 237

Index 239

Preface
Drupal is a very powerful open source content management system (over 1,000,000
websites run on Drupal). There have been eight versions of Drupal, and in my opinion, the
latest is the greatest by far. Drupal 8 has been been redeveloped from the core to have more
features, which means that far less coding is needed than before. This book is for anyone,
especially those new to Drupal. It will guide you through making seven types of website
without much custom code at all. The following is a quote from the official website of
Drupal:

"What is Drupal? Drupal is the #1 platform for web content management among global
enterprises, governments, higher education institutions, and NGOs. Flexible and highly
scalable, Drupal publishes a single website or shares content in multiple languages across
many devices. Technology and business leaders transform content management into
powerful digital solutions with Drupal… backed by one of the world’s most innovative
open source communities."

What this book covers
Chapter 1, Introduction and Getting Set Up, shows how to get started with development
locally and how to get set up for Drupal.

Chapter 2, Telling Your Own Story with Drupal, describes how to create your very own blog.

Chapter 3, Get Fundraising with Drupal, is about creating a fundraising website that
donations can be made to.

Chapter 4, Recruit Using Drupal, presents a way to show the jobs that are available and
apply for jobs.

Chapter 5, List Properties with Drupal, explores how to create a website showing properties
for sale.

Chapter 6, Express Your Event with Drupal, focuses on how to create a website for an event,
and show sessions, tracks, and a schedule.

Chapter 7, Get Teaching with Drupal, covers the use of videos to teach.

Chapter 8, Go Static with Drupal, outlines how to use Drupal to work with a static frontend.

Preface

[2]

What you need for this book
To get started with Drupal, you will require a local development environment, as we will
cover in Chapter 1, Introduction and Getting Set Up.

In order to create code, you will need a text editor. The recommended ones are as follows:

PHPStorm--https://www.jetbrains.com/phpstorm/download
Sublime Text 3--https://www.sublimetext.com/3
Netbeans--https://netbeans.org/features/index.html

Who this book is for
The book is for people who have used or installed Drupal before, have some understanding
of how websites work, and have some PHP knowledge.

It is a step-by-step guide on creating seven types of website, exploring how powerful
Drupal 8 is without having to write too much custom code.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To get
panels, simply type composer require drupal/panels drupal/page_manager."

A block of code is set as follows:

name: Blueprint
description: Bespoke theme for Drupal 8 Blueprints
type: theme
core: 8.x
base theme: bootstrap
Regions

Any command-line input or output is written as follows:

drush dl bootstrap

https://www.jetbrains.com/phpstorm/download
https://www.sublimetext.com/3
https://netbeans.org/features/index.html

Preface

[3]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Select System info from the
Administration panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/Drupal8Blueprints_ColorI

mages.pdf.

http://www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/Drupal8Blueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8Blueprints_ColorImages.pdf

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Introduction and Getting Set Up

Welcome to Drupal 8 Blueprints!

I'm Alex Burrows, and I'll be your guide for this journey through building websites using
Drupal 8.

Firstly, this book is aimed at beginner to intermediate-level developers. You'll need an
understanding of how websites work and some PHP knowledge, as we will later delve into
writing some custom modules, but mostly, this book will use Drupal's powerful
configuration.

Throughout the book, we will go over things we covered earlier; however, the aim is to
understand the basics and, if at any time, you become unsure, review the chapter where it
was covered.

We will cover the following to get you ready to build websites using Drupal 8 first:

Setting up for local development:
Setting up on Windows
Setting up on macOS

What is SSH?
Our great development tools:

Homebrew
iTerm
Oh MyZsh

Introduction and Getting Set Up

[6]

Setting up our local development environment:
Native
Acquia DevDesktop
Vagrant
Docker

Terminology
Drush and Drupal Console
Installing Drupal:

Getting our basic site
Drupal core structure
Downloading modules and themes
Using themes

Get involved with Drupal

So, get ready to learn and build some awesome websites using Drupal 8!

Setting up for local development
As we will start a site that requires PHP and MySQL to run, we need to set up a local
development environment.

There are many ways that this can be achieved; the most favorable ones are Vagrant and
Docker. Oh, and of course, if you're developing a Drupal site, Acquia DevDesktop is a good
option as well. This book is highly focused on you developing Drupal on a macOS;
however, there are other explanations on how to do this on Windows, and Acquia
DevDesktop works on Windows. I will explain how to set up shell on Windows as well, but
the only local tool I recommend for now is Acquia DevDesktop as I have had many issues
with Vagrant on a Windows machine.

Setting up on Windows
Firstly, since Windows is not a Unix-based operating system, we need to install Git for
Windows (https:/ ​/​git- ​for- ​windows. ​github. ​io). This includes setting up your machine
with Git Bash, Git Gui, and Shell Integration.

https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io
https://git-for-windows.github.io

Introduction and Getting Set Up

[7]

However, as for Windows 10, it allows Bash (https:/ ​/​msdn. ​microsoft. ​com/ ​en-​gb/
commandline/​wsl/ ​about), and the website--https:/ ​/​www. ​howtogeek. ​com/ ​249966/ ​how- ​to-
install-​and-​use- ​the- ​linux- ​bash- ​shell- ​on-​windows- ​10--has some great tutorials that
explain how to set up.

Setting up on macOS
As a developer, I love macOS, because for me it just works. I have multiple tools that I use
and highly recommend, which I will go into more depth further on in this chapter.

What is SSH?
Secure Socket Shell, otherwise known as (SSH), allows us to access our directories and
files on our operating system, whether it's on our local development environment or our
live web server.

In order to do this on macOS, we need to launch the Terminal application. On Windows, we
can use the Bash application that was explained earlier.

We can execute commands with SSH to do this; for example, we can change to another
folder/directory using the following:

cd mydirectory

Alternatively, we can create a new folder/directory using this:

mkdir mydirectory

These are just some examples of SSH commands, and I encourage you to take a look into
this.

When we are doing this development, especially where we are using dynamic code such as
PHP, we need to be able to add other tools using the command line.

Our great development tools for macOS
There are some very important tools that I use for development. These not only make my
processes quicker, but they also allow me to enhance my development environment to how
I need it.

An example of this is that if I might need to install an add-on quickly, I can do this using
Homebrew.

https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10

Introduction and Getting Set Up

[8]

Some of the helpful add-ons I use are as follows:

Homebrew
iTerm
Oh My Zsh

Homebrew
The first important tool is HomeBrew (no, it's not teaching you how to make some alcohol
at home). It is a fantastic addition to the shell that allows us to execute and install packages
very easily.

If you go to https://brew.sh, you can copy and paste into Terminal and away you go, with
very simple commands, such as the following:

brew install curl

What the preceding command will do is to download and install the curl package for us.
This is just an example of what it does.

iTerm
As it says on their website:

"iTerm2 is a replacement for Terminal and the successor to iTerm. It works on Macs with
macOS 10.8 or newer. iTerm2 brings the Terminal into the modern age with features you
never knew but always wanted."

This allows us to make our experience using the Terminal a lot better (https:/ ​/​www.
iterm2.​com).

Oh My Zsh
This allows us to run commands and shortcuts. We don't have to type out full commands,
as we did earlier, and we can use our own commands and shortcuts to achieve tasks a lot
quicker (http://ohmyz.sh).

Setting up our local development environment
As with anything, there are a lot of choices for local environments. These are just samples of
the ones that are there and what they do.

https://brew.sh
https://www.iterm2.com
https://www.iterm2.com
https://www.iterm2.com
https://www.iterm2.com
https://www.iterm2.com
https://www.iterm2.com
https://www.iterm2.com
https://www.iterm2.com
http://ohmyz.sh

Introduction and Getting Set Up

[9]

Native
As macOS is built on a Unix framework, you can use this entirely to run your local host,
and its just a case of editing some files on your mac and changing them. There is some great
documentation on this at (http:/ ​/​php. ​net/​manual/ ​en/ ​install. ​macosx. ​bundled. ​php).

Acquia DevDesktop
This is an all-inclusive application that allows you to get started and set up with making
your Drupal websites locally. We will indeed use this for the entire book. It creates the URL
for your local website as well as the database and Drupal core.

We use this at Drupal events, and we are mentoring people new to Drupal (https:/ ​/​www.
acquia.​com/​gb/​products- ​services/ ​dev- ​desktop).

The next two require VirtualBox. This allows us to create virtual machines on both mac and
Windows. From here, we can create our separate machines and download OS images that
will allow us to install Linux OS, or if you have a Windows disk, you can install
this (https://www.virtualbox.org/wiki/Downloads).

Vagrant
This allows you to create and define what your virtual machine will have and
require (https:/​/​vagrantup. ​com).

Vagrant provides the same easy workflow regardless of your role as a
developer, operator, or designer. It leverages a declarative configuration
file that describes all your software requirements, packages, operating
system configuration, users, and more.

One great VM to use for Drupal can be found at (https:/ ​/​www. ​drupalvm. ​com).

I personally use this for all local development.

Docker
This again allows you to create and define what your development environment will have,
but it uses a thing called containers to achieve this (https://www.docker.com).

http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
http://php.net/manual/en/install.macosx.bundled.php
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.acquia.com/gb/products-services/dev-desktop
https://www.virtualbox.org/wiki/Downloads
https://vagrantup.com
https://vagrantup.com
https://vagrantup.com
https://vagrantup.com
https://vagrantup.com
https://vagrantup.com
https://vagrantup.com
https://www.drupalvm.com
https://www.drupalvm.com
https://www.drupalvm.com
https://www.drupalvm.com
https://www.drupalvm.com
https://www.drupalvm.com
https://www.drupalvm.com
https://www.drupalvm.com
https://www.drupalvm.com
https://www.docker.com

Introduction and Getting Set Up

[10]

Using containers, everything required to make a piece of software run is
packaged into isolated containers. Unlike VMs, containers do not bundle a
full operating system; only libraries and settings required to make the
software work are needed. This makes for efficient, lightweight, self-
contained systems and guarantees that the software will always run the
same, regardless of where it's deployed.

Terminology
Within Drupal and the community, there is some terminology that we use; the following
are some of them along with what they mean:

Content type: This is an entity type, and the individual content types within it are
called bundles; in this case, we have a basic page bundle and an article bundle by
default
Node: A node is a piece of content; this is usually within a content type, and a
content type is indeed an entity type
Taxonomy: This is another name for a category, so we can distinguish types of
content based on the category name; this is usually used for filtering content
Themes: This is what makes our site look the way it is
Modules: Another name for a plugin that adds functionality to Drupal

Drush and Drupal Console
In Drupal, we have some powerful tools that allow us to run commands to execute on our
website. This is all run using the command line; an example of this is that we can download
themes and modules directly off Drupal.org just by running one command.

Both Drush and Drupal Console are very similar in what they do, and it's down to
preference as to which you prefer. For this book, we will use Drupal Console.

Installing Drupal
For now, we will just install Drupal using DevDesktop; however, we will change how we
do this later on.

https://www.drupal.org/

Introduction and Getting Set Up

[11]

To do this, open up DevDesktop, then bottom left click on +, and then select New Drupal
Site. Then, once the popup appears, click on Install in the row that Drupal 8 is in. This will
appear with a popup:

Fig 1.0: Install Drupal 8.x site

Once this is done, click on the Local site:

Fig 1.1

In the pereceding Fig 1.1, we can now get our Drupal site up and running.

We can see four lines of content:

Local site: This is the URL that our website is accessible on locally
Local code: This is where our code is currently located; further along, there is a
little square button on the right, which launches a Terminal window
Local database: This is the name of our database
PHP version: This is the version of PHP being used

Introduction and Getting Set Up

[12]

Getting our basic site
Now that we have downloaded and set up our Drupal site to work on our local
environment, let's begin installing our site.

The installer will ask various questions; however, as we are using DevDesktop, we don't
need to enter any database connection details, but when we use this on a different local
environment or even our production environment, it is all required.

Drupal core structure
In Drupal, we have several locations where our contrib and custom code go. The following
figure illustrates the directory and file structure for Drupal 8.x core:

All custom and contrib items need to go into either modules, profiles, or themes.

Introduction and Getting Set Up

[13]

The recommended structure inside these directories to add the contrib and custom
directories. Consider the following examples:

Modules:
/modules/contrib

/modules/custom

Profiles:
/profiles/contrib

/profiles/custom

Themes:
/themes/contrib

/themes/custom

There are other key directories here that don't need to be touched, but there is also a sites
directory, which contains our sites configuration to access the database, files storage,
libraries, and services.

Downloading modules and themes
Once our site is installed, we need to download our base theme for our site, so we can do
the following to get modules or themes:

Download directly from Drupal.org

https://drupal.org/project/{module or theme name}

Download using Drush

drush dl project, for example, drush dl bootstrap

Download using Drupal console

drupal:install project

https://www.drupal.org/

Introduction and Getting Set Up

[14]

Using themes
With Drupal, we can start a site without writing any code for a theme, as Drupal core comes
with the following accessible themes:

Bartik
Seven
Stark

Apart from these three, there are two others that are used as the entire base of Drupal core--
Stable and Classy.

Classy is a subtheme of stable, makes Drupal look the way it does, and adds classes.

However, we want to get started with our own theme. So to do this, we need to open
Terminal. As stated earlier, the button in DevDesktop on the right-hand side will launch
our Terminal window.

Once this is open, we can download our modules and themes straight into our Drupal site.
For this book, we will use Bootstrap as our base theme and then create our own theme:

drush dl bootstrap

This will download the Bootstrap theme (https:/ ​/​drupal. ​org/​project/ ​bootstrap) into
our themes directory.

Now that we have Bootstrap downloaded, let's create a really basic theme so that we can
add onto it later on. Inside our /themes/custom directory, create a new directory
called blueprint.

This is where our custom theme will be stored; inside this, we have the ability to add our
frontend structure, which includes our templates, CSS, and Javascript.

Start by creating a file called blueprint.info.yml; note that we have it structured as
THEMENAME.info.yml.

In Drupal 8.x, we have adopted the use of YAML files, and you will note that all
configuration in Drupal uses this format.

https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap
https://drupal.org/project/bootstrap

Introduction and Getting Set Up

[15]

blueprint.info.yml
name: Blueprint
description: Bespoke theme for Drupal 8 Blueprints
type: theme
core: 8.x
base theme: bootstrap
Regions

What this does is to tell Drupal: Hey I'm a new theme, this is what I do. It's set out like this:

Name: This is what we are calling our theme, following the same name we have
given to our themes directory.
Description: This is a simple description of the theme, and it shows in the Drupal
admin interface.
Type: This is saying that this is for a theme; if it was for a module, it would be
module instead.
Core: As this is for Drupal 8, we need to specify that it is for Drupal 8.x.
Base theme: We are leveraging our theme files, styles, JavaScript, and templates
off of the bootstrap library. This, of course, can be based on any other theme.

Now that we have done this, we are ready to start making a Drupal site and add it to our
custom blueprint theme later on.

Getting involved with Drupal
Before we continue, it is recommended that you register at Drupal.org and set up a profile;
this will help you vastly and will allow you to ask questions on Drupal.org, fix bugs,
submit bugs, and become part of a fantastic community.

Within the Drupal community, we have two sayings:

Come for the code, stay for the community.

There's a module for that!

https://www.drupal.org/
https://www.drupal.org/

Introduction and Getting Set Up

[16]

Let's get Drupal started!
So, now that we have set up our first Drupal site, we can start with our first website!

There is a lot to learn in this book, so take your time.

Ensure that you have a caffeinated drink to hand or a glass of water, and enjoy unravelling
the true power of Drupal!

2
Telling Your Own Story with

Drupal
Latest news is an important part of any website for many businesses. They allow the
business to engage with their customers and keep their employees updated. In this chapter,
we will create a simple news website using Drupal 8 core functionality. This can also be
used as a blog; we're just making it sound exciting and relatable.

This chapter will be a little more in depth in showing how the basic functionality of Drupal
works; this will allow quicker development later throughout the book.

We will explore the following topics in the chapter:

Creating a new content type
Creating taxonomy terms and associating them to news posts
Using custom views to display the listing and individual news pages
Enabling a comment field to allow user comments
Referencing other news articles on the site
Setting up restricted articles
Understanding permissions and roles
Configuring the editor experience

We will learn how to create a content type and implement the fields required for displaying
the news articles; this is more of a refresher on how to do things. We won't go into this
much detail on beginner items again. If in doubt, take a relook at this chapter.

Telling Your Own Story with Drupal

[18]

We will also create custom view modes for displaying different display types using
references from the post, and then finally, move into the theme layer inside twig templates
for displaying the content.

Creating the Post content type
In Drupal, we use the terminology of entity, and we have bundles inside an entity. As part
of the Drupal core functionality, we have content types, which is in fact an entity type and
therefore the Post content type is a bundle.

So, now that we are familiar with some basic Drupal terminology, let's move on to creating
our Post content type.

If you use the menu at the top and click on Manage | Structure | Content Types, you will
be taken to the Admin page for Content types:

Fig 1.1: The content type management page

By default, we have two content types in a standard Drupal installation (Basic page and
Article). Article is pretty much a Post content type; however, for this, we shall ignore this
and create our own content type entirely from scratch.

To create a new content type, click on + Add content type:

Telling Your Own Story with Drupal

[19]

Fig 1.2: The Add content type page

On this page, we are presented with some fields, which we use to set up how a content type
works.

Telling Your Own Story with Drupal

[20]

So, let's add the information for these fields:

Name: Post
Description: Create a new post to display
Menu settings: Uncheck all available menus

Click on Save and manage fields, and we have now started our Post content type.

The content type is split into four tabs:

Edit: This allows for the settings we just added to be modified; however, you
cannot change the machine name once the content type is created.
Manage fields: This allows us to add/edit/remove fields from the content type. In
the previous versions of Drupal, you could move the fields up and down to order
how they appear on the form. This is no longer the case and appears under the
Manage form display tab.
Manage form display: This allows for the fields to be reordered and the formats
to be amended for this page. This won't affect the Manage display tab. It will
only be visible to any user who has permission to add, edit, or delete.
Manage display: This allows the fields to be reordered for how they will appear
on the display. It will affect the output of how the fields are displayed on the
page.

Creating our fields
Now that we have our Post content type created, we need to add the fields we want to use:

Fig 1.3: Adding fields to content type

Telling Your Own Story with Drupal

[21]

In Fig 1.3, we can see the layout for adding fields to our content type; we can see that there
is already a field called Body, which is created by default; the field UI is split into four
columns:

LABEL: This is our user-friendly label; when we enter our label, this generates
the machine name.
MACHINE NAME: This is the unique name for the field; fields can be reused
throughout Drupal, but only one per content type. If we create a field called
subtitle, it will generate the machine name as field_subtitle; we can,
however, override this to name it how we want.
FIELD TYPE: There are various types of fields (text, list, autocomplete, and so
on), which are created by plugins, but for now these are the ones we have in
Drupal core.
OPERATIONS: These are the features of the field.
Edit: This allows us to edit the basic settings for the field, including label, help
text, default value, and any other configuration that is required for the field.
Storage settings (Field settings): This allows us to set the number of fields we
require for this field.

Now that we have a basic understanding of the field system, let's move ahead and create
our fields. We do, however, need to categorize the posts after we have created our basic
fields so that we get an understanding of what happens; we will then add the categories
known in Drupal as taxonomy.

Adding our fields
For our Post to show content, we need to add some fields so that the user can input content.
For this, we will have three fields:

Post content: This will be Text (formatted long, with summary)
Post comment: This will be a comment field that utilizes the comment core
module
Post category: This will be a taxonomy term reference, which will look up our
terms inside our taxonomy

Let's add our first field, Post content.

Telling Your Own Story with Drupal

[22]

To do this, we click on + Add field; we are then redirected to a page that allows us to
configure the field and its type. We are shown Add a new field and Re-use an existing
field. We want to add a new field entirely, so from the drop-down list, let's select Text
(formatted long, with summary). As you'll see, when we select this, we are greeted with a
new field, Label. This field is the name of our field, so we shall use Post content as our
label. When we enter this into the textfield, we see Machine name: field_post_content to
the right:

Fig 1.5: Adding field details

In Fig 1.5, we can see the field settings all filled in; we are now ready to proceed to the
second part of the field configuration:

Fig 1.6: Setting number of values

The Field API allows us to set as many for a field as we like. If we were to set unlimited, an
Add another action button appears, and then another field is loaded.

Telling Your Own Story with Drupal

[23]

After doing this, when we click on Save field settings, we will be taken to another settings
page; depending on the type of field, there may be multiple fields for configuration on this
field:

Fig 1.7: Configuring field

Telling Your Own Story with Drupal

[24]

In Fig 1.7, we can see the following fields:

Label: This appears above the field and will show on the display by default.
Help text: This allows a description to appear beneath the field, and it is used as
instructions to the user on what the field requires.
Required field: This allows us to make the field required and use the standard
Drupal validation for this type of field; however, we can amend this later, if
needed, just by editing the field settings from the Manage fields page.
Default value: This will show the same value that can be overridden by the user.
Summary input: This allows authors to show a specific summary of text instead
of the basic trim function.

As we have created our content field for our post, we now need to add a category selection
to this content type. So now, it's time to add our taxonomy; firstly, we need to create a
taxonomy vocabulary, and then we can associate our terms to this vocabulary. For this site,
we will call our vocabulary "Post category".

Adding taxonomy vocabulary
Now, let's go ahead and create our taxonomy vocabulary.

If you use the menu at the top and click on Manage | Structure | Taxonomy, you will be
taken to the Taxonomy admin page:

Fig 1.8: Taxonomy administration

Telling Your Own Story with Drupal

[25]

In Fig 1.8, we can see the layout for adding our vocabulary; we can see that there is already
a vocabulary called Tags. This will be sufficient for what we need; however, we want to
create a new vocabulary to understand how this is done.

Now, if we click on + Add vocabulary, we are taken to another configuration page, where
we have two fields:

Fig 1.9: The Add vocabulary administration page

We have a Name and a Description field to enter; the name is what our vocabulary will be
called, and the description will appear underneath. After filling in these fields and saving,
we are redirected to a page that allows us to add terms.

There are a few ways to create terms by default. We can either add the term directly on this
page, or create the terms as we create the content, which is done using an autocomplete text
field that will detect an existing term or allow us to create a new one. For now, however,
let's create a term manually, and then we can explore how to add a term within our post.

Telling Your Own Story with Drupal

[26]

If we click on + Add term, we are redirected to another page that allows us to add details
for this term:

Fig 1.10: Term creation page

Telling Your Own Story with Drupal

[27]

What we see on this page is as follows:

Name: This is the name of our term
Description: This is a description related to the term
Relations: This allows us to relate the term to other terms
URL alias: This lets us create an SEO-friendly path for the term page; we can
automate this later, which we will cover later in the chapter

Once we populate these fields and save them, we will see the same page, but we also see a
status message saying we have Created a new term Drupal at the top. We can either
continue adding terms or return to the vocabulary page. In Drupal taxonomy is an entity
type, and again our vocabulary is a bundle. So, we have the power to add fields to our
taxonomy terms. We can add any field to this taxonomy term.

Adding fields to our vocabulary
For our category page, we want a nice image to show. So, let's add an image field to this
term page. From the current page, click on the breadcrumb Post category; this will take us
back to the vocabulary page for Post category. Now that we are here, we can see tabs across
the top. As we saw when we were creating our Post content type, we have the following:

Manage fields
Manage form display
Manage display

From here, we can again create and manage the display of the taxonomy term page. Let's
add our image upload field.

As we did earlier, we click on + Add field and are again redirected to a configuration page
for the field. Let's add our image field; select Reference | Image. Then, enter the label of
Post category hero; this will again generate our machine name for the field. Let's save this
and begin configuring the field as we did before; this time the field has a little bit more
configuration to do.

On the image field settings, we can see that there is a radio button selected for Public files;
if we had other file storage setup, such as Amazon S3, then this would show here. However,
for now, we are using public files, which will save our images in /sites/default/files.

Telling Your Own Story with Drupal

[28]

We then see some fields that allow us to upload a default image, alternative text and title.
This will render inside the image when it displays on the site. Let's save this and continue to
add the final bit of configuration for this field.

Again, we see fields similar to when we created our Post content, but we have some
additional ones; we can do the following:

Set the allowed file extensions
Set the file directory
Set the default image
Set the maximum and minimum image dimensions
Set the maximum upload size of the file
Set what type of attribute will be required for the image

We only need to amend the allowed file extensions, as the others will be set to the default
settings that are inside Drupal core.

Once we have done this, we can save our new fields and move on to the next part of the
build, which is to add the taxonomy to the content type.

Adding more fields
Moving back to our content type, let's incorporate the taxonomy vocabulary we have just
created.

We need to go to the Manage fields tab inside the Post content type. Once here, we need to
add our new field. Let's do that now. Click on + Add field; once again, this will redirect us
to a field settings page. For this field, we need to select Reference | Taxonomy term. So
now, we need to fill in the Label; let's call this Post category. Once this is done, click on
Save field settings; now we can fill in our settings for this field.

Leave everything as it is, but under Reference method, there is a checkbox labelled Create
referenced entities if they don't already exist, which basically allows any term that's
typed but doesn't already exist to be created. Pretty cool, eh?

Telling Your Own Story with Drupal

[29]

Directly beneath that, we have checkboxes for our various vocabularies, as we can see here
in Fig 1.11:

Fig 1.11

Now that we have done this, let's save our field and go to create our first post!

Creating content
Now is the time to create our very first post!

To do so, we need to do the following:

Click on content, after which we are greeted with our content listing page, which
allows us to see all our content on the website ordered by when it was last
updated. For now, however, this is showing no entries as we have nothing saved
yet.
To add content, click on + Add content.

Telling Your Own Story with Drupal

[30]

We are now taken to another page that shows us the existing content types we can create:

Fig 1.12: The content creation page

If we click on Post, we are taken to another page that shows the fields we added earlier:

Fig 1.13: The Create Post page

Telling Your Own Story with Drupal

[31]

In Fig 1.13, we can see the fields we added, these being Post content and Post category.

To create our content, we need to fill in the fields, so let's do this now:

Post title: Our very first news article
Post content: We have some exciting news to announce, we've
created some content!; as you can see from this field, we have an editor that
allows us to do a variety of things.
Post category: Up and coming; if we remember, when we type a taxonomy term
that already exists, an autocomplete will run and show a term that is similar to or
matches the one we are entering. However, if this term doesn't exist, then it will
create it for us!

Other parts of the content creation page are the columns to the right, which are for editorial
purposes:

Revision: This allows us to view previously saved content
URL path settings: We can add our own path, but there is a module called
pathauto that we can use (https://drupal.org/project/pathauto)
Authoring information: This will add our username and a timestamp by default;
however, we can modify this to show another author and another timestamp
Promotion options: This gives us basic control of how our content is listed; we
have two options here:

Promoted to front page
Sticky at top of lists

Now that we understand how the content creation page works, we can save our content.
We can see that there's a Save and publish button and to the right-hand side of this button,
there is a drop-down arrow; if we click on the arrow, we are shown another option--Save as
unpublished.

https://drupal.org/project/pathauto

Telling Your Own Story with Drupal

[32]

However, we want our first post to be published, so let's do that now:

Fig 1.14

There, you've created your first news article; you'll see node/1 in the URL after our
site URL. This is the default Drupal core naming convention for our content.

Wait, this page looks ugly! We want to change it; we have labels above our content and
various other displays. By default, we have view modes of Default and Content.

Creating our view modes
Our page needs some basic tidying up. Drupal has the Manage display for this; by default,
without touching any code, we can change the basic look and feel of the page. What view
mode allows us to do is to use different "layouts" for our entities and with other
modules, such as views. This means that we can show five fields in one view mode,
and two in another. Again, this is done without writing any code!

What we will need to do
We want our content to look different to a certain extent; view mode allows us to do this
and gives us some good control on the output of our content for different parts of the site.

Telling Your Own Story with Drupal

[33]

So, we need to create three view modes:

Teaser: To show the content on the listing page
Content: Our main content to display
Related content: related news articles at the bottom of the content page

How's it done
Moving back to our Post content type, we need to modify the way the content is being
displayed. To do this, we need to go to the Manage display for our content type.

As a shortcut, go to
/admin/structure/types/manage/{content_type}/display to
access this page.

Fig 1.15

Telling Your Own Story with Drupal

[34]

In Fig 1.15 we can see are our fields and Custom display settings at the bottom. What we
now want to do now is to create a new view mode for Related content; to do this, we click
on Custom display settings, and then we can see the different view modes and Manage
view modes. This view mode will be available for any content type.

When we are redirected to the view modes configuration page, we can see the following:

Fig 1.16

If we click on Add new Content view mod we can now enter our new view mode and give
it a name of Related content.

Fig 1.17: Add new Content view mode

Telling Your Own Story with Drupal

[35]

In Fig 1.17, we will need to enter the Name; let's fill this with Related content and then click
on Save. We will now see our view mode appearing in the list on view modes. Now that
this has been added, we can enable the view mode for our content type. This now allows us
to manage our display in the Manage display interface, but first, we need to enable it on the
Manage display page, so let's move back to this page and enable it. Back on this page, we
can see a Custom display settings; if we open this up, we can now see our Related content
view mode, so let's enable that now:

Fig 1.18

Once this is enabled, we will see it appear beneath the main tabs on the page, as per Fig
1.18.

If we click on this, we will be taken to a page that shows the same three fields as we have on
default; from here, we can again drag the fields we want in whichever order we want, and
this won't affect the other two view modes for our Post content type.

Customizing our Post
For our Related content view mode, we want to just show the title for now, so if we move
our other two fields down into Disabled, these won't appear on the view mode, and they
won't amend our other view modes. We will use this view mode with the views module so
that we can show our content in a different way.

Displaying content with views
Prior to Drupal 8, you would have to download a variety of contrib to use view; however,
views is now in Drupal core!

Telling Your Own Story with Drupal

[36]

Now that we already have the power of views within, let's go create a view.

Views is used to display content, and can allow us to sort our content in an
easy way, therefore reducing the need of custom modules.

Fig 1.19: Views admin page

If we now go to Structure | Views, we will see a page listing content already as per Fig 1.20.
These are our default views that are part of Drupal core; we can modify them as much as
we like. Now, let's create our very first view. For people new to Drupal, views can be very
scary and confusing. We won't be afraid, so let's create our Related news view.

At the top of the page, you will see + Add view; by clicking on this, it will in fact allow us to
create a new view. So, let's go ahead and do that now. We can see various fields on this
page, but don't worry, we will go through each field now:

View name: User-friendly name for our view. Drupal will create a machine name
from this, which allows us to access when we try to alter it with code.
Description: This description will appear on the Views admin page; it is more of
a helper to other developers to explain what the view does.

Telling Your Own Story with Drupal

[37]

View settings:
Show: We can select what type of entity we want to show,
depending on which we will change the options next to this field.

Tagged with: This allows us to filter by tags on the Views admin page.
Sorted by: We can order our content in views.
Page settings: If we want to create our view with a page first, we can do that, and
we can also add some basic settings for the page; click on the Create a page
checkbox, and you will see a whole bunch of fields to enter.
Create a block: We can add blocks to content, and views allows us to create these
to display our content.

Understanding views
Now that we have set up our first view, let's get it to display some content.

We will create a latest news block, which will show our latest five news posts. By default,
the view will display any content that is related to the content type, and it will only show
the title. We will change this:

Fig 1.20: Views display page

Telling Your Own Story with Drupal

[38]

In Fig 1.20, we can see there are three columns and in each column, there is an individual
section. For now, we will just go through what we need for our Latest news block, but later
we will go into more depth.

In views, we have Displays, these are the different ways that content is displayed. For the
latest news and related news, we will, however, use the Display type of block. We will go
into more detail later when we build our news listing page:

TITLE: This is the title that will appear in our display.
FORMAT: This is split into two sections:

Format: This is, by default, the type of layout, along with settings,
for this format.
Show: This allows us to define how we want the content to be
shown; we can either show based on a view mode or add fields to
the view display.

FIELDS: If we select the mentioned Format type to be fields, we will be able to
add fields from our content type into this display. This allows us to customize
our fields and how they are shown, and it ignores our view mode we created
earlier.
FILTER CRITERIA: We can set different filters that will depend on what content
is to be shown. By default, Published is set to Yes.
SORT CRITERIA: We can sort our content to display in many ways.

This is the first part we will cover. We want to create a very simple block that uses our
default teaser view mode. To do this, we must click on the value next to Show; in this case,
its Fields.

When we do this, a modal will appear with three radio buttons:

Telling Your Own Story with Drupal

[39]

Fig 1.21

From Fig 1.21, we want to select Content. After we click on Apply, we will be shown a
drop-down list that contains all the types of view modes we can have. We want to select the
Teaser view mode.

When we apply this, we will see our news article along with its title, post information
(author and timestamp of when it was created), and our Read more link in the preview. We
see the post information because we had Show submission information checked inside the
content type settings. Now that we have created our first view, let's place it on our sidebar.

Using blocks a brief overview
One of the cool things about Drupal is that we can control blocks of content from a UI. In
our theme layout, we have the regions; these are what tells Drupal Hey I'm a place for
content, so let me show in the UI. Regions allow us to place blocks of content inside it. We
have various ways to create blocks.

In the previous versions of Drupal, we could only add block name, title, and content by
default, this then had the ability to set certain settings on how it would display.

However, in Drupal 8, blocks are an entity type and with this come bundles. This means
that we can now create custom block types and use the Field UI to add custom fields, and
you guessed it, with that, we can organize our layout using Manage display; in Drupal 7,
we had to use Block Entities Are Nodes (BEAN)--https://drupal.org/project/bean.

https://drupal.org/project/bean
https://drupal.org/project/bean

Telling Your Own Story with Drupal

[40]

Block admin UI
Now we're excited about blocks; let's add our newly created Latest news block to our
sidebar region.

How it's done
As blocks is part of the structure of Drupal, it's located under Structure. So, go to Structure
| Block layout:

Fig 1.22: Block layout UI

As we can see in Fig 1.22, we have another table split up. This again allows us to drag our
blocks to the region we want to show them in; this is the default setup for Drupal, with
some default blocks.

The top part shows what themes are being used and each has its own setup for regions and
blocks. We had set Bootstrap as our default theme, and so, its showing different
regions from what the Bartik and Seven theme are showing. We will now add our block
that we created in views. Once we have done this, we will explore how to create a different
type of block.

Telling Your Own Story with Drupal

[41]

Adding our block
In the previous versions of Drupal, we had a Hidden section; however, in Drupal 8, we
have a cleaner and more usable approach--simply click on the region you want the block to
be in--so for ours, we want to add our block to Secondary. If you move down to that title
and click on Place block, a modal will appear that shows all our available blocks:

Fig 1.23: The Place block modal

Telling Your Own Story with Drupal

[42]

Adding a block
Once this dialog appears, we will need to click Place block for it to be added to our regions,
so let's find the block we created in views:

Fig 1.24: The Configure block modal

Telling Your Own Story with Drupal

[43]

After selecting Place block, we are shown a new screen that lets us configure the settings
for our block. As we created our block with views, we have a few more options than that of
a standard block:

Display title: This will show the title of the block created in views.
Items per block: This allows us to override what number of items we set inside
views.
Override title: This allows us to override our title of the block. This will let us
change the title we set in views; however, it won't change the title created in the
view.
Visibility: We can control where we want the block to show based on some
certain requirements.
Content types: We can restrict our block to show only on certain content types;
for example, if we want it to just display on our Post content type, we will select
this.
Pages: We can set a list of pages we want to have shown or not shown here, and
we can use wildcards as well to achieve this; for example, /node/*.
Roles: We can restrict this block to specific user roles; however, we can also do
this in our view. This is more useful with blocks not created in views.
Machine name: We can set our machine name to be named however we like; this
is so that we can access it in our theme or module, and it's also an identifier for
us.
Region: We can set which region we want our block to appear in.

Once happy with our configuration for our block, we can save it.

Now that we have saved and configured our block, we can view it in the block admin UI:

Fig 1.25

Telling Your Own Story with Drupal

[44]

As is seen in the preceding screenshot, our block is at the bottom of the list in our
Secondary region. We want to move it above search, so if you drag the row this block is in
to the top so that it's above the Search block.

Great, so we have now added our block that we created in views to the top of sidebar 2, and
it will show everywhere on the site.

Relating content
With any news website, there will always be related news articles that will draw the user to
another article and then keep the user on the website for as long as possible.

What we will do
We want to create some more news posts, so let's create ten more and give different
categories.

If you want to create a lot of dummy content, inside devel module
(https:/ ​/​drupal. ​org/ ​project/ ​devel) is a submodule called
devel_generate.

Great! Now we have created 10 extra news posts; we will now add a way to relate news
posts.

Adding our entity reference field
Now that we have our 10 freshly created news posts, we want to relate them; to do this, we
need to go back again to our content type. So, it's back to Structure | Content types | Post.

Once in our content type again, we will add our way to reference our related news posts.
We have Reference in Drupal core, in Drupal 7 it was created using the contrib module
entity_reference. However, we're in Drupal 8, and we have it in core!

Now, we need to click on + Add field, which will again take us to our Add field page. Once
on this page, we need to select Reference | Content from the Add a new field dropdown.
Once we have done this, we will see our label field appear; let's add Related posts as our
label.

https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel
https://drupal.org/project/devel

Telling Your Own Story with Drupal

[45]

Reference field category allows us to reference other entities and not just
content!

After filling in our label, we will click on Save and continue, which takes us to our field
configuration.

Moving on to the next part of field configuration, we are asked how many number of values
can be shown within this field. We want to select unlimited; this is so that we don't limit the
editor to how many posts are shown. Now we only want to show five, but we can amend
this number later.

When we move on to the next page, we will see the settings for the field; as we are
referencing content, we will select from content types Post. That's all you need to do to
reference another piece of content. So now, we have added our content reference field.

The next step is to add five news articles to our main article; let's do that now. Returning to
the content overview page /admin/content, we will edit our first piece of content created.

Edit content quickly by going to /node/{nid}/edit.

Once on the post we want to edit, move down to the RELATED POSTS part of the form:

Fig 1.26: The Entity reference field

Telling Your Own Story with Drupal

[46]

We can see that there's a text box with a grey circle to the right of it. This indicates to us,
from a Drupal perspective, that it's an autocomplete field. So, if we now start to type a title
from one of the posts we created, we will see the results it's found, and we can then select
this article. You can see that it has our Post title (nid); this allows us to easily see what
the nid of the post is, but wait, we want to add another post that relates to this one.

Simply click on Add another item, and another field will appear. This means that we are
now referencing two posts to this one. You'll also see that we have the crosshair to the
left, which means that we can drag the rows up and down to change the weight, which in
turn allows us to sort the order of the articles if, for example, we didn't want to order by
date.

Once this is done, let's click on Save and keep published.

Great! Our post is updated!

We can now see our content with all our fields; it's not looking that pretty now though.
Next, we will change this and use views again to display our related news articles.

How it works
Inside Drupal, every node has a nid and a uuid. When we reference this, the nid is added to
the node object and is used as an ID to reference the other node to access the other node
object. There is a relationship between our node and the other nodes as this is common with
the type of database needed for Drupal.

Creating a related news block
We will use views again to create our related news block, so we need to go back into our
previously created view--Structure | Views--and then select Edit for our latest news view:

Fig 1.27: Views display

Telling Your Own Story with Drupal

[47]

In Fig 1.27, we can see that we have Block* and then + Add; this is where we can see what
displays are currently in our view:

Fig 1.28: Add display type

If we click on + Add, we will see a dropdown of Display types we can create. For this one,
we want to create a block, so let's click on Block.

If our display name has a * next to it, it means there are unsaved changes.

We will see that we now have Block 2* showing next to Block.

Now that we have created our new view display, it's time to explore our far column in our
display.

In Advanced, we have the following sections:

Contextual filters: These are arguments that will modify the output of our view;
for example, if we only want to show content that our user has created, this
allows us to reuse a view repeatedly without having to create multiple views for
every user.
Relationships: We can link our content type to other types of entity throughout
Drupal. This then gives us access to that content and allows us to make what
would be quite a large database join into something quick and simple.

Telling Your Own Story with Drupal

[48]

Exposed form: This allows us to use the filters we have created and make them
into a user-based form in the style of a block, so we don't have to rely on it being
just in our view; it can be below our views content.
Other: This has various additional options to our view, but we won't be using
these yet.

Using Contextual filters
For our related news block, we want to only show news based on the post's nid. Remember
that we want to only show our referenced content for our post, and not any other posts.

If we click on Add, we will be shown a modal with various options to choose from; this
modal is similar throughout the Views UI, and we can search for options that are similar
to or an exact match.

We need to search for the ID that is our nid in this case. If we type nid, we get no results,
unlike in the previous versions of Drupal where we would. As an entity has an entity id,
we need to search for nid:

Fig 1.29: Results for ID

Telling Your Own Story with Drupal

[49]

Great! We are getting some results, in fact, quite a few rely upon the term ID, so let's look
for the exact match of just ID and select that. As we apply this and move to the next display,
we can see a whole lot more of settings to choose from.

We want to choose Provide default value. Next, we are given a few more options to choose
from. In this case, we want to take the ID from our URL, so select Content ID from URL.
This allows us to even access the ID of our content either with a custom path set, because
when we create our node, they are, by default, defined by node/{nid}, and we can access
our nid from a custom path as this is stored in Drupal's routing system.

There are few more options here for us to choose from, which we will cover later.

Now that we have selected this option, we can apply these amends to our view.

Previewing content
In our view, we can see Preview if we move down the page, which is empty. This is because
we are now reliant on a argument of the content ID. As we have nothing set, we have no
argument to use. Preview with contextual filters. As our first content ID, we create 1. So,
typing this into the field and clicking on the Update preview will hopefully show our
content.

Oh wait, it shows our content for node/1; this is because we haven't set a relationship, so
Drupal doesn't have anything to reference from. Let's fix this now.

Using relationships to show content
With our entity reference, we need to give our view the relationship so that we can access
the referenced entity (node in our case).

Telling Your Own Story with Drupal

[50]

We select Add under Relationships. In search of this modal for our case, we want to find
our Related posts field, entity reference:

Fig 1.30: Relationships options

As you can see in Fig 1.30, we have searched for related and can see two rows with a
similar looking field. The top row is just a direct relationship with field_related_posts, and
the other one allows us to use the content relationships, so we can access content that we
reference with that field anywhere in Drupal. So, we want to select Content using
field_related_posts.

Getting back to the task in hand, select This Block (override) from the For select list, note
how the Apply button changes to Apply (this display).

We have (all displays) in the Submit button; this will change when we
select from the top For select list at the top.

Telling Your Own Story with Drupal

[51]

As we only want to show this relationship on this display, we need to select This Block
(override) from the For select list; this changes our Apply button to Apply (this display).

Now we can see our Related posts settings. As we don't want to change the format (in the
left column of our Views UI), we select Require this relationship and then click on Apply.

Let's look at our preview. Okay, so it's still showing our node/1 content. This is because we
still have our display to show a view mode for our content type. We can modify this to
fields, but we want to keep it simple for now. To fix this, we need to tell our view, Hey I
want to use my relationship to display my content.

So, going back to Contextual Filters, click on our Content: ID; we will see a new field called
Relationship. Now, our view has nothing to go off, so we see our preview with the content
of node/1. We need to change this so that our view knows that we want to show our
referenced content in our node/1.

By changing it to the field we want to use our reference from, we will now tell our view to
access this field's content that's referenced in the node we are on. We need to apply this, so
we click on Apply and then, if we move down to our Preview, we will see the five related
news posts we have referenced.

This is how we relate our content to our node. We currently have our view display named
Block 2; this will mean nothing to us when we are working on it later. So, what we need to
do is click on the text Block 2 that is next to the Display name label, and a modal will
appear with a field labelled Administrative name. We want to add a more descriptive
name to this, so we shall call ours Related news; change For to This block, and we can click
on the Apply button and then save the view.

Adding our new block to our Post content type
Now that we have created our Related news block, what we now need to do is to add this
to appear on all Post content types.

Moving back to the Block layout, we will place our newly created Related news block
below our main content. To do this, click on Place block and look for Latest news: Related
news.

Telling Your Own Story with Drupal

[52]

Note how the block is titled {VIEWNAME}: {Display name}.

So, once we click on Place block, we will see another page that has given us more options;
we can see an open tab called Content types, along with some checkboxes with our content
types listed next to them. As we only want our Related news to appear on the Post content
type, we click on Save and that's it, our block will now show on all Post content types.

Oh wait, our block is listed above our Content block, which means that, yeah you guessed
it, our Related news block will be displayed above our Main page content. We don't really
want this to happen, so let's move this block below our Main page content block. Yeah,
that's better! Now, we need to click on Save blocks to save these amends and then we can
visit node/1 to see our Related news block.

Now that we have our five Related news items showing, let's tidy up the display of the
Post content type view mode.

Making our display look better
Next, we want to make the display of our content look better than it currently is; we will do
this all inside the Form UI. Let's get back to the Manage display page on our content type
and tidy up what we have. Go to the content types Manage display section, or by
quickly navigating to /admin/structure/types/manage/post/display.

Looking at this page, we are working with the fields set inside our content type; let's move
the following into Disabled:

Links
Post category
Related posts

Telling Your Own Story with Drupal

[53]

Fig 1.31: Content type manage display

In Fig 1.31, we have moved these fields into Disabled. Once we save this, the changes will
appear on our Post content, and if we return to our Post, we can see the following:

Post details (author and time)
Main content
Related news blocks

That's all we need for now; we will make this look better later.

Telling Your Own Story with Drupal

[54]

Adding comments
Interaction with your user is key to any website; it keeps the user on your website for
longer. One of the great ways to do this is to allow users to comment on the posts. This can
also help with showing that you're open about what you write and is a great way to
communicate with your audience and for them to communicate with you.

Drupal has a core module called comments, which does exactly this. It allows your posts to
have comments made by your users, it's as simple as that.

How do comments work
As everything is an entity in Drupal, you guessed it, comments are an entity type to! In
Drupal 8, we can have multiple types of comment; this also links nicely into the way
comments can be moderated. However, moderating comments can be hardwork, and can
be regularly targeted by spam bots. There are, however, other solutions that can link to this;
Disqus (https:/​/​disqus. ​com) being one of them, and yes, there is a contrib module for
that (https:/​/​drupal. ​org/ ​project/ ​disqus); briefly, what this does is to create a field,
which means you can attach Disqus comments too.

However, for our Posts, we want to keep it with Drupal core's approach.

Comment types
As per any entity type, we can add bundles. Comment is an entity type; the fact that we can
have different comment types for different content is great!

It also uses Field UI and therefore we have the same abilities as the content types view
modes that we explored earlier in the chapter.

What this means for us
As comment is an entity type and utilizes the Field UI, it means that we can now add fields
to our comments, which gives us the ability to add a 5-star rating widget or a file upload.
For our website, however, we will keep it simple and allow for just a message field.

https://disqus.com
https://disqus.com
https://disqus.com
https://disqus.com
https://disqus.com
https://disqus.com
https://disqus.com
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus
https://drupal.org/project/disqus

Telling Your Own Story with Drupal

[55]

Now, let's see the comment types and where to modify them from. It's in Structure, so let's
click on Structure. We will see comment types in the page listing; if we click on that, we get
redirected to another page--it looks like our content type listings page:

Fig 1.32: Comment type listings

If we are to look at the comment types as per Fig 1.32, we already have a comment type of
Default comments. If we click on Manage fields, we are taken to our field listing page,
which shows a Comment field, which is just a text area.

Attaching comments
As we want our visitors to be able to comment on the posts on the website, we now need to
add our comment field to our Post content type.

To do this, we need to go back to our Post content type and to Manage fields. Let's add out
comment field into our content type. Remember that we covered it earlier in the chapter,
and click on + Add field.

After doing this again, we will be shown a dropdown to select Comments from under
General in the list. After adding this, we are shown a Comment type dropdown. If we were
to add another comment type, we would see all the types listed here. However, as we only
have our default one, we will just see Default comments; now from here, click on Save
field settings.

With any field type, there are specific field settings. As we want to keep our comments to
function the same as other comments from websites, we will leave all the settings to be the
same, but we can disable comments at a later stage, change the amount shown by default,
and amend how and where the reply comment form will appear.

Telling Your Own Story with Drupal

[56]

Right now, to see our comments field in action, if we return to our first news post, which is
at /node/1, we can see our comments field that has generated a subject field and comment
field:

Fig 1.33: Rendered comments field

Telling Your Own Story with Drupal

[57]

Moderation
With any website that allows user input into forms, we need to control how this is managed
as we will likely get targeted by our spam bots, which tend to create a new account and
then target the comments fields. So, we need to be able to manage our comments.

Fortunately, this has already been thought of, and we have a comment management page
that allows us to moderate and manage the comments posted on the website. There is a
permission that allows this to be skipped, so this can just be set for content
editors/moderators of the posts.

Logged in as user ID (uid) 1, we have access to all permissions; it's
just a default functionality in Drupal.

With the moderation page, this allows us to quickly approve/decline comments that have
been made.

However, if as stated earlier, we have our superadmin (user id 1) or our permission of
Skip comment approval, then we will have the comments posted without moderation.

If we create an incognito window in our browser, we can test how a user will see the
comments. Once we are back on our website, go to /user/register and enter details to
create a new user:

Fig 1.34: User creation message

In Fig 1.34, we can see our message showing that the user has been created. As we have it
set so that every user registration must be approved, we need to go back to our other
browser window and accept the user.

Telling Your Own Story with Drupal

[58]

If we click on People, it will then take us to the User Management page. On this page, we
can manage various aspects for our users.

These include the following:

Creating users
Editing users
Adding/removing roles from users
Blocking users

Fig 1.35: People administration page

In Fig 1.35, we can see that there are three tabs at the top of the page:

List: This page shows the users we have on our Drupal site; we're currently on
this page
Permissions: This allows us to add/remove permissions from user roles
Roles: This is where we can give a user privileges by assigning them permissions
as a group on the permissions page

Before we move to permissions, let's approve this user. Next to our username, there's a
checkbox; if we check this and then under the Action select list at the top of the table, we
can see Unblock the selected user(s) in the list, clicking Apply to selected items will do
that, and it also means that we can apply this action to multiple user accounts, so there is no
need to go through each individual account.

Telling Your Own Story with Drupal

[59]

This means that we can now login. Keeping the administrator to approve the user is great;
however, it can require a lot of management and depending on the number of visitors you
have to your site, this can be very time consuming.

Permissions
We briefly covered what permissions were earlier; in our case, we want to set a permission
to our user role of Authenticated user.

If we click on Permissions, we will be taken to a page showing all our permissions and
which roles have these permissions.

Fig 1.36: The Permissions administration page

In Fig 1.36, we can see that our permissions page is split into four main columns; the
columns increase as we add more user roles. When we create a new permission inside our
module's routing.yml file (which we will cover later); this is displayed in the left column,
and will allow us to assign our new permission to our user role.

Telling Your Own Story with Drupal

[60]

Administrator role has access to all permissions by default.

We want to turn off our Skip comment approval permission for our Authenticated user.
Simply uncheck the checkbox that is listed in the row that our role name is listed in at the
top of the table. Once this is done, scroll down and click on Save permissions.

Great! We have just changed our first permission! Feel the awesome power of permissions
now!

Moving back to our authenticated user inside our incognito window, if we refresh the page,
we will see that we are logged in. Welcome to Drupal as an authenticated user!

We want to comment on the first post we published, so let's go back to node/1 and do this
there.

Add a comment and click on Save; upon doing this, we see a message at the top saying
Your comment has been queued for review by site administrators and will be published
after approval. This is exactly what we want to see; remember our permission we changed
earlier? Well, this has caused us to allow the comment to be approved before publishing.

We have our comment field and our permission set, and now we can go and check out the
comment administration page. Remember that comments are listed inside
/admin/content/comment.

As we can see, there is Unapproved comments (1), which is exactly what we're expecting to
see as we haven't approved this comment yet. To approve and publish this comment, we
just click on the Unapproved comments (1) tab, and we will see our new comment that has
been created. To allow and publish this comment, we can see a similar interface to the
content administration.

With any comment, we can approve, decline, edit, or delete it. Now, let's approve this
comment; if we check the checkbox next to the comment, and then under Update options,
we select the select list with Publish the selected comments and click on Update, our
comment will be published on our website.

Moving back to our incognito window, if we refresh the page, we will see our comment
showing up following our news article.

Telling Your Own Story with Drupal

[61]

If, however, we look at our sidebar, we can see Add comment showing up, so as a refresher,
what we want to do is to create a new view mode for our Post content type called Teaser
listing.

If you get stuck doing this, refer to the part where we go through creating our view mode
earlier on in the chapter.

Welcome back if you had to refresh your memory, if you didn't, great! Go have a well-
deserved cup of tea (I am from England, after all).

As we now have our new view mode created and assigned to our content type and our
Manage display, we can modify the fields we don't want to show. We don't want our
comments to show up now, we just want our links to be there for now as we will soon be
modifying how it looks within our theme! However, before we get excited about moving
into working with our theme, let's go ahead and create a listing and filter page to show our
posts.

Listing and filtering content
We have already touched on views and how powerful it is, but let's go even deeper as we're
just touching the surface of it with how powerful it is.

So, getting back to views /admin/structure/views, let's go into the view we were
working on earlier. Once we're back in our view, let's add a new display and this time,
select Page. You will see that the layout is slightly different than that of the block display.
As we are creating a page, we need to set a path; otherwise, there is no way for us to access
the page. Let's add our path of /news; once this is done, we want to add two filters--date
and category--this will allow us to filter our content by certain criteria.

Exposed filters
Inside views, we can have two approaches for filter; first are filters predefined, so by
default, we have Publishing status: Yes, which is set to show only published content.

We then have our exposed filters, which allows the filter we set to be shown to the user; it
will create a form and by default, it appears above the view content. If you want to, you can
move the exposed filters below your content, or you can move them to another region
entirely if you're feeling adventurous!

Telling Your Own Story with Drupal

[62]

Getting back to creating our exposed filter, we need to add our category type; so, clicking
on Add next to the Filters title will make a modal show up, which is like the modals we saw
earlier.

Start by searching for category inside our Search text field. Again, you will see the fields
filter down; in this case, we have one result. Select the field row by checking the checkbox.

Remember to change the For dropdown at the top, otherwise it will affect
all our view displays, which will modify every other view display.

Great! So, we have now added our category field, and it will only show for this view
display; we can now expose our category filter, so let's go ahead and do this:

Fig 1.37: Exposed filter modal

Telling Your Own Story with Drupal

[63]

In Fig 1.37, we can see our settings for this filter item; it's listing the taxonomy vocabularies
we have. We want to select Post category, then dropdown, and after that, select Show
hierarchy in dropdown, and click on Apply and continue; we will then be shown another
page with a lot more settings:

Fig 1.38: Filter settings

Telling Your Own Story with Drupal

[64]

So from Fig 1.38, we can see that there are more settings, Operator and Select terms from
vocabulary Post category are straightforward. We can restrict our page to only show certain
posts that have certain terms. However, we want to allow the user to do this themselves, so
let's go ahead and check Expose this filter to visitors, to allow them to change it.

As soon as we do this, we have more settings to configure. We want to change the filter
label to Categories and then we want to keep everything else the same. If, however, we
want to allow multiple selections for a category, then this will change the filter output to a
multiselect list.

Let's click on Apply (this display) and see what we have in our preview. Well, that's not
quite what we want; we can see our exposed filter and our results, but we're seeing
duplicate results. To fix this, we need to aggregate our results so that we only see our node
once and not duplicated.

Move over to the right column and under Use aggregation, click on No; once again, a
modal will appear. In this case, as we want to aggregate our results, check Aggregate and
click on Apply (this display). Now, let's check our preview. Great! We are only showing
our nodes once. Now that we have created our first listing page for our nodes, let's go look
at it; click on Save and then go to /news:

Telling Your Own Story with Drupal

[65]

Fig 1.39: The news listing page

As we can see in Fig 1.39, this is our newly created news listing page. By default, it shows
all news articles, in order of the most recent.

Restricting content by role
We now have our news showing up to any user, but what if we want to restrict news to just
authenticated users, to give them an incentive to sign up to the website and view members-
only content.

Telling Your Own Story with Drupal

[66]

How to do it
To restrict content to certain user roles, we need to install a contrib module called content
access (https:/​/ ​drupal. ​org/ ​project/ ​content_ ​acess).

Once downloaded, enable the module. Remember to clear your cache and then go to the
Content type page if you want to create a new content type.

This content type will be called Restricted post; once we save this, we will then see a new
tab called Access control; this is where we find the configuration for how the node is
displayed and for which role:

Fig 1.40: Content access for restricted post

In Fig 1.40, we can see that there are various grouped checkboxes that show what user role
can access the content. For this content type, we want to uncheck all Anonymous user roles;
this is because we only want the Authenticated user and any role above that to be able to
access this content.

From here, we can now go and create some restricted posts. We will then show the
restricted posts inside the news listing and latest news block; however, the Anonymous
users will not be able to see this, they will be shown an Access Denied page; this is what we
want to achieve.

Let's go and create some content that only our authenticated users can see. Referring to
earlier, we need to go to Manage | Content and once on that page, we need to click on +
Add content.

https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess
https://drupal.org/project/content_acess

Telling Your Own Story with Drupal

[67]

We can see our Post content type and our Restricted post content type. As we want to
create our first restricted post, let's click on the Restricted post.

Now we can enter our restricted post content; this page will look familiar to earlier, when
we created our Posts. Once this post is created, we will only be able to see this as an
authenticated user.

Adding restricted content to views
Moving back to the view we created earlier, we need to allow the restricted news items to
show in our listings. This is a really simple process, and Drupal does the heavy lifting for us
in terms of restricting the content to the user roles that are meant to see them.

Once we are inside the view, we need to add the content type to our displays. As we don't
have any fields that reference other nodes inside our restricted news content type, there will
be no restricted news content to show inside the Related post view display.

If we add our Restricted post content type to the view, restricted posts will appear in these
views. To do this, we move down to Filter criteria and click on Content type; this will
launch a modal that will already have our Post content type checked. To add our restricted
post content type to our view, we need to check Restricted post and click on Apply (All
displays).

As our restricted posts do not have an entity reference to any other posts, we won't see any
of our restricted posts in this view, which will also mean that because we have no content
that meets this criterion, we won't even have the block display. However, if we remember
that when we added our Related news block to our Post content type, we only selected it to
show on Post content type, so we don't have to worry about this showing.

If we move back to our site, as a logged in user, we will see that our Restricted post content
will show up. However, if we move over to our anonymous user, we can only see our
normal posts. This is because the settings we applied to our Restricted post content type are
working, and so are our view displays; they are working hand in hand with the Drupal
access system.

Editing content
In Drupal 8, we no longer need to download, install, and configure our WYSIWYG editor. It
comes in Drupal core!

Telling Your Own Story with Drupal

[68]

When adding or editing content, we have a field that has a filtered content selected, and we
will see the WYSIWYG editor. By default, we have three formats available to us:

Basic HTML.
Restricted HTML.
Full HTML.
We also have Plain text, which does not show an editor. With formats, we can set
certain rules that will limit what the user with that role can do. This varies from
image uploads to HTML markup.

To modify this configuration, go to Configuration; this page is where much of the
configuration for our core, contrib, and custom modules is located. To the left-hand side,
we have the Content authoring section with Text formats and editors. Once we are on the
Text formats and editors page, we will see a list of format types:

Fig 1.41: Text formats and editors configuration

Telling Your Own Story with Drupal

[69]

This page is split into four columns:

Name: Our user-friendly name for the type of format
Text editor: Allows us to select which editor is used; by default, the editor is
CKEditor
Roles: The filter can be assigned to specific roles to allow one role more control
than another
Operations: Allows us to control the format

Let's go through the configuration for a text filter, if we click on Configure in the Full
HTML format, we'll see what control we have for the format.

On this page, we can see that roles and text editor can be assigned; moving down, there is a
toolbar with buttons that can be moved into the active toolbar, which will be shown to that
user role when the text format is selected. The rest of the page allows us to set the filtering
for the editor itself, to keep it clean and not pose a potential security risk to our site.

Moving to the frontend
In Drupal 8, we have moved to a new frontend layer system called Twig, which is the
theming layer component used in Symfony 2.

Twig allows non-PHP developers to work on the frontend of the site, as it has its own
syntax--{{ variable }}.

This not only looks cleaner, but also makes it easier to convert a static HTML template into
a Drupal theme. There is a lot more control for us, as developers, to work with the frontend
layer and no longer will we rely on classes on the frontend to style pages. We have the
ability of using libraries to add a library to a global aspect of the site or individual pages
and content types.

Earlier on, in Getting started, we went through the basics of what is in a theme. We now
want to make use of the libraries, which allows us to define our CSS/JavaScript and use it in
our templates. One of the really great things about this is with websites using a lot of
nonstandard fonts and third-party services, such as Google fonts; we can allow this to be
added into our theme layer in a very simple approach. Let's add Khula to our theme.

Telling Your Own Story with Drupal

[70]

Adding CSS and JavaScript
As our theme is called blueprints, we need to create our libraries yml file. We need to
reference the library name inside our theme info file.

Inside blueprint.info.yml, we add the following:

blueprint.info.yml

 # Libraries
 libraries:
 - blueprint/global
 - blueprint/fonts

blueprint.libraries.yml

 # Libraries
 global:
 version: 1.x
 css:
 theme:
 css/style.css: {}
 js:
 js/javascript-file.js: {}
 fonts:
 css:
 theme:
 '//fonts.googleapis.com/css?family=Khula:regular,bold': {
type: external, minified: true }

What the preceding code snippet does is that it defines our library name and then allows us
to add CSS and JavaScript to our theme.

By creating our style.css file and declaring our new font name, we will see that when we
cache rebuild drupal cache:rebuild, it will now show our site with the Khula font being
used:

Telling Your Own Story with Drupal

[71]

Fig 1.42: After applying our new CSS library

As in Fig 1.42, we can see that our Khula font has applied to the site. After performing a
cache rebuild again, it shows on the page.

If we want to add inside a specific template, we just need to add this to our template files. In
the previous versions of Drupal, we would use drupal_add_js() or drupal_add_css().
This has now been replaced with {{ attach_library('themename/library-name);
}}.

Drupal 8 now uses asset libraries for CSS and JS. Before this change, in
order to add asset libraries in a theme, the library would have to be added
site-wide or a theme would need to implement a preprocess function
(which requires writing PHP)--https:/ ​/​www. ​drupal. ​org/​node/ ​2456753.

Further on in the book, we will go into more detail about theming. This will go into detail
about using our libraries, variables, conditions, and how to debug the templates.

https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753
https://www.drupal.org/node/2456753

Telling Your Own Story with Drupal

[72]

Summary
In this chapter we have started to uncover the power of Drupal core.

We have done the following:

Created and understood what a content type is
Understood how fields and display modes work
Created different types of fields
Set permissions for fields
Looked at the block plugin and how we can control them
Explored how views works and why we use it
Added a library to our theme

In the next chapter we will look at how to make a fundraising website, in this chapter we
will start to look at a the user system and some custom module development.

3
Get Fundraising with Drupal

Fundraising websites such as JustGiving, Virgin Money, and GoFundMe are
an effective way to do something great and support charities to make a difference to
someone's life.

In this chapter, we will create a fundraising website where a fundraising page can be
created by someone explaining what they are doing, who they are fundraising for, and
when. This will then allow someone else to "donate" an amount to support it.

Now we know a lot of site building techniques and have an understanding of how to create
content types, fields, views, users, and blocks we will cover less of how to build things that
we have previously covered, but will explain more about the new things we will cover.

We will cover the following in this chapter:

Creating a content type called donation
Creating a content type called fundraising page
Allowing users to sign up and donate
Creating a dashboard for the fundraiser
Introducing our first custom module
Creating a donation form using Form API

What will we learn?
We will learn how to allow certain roles to create content from what we have learned
previously, and then move on to cover how to allow these users to edit their own content,
showing a dashboard of all their fundraising content. We will also cover allowing
authenticated users to submit a donation; we won't integrate a payment gateway for this as
there are so many we can pick from.

Get Fundraising with Drupal

[74]

The donation will then appear on the fundraising page and an email notification will be
sent out to the pledger. After this, we will explore how to make our module work with twig
templates.

Getting started
We need to duplicate the site that we previously made and change the settings and
configuration in our local environment.

Once this is done, we can do drush si standard -y; this will give us a clean installation
of Drupal. Once we have done this, we need to enable our custom theme, as earlier.

Creating our fundraising pages
Our fundraising page will be split into two parts: the first part will be the actual fundraising
information, and the second part will be the donations submitted on the fundraising page.

The way we will do this is that the logged in user will be able to create a fundraising page;
this will use a reference to a new content type called donation. We can also create a new
entity type for this entirely, but we will keep it simple by creating a content type.

So, to move on with this, let's create our donation content type. We want to keep this
simple, so we need two fields for this, as the author is saved upon being created.

Donation content type
When a user who is logged in visits a fundraising page, they have the option to donate. For
this, we just need two fields: one called Donation amount, which is a Number > float
field type, and the other just a name, in case they want to change their name on the
donation.

Get Fundraising with Drupal

[75]

Fundraising content type
We will add a way the donation is linked to the fundraising page. This will be done via
entity reference and will store the amount donated, name, and the user who created it. This
is how we know the amount that has been donated, and we can then take all the referenced
donations and add them up and calculate how much is remaining.

To do this, we need to create our fundraising content type; we want it to allow display of
the fundraising page, on which we will show a description of the pledge. Along with this,
we want to set an amount we want to achieve, and the date we want to achieve it by. We
can add to this later if we want.

Now, add the following fields:

Fundraising description: This will be Text (formatted, a long with summary).
Fundraising amount: This will be a Number>float field type.
Date to achieve by: This will be a date field.
Fundraising state: This will be a List (integer) that will allow for an open or
closed state. In the field settings for this, add Open into the text area, and beneath
that, add Closed. When we go to the next step, Drupal will create a number to
assign to the value, which will be the key that we will use.
Donations: This will be an entity reference to our donation content type. Upon
creating the fundraising page, there will be donations.

Now we want to allow anonymous users to create an account and log in and start a pledge.
Next, we will look at user account settings.

Registering users
With Drupal, we have our core ability for users to register and create accounts. We can also
control what the user must fill out to register.

For this, we will explore how user registration works and what we can control from Drupal
UI.

Get Fundraising with Drupal

[76]

Account settings
We control the account configuration inside Configuration | Account settings:

Fig 1.0: Account settings

This section is split up into four tabs, which looks very similar to our content types layout:

Settings: This allows us to set specific settings, authentication, and define
notifications sent out upon certain actions
Manage fields: This allows us to add fields, and also reuse fields from elsewhere
in Drupal

Get Fundraising with Drupal

[77]

Manage form display: This allows us to amend how the form is shown to the
users registering
Manage display: This allows us to amend how the profile page is shown to the
user

Starting on the Settings page, we can see that the page is split into multiple sections, as per
Fig 1.0:

CONTACT SETTINGS: If we want to allow users to be able to contact each other
ANONYMOUS USERS: By default, Anonymous is what is used to describe our
anonymous users; this can be changed to anything you like
ADMINISTRATOR ROLE: This allows an admin role to be set; by default, it's
set to Administrator, but it can be assigned to another user role and therefore will
give that role the same permissions as administrators
REGISTRATION AND CANCELLATION: There are various settings here that
control how the registration works
Notification email address: When a system mail is sent out in relation to a user

Creating our users
Firstly, we need to create our new user roles, so as before, if we go to People from the
admin menu, we will be shown our people admin interface. From here, we can select roles.

For this website, we just need the default roles:

Authenticated: This will be our default user role, which can create fundraising
content and donate

We want to allow our Authenticated role the ability to create fundraising pages that only
they and an administrator can edit. We don't want a user to be able to delete a fundraiser
page; if they want to do this, they must email the administrator. We also want them to be
able to donate, but we don't want them to be able to edit or delete donations.

We want to give our Authenticated users the ability to create and edit fundraising
pages and create Donation pages.

Get Fundraising with Drupal

[78]

Authenticated users
Fundraising page: Create new content
Fundraising page: Edit own content
Donation: Create new content

Building the fundraising page
As we have now created our user roles, we can begin to create our first fundraising page.
Let's create our user, and from there, we will create our first fundraising page:

Fig 1.1: Registration page without the password fields

Get Fundraising with Drupal

[79]

Open an incognito window in Chrome, and then get to the registration page; what you will
notice is that there is nowhere to enter a password. For this registration form, we want to
allow our users to add a password and then immediately be logged in. To do this, we need
to go back to our Account settings page and scroll down to Registration and cancellation.

First, we need to change who can register for an account. We need to change this from
Visitors, but administrator approval is required for Visitors.

Directly beneath this, we can see Require email verification when a visitor
creates an account; this is currently checked, so we now need to uncheck it. This will
now show two password fields on our registration field, along with the default Drupal
password strength indicator. Once you have done this, return to the incognito window and
you will see that we have two password fields and a password strength indicator.

Fig 1.2: Create new account with password.

Get Fundraising with Drupal

[80]

Once we fill out this form, we will be redirected to the home page of the site, and we will
see a notification saying Registration successful. You are now logged in.

In fact, all we can see is basic navigation, and within that, we will now see My account and
Logout. There is also a navigation menu in the left sidebar. This is how our users can add
content; we can make this look nicer if we want later.

If we now click on Add content, we will be taken to our Add content page; on this page, we
will see our two types of content that can be created.

Now go and click on the fundraising page. What we will see is the form from the fields we
created earlier. Let's fill this out so that we can see our fundraising page in action; we want
to fill out everything apart from donations, and we can hide this later using Manage form
display.

We have now successfully created our first fundraising page, well done!

Creating a dashboard
As we have created our basic donation page, we want to create a page that will show all the
current pages set up for fundraisers.

Going back to views, we will create a view that uses a page display and shows our
fundraising pages only created by the current logged in user.

So, we will create a new view called Fundraiser dashboard and select the type of
content. Following this, we want to check Create a page:

Get Fundraising with Drupal

[81]

Fig 1.3: View display settings

Now, as in Fig 1.3, we will change our path to /user/dashboard and then change Page
display settings and Display format to Table. Now, click on Save and edit.

We want to add the following fields to our view:

Created date
View node
Edit node

Get Fundraising with Drupal

[82]

As previously, let's click on Add in the Fields section; this will bring up our modal window.
From here, let's select:

Authored on
Link to content
Link to edit content

Understanding view field settings
Each field in a view has multiple field settings that we can utilize. Let's take a look at the
Authored on field settings:

Fig 1.4: Field settings in a view

Get Fundraising with Drupal

[83]

As we can see in Fig 1.4, there are multiple parts to our field settings:

Create a label: This allows us to have a label next to the field content; we can
leave it to show the default label text, or we can change it.
Place a colon after a label: With our label we just set, we can add a simple colon
next to our label; this is to allow us to show our fields and distinguish them
between our label and field content.
Formatter: With the fields, we can have multiple formatter types based on the
type of field they are; in this example, we have a default option that will just
display our date, or we can choose a time option that will just show how long ago
the post was created. If we change the option of our formatter, we get a reloaded
form that gives us different options.
STYLE SETTINGS: We can control how our field label, content, and outer
wrappers are created and what type of HTML is used for the label or field; this
allows us to use HTML elements, and we can even add custom classes to these
elements to give us more control over how we style our items. By default,
however, the field will have default classes added to the views-field views-
field-{fieldname} field.
REWRITE RESULTS: We again have more settings to modify how our output for
the field is displayed.
Override the output of this field with custom text: This allows us to change how
the field output is displayed and ignores all previous style settings. It's handy if
you want to add some custom elements to your content that you couldn't do in
the preceding settings. However, as we have Ttwig, we can also use Twig
templates to create these output adjustments.
Output this field with a custom link: We can change the link URL using
replacement patterns; this allows us to amend the attributes inside our link.
Again, this gives us more control and lets us use tokens to do this.
Trim this field to a maximum number of characters: This is handy when we
have an article that we want to show a limited number of characters, and is used
more for blurbs of content.
Trim only on a word boundary: This allows us to trim our content at the end of a
word, which will affect the number of characters, as it will stop at the end of the
next word in the value.
Add "..." at the end of trimmed text: This allows us to show our user that there is
more to this content, and usually, this is followed by a Read more link, which
will take our user to the full content. The next four options allow us to tidy up
our value and remove any unwanted HTML or white spaces. However, we do
have the option to keep HTML within this value.

Get Fundraising with Drupal

[84]

NO RESULTS BEHAVIOUR: If we have no value for this field, we can display
some replacement text or hide the output.
ADMINISTRATIVE TITLE: This helps us see what the field is instead of
displaying the default field title and field name.

Now that we have seen the great configuration settings for our fields, let's go and just save
the default settings for this field as we can come back later and change these if we want to.

Showing user's their content
We only want our logged in user's to see the content they have created; in this case, we just
want them to see their fundraising pages created.

To do this, we need to go to the right and click on Advanced and then Contextual filters,
and click on the Add button; as earlier, this will then bring up a modal with a lot of options
to choose from. In this case, we want to select Configure contextual filter: Content:
Authored by and then Provide default value, and change Type to User ID from logged in
user and then click on Apply. This will then change our Preview. To view the content
that we have for this user in the contextual filter text field, we need to put 2, as this is the
UID of the user that created this fundraising page.

We won't, however, need to do this later, as it takes the argument based on our logged in
user's user ID.

Now that we have created our dashboard view, we will move on to creating our form that
will appear on the page.

Allowing users to donate
In this section, we will explore how to create a form that will allow users to be able to
donate. We will call this module Donate.

What we will do
We will be starting to write our very first custom module!

Get Fundraising with Drupal

[85]

How modules work
In Drupal, we have our core set of modules; we also have contrib modules that are available
at https:/​/​drupal. ​org. Modules allow us to extend Drupal, and sometimes we need to
make our own custom modules.

Structure of a module
Inside a module, we have a few files that are needed, but to tell Drupal about our new
module, we just need one file--MYMODULE.info.yml. This is what tells Drupal our module
details; we only need this for us to enable our custom module.

Creating our module
Now, let's create our module. We will place this inside /modules and then create a
directory called custom; inside this directory, we will create a directory for our module to
go into. This should be named the same as what we will name our module files.

donate.info.yml
We need to create an .info.yml file to tell Drupal about our module. This is required for
all modules.

name: Donation form
description: Allows logged in users to donate
core: 8.x
type: module
package: Donate

Name: This is the name of our module and how it will appear inside our module
listing page.
Description: This is used as a quick view of what the module does; it should be
short but precise.
Core: This tells Drupal that this module is for any release of Drupal 8.
Type: This is how Drupal knows what it is; we can have a module or theme.
Package: This is how we group our modules.

https://drupal.org
https://drupal.org
https://drupal.org
https://drupal.org
https://drupal.org
https://drupal.org
https://drupal.org

Get Fundraising with Drupal

[86]

As with any amendment in Drupal, we need to do a cache rebuild, so run drupal
cache:rebuild.

Once this is done, we will need to go into our modules list inside Drupal, so go to Extend
and look for the section name called DONATE:

Fig 1.5: Our new Donate module

Now that we have done this, we can start adding to our module. For our form, we need to
create a form. We have a structured approach that we follow, which uses PSR-4
namespaces. This allows us to autoload our files in Symfony.

Throughout Drupal, we use a namespace common in PHP development; what it allows us
to do is tell the framework where our class is located, and using autoloader, it will now look
for our module and load the class we extend or implement.

In Drupal, we define the root as \Drupal; as you will notice, \Drupal is the root of the
site, and after that it continues as the directory structure we have set out. However, you will
notice that src is not shown in this; that's because the src directory contains the global
namespace, the top level of all namespaces.

For our example, we will have a Form and a Block; these are both plugins in Drupal 8. Let's
look at our namespace for Form.

\Drupal\donate\Form

As you can see, we have Drupal which is our root, donate which is our module name, and
Form; instead of Form, we can have Plugin\Block, Controller, and Services.

Now that we understand how to structure our module, let's go ahead and create our Form.

What we need
For this bit of functionality, we will want to have a form that is inside a block. This is the
basic functionality for this; upon submission, we want a donation to be created, which will
then attach to our donations reference field that we created in our fundraising content type.

Get Fundraising with Drupal

[87]

How we do it
First, we want to create our form; to do this, we need to create a Form directory inside our
src directory. Once we have done this, we need to create a new PHP Class.

In PHPStorm, this can be done by right-clicking in the Form directory and selecting New |
PHP Class.

We will then see a popup that has several fields to fill out:

Fig 1.6: Create a Form class

What we have is the following:

Name: This is the name of our PHP Class; it is also the name of our file without
.php, as this is added automatically
Namespace: This is how we know how to access the class from elsewhere in our
site
File name: This is the name of our PHP Class; it is also the name of our file
without .php, as this is added automatically

If you are not using PHPStorm, you still need to follow the same principles in creating a
new PHP file and naming it as DonateForm.php.

Get Fundraising with Drupal

[88]

Now that we have our new class file created, we can see that it's a bit empty. First off, as we
are creating a form, we need to extend our FormBase class; so to do this, we put the
following:

<?php

namespace Drupal\donate\Form;

use Drupal\Core\Form\FormBase;

class DonateForm extends FormBase {
}

We have added the directory where the class we want to extend is located, as we have our

use Drupal\Core\Form\FormBase;.

This is telling our DonateForm class where the class of FormBase is. Currently, our class
does nothing, so the next step is to create our form; for this, we will need the getFormId(),
buildForm(), and submitForm() methods. Also, there are other methods we can use,
such as validateForm(), and the structure of this class can be found inside
/core/lib/Drupal/Core/Form/FormBase.php.

First off, we need to give our form a form ID; this is how we can identify the form when we
reference it later in our block:

/**
 * {@inheritdoc}
 */
 public function getFormId()
{
 return 'user_donate_form';
 }

Now, create a new method called buildForm(); inside this, we will start building our form
using the Drupal Form API.

This uses the Drupal\Core\Form\FormStateInterface, which is what we require for
creating our form.

Get Fundraising with Drupal

[89]

When we want to create or alter a form, we need to use the Form API to do so; this means
we need to use an array. So, create a buildForm() method that will extend from the
Drupal\Core\Form\FormBase class; we can extend or implement it due to the class being
an abstract class:

/**
 * {@inheritdoc}
 */
public function buildForm(array $form, FormStateInterface $form_state) {
 $form['name'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Your name'),
 '#required' => TRUE,
 '#description' => t('By default your username will show, you can
 however amend this.'),
];
 $form['mail'] = [
 '#type' => 'email',
 '#title' => $this->t('Your email'),
 '#disabled' => TRUE,
];
 $form['amount'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Amount to pledge'),
 '#length' => 5,
 '#prefix' => '£',
 '#required' => TRUE,
];
 $form['submit'] = [
 '#type' => 'submit',
 '#value' => $this->t('Donate'),
];
 return $form;
 }

What this will do is generate the form using our FormBase class, which we are extending.

If you want to learn more about the Form API, visit
https://api.drupal.org/api/drupal/elements/8.2.x.

Now that we have done this, we have our form created and can access it anywhere in
Drupal.

The next part of a form is the submit handler; we do this by adding a submitForm()
method.

https://api.drupal.org/api/drupal/elements/8.2.x

Get Fundraising with Drupal

[90]

This takes arguments that we can use inside this method. If we want to display a value from
the submitted form, then we will use $form_state.

What we will do now is just display a message saying Donation added; we will change this
later when we make the form more complicated.

Creating a block
In Drupal 7, we will use hooks to create our blocks; as we have moved towards the OOP
approach, this has thankfully been replaced. So, what we will do is create a block; in Drupal
8, these are known as plugins, as we can reuse them throughout Drupal.

Let's get our block built; all we want to do is allow our DonateForm to appear inside a
block.

Create a new directory inside src called Plugin; this is where we can keep all our plugins
for this module. We can further define it by making another directory inside Plugin called
Block.

Inside this, we want to create our block class for our donation form block.

We will call our new class DonateBlock. Now that we have our new class, let's extend our
BlockBase class:

<?php

 namespace Drupal\donate\Plugin\Block;

 use Drupal\Core\Block\BlockBase;

 class DonateBlock extends BlockBase {

 }

Again, what we have done here is we extended our core class for the block plugin, and we
are telling Drupal where our class for this is located.

Get Fundraising with Drupal

[91]

Annotations
In Drupal 8 and Symfony, we use annotations as metadata; these appear to look as though
they are comments, but we have some keywords that allow us to tell Drupal what the
plugin is and what it does:

/**
 * Class DonateForm
 * @package Drupal\donate\Form
 *
 * @Block(
 * id = "donate_block",
 * admin_label = @Translation("Donation block"),
 * category = @Translation("Custom")
 *)
 */

id: This is our plugins, unique identifier.
admin_label: This shows the title of the plugin.
category: This shows which category our plugin is in.

The annotations are straightforward, but they are required for Drupal to know about the
plugin.

We now need a method of build() that will then make our block. Inside this method, we
want to locate the form_id and render it inside our block:

/**
 * {@inheritdoc}
 */
 public function build() {
 $form = \Drupal::formBuilder()->getForm('\Drupal\donate\Form');

 return $form;
 }

What we are doing here is creating a new instance of formBuilder() to get our method
and pass the argument of where our DonateForm class is located. This will subsequently
display our block. It's now time to see this in practice; remember that we just created a form
inside a block, so after a quick cache rebuild, go to Structure | Block layout. We want our
Donate block to appear under our Main page content.

Get Fundraising with Drupal

[92]

We will only want this block to show on our fundraising page content type. Once all this
has been done, click on Save block. Now, it's time to view our block with our donation
form on our first fundraising page:

Fig 1.7: Donation form inside our block

Get Fundraising with Drupal

[93]

Great stuff! You've just written your first custom module using a custom form inside its
very own block.

Here's the full code we have just written:

 <?php
 namespace Drupal\donate\Plugin\Block;
 use Drupal\Core\Block\BlockBase;
 /**
 * Class DonateForm
 * @package Drupal\donate\Form
 *
 * @Block(
 * id = "donate_block",
 * admin_label = @Translation("Donation block"),
 * category = @Translation("Custom")
 *)
 */
 class DonateBlock extends BlockBase {
 /**
 * {@inheritdoc}
 */
 public function build()
 {
 $form = \Drupal::formBuilder()-
 >getForm('\Drupal\donate\Form\DonateForm');
 return $form;
 }
 }

Now, we will add some extra complexity to this. If you are not logged in, we want a
message to show instead of the form.

To do this, we will want to identify whether our current user is logged in and therefore an
authenticated user.

To do this, we need to access our core Drupal class; if you want to take a look, head over to
/core/lib/Drupal.php.

Inside this class, we have a method called currentUser(); this in turn uses Symfony's
ContainerInterface.

Get Fundraising with Drupal

[94]

Great! Now that we have a basic understanding of where this magic happens, we will now
check whether the user is an authenticated user.

To do this, we use the following:

\Drupal::currentUser()->isAuthenticated()

This simply returns a TRUE or FALSE statement. We can access the currentUser() object at
any time just using \Drupal::currentUser().

By default, we want to show the logged in user details; to do this, we use #default_value
in the Form API:

/**
 * {@inheritdoc}
 */
 public function buildForm(array $form, FormStateInterface $form_state)
 {
 $user = \Drupal::currentUser();
 if ($user->isAuthenticated())
 {
 $form['name'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Your name'),
 '#required' => TRUE,
 '#description' => t('By default your username will show,
 you can however amend this.'),
 '#default_value' => $user->getDisplayName(),
];
 $form['mail'] = [
 '#type' => 'email',
 '#title' => $this->t('Your email'),
 '#default_value' => $user->getEmail(),
 '#disabled' => TRUE,
];
 $form['amount'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Amount to pledge'),
 '#length' => 5,
 '#prefix' => '£',
 '#required' => TRUE,
];
 $form['submit'] = [
 '#type' => 'submit',
 '#value' => $this->t('Donate'),
];
 }
 else

Get Fundraising with Drupal

[95]

 {
 drupal_set_message(t('You must be logged in to donate.'),
 'error');
 }
return $form;
}

As can be seen here, we have added some default values, which just means that a value is
shown in the field by default.

We have also made it easier to access the user object by setting it as a variable of $user.

When we set up our donation content type, we only used one new field, which was the
donation amount. We have a user ID field that is default to content types; this way, we can
tell what the user's email and name is.

Creating a node programmatically
Inside our submitForm() method we want to take the values from $form_state, this
tracks the current state of the form, where its build, processed, validated and
submitted.

$form state object
As $form_state is now an object; we no longer need to use arrays to get the values we
need.

To get an individual value from the form we will use
$form_state->getValue('field_name'); this looks a lot nicer than what we
previously had to do in Drupal 7.

So, let's create our submitForm() method and take the values we need from our form
submission.

/**
 * {@inheritdoc}
 */
 public function submitForm(array &$form, FormStateInterface
 $form_state)
{
 // Get submitted form values.
 $name = $form_state->getValue('name');
 $amount = $form_state->getValue('amount');

Get Fundraising with Drupal

[96]

 // Display a thank you message.
 drupal_set_message(t('Thank you for the donation of %amount. ',
 array('%amount' => $amount)));
}

In the preceding code, we are simply going to start off by showing a thank you message
with the amount value from the form submission. Using the getValue() to take our
individual field value, we then make it into a variable. We then pass the value into our
drupal_set_message() inside t(), which we use to allow text to be translated if we want
to. Note, however, that we don't actually put a variable inside the t(), instead we use a
placeholder which is either a %, ! or @.

Fig 1.8: Donation success message

Get Fundraising with Drupal

[97]

As we can see in Fig 1.8, our form has been submitted, and it is now showing that we have
donated 123. However, this hasn't actually really done anything, and when we reload the
page, nothing will have been saved.

Now we want to create our donation content; to do this, we need to use Node::create():

// Create a donation node.
 $donation = Node::create(['type' => 'donation']);
 $donation->set('title', 'Donation' . time());
 $donation->set('field_donation_amount', $amount);
 $donation->set('field_name', $name);
 $donation->set('uid', \Drupal::currentUser()->id());
 $donation->enforceIsNew();
 $donation->save();

So, to make our life easier, we will name this $donation.

Here's what is happening here:

Tell Drupal the content type we want to create.1.
Set the title of our new node.2.
Set which fields we want to add values to.3.
Use our currentUser() object and get the current logged in user's user ID, so4.
they are the author of our node.
Ensure that the node is new before saving.5.
Save our node.6.

This is a nice, straightforward and clean looking approach to creating a new node
programmatically.

As we have now created our first donation, we now want to assign it to our fundraising
page. To do this, we need to use Drupal's routing system
\Drupal::routeMatch()->getParameter('node');.

This converts the parameter of the node and gets the node ID for our fundraising page.
Now that we have our node ID, we will load our node object and update the donation nid
into our donations field:

// Attach donation to fundraising node.
 $fundraising_page = \Drupal::routeMatch()->getParameter('node');
 $fundraising_nid = $fundraising_page->id();
 $fundraising_node = Node::load($fundraising_nid);
 $fundraising_node->field_donations[] = ['target_id' => $donation_nid];
 $fundraising_node->save();

Get Fundraising with Drupal

[98]

Here's what is happening:

Get the current node ID based on the path.1.
Load our node object from our node ID.2.
Update our donation into our entity reference field.3.
Save our donation to our fundraising page.4.

As our field is a multivalue, we need to add [] after our field name, as its acting as an
array, and we then set the value of the target_id:

Fig 1.9: Donations attached to our fundraising page

Get Fundraising with Drupal

[99]

Now, if we go back and submit the form again, we will see that our donation is added.

So, once the donation is submitted, we want to send a thank you message to our donator; to
do this, we will send an email.

Sending emails
To send an email, we need to access the MailManager, which is a plugin in Drupal.

In order to do this, we need to go back to our DonateForm and access our service; in this
case, we want to access our mail service:

$mail_manager = \Drupal::service('plugin.manager.mail');

What this does is that it allows us to load Drupal's MailManager service, that will allow us
to send our email to our donator.

After we've called the service, we need to pass some values into the service:

$to = \Drupal::currentUser()->getEmail();
 $params['message'] = t('Thanks @name for donating towards our
%fundraising_title.',
 array('@name' => $name, '%fundraising_title' =>
$fundraising_node->getTitle()));

 $mail_manager->mail('donate', 'donation_submitted', $to, $langcode,
$params, NULL, TRUE);

What we are doing here is getting our user's email address, defining a message with two
values, and then submitting the email; however, this won't send anything as we are missing
hook_mail(), which we need to pass all the values in order for it to send.

In order to send an email, we need to create a new module file; so, in the root of this
module, create donate.module.

donate.module
<?php
 /**
 * @file
 * Donate module.
 */

 /**

Get Fundraising with Drupal

[100]

 * Implements hook_mail().
 */
 function donate_mail($key, &$message, $params) {
 $message['from'] = Drupal::config('system.site')->get('mail');
 $message['subject'] = t('Thanks for donating!');
 $message['body'][] = $params['message'];
 }

Simply, we are invoking this hook to pass our parameters from our
MailManagerInterface(), which is from our MailManager service. Now that we have
done this, we will get an email and a thank you message when we submit our form.

Congratulations, you have just created a node, and attached the newly created node to an
existing node.

So, we have just allowed donations to be submitted and assigned to our fundraising page;
let's just hide the donations from this page.

Next, we will write some more code in a module that will show our current amount
donated compared to our amount required.

Donation progress bar
For the next part, we will create a progress bar using the HTML5 <progress> attribute. To
do this, we need to create a module that will calculate all the amounts we have and show it
inside a twig template inside a block.

Start off by creating a new module called donation_progress.

donation_progressinfo.yml
 name: Donation progress
 description: Displays a progress bar of current donations
 core: 8.x
 type: module
 package: Donate

Then, create a Block plugin again, so src/Plugin/Block; we will create a new class for
our block called DonateRangeBlock.

Get Fundraising with Drupal

[101]

DonateRangeBlock.php
As we did previously, we will extend our BlockBase class, add our annotations, and add
our build() method:

<?php

namespace Drupal\donate_range\Plugin\Block;

use Drupal\Core\Block\BlockBase;

/**
 * Class DonateRangeBlock
 * @package Drupal\donate_range\Form
 *
 * @Block(
 * id = "donate_range_block",
 * admin_label = @Translation("Donation range block"),
 * category = @Translation("Custom")
 *)
 */
class DonateRangeBlock extends BlockBase {

 /**
 * {@inheritdoc}
 */
 public function build() {

 }

}

So now, we're at a starting place to add our functionality into this block.

First, we want to get the current node ID. So, inside our build() method, we need to add
the following:

$nid = \Drupal::routeMatch()->getParameter('node')->id();
 $node = Node::load($nid);

Now that we have our node object, we want to get two fields of data. First off, we want to
get the amount the fundraiser wants to reach, and then we want to get all the donation
amounts.

Get Fundraising with Drupal

[102]

To get the value of a field, we use get('field_name')->value;:

$target_amount = $node->get('field_fundraising_amount')->value;

This will simply return our rendered value.

As we now want all the donation amounts, we must remember that this uses entity
reference, so the only value available to us is the donation node ID, which we can use to get
the field value for that node.

So, to do this, we use the following:

$nids = $node->field_donations->getValue();

This returns our donations node IDs into an array, and as we want to add up each donation,
we need to create a loop:

$donations = array();
 // Take all our referenced nids.
 foreach ($nids as $donation) {
 $donation_id = Node::load($donation['target_id']);
 $donations[] = $donation_id->get('field_donation_amount')->value;
 }

What we are doing here is starting an empty array of $donations and then looping each
within the array of nids from our donations.

From inside the loop, again we want to load our node based on the nid and then get our
specific donation amount. As we are putting this all into an array, we can add the values up
very easily.

We will return a simple result with some text and render this onto the page:

return [
 '#markup' => $this->t('We have received £%donations of £%target',
 array(
 '%donations' => $donations_received,
 '%target' => $target_amount,
)
),
];

Get Fundraising with Drupal

[103]

What we are doing here is taking our values and outputting them into our block. If we
cache rebuild, then we will see the block displaying our new content:

Fig 1.10 : Our donation block showing what's been raised

In Fig 1.10, the fundraising content type has been tidied up a bit, and our Donation range
amount is now showing.

However, it doesn't look that attractive, so what we will do next is make this editable for
our themer.

DonateRangeBlock.php
<?php

 namespace Drupal\donate_range\Plugin\Block;
 use Drupal\node\Entity\Node;

Get Fundraising with Drupal

[104]

 use Drupal\Core\Block\BlockBase;

 /**
 * Class DonateRangeBlock
 * @package Drupal\donate_range\Form
 *
 * @Block(
 * id = "donate_range_block",
 * admin_label = @Translation("Donation range block"),
 * category = @Translation("Custom")
 *)
 */
 class DonateRangeBlock extends BlockBase {

 /**
 * {@inheritdoc}
 */
 public function build() {

 $nid = \Drupal::routeMatch()->getParameter('node')->id();
 $node = Node::load($nid);
 $target_amount = $node->get('field_fundraising_amount')->value;
 $nids = $node->field_donations->getValue();
 $donations = array();
 // Take all our referenced nids.
 foreach ($nids as $donation) {
 $donation_id = Node::load($donation['target_id']);
 $donations[] = $donation_id->get('field_donation_amount')->value;
 }
 // Add up all donations.
 $donations_received = array_sum($donations);

 return [
 '#markup' => $this->t('We have received £%donations of £%target',
 array(
 '%donations' => $donations_received,
 '%target' => $target_amount,
)
),
];
 }

 }

Get Fundraising with Drupal

[105]

Theming our plugin
Our next step is to make our block content themable. To do this, we need to create a hook,
which you may recognize from Drupal 7. So, let's create a donate_range.module file in
the root of our module.

Next, we will use hook_theme() to declare our theme for our twig template:

<?php
 /**
 * @file
 * Donation progress.
 */

 /**
 * Implements hook_theme().
 */
 function donate_range_theme($existing, $type, $theme, $path) {
 return [
 'donate_range' => [
 'variables' => [
 'amount' => NULL,
 'donations' => NULL
],
],
];
 }

Now that this has been done, we can go back to our DonateRangeBlock.php file and
apply this.

DonateRangeBlock.php
We returned our markup with our message earlier, but we will now replace this with our
template name and its variables that we declared in our module file:

return [
 '#theme' => 'donate_range',
 '#amount'=> $target_amount,
 '#donations' => $donations_received,
];

Get Fundraising with Drupal

[106]

So, what this does is that it tells Drupal that we want to use our donate_range template,
and we want to declare the values of the variables we created in our module.

Now, if you cache rebuild, you won't see anything where the donation amount text was
displayed; this is because there is no template for Drupal to use.

What we will now do is create a themeable template and use the values we are returning
inside of it.

Our Twig variables are exactly as they are declared in the preceding return, apart from the
#.

donate-range.html.twig
You may have noticed that we don't use an underscore in our Twig templates, so the
underscore in donate_range will change to donate-progress, and we will add
.html.twig to the end of it.

Add our original message, but let's wrap it inside a paragraph tag, <p>:

{#
 /**
 * @file
 * Donation range widget template.
 */
 #}

 <p>We have received £{{ donations }} of £{{ amount }}</p>

Fig 1.11

As can be seen in Fig 1.11, we can now see our template output on our fundraising page.

Now, we will use the HTML5 <progress> attribute to show a simple progress bar. We will
also use {% trans %} in twig to allow our paragraph to be translatable through Drupal:

{#
 /**

Get Fundraising with Drupal

[107]

 * @file
 * Donation range widget template.
 */
 #}

 <p>
 {% trans %}
 We have received £{{ donations }} of £{{ amount }}
 {% endtrans %}
 </p>

 <progress max="{{ amount }}" value="{{ donations }}"></progress>

The preceding code allows us to use a paragraph of text and our twig variables inside it; it's
also allowing us to make the entire paragraph translatable, which we will cover later.

If we save this, cache rebuild, and reload this page, we will see the progress bar we have
just created:

Fig 1.12: Progress bar showing amounts

Get Fundraising with Drupal

[108]

We now have a basic fundraising page that shows how much has been donated and what
the target is; this is being displayed as a progress bar.

To finish this chapter off, we will amend some of the code we have just written; we have
covered it all before in this chapter, so it shouldn't be too difficult to do.

Finishing off
So, we have our donation and fundraising content type, fundraiser dashboard, custom form
to submit a donation, send email after donation has been submitted, and our donation
range block.

However, what happens if the fundraising goal has been reached now? We can decide to
keep the ability to submit a donation there, or for this example, we will hide the form and
show a message saying that the donation has been reached.

DonateRangeBlock.php
If the value has been reached, we want to add a variable to our theme that we can use as a
condition to determine whether we show the progress of the fundraising or if we just show
a message.

We will then update the status of the fundraising page to Closed, which we will then use to
determine whether the donation form is to be shown:

if ($donations_received >= $target_amount) {
 $node->field_fundraising_state = 1;
 $node->save();
 $fundraising_status = TRUE;
 }

Let's add this just after $donations_received = array_sum($donations);.

Inside our return statement, we want to add another variable:

'#status' => isset($fundraising_status) ? 1 : '',

So, our DonateRangeBlock class should now look like this:

<?php

 namespace Drupal\donate_range\Plugin\Block;
 use Drupal\node\Entity\Node;

Get Fundraising with Drupal

[109]

 use Drupal\Core\Block\BlockBase;

 /**
 * Class DonateRangeBlock
 * @package Drupal\donate_range\Form
 *
 * @Block(
 * id = "donate_range_block",
 * admin_label = @Translation("Donation range block"),
 * category = @Translation("Custom")
 *)
 */
 class DonateRangeBlock extends BlockBase {

 /**
 * {@inheritdoc}
 */
 public function build() {

 $nid = \Drupal::routeMatch()->getParameter('node')->id();
 $node = Node::load($nid);
 $target_amount = $node->get('field_fundraising_amount')->value;
 $nids = $node->field_donations->getValue();
 $donations = array();
 // Take all our referenced nids.
 foreach ($nids as $donation) {
 $donation_id = Node::load($donation['target_id']);
 $donations[] = $donation_id->get('field_donation_amount')->value;
 }
 // Add up all donations.
 $donations_received = array_sum($donations);

 // Check if target has been reached.
 if ($donations_received >= $target_amount) {
 $node->field_fundraising_state = 1;
 $node->save();
 $fundraising_status = TRUE;
 }

 return [
 '#theme' => 'donate_range',
 '#amount'=> $target_amount,
 '#donations' => $donations_received,
 '#status' => isset($fundraising_status) ? 1 : '',
];
 }

 }

Get Fundraising with Drupal

[110]

What you may also have noticed is that the donations don't update until we do a cache
rebuild; this is because our block is currently cached. So, in order to stop it from caching, we
will add another method--getCacheMaxAge()--and we will set it to 0:

/**
 * {@inheritdoc}
 */
 public function getCacheMaxAge() {
 return 0;
 }

Now, we need to go back to donate_range.module and update our hook_theme(). We
need to add 'status' => NULL:

<?php
 /**
 * @file
 * Donation progress.
 */

 /**
 * Implements hook_theme().
 */
 function donate_range_theme($existing, $type, $theme, $path) {
 return [
 'donate_range' => [
 'variables' => [
 'amount' => NULL,
 'donations' => NULL,
 'status' => NULL
],
],
];
 }

Right, so we have our additional variable added to our hook_theme() and our block. Let's
go and add this, with some conditions, into our template.

Get Fundraising with Drupal

[111]

donate-range.html.twig
We will now look at using conditional statements in Twig.

Conditions are done using this:

{% if variable condition %}
 Show something
{% else %}
 Show something else
{% endif %}

So, to put this into practice, we will check whether the status variable is empty, which
means the fundraising page is still open, and the fundraising target hasn't been reached.

However, if it has been reached, we will show a message saying that it's been reached:

{#
 /**
 * @file
 * Donation range widget template.
 */
 #}

 {% if status is empty %}
 <p>
 {% trans %}
 We have received £{{ donations }} of £{{ amount }}
 {% endtrans %}
 </p>

 <progress max="{{ amount }}" value="{{ donations }}"></progress>
 {% else %}
 <p>
 {% trans %}
 Thanks our donation target has been reached.
 {% endtrans %}
 </p>
 {% endif %}

Finally, we will go into our donation form and add an amend to not show the form if the
target donation is met.

Get Fundraising with Drupal

[112]

DonateForm.php
We will simply get our node ID, and then the status of the fundraising page, and we will
show the form depending on that.

Add this just beneath our $user variable inside buildForm():

$nid = \Drupal::routeMatch()->getParameter('node')->id();
$node = Node::load($nid);
$status = $node->field_fundraising_state->value;

Then, add a condition around the entire $form array that will only show if the status != 1,
which is our Boolean for our closed fundraising page:

/**
 * {@inheritdoc}
 */
 public function buildForm(array $form, FormStateInterface $form_state) {
 $user = \Drupal::currentUser();
 $nid = \Drupal::routeMatch()->getParameter('node')->id();
 $node = Node::load($nid);
 $status = $node->field_fundraising_state->value;
 if ($user->isAuthenticated())
 {
 if ($status != 1)
 {
 $form['name'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Your name'),
 '#required' => TRUE,
 '#description' => t('By default your username will show,
 you can however amend this.'),
 '#default_value' => $user->getAccountName(),
];
 $form['mail'] = [
 '#type' => 'email',
 '#title' => $this->t('Your email'),
 '#default_value' => $user->getEmail(),
 '#disabled' => TRUE,
];
 $form['amount'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Amount to pledge'),
 '#length' => 5,
 '#prefix' => '£',
 '#required' => TRUE,
];
 $form['submit'] = [

Get Fundraising with Drupal

[113]

 '#type' => 'submit',
 '#value' => $this->t('Donate'),
];
 }
 else
 {
 drupal_set_message(t('Thanks our donation target has
 been reached.'), 'status');
 }
 }
 else
 {
 drupal_set_message(t('You must be logged in to donate.'),
 'error');
 }

 return $form;
}

So now we have added this extra functionality to our fundraising page, you have now
learned:

Creating a simple user dashboard with views
Understanding how user permissions work
Account management
Basics of creating a module
Creating and updating a node
Creating block plugins
Creating and submitting forms
Sending emails
Using field values to do some math
Making templates for our module to be used in the frontend

We will use similar aspects of this throughout the rest of the book, but we have really gone
into the deep end and got stuck into some Drupal 8 coding, and its doing quite a bit just by
using Drupal API and the Symfony framework.

In the next chapter we will look at how to make a job recruitment website; in this chapter
we will start to look at a new way to manage your Drupal website using Composer, and
creating multiple user roles with different fields to register and assign them to users.

4
Recruit Using Drupal

With any business, recruitment is very important. There are many well-known recruitment
platforms out there that allow you to just upload your CV, create a profile, and wait to be
contacted. However, from a recruiter's perspective, there is the ability to also create your
company profile and create jobs.

In this chapter, we will look at creating a recruitment website that allows a candidate to
create a profile and apply for jobs by searching for jobs and getting search results.

We will also look at making the recruiter part where they can post jobs and get a log of
when a candidate has applied for a job.

We will cover the following throughout this chapter:

Look at a new technique to install Drupal and add additional functionality
Create multiple user roles
Look at how to add fields to the registration form
Create a user role that is autoassigned to our newly registered user
Look at a Webform module and how we can use it

Getting started
As we are building a new website, we need to reinstall Drupal; ensure that you save your
database from the last chapter.

Before we do that, we will introduce a new technique for this. In Drupal 8, Composer was
introduced instead of what we previously had, which was .make files.

Recruit Using Drupal

[115]

What is Composer?
First off, Composer is awesome! Composer allows us to manage dependencies required for
an application; these dependencies are stored on packagist (https:/ ​/ ​packagist. ​org).

However, you can also define your own private repository for your custom dependencies.

When we use Composer, we can easily update our dependencies to the latest version; this
keeps all our packages inside a vendor directory.

To install Composer, visit: https://getcomposer.org/doc/00-intro.md.

To start off Composer, the command will be composer [command].

When we use Composer, we will have a composer.json file, which is simply an
empty JSON file. Then, we use a command called require. What this command does is to
add a line that tells Composer Hey I want this package, can you get me it into our
composer.json file.

Once we require a package, we can update it using composer update. This checks the
repository for the latest release of that package.

Drupal has its own Composer repository, and this is great as it makes managing a Drupal
site even easier. We then have more control over what contrib we want to use, and this also
means that it's less likely to be modified. This is because we have a field called
 composer.lock that keeps all the information on which packages and versions are being
used, which in turn will mean there will be no discrepancies when working on a project.

Using Composer with Drupal
To get started with using Composer with Drupal, create a new directory and then head over
to that directory within the command line.

The command used to create a new Drupal project using composer is as follows:

composer create-project drupal-composer/drupal-project:8.x-dev some-dir --
stability dev --no-interaction

What this does is create a new directory and set up our Drupal site structure. We will now
execute the preceding command, and then Composer will run tasks to get all the packages
needed. This is illustrated here:

https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://packagist.org
https://getcomposer.org/doc/00-intro.md

Recruit Using Drupal

[116]

Fig 1.0: Composer downloading dependencies for Drupal

In the preceding screenshot, we can see Composer getting all the dependencies we will
need for Drupal:

Fig 1.1: Directory structure after Composer is executed

Recruit Using Drupal

[117]

As we can see in the preceding screenshot, Composer has run and executed the script, and
our application structure is all there. We can see that there is a composer.json file, which
has been generated from our composer create-project command. A part of the
composer.json file is shown in the following screenshot:

Fig 1.3: Part of the composer.json file

Recruit Using Drupal

[118]

This is the structure of our composer.json file, and as can be seen, it's in a JSON structure.
So now, we have our Drupal site built using Composer, which we can add to our
development environment.

If we want to add a module to our Drupal site, instead of drush or drupal console, we
can simply use composer require drupal/devel. What this does is that it makes devel
a required module and will download it to our contrib directory inside our /web
directory:

Fig 1.4: Directory structure for Drupal

The location of Drupal and our non-core plugins (modules, themes, profiles, and libraries)
is set in the preceding screenshot. So, when we run an update for Composer or download
any additional plugins, they will go in these directories.

So now that we understand Composer, we can move on to using Composer in the next
chapter.

What we need
We will try and harness the power of Drupal core with minimal contrib modules and a
small bit of custom code.

On this site, we will have two user roles: Recruiter and Candidate.

Recruit Using Drupal

[119]

There will be a separate registration page for this, and we will be using the great
Registration types (https:/ ​/​drupal. ​org/ ​project/ ​registration_ ​types) module to achieve
this. What this module allows us to do is to create individual registration pages for
registering users and then autoassign a user role of our choice to that user. This is done by
creating a view mode and then assigning it to our registration form; it also allows us to
control which fields are shown to the user.

Now, download and install our registration_types module and enable it. Once this is
done, we want to create two new roles:

Recruiter
Candidate

Go to People | Roles and click on + Add role; previously, we used the default roles, but for
this we want our user to be either a Candidate or Recruiter:

Fig 1.5: Add user role

In the preceding screenshot, we can see that our machine name is autogenerated like other
parts in Drupal.

Once we click on Save, the user role is created and given a role ID, which is referenced
throughout Drupal as a rid:

https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types
https://drupal.org/project/registration_types

Recruit Using Drupal

[120]

Fig 1.6: Use role order

Now that we have saved our new role, we can see it in our draggable table. The roles are
ordered descending from the lowest level of access to the top. As Recruiter is appearing
higher than Administrator, move Recruiter up one place so that Administrator is at the
bottom. This will now show our Permissions page with our new user role.

Recruit Using Drupal

[121]

Before we do that, let's go and add another user role of Candidate:

Fig 1.7: Permissions

As can be seen in the preceding screenshot, we can now see that our new two roles are
displayed. This means that, through the permissions matrix, we can now assign our
permissions for this user role.

Creating user registration pages
Now that we have got our new user roles added, we will use the registration_types
contrib module.

We will create two view modes: one is for candidates and the other is for recruiters. To do
this, we need to go to Account settings, which is inside Configuration.

Go to Configuration | People, and from here, you will see several tabs; we want to add
fields for our registration form, so click on Manage form display. This page has the same
layout as our content types; move down to Custom display settings and click on Manage
form modes:

Recruit Using Drupal

[122]

Fig 1.8: Manage form modes

Let's now create two view modes:

Candidate registration
Recruiter registration

In the preceding screenshot, we can see a view mode of Register. This is the default view
mode set. We want to add two separate view modes and delete the Register one. Click on
Add new User form mode:

Fig 1.9: User form view mode

Recruit Using Drupal

[123]

In the preceding screenshot, we will see a blank field for the name of our view mode; let's
call this one Recruiter and click on Save:

Fig 1.10: List of our form modes

Repeat this process for Candidate; once we have done this, our list should look like the
preceding screenshot.

Now we want to add some fields to our registration forms; however, we want to show
different fields to our different user roles. As we have two roles, and have created two form
modes for our user roles, let's go ahead and add some fields.

Candidate role
The candidate is someone applying for a job. We need to have some fields that will set out
what they are looking for so that the recruiter can see when the candidate applied for a job.

The fields we will create are as mentioned:

First name: Textfield
Last name: Textfield
Telephone no.: Telephone (this module needs to be enabled)

Recruit Using Drupal

[124]

Address: Address (https:/ ​/​drupal. ​org/ ​project/ ​address)
Website: Textfield
Contract type: Taxonomy term reference
Job title: Taxonomy term reference
Skills: Taxonomy term reference
Desired Location: Taxonomy term reference
Profile photo: Image
CV: File upload

These fields will be enough information required for a recruiter to see and also, for our
candidate's profile to be viewable by the recruiters.

Firstly, let's download the address module (https:/ ​/​drupal. ​org/ ​project/ ​address). As we
are using Composer, we need to add it as a dependency:

composer require drupal/address

Now that we have downloaded the address module, we need to enable it; what this does to
create a new field type that we can use throughout the site,and which we will use on our
profile.

So, we are all set to start setting up our candidate profile; let's go and create our Type of
contract taxonomy. Refreshing our memory, let's go to Admin | Structure | Taxonomy and
create a taxonomy vocabulary called Type of contract.

Repeat the creation of taxonomy vocabularies for the following:

Job title
Skills
Preferred location

The reason we have created these three taxonomy vocabularies is so that we can use them
for better categorization, and we can allow previously created terms to be reused by the
users.

https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address
https://drupal.org/project/address

Recruit Using Drupal

[125]

Now that we have done this, let's go back to Account settings and add our fields. We will
be using the same fields for the different registrations and enabling our view modes. The
enabling of view modes is shown in the next screenshot:

Fig 1.12: Enable view modes

In Fig 1.12, we can see our different display settings that are available to us to enable.

This is how we will determine what fields will show on the different registration forms.
This then creates two tabs. We will now set out how our form is displayed for candidates.
We will also use field group (https:/ ​/​drupal. ​org/ ​project/ ​field_ ​group) to organize our
fields on the form to make it readable.

Once this module is enabled, go back to Account settings and then to Manage form
display. Once you are on this page, click on Candidate for our view mode; this will take us
to our Candidate specific fields, and then click on + Add group. We will now split this form
into two groups.

Then, select Fieldset and give it a label of Personal details, and click on Save and continue.
The field group settings are shown in the following screenshot:

https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group
https://drupal.org/project/field_group

Recruit Using Drupal

[126]

Fig 1.13: Field group settings

In the preceding screenshot, the field group gives us additional fields we can use. We can
add a description that appears in the field group element; making all the fields inside the
field group required will override any fields we place into this field group regardless of
whether they are not required. We can then add ID and css classes to the Fieldset that adds
to the Fieldset element.

After clicking on Create group, we will be redirected to our form display page. Repeat this
process and create a new field group with a widget of Fieldset. We will call this one Job
requirements.

Recruit Using Drupal

[127]

So now, we have these two field groups that we can amend. This will then show our form
display for the candidates only; we will amend this for our Recruiter registration form later:

Fig 1.14: Candidate field layout

In the preceding figure, we can see that our fields are set out for Candidate view mode,
which in turn will be our candidate user registration form. We will now sort the form layout
for the Recruiter view mode. To do this, we will add a few more fields for the Recruiter
registration from; however, we will switch a few fields about in our Recruiter view mode,
so let's go back to Manage fields.

Recruit Using Drupal

[128]

We will now add the following fields so that we can use them for our recruiter user profile
and registration:

Company name: Textfield
Recruiter description: Text (formatted, long, with summary)
Logo: Image

Once these are created, we will click on the Recruiter view mode and repeat the same
process as we did for the Candidate view mode; however, we won't add any field groups
for this:

Fig 1.15: Recruiter field layout

Our Recruiter field layout should be as illustrated in the preceding screenshot.

Now that this is done, we need to separate our registration pages so that they are different
for our user types. Going back to Admin | Configuration under People, click on
Registration types. We want the user, after they have registered to be assigned a Candidate
user role.

Recruit Using Drupal

[129]

So, after this, we will see a page that has a table and has no entries; click on + Add
Registration type. The screen that will open next is as shown in this screenshot:

Fig 1.16: Add registration type

Recruit Using Drupal

[130]

If we fill out our registration type as per the preceding screenshot, we can Save it, and do
the same for Recruiter and change the Candidate aspects of the form to Recruiter.

Once this is done, let's open an incognito window and click on Log in. You will now see
that we have five tabs on our Log in form:

Fig 1.17: Log in form

In the preceding screenshot, we have our tabs along with the Log in form; note that there is
a Create new account option, which we will remove later.

If we click on Candidate, we will see the form we created, and the same for Recruiter. Let's
create a user for each.

Once we have done this, we will move on to creating a Job Content type
that recruiters can create for the site.

Recruit Using Drupal

[131]

After filling out our form for our candidate, we will see a message saying that an email has
been sent. This email contains a one-time link that allows us to access Drupal's user admin
interface:

Fig 1.18: People page with users

Once we are logged in and our account is active, go back to our browser window with the
admin account logged in, and go to People, as we can see in the preceding screenshot.

Recruit Using Drupal

[132]

Using Webform
Now that we have created our job vacancy content type, we will add the form to apply for
that job; this will then appear for the recruiters. To do this, we will use another contrib
module Webform (https:/ ​/ ​drupal. ​org/ ​project/ ​webform), and we will also add token
(https:/​/​drupal.​org/ ​project/ ​token).

Once this is added to our composer file, we will enable Webform, Webform UI, and Token.

We will then create our job application form; Webform allows us to create a form that can
be attached to a node. This will allow us to easily relate the applications to the job, which
will help us out with our Recruiter dashboard later on in this chapter.

To create a Webform, go to Structure | Webforms:

Fig 1.19: Webform admin

https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/webform
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token

Recruit Using Drupal

[133]

In the previous figure, we can see the admin interface used for Webform. As we want to
create a new form specifically for applications, click on + Add webform.

A popup then appears, which allows us to enter a title, description, and category. For this,
we want to add Application form as our title and Administrative description as A webform
that allows candidate user roles to apply for a job.

When we click on Save, we will be taken to our Elements page that will allow us to create
our Webform. For this Webform, we want to just have a Name field, because the form will
submit additional data. This includes the node it's referenced to and the user who
submitted it; we can, of course, add other fields to this to make it more detailed, but we will
keep ours simple.

To add fields, we click on + Add field, and then we are shown a popup with a list of
element types. For ours, we will pick a Text field. After doing this, we will see the settings
form for this field:

Fig 1.20: Webform field settings

Recruit Using Drupal

[134]

As can be seen in the previous figure, the field has a lot of settings. For now, we will just
add a Name field and click on Save. We will also add a Fieldset element to wrap around
the field; this will just make it stand out more on the job vacancy page.

Once we have saved this, we can drag our Name field so that it is a child item of Job
application:

Fig 1.21: Form admin UI

In the preceding screenshot, we can see that our name is inside our Job application Fieldset
item. This means that when we have it on our job vacancy, it will be displayed inside a nice
Fieldset, which makes it stand out a bit more on the page.

Creating our job
Now that we have created our two user roles and set the registration process up, let's create
some content for our jobs. For this, we will create a content type called Job vacancy.

As we have already covered how to do this, we will just cover what fields are needed for
this, which will include the following fields:

Job title: Textfield
Location: Taxonomy
Closing date: Date field
Job description: Long text
Job category: Taxonomy

We also have a new field reference type called Webform, with which we will attach our
webform to our content type. So, create a new field type Webform and give it a name of
Apply for this job vacancy.

Recruit Using Drupal

[135]

From here, we will set our field to have a default value of Application form. Now, since we
have saved this, we will hide it from our form display as we don't want our recruiter to see
this. The form will display automatically on the job vacancy.

Using our recruiter user account, let's create a job vacancy and click on Save:

Fig 1.22: Job vacancy page

In the preceding screenshot, we can see that the form is now displaying. We don't want
anonymous users to be able to create an application, so we need to modify it in a module.

Jobs module
To enhance our functionality on the site, we will need to create a module. To start off, it will
simply hide the job application form from anonymous users. Start by creating our module
called jobs.

Recruit Using Drupal

[136]

jobs.info.yml
name: Jobs
description: Enhances job website functionality
core: 8.x
type: module
package: Recruitment site

Once we have done this, enable our jobs module. Now we can alter how our form works.
To do this, we will use hook_form_alter().

This allows us to override any form inside Drupal; it works based on the form ID. We can
use a switch() statement to target multiple forms; however, we can also use
hook_form_FORM_ID_alter().

As the form ID uses our machine name, this is likely to be different; so for this, we will
stick to hook_form_alter().

What we want to achieve here is to allow the user to register if they are logged in, but if
they are not, then we will show a message that says they must log in.

jobs.module
<?php
 /**
 * @file
 * Jobs enhancements.
 */

 use Drupal\Core\Form\FormStateInterface;
 use Drupal\Core\Url;
 use Drupal\Core\Link;

 /**
 * Implements hook_form_alter().
 */
 function jobs_form_alter(&$form, FormStateInterface $form_state, $form_id)
{
 if ($form['#webform_id'] == 'application_form' &&
\Drupal::currentUser()->isAnonymous()) {
 unset($form['elements']['job_application']['candidate_name']);
 unset($form['actions']);

 $link = Link::fromTextAndUrl(t('login'), Url::fromRoute('user.login'),
array())->toString();
 $form['elements']['job_application']['#markup'] = t('You must be logged
in order to register, click here to @link', array('@link' => $link));

Recruit Using Drupal

[137]

 }
 }

What we have done
The module we have just created allows us to do the following:

Based on the form itself being a web form, we get the #webform_id key, which allows us to
target our webform_id that was created when the webform was created. We then do a
check to see whether the current user is anonymous, which will then let us take out the
name and submit button, which is what we do using unset().

We then want to display our error message that prompts the user to log in; of course, we
want to make it translatable so we use the t(). We then want to have the link go to our user
login page; to do this, we create our link using Link::fromTextandUrl(), we then have
two arguments we need inside this. We can get the specific route using our existing routes.

Now, if we do a cache rebuild and look at this page as an anonymous user, we will see our
message; however, if we are logged in, then we will see the form. This type of functionality,
no doubt, will appear in the contrib module, so this may need to be ignored.

Almost there
Now to recap, we have created the following so far:

User roles (Candidate and Recruiter)
Different registration forms
Job vacancy content type
Form to apply for a job vacancy
Hide the from from anonymous users

We will now set our permissions so that Recruiters can create, edit, and delete their job
vacancies:

Recruit Using Drupal

[138]

Fig 1.23: Permissions set for recruiter

Set the permission as we have mentioned. What we have done is that only the Recruiter will
be able to create a job vacancy, no other user role. So, we have all our functionality of
applying for a job; we will now create our dashboard.

Dashboards for Recruiter
When our user logs in, we want to redirect them to /user/dashboard; this will show our
jobs created or applied for based on who has applied. We will create this entire dashboard
using views, and we'll have it as a page.

First, to do this, we need to redirect the user after they login; we will use
hook_form_FORM_ID_alter() and a custom submit handler, as shown:

/**
 * Implements hook_form_FORM_ID_alter().
 */
 function jobs_form_user_login_form_alter(&$form, FormState $form_state) {
 $form['#submit'][] = 'jobs_user_login_submit';
 }

 /**
 * Form submission handler for user_login_form().
 *
 * Redirects the user to the dashboard after logging in.
 */
 function jobs_user_login_submit(&$form, FormState $form_state) {

 $request = \Drupal::service('request_stack')->getCurrentRequest();
 if (!$request->request->has('destination')) {
 $form_state->setRedirect('/user/dashboard');

Recruit Using Drupal

[139]

 }
 }

The dashboard will show the jobs this user, who is our Recruiter, has created. With
Webform, we can view the submissions on the form for this job. If we want to extend this
functionality, then at the time of writing this the custom code will need to be written.

Now that we have our dashboard, our recruiters can create jobs and then view the jobs.
Within our node, we can then view Submissions for that job.

Job search
To allow our jobs to be searched for on the site, let's create a new view called job search. For
this view, we want to expose the job title, category, and location. To do this create a view
with display type of page; we have already covered this earlier so this is a refresher on how
to do it.

Then add whichever fields you want to display for this. Now this is done, add an exposed
filter, you can then either leave the exposed form attached to the top, or show the form as a
block.

Summary
We took a look at Composer and how Composer enhances development with Drupal and
any development project. Then, we created multiple user role registrations that allow
different information to be created by our user.

Upon registering, the user is then assigned a different user role, and, based on this, they can
either create a job or apply for a job. This makes the process of creating or applying for a job
a lot easier and easy to manage as to which user role can do it.

We created a Webform that is attached to each node, which then stores all submissions on
the node so that the recruiter can view the job applications.

In the next chapter, we will look at how to create an event website; this will show an event
with a schedule, and more.

5
List Properties with Drupal

If you run a property retail business, then you'll want to list properties you have on your
portfolio online. In this chapter, we are going to create our own property company that will
allow properties to be listed on the website. This will incorporate an ability to filter
properties and manage them.

We will look at using as little custom code in this chapter as possible. We will be covering
the following topics throughout the chapter:

Creating a property content type
Property display
Using Display Suite
Property search
Administering our properties
URL aliases

Getting prepared
Before we get started with our property listing website, let's do a clean Drupal installation.

Once we have done our new installation, let's remove the parts we don't specifically want
on our website. Previously, we just left in the default configuration for our website;
however, let's make our installation use just what we ideally want.

List Properties with Drupal

[141]

Cleaning up
First off, let's delete all our content types. To do this, go to Admin | Structure | Content
types and select Delete on the content type; repeat this for the other content type.

Next, move to Admin | Structure | Comment types and repeat the same for our comment
type. From here, go to Admin | Extend and then click on the Uninstall tab.

Previous Drupal core versions allowed modules to be disabled; in Drupal
8, we need to uninstall them from the system configuration.

We need to select the following modules to uninstall:

Comment
Color

Now that we have done all of this for our property, we can start with creating our Property
content type. We will also be using field_group for laying out our admin interface forms.

The fields we will need for our content type are as follows:

Property name--Title
Address--Address field
Photos
Floorplans
Type of Property
House
Flat
Rooms
Bedrooms (number)
Bathrooms (number)
Reception rooms (number)
Amenities (checkboxes)
Garden
Outbuilding
Private parking
Swimming pool
Description (textarea)

List Properties with Drupal

[142]

Price (field group)
Amount (float)
Monthly (boolean)

Now, we have added all the fields we need to make our form display look usable, we will
amend our various field widgets. We will then click on Manage form display. The screen
that comes next is as follows:

Fig 1.0: Manage form display

List Properties with Drupal

[143]

We will then change Amenities from the Select list to Checkboxes/radio buttons. This
allows us to change the output of what our user will see. It also means we could write a
widget that could have a different approach to multiselect.

Now that this is done, we will create our first property. This will allow us to have the basic
look for our Property page. From this, we will then change the look of our Property pages.

Adding our Property
To create our first property as we have previously created content, we will go to Admin |
content. From here, we will click + Add content. However, as we only have one content
type, Drupal knows that this is the type of content you want to enter. Pretty cool, eh?

We will now see our content page. As per the previous content types, it is structured in the
same way. We can, however, change this layout if we so wished.

Let's create our first property. Fill out some dummy content and, once we have done this,
we will move on.

For now, we won't upload any images or files. This is to keep what we are doing clean and
simple.

List Properties with Drupal

[144]

Fig 1.1: First property created

Great! So, we now have our first property created! It's looking a bit plain.

Enhancing our content
So, we have just created our basic look for the Property page. It's not that great and, as a
website builder for this bit, we can leverage the contrib modules available to Drupal to
make the layout more flexible.

List Properties with Drupal

[145]

There are a few options in Drupal that we can use to change this. At the time of writing this
book, there were experimental modules for layouts in the core.

What we will look at are two very popular contrib modules that have similar functionality.
These two approaches are Display Suite and Panels.

Display Suite
So, what Display Suite allows us to do is use a layout in a similar way to our Block layout is
create sections for the template. This can allow someone with no real developer skills the
ability to control the layout of the content. To control how our content is displayed, go to
Admin | Structure | Displays.

Fig 1.3: Display suite layout

List Properties with Drupal

[146]

We can easily access our content display from this page. We can also access our content
display by going to Manage display in our content type, but this interface is a quick and
easy way to manage our content being displayed. Once on this page, we can change our
layout.

Fig 1.4: Layout settings

In Fig 1.4, we can see the options to set the layout for our content in vertical tabs and ensure
our Custom display settings is also a tab. We have some preset layouts added to the
display options.

Fig 1.5: Layout options on Manage Display

List Properties with Drupal

[147]

For our property display, we will show ours in two columns, so select Two column layout.

Fig 1.6: Settings for content layout

We now have configuration for our layout. For these changes to take effect, we need to save
our display. After saving the layout settings, we will see two regions in bold with the fields
underneath them, which can be dragged into the various regions of the layout.

List Properties with Drupal

[148]

Fig 1.7: Layout admin

List Properties with Drupal

[149]

Now that we have our layout set out, drag some fields into each column, and then click
Save. Then, go back to your property and you will see how simple our layout has become.
We have not had to do any styling.

Fig 1.8: Property page with columns

List Properties with Drupal

[150]

So, now that we have a starting place for our Property, let's tidy it up a bit more and move
over to using our bootstrap theme. As with any field widget, we can change the settings on
them to suit our needs, and if there isn't a widget there, we can make our own.

Fig 1.9: Layout with fields widget amended

List Properties with Drupal

[151]

Now, as per the preceding screenshot, we can see that our fields are split into our layout
that we set up using the default layout options.

As we have done the basics on this, let's edit our Property photos so that we can show
multiple images. Go back to Manage fields and look for Property photos and then click
Edit. Once on this page, go to Field settings. We will change the Allowed number of
values to Unlimited, as we're promoting a Property. So, we want to allow as many photos
as possible.

Moving back to our Property, let's add some photos. We will use photos from (https:/ ​/
pixabay.​com) for this.

Now that we have added our photos, let's add a slideshow to our Property page. To do this,
we will be using Flex Slider (https:/ ​/​www. ​drupal. ​org/ ​project/ ​flexslider).

Once we have downloaded Flex Slider using the Composer composer require
drupal/flexslider, we will then enable FlexSlider and FlexSlider Views Style.

Once these are enabled, then what we will do is create a view for our Property photos, so
now head over to Views and create our view.

Give your view a name like Property photos and a description of Slideshow for current
property.

For this to work, our views block will take an argument based off the current node we are
on. This way, we only have to create the view once.

We want to show Content of the type Property. Then, check Create a block and click Save
and edit.

Now, we can see our configuration for our view. As we are using the FlexSlider module,
we want to change the Format to use FlexSlider, so click on FlexSlider.

https://pixabay.com
https://pixabay.com
https://pixabay.com
https://pixabay.com
https://pixabay.com
https://pixabay.com
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider
https://www.drupal.org/project/flexslider

List Properties with Drupal

[152]

Fig 1.10: View Format

In the preceding screenshot, we can see the options we have. As we add modules that have
plugins for views, more will appear here for us to select.

Once we have selected FlexSlider and clicked Apply, we can see some more options for our
Format style.

What we can see for the FlexSlider options are as follows:

Option set: This allows us to choose how our FlexSlider image gallery is
displayed. There are a lot of settings for this. We can create multiple option sets.
Caption field: This will take a value from a field that will appear in our view
row.
Element ID: This allows us to uniquely identify our FlexSlider on a page.

We will keep our Option set as Default, but we will configure this bit later on to display
how we want. For Caption Field, we will leave it as None for now. Now that this is done,
click Apply.

So, all we will see is our property name. This is because the only field we have added is our
node title. Let's change this and add our actual Property photo. Remove the Title field by
clicking on it and clicking Remove. Next, click on Add and then select Property photos
from our fields list and click Add and configure fields.

List Properties with Drupal

[153]

From here, we will now configure our photos for the FlexSlider. Our FlexSlider will take
the field and implement into the FlexSlider javascript plugin.

Fig 1.11: Field settings

List Properties with Drupal

[154]

In the preceding screenshot, we have our common field settings dialog. As we want to
show our main image to be big, we will select an image style of Large. You may notice there
are a few other image styles listed there. We can, of course, add more image styles by
clicking Configure Image Styles.

Image styles are a global asset and can be used anywhere we have images.
They define certain rules for how an image is rendered.

As our image field has multiple values, we want to show these on separate rows. In order to
do this, click Multiple Field Settings and uncheck Display all values in the same row; you
will notice that once you do this, the options disappear, as we don't need to configure any
of this.

After this, click Apply. In our preview, we can see our image in a slideshow. The basics for
this is now done, but we will return to this to improve the slideshow. But currently, we just
have a block. Now, we could, of course, just go to Block layout and add our block that way,
but we can only add it to our regions that we have configured. If we have a funky layout for
our content already, then this will defeat the point of this.

We will now add a Display Suite field that will allow us to add our view to our content
display for any content.

Adding custom fields to our display
Display suite has a lot of extra goodness that we are going to look at now. As we want to
add our new property photos block into our content, we need to create a new field. In order
to do this, we need to add some configuration to our Displays.

List Properties with Drupal

[155]

Go to Admin | Structure. Once on this page, look for Display Suite and click it.

Fig 1.12: Display Suite displays configuration

We can see in Fig 1.12 that all our entity types can have their very own display controlled
using Display Suite. There are three main sections in Display Suite:

Displays List: This shows all the current displays available in Drupal and allows
them to be configured
Settings: This allows us to configure various settings that will affect all the fields
in Drupal used with Display Suite
Emergency: If there are any issues with the field, then they can be disabled from
that display while you fix it (this is handy because previously the website would
break)
Classes: From here, we can add additional classes to our regions. We can define
them here and use them on our Manage display screens
Fields: We can create additional fields here that will allow us to use within our
content throughout the website

Now, we have an understanding of how the settings in Display Suite work. We will create
our new field that we want to expose to our Displays. Go to the Fields tab and, from here,
click + Add a block field. What this will do is allow us to take any block we have created
(just like our property photos block) and expose as a field.

List Properties with Drupal

[156]

Fig 1.13: Block field settings

In Fig 1.13, we can see we have our configuration:

Label: This is our unique name for this field that will be shown under our Field
column in our Manage display for our entity. This will also create a machine
name, which is unique for this field.
Entities: This is great because we can decide to just expose this field on certain
entity types.
Limit field: If we decide that we only want this field on a certain bundle and
view mode, then this will let us list them here.

List Properties with Drupal

[157]

Block: We can decide which block will be exposed to this field.
Use block title as the field label: This can keep our block and field consistent, so
there's no confusion and multiple names given.

Fig 1.14: Block field settings

In Fig 1.14, all our fields settings are done for how we need it, so click Save and we will then
be asked how many Items per block we want; just save this as the default.

List Properties with Drupal

[158]

Fig 1.15: Newly created custom field

Now that we have created our new field, we can see it in the Fields listing page. This now
means it's available to our content type.

Let's add this to our Property display, so go to the content type and then Manage Display.

You can also go back to the entity type Manage Display by clicking the
Displays tab when inside the Display Suite configuration.

Once we are back in our Displays, if we scroll down under Disabled, we will see our new
field. We will see, however, that there are two fields with the label of Property photos. This
is going to be really confusing later on, let's change this now. Go back to Display Suite
Configuration Admin | Structure | Display Suite and then to the Fields tab and click Edit
on the Property photos row. Change the label to Property photos widget.

As the machine name has already been created, it won't be amended; only
the human-readable label will change.

List Properties with Drupal

[159]

Now that we have done this, go back to our content type Manage Display. We will now see
in our Disabled section that our field of Property photos widget is now available to use.
Take the Property photos field and move to Disabled, and then drag the Property photos
widget to the top inside our Left region and click Save.

Fig 1.16: Property page with photos

We now have our photo slideshow in place. But if we were to add another property, then all
of our photos for all our properties would be on show. So, what we are going to do is add
an argument or known to us in views as a contextual filter. We have covered this
previously, but we will cover it again as we need to take a different argument this time.

List Properties with Drupal

[160]

Fig 1.17: Editing content blocks

If we want to edit content as a user with certain permissions, we can hover over the block of
content we want to edit. In Drupal 8, we can do a quick edit for block and node content. But
in our case, for the view, we want to quickly make our changes to it, save it, and return back
to where we are currently.

If we click on the pencil icon that appears on top of our image, then an Edit view dropdown
will appear. By clicking this, we will be taken to our configuration page for that view.

List Properties with Drupal

[161]

Once we ware on our view configuration display page on the right-hand side column at the
top under Contextual Filters, click Add as before and the fields popup will appear, as we
want to take the ID as our argument and match it up to our node ID the content is related
to.

After selecting Content: ID, ensure that the Provide default value is selected, change Type
to be Content ID from URL, and click Apply, as we have no argument for our contextual
filters. Then, nothing will be shown. However, change the argument to 1 and click Update
preview and we can then see our images. Now, click Save and we will be returned to the
previous page we were on. But how does Drupal know where to go I hear you ask?

Well in the URL
admin/structure/views/view/property_photos/edit/block_1?destination=nod

e/1, we can see our path to our view. Then, from there, we have an argument that Drupal
uses ?destination=node/1. This is basically saying, after I've completed my task on this
page, take me back to where I was.

Of course, if we don't want to go back there, we can just remove it from the path. Now, we
go back to our property display.

Property search
Now that we have our first property created, we want our users to be able to search for
properties on the website. To do this, we are going to remove the search field that is being
used and add a form to the right-hand side region. Of course, you can place the search field
anywhere you like.

Generate dummy content
Working with one node doesn't really give a good feel to how the website would behave
with multiple properties. Instead of making up a whole bunch of fake properties and
finding pictures, all we care about for now-while we develop the website-is content.
Remember content is the king.

To do this, we have a fantastic module that comes with Devel. It's called Devel Generate.

List Properties with Drupal

[162]

As we already have Devel enabled, we don't need to download anything additional. We
just need to enable it.

Once the module is enabled, do a cache rebuild. Then head to Admin | Configuration:

Fig 1.18: Devel Generate options

List Properties with Drupal

[163]

In Fig 1.18, we can see all of our Devel module options. There are five types of entities that
can be generated here. As we want to generate a multiple amount of property nodes, click
on Generate content.

Fig 1.19: Generate content

List Properties with Drupal

[164]

In Fig 1.19, we can see all our settings for generating our content. When we have multiple
content types, we will see in the table multiple rows.

We can then decide the following:

How many nodes we want to generate
How far back should the node created date be
How many comments should the nodes have (if the content type has comments
enabled)
How many words should the title be
Should a URL path be generated instead of node/{nid}
What languages should the node be created in (if multiple languages are enabled)
Now that we have filled all our requirements out, and for now, set the number of
nodes to 10, and clicked Generate, we will have 10 properties generated for us to
continue to build our website

The only issue doing generate is it will do exactly that and generate everything random
based off the type of field, so you may have to edit some of the nodes.

As we now have our dummy content created, let's go and create our property search.

Property search
To do this, we will use views again. So, let's go and create a new view. Let's call our view
Property search and we want to show Content of the type Property. Then, we want to have
this as our Property page, so check Create a page and give it a title of Property search and a
path of /properties.

Now, set Format to Grid and then leave our Style options as they are and click Apply.

Click on Content. What you will now notice is we have Display Suite: Content. This allows
us to use Display Suite layouts that we have set up, and we can use a specific view mode.
So, select this one and click Apply. We will then be shown Row style options and a
dropdown with our View mode. Beneath that, we have specific settings for the Display
Suite. Let's just keep these as the default and click Apply.

If you look down, you can see our preview is now showing our Property title and a Read
more link. When we visit this property listing, we will be able to click this link and it will
take us directly to the property.

List Properties with Drupal

[165]

Exposed filters as a block
Inside our view, we have the option to expose our search filter by default. This will then
generate a form that will appear at the top of our view. However, if we decided we want to
have our search form on every page, then we need to convert the form to a block.

Let's start by exposing our locality part for our address field we created, so click Add,
search for locality, and select that row. Repeat the same for administrative_area; again,
repeat this and select country_code for our website. We will have properties in United
Kingdom, but you can have yours wherever you want, and finally, add postal_code and
click Add and configure filter criteria.

Now that's done, you will see the settings for our first filter, which is for country code.
Select the option to be United Kingdom and click Apply. Change the label to say
Town/City, select The value of an exposed filter and then Expose this filter to visitors, to
allow them to change it, and click Apply.

Next onto locality and select the checkbox for Expose this filter to visitors, to allow them
to change it. When you do this, you will notice that more options appear. Set the label as
County and click Apply and continue. Finally, select Expose this filter to visitors, to allow
them to change it, change the label to Postcode and the operator to Contains, and click
Apply.

Now that this is done, we want to separate our property filter from the form and place on
the left-hand side. To do this, on the right-hand side, go to Exposed form and, where it says
Exposed form in block, click on No and then change it to Yes. This will now allow our
Exposed form to appear as a block and, upon submitting from it, it will post the data to the
page the view is rendered on, which in our case is /property-search. Once this is done,
click Save. When we now go to /property-search, we can see our property on display.
However, we cannot see our Exposed form. In order to add this form, we need to go to
Admin | Structure | Block layout and move down to Primary. Here, we can now add our
property search form. We want to have it appear on every page; click Place block and then
look for a label that says Exposed form and then the view name and display name in it. In
this case, it is Exposed form: property_search-page_1 and click Place block.

Uncheck Display title and click Save block and then Save blocks. Now, we will have our
property search the form on every page, and when we search for a property, we will be
redirected to the listing page with our search results. If we enter part of our Postcode and
click Apply, we will see our search results change. But now that we have this, let's add a
price filter and some amenities to our form.

List Properties with Drupal

[166]

So, go back into the View and, under filter, click Add. Then, add Amenities, Amount,
Bathrooms, and Bedrooms. For each, we want to Expose this filter to visitors, to allow
them to change it and change the label for each. As we want to add multiple amenities,
select Allow multiple selections. Then, for Amount, we want to have an amount that is less
than or equal.

Fig 1.20: Property value

List Properties with Drupal

[167]

In Fig 1.20, we have the settings for our property amount. Once this is done, we will then
need to convert our Exposed form to use the contrib module Better Exposed
Filters (https:/​/​drupal. ​org/ ​project/ ​better_ ​exposed_ ​filters).

After this is done, go to the right column and look for Exposed form style and click on this.
A popup will then appear with a choice of form styles, and select Better Exposed Filters.

Next, there are some options to set for the form style. These include changing the Submit
button text, whether or not to have a reset button, show sort type. What we will change is
Amenities to use the Checkboxes/Radio buttons. This give the user a little bit more control
over their options.

Fig 1.21: Property exposed filter

In Fig 1.21, we can see our newly created form. Obviously, there is some styling that needs
to be done to this, but this form will now filter results and then, upon submitting the form,
will show the results on our /property-search.

https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters
https://drupal.org/project/better_exposed_filters

List Properties with Drupal

[168]

Now that we have done this, we can create the two other views we need, one that shows
four random other properties and another that shows. Go back to the View and click + Add;
then, select Block. Once this is done, we need to remove all the fields and filters. Once we
have done this, we will move to the middle column, click on Use pager, and select Display
a specified number of items.

Remember to change the For dropdown to only say This block (override); otherwise, we
will make the changes to all the view displays.

Once we select this and click Apply (this display), we will be taken to another set of
options.

Fig 1.22: Pager options

In Fig 1.22, we can see our options for how many items will be displayed. We can also
decide to skip the first set of items, so we don't just show the first four items. Then, once this
is done, we can save our block and attach to our page. What we want to do is attach it only
to the Property pages. To do this, we need to go to Admin | Structure | Block Layout.

Go to the content region, click Place block and then + Add custom block, and select the
block from the list. Select Content types to be Property and then click Save block.

List Properties with Drupal

[169]

Administer our properties
Now that we have properties set up, let's make a nice interface for our administrators to
use.

Once again, we will be using views to do this.

So, create a new view called Property management. However, for the first time, we will be
using admin in our path. Let this path be admin/property-management; this doesn't
actually do anything. We will set the access permissions for this page shortly.

Once we have set our path for this page, we will set the Displays format to Table and click
Save and edit.

Fig 1.23: Views UI

Inside the views UI, we can see in the center column, there is a setting called Access. What
this allows us to do is tell Drupal what rules must be met in order for this page to be
accessible.

List Properties with Drupal

[170]

There are two types of access rules for a View page display:

We can decide if we want to use a permission that either already that exists or1.
create our own.
We can use a User role.2.

For this, we will use a User role and select Administrator. Of course, we can come back
later on and add additional roles after we have created them.

Great! So, now we are starting to see our administration page for our Properties. By default,
as we only have Property content type content published, we will just see this. However,
later on, if we add more content types and publish content, we will see these too, though
being slightly confusing for a properly administration page. Let's filter down our content
type to be specifically for Property.

Add a content type from the filter criteria and select Property content type and click Apply.
Nothing will change in our Preview, but again, this is because we don't have any other
content.

Now, we need to add the exposed filters for our properties. Add Amenities and Monthly,
and expose both. Once this is done, we will change Exposed form style to Better Exposed
Filters. This time, however, we will check Autosubmit (this allows the form to resubmit
and reload the content without having to need the page to reload) and Hide submit button.

We will set our fields to be Checkboxes/Radio Buttons; after this, click Apply. If you
change the filter values, then inside Views, you will notice that nothing changes. This is
because Drupal restricts the Ajax JS loading to keep it less resource-intensive, especially for
larger requests.

If, however, you save the view and go directly to the path, you will see the page loads, and
if you change the filter values, then the content will update. Although this is a nice feature
to have on larger scale websites, this is not advisable, as it is very resource-intensive and
can cause the page to timeout.

List Properties with Drupal

[171]

From this page, we can go back into our view and add additional filters or columns of data
to appear on this page.

Fig 1.24: Additional fields added

Inside Fig 1.24, we can see additional fields available to the row of data that have been
added, and our results are only showing monthly properties. This now allows us to
administer our properties easier and filter them.

SEO-friendly paths
With Drupal, we can create our own paths for our content. However, this can become
laborious and inconsistent. In order to keep consistency, we will use the contrib module
Pathauto (https:/ ​/​drupal. ​org/ ​project/ ​pathauto). What this allows us to do is generate
paths based off certain rules using tokens and means we can perform bulk tasks for this
with ease. So, let's download this module. You will notice we will also need ctools (https:/
/​drupal.​org/​project/ ​ctools) and token (https:/ ​/​drupal. ​org/​project/ ​token) for this.

Once this is done, go to Admin | Configuration and, under Search and metadata, click
URL aliases. Then, from here, click on the tab Patterns. We will now create a pattern for our
property content type.

We can have multiple patterns for each entity type and we can filter this down even more.

https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/pathauto
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token
https://drupal.org/project/token

List Properties with Drupal

[172]

Fig 1.25: Pathauto pattern

Click + Add Pathauto pattern. In Fig 1.25, we can see the settings form for our pattern.
Select Pattern type as Content and then a Path pattern.

Fig 1.26: Available tokens

List Properties with Drupal

[173]

We can access tokens that can be used in our Path pattern by clicking on Browse available
tokens. This will then bring up a popup, as per Fig 1.26. We can access tokens to use that
can also be based off fields created in this content type. As we want to use the property title,
we will use the token [node:title]. This will also strip any spaces and make the path
lowercase with - in between words.

Fig 1.27: Completed pattern for property content type

In Fig 1.27, we can see the completed form. When we click Save, we will be taken back to
the Pattern type listing page. Now that we have saved this pattern, we can run a bulk
update for all our paths by clicking on the Bulk generate tab and then selecting which
entity type and then the type of URL aliases to generate. Then, upon clicking Update, all
these entities will be updated based off them having a pattern.

Fig 1.28: URL Path settings

List Properties with Drupal

[174]

If we go back to our first property and edit it, we will now see under URL PATH
SETTINGS that, by default, the field is disabled and the path is generated.

Summary
From this chapter, we have learned how to harness the power of the core and contrib
modules to build our website's functionality.

We have looked at Display Suite and how a simple website layout can be built as well as
adding new fields and views into our page, adding a view for our property photos using a
contrib module, and showing the properties photos based off a contextual filter.

We also spoke of using views to run the database queries, which in turn allows us to filter
our results based off criteria and then expose the form so our users can use the form and
change the search results in our view and implementing enhancements for the views filters.

Now in the next chapter we will move onto build an event website using mostly Drupal 8.x
core very similar to how most Drupalcon and Drupalcamp event websites are built, this is
also reflective of my event distribution called Cream (https:/ ​/ ​drupal. ​org/ ​projcet/
cream).

https://drupal.org/projcet/cream
https://drupal.org/projcet/cream
https://drupal.org/projcet/cream
https://drupal.org/projcet/cream
https://drupal.org/projcet/cream
https://drupal.org/projcet/cream
https://drupal.org/projcet/cream
https://drupal.org/projcet/cream
https://drupal.org/projcet/cream
https://drupal.org/projcet/cream

6
Express Your Event with Drupal

This is becoming more and more a request from clients to have an event website, where you
can manage and run your event all using a website.

This chapter is largely based off the Cream distribution (https:/ ​/​drupal. ​org/​project/
cream) and a simpler approach to how it was built. Cream is one of the distributions I
maintain. In fact, it runs off the second biggest Drupalcamp in the world. As it stated at the
beginning, I'm one of the organisers of Drupalcamp London and have been so since 2013.

What we found was important in an event is the following:

Session submissions
Session feedback (using Disqus)
Session management
Schedules
Sponsor signup and management
Social media integration (twitter, facebook)
Location of the venue
Selling tickets (we'll use Drupal Commerce for this)

https://drupal.org/project/cream
https://drupal.org/project/cream
https://drupal.org/project/cream
https://drupal.org/project/cream
https://drupal.org/project/cream
https://drupal.org/project/cream
https://drupal.org/project/cream
https://drupal.org/project/cream
https://drupal.org/project/cream
https://drupal.org/project/cream

Express Your Event with Drupal

[176]

Getting started
So, as per our previous chapters, we will use a clean Drupal install.

This time, let's install it using Minimal installation profile, and build up what we want from
a lighter setup.

Express Your Event with Drupal

[177]

Fig 1.0: Clean Minimal Drupal installation

Once we have set up and logged into Drupal, you will see that its look is plain (Fig 1.0) and
minimal, and it is a great installation profile for simple websites that don't require much
functionality.

This usually tends to be when we decouple Drupal or make it headless, which is another
popular term used. We will cover this in the last chapter.

You will also notice that there is no navigation. To get to our modules page, either go to
/admin/modules or click Administration and then click Extend.

Express Your Event with Drupal

[178]

It's so plain here. In fact, we only get 10 modules enabled. They are as follows:

Block
Database Logging
Field
Filter
Node
System
User
Text

These are modules needed for Drupal to run, and they cannot be disabled.

To continue the development of our events website, we need to enable the following:

Core:
Automated Cron
CKEditor
Contextual Links
Configuration Manager
Field UI
Path
Menu UI
Statistics
Syslog
Taxonomy
Text Editor
Toolbar
Update Manager
Views
Views UI

Express Your Event with Drupal

[179]

Field types:
Datetime
File
Options

If you enable a module and it has a dependency of another module, then a
message will show, as seen in the preceding image.

So, now, we have the modules we want enabled (note, these are just core modules)

Then, we can continue with setting up our event website. First off, let's just enable Seven
theme or Bootstrap.

Creating our user roles
For this website, we will create two new user roles:

Speaker: They will have access to create a session and edit their session
Organizer: They will have access to create event-specific content, assign sessions
to day, timeslots, and track skill and the status of the session.

Creating our session
Now that we have a better look, let's start by creating our content type for sessions.

Once here, add a new content type, calling it Session and the description A session
submitted by an authenticated user.

Express Your Event with Drupal

[180]

Change Title field label to Session name and then save this content type.

What we will need to do is create several taxonomies.

Time and date
We will create two taxonomies for this. Our first will be time and our second day. This is
how the sessions will be organised.

Room
We will have one taxonomy for this, where we will use the taxonomy name for the name of
our room. However, we can add additional fields to our room to have photos, capacity, and
any other fields we require.

Skill level
We will have a taxonomy set up for this that will show the type of skills needed. Again, this
will use the taxonomy name.

Tracks
We will have a taxonomy set up for this and keep it simple using the taxonomy name.

Now, we have our taxonomies created we can create our session content type. To do this,
we will need the following:

Session description
Time and date
Room
Track
Skills
Slides upload
Selection status

As our session will be categorized to sort in the schedule; we will use taxonomy references.
By default, there are some fields we don't want specific users to access. To restrict these
fields to a specific user role, we will use Field permissions (https:/ ​/​drupal. ​org/ ​project/
field_​permissions).

https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions
https://drupal.org/project/field_permissions

Express Your Event with Drupal

[181]

What this lets us do is allow certain user roles the ability to set whether the field can be
created, edited, or viewed. This is a simple way that means we don't need to do any custom
code to target these fields and it means that we can use it anywhere in our website and not
require additional development. Of course, the great power of the configuration manager in
Drupal 8 means all this configuration can be exported.

Now, the Field permissions is enabled. Let's start adding our fields for our session.

Entity reference fields
As we have created our taxonomy vocabularies, we will need to allow the values to be
referenced. The reasons we are doing it this way are as follows:

Once there is data in a list field type, we cannot change the key or value of this1.
without writing custom code. This is because all the information that is needed
by Drupal for the field is stored here and, once data exists for this field, then it
cannot be changed.
We want to categorize our content and have an interface that our admin users can2.
easily add values for and, by using entity reference types, we are doing what
relational databases do, which is have an ID, look up that ID elsewhere, and
access the data associated to that ID.

Now that we understand what we want to achieve, let's make it happen.

We want our session to have our referenced data, so let's create our Time of our session. As
we're using a taxonomy for this, we will only allow a list of times to be selected and restrict
the creation to our taxonomy page.

Create a new field of the type Taxonomy term and give it a label of Time. Then, leave the
Field settings as they are set and click the Save field settings. On the next page, we will
target the taxonomy vocabulary to reference.

For this, we want to select Time. Of course, if we wanted for some reason to choose
multiple, then we would have a selector to pick the vocabulary on our form, as all we are
doing is referencing an entity type and its bundle(s) to get a taxonomy id, so the value
stored in our field is the entity ID. In this case, it's our tid.

Now, create a field for the day using a taxonomy term for the type of reference, keeping the
number of values to 1 and then clicking Save field settings next. We want to make our
Date vocabulary available to the field reference. Click Save settings.

Express Your Event with Drupal

[182]

Repeat this for Room, Track, and Skills, and create a field that references these individual
taxonomy vocabularies, so each field is referencing its required vocabulary. Once this is
done, we will add some more fields, but these fields will be specific to the session.

Now, we will create a session status field, which will be a List (integer) field. We want to
add the following values: Accepted, Declined, and Pending.

Fig 1.1: Generated keys for list field

As we can see in Fig 1.1, Drupal has generated a numeric key for each value. When this type
of field is selected, the key will be stored as the value for the field.

We now need to add our file upload for the slides and we will be done with our session
field creation for the time being. Let's call our field slides and click Save field settings. We
will then add additional field extensions of pdf, docx, doc, ppt, pptx, and key.

Express Your Event with Drupal

[183]

Great stuff! We have the fields we require for our session creation, but currently, any
authenticated user can fill the session form and fields out that we might not want our
speakers to edit.

Restricting fields
If we wanted to hide fields from users, we could simply just drag them into the Disabled
fields on Manage form display and Manage display for our content type. However, we
want to do this for our user role of organizer.

To administer the field permissions, we need to edit the field, so let's start off by editing the
Day. This page will look familiar; however, you will notice there is a new section called
Field visibility and permissions.

There are three options for this:

Public: Anyone can edit and view this field
Private: Only author and admin can view this field and its value
Custom: Specific user roles can view, add, or edit the field value

Fig 1.2: Custom permission for field

Express Your Event with Drupal

[184]

In Fig 1.2, we can see a similar matrix to what we have on our global permissions page.

For this field, we only want the organizer to be able to do anything, so check all the
checkboxes in the ORGANIZER column. Once this is done, click Save settings.

We will repeat this step as we have done in Fig 1.3 for the other fields. Now, let's amend our
fields and how they are displayed inside our node edit form. Change all the field widgets
for our referenced fields to Select list.

Of course, if you want to change the layout of the form, you can enable Field group as we
previously did and split it up to how you want.

As we have now set some permissions for our Day field, which will only show to the
organizer the user role and allow them to add, edit, or delete the field value, we will create
a session to demonstrate this.

We will populate all our taxonomy vocabularies we have created with values that we want
to show on our session content type form.

Once we have done this in our session content type, we have our various fields that
reference our taxonomy vocabularies.

We can leave the taxonomy term reference fields empty because part of the organizer role is
to assign the taxonomies to the fields after the session submission has closed and they are
selecting the sessions.

By just filling in the Session name, Description, and for now, selecting Saturday as our
day, we can save our session and, as an anonymous user, view what the session has.

Fig 1.3: Session being viewed by anonymous user

Express Your Event with Drupal

[185]

In Fig 1.3, we can see the fields being shown are just the Session name and the Day that the
session is on. However, we cannot see any other fields. This is because the permissions of
this field are just for Day to display. For us to change this, we must go back to each field
and amend the permissions.

Fig 1.4: Field permission matrix

In Fig 1.4, we have set the field to be viewable by all the user roles but only the organizer
role can do any actions on the field.

However, for the fields that the author of the session can add to, which are as follows, will
be viewable by all user roles:

Body
Skills
Slides
Track

Express Your Event with Drupal

[186]

However, they will only be editable by the author and a speaker/admin.

Fig 1.5: Field permission matrix for user editable fields

In Fig 1.5, we can see the permissions we will need for a field that the author can modify.
This needs to be repeated for any other fields we want our author to modify.

Once we have done this, we need to populate our taxonomies and then we can view the
form as an admin user role. Of course, we will add all the user functionality in after this.

Go to Admin | Structure | Taxonomy and, for each taxonomy, populate with some data
that is relevant for each. For the time, set the names to be HH:MM--HH:MM. This way,
when we do our session schedule display later, we have our time all set out for us.

If we then go and create a session content type as an admin user, we will see all the fields
listed and the taxonomy reference fields, each populated with our taxonomies. However,
when we login as a new user, we will see a few fields.

Managing permissions
First, we need to set some permissions for our authenticated and speaker user roles. To do
this, we need to go to our user permissions page Admin | People | Permissions.

If you go down to Field Permissions, you will see all the fields that we changed when we
were editing our fields earlier on. All it was doing in the edit field section was making it
easier to manage the permissions, but if you change them here, then they will change the
field and how its settings are when the field is edited.

Express Your Event with Drupal

[187]

Next, we want our authenticated and speaker user roles to be able to create, edit, and delete
their sessions. In order to do this, we need to set permissions for our Session content type.

Fig 1.6: Session content type permissions

In Fig 1.6, we can see our permissions that we need to set for our content type. Of course,
we can allow sessions to be deleted by the author, but for now, let's leave this as it is. Once
this is done, head to the bottom and click Save permissions.

Now that our permissions are saved and updated, we need to create our users and user
journey.

User dashboard
As with any of our user interaction, once logged in, we need to allow for a way to navigate
around the website. So, what we will do is create a user dashboard that our logged in users
are redirected to. We will be using views to do this. The dashboard will show an add
session button at the top and then list any session beneath that this specific user has
submitted.

Express Your Event with Drupal

[188]

Now, let's go to views and create our new view. For this view, we will name it Dashboard,
giving it a path of /dashboard and setting the Display format to Table and click Save and
edit.

Once on our page display, let's add some more fields:

Edit
Session status
Authored on

Now, click Add and configure fields for our first field, change the label to Operation and
the Text to display to Edit, and click Apply and continue. For the next field, leave as the
default settings and click Apply.

Express Your Event with Drupal

[189]

Now, let's change the order of the fields order. To do this, click the down arrow that's next
to FIELDS and then click Rearrange; a popup will appear that shows a drag-able table.
Simply drag the Content: Session status Session status to be previous the Content: Link to
edit Content Operation and click Apply. Now, our table will be listed benath with 1 result.
Let's now add our link to the header of the view so that our users can submit a session.

Next to Header, click Add and then, with the popup, scroll down to Unfiltered text, select
it, and click Add and configure header.

Fig 1.8: View header configuration

Express Your Event with Drupal

[190]

In Fig 1.8, we can see some settings for our header, as follows:

Display even if view has no result: This sets our header as exactly that, a header.
Whereas, by default, it will hide when no results are returned.
User replacement tokens from the first row: This allows us to take a field value
from our fields section in the left column.
Content: This is where our content goes; this can be HTML or just plain text.
However, we can use a token inside here, which is available to us by seeing the
tokens we can use in AVAILABLE GLOBAL TOKEN REPLACEMENTS.
For now, we are going to ignore this and click Cancel. Going back to our Fields,
we are going to add a new field, click Add, select Custom text from the field list,
and click Add and configure fields.
Next, uncheck Create a label and check Exclude from display.
Moving down and inside Text, add Submit a session. Preceding this, click on
Rewrite Results and check Output this field as a custom link. Inside this,
change Link path to /add/node/session and click Apply.
So, now we have added a field that holds custom text for us to use in our header.
Let's now go back to Header and add our field. Same as before, select Global:
Unfiltered text.

Now, let's check Display even if view has no result and Use replacement tokens from the
first row. Once we have done, this we can see tokens to use from our fields.

Express Your Event with Drupal

[191]

Fig 1.9: Available field tokens

In Fig 1.9 we can see tokens available to us. Take the {{ nothing }} token, add it into the
Content field, and click Apply. What this will do is, for authors with a session, it will
appear previous the table and display their sessions submitted down. We then, however,
have another issue; if there are no sessions submitted, then nothing will show. To fix this,
we will add to No Results Behavior, click Add, and again, select Unfiltered text. Then,
inside the Content area, we will add a message and our token.

You have not submitted any sessions yet. Please {{ nothing }}.

And click Apply.

If you go down to the Preview, you will see a link that we just added and our sessions
listed. That's all great but it's showing the sessions for all our authors, which we don't want.

Express Your Event with Drupal

[192]

Next, we will add a contextual filter that only shows the submitted sessions by that author.
We have already covered this in a previous chapter, however, we will refresh our minds
now by redoing it.

On the far right-hand side column, inside Advanced, there is Contextual Filters. Click Add
and then a popup will appear. Look for ID, select the checkbox for that row, and click Add
and configure contextual filters.

Fig 1.10: Contextual filters for ID

Express Your Event with Drupal

[193]

Once again, inside our settings for our contextual filter in Fig 1.10, we are keeping the
argument basic by only providing a default value based off the logged in user, which will
only show content they have authored and only show that content to them. Now, click
Apply. As we are the author of the content, we will see it down.

The next step is to set this page to only be shown to the user roles of Authenticated Users.

In the middle column, under Access, click Permission, as we want to change this to a user
role.

If we wanted to create a custom permission, we would just do this inside
our module inside modulename.permissions.yml and it would appear
as a permission available to Drupal. Or you can add new roles through the
UI admin/people/roles.

So, if we click on Permission, then inside the popup, change the selection to Role and then
check Authenticated user.

What this means is if we were to access this page as an anonymous user, we would get
redirected to an Access Denied error page.

User creation
When a user visits our website, we want them to be able to register and, from the
registration process, we want them to be able to log in and straight away submit a session.

We will now look at setting out a user journey for after the user has registered. When the
user logs in, we want them to be redirected to our /dashboard page, which means we can
either use a contrib module (https:/ ​/​drupal. ​org/ ​project) or write some custom code
using hook_form_FORM_ID_alter and a submit handler.

https://www.drupal.org/project/user_default_page
https://www.drupal.org/project/user_default_page
https://www.drupal.org/project/user_default_page
https://www.drupal.org/project/user_default_page
https://www.drupal.org/project/user_default_page
https://www.drupal.org/project/user_default_page
https://www.drupal.org/project/user_default_page
https://www.drupal.org/project/user_default_page
https://www.drupal.org/project/user_default_page

Express Your Event with Drupal

[194]

Once this module is downloaded and enabled, go to Admin | Structure | User default
page.

Fig 1.11: User default page

As can be seen in Fig 1.11, our User default page has a familiar table, which will list all the
"rules" we require to redirect a specific user, whether it's a user role or uid. What we can do
with this in turn is also set a rule for where the user goes when they log in and then again
for when they log out, as well as the ability to display a message to the user.

For us to do this, we need to create this rule, so we need to click + Add User default page.
This will then take us to a configuration form for our rule, which we can now set out all the
configuration we need for our user journey.

Label: This is a way to know what the rule is
User/Role:

User/Roles: This allows multiple user roles to be chosen
Select user: This allows us to specify a specific user

Login:
Redirect to URL: The path the user is redirected to upon logging in
Message: The message that displays in our Message region

Logout:
Redirect to URL: The path the user is redirected to upon logging in
Message: The message that displays in our Message region

Now, to create our own rule that will redirect all the authenticated users (for now) to our
dashboard page we created earlier, do as follows:

Express Your Event with Drupal

[195]

Fig 1.12: User login configuration

Express Your Event with Drupal

[196]

In Fig 1.12, we have filled our configuration out for what we want Drupal to action upon
our users logging in.

So now, once our users logs or registers an account, they will be redirected to /dashboard.
They can now navigate from here to what parts of the website they need access to as an
authenticated user.

User fields
As we have now got our user redirection set up, we need to create our additional user
fields. For this, we will add the following fields (of course, this is your website, so you can
add whatever fields you want):

Drupal.org username

Company name
Position

This will allow us to show other attendees who we are. This usually is used for networking,
but it also lets us have analytics of our attendees.

Session submissions
When our authenticated user submits a session, we want to add them as a Speaker user
role.

To do this, we will be creating a new but simple module that will upon user submission, if
they have a user role only of the authenticated user and as they are logged in already, add a
new role to the user of the Speaker.

Start by creating a new module called event_session.

event_speaker.info.yml
name: Event speaker
description: Enhances the speaker user functionality.
core: 8.x
type: module
package: Event

Express Your Event with Drupal

[197]

event_speaker.module
<?php
/**
 * @file
 * Event speaker modifications.
 */

use Drupal\Core\Form\FormStateInterface;

/**
 * Implements hook_form_FORM_ID_alter().
 */
function event_speaker_form_node_session_form_alter(&$form,
FormStateInterface $form_state, $form_id)
{
 $form['actions']['submit']['#submit'][] =
 'event_speaker_add_role';
}

/**
 * Custom submit handler to add speaker role.
 */
function event_speaker_add_role(array $form, FormStateInterface
$form_state)
{
 $user = \Drupal::currentUser()->id();
 $user->addRole('Speaker');
}

Session management
Now, with our session being submitted successfully, we want to show all the sessions
submitted based off their status. To do this, we will need to go back to our dashboard view
we created, and add a new page display. Change the Display name to Admin session
management. Then, click on Path, change that to /admin/sessions, and click Apply.

Under Access, click on Authenticated user and change to Organizer.

Express Your Event with Drupal

[198]

Now, we want to tidy up Header and No Results Behavior, so click on Global: Unfiltered
text (Global: Unfiltered text) and make sure you change For to This page (override), as
otherwise, it will make this change to all our displays in this view.

Then, click Remove and repeat the same for No Results Behavior. After this is done, move
to Contextual filters and remove this filter, again ensuring your change For.

So, now we have done all this, let's add an exposed filter for to allow our organizer role to
filter our submitted sessions.

We will add two filters:

Session status
Track
Day
Again, changing For.

Now that these sessions are added, we need to add a new rule for our User default pages.
This time, we want to add a new.

First, let's start by creating our new role. Go to Admin | Structure | User default
page and click + Add User default page.
Set the User role to be Organizer and add the Login Redirect to URL path to be
/admin/sessions and click Save. We won't need to edit our previous rule
because our user role for Organizer is of a higher level.

Express Your Event with Drupal

[199]

Session display
We will create a simple view that shows our scheduled sessions in a grid in time order.

So, create a new view and give it a name of Schedule. Then, select Create a page, change
Display format to Grid of fields, and click Save and edit.

Now, we need to add some fields to our view:

Time (hidden)
Title
Room (hidden)

We will also want to show the authors the Drupal.org username. So, to do this, we need
to create a relationship to users entity type. When we do this, we have access to all the
components needed by user entity type.

To do this, click on Relationships in the far right column and click Add. Then, look for User
on the field list and click Apply. Now, we have access to our user entity type components.

Add our field for User and then add another field. In the search box, type the fieldname. In
this case, it's Drupal.org username and then select this.

Express Your Event with Drupal

[200]

Now, we can see our authors Drupal.org username. As we now have our fields listed,
we want to set out our display for the fields. Next, to Format, click on Settings and a popup
will appear.

Fig 1.13: Style options

Express Your Event with Drupal

[201]

In Fig 1.13, we can see that we have Grouping field Nr.1, Grouping field Nr.2, and
Grouping field Nr.3.

As we have three fields added, we can use these fields to group our rows. For ours, we only
want to group two rows. Once the fields are selected, click Apply.

Now, we can view our schedule in the following preview, we can then click Save and then
go to /schedule.

Fig 1.14: Schedule page

As can be seen in Fig 1.14, we can now see our Schedule page that shows our sessions
spread out by the times and rooms we created.

Express Your Event with Drupal

[202]

Session sharing
For this, we will use the contrib module ShareThis (https:/ ​/​drupal. ​org/ ​project/
sharethis). Once this is enabled, we need to go to Configuration, so go to Admin |
Configuration and then click on ShareThis.

Content type location configuration

Once at the bottom of the page, we need to set where our buttons will appear. Select Links
area and then select Full content.

This will now mean our share buttons will appear at the bottom of our content.

Attendees
We will create a simple view that shows our attendees in a grid, and we can search our
attendees by their name.

Create a new view called Attendees and change the Show Content to be Users. This is
because we want our view to have access to all our user entity fields.

Next, select Create a page and click Save and edit.

https://drupal.org/project/sharethis
https://drupal.org/project/sharethis
https://drupal.org/project/sharethis
https://drupal.org/project/sharethis
https://drupal.org/project/sharethis
https://drupal.org/project/sharethis
https://drupal.org/project/sharethis
https://drupal.org/project/sharethis
https://drupal.org/project/sharethis
https://drupal.org/project/sharethis

Express Your Event with Drupal

[203]

Now, we can add to our view. Notice that we don't need to use a relationship for our user
details because we are already accessing our user entity type. All we need to do now is add
the following:

User: Name

User: Drupal.org username

Now we just created a view that shows user data in a grid. If you want, you can add all
sorts of sorting and filters. But we will keep outs simple for this.

Summary
In this chapter, we have used our previous knowledge to build an event website using
mostly Drupal 8.x core but also a few contrib modules (far fewer than the previous Drupal
core versions) and one custom module.

We have looked at limiting field access to specific user roles. This will then give us greater
control on who can do what, but also, it allows us to have all the fields we require in our
entity types and not need to create a load of rules for them. This also means no need to use
hook_form_alter(), which is easier for website builders.

Next, we moved onto user registration, again using our previous knowledge but also
adding rules to what happens when a certain user logs in.

We added a custom rule in the code to our node creation form for our session submission so
that our user can be added as a Speaker role.

You will have noticed how powerful Drupal 8.x core is, and how little our modifications
have been. This allows us to build powerful websites and indeed systems very easily, and
then, if we need to enhance it any more, we can make our custom modules to extend
Drupal core.

Now we will move onto creating a website that shows videos and explores panels to
display our content, with different ways to display show content and show based off a
specific selection criteria.

7
Get Teaching with Drupal

These types of websites are appearing more and more, and are used to help people and
potentially make money.

The basic functionality of this website is to allow a way to teach others how to do certain
tasks, such as teaching someone how to fix a car.

In this chapter, we will build a website that allows a registered user to view videos of
tutorials. For the videos, we will use sessions from Drupalcamp London YouTube channel,
but of course, you can use your own.

You will be able to create taxonomies and tag videos to those taxonomies so that a list of
videos in those categories will show up.

We will look at using Panels (https:/ ​/​drupal. ​org/ ​project/ ​panels) to do our layouts on
our pages.

https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels
https://drupal.org/project/panels

Get Teaching with Drupal

[205]

Getting started
So once again, get a clean installation set up and let's get ready to go.

Throughout this chapter, there are a lot of aspects we have already
covered. If you are unsure of how to create a content type for example,
please review in a previous chapter.

Categorizing our Lessons
Before we can create our Lessons, we need to set up our taxonomy vocabulary, so let's go to
Taxonomy and create a new vocabulary called Lesson type.

Start by creating a new content type and let's call this Lesson. In our Lesson, we will want
to allow our administrator to add a Lesson video, description, and taxonomy.

Video embed
For our video, we will use a contrib module called Video Embed Field (https:/ ​/ ​drupal.
org/​project/​video_ ​embed_ ​field). Let's add this to our composer file.

Now that we have downloaded video_embed_field, let's enable it. What this does is it
creates a new field type that is available for any entity type.

Start off by adding a new field and then selecting Video Embed. Then, fill the label in as
Lesson video and click Save and continue. Then, on the next page, click Save and
continue and then we are shown the Settings for the field.

https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field
https://drupal.org/project/video_embed_field

Get Teaching with Drupal

[206]

Fig 1.0: Video embed field settings

In Fig 1.0, we can see we have the base 2 video providers. Of course, there are more
available as extra modules or you can create your own additional one as a module. Select
YouTube and click Save settings. Once we have done this, let's go straight to Manage
display and see what our Lesson video is giving us for our display.

Get Teaching with Drupal

[207]

By default, we get two choices of Format:

Thumbnail
Video

With thumbnail, we can choose a thumbnail for the video and link it to content or an
external URL. Ideally, we don't want to do this, as we want to display our video on our
page. So, instead of that, we will select Video.

What we now get is two settings:

Autoplay : This will play the video when our user role doesn't have the never
autoplay videos permission
Responsive video: This will make the video respond to the size of its container
and then the size of the screen

Now that we have our video field set up, let's quickly add a YouTube video link to a new
Lesson node and see what we get.

You will notice that we have a textfield for our video. All that needs to go here is the Share
URL that is on the YouTube video.

Fig 1.1: YouTube share video

Get Teaching with Drupal

[208]

Just copy and paste this into the Lesson video field and then click Save and keep
published.

Now, you can see we have our simple body content and video on display.

We can add our description field; this is going to be a long text field. Give this field a name
of Lesson plan and then, after this field is created, let's create our Lesson category
field, which is a Reference type field of taxonomy.

Inside the Settings for our Reference type field, we will select our taxonomy vocabulary of
Lesson type and then save the field.

So now that we have set up our fields for our Lesson, let's add some content.

Get Teaching with Drupal

[209]

Using Panels
Just like Display Suite, Panels allows website builders the ability to layout their content into
columns; it can change the layout based off certain rules.

For example, on a content page, I want to change the layout based off a certain user role.
This can all be done using Panels.

Panels is one of my favourite modules, as it makes setting out layouts so simple. We can, of
course, create our own layouts as well.

To get Panels, simply type composer require drupal/panels drupal/page_manager.

What we have just downloaded is the core Panels module and Page Manager.

Page Manager is what allows us to modify our contents layouts; by default, we have several
layouts in Panels, and of course, we can add more inside our theme.

We need to enable Panels, IPE, and Page Manager. You would also have noticed that Chaos
Tools (https:/​/​drupal. ​org/ ​project/ ​ctools) is also downloaded as it's a dependency of
panels. In the previous versions of Drupal, ctools was required by Views, Panels, Panelizer,
and some other popular contrib modules. We will go into more detail about panels and its
associated modules as we continue on in this chapter.

Now, we need to enable the following:

Panels
Panels IPE
Page Manager
Page Manager UI

Once we have enabled these Panels modules, we will create a two-column layout for our
Lessons.

To do this, we need to go to the Panels configuration. This is located inside Structure, so go
to Admin | Structure and then click on Pages.

So, once we are on the Pages configuration page, we can see Node view in our table. What
this is doing is now using Panels to control how our nodes are rendered. By default, it's
enabled and allows us to modify the output of our nodes. As we want to change the layout
of our Lesson, let's go and edit this. We then are shown another page of Settings with a side
column of menu items and a main content area.

https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools
https://drupal.org/project/ctools

Get Teaching with Drupal

[210]

As we want to change only the layout for our Lesson content type, we need to create a
variant of our Panel Settings. This will clone what we have already and allow us to target
our specific content types, assign different layouts, and show different content all based off
access-based rules we can configure.

Using variants
At the top left, click Add variant. We will then see a popup that has a configuration that we
can add our Settings for our new variant.

Label: This is what we will call our variant, and is what we are shown when
editing our panel
Type: This is the type of variant we will create
HTTP status code: This is based off a typical HTTP status code, for example: 404
page not found, 403 access denied, and 301 page redirect
Optional features: These features enhance our variant, and give us greater
control on access to our variant

As we want to create our Panel using the Page Manager, we will choose Panels from Type.
This will allow us to use the Panels functionality. We also want this variant to only be set
for our Lesson content type, so we will select Selection criteria. Now, click Save.

As we selected Selection criteria, we will be taken to configuration for this. There is a table
that lists all the criteria we have added. Preceding the table is a dropdown that has multiple
options that allows us to choose what type of criteria it is, as follows:

Content type
Node bundle
Current theme
Request path
User role

Get Teaching with Drupal

[211]

For our Lesson, we want to set the content type for Lesson. We will later add an additional
setting for our user to restrict the content.

Fig 1.2: Selection criteria

In Fig 1.2, with Content type selected from our dropdown, click Add Condition and then
we will see a popup box. We want to select our Lesson content type and click Save. Once it
adds to the table, click Next. We then have a drop-down list of Builder. Then, select
Standard and click Next.

What we now will see is another page of configuration, as we want to have our Panel
variant to show for our Lesson content type. This is the default page for Panels when
wanting to add block or fields to our panel.

For us to add a field from our content type, click + Add new block.

Get Teaching with Drupal

[212]

Fig 1.3: Add blocks and fields to panel

In Fig 1.3, we can see all the blocks we can add. Notice how, for our node type panel, we
have an entire section for Content. This allows us to add fields to our panel.

For now, let's just add our Lesson video field.

Get Teaching with Drupal

[213]

Once we click on the Lesson video link, we are then shown some more Settings:

Fig 1.4: Block field settings

Notice how, in Fig 1.4, we have our Manage fields settings from earlier and a Title and
Display Title from our block layout plugin. We also have a Region dropdown. However,
this is not for our themes regions. This is for our Panel regions.

Once we click Add block, we then see that it adds this into our region. However, if we
decide we want to move it down into another region, then we can just drag and drop it.

Now if we click Finish, we will see our original Settings page when we first started to
create our Panel, and Lesson will show now on the left column.

If we click on Lesson, we will see a menu open with some menu items:

General: This has the label for our variant and the type of Builder we are using.
This is what we set earlier on when we were creating our variant.
Contexts: This gives us extra conditions to utilize, for example, if we want to take
values from our user, then we can access these objects. It works like Relationships
in views.
Selection criteria: This was what we set previously.

Get Teaching with Drupal

[214]

Layout: This allows us to choose what layout we want to have for our variant.
Content: We can add our content and fields to our layout here.

If we click Update and save and then go to our node that we created, in this case, its
node/1, then we can see it's just our video field. This is because what we have done in
Panels the plugin has overridden the default node view plugin, and therefore, allows us to
view how it's been done in Panels.

Not only this, but it's only going to affect the selection criteria we chose that allows us to
add new content types and either use the core Node display or create a new one for our
content type and use Panels to do so.

Harnessing the power of variants
So now that we have our basic variant for the Lesson content type created, let's look at
changing this so different user roles see different variants.

We want to have our authenticated user see our content in its entirety and we want our
anonymous user to see different content, more of a teaser to what they can expect to see if
they register.

For us to do this, we need to edit our variant we have just created and add a new selection
criteria. So, click on our variant name and then click on Selection criteria. Now, we want to
add a new condition, so change Content Type to User Role. What this now will let us do
after clicking Add Condition is give us access to the conditions associated to the User entity
type.

Fig 1.5

Get Teaching with Drupal

[215]

In Fig 1.5, we can see the options for our User role criteria for this variant, as we want
authenticated users to see this only. Then, select Authenticated user and click Save.

Now that we have created this variant, it will only be used on the Lesson content type and
for authenticated users. However, for anonymous users, they will see the default display for
our content type.

We can, of course, use this technique to have different layouts and content
on display for different user roles.

But as we are using Panels, let's create our variants, so we have one for authenticated users
and anonymous users.

First, let's go back and change the label we set for our first variant. Click on Lesson on the
left-hand side column, then amend the label to say Lesson (Authenticated), and click
Update and save.

Now we have saved it, you will see on the left-hand side column, our new variant name of
Lesson (Authenticated).

As we have not got our variant done for authenticated users, let's add one for anonymous
users.

For ours, we are simply going to add some simple text saying, "You must be logged in to
view this."

Start by creating a new variant by clicking Add variant in the top right corner. This will
again bring up the pop up that has the variant configuration that we can add our Settings
for this new variant.

Fill out the details again as we previously did; this time, give it a label of Lesson
(Anonymous) a Type: Panels and Optional features: Selection criteria and click Next.

We again see our Selection criteria configuration page. We have two criterias that we need
to add for this variant. These are Content type: Lesson and User role: Anonymous. After
this is done, click Next, again select Builder: Standard, and click Next. To keep it simple,
we will just use a One column layout, but of course, feel free to do which ever layout you
want and click Next. Finally, we are on our Content page for our variant.

For now, we will leave this blank, as we need to create the content that is going to populate
this variant, which we will do next. Click Finish and then, on the next page, click Update
and save.

Get Teaching with Drupal

[216]

Open an incognito window on your browser and visit /node/1; this will show a blank
page, as per what we just created in our variant. Pretty cool eh! Remember there is no
custom code for this; we have done all this using Drupal 8.x core and Panels contrib
module!

So now that we have said how great Drupal is, let's go and add some content to our
anonymous user video page. To do this, we now have to use blocks for our content in
Panels. If you have used the previous versions of Panels, you would be familiar with Panes.
This has now been scrapped, as we have the power of the Plugin API and, therefore, can
fully utilize the Block plugin. It also means we can have different fields for out blocks, and
as well as this different layout for our block types. This will, of course, make our block types
consistent and will allow for even quicker builds.

Move to our Block layout, which is Admin | Structure | Block layout. Once here, click on
the Custom block library tab and create a basic block type called Basic and then click Add
custom block type. You will then be taken to a Settings page to create your block type; fill
this out and click Save. Now that we have created a block type (which we did in a previous
chapter), go back to the sub tab of Blocks and click Add custom block and then click Basic
from our list of block types. Now, enter a description of what we will call this block. After
this, enter in our Body something along the lines of "You must be logged in to see this
Lesson" and click Save.

So, now that we have created a new block with some basic content, let's go back to our
Panel and add this to our variant Admin | Structure | Pages and then click Edit. Now, once
here, let's edit out variant. Notice how we have two variants and in an alphabetical order.

Fig 1.6: Panels select block

Get Teaching with Drupal

[217]

From here, click on Content and then + Add new block. Then, look for a heading of custom
and under that is a list of our block, as can be seen in Fig 1.6.

Fig 1.7: Block settings

After clicking our block name in Fig 1.7, we now see some Settings that look familiar to our
block configuration and we have also seen this before in Fig 1.5, when we added our video
to the page in our previous variant.

Now that we have added this block, we can see that it's now inside our content region for
our panel and not our actual page; don't get this confused when you can't see a region from
your theme here.

So now, click Update and save, as we don't want to lose what we have done, however
Drupal temporarily does save the panel, but just be safe, and if you don't want to Update
and save you can just save and then update later.

Great! Now that we have our two variants, let's go look as an anonymous user. What we
should see is You must be logged in to view this. What this means is that we have now
created two variants that show for our different role types. To add another variant this is
just from a few bits of configuration; how awesome is this!

Get Teaching with Drupal

[218]

Organizing our Lessons
As we have now created our basic Lesson content type and are now showing two types of
panel displays to our user roles, let's go and add our taxonomy vocabulary we created.
Then, we will add some more videos and create a listing page for them.

So, go back to the Lesson content type and add a reference field to our taxonomy
vocabulary. Once this is done, create five to ten videos in different taxonomies and then we
will create a listing page for all our videos and a related video block.

Creating a listing of Lessons
With our videos, we want to allow the ability to filter and search for videos. By doing this it
will make looking for the Lesson our user wants to find a lot easier.

What we want to allow our user to do is filter by taxonomy term in our case Lesson type,
and then to filter it down further allow the user to use a free text search.

To do this, we need to create a view with a page display. We have previously covered how
to do a filter on nodes but we are going to group and add free text for this one.

Go to views, create a new view, and call it Available Lessons. We want to show our nodes,
so keep Content selected and the type of Lesson.

After this, select Create a page and give it a Page title of Available Lessons and a path
/lessons/all and click Save and edit.

With our view display, we can choose to either use a view mode from our content type, as
previously shown, or we can just keep it simple and use fields in the view. For this, we will
keep it simple and show just the Lesson title and the Lesson video thumbnail, which is
generated from the upload of the video.

Once we have added these fields, we want to then group them up based off the Lesson
type. To do this, we need to add our Lesson type field and then Exclude from display. We
now need to change our display format to Grid and click Settings.

Get Teaching with Drupal

[219]

Then, set Grouping field Nr.1 to Content: Lesson type and click Apply. Now, you will see
in preview our Lessons grouped by the type of Lesson.

Next, we want to add some exposed filters, so let's add Lesson type and some free text for
the title and the Lesson description. So, let's add our Body field to it and exclude it from the
view display. After doing this, in Filter Criteria, add a new filter called Global: Combine
fields filter and next we want to expose the filter.

Get Teaching with Drupal

[220]

Fig 1.8: Combine fields filter

Get Teaching with Drupal

[221]

In Fig 1.8, we can see that we can select multiple fields to search within our filter. This is
great because we can now search multiple fields inside our view. This is a simple approach
for searching content.

Fig 1.9: Exposed filters with Combine filters

In Fig 1.9, we can see our combine filter is now showing any nodes with great in; if we were
to change this to Lorem, we will see other results.

Remember we can have our exposed filters as a block, so it can appear
anywhere on our page.

As we are only wanting to show this page to authenticated users, change the Access to Role
and Authenticated user.

If we now go to view our page, we can see that the Lessons are grouped and we have two
exposed filters showing.

Now we have done this, let's move on to creating an Available Lessons in this category
block, which will appear on the panel variant for authenticated users.

To do this, go back to the view we created and add a new view display of Block, and
remove the filter criteria. But remember to change All displays to This block (override),
otherwise it will affect our page display.

Get Teaching with Drupal

[222]

So currently, we just have the same as our page, but without the exposed filters. However,
we only want to show Lessons that are in the same category as the current Lesson we're on.
So, we need to add a contextual filter, as the view needs to know some information from
our entity in order to work out the relationship between our entities.

In contextual filters on the right-hand side column, click Add and then look for Content:
Has a taxonomy term ID.

Fig 1.10: Contextual filters

Get Teaching with Drupal

[223]

In Fig 1.10, we can see the settings needed for our contextual filter. We want to provide a
default value based off the ID, so we need to get the Taxonomy term ID from URL and
then we want to show related nodes for this term. We then want to add some additional
validation.

Fig 1.11: Contextual filters continued.

Get Teaching with Drupal

[224]

Moving down and into Fig 1.11, we can see we want to filter down our contextual filter so
that it is only for our Lesson type vocabulary. Once we have done this, click Apply (this
display). Again, we won't see anything in our preview; this is because we have no
argument in the URL to obtain our information from.

So, enter 1 and click Update preview.

We should see videos associated to that term ID. Now that this is done, we need to add to
our Lesson content type, so we need to go back into Panels and edit our variant for Lesson
(Authenticated) and then add the block we have just created anywhere on our content part
of the variant.

Once this is done, click Save and update and then go to /node/1, and you will see our
Available Lessons that is showing the Lesson related to our Lesson type.

Summary
In this chapter, we have used what we have already learned with views to create some
simple filtering displays that allowed us to filter our content that we output into a grid and
gave the ability to upload YouTube videos into our content.

We have used a contrib module called Panels and looked at how we can control user access
and show different displays to users based off their user role, all without touching one line
of code.

Finally in our last chapter we will look at decoupling Drupal and using it just to store our
content, so that we can output it to a static HTML frontend.

8
Go Static with Drupal

Becoming increasingly popular, we are seeing websites and applications using a CMS like
Drupal as a content management framework that outputs JSON to a static frontend using
popular JavaScript Framework, such as Angular, Node, or React. For this chapter, we will
look at Drupal's built-in REST API and how we can send data from Drupal to a frontend
framework.

This kind of functionality is becoming used more for applications, but a lot of websites are
using this to and harnessing the power of Drupal as a content management system.

We will look at using Drupal's built-in REST API and allowing our frontend to read the
data and output it by covering the following topics:

Creating our content type
Enabling the Drupal core modules needed
Creating our view to show our content output
Creating our frontend using React

This chapter will get hands on with React -
https://facebook.github.io/react/.

Getting started
In order for us to start, we require to have a clean Drupal 8.x installation.

Once this is set up, we will create our content type. For this chapter, we want to show some
cars on our frontend.

https://facebook.github.io/react/

Go Static with Drupal

[226]

In Drupal 8, we have the ability to use REST within Drupal core this means we don't need
to develop this functionality as its available within Drupal 8 core just by enabling a few core
modules, which we will cover in this chapter.

What is REST?
When we create a web service, we want to allow applications to access that data using a
web service. REST stands for Representational State Transfer and it is a way that allows a
request over HTTP to be actioned, whether it's GET, POST, PUT, or DELETE.

An example of this is we have a lot of data exposed using REST and it is output to a URL
into a JSON format. We can access that data by going to a URL we create; these are known
as endpoints and can be any type of URL, for example, /api/cars. What we will see is
data from our system formatted in JSON. We can now read this data and use it how we
want.

How does it work in Drupal?
Inside Drupal, we can use the REST API to take our content and output it in a format that
can be read.

First, we need to enable some modules:

HAL: Serializes entities using Hypertext Application Language.
HTTP Basic Authentication: Provides the HTTP Basic authentication provider.
RESTful Web Services: Exposes entities and other resources as RESTful web
API.
Serialization: Provides a service for (de)serializing data to/from formats, such as
JSON and XML.

Now that these modules are enabled, we will be able to create our content. So, create a new
content type called cars and add the following fields:

Car photo (image)
Manufacturer (list)
Model (textfield)
Year (textfield)

Once these fields have been created, start to add some content; let's add two cars for now.

Go Static with Drupal

[227]

So, we now have our content. We could, of course, just build this on here, but for this
chapter, we are going to use Drupal for its backend content management functionality.

Exposing Drupal using REST API
Now that we have created out two cars, we need to make them available as an endpoint. To
do this is really easy in Drupal 8. We will create a new view just for our cars feed.

So, go to views and create a new view, as shown:

Fig 1.0: Create a view

Go Static with Drupal

[228]

You will notice there is a new setting at the bottom called REST EXPORT SETTINGS; this
is what we are going to use to create our endpoint.

Now, give your view a name of Cars feed and select Content to be of type Cars. Select
Provide a REST export and then give it a path; this is the path that will have our data on.
Let's use /api/cars and click Save and edit.

Fig 1.1: View display for REST

You will notice some differences to our view display settings in Fig 1.1. We only have the
option to have our Format to be Serializer. This is because we need our data to be
serialized. We have some settings for this format.

Go Static with Drupal

[229]

Fig 1.2: REST export format style settings

In Fig 1.2, we can see there are some settings that allow us to modify how our data is built.
By default, the data is compiled of the entire entity object, but this can be modified to only
show certain fields.

We have two formats available to us, json and xml. First let's look at our default data in the
JSON format. This is without making any amends to the fields used.

Fig 1.3: JSON output of node

Go Static with Drupal

[230]

As we can see, in Fig 1.3, the entire node is output.

So, when we access our endpoint, we will look for the data we need and return it. However,
we want to keep this as simple as possible and output just the fields we need.

So, go to Format and change Entity to Fields.

Fig 1.4: Field settings

Notice, however, in Fig 1.4, that we have the option to add an alias. What this will do is
instead of outputting the field name in out endpoint, we will be able to add our own label
to make our lives easier. We can also clean up our output, as follows:

[{"name":"\u003Ca href=\u0022\/node\/1\u0022
hreflang=\u0022en\u0022\u003EAudi A5\u003C\/a\u003E"}]

Instead of this, we will get the following:

[{"name":"Audi A5"}]

Our second option is a lot cleaner, and as we don't want to link back to our website, we
don't need the URL.

For now, let's leave this as it is and add our aliases later on after we have added our fields.

Go Static with Drupal

[231]

Fig 1.5: Field aliases

So now that we have added our fields aliases we can now save and view our data being output in our endpoint.

Fig 1.7: Cars endpoint

By default, we will see our cars from the feed, but what if we want to see a specific car by its
ID?

Go Static with Drupal

[232]

Filter endpoint dynamically
If we want to allow our feed to be filtered based off arguments, then we need to use
contextual filters. For this, we will filter based off an ID. But, of course, you can add more
contextual filters.

So, let's add an ID field to our contextual filters. What we want to do is show all our cars by
default. However, if we add an argument, we will then just see the car with that ID.

Fig 1.8: Contextual filters for car id

Go Static with Drupal

[233]

In Fig 1.8, we can see some settings for our car node ID. What we want to do is give the
option of filtering by car ID. The top part allows us to filter based off ID, which will only
show the cars based off that ID, for example, /api/cars/1 will return our car with that
node ID.

However, if there is no car ID, then all our results will show in our endpoint.

Awesome stuff, so we now have our endpoint exposing our car nodes in a JSON format.
Again, we have done no custom code whatsoever. In the face, we have no contrib modules
at all. That is just how powerful Drupal 8 is in core.

So, as we have our data, we want to now create our frontend website that will show our
cars on the website.

Let's go React
For this next part, we will be writing a fair bit of custom code. This is not Drupal code
related it is using React JS. However, there is a prebuilt solution called Contenta CMS,
which uses Drupal and some custom modules. It has a step-by-step guide on how to set a
website up with it on Angular, Elm, Ember, Ionic, React, and Vue.js.

At the time of writing this, there was no React example.

Getting ready for React
So, our React-based website will be an entirely separate website to our Drupal installation.

We won't be learning how to write React code in this; we will be using an example of some
ReactJS that I have written for this. It will be explained briefly but we won't get into too
much details, as this would be covered in another book.

Creating our frontend
Like any frontend application, we need to create a basic HTML page and this will the
contain our JavaScript.

Go Static with Drupal

[234]

So, in another directory, let's create one for our React frontend to go into.

Let's call ours react_frontend.

Once we have created this directory, we need to create a basic HTML file:

index.html

 <!DOCTYPE html>
 <html>
 <head lang="en">
 <meta charset="UTF-8">
 <title>Our cars</title>
 </head>
 <body>
 <div id="app"/>
 </body>
 </html>

Notice, however, our code is very basic indeed, as React will generate from our view ID in
our div all our markup, as after all, it is JavaScript.

We also have only used <div id="app"/>; this is because our JavaScript will modify this
HTML attribute based off what we put inside our code.

Next, we need to add out script tags inside <head>:

<script src="https://npmcdn.com/react@15.3.1/dist/react.js"></script>
 <script
src="https://npmcdn.com/react-dom@15.3.1/dist/react-dom.js"></script>
 <script src="https://unpkg.com/axios/dist/axios.min.js"></script>
 <script src="https://npmcdn.com/jquery@3.1.0/dist/jquery.min.js"></script>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.24/browser.min.j
s"></script>

So, what we are now doing is allowing our HTML to have access to the ReactJS library and
any additional components needed.

Of course, there is a much more complicated way to do this using npm and
https://facebook.github.io/react/ will help you with it using a step-by-step guide.

Now that we have added our basic HTML and ReactJS, we need to write some React to get
this to work. To do this, we will create a new js file called app.js inside a directory called
js.

https://facebook.github.io/react/

Go Static with Drupal

[235]

Now, add the following:

app.js

 class App extends React.Component {

 constructor() {
 super();
 this.state = {
 data: []
 }
 },
 componentDidMount() {
 var t = this;
 this.serverRequest = axios.get(this.props.source)
 .then(function(event) {
 t.setState({
 data: event.data
 });
 })
 },
 componentWillUnmount() {
 this.serverRequest.abort();
 },
 render() {
 var cars = []
 this.state.data.forEach(item => {
 cars.push(<h3 className="carname">
 {item.name[0].value}</h3>);
 })
 return (
 <div className="container">
 <div className="row">
 <div className="col-md-12">
 <h1 className="title">All our cars</h1>
 {cars}
 </div>
 </div>
 </div>
);
 }
 }

 ReactDOM.render(
 <App source="https://chapter8.dd:8443/api/cars" />,
 document.getElementById('app')
);

Go Static with Drupal

[236]

Now, save this and then refresh your browser, and you should see our two car names listed:

Fig 1.9: Output from Drupal JSON

As we can see, in Fig 1.9, we have our car names listed.

The JavaScript gets the JSON data and puts it into an array. After this, it then loops through
the data and gets the value for the name, in our case, name is the car brand and model.
From here, it is then passed to be rendered and then it is output based off the REST API
endpoint location.

Summary
Congratulations! You have just made Drupal generate data into JSON format that allows
third-party systems to retrieve this data, and in our case, display the data in our frontend
made in React.

Now, you can amend this to allow additional fields and amend how the styling of the page
is, but this would require a more in-depth look at React.

As data is added to our feed, our output in our frontend will change and there will be
nothing that is required to update our rendered content.

There are many alternatives to using React and this can either be achieved using jQuery
library or there is a fantastic Drupal distribution called Contenta CMS (http:/ ​/ ​www.
contentacms.​org). I really recommend this as a great simple solution to.

There's more in core
Just as we wrap up this book, we know Drupal has REST API built into core, but what if we
want to retrieve data?

Well, in Drupal, there are ways that we can do this the other way around, where by Drupal
is reveiving data from an endpoint.

http://www.contentacms.org
http://www.contentacms.org
http://www.contentacms.org
http://www.contentacms.org
http://www.contentacms.org
http://www.contentacms.org
http://www.contentacms.org
http://www.contentacms.org

Go Static with Drupal

[237]

This again is all built into core and uses
Symfony\Component\HttpFoundation\Request;, which is built into Drupal 8 core.

And all this is available to be read in more detail in other Drupal 8 books.

So, if you fancy learning more on Drupal, then these books by other Packt authors are
highly recommended. Especially the Drupal 8 Cookbook, which has been written by a very
good friend of mine, Matt Glaman.

One last thing
With Drupal being an open source project, it constantly requires some love. So, on
Drupal.org, there is an issue queue that lists any current issues with Drupal. These can
range from bugs or feature requests.

Go Static with Drupal

[238]

Obviously, I don't expect you to tackle a really complicated issue straight away, however,
there are other issues that can be fixed like document amends, for example, there may be a
request to amend some text in the code; this is a great way to get contributing to Drupal.

There is regular communication in Drupal online.
We have irc channel(s)--#drupal-support, #drupal-contribute, and
#drupalmentoring, and then on top of that, we also have a slack workspace,
which is drupal.slack.com, and it offers channels for Drupal-related
questions and contribution help.

https://www.drupal.org/slack

Index

A
Acquia DevDesktop
 reference link 9
Amenities 143
annotations 91
attendees 202

B
basic site
 Drupal core structure 12
 modules, downloading 13
 obtaining 12
 themes, downloading 13
 themes, using 14
Better Exposed Filters
 reference link 167
Block Entities Are Nodes (BEAN)
 about 39
 reference link 39
block
 adding 41, 42
 annotations 91
 Block admin UI 40
 creating 90
 using 39
 working 40
Bootstrap theme
 URL, for downloading 14
bundled PHP
 reference link 9

C
Chaos Tools
 reference link 209
cleaning up 141
comments

 about 54
 attaching 55
 fields, adding 54
 moderation 57
 types 54
 working 54
composer
 about 115
 URL, for installation 115
 used, with Drupal 115
content access
 about 66
 reference link 66
content
 block, adding to Post content type 51
 contextual filters, used 48
 custom fields, adding to display 154
 Display Suite 145
 editing 68
 enhancing 145
 entity reference field, adding 44
 exposed filters 61
 filtering 61
 listing 61
 news posts, creating 44
 previewing 49
 related news block, creating 46
 relating 44
 relationships, used 50
 restricted content, adding to views 67
 restricting, by role 65
 working 46
Contenta CMS 233
ctools
 about 171
 reference link 171
custom fields

[240]

 adding, to display 154

D
dashboard
 creating 80
 view field settings 82
development tools
 Homebrew 8
 iTerm 8
 Oh My Zsh 8
Display Suite 145
Disqus
 reference link 54
Docker
 reference link 9
donate.module 100
donation progress bar
 about 100
 DonateRangeBlock.php 101
 donation_progressinfo.yml 100
Drupal 8.x
 exposing, REST API used 227
 filter endpoint dynamically 232
 HAL 226
 HTTP Basic Authentication 226
 installation, setting up 225
 React 233
 Representational State Transfer (REST) 226
 RESTful Web Services 226
 serialization 226
 working 226
Drupal Console 10
Drupal core structure 12
Drupal, registration types
 reference link 119
Drupal
 about 16, 114, 176
 attendees 202
 cleaning up 141
 composer 115
 content, enhancing 144
 installation 140
 installation, setting up 205
 installing 10
 job search 139

 job vacancy, creating 134
 lessons, categorizing 205
 need for 118
 obtaining 15
 permissions, managing 186
 properties, administering 169
 property search 161
 property, adding 143
 recruiter, permission set 137
 restricting fields 183
 SEO-friendly paths 171
 session display 199
 session management 197
 session submissions 196
 session, creating 179
 user creation 193
 user dashboard 187
 user fields 196
 user registration pages, creating 121
 user roles, creating 179
 video embed 205
 Webform, used 132
Drush 10

E
emails
 donate.module 100
event_session 196

F
field group
 reference link 125
Field Permissions 186
field permissions
 about 180
 reference link 180
Field visibility and permissions 183
Fieldset element 134
Flex Slider
 reference link 151
Form API
 reference link 89
frontend
 CSS, adding 70
 Javascript, adding 70

[241]

fundraising content
 about 73
 dashboard, creating 80
 donation progress bar 100
 emails, sending 99
 fundraising page, building 78
 fundraising pages, creating 74
 installation, preparing 74
 module, working 85
 node programmatically, creating 95
 plugin, theming 105
 user content, displaying 84
 users, allowing to donate 84
 users, registering 75
fundraising page
 building 78
 creating 74
 donation content type 74
 fundraising content type 75

G
Git, for Windows
 URL, for installation 6

H
Hypertext Application Language (HAL) 226

I
iTerm2
 reference link 8

J
Job application Fieldset item 134
job search 139
job vacancy
 about 134
 jobs module 135
 webform, creating 137
jobs module
 about 135
 jobs.info.yml 136
 jobs.module 136

L
lessons
 categorizing 205
 listing, creating 218
 organizing 218
List (integer) field 182
local development environment
 Acquia DevDesktop 9
 basic site, obtaining 12
 Docker 9
 Drupal Console 10
 Drupal, installing 10
 Drupal, obtaining 15
 Drush 10
 macOS, setting up 7
 Native 9
 setting up 6, 8
 terminology 10
 Vagrant 9
 Windows, setting up 6

M
macOS
 development tools 7
 Secure Socket Shell (SSH) 7
moderation
 about 57
 permissions 59
module
 creating 85
 downloading 13
 structure 85

N
node programmatically
 creating 95

O
Oh My Zsh
 reference link 8

P
packagist
 URL 115

[242]

Panels
 lessons, organizing 218
 power of variants, harnessing 214
 using 209
panels
 variants, used 210
pathauto
 about 31, 171
 reference link 171
Pixabay
 URL 151
plugin
 donate-range.html.twig 106, 111
 DonateForm.php 112
 DonateRangeBlock.php 105, 108
 finishing off 108
 theming 105
Post content type
 blocks, using 39
 comments, adding 54
 content, creating 29
 content, displaying with views 35
 content, filtering 61
 content, listing 61
 content, relating 44
 creating 18
 display, creating 52
 fields, adding 21, 28
 fields, adding to vocabulary 27
 fields, creating 20
 frontend, moving 69
 taxonomy vocabulary, adding 24
 view modes, creating 32
 views 37
property search
 about 161, 164
 dummy content, generating 161
 exposed filters, as block 165
property
 adding 143
Public files 27

R
React
 about 233

 frontend, creating 233
recruiter
 dashboards 138
 permissions set 137
Representational State Transfer (REST) 226
required
 donate.info.yml 85
restricting fields 183

S
Secure Socket Shell (SSH) 7
SEO-friendly paths 171
session display
 session sharing 202
session submissions
 about 196
 event_speaker.info.yml 196
 event_speaker.module 196
session
 creating 179
 entity reference fields 181
 room 180
 skill level 180
 time and date 180
 tracks 180

T
terminology
 about 10
 content type 10
 modules 10
 node 10
 taxonomy 10
 themes 10
themes
 blueprint.info.yml 15
 downloading 13
 using 14
token
 about 171
 reference link 132, 171
Twig 69

U
user creation 193
user dashboard 187
user fields 196
user registration pages
 candidate role 123
 creating 121
user roles
 creating 179
users
 account settings 76
 allowing, to donate 84
 authenticated users 78
 block, creating 90
 content, displaying 84
 creating 77
 custom module, writing 84
 donate.info.yml 85
 module, creating 85
 need for 86
 PHP class, creating 87

 registering 75

V
Video embed 205
Video Embed Field
 about 205
 reference link 205
view modes
 content 33
 modifying 33
 need for 32
 post, customizing 35
 related content 33
 teaser 33
VirtualBox
 reference link 9

W
Webform
 creating 137
 reference link 132
 using 132

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.Packtpub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction and Getting Set Up
	Setting up for local development
	Setting up on Windows
	Setting up on macOS
	What is SSH?
	Our great development tools for macOS
	Homebrew
	iTerm
	Oh My Zsh

	Setting up our local development environment
	Native
	Acquia DevDesktop
	Vagrant
	Docker

	Terminology
	Drush and Drupal Console
	Installing Drupal
	Getting our basic site
	Drupal core structure
	Downloading modules and themes
	Using themes
	blueprint.info.yml

	Getting involved with Drupal
	Let's get Drupal started!

	Chapter 2: Telling Your Own Story with Drupal
	Creating the Post content type
	Creating our fields
	Adding our fields
	Adding taxonomy vocabulary
	Adding fields to our vocabulary
	Adding more fields
	Creating content
	Creating our view modes
	What we will need to do
	How's it done
	Customizing our Post

	Displaying content with views
	Understanding views
	Using blocks a brief overview
	Block admin UI
	How it's done
	Adding our block
	Adding a block

	Relating content
	What we will do
	Adding our entity reference field
	How it works
	Creating a related news block
	Using Contextual filters
	Previewing content
	Using relationships to show content
	Adding our new block to our Post content type

	Making our display look better
	Adding comments
	How do comments work
	Comment types
	What this means for us
	Attaching comments
	Moderation
	Permissions

	Listing and filtering content
	Exposed filters

	Restricting content by role
	How to do it
	Adding restricted content to views

	Editing content
	Moving to the frontend
	Adding CSS and JavaScript

	Summary

	Get Fundraising with Chapter 3: Drupal
	What will we learn?
	Getting started
	Creating our fundraising pages
	Donation content type
	Fundraising content type

	Registering users
	Account settings

	Creating our users
	Authenticated users

	Building the fundraising page
	Creating a dashboard
	Understanding view field settings

	Showing user's their content
	Allowing users to donate
	What we will do
	How modules work
	Structure of a module

	Creating our module
	donate.info.yml
	What we need
	How we do it
	Creating a block
	Annotations

	Creating a node programmatically
	$form state object

	Sending emails
	donate.module

	Donation progress bar
	donation_progressinfo.yml
	DonateRangeBlock.php
	DonateRangeBlock.php

	Theming our plugin
	DonateRangeBlock.php
	donate-range.html.twig
	Finishing off
	DonateRangeBlock.php
	donate-range.html.twig
	DonateForm.php

	Chapter 4: Recruit Using Drupal
	Getting started
	What is Composer?
	Using Composer with Drupal

	What we need
	Creating user registration pages
	Candidate role

	Using Webform
	Creating our job
	Jobs module
	jobs.info.yml
	jobs.module

	What we have done
	Almost there
	Dashboards for Recruiter

	Job search

	Summary

	Chapter 5: List Properties with Drupal
	Getting prepared
	Cleaning up
	Adding our Property
	Enhancing our content
	Display Suite

	Adding custom fields to our display
	Property search
	Generate dummy content
	Property search
	Exposed filters as a block

	Administer our properties
	SEO-friendly paths

	Summary

	Chapter 6: Express Your Event with Drupal
	Getting started
	Creating our user roles
	Creating our session
	Time and date
	Room
	Skill level
	Tracks
	Entity reference fields

	Restricting fields
	Managing permissions
	User dashboard
	User creation
	User fields
	Session submissions
	event_speaker.info.yml
	event_speaker.module

	Session management
	Session display
	Session sharing

	Attendees

	Summary

	Chapter 7: Get Teaching with Drupal
	Getting started
	Categorizing our Lessons
	Video embed
	Using Panels
	Using variants
	Harnessing the power of variants

	Organizing our Lessons
	Creating a listing of Lessons

	Summary

	Chapter 8: Go Static with Drupal
	Getting started
	What is REST?
	How does it work in Drupal?
	Exposing Drupal using REST API
	Filter endpoint dynamically

	Let's go React
	Getting ready for React
	Creating our frontend

	Summary
	There's more in core
	One last thing

	Index

