

Drupal 8 Configuration
Management

Make the most of Drupal 8's coolest new feature—the
Configuration Management system

Stefan Borchert

Anja Schirwinski

BIRMINGHAM - MUMBAI

Drupal 8 Configuration Management

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1130315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-520-3

www.packtpub.com

Credits

Authors
Stefan Borchert

Anja Schirwinski

Reviewers
Greg Dunlap

Johannes Haseitl

Thomas Keitel

Jose A. Reyero

Dev Saran

Commissioning Editor
Julian Ursell

Acquisition Editor
Kevin Colaco

Content Development Editor
Shubhangi Dhamgaye

Technical Editor
Indrajit A. Das

Copy Editors
Alfida Paiva

Adithi Shetty

Project Coordinator
Harshal Ved

Proofreaders
Stephen Copestake

Maria Gould

Indexer
Priya Sane

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Authors

Stefan Borchert has been working with Drupal for more than 9 years. In the
community, he is better known by his nickname stBorchert. He contributes to Drupal
by writing contributed modules, helping with Drupal Core, and providing help to new
contributors as a project application review administrator. He is a founding partner
and senior Drupal developer at undpaul, a Drupal Digital Agency based in Germany.

Anja Schirwinski got to know Drupal more than 8 years ago as a themer/site
builder and went on to build several very different web applications with it for
the company she worked for. She has been a participating member of the Drupal
community since 2007, known by the nickname aschiwi.

From 2009-2010, Anja was the deputy chair of the Drupal Initiative, a registered
association that promotes Drupal in Germany. She is the cofounder and CEO of
undpaul, one of the first Drupal-only digital agencies in Germany. She founded the
company in 2010 with friends she met at a local Drupal user group.

About the Reviewer

Thomas Keitel, also known as hctom on the Web, started with computers as a
kid using an Amiga 500 for his first graphic designs. When technology evolved, he
became more and more interested in learning how to program and design for the
Web. He completed his training as a digital media designer in 2003, focusing on a
combination of development and design. Being more of a self-learner, he taught
himself several web programming languages before finally settling for PHP. This got
him started with Drupal in 2007. Over the years, he built a wide range of Drupal sites
from small corporate sites to big community and content portals.

In August 2014, he started working for undpaul, one of Germany's oldest
Drupal-only digital agencies.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[i]

Table of Contents
Preface v
Chapter 1: Understanding Configuration Management 1

An introduction to Configuration Management 1
Configuration 2
Content 2
Session 2
State 2

Why manage configuration? 2
Tracking configuration changes 3

Some version control best practices 4
Using a project management tool 4
Meaningful commit messages 5
Meaningful branches 6

A look back at Drupal 7 6
Manual Configuration Management 7
The hook_install()/hook_update_N() function 7
The Features module 8

What is the Features module? 8
Creating a Feature 10
The settings to export with Features 11
The settings to not export with Features 12

The Configuration Management module 12
Storing configuration variables in settings.php 13

How Drupal 8 takes care of Configuration Management 14
How to start using Configuration Management 14

Using version control to keep track of configuration changes 15
Types of configuration 16
Configuration storage and deploying between environments 17

Summary 17

Table of Contents

[ii]

Chapter 2: Configuration Management for Administrators 19
Why do we want to manage our configuration? 19

Making a clone of your site 20
The Configuration Management interface 21

The interface options 21
Single import/export 26

Summary 27
Chapter 3: Drupal 8's Take on Configuration Management 29

The config directory 29
A simple configuration example 30

Config and schema files – what are they and what are they used for? 31
Config files 32
Schema files 34

Learning the difference between active and staging directories 35
Changing the active configuration storage 35
Changing the storage location of the active and staging directories 37

Simple configuration versus configuration entities 39
Simple configuration 39
Configuration entities 39

Summary 40
Chapter 4: The Configuration Management API 41

A simple configuration API 41
Working with configuration data 41

Retrieving the configuration object 42
Getting configuration values 43
Setting configuration values 44
Removing configuration values 45
Best practices 46

Getting notified about configuration changes 47
Overriding the configuration 50

Global overrides 50
Language overrides 52
Module overrides 54
Avoiding overrides 57

Creating configuration entity types 58
Adding the basics 58
Taking control of your data 61

Summary 61
Chapter 5: The Anatomy of Schema Files 63

What are schema files in Drupal? 63
The structure of a schema file 64

Table of Contents

[iii]

Properties 65
Data types 66

Reusing data types 67
Making data translatable 69

Dynamic type references 69
The element-key references 70
The sub-key references 71
The parent-key references 71

Coding standards 72
The PHP API 73
Summary 75

Chapter 6: Adding Configuration Management to Your Module 77
The default configuration 77

An example 78
Defining and using your own configuration 79

Setting your configuration file 79
Custom configuration entity types 80
Using the configuration 83
Creating a configuration form 83

Configuration forms in Drupal 7 84
Creating configuration forms in Drupal 8 85

Summary 91
Chapter 7: Upgrading Your Drupal 7 Variables to the
Drupal 8 Configuration 93

Upgrading your variables 93
Simple configuration 94
Complex configuration objects 97
Upgrading to the new state system 98

Providing an upgrade path for your variables 99
Migrating your data 99

Source plugins 101
Process plugins 101
Destination plugins 103
Running the migration 104

Summary 105
Chapter 8: Managing Configuration for Multilingual Websites 107

Multilingual sites in Drupal 7 107
The Locale module 108
Content translation 109
Translating other types of content 110

Table of Contents

[iv]

Translation settings/configuration 110
Translating entities 111

Translating in Drupal 8 111
Configuration translation 112

Translating the configuration 113
Storing translations 115
Exporting and importing configuration translations 116

Summary 118
Chapter 9: Useful Tools and Getting Help 119

Community documentation 119
The administration guide documentation 119
Contributed modules 120

The configuration inspector for Drupal 8 120
Configuration development 121
Drush 121

Exporting and importing your configuration using Drush commands 121
Forums 122
The issue queue 122
IRC chat 123
Summary 123

Questions 123
Index 125

[v]

Preface
In professional web development, especially when working in teams of any size,
configuration management is one of the most important tasks when it comes to
keeping track of configuration changes.

The Wikipedia article for Software Configuration Management states that "In
software engineering, software configuration management (SCM) is the task of
tracking and controlling changes in the software, which is part of the larger cross-
discipline field of configuration management. SCM practices include revision control
and the establishment of baselines. If something goes wrong, SCM can determine
what was changed and who changed it. If a configuration is working well, SCM can
determine how to replicate it across many hosts."

So what is configuration in Drupal terms?
In Drupal, configuration includes topics such as content types, fields, menus, or text
formats. Creating or changing a configuration on a live site poses a high risk and
makes changes untraceable. Questions such as who made a change, and when and
why it was made, cannot be answered.

Up until Drupal 7, Drupal had all configuration stored in the database. By Drupal
7, most professional Drupal developers kept track of their configuration changes by
exporting them to code, the most popular option being the Features module, and
version-controlling it with a version control system such as Git.

Preface

[vi]

How it works in Drupal 8
When planning for Drupal 8, the so-called Configuration Management Initiative was
led by Greg Dunlap in order to make developers' lives easier. Configuration still lives
in the database, but can be easily exported to YAML text files. You can now deploy
a configuration from one environment to another (between cloned instances of the
same site). This capability replaces the need for various contributed modules such as
Features, Strongarm, and Context.

This book will teach you everything you need to know about Drupal 8's brand new
configuration system. We hope you enjoy it.

What this book covers
Chapter 1, Understanding Configuration Management, will give you a quick overview
of Drupal 8's hottest new feature: Configuration Management. You will learn what
types of configuration exist, why managing configuration is a good idea, and how
to get started with it. We will introduce you to version control and show you some
best practices. We will provide a look at the several ways in which configuration was
managed in Drupal 7 and then show how Drupal 8 approaches the problem.

Chapter 2, Configuration Management for Administrators, provides an introduction
on how to use Configuration Management for users who are not developers, but
administrators of a Drupal website who want to make use of the advantages of
this new feature. We will show you how to use the Configuration Management
interface and how to create a copy of your website, and you will learn how to move a
configuration made on one site to another site.

Chapter 3, Drupal 8's Take on Configuration Management, will show you the inner
workings of the Configuration Management system in Drupal 8. You will learn about
config and schema files, and read about the difference between simple configuration
and configuration entities.

Chapter 4, The Configuration Management API, will teach you how to get your hands
dirty and learn about the Configuration Management API of Drupal 8. Here, you
will dive into the Simple Configuration API and learn how configuration can be
overridden. Later, you will take a closer look at how to create custom configuration
entity types, and we'll also teach you about the configuration's context system.

Preface

[vii]

Chapter 5, The Anatomy of Schema Files, covers schema files and explains how Drupal
uses them for Configuration Management. You will learn about the structure of
schema files used by Drupal and write your own schema for custom configuration.

Chapter 6, Adding Configuration Management to Your Module, will teach you how to
access configuration objects and how schema files are structured in the previous
chapters. (You will surely want to know how to get all this fancy stuff into your
shiny new module for Drupal 8). You will learn how to include the default
configuration in custom modules, how to define and use your own configuration,
and how to create configuration forms.

Chapter 7, Upgrading Your Drupal 7 Variables to the Drupal 8 Configuration, will show
you ways to convert your Drupal 7 variables into Drupal 8 Configuration objects and
how to provide an upgrade path in your modules.

Chapter 8, Managing Configuration for Multilingual Websites, allows you to build
comprehensive multilingual websites in which you can display a site's content in
different languages and translate the user interface. While many features were built
into Drupal's core in previous versions, building multilingual sites remained a very
painful task. In this chapter, we will take a look at how Drupal 7 deals with different
languages on a site and how Drupal 8 is trying to fix weaknesses from previous
versions.

Chapter 9, Useful Tools and Getting Help, provides a list of links and tools provided by
the Drupal community; these will be useful if you reach a point where you need help
when dealing with Configuration Management.

What you need for this book
To follow along with this book, you need an installation of Drupal 8, preferably in
a local development environment. There's some good documentation about setting
up a local development environment at https://www.drupal.org/setting-up-
development-environment. Specific system requirements for all Drupal versions are
listed at https://www.drupal.org/requirements.

To follow the code examples, you will need a text editor or an IDE. There's a good
list of suitable software at https://www.drupal.org/node/147789.

Preface

[viii]

Who this book is for
Drupal Configuration Management is intended for anyone who uses Drupal 8 to
build websites, whether they are a hobbyist using Drupal for the first time, or a
long-time Drupal site builder, or a professional web developer.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Finally, to run the migrations, we need to execute the Drush command
migrate-manifest."

A block of code is set as follows:

Example for Drupal 7 to Drupal 8 migration
d7_cm_example_settings
d7_cm_example_block
d7_block
d7_filter_format

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "On this
page, you simply select Simple configuration as the configuration type, paste the
copied configuration value into the text area, and click on Import."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase. You can contact the authors at http://
drupal-8-configuration-management.undpaul.com if you are facing a problem
with any aspect of this book, and they will do their best to address it.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[x]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

[1]

Understanding
Configuration Management

In this first chapter, we will give you a quick overview of Drupal 8's hottest new
feature: Configuration Management. You will learn what types of configuration
exist, why managing configuration is a good idea, and how to get started with it.
We will introduce you to version control and show some best practices. We will also
provide a look at the several ways in which configuration was managed in Drupal 7,
and then show how Drupal 8 approaches the problem.

An introduction to Configuration
Management
The general definition of the term "Configuration Management" is somewhat
different from the definition of Configuration Management in Drupal 8. To make
things easier, we will focus on explaining what Configuration Management is in
Drupal terms.

Configuration Management in Drupal 8 aims at making configuration manageable
across different environments by allowing us to store configuration in files instead of
the database.

Let's start by defining what configuration is, and what other types of information
exist in Drupal 8.

Understanding Configuration Management

[2]

Configuration
Configuration is the information about your site that is not content and is meant
to be more permanent, such as the name of your site, the content types, fields, and
views you have defined.

Content
Content is the information meant to be displayed on your site, such as articles, basic
pages, images, files, and so on.

Session
This is the information about an individual user's interactions with the site, such as
whether they are logged in.

State
This is information of a temporary nature about the current state of your site.
Examples include the time when Cron was last run, whether node access permissions
need rebuilding, and so on.

Why manage configuration?
It's simple to explain why configuration that is only saved in the database is bad.
You can't keep track of any changes (who made what change, and when); it's hard
to work with a group of people (you simply can't get their changes without using
their SQL dump, and using their dump would delete your work); and, if you build
something on a development environment, how do you get it to the live site? You get
the gist. We want our configuration in files, and Drupal 8 gives us just that.

Before Drupal 8, a variety of methods were used to transport configuration from
one environment to another—for example, from a development environment to a
production environment.

Chapter 1

[3]

These included some rather bad methods such as writing down the process to
manually recreate the same configuration, which is error-prone; dumping the
development database in the live site, which loses all content created in the
meantime; and some better but rather time-consuming methods, such as writing
update hooks or using the contributed module Features to export configuration to a
module. The latter is one of the most used methods in Drupal 7 because it works well
most of the time, produces well-arranged files, and can be used without having to
write any code, which is good because anyone can create a Feature without having to
know how to code.

Even though you can use the new Configuration Management system without a
version control system such as Git, it's at its best when used with one. Version-
controlling your configuration allows you to track document changes. Later in
this chapter, we will show you how to get the best out of version-controlling
your configuration. Version-controlled Configuration Management is crucial to
developing and maintaining quality in a Drupal project, especially when working
with a team of developers. Exposing all developers to the same code and providing a
history for the code increases efficiency a lot.

At first, it might seem frustrating to have to learn something new. However, software
tends to change over time, and changes are hard to track using just your memory.
This is really one of the best ways to improve your project and save your time and
money, so make sure you learn it!

Tracking configuration changes
Drupal 8's new Configuration Management system can be used without a version
control system, but if you want to really improve your process, you should use it
in combination with version control. Having organized and versioned code helps
prevent mistakes and duplicated efforts between multiple developers; it serves as
documentation of the project's history and can show who worked on what and, very
importantly, why.

There are others, but we are going to talk about Git as our example version control
tool because it's used by the Drupal community and offers everything we need in
terms of functionality, scalability, and ease-of-use.

Use a version control tool such as Git to get the best out of
the Configuration Management system!

Understanding Configuration Management

[4]

The best time to start with versioned Configuration Management is at the beginning
of the development. However, it's never too late, even if your project has been
started or even finished for a while. Check your Drupal site configuration, organize
it, and put everything in a Git repository. Now, you have a good starting point from
which to manage and document any changes that will be made to the project in
the future.

Some version control best practices
So let's see what will really improve the development process when using
version control.

Using a project management tool
You will achieve the best results if you put your work tasks in a project management
tool such as the free and open source tool Redmine. If you're not used to working
with a project management tool, it might take some discipline to keep track of
your work this way, but it has so many advantages. The ticket holds information
about what needs to be done and you can use the ticket's comments to discuss
requirements, give status updates, or report problems.

Most project management tools also have some sort of ID for each ticket. You can use
the ticket ID in your Git commit messages, which is a very good way to know why a
commit was made.

Chapter 1

[5]

Meaningful commit messages
Commit messages are a very important part of your code documentation when
working with version control. When looking for something that was done in
the past, you will first scan through the commit messages, as shown in the
following screenshot:

It makes no sense at all to just use a commit message such as stuff or even asdf. You
might laugh, but we've seen both of these in real-world projects. When you start
out with version control, it will take some discipline to write meaningful commit
messages, but it's really worth it when you come across a bug and are looking for
code that might have caused it. Make sure you always use the ticket ID that your
project management tool provides and put it at the beginning of your commit
message. When you find the commit that causes the problem, the ID will give you
more information about what was done there and for what reason.

Small and well-structured commits are more effective.

Also, make commits small! Do not wait until your workday is over to commit
everything you did on that day. This will make it more difficult to go through the
changes in that specific commit. For example, make each new contributed module
you add to your project a separate commit; do not add 5 modules at once or a
module together with other code or configuration.

Understanding Configuration Management

[6]

Meaningful branches
Tickets that require a lot of work should be worked on in a separate branch. When
you name that branch, make sure you use your ticket ID at the beginning—for
instance, 1234-publications, as shown in the following screenshot:

A look back at Drupal 7
Configuration Management in Drupal 7 isn't as simple as its equivalent in Drupal 8.
In Drupal 7, almost the entire configuration set on a site is stored in the database by
default. This includes simple variables, content types and field configuration, settings
from custom or contributed modules, and so on.

Using the database to store settings makes it really hard to track configuration
changes or roll back a bunch of settings to a state defined earlier.

Unfortunately, there is no real standard for Configuration Management in Drupal 7,
but there are several ways to manage site and module settings in the code.

We will take a short look at the following five different approaches:

• Manual Configuration Management
• The hook_install() / hook_update_N() function
• The Features module
• The Configuration Management module
• Storing configuration variables in settings.php

Chapter 1

[7]

Manual Configuration Management
Many users of Drupal manage their configuration manually. They try to remember
each setting they've made in the local development environment and then recreate
every step on the live site. At first sight, this seems to be very fast and easy, but if
you have to manually set permissions for some roles multiple times, you'll never
want to do this manually again after hearing there are much better ways.

Additionally, you will never know if a setting has changed and all of your
configuration will not be version-controlled (because it only exists in the database).
Also, it makes working in a team much more painful than necessary.

If you ever want to share configuration between two or more instances of a site, don't
do this.

Don't use manual Configuration Management!

The hook_install()/hook_update_N() function
Install and update hooks are the simplest way to manage configuration on a Drupal 7
site in code. The basic idea behind this approach is to set configuration values while
installing a module or running update.php. Within the .install file of a custom
module, you implement hook_install() and/or hook_update_N(), and add the
code needed to set the configuration to these functions:

<?php

/**
 * Implements hook_install().
 */
function my_module_install() {
 // Set site name.
 variable_set('site_name', 'Configuration Management');
}

In this example, we simply set the variable site_name to the Configuration
Management value, so the name of our site will be updated to this value after
enabling the module. The possibilities given here are nearly endless. In addition
to setting simple variables, you might add new roles, update block settings, or
even create new content types. However, while it's technically possible, it is not
recommended and not very simple to export complex configuration (think of fields
or views). Also, you need a developer to actually write the code.

Understanding Configuration Management

[8]

Unfortunately, this is one-way configuration management, so there is no way to
automatically save changes that you have made on the site's configuration back to
code. You have to update the code manually with the new settings (for example, add
a new implementation of hook_update_N()).

Additionally, you do not have any chance to see which settings were changed by a
user. If you want to save the current state of configuration, you need to go through
all settings set in hook_install() or hook_update_N() and compare them with the
current settings on the site.

The Features module
To manage configuration in Drupal 7, most people use the Features module
(https://drupal.org/project/features). If you need a simple tool to export your
configuration and put it under version control, Features is the module to work with
in Drupal 7.

What is the Features module?
To quote James Sansbury from Lullabot:

"The Features module is a module that creates other modules called features."

In other words, Features helps you to put your site's configuration into code so that
you can keep track of changes and simply share it with other sites. It was originally
created to serve another purpose: to group multiple configurations for one use-case
so you could package actual site features and use them in different sites. However,
due to a lack of alternatives, it ended up becoming popular as a tool to manage
Drupal configuration.

Features works by using so-called components that hold information about
configuration objects provided by Drupal itself or contributed modules.

Features uses different types of components: configuration objects that live in code
without the need for an instance in the database (exportable components) and so-
called faux-exportable components that must exist in the database. Exports of faux-
exportable components are used to synchronize configuration objects in the database,
so the settings are always up-to-date.

To make an object exportable, you can write a module and use your own default
hook handling and export generation. The default hook provides a default state of
your configuration object that is directly used on the site or synchronized with the
database (depending on the needs of this object).

https://drupal.org/project/features

Chapter 1

[9]

A very simple example of an object exported using a default hook is a content type.
Custom modules can provide their own content types using hook_node_info():

<?php

/**
 * Implements hook_node_info().
 */
function cm_blog_node_info() {
 return array(
 'blog' => array(
 'name' => t('Blog'),
 'base' => 'blog',
 'description' =>t('Use for multi-user blogs.'),
),
);
}
?>

This simple example (taken from api.drupal.org) defines a new content type with
the machine name blog. Additionally, it sets the human-readable name to Blog and
adds a short description to the type, so users know about its purpose.

A better way to make custom configuration objects exportable is to integrate the
module with the CTools Export API.

The CTools Export API has been designed to provide a
standardized way to export and import objects in Drupal.
Developers simply add some special keys to the object's schema and
implement a load function as well as a save function.

Using the CTools Export API, Features will automatically integrate with your
module and handle the export and synchronization of your components. Prominent
representatives of contributed modules that implement this in Drupal 7 are Views
and Panels.

api.drupal.org

Understanding Configuration Management

[10]

Creating a Feature
Creating a Feature is very easy. Using the user interface of the Features module, you
simply add the components you would like to export to the newly created module.
While generating the new module, Features uses the defined default hooks or the
CTools Export API to save the information about the components to code so you
don't need to write the code yourself. While writing the code may be fairly easy for
content types (as shown previously), writing down the complete configuration of a
field, an image style, or even a view is not so simple, and you do not want to do this
manually. With Features, you only need a few clicks to get the configuration into
code. Take a look at the following screenshot:

In the preceding example, we selected the content type Blog along with some
permissions. As you can see, Features automatically added the required
dependencies to other modules along with the information about the fields of the
content type and common variables related to the type.

Chapter 1

[11]

After adding everything you want to include in the export, you can download the
feature or let Features directly create the files on your disk.

If you create a new Feature, make sure you use a unique machine-
readable name that does not conflict with any existing module. The best
practice is to prepend the machine name with an abbreviation of your
project or site name (in our example, cm_blog).

After downloading the Feature and enabling it in the same way as any other
module, you are able to track changes to components in the Feature. For example,
if you change the label of a field included in the Feature, the Feature will be shown
as overridden. With the help of the Diff module, it even displays each modified
component as follows:

You can then choose between reverting the Feature to its default state (that's what
you have in the code of your Feature), which would undo the change you made to
your field label, or you can update the Feature, which gives you the modified values
in code, so you can share it with others or distribute it to another environment.

Both tasks can either be done using the Feature UI or Drush, which is much faster.

The settings to export with Features
Basically, all components that rely on the CTools Export API, or on modules that
define default hooks, may be exported.

Understanding Configuration Management

[12]

These include the following:

• Variables: These are exported using the Strongarm module, which
implements the CTools Export API for all entries in the variables
table of Drupal

• Views: These are exported using the default hook: hook_views_default_
views()

• Content types: These are directly exported by the Features API using
Drupal's hook_node_info()

• Field definitions: These are exported using default hooks defined by
Features itself

• And many more: These include text formats, image styles, and rules
(http://www.drupal.org/project/rules)

The settings to not export with Features
While some components may theoretically be exportable, it is not always sensible to
do this. For example, exporting cache variables or variables that store timestamps
such as cron_last, which stores the date when the last cron was run, would result in
constantly overridden Features. There is also no benefit in having components such
as this in code, because you can't actively change it, and you don't need to know its
value for anything.

As a general rule of thumb, you should never export components that change often,
such as timestamps or status variables.

The Configuration Management module
The Configuration Management module is the latest approach we will take a
look at here. While Features was never really intended to do real Configuration
Management, the Configuration Management module takes some core concepts from
the Drupal 8 Configuration Management Initiative and makes them available for
Drupal 7.

The main concept behind this module is the data storage architecture. It defines an
activestore and a datastore to manage the configuration of a site. The activestore
represents the current state of an individual configuration component (for example, a
variable in the database) whereas the datastore is defined as the file that contains the
default state of the component.

http://www.drupal.org/project/rules

Chapter 1

[13]

After changing the value of a component tracked by the Configuration Management
module, you can save its value back to the datastore (the module updates the
corresponding files for you) so that you can track the changes in your version
control system.

Looking at the export of this configuration in the following screenshot, you will
notice many similarities. This is due to the fact that both modules use the CTools
Export API and nearly the same default hooks to import/export the data.

The main advantage of the Configuration Management module in comparison to
Features is the reduction to pure Configuration Management. There is no possibility
for a developer to extend the export with custom code (that is hook_form_alter()
or hook_menu()) as is done often when exporting configuration objects with
Features. The export simply contains the components you want to put under version
control and nothing more.

Storing configuration variables in
settings.php
There is one more way to store settings back in Drupal 7: your site's settings.php,
which you know from storing your database details in it. The Drupal installation
process and Drupal modules use the variables table to store different types of
information that will be used at runtime. The values of these variables can be
overridden in the settings.php file. Every module, when enabled, may add
variables that can be altered in the configuration setting. One example is the variable
named theme_default, which sets the default theme.

Understanding Configuration Management

[14]

Variables stored inside your settings.php file's $conf array will override
whatever is in the variables table of your database. This is really useful when
you need different configuration for different environments, such as local,
staging, and production.

There is a complete list of default variables available on a fresh installation of Drupal
at https://www.drupal.org/node/1525472.

How Drupal 8 takes care of Configuration
Management
Drupal 8 totally changes the way configuration is managed on a site. The
configuration can be stored in files instead of the database, so it is not a problem to
put it under version control.

All default configuration defined and used by a module must be able to be stored in
special configuration files using the YAML specification and the .yml file extension.
YAML is short for YAML Ain't Markup Language; according to its creators, YAML
is a human-friendly data serialization standard for all programming languages. In short, it's
easier to read and write. Each module provides its own default configuration files
in a special folder named config, which makes it easy to see which configuration
a module provides. Taking the core system module as an example, you will find
several files in the config directory responsible for all configurations that the system
module handles on the site.

How to start using Configuration Management
By default, Drupal 8 stores configuration in the site's database. During installation
of your Drupal site, Drupal adds a directory within sites/default/files called
config_HASH, where HASH is a long random string of letters and numbers, as
shown in the following screenshot:

https://www.drupal.org/node/1525472

Chapter 1

[15]

Using version control to keep track of
configuration changes
Inside this config directory, there are two more directories: active and staging.
Both contain no configuration files by default, but they each contain a helpful
README.txt.

The contents of the active directory's README.txt are as follows:

If you change the configuration system to use file storage instead of the database
for the active Drupal site configuration, this directory will contain the active
configuration. By default, this directory will be empty. If you are using files to store
the active configuration, and you want to move it between environments, files from
this directory should be placed in the staging directory on the target server. To make
this configuration active, visit admin/config/development/configuration/sync
on the target server. For information about how to deploy configuration between
servers, see http://drupal.org/documentation/administer/config.

The staging directory's README.txt explains the following points:

In order to start using Configuration Management to keep track of your
configuration changes, all you have to do is export your current configuration and
place it inside the staging directory as follows:

1. Go to /admin/config/development/configuration/full/export and
use the Export button to download an archive of your site configuration, as
shown in the following screenshot:

http://drupal.org/documentation/administer/config
/admin/config/development/configuration/full/export

Understanding Configuration Management

[16]

2. Save the archive inside the sites/default/files/config_HASH/staging
folder of your Drupal source files and extract the contents of the archive. The
result should look something like this:

If you're familiar with the Drupal command-line tool Drush, you can
export configuration with a simple command. Check Chapter 9, Useful
Tools and Getting Help for details.

You can find more detailed information in the next chapter, Chapter 2, Configuration
Management for Administrators.

Types of configuration
There are two types of configuration in Drupal 8: simple configuration and
configuration entities.

Simple configuration is basically the same as variables (that is, the site name or the
number of nodes on the front page) and is used for single global settings.

Looking at the system module's configuration file system.site.yml, you see some
examples for simple configuration. The file defines the default values for some of
the main settings you will need on your site—that is, the site name or the default
e-mail address:

name: 'Configuration Management in Drupal 8'
mail: 'info@example.com'
slogan: ''
page:
 403: ''
 404: ''
 front: user
langcode: en

As you can see, configuration can even be nested, so you can group settings.

Configuration entities are more complex than a simple configuration, and are used
for objects that can have multiple copies such as content types or views.

Chapter 1

[17]

Configuration storage and deploying between
environments
Earlier in this chapter, we learned about the directory named staging. In this
directory, you put the configuration you would like to import into a copy of your
Drupal site—for example, to copy changes from your local environment to your
production site. Simply export the new configuration from your local environment,
place it in the staging directory of your production site (preferably by using version
control), and import it later at admin/config/development/configuration/sync.

Note that, at the time of writing this book, the active directory is not used as
originally intended. Its original purpose was to store the site's currently active
configuration but, since that is now kept in the database, the active directory
remains empty. This might change in future versions of Drupal 8.

Summary
Now you have a very complete overview of what Configuration Management is in
Drupal 8 and why you should make use of it. You read about some best practices
that show you how to best keep track of your changes with version control. You
also learned about all the different ways to achieve some kind of Configuration
Management in Drupal 7 and were given a basic introduction to the way it works
in Drupal 8. Read on to find out how site administrators with no programming
knowledge can use this system.

[19]

Configuration Management
for Administrators

In the previous chapter, we learned about the general concept of Configuration
Management and how we used Configuration Management in Drupal 7, or at least
how we tried to do it.

This chapter will provide an introduction on how to use Configuration Management,
for administrators (rather than developers) of a Drupal website who want to
make use of the advantages of this new feature. We will show you how to use the
Configuration Management interface, how to create a copy of your website, and how
to move configuration made on one site to another site.

Why do we want to manage our
configuration?
If you're not a developer, you might wonder what you need Configuration
Management for. Up until now, you have probably made any changes right in the
live website, which we call the Production website. For example, you might have
added a field to a content type or moved a block to a new region. Sometimes, this
works fine, sometimes it doesn't. When everything breaks, you may have to import a
backup database, if you are lucky enough to have one. In the meantime, any visitors
to your site may have seen a broken site and probably declined to come back. In
professional web development, it's crucial to not make changes to the production
website. Developers don't build new features in the live website but in a local copy of
the site. Only when they are satisfied with the result will the changes go live.

Configuration Management for Administrators

[20]

We want to make our configuration live as fast as possible. We don't want to have
to click our way through everything again. This is where Drupal 8's Configuration
Management comes in. It allows you to easily export all configuration from a
development copy of your site in a single .zip file and to import it to your
live website.

As a best practice, make sure you never make configuration changes
in the production website or they will get lost the next time you
import a configuration from your development site.

The development and production websites can be seen as follows:

Making a clone of your site
For Configuration Management to work, you need to create an exact copy of your
website. This might change in future versions of Drupal 8 but, at the time of writing,
it has to be an exact copy. If you don't have a local development environment set
up, that copy could be on the same server your website runs on. Copy the directory
that Drupal runs in, and also copy the database. Make sure you change the database
name in your settings.php file! It doesn't matter whether you use the original site
or the copy as your development site or your production site. Just make the decision
and then stick to it. Read on to find out how to export configuration from the
development site and import it to the production site.

Chapter 2

[21]

The Configuration Management interface
Let's take a look at Drupal 8's Configuration Management interface that was created
for website administrators without programming knowledge. Now that you have
two copies of your site, go to the one that you identify as your Development Site. As
a simple example for the following explanations, we will use the configuration for
Site name, which is the name you picked for your site during installation. Navigate
to Configuration | System | Site information, change the contents of the site
name, and save the page. You will find out how to apply those changes to what you
identified as your Production Site.

You can find the Configuration Management interface by navigating to
Configuration | Configuration management (admin/config/development/
configuration), as shown in the following screenshot:

The interface options
In the first tab, Synchronize, you will see that there are no configuration changes,
which means your site is using the configuration files from the database and that no
changes were made to the site.

The second tab, Single Import/Export, allows you to import just a single
configuration file. We will not go into details here but, if you're interested, you can
read more about it in the Configuration Management documentation on Drupal.org
at https://drupal.org/documentation/administer/config.

https://drupal.org/documentation/administer/config

Configuration Management for Administrators

[22]

The third tab, Full Import/Export, is the option we will focus on now. After clicking
on the tab, you will see two suboptions: Import and Export, as shown in the
following screenshot:

Go ahead and grab an export of your configuration. Clicking on the Export button
will present you with the download of an archive file named config.tar.gz. Save
this somewhere. Now, to actually do something with a configuration exported from
your development site (let's call this Site A from here on), you need to go to the
Production copy of your site (this will be Site B from here on). Refer to the Making a
clone of your site section earlier in this chapter for how to do this.

Using full import/export
Now that you have exported your config.tar.gz file, we can get started with
importing it into Site B.

Go to Site B and visit admin/config/development/configuration/full/import
(Full Import/Export). Select your saved config.tar.gz from Site A and upload it,
as shown in the following screenshot:

Chapter 2

[23]

After uploading the file, go to the Synchronize page (admin/config/development/
configuration) and you should now see something like the following listing:

Configuration Management for Administrators

[24]

This page lists all the configuration changes, so you can check if everything is correct
before completing the import.

In our example, there is a change to the file system.site.yml, because that is where
the site name is stored. Drupal recognizes this, tells us that this file was changed, and
allows you to view the differences, as shown in the following screenshot:

Once you're done checking the changes, close the popup and click on Import all.

The import may take up to a few minutes, depending on the number of differences
between both sites, as shown in the following screenshot:

As soon as the import is finished, you will be redirected back to admin/config/
development/configuration, where you can see that there are no further
configuration changes, as shown in the following screenshot:

Chapter 2

[25]

Now check your site information again at admin/config/system/site-
information, and you will see that the site name from your Site A is now also in
your Site B.

You will really enjoy this simple process once you're dealing with bigger changes to
your site, such as a new or changed content type.

Although, theoretically, you should make all changes during development and
export from there to production, sometimes direct changes to the production site
may be necessary. To take those changes from the production site to development,
simply export the full production site configuration, save the resulting config.tar.gz,
and then import that into your development site. This will update the development
site with your production changes. From here, you can continue making further
changes on development and import back to production, as previously explained.

Configuration Management for Administrators

[26]

Single import/export
This is an advanced option. To use it, you will have to know which configuration
type and name you're looking for. You don't need to use this option at all, but let's
quickly cover what it's good for. You don't always need to synchronize the entire
configuration between two installations. Sometimes, you only need to transfer a
single configuration value or configuration entity from Site A to Site B.

Let's use our previous example and assume that you would like to copy the
configuration for the site name to Site B. On Site A, change the site name again and
then navigate to admin/config/development/configuration/single/export.
You will need to select the type of configuration to export and (after selecting it) the
specific name of the configuration. In our case, we select Simple configuration as the
configuration type, and system.site as the name.

Chapter 2

[27]

As soon as you select the configuration name, the contents of the text area will be
updated with the current value of the selected configuration object.

Copy the contents of the text area and navigate to admin/config/development/
configuration/single/import on Site B. On this page, you simply select Simple
configuration as the configuration type, paste the copied configuration value into
the text area, and click on Import. After confirming the action, you will be redirected
back to the page when your configuration has been imported successfully.

There is another way of moving your configuration from one site to another without
using the interface. We will get to this in the next chapter.

Summary
In this chapter, we have learned how to use the Configuration Management
interface and how to create a copy of our website, and also learned how to move a
configuration made on one site to another site. In the next chapter, we will learn the
inner workings of the Configuration Management system in Drupal 8.

[29]

Drupal 8's Take on
Configuration Management

In this chapter, we will show you the inner workings of the Configuration
Management system in Drupal 8. You will learn about config and schema files and
read about the difference between simple configuration and configuration entities.

The config directory
During installation, Drupal adds a directory within sites/default/files called
config_HASH, where HASH is a long random string of letters and numbers, as
shown in the following screenshot:

This sequence is a random hash generated during the installation of your Drupal
site. It is used to add some protection to your configuration files. Additionally to the
default restriction enforced by the .htaccess file within the subdirectories of the
config directory that prevents unauthorized users from seeing the content of the
directories. As a result, would be really hard for someone to guess the folder's name.

Drupal 8’s Take on Configuration Management

[30]

Within the config directory, you will see two additional directories that are empty
by default (leaving the .htaccess and README.txt files aside).

One of the directories is called active. If you change the configuration system to use
file storage instead of the database for active Drupal site configuration, this directory
will contain the active configuration. If you did not customize the storage mechanism
of the active configuration (we will learn later how to do this), Drupal 8 uses the
database to store the active configuration.

The other directory is called staging. This directory is empty by default, but can
host the configuration you want to be imported into your Drupal site from another
installation. You will learn how to use this later on in this chapter.

A simple configuration example
First, we want to become familiar with configuration itself. If you look into the
database of your Drupal installation and open up the config table , you will find the
entire active configuration of your site, as shown in the following screenshot:

Depending on your site's configuration, table names may be
prefixed with a custom string, so you'll have to look for a table
name that ends with config.

Don't worry about the strange-looking text in the data column; this is the serialized
content of the corresponding configuration. It expands to single configuration
values—that is, system.site.name, which holds the value of the name of your site.

Changing the site's name in the user interface on admin/config/system/site-
information will immediately update the record in the database; thus, put simply
the records in the table are the current state of your site's configuration, as shown in
the following screenshot:

Chapter 3

[31]

But where does the initial configuration of your site come from? Drupal itself and the
modules you install must use some kind of default configuration that gets added to
the active storage during installation.

Config and schema files – what are they
and what are they used for?
In order to provide a default configuration during the installation process, Drupal
(modules and profiles) comes with a bunch of files that hold the configuration
needed to run your site. To make parsing of these files simple and enhance
readability of these configuration files, the configuration is stored using the
YAML format.

YAML (http://yaml.org/) is a data-orientated serialization
standard that aims for simplicity. With YAML, it is easy to map
common data types such as lists, arrays, or scalar values.

http://yaml.org/

Drupal 8’s Take on Configuration Management

[32]

Config files
Directly beneath the root directory of each module and profile defining or overriding
configuration (either core or contrib), you will find a directory named config.
Within this directory, there may be two more directories (although both are
optional): install and schema.

Check the image module inside core/modules and take a look at its config
directory, as shown in the following screenshot:

The install directory shown in the following screenshot contains all configuration
values that the specific module defines or overrides and that are stored in files with
the extension .yml (one of the default extensions for files in the YAML format):

During installation, the values stored in these files are copied to the active
configuration of your site. In the case of default configuration storage, the values are
added to the config table; in file-based configuration storage mechanisms, on the
other hand, the files are copied to the appropriate directories.

Chapter 3

[33]

Looking at the filenames, you will see that they follow a simple convention:
<module name>.<type of configuration>[.<machine name of configuration
object>].yml (setting aside <module name>.settings.yml for now). The
explanation is as follows:

• <module name>: This is the name of the module that defines the settings
included in the file. For instance, the image.style.large.yml file contains
settings defined by the image module.

• <type of configuration>: This can be seen as a type of group for
configuration objects. The image module, for example, defines several
image styles. These styles are a set of different configuration objects, so
the group is defined as style. Hence, all configuration files that contain
image styles defined by the image module itself are named image.
style.<something>.yml.

The same structure applies to blocks (<block.
block.*.yml>), filter formats (<filter.
format.*.yml>), menus (<system.menu.*.yml>),
content types (<node.type.*.yml>), and so on.

• <machine name of configuration object>: The last part of the filename
is the unique machine-readable name of the configuration object itself. In
our examples from the image module, you see three different items: large,
medium, and thumbnail. These are exactly the three image styles you will
find on admin/config/media/image-styles after installing a fresh copy of
Drupal 8. The image styles are shown in the following screenshot:

Drupal 8’s Take on Configuration Management

[34]

Schema files
The primary reason schema files were introduced into Drupal 8 is multilingual
support. A tool was needed to identify all translatable strings within the
shipped configuration.

The secondary reason is to provide actual translation forms for configuration based
on your data and to expose translatable configuration pieces to external tools.

Each module can have as many configuration the .yml files as needed. All of these
are explained in one or more schema files that are shipped with the module. As a
simple example of how schema files work, let's look at the system's maintenance
settings in the system.maintenance.yml file at core/modules/system/config/
install. The file's contents are as follows:

message: '@site is currently under maintenance. We should be back
shortly. Thank you for your patience.'
langcode: en

The system module's schema files live in core/modules/system/config/schema.
These define the basic types but, for our example, the most important aspect is that
they define the schema for the maintenance settings. The corresponding schema
section from the system.schema.yml file is as follows:

system.maintenance:
 type: mapping
 label: 'Maintenance mode'
 mapping:
 message:
 type: text
 label: 'Message to display when in maintenance mode'
 langcode:
 type: string
 label: 'Default language'

The first line corresponds to the filename for the .yml file, and the nested lines
underneath the first line describe the file's contents.

Mapping is a basic type for key-value pairs (always the top-level type in .yml). The
system.maintenance.yml file is labeled as label: 'Maintenance mode'. Then, the
actual elements in the mapping are listed under the mapping key. As shown in the
code, the file has two items, so the message and langcode keys are described. These
are a text and a string value, respectively. Both values are given a label as well in
order to identify them in configuration forms.

Chapter 3

[35]

Chapter 5, The Anatomy of Schema Files will cover schema files in greater detail.

Learning the difference between active
and staging directories
By now, you know that Drupal works with the two directories active and staging.
But what is the intention behind those directories? And how do we use them?

The configuration used by your site is called the active configuration since it's the
configuration that is affecting the site's behavior right now. The current (active)
configuration is stored in the database and direct changes to your site's configuration
go into the specific tables. The reason Drupal 8 stores the active configuration in
the database is that it enhances performance and security. Source: https://www.
drupal.org/node/2241059.

However, sometimes you might not want to store the active configuration in the
database and might need to use a different storage mechanism. For example, using
the filesystem as configuration storage will enable you to track changes in the site's
configuration using a versioning system such as Git or SVN.

Changing the active configuration storage
If you do want to switch your active configuration storage to files, here's how:

Note that changing the configuration storage is only possible
before installing Drupal. After installing it, there is no way to
switch to another configuration storage!

To use a different configuration storage mechanism, you have to make some
modifications to your settings.php file.

First, you'll need to find the section named Active configuration settings.
Now you will have to uncomment the line that starts with $settings['bootstrap_
config_storage'] to enable file-based configuration storage. Additionally, you
need to copy the existing default.services.yml (next to your settings.php file)
to a file named services.yml and enable the new configuration storage:

services:
 # Override configuration storage.
 config.storage:
 class: Drupal\Core\Config\CachedStorage

https://www.drupal.org/node/2241059
https://www.drupal.org/node/2241059

Drupal 8’s Take on Configuration Management

[36]

 arguments: ['@config.storage.active', '@cache.config']
 config.storage.active:
 # Use file storage for active configuration.
 alias: config.storage.file

This tells Drupal to override the default service used for configuration storage and
use config.storage.file as the active configuration storage mechanism instead of
the default database storage.

After installing the site with these settings, we will take another look at the config
directory in sites/default/files (assuming you didn't change to the location of
the active and staging directory):

Chapter 3

[37]

As you can see, the active directory contains the entire site's configuration. The files
in this directory get copied here during the website's installation process. Whenever
you make a change to your website, the change is reflected in these files.

Exporting a configuration (as we did in the previous chapter) always exports a
snapshot of the active configuration, regardless of the storage method.

The staging directory contains the changes you want to add to your site. Drupal
compares the staging directory to the active directory and checks for changes
between them. In the previous chapter, we taught you how to use the Configuration
Management Interface to export and import configuration files. When you upload
your compressed export file, it actually gets placed inside the staging directory.

This means you can save yourself the trouble of using the interface to export and
import the compressed file if you're comfortable enough with copy-and-pasting files
to another directory. Just make sure you copy all of the files to the staging directory
even if only one of the files was changed. Any missing files are interpreted as deleted
configuration, and will mess up your site.

In order to get the contents of staging into active, we simply have to use the
synchronize option at admin/config/development/configuration again. This
page will show us what was changed and allows us to import the changes. On
importing, your active configuration will get overridden with the configuration in
your staging directory. Note that the files inside the staging directory will not be
removed after the synchronization is finished. The next time you want to copy-and-
paste from your active directory, make sure you empty staging first.

Note that you cannot override files directly in the active
directory. The changes have to be made inside staging and
then synchronized.

Changing the storage location of the active
and staging directories
In case you do not want Drupal to store your configuration in sites/default/
files, you can set the path according to your wishes. Actually, this is recommended
for security reasons, as these directories should never be accessible over the Web or
by unauthorized users on your server.

Additionally, it makes your life easier if you work with version control. By default,
the whole files directory is usually ignored in version-controlled environments
because Drupal writes to it, and having the active and staging directory located
within sites/default/files would result in them being ignored too.

Drupal 8’s Take on Configuration Management

[38]

So how do we change the location of the configuration directories?

Before installing Drupal, you will need to create and modify the settings.php
file that Drupal uses to load its basic configuration data from (that is, the database
connection settings). If you haven't done it yet, copy the default.settings.php file
and rename the copy to settings.php. Afterwards, open the new file with the editor
of your choice and search for the following line:

$config_directories = array();

Change the preceding line to the following (or simply insert your addition at the
bottom of the file).

$config_directories = array(
 CONFIG_ACTIVE_DIRECTORY => './../config/active', // folder outside
the webroot
 CONFIG_STAGING_DIRECTORY => './../config/staging', // folder outside
the webroot
);

The directory names can be chosen freely, but it is recommended that you at least use
similar names to the default ones so that you or other developers don't get confused
when looking at them later. Remember to put these directories outside your webroot,
or at least protect the directories using an .htaccess file (if using Apache as the
server).

Directly after adding the paths to your settings.php file, make sure you remove
write permissions from the file as it would be a security risk if someone could change
it. Drupal will now use your custom location for its configuration files on installation.

You can also change the location of the configuration directories after installing
Drupal. Open up your settings.php file and find these two lines near the end of the
file and start with $config_directories. Change their paths to something like this:

 $con.g_directories['active'] = './../con.g/active';

 $con.g_directories['staging] = './../con.g/staging';

This path places the directories above your Drupal root.

Now that you know about active and staging, let's learn more about the different
types of configuration you can create on your own.

Chapter 3

[39]

Simple configuration versus
configuration entities
As soon as you want to start storing your own configuration, you need to
understand the differences between simple configuration and configuration entities.
Here's a short definition of the two types of configuration used in Drupal. Please
refer to the next chapter for an in-depth look at the Configuration Management API
to learn more about these two.

Simple configuration
This configuration type is easier to implement and therefore ideal for basic
configuration settings that result in Boolean values, integers, or simple strings of text
being stored, as well as global variables that are used throughout your site. A good
example would be the value of an on/off toggle for a specific feature in your module,
or our previously used example of the site name configured by the system module:

name: 'Configuration Management in Drupal 8'

Simple configuration also includes any settings that your module requires in order to
operate correctly. For example, JavaScript aggregation has to be either on or off. If it
doesn't exist, the system module won't be able to determine the appropriate course
of action.

Configuration entities
Configuration entities are much more complicated to implement but far more
flexible. They are used to store information about objects that users can create and
destroy without breaking the code. A good example of configuration entities is an
image style provided by the image module.

Take a look at the image.style.thumbnail.yml file:

uuid: fe1fba86-862c-49c2-bf00-c5e1f78a0f6c
langcode: en
status: true
dependencies: { }
name: thumbnail
label: 'Thumbnail (100×100)'
effects:
 1cfec298-8620-4749-b100-ccb6c4500779:
 uuid: 1cfec298-8620-4749-b100-ccb6c4500779

Drupal 8’s Take on Configuration Management

[40]

 id: image_scale
 weight: 0
 data:
 width: 100
 height: 100
 upscale: false
third_party_settings: { }

This defines a specific style for images, so the system is able to create derivatives of
images that a user uploads to the site.

Configuration entities also come with a complete set of create, read, update, and
delete (CRUD) hooks that are fired just like any other entity in Drupal, making them
an ideal candidate for configuration that might need to be manipulated or responded
to by other modules. As an example, the Views module uses configuration entities
that allow for a scenario where, at runtime, hooks are fired that allow any other
module to provide configuration (in this case, custom views) to the Views module.

Summary
In this chapter, you learned about how to store configuration and briefly got to know
the two different types of configuration.

The next chapter will give you an in-depth look at the Configuration API.

[41]

The Configuration
Management API

In the previous chapters, we explained the basic concepts of Configuration
Management in Drupal 8 and also talked about the different types of configuration.
Now we will get our hands dirty and learn about the Configuration Management
API of Drupal 8. Here, we will dive into the Simple Configuration API and learn how
configuration can be overridden. Later, we will take a closer look at how to create
custom configuration entity types, and you'll also learn about the configuration's
context system.

A simple configuration API
As you learned earlier in this book, there are several types of configuration objects in
Drupal 8: simple configuration and the more complex configuration entities.

Working with configuration data
If you've worked with Drupal 7 before and have written some custom code, you
will surely remember the variable subsystem. Drupal 7 itself and many modules
store their settings in the {variable} database table. Every configuration saved
to this table needs to be serialized before saving and converted back to its original
state while reading from the table. To read and write configuration, Drupal 7 has the
widely used functions variable_get($name) and variable_set($name, $value).

The Configuration Management API

[42]

Here are some small examples of how Drupal 7 reads and saves simple configuration
settings, taken from system.admin.inc:

<?php
// The status message depends on whether an admin theme is currently
in use:
// a value of 0 means the admin theme is set to be the default theme.
$admin_theme = variable_get('admin_theme', 0);
...
// Set the default theme.
variable_set('theme_default', $theme);
?>

As you can see, Drupal 7 makes it quite simple to access the site settings and
permanently save them back to the database table.

However, in Drupal 8, all of this changes. The complete variable subsystem has been
removed from the Drupal core and is reborn as the Simple Configuration API.

The preceding example looks slightly different in Drupal 8:

<?php
// The status message depends on whether an admin theme is currently
in use:
// a value of 0 means the admin theme is set to be the default theme.
$admin_theme = \Drupal::config('system.theme')->get('admin');
...
// Set the default theme.
\Drupal::configFactory()->getEditable('system.theme')
 ->set('default', $theme)
 ->save();
?>

Pretty simple, right?

Let's take a closer look at the single elements of the function calls.

Retrieving the configuration object
Drupal 8 was built on top of the Symfony framework to make use of its code base
while not having to reinvent the wheel. Additionally, Drupal 8 switched to object-
oriented code, so it mainly uses classes instead of procedural code within the core
components. To make it easier to move away from procedural to object-orientated
code, the generic class Drupal has been created.

Chapter 4

[43]

Calling \Drupal acts as a global accessor to services within the complete
system. Using this notation, you can easily access the basic services such as
caching the database, the language manager, or configuration. For example, \
Drupal::config($name) is a shortcut for the function get($name) of the
ConfigFactory service, so you don't need to initialize the complete service every
time you would like to load a configuration object. The function is the main entry
point to the Configuration Management API, so there is no way around it when
reading the configuration.

Our example simply returns the configuration object for the name system.theme. Do
you still remember the .yml files we used as an example in previous chapters? The
name sounds familiar, right? In fact, a file named system.theme.yml exists in the
config directory of the system module:

admin: ''
default: stark

So \Drupal::config('system.theme') will allow us to access the configuration
stored in this file.

Getting configuration values
The next part of the call is ->get('admin'). Using this function allows us to access
a single value of the loaded configuration object. In this case, the call retrieves the
value of admin key that our configuration object stored in system.theme.yml.

Of course, configuration values can be nested as well. Looking at system.theme.
global.yml as an example, we see a small hierarchy of configuration with mimetype
and path being children of the key favicon:

favicon:
 mimetype: image/vnd.microsoft.icon
 path: ''
 url: ''
 use_default: true

In order to access the value of the configuration, Drupal offers a few different
options. The first option is to directly get the value. To do this, we need to merge the
keys of each parent configuration with the one we would like to read, starting from
the highest level. The key needs to be separated by a single dot, so the merged key
for our (nested) example would be favicon.mimetype, and the complete call would
be $value = \Drupal::config('system.theme.global')->get('favicon.
mimetype');. The $value parameter now contains the string image/vnd.
microsoft.icon.

The Configuration Management API

[44]

Alternatively, you could simply use $value = \Drupal::config('system.
theme.global')->get('favicon'); to read all children of the top-level key
favicon. Using this call, $value will hold an associative array that contains all child
configurations of the key "favicon" in system.theme.global.yml:

<?php
array(
 'mimetype' => 'image/vnd.microsoft.icon',
 'path' => '',
 'url' => '',
 'use_defaults' => TRUE,
);
?>

It is also possible to completely omit the configuration name $value = \
Drupal::config('system.theme.global')->get(). Now, $value holds an array
with the complete configuration object stored in system.theme.global.

Setting configuration values
The set function call is basically the same as \Drupal::config($name)-
>get($name); with one minor but important difference: you are not able to change
configuration values you received using get($name). To update configuration
objects, you need to retrieve them using the function getEditable($name)
of the configuration factory. Therefore, we do not use the shortcut \
Drupal::config('system.theme'), but need to load the configuration object
using \Drupal::configFactory()->getEditable('system.theme'). Trying to
change the value of a configuration object loaded using the ::config() shortcut or
get($name) will result in an exception.

If the key you are using with set() doesn't exist yet in the configuration object, it
will be added so we can use it later.

Let's get back to our earlier example. We override the configuration object system.
theme and set the default theme to the value of the variable $theme. The value isn't
saved permanently yet; only the current instance of the editable loaded configuration
object has been modified. To write the changed values back into the configuration
object (depending on your configuration storage mechanism, this would be in the
database, in system.theme.yml, or in something else), we need to do a call to the
save()function on the configuration object.

This function validates the values of the modified configuration object against a
possibly existing schema and writes the configuration object back to the
active storage.

Chapter 4

[45]

When setting values of a configuration object, you are not limited to one value per
call. If you would like to set several values at once, you need to provide an array
with all keys and values to set or add:

<?php
// Set multiple configuration values at once.
\Drupal::configFactory()->getEditable('system.theme')->set(array(
 'admin' => 'my_admin_theme',
 'default' => 'my_custom_theme',
))->save();
?>

In this example code, we update the values of the current admin theme and change
the value for the default theme.

It is also possible to replace all data of a configuration object. If you want to do
this, use the setData($data) function. The $data parameter must contain every
key and value pair that a call to get() (without a name specified) would return. If
you accidently miss a key, the key and its value will be removed from the active
configuration, which might break your site (depending on the configuration you are
updating). Setting single configuration values is not possible with this function. You
need to call set($name, $value) multiple times.

Removing configuration values
Sometimes, you need to remove configuration values from a configuration object
on purpose. Back in Drupal 7, you could do this very easily using variable_
del($name). Drupal 8 offers two functions to remove configuration, clear($key)
and delete():

<?php
// Load configuration object.
$config = \Drupal::configFactory()->getEditable('system.theme');
// Remove single value from configuration object.
$config->clear('admin')->save();
$admin_theme = \Drupal::config('system.theme')->get('admin');
?>

As you can see, we also need to save the changes so that the modified configuration
object gets written to the corresponding file. The variable $admin_theme in
the preceding example will hold the value NULL, since we removed it from the
configuration object.

The Configuration Management API

[46]

To remove entire configuration objects, you need to use the delete()function:

<?php
// Load configuration object.
$config = \Drupal::configFactory()->getEditable('system.theme');
// Remove entire configuration object.
$config->delete();
$theme_default = \Drupal::config('system.theme')->get('default');
?>

The delete() function should not be followed by a call to save() since this would
result in an empty configuration file that could break your site.

Executing the code would set the value of the $theme_default variable to NULL
because the configuration object itself no longer exists.

Best practices
If you plan to do several function calls on the same configuration object, do not
instantiate the same object multiple times. The following code is an example of
what not to do:

<?php
\Drupal::configFactory()->getEditable('system.theme')->set('admin',
'seven')->save();
\Drupal::configFactory()->getEditable('system.theme')->set('default',
'bartik')->save();
?>

This code has to load the configuration object system-theme multiple times and
(even worse) needs to write the entire configuration object to the configuration
storage for every change you have made.

A much better solution is to instantiate the configuration object only once and save it
to a variable. This variable can then be used to modify the object and save all changes
at once:

<?php
// Load the editable configuration object.
$config = \Drupal::configFactory->getEditable('system.theme');
// Set value of first configuration item.
$config->set('admin', 'seven');
// Set another value.
$config->set('default', 'bartik');

Chapter 4

[47]

// Save changes back to configuration storage.
$config->save();
?>

Getting notified about configuration changes
Whenever Drupal saves or deletes a configuration object, it sends out a notification
about it. Thanks to Symfony's event listener system, modules can listen to these
events and react to the changes.

Creating a class that implements EventSubscriberInterface is the first thing
you need to do when writing a custom module that you want to react when a
configuration object is saved or deleted.

In the following examples, we create a module named cm_example, so we start with
a basic cm_example.info.yml:

name: Configuration Management example
type: module
description: 'Example for Configuration Management in Drupal 8.'
package: Custom
version: 8.x-0.1
core: 8.x

To register our event subscriber, a file named cm_example.services.yml needs to
be created with the following contents:

services:
 cm_example.config_subscriber:
 class: Drupal\cm_example\EventSubscriber\ConfigSubscriber
 tags:
 - { name: event_subscriber }

Without this file and definition, Drupal will have no idea whether we would like to
react on any event it triggers.

The Configuration Management API

[48]

Next, we need to create an implementation of the previously mentioned
EventSubscriberInterface to create a custom reaction on configuration changes.
We put this file in the src/EventSubscriber folder of our module directory:

The source code in the ConfigSubscriber.php is as follows:

<?php
/**
 * @file
 * Contains \Drupal\cm_example\EventSubscriber\ConfigSubscriber.
 */

namespace Drupal\cm_example\EventSubscriber;

use Drupal\Core\Config\ConfigCrudEvent;
use Drupal\Core\Config\ConfigEvents;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

/**
 * Custom config subscriber.
 */
class ConfigSubscriber implements EventSubscriberInterface {

 /**
 * {@inheritdoc}
 */
 static function getSubscribedEvents() {
 $events[ConfigEvents::SAVE][] = array('onConfigSave', 40);
 return $events;

Chapter 4

[49]

 }

 /**
 * React on changes of the configuration object "system.theme".
 *
 * @param ConfigCrudEvent $event
 * The configuration event.
 */
 public function onConfigSave(ConfigCrudEvent $event) {
 $saved_config = $event->getConfig();
 if ($saved_config->getName() == 'system.theme') {
 // Do some magic based on the saved configuration.
 }
 }
}
?>

In the getSubscribedEvents() function, we create a list of all events that we would
like to react on. This is not limited to configuration events as shown in the preceding
code; you can even react to basic kernel events, that is, KernelEvents::REQUEST,
which occurs at the very beginning of request dispatching. In our example, we
register a custom function named onConfigSave to the event ConfigEvents::SAVE.

To allow prioritization of all registered functions, we add a weight to the call. The
functions are executed in the order of their priority, so the function with the highest
priority will be executed first. Make sure you don't set the weight to a value greater
than 255, as this is the weight of the functions that the basic ConfigFactory uses. A
value between 0 and 40 should fit all your needs.

If you now save a configuration object on your site, the onConfigSave()function in
our custom class is called. Within the function, we have access to the configuration
object that has been written to the configured storage.

As said before, you are not limited to configuration events. With
EventSubscriberInterface, it is also possible to override the configuration.

The Configuration Management API

[50]

Overriding the configuration
While working with your site, you sometimes need to override the configuration.
Looking back at Drupal 7, we remember it was possible to set variables in the
settings.php file. It had the global $conf variable in which you could simply
override the existing configuration. For example, you could set the configuration for
the contrib module Environment indicator (https://drupal.org/project/
environment_indicator) directly in the settings.php file:

<?php
// Develop environment.
$conf['environment_indicator_overwritten_name'] = 'develop';
$conf['environment_indicator_overwritten_color'] = '#ff940f';
?>

Though this is very handy, a huge drawback of this system is that it directly
changes the current configuration. Submitting a settings form that also contains this
configuration might save the overridden values to the database, which we don't
usually want.

Drupal 8 introduces a completely new configuration override system where the
overridden configuration is a new layer on top of the standard configuration values.
Configuration forms do not display the overridden data, so they won't pollute the
active configuration storage. With the new system, it is even possible to store the
overridden configuration with other configurations to support version control. This
is very useful for maintaining language-specific overrides (as explained later) in
single files.

Drupal 8 introduces three different types of configuration overrides:

• Global overrides
• Language overrides
• Module overrides

Global overrides
The simple global $conf system known from Drupal 7 is retained (while renaming
the variable to $config), and therefore it is still possible to globally override specific
configuration values using the file settings.php. None of the values changed here
are visible in the Drupal administration interface, so you don't have to worry
about overwriting the (possibly version-controlled) active configuration with
these overrides.

https://drupal.org/project/environment_indicator
https://drupal.org/project/environment_indicator

Chapter 4

[51]

Every time you retrieve a configuration value using \Drupal::config($name)-
>get($name), which we described earlier in this chapter, the global $config
system is capable of changing the returned value:

<?php
// Get system site maintenance message text. This value may be
overridden by
// default from global $config (as well as translations, see below).
$message = \Drupal::config('system.maintenance')->get('message');
?>

Using \Drupal::configFactory()->getEditable($name)->get($name) instead
will return the configuration's value without any overrides.

To override the maintenance message, you could add the following code to your
settings.php:

<?php
$config['system.maintenance']['message'] = 'Sorry, our site is
currently down.';
?>

When putting your site in maintenance mode, it will display the text configured
in the settings.php file instead of displaying the default message from system.
maintenance.yml.

As you can see, you only have to reference the name and the keys of the
configuration object to change its value.

Not all configuration values are overridable using
$config. For example, the list of installed modules
could not be overridden here because the installation
process would not be triggered.

Apart from the global $config system, there is also the global $settings system:

<?php
// Set a custom theme for offline pages.
$settings['maintenance_theme'] = 'my_custom_maintenance_theme';
?>

The Configuration Management API

[52]

However, this setting is not defined as a configuration object (hence, it misses the
dot-notation). Unlike $config, $settings contains a configuration that cannot
be changed or removed programmatically. Some of the configuration (that is, the
database settings) stored in $settings are required in a very early phase of the
Drupal bootstrap, when even the configuration system is not available yet, so it is
kept away from $config.

To access the configuration of $settings in a module, you need to use the
settings() function instead of the previously described \Drupal::config():

<?php
use \Drupal\Core\Site\Settings;
// Load name of maintenance theme.
$theme = Settings::get()->get('maintenance_theme','bartik');
?>

The \Drupal\Core\Site\Settings class utilizes only a few functions whereas you
will mainly use get($name, $default) to retrieve single read-only settings.

Language overrides
Apart from the possibility of overriding configuration using global $config and
global $settings in the settings.php, there is also a language override system
within the ConfigFactory.

For example, to set the current language for the current configuration, the language
module defines an event subscriber class named LanguageRequestSubscriber that
overrides the current language used by the ConfigFactory on every page request
using the EventSubscriberInterface we've learned about earlier.

When loading a configuration object from storage, ConfigFactory is now able
to load configuration data specific to the current language from the configuration
storage. The language overrides are stored right next to the normal configuration.
The only this is different from the default configuration files is the naming.

Using the default storage-mechanism-translated configuration, the translation is
identified additionally by a collection; that is, translating your site's name to German
will add a new entry to table {config}, where the column collection is filled with the
language.de string.

Chapter 4

[53]

If you use file-based storage for your configuration, you will notice a folder named
language within your configuration directory. This directory contains one directory
per language and includes all files of the translated configuration. In a custom
module, you can also add custom translations. Simply add a language directory to
your config/install, as shown in the following screenshot:

For every language for which you would like to provide translations, add another
directory under language using the language code as the name (that is, de for
German or hu for Hungarian). Then, place the configuration files you would like to
translate in these directories and translate the values.

Translating configuration values provided by other modules that
use them is not recommended. If the configuration translation
already exists, your module will not be installed.

Only put the configuration you translate in these files; that is, if you would like to
translate only the name of your site to German, create a file named system.site.
yml in the directory config/install/language/de (as shown in the preceding
image) and put the following contents in it:

name: 'Konfigurationsmanagement in Drupal 8'

During installation of your module, the translation is imported into Drupal and is
directly available on your site.

For some tasks, it is necessary to load configuration objects in a language other than
the current site language. For example, think of sending e-mails to various users in
different languages. The e-mails should be sent in the user's language and not in the
site's language.

The Configuration Management API

[54]

To get configuration values in the correct language, you need to set the
configuration's override language:

<?php
// Retrieve the current user object.
$account = \Drupal::currentUser();
// Get the language manager.
$language_manager = \Drupal::languageManager();
// Load preferred user language.
$language = \Drupal::languageManager()->getLanguage($account-
>getPreferredLangcode());
// Set configuration language override.
$language_manager->setConfigOverrideLanguage($language);
?>

From now on, Drupal will return configuration values in the requested language if
there were overrides available for the requested values.

If you need to switch the configuration language, it is useful to remember the current
language first before setting a new one. This way, you can switch back to the original
language after working with the translated configuration values:

<?php
// Store original language.
$language_original = $language_manager->getConfigOverrideLanguage();
// Set configuration language override.
$language_manager->setConfigOverrideLanguage($language);
// Do some stuff, i.e. send localized emails.
// ...
// Set the language back to its original value.
$language_manager->setConfigOverrideLanguage($language_original);
?>

Module overrides
The last type of configuration override is the module override. While Drupal core
handles global overrides as well as language overrides, there are many other use
cases for different kinds of overrides. Think of a configuration override based on the
roles a user has, the current domain, and so on. The possibilities are nearly endless.

Chapter 4

[55]

Say you would like to override the name of your site using a custom module. First,
you need to extend the services.yml file we used in a previous example with these
lines (adapt them to your needs and replace cm_example with the name of your
module):

 cm_example.config_factory_override:
 class: Drupal\cm_example\Config\ExampleConfigFactoryOverride
 arguments: ['@config.storage', '@event_dispatcher', '@config.
typed']
 tags:
 - { name: config.factory.override, priority: 10 }

As you can see, we define a new service using the ExampleConfigFactoryOverride
class. The key part here is the tags section; with the name config.factory.
override, you tell Drupal that there is a new service that wants to override the
configuration factory. We give the service a priority of 10, so it is executed after most
default services in the queue (that is, the language override has a very low priority to
execute it as one of the first services).

Next, we create the class itself in a directory named Config under the src directory
of our custom module:

<?php

/**
 * @file
 * Contains \Drupal\cm_example\Config\ExampleConfigFactoryOverride.
 */

namespace Drupal\cm_example\Config;

use Drupal\Core\Config\ConfigFactoryOverrideInterface;
use Drupal\Core\Config\StorageInterface;

/**
 * Provides custom overrides for the configuration factory.
 */
class ExampleConfigFactoryOverride implements
ConfigFactoryOverrideInterface {

 /**
 * {@inheritdoc}
 */
 public function loadOverrides($names) {
 $overrides = array();

The Configuration Management API

[56]

 if (in_array('system.site', $names)) {
 $overrides['system.site'] = ['name' => 'Customized site name'];
 }
 return $overrides;
 }

 /**
 * {@inheritdoc}
 */
 public function getCacheSuffix() {
 return 'CmExampleConfigOverrider';
 }

 /**
 * {@inheritdoc}
 */
 public function createConfigObject($name, $collection =
StorageInterface::DEFAULT_COLLECTION) {
 return NULL;
 }

}
?>

The class simply implements ConfigFactoryOverrideInterface and
implements the three loadOverrides(), getCacheSuffix(), and
createConfigObject()functions.

You do not need to worry about the latter ones because the main function needed
for our purpose is loadOverrides(). In our example, the function simply checks
whether system.site is one of the configuration keys ConfigFactory collects
overrides for, and returns a list of overrides for this configuration object.

If multiple modules registered a custom configuration override service, the service
with the highest priority within all module overrides will be called last; so, if
multiple services override the same configuration object, the last one is used for the
override and provides the current value.

Across the different types of configuration overrides, language overrides have the
lowest priority. Module overrides takes precedence over language overrides, and
are overridden themselves by overrides of the global $config and global
$settings systems.

Chapter 4

[57]

Avoiding overrides
When writing a custom configuration form, it is very useful to get the configuration
objects without overrides. Otherwise, the overridden configuration will get into the
saved configuration. As for localized configuration, you'll never want to override the
original configuration with localized values.

To get configuration values without any overrides, Drupal provides the function
getEditable() of ConfigFactory. While configuration objects returned by get()
are immutable, getEditable() returns configuration objects that may be changed.

When inheriting your form class from the core ConfigFormBase class, you can
simply implement the getEditableConfigNames() function, and return a list of all
the names of the configuration objects your form might alter:

<?php
/**
 * @file
 * Contains \Drupal\cm_example\Form\ExampleConfigurationForm.
 */

namespace Drupal\cm_example\Form;

use Drupal\Core\Form\ConfigFormBase;
use Drupal\Core\Form\FormStateInterface;

/**
 * Provides the site configuration form.
 */
class ExampleConfigurationForm extends ConfigFormBase {

 /**
 * {@inheritdoc}
 */
 public function getFormId() {
 return 'example_configuration_form';
 }

 /**
 * {@inheritdoc}
 */
 protected function getEditableConfigNames() {

The Configuration Management API

[58]

 return ['cm_example.settings'];
 }
}
?>

You are then able to load the configuration object using $this->config($name)
and change the configuration value. Drupal will automatically load the
configuration object without overrides if the name is in the list returned by
getEditableConfigNames(), so you don't have to bother about this.

Creating configuration entity types
In Chapter 3, Drupal 8's Take on Configuration Management, we learned about the
different types of configuration: simple configuration and configuration entities.
Though Drupal 8 comes with several different configuration entity types, it is
sometimes useful to create your own configuration entity type when developing a
custom module.

Adding the basics
At first, we need to create a simple interface for the new configuration entity type.
This class must extend the generic ConfigEntityInterface class, which is common
for all configuration entities:

<?php
/**
 * @file
 * Contains \Drupal\cm_example\CmExampleInterface.
 */

namespace Drupal\cm_example\Entity;

use Drupal\Core\Config\Entity\ConfigEntityInterface;

/**
 * Provides an interface defining an Example entity.
 */
interface CmExampleInterface extends ConfigEntityInterface {
 // Add getter and setter methods for your configuration properties
here.
}
?>

Chapter 4

[59]

If you would like to add some specific getter and setter functions for properties used
by your configuration entity, you will need to do this here as well.

Next, we need to add the main configuration entity class that handles all the
stuff you would like to do with the configuration data. To avoid writing too
much code and re-inventing everything, you should simply extend the core class
ConfigEntityBase. This will give you a large set of functions to handle your
configuration entity so that you don't need to bother with this.

The most important thing in the main class is the comment block right above the
class definition, the so-called Annotation, by which the main definition of the
type is done.

Annotations are meta-information used to describe classes, properties,
and functions, and are always put in comments above the described
structure. If you have written code for Drupal before, you will certainly
know @param or @return for functions; these are annotations used by
parsers that create documentation.

To tell Drupal about your custom configuration entity type, you will need to add the
@ConfigEntityType annotation to your class comment:

<?php

/**
 * @file
 * Definition of Drupal\cm_example\Entity\CmExample.
 */

namespace Drupal\cm_example\Entity;

use Drupal\cm_example\CmExampleInterface;
use Drupal\Core\Config\Entity\ConfigEntityBase;

/**
 * Defines the CmExample configuration entity.
 *
 * @ConfigEntityType(
 * id = "cm_example",
 * label = @Translation("CM Example"),
 * handlers = {
 * "form" = {

The Configuration Management API

[60]

 * "delete" = "Drupal\Core\Entity\EntityDeleteForm"
 * },
 * "list_builder" = "Drupal\cm_example\CmExampleListBuilder",
 * },
 * config_prefix = "cm_example",
 * admin_permission = "administer site configuration",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label",
 * },
 * links = {
 * "edit-form" = "/admin/structure/cm_example/manage/{cm_
example}",
 * "delete-form" = "/admin/structure/cm_example/manage/{cm_
example}/delete",
 * "collection" = "/admin/structure/cm_example",
 * }
 *)
 */
class CmExample extends ConfigEntityBase implements CmExampleInterface
{

 /**
 * The machine name for the configuration entity.
 *
 * @var string
 */
 protected $id;

 /**
 * The human-readable name of the configuration entity.
 *
 * @var string
 */
 public $label;

}
?>

Within this class annotation, you define the internal name and the label for the new
configuration entity type. Additionally, you may define the handlers used to display
and store entities of the new type and the paths for different tasks on the entity (that
is, the edit form).

Chapter 4

[61]

Taking control of your data
Since we didn't define custom handlers for storage, listing, and access control,
Drupal will use the default handlers for these tasks. You can easily use your own
handlers: simply add storage, list_builder, or access to the handler array within
the annotation, and set the names of the appropriate classes.

For example, a custom access handler should extend the basic
EntityAccessControlHandler class and override the checkAccess() function.

For an in-depth example on how to create a custom configuration
entity type and the different handlers and form classes, look at
the great Examples module (https://www.drupal.org/
project/examples).

Summary
After defining all the classes that we need in order to add, edit, and list entities of
the new configuration entity type, we are now able to use this type in configuration
objects like every other core type.

So what did we learn in this chapter? We learned about how to get and update
configuration values and about the different ways of overriding configuration
provided by Drupal or modules; then we created a very simple configuration entity
type. Thus, by now, you should be able to create a module and manage your custom
configuration right away.

https://www.drupal.org/project/examples
https://www.drupal.org/project/examples

[63]

The Anatomy of
Schema Files

In the previous chapters, we learned about the fundamental principles of Drupal 8's
Configuration Management, and took a look at the Configuration Management API.
So we now know how to work with configuration objects and how to read and write
individual configuration.

However, how does Drupal validate data within a site's configuration? We probably
need a setting to accept integer values or a URI. Or we would like to enforce fixed
structure in our configuration data. This is exactly where schema files come into play.

This chapter will tell you about schema files and how Drupal uses them for
Configuration Management. We will learn about the structure of schema files used
by Drupal and how you can write your own schema for custom configuration.

What are schema files in Drupal?
With schema files, you can describe the contents of a configuration file. You can
determine which configuration keys are allowed in a specific configuration object
and which data type configuration data needs to have. Drupal 8's schema files are
inspired by Kwalify.

Kwalify (http://www.kuwata-lab.com/kwalify/) is a parser and
schema validator for YAML and JSON. It adds a schema to YAML and
JSON as, for example DTD does for XML.

The format used by Kwalify was slightly modified to fit the needs of the structure
needed in Drupal 8 but, generally, it is largely identical.

http://www.kuwata-lab.com/kwalify/

The Anatomy of Schema Files

[64]

Schema files were not introduced for validation purposes only. The primary use
case for schema files was to support multilingual configuration in Drupal 8. It was
necessary to create a tool to identify all translatable strings within the configuration
files, so the entire configuration, views, menu items, and user roles that you may
define in a custom module or theme could be offered as translation packages on
http://localize.drupal.org.

The second very important use case for schema files is forms that translate
configuration data. Without schema files, it would be very hard for Drupal to display
configuration values in the expected type or to discover whether a configuration
value is valid. Drupal automatically typecasts configuration values to the type
defined in the corresponding schema in order to ensure the right data type is used
when the configuration is saved.

Additionally, Drupal has nearly no chance of printing out the human-readable
name for the form element of a configuration element just by looking at the
configuration file.

Let's look at system.file.yml as an example:

allow_insecure_uploads: false
default_scheme: 'public'
path:
 temporary: ''
temporary_maximum_age: 21600

To use the intended data types while building the related form for this configuration
object, Drupal needs to know which type of data to display and in to which type to
save the values.

This information is precisely defined in the associated schema file.

The structure of a schema file
Schema files are located in a subdirectory of the config directory of each module
that defines its own configuration. The name of this directory is schema (not very
surprising, is it?). The schema files themselves are named after the module that
defines the schema, followed by an optional identifier and the string .schema.yml.
Again, using the system module as an example, the path to its schema file is system/
config/schema/system.schema.yml.

Within each schema file, the top-level key corresponds to the name of the
configuration file, the name of the configuration object that the schema should
apply to. The following nested values describe the exact structure of the related
configuration object.

http://localize.drupal.org

Chapter 5

[65]

Let's look at a part of the system.schema.yml for an explanation:

system.file:
 type: mapping
 label: 'File system'
 mapping:
 allow_insecure_uploads:
 type: boolean
 label: 'Allow insecure uploads'
 default_scheme:
 type: string
 label: 'Default download method'
 path:
 type: mapping
 label: 'Path settings'
 mapping:
 temporary:
 type: string
 label: 'Temporary directory'
 temporary_maximum_age:
 type: integer
 label: 'Maximum age for temporary files'

As mentioned before, the top-level key system.file references the configuration
file system.file.yml, so the contents listed under this key define the content of the
configuration object system.file.

The next lines in our example define the data types used for the values of the
configuration data. We will explain the displayed schema in the next part of
this chapter.

Properties
In the previous example, you see some of the properties used in schema files. These
properties define the basic structure of the schema and influence the possible usage
of the inherited configuration objects. Let's take a look at them:

• type: This is the data type of the configuration value. This may be either one
of the base types or a derived type. We will show the difference between
both later in this chapter.

• label: This is a short description for the value. It does not have to match a
corresponding configuration form label but, for clarity, they should match.

The Anatomy of Schema Files

[66]

• translatable: This indicates whether the defined data type is translatable
or not.

• translation context: This is a string context used for the translation.
Drupal uses different contexts to allow translating the same word depending
on where it is used on the site. For example, the word View can be used either
to describe a list of entities or simply to display something. The translation
context helps to differentiate between both.

• class: This is used only on base types to define the class used to parse the
data type. You don't have to worry about this normally.

• mapping: This type-specific property is used to list the underlying elements
within a configuration element (for example, the children of system.file
in the example shown before) as key-value pairs (like an associative array).
Only strings are allowed for the keys of these key-value pairs.

• sequence: This is used to list the underlying elements within a sequence of
values. In contrast to mapping, the keys in a sequence can be either integers
or strings. You can think of the sequence as a simple indexed list.

Data types
Most of the basic types, as well as some more complex types, are defined in the
core.data_types.schema.yml file:

Basic scalar data types from typed data.
boolean:
 label: 'Boolean'
 class: '\Drupal\Core\TypedData\Plugin\DataType\Boolean'
email:
 label: 'Email'
 class: '\Drupal\Core\TypedData\Plugin\DataType\Email'
integer:
 label: 'Integer'
 class: '\Drupal\Core\TypedData\Plugin\DataType\Integer'
float:
 label: 'Float'
 class: '\Drupal\Core\TypedData\Plugin\DataType\Float'
string:
 label: 'String'
 class: '\Drupal\Core\TypedData\Plugin\DataType\String'
uri:
 label: 'Uri'
 class: '\Drupal\Core\TypedData\Plugin\DataType\Uri'

Chapter 5

[67]

These types have a direct mapping to their Typed Data API counterparts. The Typed
Data API has been created to provide developers with a consistent way to interact
with data. By default, PHP is a very loosely-typed language. The Typed Data API is
trying to fix this, so Drupal itself—or any another system on which you would like
to expose your data—will not run into problems while guessing a value type. For
example, using a configuration value of type integer will automatically cast the
value to int in Drupal, so a developer who uses this value doesn't have to do
this manually.

For configuration data, Drupal defines some additional types:

Basic data types for configuration.
undefined:
 label: 'Undefined'
 class: '\Drupal\Core\Config\Schema\Undefined'
ignore:
 label: 'Ignore'
 class: '\Drupal\Core\Config\Schema\Ignore'
mapping:
 label: Mapping
 class: '\Drupal\Core\Config\Schema\Mapping'
 definition_class: '\Drupal\Core\TypedData\MapDataDefinition'
sequence:
 label: Sequence
 class: '\Drupal\Core\Config\Schema\Sequence'
 definition_class: '\Drupal\Core\TypedData\ListDataDefinition'

As mentioned before, mapping and sequence are basically the same, with mapping
being similar to an associative array and sequence being similar to a simple
indexed list.

On the other hand, setting the type of a configuration object to undefined equates
to not defining a schema at all, so there is no point in using this type. When creating
configuration data structures where no type is possible (for example, for testing
purposes), you could use the ignore type. Elements of this type are not casted and
always validate.

Reusing data types
In order to allow more flexibility and the reuse of data types, types can simply be
derived from each other to create more complex data structures. For example, the
type label is a simple extended data type that uses the basic data type string as its
own type. In contrast to data of type string, the label type requires its data to be
plain text and editable with a text field.

The Anatomy of Schema Files

[68]

Sometimes, a module defines configuration using the same data structure from
different places. For example, if you provide a configuration for e-mails, you
always define the e-mail subject and the e-mail body. In your configuration, you
can now write the following code in every configuration file that needs an e-mail
configuration object:

cm_example.notification:
 type: mapping
 label: 'Notification settings'
 mapping:
 subject:
 type: label
 label: 'Subject'
 body:
 type: text
 label: 'Body'

Thanks to reusable data types, this can be covered in a single custom data type. This
prevents errors in writing, and makes the structure of the configuration files much
more readable:

Mail text with subject and body parts.
mail:
 type: mapping
 label: 'Mail'
 mapping:
 subject:
 type: label
 label: 'Subject'
 body:
 type: text
 label: 'Body'

Whenever you need to reference an e-mail in your configuration, simply use type:
mail, and Drupal automatically expands this to the complex type:

cm_example.notification:
 type: mapping
 label: 'Notification settings'
 mapping:
 email:
 type: mail
 label: 'Email'

Chapter 5

[69]

Making data translatable
As shown before, there is also a translatable property for schema files. For
example, the data type label makes use of it:

label:
 type: string
 label: 'Label'
 translatable: true

This property is the basic requirement for configuration data to be translated. Drupal
is now able to identify the translatable configuration and create the correct forms and
functions around it, so authorized users of the site may translate them. By default,
only label, text, and date_format are built-in translatable data types.

Dynamic type references
As you can see from the previous examples, simple and complex data types are
essential references to other data types. Sometimes, a type isn't fixed but depends
on the data of the configuration object itself. Think of Drupal image styles. They can
contain several different image effects, with each of the effects requiring a different
structure. Let's look at the default configuration object of the image style thumbnail
located in image.style.thumbnail.yml:

name: thumbnail
label: 'Thumbnail (100x100)'
effects:
 1cfec298-8620-4749-b100-ccb6c4500779:
 id: image_scale
 data:
 width: 100
 height: 100
 upscale: true
 weight: 0
 uuid: 1cfec298-8620-4749-b100-ccb6c4500779
langcode: en

Depending on the selected effect, the key data can contain a completely different
structure. For example, the structure of the effect image_crop uses the property
anchor instead of upscale. Here is an excerpt merely showing the image effect:

 id: image_crop
 data:
 width: 100
 height: 100
 anchor: 'top-left'

The Anatomy of Schema Files

[70]

In order to map this dynamic data structure, we need to create a reference to the
related data type by using the identifier of the image effect. Here's an excerpt from
image.schema.yml:

image.style.*:
…
 effects:
 type: sequence
 sequence:
 type: mapping
 mapping:
 id:
 type: string
 data:
 type: image.effect.[%parent.id]
 weight:
 type: integer
 uuid:
 type: string

The schema excerpt shown here uses a dynamic type reference to name the data type
for a single effect. Variable values used in data types should be enclosed in square
brackets, and can be combined with fixed components (such as image.effect. in
our example).

There are 3 types of dynamic references:

• Element-key references, for example, [%key]
• Sub-key references, such as type: views.field.[plugin_id]
• Parent-key references, such as type: image.effect.[%parent.id]

The element-key references
Taking ckeditor.schema.yml as an example, we have the following code:

plugins:
 type: sequence
 label: 'Plugins'
 sequence:
 type: ckeditor.plugin.[%key]

So, if you create a configuration object using type: stylescombo (stylescombo is
a core style of the core ckeditor module), Drupal will automatically expand this to
ckeditor.plugin.stylescombo and use the schema defined for this.

Chapter 5

[71]

The sub-key references
The used data type is composed of the fixed part and the value of the property
referenced by the sub-key. Let's take a look at the schema for filters in views:

 filters:
 type: sequence
 label: 'Filters'
 sequence:
 type: views.filter.[plugin_id]

In a view, adding a filter for the node status (published/unpublished) will give you
the following excerpt in the corresponding configuration object:

 filters:
 status:
 field: status
 group: 1
 id: status
 table: node_field_data
 value: true
 plugin_id: boolean
 entity_type: node
 entity_field: status

Drupal now takes the value of the key plugin_id from the definition of the status
filter and creates the type name from it. This results in the type views.filter.
boolean, defined in views.filter.schema.yml.

The parent-key references
This creates a reference to the parent configuration object (the upper level in the
hierarchy) and uses values from this object. For example, the value property of a
view filter is forced to use views.filter_value.[%parent.plugin_id] as the type:

views_filter:
 type: views_handler
 mapping:
 operator:
 type: string
 label: 'Operator'
 value:
 type: views.filter_value.[%parent.plugin_id]
 label: 'Value'

The Anatomy of Schema Files

[72]

Looking at the example from the sub-key reference, Drupal will take the plugin ID
from the status filter and create the type for value from it, resulting in views.
filter_value.boolean.

At first, this can be really confusing and hard to understand, but it allows maximum
flexibility when creating dynamic configuration objects.

Coding standards
When developing for Drupal, it is not only a best practice to follow the Coding
Standards for configuration (https://www.drupal.org/coding-standards/
config), but it is also one of the things you need to internalize in your daily work.
Of course, the Coding Standards do not apply to PHP only; there are even some
guidelines for writing schema files.

The first rule of thumb is to simply follow the code style of the .yml files, as seen
everywhere else in Drupal code. The key points are as follows:

• Add a comment to the file, explaining the purpose and the content of this file.
If there is only one schema file in your module, you may use a comment such
as # Schema for the configuration files of the {YOURMODULENAME}
module.

• Do not use double quotes for strings; use single quotes whenever you need to
wrap strings in quotes.

• Use single quotes for label values that have only one word, for consistency.
• Key definitions and types should never be put in quotes. According to the

Drupal standard, key names and types must not contain spaces, so there is
no need to wrap them in quotes.

• Integer values used in configuration data are casted to strings when written
to the .yml files. Therefore, you need to wrap them in single quotes too.

• Avoid comments that provide no extra clarity to the schema. Each schema
item needs to have a descriptive label anyway, so an additional comment
may be superfluous for many items (for example, Comment settings above
the section comment.section).

• Add labels at least to the translatable values and to their containers.
Otherwise, the translation form for these values cannot be generated in a
useful way (some elements in the form would lack labels).

• Use proper indentation so that you can easily see the structure within the
schema (this is not a standard per se, but a best practice).

https://www.drupal.org/coding-standards/config
https://www.drupal.org/coding-standards/config

Chapter 5

[73]

PHP API
Defining a schema for your configuration is not only for Drupal's internals, it may
also help you while writing a custom module. For example, you might like to get
the data type of a configuration object (say, for validation purposes or to print out
information about the type).

In addition to the already known \Drupal::config($name) to load a single
configuration object, there is \Drupal::service('config.typed'). Using this
function, you can access the definition of a configuration object's data structure.

To load the type definition of, for example, system.maintenance, we could use
the following code:

<?php
$definition = \Drupal::service('config.typed')->getDefinition('system.
maintenance');
?>

This would result in an array that contains the following structure:

<?php
$definition = array(
 'label' => 'Maintenance mode',
 'type' => 'system.maintenance',
 'class' => '\Drupal\Core\Config\Schema\Mapping',
 'definition_class' => '\Drupal\Core\TypedData\MapDataDefinition',
 'mapping' => array(
 'message' => array(
 'type' => 'text',
 'label' => 'Message to display when in maintenance mode',
),
 'langcode' => array(
 'type' => 'string',
 'label' => 'Default language',
),
),
);
?>

If we compare this with the definition of the configuration object system.
maintenance in system.schema.yml, we will see that its values match:

system.maintenance:
 type: mapping
 label: 'Maintenance mode'

The Anatomy of Schema Files

[74]

 mapping:
 message:
 type: text
 label: 'Message to display when in maintenance mode'
 langcode:
 type: string
 label: 'Default language'

Retrieving the data for a single configuration item is as easy as getting the complete
schema definition. You simply have to use \Drupal::service('config.typed')-
>get($name). Depending on the structure of the configuration schema, you will
probably have to chain multiple calls of get().

For example, \Drupal::service('config.typed')->get('system.
maintenance')->get('message')->getDataDefinition() will give you an
array that holds the schema definition for the maintenance message. Later, you
can access the properties of the definition and, for example, use them to create
corresponding forms:

$message = \Drupal::service('config.typed')->get('system.
maintenance')->get('message')->getDataDefinition->toArray();
$label = $message['label'];

Even if it is theoretically possible to make changes to the configuration loaded using
the Typed Data API, you shouldn't do this. Using \Drupal::config() is simpler
and faster.

If you would like to inspect your configuration and learn more about the structure
and how to generate forms based on a given configuration schema, you don't
need to print out the information yourself; simply download and install the
great Configuration inspector module (https://drupal.org/project/config_
inspector). It will give you an overview of your configuration and help you while
creating your configuration and the corresponding schema.

https://drupal.org/project/config_inspector
https://drupal.org/project/config_inspector

Chapter 5

[75]

Summary
Schema files are required in order to define how configuration objects are structured
and how (and if) Drupal should handle translation of configuration data. They are
used to ensure that configuration data is loaded and saved in the correct data type,
so developers don't need to worry about casting the values into the types they need.

If the data types provided by Drupal do not fit your needs, you can simply extend
those types by creating your own.

With all this knowledge about configuration objects and configuration schemas, we
will learn how to add configuration to custom modules in the next chapter.

[77]

Adding Configuration
Management to Your Module

After we learned how to access configuration objects and how schema files are
structured in previous chapters, you will surely want to know how to get all this
fancy stuff into your shiny new module for Drupal 8.

We will learn how to include the default configuration in custom modules, how to
define and use your own configuration, and how to create configuration forms.

Default configuration
Let's start with a simple task and add some default configuration to our
example module.

In Drupal 7, you have to use custom code to create and update the default
configuration, such as content types, views, or field configurations. Many people also
use the great Features module that provides some handy functions to manage default
configuration easily.

Drupal 8 uses the .yml files we talked about extensively in previous chapters to store
information about the default configuration. The Configuration Management system
itself takes care of creating and managing the default configuration, so we can focus
on writing its definition rather than creating the functions for management.

Adding Configuration Management to Your Module

[78]

An example
Let's add a custom vocabulary to our site and define the term container and its
configuration in the example module we used in the previous chapters. The
vocabulary should be named Category and have the internal identifier cm_example_
category (this is the machine-readable name). For the vocabulary definition, we
create a new file named taxonomy.vocabulary.cm_example_news.yml in the
subdirectory called config/install of the module's main directory. To prevent
conflicts with configuration provided by other modules, you should always respect
the naming convention and prefix custom types (content types, vocabularies, and so
on) with your module name followed by an underscore.

After creating the file, you can put the following code in it:

vid: cm_example_category
name: Category
description: 'List of categories'
status: true
hierarchy: 1
weight: 0
dependencies:
 enforced:
 module:
 - cm_example
langcode: en

As you can see, we simply define the basic configuration of the vocabulary, as we
would do in the user interface as follows:

• The vid key is the unique identifier of the vocabulary (in the previous
versions of Drupal, this was vocabulary ID, hence the name). To avoid
name clashes with vocabularies created by other modules or by the
administrator of the site, you should use your module's name as a prefix for
this machine-readable identifier.

• The name and description keys hold the vocabulary's name and description
that are visible in the user interface.

• Since we would like the vocabulary to be enabled and usable after
installation, the value of the status key is set to true.

Chapter 6

[79]

• In the hierarchy key, you can decide which type of hierarchy the new
vocabulary should support:

 ° This denotes that the hierarchy is disabled
 ° This denotes a simple hierarchy (only 1 parent per term is allowed)
 ° This denotes multiple parents (a term in this vocabulary can have

multiple parents)

• To make sure the vocabulary is only available on the site as long as the
defining module is installed, we declare a dependency to our module cm_
example in the key dependencies. Using the enforced key, we tell Drupal
to require this dependency regardless of the changes or the additions that a
user of the site made to the configuration of the vocabulary.

If you do not want to write the configuration manually, you can also
create the vocabulary in the user interface and export the configuration
using the configuration exporter on admin/config/development/
configuration/single/export.

Of course, configuring the user interface and exporting it works will all types of
configuration, whether defined by Drupal itself or other modules, so you can ship
your module with predefined content types, views, user roles, block settings, or
whatever needs to be configured to make your module work. A view, for example,
would require you to create a file named views.view.[name of your view].yml,
user roles would go into user.role.[role name].yml, and so on.

Remember to reinstall your module if you add a default configuration after installing
the module since Drupal only imports configuration on installation of a module.

Defining and using your own
configuration
Sometimes, including default configuration objects defined by other modules is not
enough, and you may want to define your own configuration. As with many other
parts of the Configuration Management in Drupal 8, this is not very complicated.

Setting your configuration file
Configuration files for configuration objects defined by a module reside in the
config/install subdirectory of this module. In our example, this is /modules/
custom/cm_example/config/install.

Adding Configuration Management to Your Module

[80]

We put our example module in a directory named custom inside the
modules directory to separate contributed modules downloaded from
https://drupal.org from custom modules. This is a well-known best
practice when creating sites to keep your modules organized.

In Chapter 3, Drupal 8's take on Configuration Management, we mentioned the naming
conventions of configuration files. As said before, simple module settings should go
into a file named <module name>.settings.yml; thus, in our case, we will name it
cm_example.settings.yml:

items_per_page: 20
langcode: en

These settings will set the default language to en for English, and provide a simple
setting named items_per_page in our module.

All settings saved to this file will define the default values for your module. Drupal
will take these values on installation and use them as defaults unless overridden by
the user or another module.

Of course, you are not limited to simple configuration in your module. If you need
more complex configuration objects or configuration entities, this is also possible.

Custom configuration entity types
Let's take a look back at our custom configuration entity type named "CM Example",
which we created in Chapter 4, The Configuration Management API:

<?php
/**
 * @file
 * Definition of Drupal\cm_example\Entity\CmExample.
 */

namespace Drupal\cm_example\Entity;

use Drupal\cm_example\CmExampleInterface;
use Drupal\Core\Config\Entity\ConfigEntityBase;

/**
 * Defines the CmExample configuration entity.
 *

https://drupal.org

Chapter 6

[81]

 * @ConfigEntityType(
 * id = "cm_example",
 * label = @Translation("CM Example"),
 * handlers = {
 * "form" = {
 * "delete" = "Drupal\Core\Entity\EntityDeleteForm"
 * },
 * "list_builder" = "Drupal\cm_example\CmExampleListBuilder",
 * },
 * config_prefix = "cm_example",
 * admin_permission = "administer site configuration",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label",
 * },
 * links = {
 * "edit-form" = "/admin/structure/cm_example/manage/{cm_
example}",
 * "delete-form" = "/admin/structure/cm_example/manage/{cm_
example}/delete",
 * "collection" = "/admin/structure/cm_example",
 * }
 *)
 */
class CmExample extends ConfigEntityBase implements CmExampleInterface
{

 /**
 * The machine name for the configuration entity.
 *
 * @var string
 */
 protected $id;

 /**
 * The human-readable name of the configuration entity.
 *
 * @var string
 */
 public $label;

}
?>

Adding Configuration Management to Your Module

[82]

To provide default configuration for this type, we need to place it in a file named
cm_example.example.[bundle name].yml and define a schema for the type in
cm_example.schema.yml.

Let's assume that the type requires a label and a message only, and is translatable:

cm_example.cm_example.*:
 type: config_entity
 label: 'Example settings'
 mapping:
 id:
 type: string
 label: 'Internal Example ID'
 label:
 type: string
 label: 'Human readable label'
 message:
 type: string
 label: 'Message to display'
 langcode:
 type: string
 label: 'Default language'

This defines the basic structure for all bundles of the CM Example configuration type,
as we learned in Chapter 5, The Anatomy of Schema Files.

If we now add the default configuration for this configuration entity type, we
can simply create a file named cm_example.cm_example.test.yml and add the
following code to the file:

Machine-readable name.
id: test
Define the label.
label: 'Example bundle'
A basic message.
message: 'Configuration Management in Drupal 8'
Default language.
langcode: 'en'

Chapter 6

[83]

During the installation of our module, Drupal will then create an entity named test
of the type CM Example based on the values defined in the default configuration file
(assuming we have already implemented the corresponding functions to save the
entities of our configuration type).

Using the configuration
We already learned how to use the Configuration Management API to
access configuration objects in the previous chapters. The simplest way to
use your configuration is the \Drupal::config() method and
\Drupal::configFactory()->getEditable():

<?php
// Load all settings from 'cm_example.settings.yml'.
$settings = \Drupal::config('cm_example.settings');
// Get number of items per page.
$items_per_page = $settings->get('items_per_page');
?>

This will load the current value of the simple configuration items_per_page. If the
value hasn't been changed by a user or overridden by another module, the variable
will hold the default value provided by our module.

As described before, you can also modify the configuration:

<?php
// Change items per page and save to active configuration.
\Drupal::configFactory()->getEditable('cm_example.settings')-
 >set('items_per_page', '10')->save();
?>

Now that we have equipped our example module with some default configuration,
and added our own configuration entity type, we would like some users to change
the basic settings of our module.

Creating a configuration form
Now that we know how to add custom configuration to our module and how to
provide some configuration defaults, we will learn how to enable certain users to
change the configuration values in the user interface. To do this, we need to create a
custom form for our configuration values and define a path on which the form will
be accessible.

Adding Configuration Management to Your Module

[84]

Configuration forms in Drupal 7
First, let's take a look back at Drupal 7. In Drupal 7, we needed to add an
implementation of hook_menu() to our custom module to tell Drupal from which
path users might access our configuration form:

<?php
/**
 * Implements hook_menu().
 */
function cm_example_menu() {
 $items = array();

 // Define path to configuration page.
 $items['admin/config/example'] = array(
 'title' => 'Example configuration',
 'description' => 'Configure settings for Example.',
 'page callback' => 'drupal_get_form',
 'page arguments' => array('cm_example_settings_form'),
 'access arguments' => array('access administration pages'),
);

 return $items;
}
?>

This will register the path admin/config/example to our page built in Drupal 7, and
ensure that the specified function to generate our configuration page will be called.
To simplify things a bit, we use drupal_get_form() as the page callback function
here and hand over the name of our form generation function as an argument to it.
The cm_example_settings_form()function itself wasn't very complicated. You
define your form elements and return the form structure wrapped by system_
settings_form(). This function includes the necessary elements (that is, the submit
button), adds the required validation, and submits callbacks to the form, so you don't
need to bother about saving the values. It maps the form's fields to variables using
the variable system:

<?php
/**
 * Form generation callback for Example settings in Drupal 7.
 */
function cm_example_settings_form() {
 $form = array();

 $form['items_per_page'] = array(

Chapter 6

[85]

 '#type' => 'textfield',
 '#title' => t('Items per page'),
 '#description' => t('The number of Example items per page.'),
 '#default_value' => variable_get('items_per_page', 10),
);
 // Return the wrapped form structure.
 return system_settings_form($form);
}
?>

In real life, you would prefix the settings name with the name of your module to
avoid naming collisions with other modules or Drupal itself. In our example, this
would create a simple form with a single text field and would save the entered value
without any further validation to the variables table.

Creating configuration forms in Drupal 8
In Drupal 8, things have changed a lot when it comes to form building. As shown in
the previous pages, in Drupal 7, you simply add a menu hook definition and a form
creation function that returns a renderable array. Since Drupal 8 uses object-oriented
programming, forms are defined using classes.

So, to create a configuration form for our configuration, we need to:

• Add a form controller class that is responsible for creating the form elements
and handles validation and submission

• Add a route to define a path for the form
• Add a menu item for the form

Adding a form controller
At first, we need to create a form controller that is responsible for form generation
and handles additional validation and saving of the submitted values. Since we
do not want to build the controller from scratch, we simply extend the existing
ConfigFormBase class. This class is Drupal 8's replacement for system_settings_
form(), familiar from Drupal 7 and before.

Adding Configuration Management to Your Module

[86]

The form controller class is saved to a file named ExampleSettingsForm.
php. Since we would like to keep our code organized, we put this file in the
src\Form subdirectory of our module. To create the basic class, we need
to define the namespace of the class and override the getFormId() and
getEditableConfigNames()functions of the basic FormInterface interface. The
returned string identifies the form across the system and must be unique for your
site. It is a best practice to use the name of the defining module as a prefix again, so
we simply use cm_example_settings_form as the identifier in our example:

<?php
/**
 * @file
 * Contains \Drupal\cm_example\Form\ExampleSettingsForm.
 */

namespace Drupal\cm_example\Form;

use Drupal\Core\Form\ConfigFormBase;
use Drupal\Core\Form\FormStateInterface;

/**
 * Provides the site configuration form.
 */
class ExampleSettingsForm extends ConfigFormBase {

 /**
 * {@inheritdoc}
 */
 public function getFormId() {
 return 'cm_example_settings_form';
 }

 /**
 * {@inheritdoc}
 */
 protected function getEditableConfigNames() {
 return ['cm_example.settings'];
 }
}
?>

Chapter 6

[87]

The getEditableConfigNames()function returns the names of configuration
items that the form should be able to edit. Drupal then automatically uses
the correct getter for your configuration if you access the values through
$this->config(). If the configuration object is requested as editable, a call to
\Drupal::configFactory()->getEditable() is made internally; otherwise,
it is simply \Drupal::config()->get().

Now, we create the needed form elements for our configuration by overriding the
buildForm() function:

<?php
 /**
 * {@inheritdoc}
 */
 public function buildForm(array $form, FormStateInterface $form_
state) {
 $config = $this->config('cm_example.settings');

 $form['example'] = array(
 '#type' => 'fieldgroup',
 '#title' => $this->t('Example'),
);
 $form['example']['items_per_page'] = array(
 '#type' => 'textfield',
 '#title' => $this->t('Items per page'),
 '#default_value' => $config->get('items_per_page'),
 '#required' => TRUE,
 '#weight' => -20,
);

 return parent::buildForm($form, $form_state);
 }
?>

As you can see, this is not very different from the function used in Drupal 7. The only
major differences are the use of the ConfigFactory class (available through $this-
>config()) and the call to the parent class's buildForm() function.

The last missing piece for the form controller class is a submission handler. Unlike
using Drupal 7's system_settings_form(), we need to manually save the
submitted configuration values:

<?php
 /**
 * {@inheritdoc}

Adding Configuration Management to Your Module

[88]

 */
 public function submitForm(array &$form, FormStateInterface $form_
state) {
 $this->config('cm_example.settings')
 ->set('items_per_page', $form_state->getValue('items_per_
page'))
 ->save();

 parent::submitForm($form, $form_state);
 }
?>

Route and menu items
Making a page accessible on your site is not as easy as it has been in former Drupal
versions. Instead of adding the path using hook_menu(), you need to define a so-
called route.

The route is defined in a file called cm_example.routing.yml and placed in the root
directory of our module:

cm_example.settings:
 path: '/admin/config/cm_example/settings'
 defaults:
 _form: '\Drupal\cm_example\Form\ExampleSettingsForm'
 _title: 'Example settings'
 requirements:
 _permission: 'administer site configuration'

In the cm_example.routing.yml file, we define the path from which the
configuration form will be accessible, and map the form we created using the Form
Controller. Additionally, we define the page title and set some permission (so that
unprivileged users cannot change these settings).

Even though we defined the route here, we still need to manually add an item to the
menu so that the site's user can simply access the page without manually entering
the path every time.

For the new menu item, we would like to create a new group on admin/config to
visually separate the item from other pages. To create such a group, we need to edit
cm_example.routing.yml again and add the following lines:

cm_example.admin_config_cmexample:
 path: '/admin/config/cm_example'
 defaults:

Chapter 6

[89]

 _controller: '\Drupal\system\Controller\SystemController::systemAd
minMenuBlockPage'
 _title: 'CM Example'
 requirements:
 _permission: 'access administration pages'

As you can see, we use the core function systemAdminMenuBlockPage() of the
SystemController class here, so we don't need to implement any other classes.

To add the menu item to this group, we now create a file named cm_example.
links.menu.yml in the root folder of our module as follows:

Within this file, we define a menu item for the previously created group (an
automatically created overview page such as admin/config/system), and define the
menu item for our custom settings form that we created earlier in this chapter:

cm_example.admin_config_cmexample:
 title: 'CM Example'
 route_name: cm_example.admin_config_cmexample
 parent: system.admin_config
 description: 'CM Example settings.'
 weight: 0
cm_example.example_settings:
 title: 'CM Example settings'
 parent: cm_example.admin_config_cmexample
 description: 'Change settings of CM Example.'
 route_name: cm_example.settings
 weight: 0

For a menu item, we add the name of the corresponding route (the route_name key)
that defines the path to follow, and a parent for the item. The value of the parent key
is the key of the menu item that you want your item to be a child of; thus, to put our
overview page below admin/config, we need to set system.admin_config as the
parent here.

Adding Configuration Management to Your Module

[90]

The result
Visiting admin/config after installing the example module will now give you a new
group that contains a link to the configuration form as follows:

Calling admin/config/cm_example gives you the automatically created overview
page of all menu items that have the cm_example.admin_config_cmexample route:

Finally, clicking on the link will direct us to our settings form in all its beauty, as
shown in the following screenshot:

Chapter 6

[91]

Summary
As you can see, it is not very complicated to add a default configuration to your
Drupal 8 module and to create a custom form for your configuration.

Drupal 8 provides you with powerful tools to define the form and create the required
menu items, so you can focus on the form itself and give your users a good user
experience.

Having to upgrade a configuration defined in previous versions, though, is not
as simple. In the next chapter, we will describe how to upgrade your variables
from older versions of Drupal to make them available with the new Configuration
Management system.

[93]

Upgrading Your Drupal 7
Variables to the Drupal 8

Configuration
In the previous chapters, we prepared you to add configuration data and schema
files to your Drupal 8 modules. But what about all the old modules written for
Drupal 7? How do you convert the variables introduced there to new configuration
objects? And how can we convert the old setting forms to the forms used by the
Configuration System in Drupal 8?

This chapter will show you some ways to convert your Drupal 7 variables to the
Drupal 8 Configuration objects and how to provide an upgrade path in your modules.

Upgrading your variables
When upgrading your variables from Drupal 7 to Drupal 8, you first need to identify
whether the variables are a simple configuration (for example, the number of nodes
displayed to a user) or whether you need to create a more complex configuration
object (for example, an image style). Some variables, though, are not meant to be
permanent (for example, the time of the last Cron run); additionally, therefore, you
will have to decide if it should be a configuration (which is permanent by definition)
or a state (which reflects information about the current site's state, but we will come
back to this later).

Upgrading Your Drupal 7 Variables to the Drupal 8 Configuration

[94]

Simple configuration
Let's start with a simple example and a simple variable to convert. Simple variables
are, for example, the number of nodes on the front page, the name of your site, or
whether your site is in maintenance mode.

We assume that our module built for Drupal 7 uses variables to store settings that a
user might configure. So, the module provides a small form to save the settings:

<?php
/**
 * Page callback for Drupal 7 example settings form.
 */
function cm_example_settings($form, &$form_state) {
 // Saved/default value of variable "items_per_page".
 $items_per_page = variable_get('cm_example_items_per_page', 20);
 // Create the corresponding form element.
 $form['items_per_page'] = array(
 '#type' => 'textfield',
 '#title' => t('Items per page'),
 '#description' => t('Enter the number of items per page.'),
 '#default_value' => $items_per_page,
 '#element_validate' => array('element_validate_integer'),
);

 // Saved/default value of variable "header".
 $header = variable_get('cm_example_header', TRUE);
 $form['header'] = array(
 '#type' => 'checkbox',
 '#title' => t('Display list header'),
 '#default_value' => $header,
);

 // Create form actions.
 $form['actions'] = array(
 ['#type'] = 'actions',
);
 $form['actions']['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Save configuration'),
);

 // Return the form structure to pass to drupal_get_form().

Chapter 7

[95]

 return $form;
}
?>

Normally, we would use system_settings_form() to add the submit button and
the submit callback. However, since we would like to display the use of variable_
set(), we manually save our variables, as shown in the following code:

<?php
/**
 * Submit callback for Drupal 7 example settings.
 */
function cm_example_settings_submit($form, &$form_state) {
 // Save the variables (preprend the variable names with the
 // module name to prevent naming conflicts).
 $items_per_page = $form_state['values']['items_per_page'];
 variable_set('cm_example_items_per_page', $items_per_page);
 $header = $form_state['values']['header'];
 variable_set('cm_example_header', $header);

 drupal_set_message('The configuration options have been saved.');
}
?>

As the variables shown in our example code are all simple items, we can easily
convert them to a simple configuration in Drupal 8. All of these settings can be stored
in a configuration object named <module_name>.settings.

We've already learned how to put simple settings provided by a module in a file
named <module_name>.settings.yml in your module's config/install directory.
In our example, this is cm_example.settings.yml:

Configuration for the CM Example module.
items_per_page: 20
header: 1

Make sure you create a schema file too, otherwise your configuration won't be
correctly recognized by Drupal:

Schema for the configuration files of the CM Example module.
cm_example.settings:
 type: mapping
 label: 'CM Example settings'
 mapping:
 items_per_page:
 type: integer

Upgrading Your Drupal 7 Variables to the Drupal 8 Configuration

[96]

 label: 'Items per page'
 header:
 type: boolean
 label: 'Display list header'

Now, you can easily convert all the calls made to variable_get() to the new
\Drupal::config($name)->get($key) calls:

<?php
// Drupal 7:
$items_per_page = variable_get('cm_example_items_per_page', 20);

// Drupal 8:
$items_per_page = \Drupal::config('cm_example.settings')->get('items_
per_page');
?>

Converting the calls to variable_set() is basically what we did for
variable_get(); we simply replace the function calls with the setter function of
ConfigFactory. Remember to use \Drupal::configFactory()->getEditable()
here since you cannot change any configuration loaded with \Drupal::config():

<?php
// Drupal 7:
variable_set('cm_example_items_per_page', $items_per_page);

// Drupal 8:
\Drupal::configFactory->getEditable('cm_example.settings')
 ->set('items_per_page', $items_per_page)
 ->save();
?>

When using \Drupal::config() or \Drupal::configFactory->getEditable()
multiple times for the same configuration object within one functional block, it is
much better to invoke it only once:

<?php
// Load mutable configuration object.
$config = \Drupal::configFactory->getEditable('cm_example.settings');
// Access single configuration value.
$items_per_page = $config->get('items_per_page');
$header = $config->get('header');

// Modify values.
$items_per_page = 10;

Chapter 7

[97]

$header = FALSE;

// Save configuration value.
$config->set('items_per_page', $items_per_page)
 ->set('header', $header)
 ->save();
?>

This way, you can avoid multiple unnecessary reads of the configuration and a
decrease in performance.

Complex configuration objects
If you have used more complex settings in your Drupal 7 module (such as image
styles or filter formats), you could consider creating a custom Configuration Entity
Type as we showed in the previous chapter. For example, image styles have been
converted to Configuration Entity Types, including image effects as plugins in
Drupal 8.

Assume you would like to convert an image style named news provided by your
Drupal 7 module to a Drupal 8 configuration object. First, you will create a file
named image.style.news.yml (according to the naming convention, <module_
name>.<config_object_name>{.<optional_sub_key>}.yml). This file will hold
the entire definition of your image style:

name: news
label: 'News (240x160)'
effects:
 148b5b70-be82-11e3-b1b6-0800200c9a66:
 id: image_scale
 data:
 width: 240
 height: 160
 upscale: true
 weight: 0
 uuid: 148b5b70-be82-11e3-b1b6-0800200c9a66
langcode: en

Now you scan your module's files for code that contains the image style options (for
example, the width of the used effect) and replace it with calls to the corresponding
load() function:

<?php
// Drupal 7:
// Load the image style.

Upgrading Your Drupal 7 Variables to the Drupal 8 Configuration

[98]

if (($style = image_style_load('news')) !== FALSE) {
 // List all associated effects for this style.
 $effects = image_style_effects($style);
 // Assume the effect has ieid "1".
 $effect_width = $effects[1]['data']['width'];
}

// Drupal 8:
// Load entity of type "Image Style".
$style = entity_load('image_style', 'news');
// Get the effect definition.
$effect_scale = $style->getEffect('148b5b70-be82-11e3-b1b6-
0800200c9a66');
// Get dimensions of selected effect.
$dimensions = array(
 'height' => 0,
 'width' => 0,
);
$effect_scale->transformDimensions($dimensions);
// Get the value of property "width".
$effect_width = $dimensions['width'];
?>

As you can see, configuration entities simplify things a lot, and the code is much
easier to handle.

Upgrading to the new state system
Sometimes, you use variables in your modules that represent a state of the system.
For example, if your module regularly fetches data from a different site, you may
want to store the time of the last fetch; alternatively, and taking Drupal itself as
an example, the time of the last cron run or maintenance mode are not persistent
configuration but are specific to the current environment. This information has no
use in deployment, and therefore should not be saved as configuration data.

Fortunately, the State API is very similar to the Configuration API. To get a specific
value from the state system, simply use $value = \Drupal::state()->get($key);.
Setting values is simply \Drupal::state()->set($key, $value);.

For example, if you would like to get maintenance mode, you would do this:

$mode = \Drupal::state()->get('system.maintenance_mode');

Chapter 7

[99]

Providing an upgrade path for your
variables
Unfortunately, providing an upgrade path for variables used in modules for Drupal
6 or Drupal 7 is not as easy as simply fetching the values from the database and
storing them into the new configuration system. You need to convert the variables
into configuration objects, performing the correct data conversions and saving the
values correctly.

Prior to Drupal 8, upgrading between major versions of Drupal was mainly done using
hook_update_N(). The developer used this hook to move the required data from the
old data structure into the new one, and was responsible for all conversions needed for
the data to work in the new version of the site. In 2013, during DrupalCon in Prague,
the decision was made to disallow these old-style upgrades and use a new and much
more flexible approach for this task: the Migrate module.

Migrating your data
The best way to securely upgrade existing variables to the new configuration system
is by using Migrate (a module that has now been built into Drupal 8's core).

Migrate has been around for a couple of years as a contributed module in Drupal.
It gives you near endless possibilities for migrating content into Drupal from other
sources. This isn't limited to Drupal-to-Drupal conversions; you are also able to
import from CMS, XML, JSON, or any other parsable source.

So, to inform Drupal about the variables that we would like to upgrade to Drupal 8,
we need to define a migration configuration. The naming schema of the migration
configuration files is migrate.migration.<identifier>.yml.

For the cm_example module that we used in the previous chapters, we use d7_cm_
example_settings as the identifier because we would like to provide an upgrade
path from Drupal 7 for the variables defined by our module:

id: d7_cm_example_settings
label: Drupal 7 CM example configuration
migration_groups:
 - CM example
source:
 plugin: variable
 variables:
 - cm_example_items_per_page
 - cm_example_header

Upgrading Your Drupal 7 Variables to the Drupal 8 Configuration

[100]

process:
 items_per_page: cm_example_items_per_page
 header: cm_example_header
destination:
 plugin: config
 config_name: cm_example.settings

This tells Drupal to convert all the listed variables to the new configuration object
cm_example.settings.

Let's dissect the previous example:

• id: This is the unique identifier for the migration. This is the same identifier
that we used in order to create the filename.

• label: This is a human-readable description for the migration.
• migration_groups: This is a list of group names for creating bundles of

migrations that can be executed together (for example, migrations converting
a site from Drupal 7 to Drupal 8 or all migrations importing data from XML).

• source: This defines the plugin used to collect the source data and
arguments used by this plugin. In our example, we use the variable
plugin to fetch the variables named cm_example_items_per_page and
cm_example_header from the database of our Drupal 7 database.

• process: This describes how the migrate destination is constructed from the
source data. We simply map the names of our new configuration items with
the old variable names, so the data that comes from the Drupal 7 variable
cm_example_header will be mapped to the configuration item cm_example.
settings.header.

• destination: This is similar to the source, but (obviously) defines the
destination plugin responsible for transforming the incoming data into
the desired format. Since we would like to save the old variables into a
configuration object, config is used as the destination, and the name of our
configuration object is passed as an argument to the plugin.

For more complex examples (such as complex data alterations or dependencies), just
examine the migrate.*.yml files within the core module Migrate Drupal.

Chapter 7

[101]

Source plugins
To tell Drupal which type of data you would like to upgrade, you will need to
specify the source plugin for your migration:

source:
 plugin: variable
 variables:
 - cm_example_items_per_page
 - cm_example_header

Since we are upgrading our variables, we will use the variable source plugin here.
There is a whole bunch of source plugins available, for blocks, comments, fields, and
so on—just anything you need to upgrade a simple Drupal site.

To specify which variables to upgrade, simply add the variables subkey and
list the names of the variables as they are stored in the table {variables} of your
old site. Depending on the plugin used as the source, there are eventually other
arguments you need to add. For example, the term source requires you to specify a
vocabulary.

Process plugins
For a clean migration, Drupal needs to know how to handle the properties of your
data. This is described in the process key of a migration configuration. The plugin
used here is responsible for mapping the incoming data to the new structure:

process:
 items_per_page: cm_example_items_per_page
 header: cm_example_header

Each property to be processed during the migration is entered as a child key of
process. The value of such a property key is either the name of the source property
or an associative array. In the previous example, we need a simple 1:1 mapping, so it
is safe to use the name of the new configuration item as the key and the name of the
Drupal 7 variable as the value.

Upgrading Your Drupal 7 Variables to the Drupal 8 Configuration

[102]

If the source data needs some special processing, the value is written as an
associative array. It contains a plugin key that identifies the plugin to use for the
mapping and additional values used by the specified process plugin. An example of
such a process plugin is to use an author ID from a different migration:

process:
 uid:
 plugin: migration
 migration: users
 source: author

This tells Drupal to use the value of the property author, which has been defined in
a migration named users as the data source of the new property uid.

It is even possible to pass the source value through multiple plugins to get the correct
structure and value for the destination property. To do this, you need to add a list of
plugin configurations to the destination key.

The Drupal 6 migration for filter formats, for example, passes the name of the old
format to a process plugin to create a machine name, and then reduces potential
duplicated values:

process:
 format:
 -
 plugin: machine_name
 source: name
 -
 plugin: dedupe_entity
 entity_type: filter_format
 field: format
 length: 32

If you are using a nested data structure (for example, if the source is
$source['defaults']['page']['items_per_page']), you need to use
'defaults/page/items_per_page' as the value (or as the key when setting the
value to a nested configuration object).

Some examples of process plugins are:

• get: This is the simplest process plugin and simply maps the data exactly
from the source to the destination. You do not even need to specify the
plugin but can simply use the shorthand notation:
process:
 items_per_page: cm_example_items_per_page

Chapter 7

[103]

• callback: This is used to process the source value using custom or
built-in functions:
process:
 destination:
 plugin: callback
 callable: strtolower
 source: source_field

It is even possible to use a method within a specific class. In this case, you
need to identify the names of the class and the function as an array for the
key callable:

process:
 plugin: callback
 callable:
 - '\Drupal\Component\Utility\Unicode'
 - strtolower
 source: source_field

• default_value: This simply sets a default value for a destination property.
This plugin is useful in combination with other plugins, so you can add a
default value if other plugins in the process pipeline fail to fetch a value:

process:
 uid:
 -
 plugin: migration
 id: users
 source: author
 -
 plugin: default_value
 default_value: 1

For a complete list of process plugins provided by the Drupal core, visit the Migrate
handbook at https://www.drupal.org/node/2129651.

Destination plugins
After defining the data source and how to process each property in it, we need to
tell Drupal where to put the processed data. This is done with destination plugins.
For entities, the value of the plugin key typically is entity:{entity_type}. For
example:

destination:
 plugin: entity:block

https://www.drupal.org/node/2129651

Upgrading Your Drupal 7 Variables to the Drupal 8 Configuration

[104]

For our purpose, we will use the config plugin that gives us the ability to save the
processed data into configuration objects.

The plugin simply accepts the name of a configuration object:

destination:
 plugin: config
 config_name: cm_example.settings

Since Drupal can handle only one destination per migration, you need to
create multiple migrations if you need to split your old variables into different
configuration objects.

Drupal 8 provides several predefined destination plugins (such as comments, files, or
taxonomy terms), so usually you don't need to create your own for a simple site.

Running the migration
At the time of writing, running the migration is not that easy. Unfortunately, there
is no user interface in the Drupal core to execute a migration, so you will need to
use Drush (version 7.x and above). Some work has been done on a user interface
for Migrate (https://www.drupal.org/project/migrate_upgrade), but it is still
unclear when and if this will be moved into Drupal 8's core.

To migrate data from one site to another, Drupal needs to know which migrations
should be executed. This needs to be defined in a so-called manifest file. The
following are the conditions that the manifest file should fulfill:

• It must be saved directly in Drupal's root directory
• It must be a simple text file
• It obviously needs to list all migrations you wish to execute (including their

dependencies)

The name of the manifest file doesn't matter, but it should be named something
similar to manifest.yml (even if it is a simple text file, we should use the .yml
extension to create some kind of convention).

Here is a short example on how such a manifest could look:

Example for Drupal 7 to Drupal 8 migration
d7_cm_example_settings
d7_cm_example_block
d7_block
d7_filter_format

https://www.drupal.org/project/migrate_upgrade

Chapter 7

[105]

You do not need to bother about the order of the listed migrations within your
manifest since Migrate will automatically reorder them based on the individual
dependencies each migration has.

Finally, to run the migrations, we need to execute the Drush command
migrate-manifest:

drush migrate-manifest <path/to/manifest> --legacy-db-url=<database-
connection-string>

Summary
Updating your modules to use the new configuration objects instead of variables is
really easy and makes your code much more readable and flexible. After reading this
chapter, you should now be able to differentiate between persistent configuration
(deployable) using the Configuration API and environment-specific data using the
State API.

Upgrading a Drupal 6 site to Drupal 7 seems easier at first glance since you simply
have to run update.php after preparing the site and updating the code base.
However, as soon as you have installed some contrib modules, it gets complicated.
The modules need to convert their data to the correct structure, and sometimes,
you need to write your own update hooks. Using Migrate as the base tool for major
version upgrades is much more flexible and robust.

In the next chapter, we will show you how to deal with configuration on multilingual
sites and how you can provide translations for configuration.

[107]

Managing Configuration for
Multilingual Websites

Drupal allows you to build comprehensive multilingual websites in which you can
display content in different languages and translate the user interface.

While many features had been built into the Drupal core in previous versions,
building multilingual sites was a very painful task.

In this chapter, we will take a look at how Drupal 7 deals with different languages on
a site and how Drupal 8 is trying to fix the weaknesses from the previous versions.

Multilingual sites in Drupal 7
In Drupal 7, it wasn't very easy to create multilingual sites and make all your content
and settings translatable. There were too many components that utilized different
ways to translate content, and all of these components had too many dependencies.
Even for experienced site builders, it could be a real struggle to set up those
components and dependencies.

We will describe some of the basic aspects of Drupal 7's multilingual approach
before covering details of multilingual sites in Drupal 8.

Managing Configuration for Multilingual Websites

[108]

The Locale module
The main translation component in Drupal 7 was the Locale module. It gives you
basic language support and is responsible for translating the site's user interface.
Without the Locale module, you cannot set up your site to display texts in another
language, and you will also be unable to translate common strings, such as the text
on submit buttons.

As shown in the preceding image, the Locale module makes it very easy to translate
strings on your site as long as they are provided using the t() function (see
https://api.drupal.org/api/search/7/t).

To avoid translating all the strings manually, you can install the Localization
update module, which downloads translations for Drupal itself and for contributed
modules on installation. Additionally, it updates translations for you after a module
has been updated, and makes sure the translation matches the current installed
version. The translations for Drupal's core and many contributed modules are
created by the community and are available on https://localize.drupal.org. By
default, Localization update fetches its data from this official server, but you can also
create your own translation source and let Localization update get the translations
from your custom server.

https://api.drupal.org/api/search/7/t
https://localize.drupal.org

Chapter 8

[109]

Content translation
Having a multilingual user interface and being able to translate the interface text
used on the site isn't enough for most sites. Most users would like to have their
content available in different languages too. For example, some news items only
apply to visitors located in English-speaking countries, while other items are of
interest for people in Hungary.

So, in Drupal 7, you needed to install the Content translation module that comes
with Drupal 7 by default so you didn't need to download it separately.

This module gives you the ability to translate single nodes into different languages.
For every translation, it creates a copy of the translated node, so you will have one
node per language.

The main drawback of this module is that it can be used only for nodes, and does not
handle translation of other types of content.

Managing Configuration for Multilingual Websites

[110]

Translating other types of content
To translate other types of content—such as taxonomy terms, views, menus
and menu items, or field labels—you need at least one other additional module,
Internationalization (i18n). This is the base module for the translation of
entities other than nodes. To make things just a little more complex, there are
some more modules required to enable translation of this type of content, such as
Internationalization Views (i18n_views), Webform Localization (webform_
localization), and many more. Unfortunately, there has been no real standard on
how to implement translatability, so nearly every module that defines its own type
of content needs a different module for translation, and you'll end up installing more
and more modules to translate your content.

Translation settings/configuration
As you might guess, there is still something missing when translating your Drupal
7 site—that is, the configuration defined by Drupal itself and the contributed
modules you have installed on the site. Think of your site's slogan, the site name, or
the e-mails sent to users after registration. You surely want to deliver these in the
language that the user prefers.

So you need another bundle of modules—for example, Variable and Variable
translation (part of the Internalization module). After installing those, you are able
to translate variables too, but only if the module that defines the variable provides
integration for the Variable module.

Chapter 8

[111]

So, every form that handles multilingual variables is modified to provide translation
capabilities for these variables. Sometimes, the translation form does not show all the
variables of the original form because not all variables are translatable. This can be
very confusing at times.

Translating entities
Finally, even after translating all the other stuff, custom entities are still missing.
Have you ever heard of Drupal Commerce (you need this if you are building a shop
on your site) or Bean (a replacement for the block system in Drupal 7)? If you need to
make these entities translatable (and of course, others too), you need to install Entity
translation and some other modules.

So, to sum it up, you easily need to install 30+ modules to create a fully multilingual
site in Drupal 7 and configure all those modules correctly. This is a real struggle and
could take a lot of time.

Not to forget the poor content editors and site administrators who have to find the
correct pages to translate the stuff. Every type of translation has a different user
interface located on a different path with a different set of permissions, so translating
your site isn't really much fun.

Translating in Drupal 8
Drupal 8 wouldn't be Drupal 8 if it didn't change translation as it changes everything
else. The Drupal 8 Multilingual Initiative, under the lead of Gábor Hojtsy, did a great
job and reworked nearly everything that was related to translation.

In Drupal 8, there are 4 main pillars for translation:

• Language: This is the base service for all modules that deal with data on your
site. Even if you don't actually use translation features, it manages languages
wherever you may need them on your site or within your modules.
Additionally, it is responsible for language detection and selecting the correct
language in which to deliver your translated content and configuration.

• Interface: The interface component supports translation of Drupal itself, as it
provides all the tools to translate the interface strings (as they were known in
previous versions).

• Content: In contrast to Drupal 7's Content translation module, this handles
the translation of all fields for all defined entities on a site (similar to
Entity translation in Drupal 7). It isn't limited to nodes, but will manage the
translation of all other entity types too.

Managing Configuration for Multilingual Websites

[112]

• Configuration: Every configuration defined as translatable is translated using
this component. It makes sure you can translate simple configuration—for
example, the site's name, its slogan, or complex configuration such as blocks,
views, or field settings (for instance labels).

Configuration translation
As mentioned before, every configuration, whether provided by Drupal itself or a
contributed module, can be translated if it's defined as translatable and after you
enable the core module Configuration translation. The language of the configuration
(either a simple configuration or a complex configuration) is tracked directly in the
responsible configuration object. We expand cm_example.settings.yml with 2
more keys, description and langcode, as follows:

items_per_page: 20
header: 1
description: ''
langcode: en

The langcode key you see in the previous example defines the default language for
translatable items within this configuration object.

To enable translation for a configuration item, you need to add a flag to the
corresponding schema to tell Drupal that this configuration item can be translatable:

Schema for the configuration files of the CM Example module.

cm_example.settings:
 type: mapping
 label: 'CM Example settings'
 mapping:
 description:
 type: string
 label: 'Item description'
 translatable: true

Even a data type can identify itself as translatable. When creating a custom
configuration data type, you can also add the translatable property; all the
configuration items using this type will then be translatable by default, without your
having to specify them individually. For example, the date_format core data type
does this, and also defines a translation context:

PHP Date format string that is translatable.
date_format:
 type: string

Chapter 8

[113]

 label: 'Date format'
 translatable: true
 translation context: 'PHP date format'

Translating the configuration
After installing the Configuration translation module, you will get a Translate...
tab on the configuration page of your module (and on all other pages that show
configuration forms), as shown in the following screenshot:

Clicking on the link will route you to a listing of all possible languages this
configuration can be translated to, as shown in the following screenshot:

Managing Configuration for Multilingual Websites

[114]

You can either edit the item in the original language, which will bring you back
to the default configuration form, or add a translation for the configuration items.
On the translation page, you will see only the items marked as translatable in the
following schema (as shown in the previous example):

Of course, translation also applies to other configuration objects. If you would like to
translate the title of a block, you simply go to its configuration page and click on the
Translate block tab. Now, you can see the language listing we talked about earlier
and can translate the block, as shown in the following screenshot:

Chapter 8

[115]

To get an overview of all available translatable configuration, Drupal provides a
listing of all these items at admin/config/regional/config-translation, as
shown in the following screenshot:

As you can see, there are two different types listed: simple configuration objects
(such as Account settings) that can be translated directly, and sets of entities, where
you are directed to a list of items of that type (such as Image style).

Storing translations
The translation is also stored as configuration, using the same storage mechanism
as a normal configuration, so it is treated just like the configuration itself. The name
of the translated configuration object equates to the original object, but is associated
with a different so-called collection.

For translations, the schema for a collection name is usually language.{language-
code}—for example language.de for a German translation.

Managing Configuration for Multilingual Websites

[116]

Translating our configuration object defined in cm_example.settings in to German
would result in an entry named cm_example.settings in the database, with the
collection set to language.de.

Exporting and importing configuration translations
Manual translation of your site's configuration isn't the only way to create a
completely multilingual site. You can also import existing translations into your
current site, so you don't have to do all the editing by hand.

At the time of writing, the only way to export configuration translations is to do a
full export of your site's configuration.

Doing a full export of the site's configuration would create a directory named
language within the export. For each language translated, a configuration value
would be created in another subdirectory within language. These language-specific
directories contain files for all translated configuration objects, as shown in the
following screenshot:

In our case, the cm_example.settings.yml file would only contain the
description key, since this is the only translatable configuration value set up
for translation:

description: Test (de)

Assume you've translated the configuration in your development environment
and would like to make the translation available on the live site. First, you will
need to export the current translation (by doing a full export on admin/config/
development/configuration/full/export).

On the target website, you can then simply import the translation by copying
the language directory with all its files from the exported archive to the staging
directory of the target website. Note that this directory needs to contain all
configuration files you've exported, since any configuration missing here will be
deleted from the active storage on the target site during the import.

Chapter 8

[117]

There, you will need to navigate to admin/config/development/configuration to
view the configuration changes:

You can even view the differences between the active configuration and the
new values before importing, so you don't end up with unwanted an configuration
or translation.

It is also possible to ship a default configuration translation with your own module.
To do this, you simply need to create a directory structure such as the one described
before within the config/install directory of your module, and put the .yml files
with your translated configuration values in it:

Note that shipping the translation with your module shouldn't be done if you host
your project at https://drupal.org because in that case, the translation is created
by the community (or yourself) and hosted at https://localize.drupal.org.
Additionally, the Interface translation module downloads and manages translations
of modules hosted at https://drupal.org or on a custom localization server you
registered to use.

https://drupal.org
https://localize.drupal.org
https://drupal.org

Managing Configuration for Multilingual Websites

[118]

Summary
In this chapter, we've seen that it was difficult to build a multilingual site in Drupal
7. You had to install various modules and implement many different settings to
allow your users to translate every type of content and configuration on the site.

In Drupal 8, this process has been rebuilt completely, so you can make your site
multilingual with just a few clicks and give your users simple tools to translate
the missing pieces.

Now that you have learned so much about the different types of configuration, how
to upgrade your configuration from previous versions of Drupal, and how to make
the configuration translatable, we will show you some tools and resources you might
want to try out in the next chapter.

[119]

Useful Tools and Getting Help
When dealing with Configuration Management, you might get to a point where
you need help. This chapter provides a list of useful links and tools provided by the
Drupal community.

Your starting point should be the documentation pages on Drupal.org. These pages
are maintained by members of the Drupal community, and anyone with a Drupal.
org user account can add or change them.

Community documentation
The Drupal.org community documentation contains a section on Configuration
Management for developers: Configuration API in Drupal 8, which can be found at
https://drupal.org/developing/api/8/configuration.

This section contains several subpages with in-depth information, and is a must-read
for developers who work with the Configuration Management API.

The administration guide documentation
The Drupal.org administration guide provides information about the daily or
ongoing operation of a Drupal site. Configuration Management is documented in
general terms in the Managing configuration in Drupal 8 post at https://drupal.
org/documentation/administer/config.

https://drupal.org/developing/api/8/configuration
https://drupal.org/documentation/administer/config
https://drupal.org/documentation/administer/config

Useful Tools and Getting Help

[120]

Contributed modules
There are a couple of contributed modules which help you developing configuration.

The configuration inspector for Drupal 8
The configuration inspector uses Drupal 8's core built-in configuration system as
well as a schema system to let you inspect configuration values and the use of
schemas on top of them. This makes it possible to have a developer-focused
overview of all your configuration values, and perform various testing and
verification tasks on your configuration schemas. The following is a screenshot
taken from https://drupal.org/project/config_inspector this module lists the
available configuration data for user.settings:

https://drupal.org/project/config_inspector

Chapter 9

[121]

Configuration development
This module helps in developing configuration. It does the following three things:

• Importing configuration files automatically into active storage
• Exporting configuration objects automatically into files
• Helping to create modules that behave somewhat similarly to feature

exporting in Drupal 7

Check the module's project page at https://www.drupal.org/project/config_
devel for more details.

Drush
Drush is a command-line shell and scripting interface that makes life easier for
people who develop websites with Drupal. If you don't know Drush yet, go visit
its GitHub page at https://github.com/drush-ops/drush.

The tool provides some useful commands for Configuration Management.

Exporting and importing your configuration
using Drush commands
The following Drush commands will be the most used ones as they allow you to
export and import your configuration with a simple command:

• drush config-export staging: This will export the configuration from the
active directory

• drush config-import staging: This will import the configuration from a
config directory named staging

There are other commands available. We will only list the commands here. Read
Drush's help documentation to find out how to use these commands, since they may
have specific arguments and options. The commands are listed as follows:

• config-get: This will display a config value or a whole configuration object.
• config-set: This will set the config value directly in the active

configuration.
• config-list: This will list config names by a prefix.
• config-edit: This will open a config file in a text editor. Edits are imported

into the active configuration after closing the editor.

https://www.drupal.org/project/config_devel
https://www.drupal.org/project/config_devel
https://github.com/drush-ops/drush

Useful Tools and Getting Help

[122]

Here is an example of how to use Drush's help guide to receive more information
about a command:

Forums
For support questions, you can visit the forum at https://drupal.org/forum.
Make sure you do a search first because there is a very good chance that your specific
question has already been answered.

The issue queue
The issue queue is where all discussions happen. It contains a vast history of the
configuration system so, if you want to dig deeper, this is the place to go. You
get to this issue queue by visiting Drupal's project page at http://drupal.org/
project/drupal, and clicking through to the issues linked in the right sidebar. You
should then filter by Version (8.x issues) and Component (a configuration system or
configuration entity system). Here's a direct link to the configuration system queue:
https://www.drupal.org/project/issues/drupal?version=8.x&component=co
nfiguration+system.

The direct link to the configuration entity system's issue queue is https://www.
drupal.org/project/issues/drupal?version=8.x&component=configuration+
entity+system.

https://drupal.org/forum
http://drupal.org/project/drupal
http://drupal.org/project/drupal
https://www.drupal.org/project/issues/drupal?version=8.x&component=configuration+system
https://www.drupal.org/project/issues/drupal?version=8.x&component=configuration+system
https://www.drupal.org/project/issues/drupal?version=8.x&component=configuration+entity+system
https://www.drupal.org/project/issues/drupal?version=8.x&component=configuration+entity+system
https://www.drupal.org/project/issues/drupal?version=8.x&component=configuration+entity+system

Chapter 9

[123]

The issue queue is also the place to provide patches,
but you shouldn't ask for support there.

IRC chat
The Drupal community uses IRC to chat about different topics. To find out more
about IRC, visit https://drupal.org/irc. The IRC channel for Configuration
Management is #drupal-cmi.

Summary
Now you know some tools and how to get help, along with everything there is to
know about Drupal 8's Configuration Management. Make sure you use it in your
next project! Don't forget, it's important to be able to track configuration changes to
your site, as it will save you time in the long run.

Do you have any questions or corrections?

Questions
You can contact us at http://drupal-8-configuration-management.undpaul.
com if you are facing a problem with any aspect of this book, and we will do our
best to address it.

https://drupal.org/irc
http://drupal-8-configuration-management.undpaul.com
http://drupal-8-configuration-management.undpaul.com

[125]

Index
A
active configuration storage

modifying 35-37
active directory

about 30, 37
storage location, modifying 37, 38
versus staging directory 35

administration guide documentation
about 119
URL 119

C
community documentation

URL 119
complex configuration objects 97, 98
components 8
config directory 29, 30
config files 32
configuration

about 2
clone, creating of site 20
Configuration Management interface 21
defining 79
managing 19, 20
single import/export 26, 27
using 79, 83

configuration API
about 41
configuration data, defining 41, 42
configuration entity types, creating 58-60
configuration, overriding 50
notification, obtaining for configuration

changes 47-49

configuration changes
tracking 3
tracking, version control used 15, 16

configuration data
best practices 46
configuration object, retrieving 42, 43
configuration values, obtaining 43, 44
configuration values, removing 45
configuration values, setting 44, 45
working with 41, 42

configuration, deploying between servers
reference link 15

configuration development
about 121
URL 121

configuration, Drupal 8
global overrides 50-52
language overrides 52-54
module overrides 54-56
overrides, avoiding 57, 58
overriding 50

configuration entities
about 16, 39
versus simple configuration 39

configuration entity types
basics, adding 58-60
creating 58
data, controlling 61

configuration file
setting 79, 80

configuration form
creating 83

configuration forms, Drupal 7 84, 85

[126]

configuration forms, Drupal 8
about 85
form controller, adding 85-87
menu items, defining 88, 89
result 90
route, defining 88, 89

configuration inspector, Drupal 8
about 120
URL 120

Configuration inspector module
URL 74

Configuration Management
about 1
need for 2, 3

Configuration Management, Drupal 7
about 6, 12
advantages 13
configuration variables, storing in

settings.php 13, 14
Features module 8, 9
hook_install() function 7, 8
hook_update_N() function 7, 8
manual Configuration Management 7

Configuration Management, Drupal 8
about 14
using 14

Configuration Management interface
about 21
interface options 21, 22

configuration object
retrieving 42, 43

configuration storage 17
configuration types, Drupal 8

configuration entities 16
simple configuration 16

Configuration translation, Drupal 8
about 112-115
exporting 116, 117
importing 116, 117
translation storage 115

configuration values
obtaining 43, 44
removing 45
setting 44, 45

configuration variables
storing, in settings.php 13, 14

Content translation, Drupal 8 111

Content translation module
about 109
configuring 109

content types 12
CTools Export API

about 9, 11
using 9

custom configuration entity types 80-83

D
data migration

about 99, 100
destination plugins 103
example 100
process plugins 101-103
running 104, 105
source plugins 101

data types
about 66, 67
reusing 67

default configuration
about 77
example 78, 79

destination plugins 103
Drupal

URL 80
Drupal 7

Configuration Management 6, 12, 13
Drupal 8

Configuration Management 14
Drush

about 121
URL 121

Drush commands
config-edit 121
config-get 121
config-list 121
config-set 121
drush config-export staging 121
drush config-import staging 121
used, for exporting configuration 121, 122
used, for importing configuration 121, 122

dynamic type references
about 69, 70
element-key references 70
parent-key references 71
sub-key references 71

[127]

E
element-key references 70
Entity translation 111

F
Features module

about 8, 9
creating 10, 11
settings 11, 12
URL 8

field definitions 12
forums

about 122
URL 122

G
Git 3
global overrides 50-52

H
hook_install() function 7, 8
hook_update_N() function 7, 8

I
interface options, Configuration

Management interface
full import/export, using 22-25

Interface translation, Drupal 8 111
IRC

URL 123
used, for chat 123

issue queue
about 122, 123
URL 122

K
Kwalify

about 63
URL 63

L
language overrides 52-54
Language translation, Drupal 8 111
Locale module 108

M
manifest file

requirements 104
manual Configuration Management 7
Migrate

URL 104
module overrides 54-56
multilingual sites, Drupal 7

Content translation module 109
creating 107
Entity translation 111
Locale module 108
other types of content, translating 110
translation settings/configuration 110

O
overrides

avoiding 57, 58

P
parent-key references 71
PHP API 73, 74
process plugins

about 101-103
examples 102

project management tool 4
properties, schema files

about 65
class 66
label 65
mapping 66
sequence 66
translatable 66, 69
translation context 66
type 65

[128]

S
schema files

about 34, 63, 64
properties 65, 66
structure 64, 65

settings.php file
configuration variables, storing in 13, 14

simple configuration
about 16, 39
example 30, 31
versus configuration entities 39

single import/export 26, 27
source plugins 101
staging directory

about 30, 37
storage location, modifying 37, 38
versus active directory 35

storage location
modifying of active directory 37, 38
modifying of staging directory 37, 38

sub-key references 71

T
translation, Drupal 8

about 111
Configuration 112
Configuration translation 112
Content 111
Interface 111
Language 111

U
upgrade path

providing, for variables 99

V
variables

about 12
complex configuration objects 97, 98
configuration 94-97
data, migrating 99, 100
upgrading 93
upgrading, to new state system 98

version control
used, for tracking configuration

changes 15, 16
version control, best practices

about 4
meaningful branches 6
meaningful commit messages 5
work tasks, putting in project management

tool 4
views 12

Y
YAML

about 31
URL 31

Thank you for buying
Drupal 8 Configuration Management

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building a Website with
Drupal [Video]
ISBN: 978-1-78216-614-6 Duration: 02:27 hours

Get hands-on expertise with this comprehensive
tutorial on Drupal

1. Watch how a community-oriented website
including a forum and blog is built using a test
server through actual deployment.

2. Learn how to add fields to existing content
types and how to create new ones to match the
requirements for a site.

3. Explore views and more to enhance your site
and learn how to build page templates without
writing any PHP code.

Drupal 7
ISBN: 978-1-84951-286-2 Paperback: 416 pages

Create and operate any type of website quickly
and efficiently

1. Set up, configure, and deploy a
Drupal 7 website.

2. Easily add exciting and powerful features.

3. Design and implement your website's look
and feel.

4. Promote, manage, and maintain your
live website.

Please check www.PacktPub.com for information on our titles

Drupal: Creating Blogs, Forums,
Portals, and Community Websites
ISBN: 978-1-90481-180-0 Paperback: 284 pages

How to setup, configure, and customize this powerful
PHP/MySQL-based Open Source CMS

1. Install, configure, administer, maintain and
extend Drupal.

2. Control access with users, roles and
permissions.

3. Structure your content using Drupalâ€™s
powerful CMS features.

4. Includes coverage of release 4.7.

Drupal 7 Module Development
[Video]
ISBN: 978-1-78216-118-9 Duration: 03:06 hours

A complete guide to practically building a fully
functional custom Drupal 7 module from scratch

1. Use the essential hooks and functions in your
module code to build your own custom Drupal
7 module.

2. Create database tables, write database queries
and finally build and theme blocks using
powerful hook functions.

3. Set up an ideal development environment by
reviewing the module from a security and
performance standpoint.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Configuration Management
	An introduction to Configuration Management
	Configuration
	Content
	Session
	State

	Why manage configuration?
	Tracking configuration changes
	Some version control best practices
	Using a project management tool
	Meaningful commit messages
	Meaningful branches

	A look back at Drupal 7
	Manual Configuration Management
	The hook_install() / hook_update_N() function
	The Features module
	What is the Features module?
	Creating a Feature
	The settings to export with Features
	The settings to not export with Features

	The Configuration Management module
	Storing configuration variables in
settings.php

	How Drupal 8 takes care of Configuration Management
	How to start using Configuration Management

	Using version control to keep track of configuration changes
	Types of configuration
	Configuration storage and deploying between environments

	Summary

	Chapter 2: Configuration Management for Administrators
	Why do we want to manage our configuration?
	Making a clone of your site
	The Configuration Management interface
	The interface options

	Single import/export

	Summary

	Chapter 3: Drupal 8's Take on Configuration Management
	The config directory
	A simple configuration example

	Config and schema files – what are they and what are they used for?
	Config files
	Schema files

	Learning the difference between active and staging
	Changing the active configuration storage
	Changing the storage location of the active and staging directories

	Simple configuration versus configuration entities
	Simple configuration
	Configuration entities

	Summary

	Chapter 4: Configuration Management API
	A simple configuration API
	Working with configuration data
	Retrieving the configuration object
	Getting configuration values
	Setting configuration values
	Removing configuration values
	Best practices

	Getting notified about configuration changes
	Overriding the configuration
	Global overrides
	Language overrides
	Module overrides
	Avoiding overrides

	Creating configuration entity types
	Adding the basics
	Taking control of your data

	Summary

	Chapter 5: The Anatomy of Schema Files
	What are schema files in Drupal?
	The structure of a schema file

	Properties
	Data types
	Reusing data types
	Making data translatable

	Dynamic type references
	The element-key references
	The sub-key references
	The parent-key references

	Coding standards
	PHP API
	Summary

	Chapter 6: Adding Configuration Management to Your Module
	Default configuration
	An example

	Defining and using your own configuration
	Setting your configuration file
	Custom configuration entity types
	Using the configuration
	Creating a configuration form
	Configuration forms in Drupal 7
	Creating configuration forms in Drupal 8

	Summary

	Chapter 7: Upgrading Your Drupal 7 Variables to Drupal 8 Configuration
	Upgrading your variables
	Simple configuration
	Complex configuration objects
	Upgrading to the new state system

	Providing an upgrade path for your variables
	Migrating your data
	Source plugins
	Process plugins
	Destination plugins
	Running the migration

	Summary

	Chapter 8: Managing Configuration for Multilingual Websites
	Multilingual sites in Drupal 7
	The Locale module
	Content translation
	Translating other types of content
	Translation settings/configuration
	Translating entities

	Translating in Drupal 8
	Configuration translation
	Translating the configuration
	Storing translations
	Exporting and importing configuration translations

	Summary

	Chapter 9: Useful Tools and Getting Help
	Community documentation
	The administration guide documentation
	Contributed modules
	The configuration inspector for Drupal 8

	Configuration development
	Drush
	Exporting and importing your configuration using Drush commands

	Forums
	The issue queue
	IRC chat
	Summary
	Questions

	Index

