

Drupal 8 Development
Cookbook

Over 60 hands-on recipes that get you acquainted with
Drupal 8's features and help you harness its power

Matt Glaman

BIRMINGHAM - MUMBAI

Drupal 8 Development Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1040316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-147-3

www.packtpub.com

www.packtpub.com

Credits

Author
Matt Glaman

Reviewer
Todd Zebert

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Manish Nainani

Content Development Editor
Deepti Thore

Technical Editor
Naveenkumar Jain

Copy Editors
Ting Baker

Rashmi Sawant

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Matt Glaman is a developer at Commerce Guys. He is an open source developer who has
been working with Drupal since 2013. He has also been developing web apps for many years
prior to this. Since then, he has contributed to over 60 community projects, including being a
co-maintainer of Drupal Commerce. While mostly focusing on Drupal and PHP development,
he created https://contribkanban.com, an AngularJS application, to provide Kanban
boards for the Drupal community to collaborate with.

I would like to thank, and I am grateful to, my beautiful and loving wife for
putting up with the late nights split between work, spending time contributing
to the Drupal community, and writing this book. I would also like to thank my
two sons; thank you for giving up your playtime so that Daddy could write
this book.

Thank you, Andy Giles, for helping me get to my first Drupal camp
and kicking off my Drupal career. I would also like to thank my mentors
Bojan Živanović, David Snopek, Ryan Szrama, and everyone else in the
Drupal community!

https://contribkanban.com

About the Reviewer

Todd Zebert has been involved with Drupal since version 6. He is a full-stack web developer
proficient in a variety of technologies, and he is currently working as a lead web developer for
Miles. He has also been a technical reviewer for Developing with Drush, Packt Publishing.

He has a diverse background in technology, including infrastructure, network engineering,
project management, and IT leadership. His experience with web development started with
the original Mosaic graphical web browser, SHTML/CGI, and Perl.

He's an entrepreneur involved with the Los Angeles start-up community. He's a believer
in volunteering, open source, the Maker movement, and contributing back. He's also an
advocate for Science, Technology, Engineering, Art, and Math (STEAM) education.

I'd like to thank the Drupal community, which is like no other.

Finally, I'd like to thank my pre-teen son with whom I get to share my interest
in technology and program video games and microcontrollers.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

i

Table of Contents
Preface v
Chapter 1: Up and Running with Drupal 8 1

Introduction 1
Installing Drupal 2
Using a distribution 8
Installing modules and themes 10
Using multisites in Drupal 8 14
Tools for setting up an environment 16
Running Simpletest and PHPUnit 18

Chapter 2: The Content Authoring Experience 23
Introduction 23
Configuring the WYSIWYG editor 24
Adding and editing content 27
Creating a menu and linking content 30
Providing inline editing 32
Creating a custom content type 34
Applying new Drupal 8 core field types 36
Customizing the form display of a node 40
Customizing the display output of a node 43

Chapter 3: Displaying Content through Views 47
Introduction 47
Listing content 48
Editing the default admin interfaces 52
Creating a block from a View 55
Utilizing dynamic arguments 58
Adding a relationship in a View 61
Providing an Entity Reference result View 66

ii

Table of Contents

Chapter 4: Extending Drupal 69
Introduction 69
Creating a module 70
Defining a custom page 74
Defining permissions 82
Providing the configuration on installation or update 86
Using Features 2.x 90

Chapter 5: Frontend for the Win 97
Introduction 97
Creating a custom theme based on Classy 98
Using the new asset management system 102
Twig templating 109
Using the Breakpoint module 113
Using the Responsive Image module 115

Chapter 6: Creating Forms with the Form API 121
Introduction 121
Creating a form 122
Using new HTML5 elements 128
Validating form data 132
Processing submitted form data 136
Altering other forms 140

Chapter 7: Plug and Play with Plugins 145
Introduction 145
Creating blocks using plugins 146
Creating a custom field type 154
Creating a custom field widget 159
Creating a custom field formatter 164
Creating a custom plugin type 169

Chapter 8: Multilingual and Internationalization 181
Introduction 181
Translating administrative interfaces 182
Translating configuration 188
Translating content 191
Creating multilingual views 195

Chapter 9: Configuration Management – Deploying in Drupal 8 201
Introduction 201
Importing and exporting configurations 202
Synchronizing site configurations 209

iii

Table of Contents

Using command-line workflow processes 213
Using the filesystem for configuration storage 219

Chapter 10: The Entity API 225
Introduction 225
Creating a configuration entity type 226
Creating a content entity type 237
Creating a bundle for a content entity type 247
Implementing custom access control for an entity 257
Providing a custom storage handler 264
Creating a route provider 267

Chapter 11: Off the Drupalicon Island 273
Introduction 273
Implementing and using a third-party JavaScript library 274
Implementing and using a third-party CSS library 279
Implementing and using a third-party PHP library 284
Using Composer manager 287

Chapter 12: Web Services 293
Introduction 293
Enabling RESTful interfaces 294
Using GET to retrieve data 299
Using POST to create data 302
Using PATCH to update data 307
Using Views to provide custom data sources 310
Authentication 313

Chapter 13: The Drupal CLI 319
Introduction 319
Rebuilding cache in Console or Drush 320
Using Drush to interact with the database 321
Using Drush to manage users 325
Scaffolding code through Console 327
Making a Drush command 330
Making a Console command 335

Index 341

v

Preface
Drupal is a content management system used to build websites for small businesses,
e-commerce, enterprise systems, and many more. Created by over 4,500 contributors,
Drupal 8 provides many new features for Drupal. Whether you are new to Drupal, or an
experienced Drupalist, Drupal 8 Development Cookbook contains recipes that help you
immerse yourself in what Drupal 8 has to offer.

What this book covers
Chapter 1, Up and Running with Drupal 8, covers the requirements to run Drupal 8, walks you
through the installation process, and extends Drupal.

Chapter 2, The Content Authoring Experience, dives into the content management experience
in Drupal, including working with the newly bundled CKEditor.

Chapter 3, Displaying Content through Views, explores how to use Views to create different
ways to list and display your content in Drupal.

Chapter 4, Extending Drupal, explains how to work with Drupal's Form API to create custom
forms to collect data.

Chapter 5, Frontend for the Win, teaches you how to create a theme, work with the new
templating system, Twig, and harness Drupal's responsive design features.

Chapter 6, Creating Forms with the Form API, teaches you how to write a module for Drupal,
the building blocks of functionalities in Drupal.

Chapter 7, Plug and Play with Plugins, introduces plugins, one of the newest components in
Drupal. This chapter walks you through developing the plugin system to work with fields.

Chapter 8, Multilingual and Internationalization, introduces features provided by Drupal 8
to create an internationalized website that supports multiple languages for content and
administration.

Preface

vi

Chapter 9, Configuration Management – Deploying in Drupal 8, explains the configuration
management system, new to Drupal 8, and how to import and export site configurations.

Chapter 10, The Entity API, dives into the Entity API in Drupal, allowing you to create custom
configurations and content entities.

Chapter 11, Off the Drupalicon Island, explains how Drupal allows you to embrace the mantra
of proudly built elsewhere and includes third-party libraries in your Drupal site.

Chapter 12, Web Services, shows you how to turn your Drupal 8 site into a web services API
provider through a RESTful interface.

Chapter 13, The Drupal CLI, explores working with Drupal 8 through two command-line tools
created by the Drupal community: Drush and Drupal Console.

What you need for this book
In order to work with Drupal 8 and to run the code examples found in this book, the following
software will be required:

Web server software stack:

 f Web server: Apache (recommended), Nginx, or Microsoft IIS

 f Database: MySQL 5.5 or MariaDB 5.5.20 or higher

 f PHP: PHP 5.5.9 or higher

Chapter 1, Up and Running with Drupal 8, details all of these requirements and includes a
recipe that highlights an out of the box development server setup.

You will also need a text editor. Here is a list of suggested popular editors and IDEs:

 f Atom.io editor: https://atom.io/

 f PHPStorm (specific Drupal integration): https://www.jetbrains.com/
phpstorm/

 f Vim with Drupal configuration: https://www.drupal.org/project/vimrc

 f Your operating system's default text editor or command-line file editors

Who this book is for
This book is for those who have been working with Drupal, such as site builders and backend
and frontend developers, and who are eager to see what awaits them when they start using
Drupal 8.

https://atom.io/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.drupal.org/project/vimrc

Preface

vii

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The \Drupal\Core\Url class provides static
methods to generate an instance of itself, such as ::fromRoute()."

A block of code is set as follows:

 /**
 * {@inheritdoc}
 */
 public function alterRoutes(RouteCollection $collection) {
if ($route = $collection->get('mymodule.mypage)) {
 $route->setPath('/my-page');
 }
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 /**
 * {@inheritdoc}
 */
 public function alterRoutes(RouteCollection $collection) {
if ($route = $collection->get('mymodule.mypage)) {
 $route->setPath('/my-page');
 }
 }

Any command-line input or output is written as follows:

$ php core/scripts/run-tests.sh PHPUnit

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Scroll down the page and
click Install and set as default under Bootstrap to enable and set the theme as default."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

viii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/Drupal8_Development_Cookbook_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/Drupal8_Development_Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8_Development_Cookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

ix

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1

1
Up and Running

with Drupal 8

In this chapter we'll get familiar with Drupal 8 and cover:

 f Installing Drupal

 f Using a distribution

 f Installing modules and themes

 f Using multisites in Drupal 8

 f Tools for setting up an environment

 f Running Simpletest and PHPUnit

Introduction
This chapter will kick off with an introduction to getting a Drupal 8 site installed and running.
We will walk through the interactive installer that most will be familiar with from previous
versions of Drupal, and from the command line with Drush.

Once we have installed a standard Drupal 8 site, we will cover the basics of extending Drupal.
We will discuss using distributions and installing contributed projects, such as modules and
themes. We will also include uninstalling modules, as this has changed in Drupal 8.

The chapter will wrap up with recipes on how to set up a multisite installation in Drupal 8,
getting a local development environment configured and running the available test suites.

Up and Running with Drupal 8

2

Installing Drupal
Just like most things, there are many different methods for downloading Drupal and installing
it. In this recipe, we will focus on downloading Drupal from https://www.drupal.org/
and setting it up on a basic Linux, Apache, MySQL, PHP (LAMP) server.

In this recipe, we will set-up the files for Drupal 8 and go through the installation process.

Getting ready
Before we start, you are going to need the below mentioned development environments that
meet the new system requirements for Drupal 8:

 f Apache 2.0 (or higher) or Nginx 1.1 (or higher) web server.

 f PHP 5.5.9 or higher.

 f MySQL 5.5 or MariaDB 5.5.20 for your database. You will need a user with privileges
to create databases, or a created database with a user that has privileges to make
tables in that database.

 f Ability to upload or move files to the server!

 f Drupal also requires specific PHP extensions and configuration. Generally a
default installation of PHP should suffice. See https://www.drupal.org/
requirements/php for up to date requirements information.

Drupal 8 ships with Symfony components. One of the new
dependencies in Drupal 8, to support the Symfony routing system, is
that the Drupal Clean URL functionality is required. If the server is
using Apache, ensure that mod_rewrite is enabled. If the server is
using Nginx, the ngx_http_rewrite_module must be enabled.

We will be downloading Drupal 8 and placing its files in your web server's document root.
Generally, this is the /var/www folder. If you used a tool such as XAMPP, WAMP, or MAPP
please consult the proper documentation to know your document root.

How to do it…
We need to follow the below steps to install Drupal 8:

1. First we need to head to Drupal.org and download the latest release of Drupal 8.x!
You can find the most recent and recommended release at the bottom of this page:
https://www.drupal.org/project/drupal. Extract the archive and place the
files to your document root as the folder drupal8:

https://www.drupal.org/
https://www.drupal.org/requirements/php
https://www.drupal.org/requirements/php
Drupal.org
https://www.drupal.org/project/drupal

Chapter 1

3

2. Open your browser and visit your web server, for example
http://localhost/drupal8, to be taken to the Drupal installation wizard. You
will land on the new multilingual options install screen. Select your language and
click Save and continue.

3. On the next screen keep the default Standard option for the installation profile.
This will provide us with a standard configuration with the most commonly used
modules installed.

4. The next step will verify your system requirements. If your system does not have
any reportable issues, the screen will be skipped.

Up and Running with Drupal 8

4

If you have requirement issues, the installer will report what
the specific issues are. Nearly every requirement will link to
a Drupal.org handbook page with solution steps.

5. Enter the database information for Drupal. In most cases, you only need to supply
the username, password, and database name and leave the other defaults. If your
database does not exist, the installer will attempt to create the database:

See the There's more section in for information on setting up
your database and any possible users.

6. Your Drupal 8 site will begin installing! When it is done installing the base modules,
you will be taken to a site configuration screen.

7. The configure site form provides the base configuration for your Drupal site. Enter
your site name and the e-mail address for the site. The site email will be used to send
administrative notifications and as the originating email for outgoing emails from the
Drupal site. The form allows you to set regional information regarding the country and
time zone of the site. Setting the timezone ensures time values display correctly.

Drupal.org

Chapter 1

5

8. Fill in the site maintenance account information, also known as user 1, which acts in
a similar way to root on Unix based systems. The site maintenance account is crucial.
As stated, this acts as the first user and resembles the root user in Unix-based
systems. In Drupal, the user with the user ID of 1 can bypass permission checks and
have global access.

9. Enter the site's regional information and whether the site should check for
updates available for modules enabled and Drupal itself. By checking for updates
automatically, your site will report anonymous usage statistics to Drupal.org along
with providing a summary of your version status. You have the option to also opt-in for
the site to email you notifications of new releases, including security releases.

10. When satisfied click Save and continue and Congratulations, you installed Drupal!

How it works…
Drupal 8 supports a multilingual installation. When you visit the installer it reads the
language code from the browser. With this language code, it will then select a supported
language. If you choose a non-English installation the translation files will be automatically
downloaded from https://localize.drupal.org/. Previous versions of Drupal did
not support automated multilingual installations.

The installation profile instructs Drupal what modules to install by default. Contributed install
profiles are termed distributions. The next recipe discusses distributions

When verifying requirements, Drupal is checking application versions and configurations.
For example, if your server has the PHP Xdebug extension installed, the minimum
max_nested_value must be 256 or else Drupal will not install.

There's more…
The Drupal installation process can be very straight forward, but there are a few items
worth discussing.

Creating a database user and a database
In order to install Drupal you will need to have access to a database server and an existing
(or ability to create) database (or the ability to create one). This process will depend on your
server environment setup.

If you are working with a hosting provider, there is more than likely a web based control panel.
This should allow you to create databases and users. Refer to your hosting's documentation.

Drupal.org
https://localize.drupal.org/

Up and Running with Drupal 8

6

If you are using phpMyAdmin on your server, often installed by MAMP, WAMP, and XAMPP,
and have root access, you can create your databases and users.

 f Sign into phpMyAdmin as the root user

 f Click Add a new User from the bottom of the privileges page

 f Fill in the user's information

 f Select to create a database for the user with all privileges granted

 f You can now use that user's information to connect Drupal to your database

If you do not have a user interface but have command line access, you can set up your
database and user using the MySQL command line. These instructions can be found in
the core/INSTALL.mysql.txt files:

1. Log into MySQL:
$ mysql -u username -p

2. Create the database you will use:
$ CREATE DATABASE database CHARACTER SET utf8 COLLATE utf8_
general_ci;

3. Create a new user to access the database:
$ CREATE USER username@localhost IDENTIFIED BY 'password';

4. Grant the new user permissions on the database:
$ GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP,
INDEX, ALTER, CREATE TEMPORARY TABLES ON databasename.* TO
'username'@'localhost' IDENTIFIED BY 'password';

If you are installing Drupal with a PostgresSQL or SQLite database, see
the appropriate installation instructions, either INSTALL.pgsql.txt
or INSTALL.sqlite.txt.

Database prefixes
Drupal, like other content management systems, allows you to prefix its database tables
from the database set-up form. This prefix will be placed before table names to help make
them unique. While not recommended this would allow multiple installations to share
one database. Utilizing table prefixes can, however, provide some level of security through
obscurity since the tables will not be their default names.

Chapter 1

7

Downloading and installing with Drush
You may also install Drupal using the PHP command line tool Drush. Drush is a command line
tool created by the Drupal community and must be installed. Drush is covered in Chapter 13,
Drupal CLI.

The pm-download command will download packages from Drupal.org. The site-install
command will allow you to specify an installation profile and other options for installing a Drupal
site. The installation steps in this recipe could be run through Drush as:

$ cd /path/to/document/root

$ drush pm-download drupal-8 drupal8

$ cd drupal8

$ drush site-install standard –locale=en-US –-account-name=admin
–-account-pass=admin –account-email=demo@example.com –db-url=mysql://
user:pass@localhost/database

We use Drush to download the latest Drupal 8 and place it in a folder named drupal8. Then
the site-install command instructs Drush to use the standard install profile, configure
the maintenance account, and provides a database URI string so that Drupal can connect to
its database.

Security updates
If you choose to disable the update options, you will have to check manually for module
upgrades. While most upgrades are for bug fixes or features, some are for security updates.
It is highly recommended that you subscribe to the Drupal security team's updates. These
updates are available on Twitter at @drupalsecurity or the feeds on
https://www.drupal.org/security.

Drupal.org
https://www.drupal.org/security

Up and Running with Drupal 8

8

See also
 f For more on multilingual, see Chapter 8, Multilingual and Internationalization

 f For more on using the command line and Drupal, see Chapter 13, Drupal CLI

 f See the Drupal.org handbook on installing Drupal https://www.drupal.org/
documentation/install

 f Drush site install http://drushcommands.com/drush-8x/site-install/
site-install

Using a distribution
A distribution is a contributed installation profile that is not provided by Drupal core. Why
would you want to use a distribution? Distributions provide a specialized version of Drupal
with specific feature sets. On Drupal.org when you download an installation profile it
not only includes the profile and its modules but a version of Drupal core. Hence the name
distribution. You can find a list of all Drupal distributions here
https://www.drupal.org/project/project_distribution.

How to do it…
We will follow these steps to download a distribution to use as a customized version of
Drupal 8:

1. Download a distribution from Drupal.org. For this recipe let's use the Demo
Framework provided by Acquia https://www.drupal.org/project/df.

2. Select the recommended version for the 8.x branch.

3. Extract the folder contents to your web server's document root. You'll notice there is
Drupal core and, within the profiles folder, the installation profile's folder df.

4. Install Drupal as you would normally, by visiting your Drupal site in your browser.

5. Demo Framework declares itself as an exclusive profile. Distributions which declare
this are automatically selected and assumed to be the default installation option.

The exclusive flag was added with Drupal 7.22 to
improve the experience of using a Drupal distribution
http://drupal.org/node/1961012.

6. Follow the installation instructions and you'll have installed the distribution!

Drupal.org
http://drushcommands.com/drush-8x/site-install/site-install
http://drushcommands.com/drush-8x/site-install/site-install
Drupal.org
https://www.drupal.org/project/project_distribution
Drupal.org
https://www.drupal.org/project/df
http://drupal.org/node/1961012

Chapter 1

9

How it works…
Installation profiles work by including additional modules that are part of the contributed
project realm or custom modules. The profile will then define them as dependencies to be
installed with Drupal. When you select an installation profile, you are instructing Drupal to
install a set of modules on installation.

There's more…
Distributions provide a specialized version of Drupal with specific feature sets, but there are a
few items worth discussing.

Makefiles
The current standard for generating a built distribution is the utilization of Drush and
makefiles. Makefiles allow a user to define a specific version of Drupal core and other
projects (themes, modules, third party libraries) that will make up a Drupal code base.
It is not a dependency management workflow, like Composer, but is a build tool.

If you look at the Demo Framework's folder you will see drupal-org.make and
drupal-org-core.make. These are parsed by the Drupal.org packager to compile
the code base and package it as a .zip or .tar.gz, like the one you downloaded.

Installing with Drush
As shown in the first recipe, you can install a Drupal site through the Drush tool. You can
instruct Drush to use a specific installation profile by providing it as the first argument.
The following command would install the Drupal 8 site using the Demo Framework.

$ drush pm-download df

$ drush site-install df –db-url=mysql://user:pass@localhost/database

See also…
 f See Chapter 13, Drupal CLI, for information on makefiles.

 f Drush documentation page for drush make
http://www.drush.org/en/master/make/

 f Distribution documentation on Drupal.org,
https://www.drupal.org/documentation/build/distributions

Drupal.org
http://www.drush.org/en/master/make/
Drupal.org
https://www.drupal.org/documentation/build/distributions

Up and Running with Drupal 8

10

Installing modules and themes
Drupal 8 provides more functionality out of the box than previous versions of Drupal – allowing
you to do more with less. However, one of the more appealing aspects of Drupal is the ability to
extend and customize.

In this recipe, we will download and enable the Honeypot module, and tell Drupal to use the
Bootstrap theme. The Honeypot module provides honeypot and timestamp anti-spam measures
on Drupal sites. This module helps protect forms from spam submissions. The Boostrap theme
implements the Bootstrap front-end framework and supports using Bootswatch styles for
theming your Drupal site.

Getting ready
If you have used Drupal previously, take note that the folder structure has changed. Modules,
themes, and profiles are now placed in their respective folders in the root directory and no
longer under sites/all. For more information about the developer experience change, see
https://www.drupal.org/node/22336.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How to do it…
Let's install modules and themes:

1. Visit https://www.drupal.org/project/honeypot and download the latest
8.x release for Honeypot.

2. Extract the archive and place the honeypot folder inside the modules folder inside
of your Drupal core installation:

https://www.drupal.org/node/22336
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://www.drupal.org/project/honeypot

Chapter 1

11

3. In Drupal, log in and select the Extend option to access the list of available modules.

4. Using the search text field, type in Honeypot. Check the checkbox and click Install.

5. Once enabled, search for it again. Clicking on the module's description will expand
the row and expose links to configure permissions and module settings:

6. Visit https://www.drupal.org/project/bootstrap and download the latest
8.x release for Bootstrap.

https://www.drupal.org/project/bootstrap

Up and Running with Drupal 8

12

7. Extract the archive and place the bootstrap folder inside the themes folder inside
your Drupal core installation.

8. In Drupal, select the Appearance option to manage your Drupal themes.

9. Scroll down the page and click Install and set as default under Bootstrap to enable
and set the theme as default:

Chapter 1

13

How it works…
The following outlines the procedure for installing a module or theme and how Drupal
discovers these extensions.

Discovering modules and themes
Drupal scans specific folder locations to identify modules and themes defined by the
.info.yml file in their directory. The following is the order in which projects will be discovered:

 f Respective core folder (modules, themes)

 f Current installed profile

 f The root modules or themes folder

 f The current site directory (default or current domain)

Module installation
By placing the module inside the root modules folder, we are allowing Drupal to discover the
module and allow it to be installed. When a module is installed, Drupal will register its code
with the system through the module_installer service. The service will check for required
dependencies and prompt for them to be enabled if required. The configuration system will
run any configuration definitions provided by the module on install. If there are conflicting
configuration items, the module will not be installed.

Theme installation
A theme is installed through the theme_installer service and sets any default
configuration by the theme along with rebuilding the theme registry. Setting a theme to
default is a configuration change in system.theme.default to the theme's machine
name (in the recipe it would be bootstrap.)

There's more…
The following outlines the procedure for installing a module or theme and some more
information on it.

Installing a module with Drush
Modules can be downloaded and enabled through the command line using drush. The
command to replicate the recipe would resemble:

$ drush pm-download honeypot

$ drush pm-enable honeypot

It will prompt you to confirm your action. If there were dependencies for the module, it would
ask if you would like to enable those, too.

Up and Running with Drupal 8

14

Uninstalling a module
One of the larger changes in Drupal 8 is the module disable and uninstall process. Previously
modules were first disabled and then uninstalled once disabled. This left a confusing process
which would disable its features, but not clean up any database schema changes. In Drupal 8
modules cannot just be disabled but must be uninstalled. This ensures that when a module is
uninstalled it can be safely removed from the code base.

A module can only be uninstalled if it is not a dependency of another module or does
not have a configuration item in use – such as a field type – which could disrupt the
installation's integrity.

With a standard installation, the Comment module cannot be uninstalled
until you delete all Comment fields on the article content type. This is
because the field type is in use.

See also…
 f Chapter 4, Extending Drupal, to learn about setting defaults on enabling a module

 f Chapter 9, Confiuration Management – Deploying in Drupal 8

Using multisites in Drupal 8
Drupal provides the ability to run multiple sites from one single Drupal code base instance.
This feature is referred to as multisite. Each site has a separate database; however, projects
stored in modules, profiles, and themes can be installed by all of the sites.

Site folders can also contain their own modules and themes. When provided, these can only
be used by that one site.

The default folder is the default folder used if there is not a matching domain name.

Getting ready
If you are going to work with multisite functionality, you should have an understanding of how
to setup virtual host configurations with your particular web server. In this recipe, we will use
two subdomains under localhost called dev1 and dev2.

Chapter 1

15

How to do it…
We will use multisites in Drupal 8 by two subdomains under localhost:

1. Copy sites/example.sites.php to sites/sites.php.

2. Create a dev1.localhost and a dev2.localhost folder inside of the sites folder.

3. Copy the sites/default/default.settings.php file into dev1.localhost
and dev2.localhost as settings.php in each respective folder:

4. Visit dev1.localhost and run the installation wizard.

5. Visit dev2.localhost and see that you still have the option to install a site!

How it works…
The sites.php must exist for multisite functionality to work. By default, you do not need to
modify its contents. The sites.php file provides a way to map aliases to specific site folders.
The file contains the documentation for using aliases.

The DrupalKernel class provides findSitePath and getSitePath to discover the site
folder path. On Drupal's bootstrap this is initiated and reads the incoming HTTP host to load
the proper settings.php file from the appropriate folder. The settings.php file is then
loaded and parsed into a \Drupal\Core\Site\Settings instance. This allows Drupal to
connect to the appropriate database.

Up and Running with Drupal 8

16

There's more…
Let's understand the security concerns of using multisite:

Security concerns
There can be cause for concern if using multisite. Arbitrary PHP code executed on a Drupal
site might be able to affect other sites sharing the same code base. Drupal 8 marked the
removal of the PHP Filter module that allowed site administrators to use PHP code in
the administrative interface. While this mitigates the various ways an administrator had
easy access to run PHP through an interface it does not mitigate the risk wholesale. For
example, the PHP Filter module is now a contributed project and could be installed.

See also…
 f Multi-site documentation on Drupal.org, https://www.drupal.org/

documentation/install/multi-site

Tools for setting up an environment
One of the initial hurdles to getting started with Drupal is a local development environment.
This recipe will cover how to set up the DrupalVM project by Jeff Geerling. DrupalVM is a
VirtualBox virtual machine run through Vagrant, provisioned and configured with Ansible.
It will set up all of your services and build a Drupal installation for you.

Luckily you only need to have VirtualBox and Vagrant installed on your machine and DrupalVM
works on Windows, Mac OS X, and Linux.

Getting ready
To get started, you will need to install the two dependencies required for DrupalVM:

 f VirtualBox: https://www.virtualbox.org/wiki/Downloads

 f Vagrant: http://www.vagrantup.com/downloads.html

How to do it…
Let's set up the DrupalVM project by Jeff Geerling. DrupalVM is a VirtualBox virtual machine
run through Vagrant, provisioned and configured with Ansible:

1. Download the DrupalVM archive from https://github.com/geerlingguy/
drupal-vm/archive/master.zip.

Drupal.org
https://www.drupal.org/documentation/install/multi-site
https://www.drupal.org/documentation/install/multi-site
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html
https://github.com/geerlingguy/drupal-vm/archive/master.zip
https://github.com/geerlingguy/drupal-vm/archive/master.zip

Chapter 1

17

2. Extract the archive and place the project in your directory of choice.

3. Copy example.drupal.make.yml to drupal.make.yml.

4. Copy example.config.yml to config.yml

5. Edit config.yml and modify the local_path setting to be the directory where
you've placed the DrupalVM project. This will be synchronized into the virtual
machine:
vagrant_synced_folders:
 - local_path: /path/to/drupalvm
 destination: /var/www
 type: nfs
 create: true

6. Open a terminal and navigate to the directory where you have placed the
DrupalVM project.

7. Enter the command vagrant up to tell Vagrant to build the virtual machine and
begin the provisioning process.

8. While this process is ongoing, modify your hosts file to provide easy access to the
development site. Add the line 192.168.88.88 drupalvm.dev to your hosts file.

9. Open your browser and access http://www.drupalvm.com/.

10. Login to your Drupal site with the username admin and password admin.

How it works…
DrupalVM is a development project that utilizes the Vagrant tool to create a VirtualBox
virtual machine. Vagrant is configured through the project's Vagrantfile. Vagrant then
uses Ansible – an open source IT automation platform – to install Apache, PHP, MySQL,
and other services on the virtual machine.

The config.yml file has been set up to provide a simple way to customize variables for the
virtual machine and provisioning process. It also uses Drush to create and install a Drupal 8
site, or whatever components are specified in drupal.make.yml. This file is a Drush make
file, which contains a definition for Drupal core by default and can be modified to include other
contributed projects.

The vagrant up command tells Vagrant to either launch an existing virtual machine or create
one anew in a headless manner. When Vagrant creates a new virtual machine it triggers the
provisioning process. In this instance Ansible will read the provisioning/playbook.yml file
and follow each step to create the final virtual machine. The only files needing to be modified,
however, are the config.yml and drupal.make.yml files.

http://www.drupalvm.com/

Up and Running with Drupal 8

18

There's more…
The topic of automating and streamlining a local environment is quite popular right now with
quite a few different options. If you are not comfortable with using Vagrant, there are a few
other options that provide a server installation and Drupal.

Acquia Dev Desktop
Acquia Dev Desktop is developed by Acquia and can be found at
https://docs.acquia.com/dev-desktop2. It is an automated environment installer
for Windows and Mac. The Dev Desktop application allows you to create a regular Drupal
installation or select from a distribution.

XAMPP + Bitnami
XAMPP – Apache + MySQL + PHP + Perl – is a cross platform environment installation.
XAMPP is an open source project from Apache Friends. XAMPP has partnered with Bitnami
to provide free all-in-one installations for common applications – including Drupal 8! You can
download XAMPP at https://www.apachefriends.org/download.html.

Kalabox
Kalabox is developed by the Kalamuna group and intends to be a robust workflow solution
for Drupal development. Kalabox is cross-platform compatible, allowing you to easily work
on Windows machines. It is based for the command line and provides application binaries
for you to install. You can learn more about Kalabox at
http://www.kalamuna.com/products/kalabox/.

See also…
 f See Chapter 13, Drupal CLI, for information on makefiles

 f DrupalVM documentation http://docs.drupalvm.com/en/latest/

 f Drupal.org community documentation on local environment set-up
https://www.drupal.org/node/157602

Running Simpletest and PHPUnit
Drupal 8 ships with two testing suites. Previously Drupal only supported Simpletest. Now
there are PHPUnit tests as well. In the official change record, PHPUnit was added to provide
testing without requiring a full Drupal bootstrap, which occurs with each Simpletest test.
Read the change record here: https://www.drupal.org/node/2012184.

https://docs.acquia.com/dev-desktop2
https://www.apachefriends.org/download.html
http://www.kalamuna.com/products/kalabox/
http://docs.drupalvm.com/en/latest/
Drupal.org
https://www.drupal.org/node/157602
https://www.drupal.org/node/2012184

Chapter 1

19

Getting ready
Currently core comes with Composer dependencies prepackaged and no extra steps need to
be taken to run PHPUnit. This recipe will demonstrate how to run tests the same way that the
QA testbot on Drupal.org does.

The process of managing Composer dependencies may change, but is
currently postponed due to Drupal.org's testing and packaging infrastructure.
Read more here https://www.drupal.org/node/1475510.

How to do it…
1. First enable the Simpletest module. Even though you might only want to run

PHPUnit, this is a soft dependency for running the test runner script.

2. Open a command line terminal and navigate to your Drupal installation directory
and run the following to execute all available PHPUnit tests:
php core/scripts/run-tests.sh PHPUnit

3. Running Simpletest tests required executing the same script, however, instead of
passing PHPUnit as the argument, you must define the url option and tests option:
php core/scripts/run-tests.sh --url http://localhost --all

4. Review test output!

How it works…
The run-tests.sh script has been shipped with Drupal since 2008, then named
run-functional-tests.php. The command interacts with the other suites in Drupal to
run all or specific tests and sets up other configuration items. We will highlight some of the
useful options below:

 f --help: This displays the items covered in the following bullets

 f --list: This displays the available test groups that can be run

 f --url: This is required unless the Drupal site is accessible through
http://localhost:80

 f --sqlite: This allows you to run Simpletest without having to have Drupal installed

 f --concurrency: This allows you to define how many tests run in parallel

Drupal.org
https://www.drupal.org/node/1475510

Up and Running with Drupal 8

20

There's more…

Is run-tests a shell script?
The run-tests.sh isn't actually a shell script. It is a PHP script which is why you must
execute it with PHP. In fact, within core/scripts each file is a PHP script file meant to be
executed from the command line. These scripts are not intended to be run through a web
server which is one of the reasons for the .sh extension. There are issues with discovered
PHP across platforms that prevent providing a shebang line to allow executing the file
as a normal bash or bat script. For more info view this Drupal.org issue at
https://www.drupal.org/node/655178.

Running Simpletest without Drupal installed
With Drupal 8, Simpletest can be run from SQLlite and no longer requires an installed
database. This can be accomplished by passing the sqlite and dburl options to the
run-tests.sh script. This requires the PHP SQLite extension to be installed.

Here is an example adapted from the DrupalCI test runner for Drupal core:

php core/scripts/run-tests.sh --sqlite /tmp/.ht.sqlite --die-on-fail
--dburl sqlite://tmp/.ht.sqlite --all

Combined with the built in PHP webserver for debugging you can run Simpletest without a
full-fledged environment.

Running specific tests
Each example thus far has used the all option to run every Simpletest available. There
are various ways to run specific tests:

 f --module: This allows you to run all the tests of a specific module

 f --class: This runs a specific path, identified by a full namespace path

 f --file: This runs tests from a specified file

 f --directory: This run tests within a specified directory

Previously in Drupal, tests were grouped inside module.test files,
which is where the file option derives from. Drupal 8 utilizes the
PSR-4 autoloading method and requires one class per file.

Drupal.org
https://www.drupal.org/node/655178

Chapter 1

21

DrupalCI
With Drupal 8 came a new initiative to upgrade the testing infrastructure on Drupal.org.
The outcome was DrupalCI. DrupalCI is open source and can be downloaded and run locally.
The project page for DrupalCI is https://www.drupal.org/project/drupalci.

The test bot utilizes Docker and can be downloaded locally to run tests. The project ships
with a Vagrant file to allow it to be run within a virtual machine or locally. Learn more on the
testbot's project page: https://www.drupal.org/project/drupalci_testbot.

See also…
 f PHPUnit manual: https://phpunit.de/manual/4.8/en/writing-tests-

for-phpunit.html

 f Drupal PHPUnit handbook: https://drupal.org/phpunit

 f Simpletest from the command line: https://www.drupal.org/node/645286

Drupal.org
https://www.drupal.org/project/drupalci
https://www.drupal.org/project/drupalci_testbot
https://drupal.org/phpunit
https://www.drupal.org/node/645286
https://phpunit.de/manual/4.8/en/writing-tests-for-phpunit.html
https://phpunit.de/manual/4.8/en/writing-tests-for-phpunit.html

23

2
The Content Authoring

Experience

In this chapter we will explore what Drupal 8 brings to the content authoring experience:

 f Configuring the WYSIWYG editor

 f Adding and editing content

 f Creating a menu and linking content

 f Providing inline editing

 f Creating a custom content type

 f Applying new Drupal 8 core field types

 f Customizing the form display of a node

 f Customizing the display output of a node

Introduction
In this chapter we'll cover the Drupal 8 content authoring experience. We will show you how to
configure text formats and set up the bundled CKEditor that ships with Drupal 8. We will look
at how to add and manage content, along with utilizing menus for linking to content. Drupal 8
ships with inline editing for per-field modifications from the front-end.

This chapter dives into creating custom content types and harnessing different fields to create
advanced content. We'll cover the five new fields added to Drupal 8 core and how to use
them, along with getting new field types through contributed projects. We will go through
customizing the content's display and modifying the new form display added in Drupal 8.

The Content Authoring Experience

24

Configuring the WYSIWYG editor
Drupal 8 caused the collaboration between the Drupal development community and the
CKEditor development community. Because of this, Drupal now ships with CKEditor out of the
box as the default What You See Is What You Get (WYSIWYG) editor. The new Editor module
provides an API for integrating WYSIWYG editors. Even though CKEditor is provided out of the
box, contributed modules can provide integrations with other WYSIWYG editors.

Text formats control the formatting of content and WYSIWYG editor configuration for content
authors. The standard Drupal installation profile provides a fully configured text format with
CKEditor enabled. We will walk through the steps of recreating this text format.

In this recipe we will create a new text format with a custom CKEditor WYSIWYG configuration.

Getting ready
Before starting, make sure that the CKEditor module is enabled, which also requires Editor
as a dependency. Editor is the module that provides an API to integrate WYSIWYG editors
with text formats.

How to do it…
Let's create a new text format with a custom CKEditor WYSIWYG configuration:

1. Visit Configuration and head to Text formats and editors under the Content
authoring heading.

2. Click on Add text format to begin creating the new text format:

3. Enter a name for the text format, such as editor format.

4. Select which roles have access to this format – this allows you to have granular
control over what users can use when authoring content.

Chapter 2

25

5. Select CKEditor from the Text editor select list. The configuration form for CKEditor
will then be loaded.

6. You may now use an in-place editor to drag buttons onto the provided toolbar to
configure your CKEditor toolbar:

7. Select any of the Enabled filters you would like, except for Display any HTML as
Plain text. That would be counter intuitive to using a WYSIWYG editor!

How it works…
The Filter modules provide text formats that control over how rich text fields are presented to
the user. Drupal will render rich text saved in a text area based on the defined text format for
the field. Text fields with (formatted) in their title will respect text format settings, others will
render in plain text.

The text formats and editors screen warns of a security risk
due to improper configuration. That is because you could grant
an anonymous user access to a text format that allows full
HTML, or allow image sources to be from remote URLs.

The Editor module provides a bridge to WYSIWYG editors and text formats. It alters the text
format form and rendering to allow the integration of WYSIWYG editor libraries. This allows
each text format to have its own configuration for its WYSIWYG editor.

The Content Authoring Experience

26

Out of the box the Editor module alone does not provide an editor. The CKEditor module
works with the Editor API to enable usage of that WYSIWYG editor.

Drupal can support other WYSWIG editors, such as MarkItUp or TinyMCE through
contributed modules.

There's more…
Drupal provides granular control of how rich text is rendered and extensible ways as well,
which we will discuss further.

Filter module
When string data is added to a field that supports text formats, the data is saved and
preserved as it was originally entered. Enabled filters for a text format will not be applied
until the content is viewed. Drupal works in such a way that it saves the original content
and only filters on display.

With the Filter module enabled, you gain the ability to specify how text is rendered based
on the roles of the user who created the text. It is important to understand the filters applied
to a text format that uses a WYSIWYG editor. For example, if you selected the Display any
HTML as plain text option, the formatting done by the WYSIWYG editor would be stripped
out when viewed.

CKEditor plugins
The CKEditor module provides a plugin type called CKEditorPlugin. Plugins are small
pieces of swappable functionality within Drupal 8. Plugins and plugin development are
covered in Chapter 7, Plug and Play with Plugins. This type provides integration between
CKEditor and Drupal 8.

The image and link capabilities are plugins defined within the CKEditor module. Additional
plugins can be provided through contributed projects or custom development.

See the \Drupal\ckeditor\Annotation\CKEditorPlugin class for the plugin
definition and the suggested \Drupal\ckeditor\Plugin\CKEditorPlugin\
DrupalImage class as a working example.

See also
 f The official blog post from CKEditor about how Drupal adopted it as the official

WYSIWYG editor: http://ckeditor.com/blog/CKEditor-Joins-Drupal.

 f Chapter 7, Plug and Play with Plugins.

http://ckeditor.com/blog/CKEditor-Joins-Drupal

Chapter 2

27

Adding and editing content
The main functionality of a content management system is in the name itself – the ability to
manage content; that is, to add, edit, and organize content. Drupal provides a central form
that allows you to manage all of the content within your website and allows you to create new
content. Additionally, you can view a piece of content and have the ability to click an edit link
when viewing it.

Getting ready
This recipe assumes you have installed the standard installation profile and have the default
node content types available for use.

How to do it…
Let's manage the content by adding, editing, and organizing the content:

1. Visit Content to view the content management overview from.

2. Click Add content to view the list of available content types. Select article as the
piece of content you would like to make.

3. Provide a title for the piece of content. Titles are always required for content.

Fill in body text for the article:

The Content Authoring Experience

28

You may change the text format to customize what kind of text is
allowed. If the user only has one format available there will be no
select box, but the About text formats link will still be present.

4. Once you have added your text, click Save and publish at the bottom of the form.
You will then be redirected to view the newly created piece of content.

5. Note that the URL for the piece of content is /node/#. This is the default path for
content and can be changed by editing the content.

6. Click on Edit from the tabs right above the content.

7. From the right sidebar, click on URL Path Settings to expand the section and enter
a custom alias. For example /awesome-article (note the required "/".):

8. Save the content and notice the URL for your article is /awesome-article.

9. You could also edit this article from the Content table by clicking Edit there instead
of from viewing the content.

How it works…
The Content page is a View, which will be discussed in Chapter 3, Displaying Content
through Views. This creates a table of all the content in your site that can be searched
and filtered. From here you can view, edit, or delete any single piece of content.

In Drupal there are content entities that provide a method of creation, editing, deletion,
and viewing. Nodes are a form of a content entity. When you create a node it will build the
proper form that allows you to fill in the piece of content's data. The same process follows
for editing content.

When you save the content, Drupal writes the node's content to the database along with all
of its respective field data.

Chapter 2

29

There's more
Drupal 8's content management system provides many features; we will cover some
extra information.

Save as draft
New to Drupal 8 is the ability to easily save a piece of content as a draft instead of directly
publishing it. Instead of clicking on Save and publish, click the arrow next to it to expand the
option of Save as unpublished.

Pathauto
There is a contributed project called Pathauto that simplifies the process of providing URL
aliases. It allows you to define patterns that will automatically create URL aliases for content.
This module utilizes tokens to allow for very robust paths for content.

The Pathauto project can be found at https://www.drupal.org/project/pathauto.

Bulk moderation
You also have the capability to perform bulk actions on content. The table provides checkboxes
at the beginning of each row. For each selected item, you can choose an item from With
selection to make bulk changes – such as deleting, publishing, and unpublishing content:

See also
 f Chapter 2, The Content Authoring Experience in recipe Customizing the Form Display

of a Node

https://www.drupal.org/project/pathauto

The Content Authoring Experience

30

Creating a menu and linking content
Drupal provides a way to link content being authored to a specified menu on the website,
generally the main menu. You can, however, create a custom menu for providing links to
content. In this recipe we will show you how to create a custom menu and link content to it.
We will then place the menu as a block on the page, in the sidebar.

Getting ready
This recipe assumes you have installed the standard installation profile and have the default
node content types available for use. You should have some content created to create a link to.

How to do it…
1. Visit Structure and click on Menus.

2. Click on Add Menu.

3. Provide the title Sidebar and optional summary and then click on Save.

4. Once the menu has saved, click on the Add link button.

5. Enter in a link title and then begin typing the title for a piece of content. The form will
provide autocomplete suggestions for linkable content:

Chapter 2

31

6. Click on Save to save the menu link.

7. With the menu link saved, visit Structure, and then Block layout.

8. Click on Place block next to Sidebar first. In the modal, search for the Sidebar menu
and click on Place block:

9. Save the following forms and, at the bottom of the block list, click on Save.

View your Drupal site and you will see the menu:

How it works…
Menus and links are part of Drupal core. The ability to make custom menus and menu links
is provided through the Menu UI module. This module is enabled on the standard installation
profile, but may not be in others.

The Link input of the menu link form allows you to begin typing node titles and easily link to
existing content. This was a piece of functionality not available in previous versions of Drupal!
It will automatically convert the title into the internal path for you. Link input also accepts
a regular path, such as /node/1 or an external path.

The Content Authoring Experience

32

You must have a valid path; you cannot add empty links to a menu.
There is work being done to allow adding empty or ID selector link
paths: https://www.drupal.org/node/1543750.

There's more…

Managing a contents menu link from its form
A piece of content can be linked to a menu from the add or edit form. The menu settings
section allows you to toggle the availability of a menu link. The menu link title will reflect the
content's title by default.

The parent item allows you to decide which menu and which item it will appear under. By
default content types only have the main menu allowed. Editing a content type can allow
multiple menus, or only choosing a custom menu.

This allows you to populate a main menu or complimentary menu without having to visit the
menu management screens.

Providing inline editing
A touted feature of Drupal 8 is the ability to provide inline editing. Inline editing is enabled by
default with the standard installation profile through the Quick Edit module. The Quick Edit
module allows for editing individual fields while viewing a piece of content and integrates with
the Editor module for WYSIWYG editors!

How to do it…
Let's provide inline editing:

1. Visit a piece of created content.

2. In order to enable inline editing, you must toggle contextual links on the page by
clicking Edit in the upper right of the administrative toolbar:

https://www.drupal.org/node/1543750

Chapter 2

33

3. This will toggle the contextual links available on the page. Click on the context link
next to the content and select Quick edit:

4. Hover over the body text and click to Edit.

5. You can now edit the text with a minimal version of the WYSIWYG editor toolbar.

6. Once you have changed the text, click Save.

7. The changes will be saved immediately.

How it works…
The Contextual links module provides privileged users with shortcut links to modify blocks or
content. The contextual links are toggled by clicking Edit in the toolbar. The Edit link toggles
the visibility of contextual links on the page. Previously, in Drupal 7, contextual links appeared
as cogs when a specific region was hovered over.

The Quick Edit module builds on top of the contextual links features. It allows field formatters,
which display field data, to describe how they will interact. By default Quick Edit sets this to a
form. Clicking on an element will use JavaScript to load a form and save data via AJAX calls.

Quick Edit will not work on administrative pages.

The Content Authoring Experience

34

Creating a custom content type
Drupal excels in the realm of content management by allowing different types of content.
In this recipe we will walk through creating a custom content type. We will create a Services
type that has some basic fields and would be used in a scenario that brings attention to a
company's provided services.

You will also learn how to add fields to a content type in this recipe; which generally goes hand
in hand when making a new content type on a Drupal site.

How to do it…
1. Visit Structure and then Content types. Click Add content type to begin creating a

new content type.

2. Enter Services as the name and an optional description.

3. Select Display settings and uncheck the Display author and date information
checkbox. This will hide the author and submitted time from services pages.

4. Press the Save and manage fields button to save our new content type and manage
its fields.

Chapter 2

35

5. By default, new content types have a Body field automatically added to them. We will
keep this field in place.

6. We will add a field that will provide a way to enter a marketing headline for the
service. Click on Add field.

Select Text (plain) from the drop down and enter Marketing headline as the label:

Text (plain) is a regular text field. The Text (formatted)
option will allow you to use text formats on the displayed
text in the field.

7. Save the field settings on the next form. On the next form you may hit Save settings
to finish adding the field.

The field has now been added and content of this type can be created:

The Content Authoring Experience

36

How it works…
In Drupal there are entities that have bundles. A bundle is just a type of entity that can have
specific configuration and fields attached. When working with nodes, a bundle is generally
referred to as a content type.

Content types can be created as long as the Node module is enabled. When a content type
is created through the user interface, it invokes the node_add_body_field() function.
This function adds the default body field for content types.

Fields can only be managed or added if the Field UI module is enabled. The Field UI module
exposes the Manage Fields, Manage Form Display, and Manage Display for entities – such
as nodes and blocks.

Applying new Drupal 8 core field types
The field system is what makes creating content in Drupal so robust. With Drupal 8 some
of the most used contributed field types have been merged into Drupal core as their own
module. In fact, Entity reference is no longer a module but part of the main Field API now.

This recipe is actually a collection of mini-recipes to highlight the new fields: Link, Email,
Telephone, Date, and Entity reference!

Getting ready
The standard installation profile does not enable all of the modules that provide these field
types by default. For this recipe you will need to manually enable select modules so you can
create the field. The module that provides the field type and its installation status in the
standard profile will be highlighted.

Each recipe will start off expecting that you have enabled the module, if needed, and to be at
the Manage fields form of a content type and have clicked on Add field and provided a field
label. The recipes cover the settings for each field.

How to do it…
This section contains a series of mini recipes, showing how to use each of the new core
field types.

Link
The Link field is provided by the Link module. It is enabled by default with the
standard installation profile. It is a dependency of the Menu UI, Custom Menu Links,
and Shortcut module.

Chapter 2

37

1. The Link field type does not have any additional field level settings that are used
across all bundles.

2. Click Save field settings to begin customizing the field for this specific bundle.

3. Using the Allowed link type setting, you can control whether provided URLs can be
external, internal, or both. Selecting Internal or Both will allow linking to content by
autocompleting the title.

4. The Allow link text defines if a user must provide text to go along with the link. If no
text is provided, then the URL itself is displayed.

5. The field formatter for a Link field allows you to specify rel="nofollow" or if the
link should open in a new window.

The e-mail field
The Email field is provided by core and is available without enabling additional modules:

1. The Email field type does not have any additional field level settings that are used
across all bundles.

2. Click Save field settings to begin customizing the field for this specific bundle.

3. There are no further settings for an Email field instance. This field uses the HTML5
e-mail input, which will leverage browser input validation.

4. The field formatter for an Email field allows you to display the e-mail as plain text or
a mailto: link.

The Telephone field
The Telephone field is provided by the Telephone module. It is not enabled by default with the
standard installation profile:

1. The Telephone field type does not have any additional field level settings that are
used across all bundles.

2. Click Save field settings to begin customizing the field for this specific bundle.

3. There are no further settings for a Telephone field instance. This field uses the
HTML5 e-mail input, which will leverage browser input validation.

4. The field formatter for a Telephone field allows you to display the telephone number
as a plain text item, or using the tel: link with an optional replacement title for
the link.

The Content Authoring Experience

38

Date
The Date field is provided by the Datetime module. It is enabled by default with the standard
installation profile.

1. The Date module has a setting that defines what kind of data it will be storing:
date and time, or date only. This setting cannot be changed once field data has
been saved.

2. Click Save field settings to begin customizing the field for this specific bundle.

3. The Date field has two ways of providing a default value. It can either be the current
date or a relative date using PHP's date time modifier syntax.

4. By default, Date fields use the HTML5 date and time inputs, resulting in a native
date and time picker provided by the browser.

5. Additionally, Date fields can be configured to use a select list for each date and
time component:

6. The default date field formatter display uses Drupal's time formats to render the
time format. These are configured under Configuration and Regional and language
in the Date and time formats form.

7. Dates and times can be displayed as Time ago to provide a semantic display of
how far in the future or past a time is. The formats for both are customizable in
the display settings.

8. Finally, dates and times can be displayed using a custom format as specified by the
PHP date formats.

The Entity Reference
The Entity Reference field is part of core and is available without enabling additional modules.
Unlike other fields, Entity Reference appears as a grouping of specific items when adding a
field. That is because you must pick a type of entity to reference!

1. The interface allows you to select a Content, File, Image, Taxonomy term, User,
or Other. Selecting one of the predefined options will preconfigure the field's target
entity type.

Chapter 2

39

2. When creating an Entity Reference field using the Other choice, you must specify the
type of item to reference. This option cannot be changed once data is saved.

You will notice there are two groups: content and configuration.
Drupal uses configuration entities. Even though configuration is an
option, you may not benefit from referencing those entity types. Only
content entities have a way to be viewed. Referencing configuration
entities would fall under an advanced use case implementation.

3. Click Save field settings to begin customizing the field for this specific bundle.

4. The Entity Reference field has two different methods for allowing users to search for
content: using the default autocomplete or a View.

5. Depending on the type of entity you are referencing, there will be different entity
properties you may sort the results based on.

6. The default field widget for an Entity Reference field is to use autocomplete, however
there is the option to use a select list or checkboxes for the available options.

7. The values of an Entity Reference field can display the referenced entity's label or the
rendered output. When rendering a label it can be optionally linked to the entity itself.
When displaying a rendered entity you may choose a specific view mode.

How it works…
When working with fields in Drupal 8, there are two steps. When you first create a field you are
defining a base field to be saved. This configuration is a base that specifies how many values a
field can support and any additional settings defined by the field type. When you attach a field
to a bundle it is considered a field storage and contains configuration unique to that specific
bundle. If you have the same Link field on the Article and Page content type, the label, link
type, and link text settings are for each instance.

Each field type provides a method for storing and presents a specific type of data. The benefit
of using these fields comes from validation and data manipulation. It also allows you to utilize
HTML5 form inputs. By using HTML5 for telephone, e-mail, and date the authoring experience
uses the tools provided by the browser instead of additional third party libraries. This also
provides a more native experience when authoring with mobile devices.

The Content Authoring Experience

40

There's more…
Having Drupal 8 released with new fields was a large feature and we will cover some
additional topics.

Upcoming updates
Each of the recipes covers a field type that was once part of the contributed project space.
These projects provided more configuration options than are found in core at the time of
writing this book. Over time more and more features will be brought into core from their
source projects.

For instance, the Datetime module is based on the contributed date project. However not
all of the contributed project's features have made it to Drupal core. Each minor release of
Drupal 8 could see more features moved to core.

Views and Entity Reference
Using a View with an Entity Reference field is covered in Chapter 3, Displaying Content through
Views. Using a View, you can customize the way results are fetched for a reference field.

See also
 f Chapter 3, Displaying Content through Views, providing an entity reference result view

Customizing the form display of a node
New in Drupal 8 is the availability of form display modes. Form modes allow a site administrator
to configure different field configurations for each content entity bundle edit form. In the case
of nodes, you have the ability to rearrange and alter the display of fields and properties on the
node edit form.

In this recipe we'll modify the default form for creating the Article content type that comes
with the standard installation profile.

Chapter 2

41

How to do it…
1. To customize the form display mode, visit Structure and then Content Types.

2. We will modify the Article content type's form. Click on the expand the operations
drop down and select Manage form display.

3. First we will modify the Comments field. From the Widget dropdown choose the
Hidden option to remove it from the form. Follow the same steps for the sticky at
top of lists field.

4. Click on the settings cog for the Body field. Enter in a placeholder for the field,
such as Enter your article text here. Click on Update.

The Content Authoring Experience

42

Note:
The placeholder will only appear on a textarea using a
text format that does not provide a WYSIWYG editor.

5. Click the Save button at the bottom of the page to save your changes. You have now
customized the form display!

6. Visit Content, Add Content, and then Article. Note that the comment settings are no
longer displayed, nor the sticky options under promotion options:

How it works…
Entities in Drupal have various view modes for each bundle. In Drupal 7 there were only
display view modes, which are covered in the next recipe. Drupal 8 brings in new form
modes to allow for more control of how an entity edit form is displayed.

Form display modes are configuration entities. Form display modes dictate how the
\Drupal\Core\EntityContentEntityForm class will build a form when an entity
is edited. This will always be set to default unless changed or specified specifically to a
different mode programmatically.

Since form display modes are configuration entities they can be exported using
configuration management.

Chapter 2

43

Hidden field properties will have no value, unless there is a provided default value. For example,
if you hide the Authoring information without providing code to set a default value the content
will be authored by anonymous (no user).

There's more…

Managing form display modes
Form display modes for all entities are managed under one area and are enabled for each
bundle type. You must first create a display mode and then it can be configured through the
bundle manage interface.

Programmatically providing a default to hidden form items
In Chapter 6, Creating Forms with the Form API, we will have a recipe that details altering
forms. In order to provide a default value for an entity property hidden on the form display,
you will need to alter the form and provide a default value. The Field API provides a way to
set a default value when fields are created.

See also
 f Chapter 10, The Entity API

 f Chapter 6, Creating Forms with the Form API

Customizing the display output of a node
Drupal provides display view modes that allow for customization of the fields and other
properties attached to an entity. In this recipe we will adjust the teaser display mode of
an Article. Each field or property has a control for displaying the label, the format to display
the information in, and additional settings for the format.

Harnessing view displays allows you to have full control over how content is viewed on your
Drupal site.

How to do it…
1. Now it is time to customize the form display mode by visiting Structure and then

Content Types.

2. We will modify the Article content type's display. Click on the dropdown button arrow
and select Manage display.

The Content Authoring Experience

44

3. Click on the Teaser view mode option to modify it. The teaser view mode is used in
node listings, such as the default home page.

4. Change the format for Tags to be Hidden. Additionally, this can be accomplished by
dragging it to the hidden section. The tags on an article will no longer be displayed
when viewing a teaser view mode.

5. Click on the settings cog for the Body field to adjust the trimmed limit. The trim limit
is a fallback for Summary or trimmed when the summary of a textarea field is not
provided. Modify this from 600 to 300.

6. Press Save to save all of your changes that you have made.

7. View the home page and see that your changes have taken affect!

Chapter 2

45

How it works…
View display modes are configuration entities. View display modes dictate how the
\Drupal\Core\EntityContentEntityForm class will build a view display when an entity
is viewed. This will always be set to default unless changed or specified as a different mode
programmatically.

Since view display modes are configuration entities they can be exported using
configuration management.

47

3
Displaying Content

through Views

This chapter will cover the Views module and how to use a variety of its major features:

 f Listing content

 f Editing the default admin interfaces

 f Creating a block from a View

 f Utilizing dynamic arguments

 f Adding a relationship in a View

 f Providing an Entity Reference result View

Introduction
For those who have used Drupal previously, Views is in core for Drupal 8! If you are new to
Drupal, Views has been one of the most used contributed projects for Drupal 6 and Drupal 7.

To briefly describe Views, it is a visual query builder, allowing you to pull content from the
database and render it in multiple formats. Select administrative areas and content listings
provided out of the box by Drupal are all powered by Views. We'll dive into how to use Views to
customize the administrative interface, customize ways to display your content, and interact
with the entity reference field.

Displaying Content through Views

48

Listing content
Views does one thing, and it does it well: listing content. The power behind the Views module
is the amount of configurable power it gives the end user to display content in various forms.

This recipe will cover creating a content listing and linking it in the main menu. We will use the
Article content type provided by the standard installation and make an articles landing page.

Getting ready
The Views UI module must be enabled in order to manipulate Views from the user interface.
By default this is enabled with the standard installation profile.

How to do it…
Let's list the Views listing content:

1. Visit Structure and then Views. This will bring you to the administrative overview of all
the views that have been created:

Chapter 3

49

2. Click on Add new view to begin creating a new view.

3. The first step is to provide the View name of Articles, which will serve as the
administrative and (by default) displayed title.

4. Next, we modify the VIEW SETTINGS. We want to display Content of the type Articles
and leave the tagged with empty. This will force the view to only show content of the
article content type.

5. Choose to Create a page. The Page title and Path will be auto populated based on
the view name and can be modified as desired. For now, leave the display and other
settings at their default values.

6. Click on Save and edit to continue modifying your new view.

7. In the middle column, under the Page settings section we will change the Menu item
settings. Click on No menu to change the default.

Displaying Content through Views

50

8. Select Normal menu entry. Provide a menu link title and optional description. Keep
the Parent set to <Main Navigation>.

9. Click on Apply at the bottom of the form.

10. Once the view is saved you will now see the link in your Drupal site's main menu.

How it works…
The first step for creating a view involves selecting the type of data you will be displaying.
This is referred to as the base table, which can be any type of entity or data specifically
exposed to Views.

Nodes are labeled as Content in Views and you will find throughout
Drupal this interchanged terminology.

When creating a Views page we are adding a menu path that can be accessed. It tells Drupal
to invoke Views to render the page, which will load the view you create and render it.

There are display style and row plugins that format the data to be rendered. Our recipe
used the unformatted list style to wrap each row in a simple div element. We could have
changed this to a table for a formatted list. The row display controls how each row is output.

Chapter 3

51

There's more…
Views has been one of the must-use modules since it first debuted, to the point that almost
every Drupal 7 site used the module. In the following section we will dive further into Views.

Views in Drupal Core Initiative
Views has been a contributed module up until Drupal 8. In fact, it was one of the most used
modules. Although the module is now part of Drupal core it still has many improvements that
are needed and are being committed.

Some of these changes will be seen through minor Drupal releases, such as 8.1x and 8.2.x,
as development progresses and probably not through patch releases (8.0.10).

Views and displays
When working with Views, you will see some different terminology. One of the key items to
grasp is what a display is. A view can contain multiple displays. Each display is of a certain
type. Views comes with the following display types:

 f attachment: This is a display that becomes attached to another display in the
same view

 f block: This allows you to place the view as a block

 f embed: The display is meant to be embedded programmatically

 f Entity Reference: This allows Views to provide results for an entity reference field

 f feed: This display returns an XML based feed and can be attached to another display
to render a feed icon

 f page: This allows you to display the view from a specific route

Each display can have its own configuration, too. However, each display will share the same
base table (content, files, etc.). This allows you to take the same data and represent it in
different ways.

Format style plugins: style and row
Within Views there are two types of style plugins that represent how your data is displayed –
style and row.

 f The style plugin represents the overall format

 f The row plugin represents each result row's format

For example, the grid style will output multiple div elements with specified classes to create
a responsive grid. At the same time, the table style creates a tabular output with labels
used as table headings.

Displaying Content through Views

52

Row plugins define how to render the row. The default content will render the entity as defined
by its selected display mode. If you choose Fields you manually choose which fields to include
in your view.

Each format style plugin has a corresponding Twig file that the theme layer uses. You can
define new plugins in custom modules or use contributed modules to access different options.

Using the Embed display
Each of the available display types has a method to expose itself through the user interface,
except for Embed. Often, contributed and custom modules use Views to render displays
instead of manually writing queries and rendering the output. Drupal 8 provides a special
display type to simplify this.

If we were to add an Embed display to the view created in the recipe, we could pass the
following render array to output our view programmatically.

$view_render = [
 '#type' => 'view',
 '#name' => 'articles',
 '#display_id' => 'embed_1',
];

When rendered, the #type key tells Drupal this is a view element. We then point it to our new
display embed_1. In actuality, the Embed display type has no special functionality, in fact it is
a simplistic display plugin. The benefit is that it does not have additional operations conducted
for the sake of performance.

See also
 f VDC Initiative:

https://www.drupal.org/community-initiatives/drupal-core/vdc

 f Chapter 7, Plug and Play with Plugins, to learn more about plugins

Editing the default admin interfaces
With the addition of Views in Drupal core, many of the administrative interfaces are powered
by Views. This allows customization of default admin interfaces to enhance site management
and content authoring experiences.

In Drupal 7 and 6 there was the administrative Views module,
which provided a way to override administrative pages with Views.
This module is no longer required, as the functionality comes with
Drupal core out of the box!

https://www.drupal.org/community-initiatives/drupal-core/vdc

Chapter 3

53

In this recipe we will modify the default content overview form that is used to find and edit
content. We will add the ability to filter content by the user who authored it.

How to do it…
1. Visit Structure and then Views. This will bring you to the administrative overview of all

existing views.

2. From the Enabled section, select the Edit option for the Content view. This is the view
displayed on /admin/content when managing content.

3. In order to filter by the content author, we must add a FILTER CRITERIA to our view,
which we will expose the following for users to modify:

4. Click on Add to add a new filter. In the search text box type Authored by to search the
available options. Select Content: Authored by and click Apply (all displays):

5. Check Expose this filter to visitors, to allow them to change it via checkbox. This will
allow users to modify the data for the filter.

6. You may modify the Label and add a Description to improve the usability of the filter
option for your use case.

Displaying Content through Views

54

7. Click on Apply (all displays) once more to finish configuring the filter. It will now show
up in the list as filter criteria active. You will also see the new filter in the preview
below the form.

8. Click on Save to commit all changes to the view.

9. View /admin/content and you will have your filter. Content editors will be able to
search for content authored by a user through autocompleted username searches:

How it works…
When a view is created that has a path matching an existing route, it will override it and
present itself. That is how the /admin/content and other administrative pages are able
to be powered by Views.

If you were to disable the Views module you can still manage
content and users. The default forms are tables that do not
provide filters or other extra features.

Drupal uses the overridden route and uses Views to render the page. From that point on the
page is handled like any other Views page would be rendered.

There's more…
We will dive into additional features available through Views that can enhance the way you use
Views and present them on your Drupal site.

Exposed versus non-exposed
Filters allow you to narrow the scope of the data displayed in a view. Filters can either be
exposed or not; by default a filter is not exposed. An example would be using the Content:
Publishing status set to Yes (published) to ensure a view always contains published content.
This is an item you would configure for displaying content to site visitors. However, if it were for
an administrative display, you may want to expose that filter. This way content editors have the
ability to view, easily, what content has not been published yet or has been unpublished.

All filter and sort criteria can be marked as exposed.

Chapter 3

55

Filter identifiers
Exposed filters work by parsing query parameters in the URL. For instance, on the content
management form, changing the Type filter will add type=Article amongst others to the
current URL.

With this recipe the author filter would show up as uid in the URL. Exposed filters have a
Filter identifier option that can change the URL component.

This could be changed to author or some other value to enhance the user experience behind
the URL, or mask the Drupal-ness of it.

Overriding routes with Views
Views is able to replace administrative pages with enhanced versions due to the way the route
and module system works in Drupal. Modules are executed in order of the module's weight
or alphabetical order if weights are the same. Naturally, in the English alphabet, the letter
V comes towards the end of the alphabet. That means any route that Views provides will be
added towards the end of the route discovery cycle.

If a view is created and it provides a route path, it will override any that exist on that path.
There is not a collision checking mechanism (and there was not in Views before merging into
Drupal core) that prevents this.

This allows you to easily customize most existing routes. But, beware that you could easily
have conflicting routes and Views will normally override the other.

Creating a block from a View
Previous recipes have shown how to create and manipulate a page created by a view. Views
provides different display types that can be created, such as a block. In this recipe we will
create a block powered by Views. The Views block will list all Tag taxonomy terms that have
been added to the Article content type.

Getting ready
This recipe assumes you have installed the standard installation profile and have the default
node content types available for use.

Displaying Content through Views

56

How to do it…
1. Visit Structure and then Views. This will bring you to the administrative overview

of all the views that have been created.

2. Click on Add new view to begin creating a new view.

3. The first step is to provide the View name of Tags, which will serve as the
administrative and (by default) displayed title.

4. Next, we modify the View settings. We want to display Taxonomy terms of the type
Tags. This will make the view default to only displaying taxonomy terms created
under the Tags vocabulary

5. Check the Create a block checkbox.

6. Choose the HTML List option from the Display format choices. Leave the row style
as Fields.

7. We want to display all of the available tags. To change this, click the current pager
style link. Pick the Display all items radio and click Apply (all displays). On the next
model, click Save to keep the offset at 0.

8. Next we will sort the view by tag name instead of order of creation. Click Add on the
Sort criteria section. Add Taxonomy term: Name and click Apply (all displays) to
use the default sort by ascending.

Chapter 3

57

9. Press Save to save the view.

10. Visit Structure and Block layout to place the block on your Drupal site. Press Place
block for the Sidebar region in the Bartik theme.

11. Filter the list by typing your view's name. Press Place block to add your view's block
to the block layout.

12. Finally click on block to commit your changes!

How it works…
In the Drupal 8 plugin system there is a concept called Derivatives. Plugins are small pieces
of swappable functionality within Drupal 8. Plugins and plugin development are covered
in Chapter 7, Plug and Play with Plugins. A derivative allows a module to present multiple
variations of a plugin dynamically. In the case of Views, it allows the module to provide
variations of a ViewsBlock plugin for each view that has a block display. Views implements
the \Drupal\views\Plugin\Block\ViewsBlock\ViewsBlock class, providing the base
for the dynamic availability of these blocks. Each derived block is an instance of this class.

When Drupal initiates the block, Views passes the proper configuration required. The view is
then executed and the display is rendered whenever the block is displayed.

Displaying Content through Views

58

There's more…
We will explore some of the other ways in which Views interacts with blocks.

Exposed forms as blocks
Pages and feeds have the ability to provide blocks, however not for the actual content
displayed. If your view utilizes exposed filters you have the option to place the exposed
form in a block. With this option enabled you may place the block anywhere on the page,
even pages not for your view!

To enable the exposed filters as a block, you must first expand the Advanced section on
the right side of the Views edit form. Click on the Exposed form in block option from the
Advanced section. In the options modal that opens, select the Yes radio button and click
Apply. You then have the ability to place the block from the Block layout form.

An example for using an exposed form in a block is for a search result view. You would add an
exposed filter for keywords that control the search results. With the exposed filters in a block
you can easily place it in your site's header. When an exposed filters block is submitted,
it will direct users to your view's display.

See also
 f Chapter 7, Plug and Play with Plugins, to learn more about derivatives

Utilizing dynamic arguments
Views can be configured to accept contextual filters. Contextual filters allow you to provide a
dynamic argument that modifies the view's output. The value is expected to be passed from
the URL; however, if it is not present there are ways to provide a default value.

In this recipe we will create a new page called My Content, which will display a user's
authored content on the route /user/%/content.

Chapter 3

59

How to do it…
1. Visit Structure and then Views. This will bring you to the administrative overview

of all the views created. Click on Add new view to begin creating a new view.

2. Set the View name to My Content.

3. Next, we modify the View settings. We want to display Content of the type All and
leave the Tagged with empty. This will allow all content to be displayed.

4. Choose to Create a page. Keep the page title the same. We need to change the path
to be user/%/content. Click Save and edit to move to the next screen and add the
contextual filter.

When building a views page, adding a percentage sign to the path
identifies a route variable.

5. Toggle the Advanced portion of the form on the right hand side of the page. Click on
Add in the Contextual filters section.

6. Select Content: Authored by and then click Apply (all displays).

7. Change the default value When the filter is not in the URL to Display "Access Denied"
to prevent all content from being displayed with a bad route value.

8. Click Apply (all displays) and save the form.

9. Visit /user/1/content and you will see content created by the root admin!

How it works…
Contextual filters mimic the route variables found in the Drupal routing system. Variables are
represented by percentage signs as placeholders in the view's path. Views will match up each
placeholder with contextual filters by order of their placement. This allows you to have multiple
contextual filters; you just need to ensure they are ordered properly.

Displaying Content through Views

60

Views is aware of how to handle the placeholder because the type of data is selected when
you add the filter. Once the contextual filter is added there are extra options available for
handling the route variable.

There's more…
We will explore extra options available when using contextual filters.

Previewing with contextual filters
You are still able to preview a view from the edit form. You simply add the contextual filter
values in to the text form concatenated by a forward slash (/). In this recipe you could
replace visiting /user/1/content with simply inputting 1 into the preview form and
updating the preview.

Displaying as a tab on the user page
Even though the view created in the recipe follows a route under /user, it will not show up
as a local task tab until it has a menu entry defined. From the Page settings section you will
need to change No menu from the Menu option. Clicking on that link will open the menu link
settings dialog.

Select Menu tab and provide a Menu link title, such as My Content. Click on Apply and save
your view.

Altering the page title
With contextual filters you have the ability to manipulate the current page's title. When adding
or editing a contextual filter you can modify the page title. From the When the filter value is
present in the URL or a default is provided section, you may check the Override title option.

This text box allows you to enter in a new title that will be displayed. Additionally, you can
use the information passed from the route context using the format of %# where the # is the
argument order.

Validation
Contextual filters can have validation attached. Without specifying extra validation, Views will
take the expected argument and try to make it just work. You can add validation to help limit
this scope and filter out invalid route variables.

You can enable validation by checking Specify validation criteria from the When the filter
value is present in the URL or a default is provided section. The default is set to – Basic
Validation – which allows you to specify how the view should react if the data is invalid;
based on our recipe, if the user was not found.

Chapter 3

61

The list of Validator options is not filtered by the contextual filter item you selected, so some
may not apply. For our recipe one might want User ID and select the Validate user has access
to the User. This validator would make sure the current user is able to view the route's user's
profile. Additionally, it can be restricted further based on role.

This gives you more granular control over how the view operates when using contextual filters
for route arguments.

Multiple and exclusion
You may also configure the contextual filter to allow AND or OR operations along with exclusion.
These options are under the More section when adding or editing a contextual filter.

The Allow multiple values option can be checked to enable AND or OR operations. If the
contextual filter argument contains a series of values concatenated by plus (+) signs it acts as
an OR operation. If the values are concatenated by commas (,) it acts as an AND operation.

When the Exclude option is checked the value will be excluded from the results rather than
the view being limited by it.

Adding a relationship in a View
As stated at the beginning of the chapter, Views is a visual query builder. When you first create
a view, a base table is specified to pull data from. Views automatically knows how to join
tables for field data, such as body text or custom attached fields.

Displaying Content through Views

62

When using an entity reference field, you have the ability to display the value as the raw
identifier, the referenced entity's label, or the entire rendered entity. However, if you add a
Relationship based on a reference field you will have access to display any of that entity's
available fields.

In this recipe, we will update the Files view, used for administering files, to display the
username of the user who uploaded the file.

How to do it…
1. Visit Structure and then Views. This will bring you to the administrative overview of all

the views that have been created

2. Find the Files view and click Edit.

3. Click on Advanced to expand the section and then click Add next to Relationships.

4. Search for user. Select the User who uploaded relationship option and click Apply
(this display).

5. Next we will be presented with a configure form for the relationship. Click Apply (this
display) to use the defaults.

6. Add a new field by clicking Add in the Fields section.

7. Search for name and select the Name field and click Apply (this display).

Chapter 3

63

8. This view uses aggregation, which presents a new configuration form when first
adding a field. Click Apply and continue to use the defaults.

We will discuss Views and aggregation in the There's more… section.

9. We will use the default field settings that will provide the label Name and format it as
the username and link to the user's profile. Click Apply (all displays).

10. Click on Save to finish editing the view and commit your changes.

How it works…
Drupal stores data in a normalized format. Database normalization, in short, involves the
organization of data in specific related tables. Each entity type has its own database table
and all fields have their own database table. When you create a view and specify what kind
of data will be shown, you are specifying a base table in the database that Views will query.
Views will automatically associate fields that belong to the entity and the relationship to
those tables for you.

Displaying Content through Views

64

When an entity has an Entity reference field you have the ability to add a relationship to the
referenced entity type's table. This is an explicit definition, whereas fields are implicit. When
the relationship is explicitly defined all of the referenced entity type's fields come into scope.
The fields on the referenced entity type can then be displayed, filtered, and sorted by.

There's more…
Using relationships in Views allows you to create some powerful displays. We will discuss
aggregation and additional information about relationships.

Relationships provided by entity reference fields
Views uses a series of hooks to retrieve data that it uses to represent ways to interact with
the database. One of these is the hook_field_views_data hook, which processes a field
storage configuration entity and registers its data with Views. The Views module implements
this on behalf of Drupal core to add relationships, and reverse relationships, for Entity
reference fields.

Since Entity reference fields have set schema information, Views can dynamically generate
these relationships by knowing the field's table name, destination entity's table name, and
the destination entity's identifier column.

Relationships provided through custom code
There are times where you would need to define a relation on your own with custom code.
Typically, when working with custom data in Drupal, you would more than likely create a new
entity type, covered in Chapter 9, Confiuration Management – Deploying in Drupal 8. This is not
always the case, however, and you may just need a simple method of storing data. An example
can be found in the Database Logging module. The Database Logging module defines schema
for a database table and then uses hook_views_data to expose its database table to Views.

The dblog_schema hook implementation returns a uid column on the watchdog database
table created by the module. That column is then exposed to Views with the following definition:

 $data['watchdog']['uid'] = array(
 'title' => t('UID'),
 'help' => t('The user ID of the user on which the log entry
 was written..'),
 'field' => array(
 'id' => 'numeric',
),
 'filter' => array(
 'id' => 'numeric',
),
 'argument' => array(
 'id' => 'numeric',

Chapter 3

65

),
 'relationship' => array(
 'title' => t('User'),
 'help' => t('The user on which the log entry as written.'),
 'base' => 'users',
 'base field' => 'uid',
 'id' => 'standard',
),
);

This array tells Views that the watchdog table has a column named uid. It is numeric
in nature for its display, filtering capabilities and sorting capabilities. The relationship
key is an array of information that instructs Views how to use this to provide a relationship
(LEFT JOIN) on the users table. The User entity uses the users table and has the
primary key of uid.

Using Aggregation and views.
There is a view setting under the Advanced section that allows you to enable aggregation.
This feature allows you to enable the usage of SQL aggregate functions, such as MIN, MAX,
SUM, AVG, and COUNT. In this recipe, the Files view uses aggregation to SUM the usage
counts of each file in the Drupal site.

Aggregation settings are set for each field and when enabled have their own link to configure
the settings.

Displaying Content through Views

66

Providing an Entity Reference result View
The Entity reference field, covered in Chapter 2, The Content Authoring Experience, can utilize
a custom view for providing the available field values. The default entity reference field will
display all available entities of the type it is allowed to reference. The only available filter is
based on the entity bundle, such as only returning Article nodes. Using an entity reference
view you can provide more filters, such as only content that user has authored.

In this recipe we will create an entity reference view that filters content by the author. We will add
the field to the user account form, allowing users to select their favorite contributed content.

How to do it…
1. Visit Structure and then Views. This will bring you to the administrative overview

of all the views that have been created. Click on Add new view to begin creating a
new view.

2. Set the View name to My Content Reference View. Modify the View settings. We
want to display Content of the type All and leave the Tagged with empty.

3. Do not choose to create a page or block. Click Save and edit to continue working on
your view.

4. Click on the Add button to create a new display. Select the Entity Reference option to
create the display.

Chapter 3

67

5. The Format will be automatically set to Entity Reference List, which utilizes fields.
Click on Settings next to it to modify the style format.

6. For Search Fields, check the Content:Title option then click Apply. This is what the
field will autocomplete search on.

7. You will need to modify the Content: Title field to stop it from wrapping the result
as a link. Click on the field label and uncheck Link to the Content. Click Apply (all
displays) to save.

8. Click on Save to save the view.

9. Go to Configuration and then Account settings to be able to Manage fields on
user accounts.

10. Add a new Entity Reference field that references Content, call it Highlighted
contributions, and allow it to have unlimited values. Click the Save field
settings button.

Displaying Content through Views

68

11. Change the Reference type method to use View: Filter by an entity reference view
and select the view we have just created:

How it works…
The entity reference field definition provides selection plugins. Views provides an entity
reference selection plugin. This allows entity reference to feed data into a view to receive
available results.

The display type for Views requires you to select which fields will be used to search against
when using the autocomplete widget. If not using the autocomplete widget and using the
select list or checkboxes and radio buttons, then it will return the view's entire results.

There's more…

View arguments
Entity reference view displays can accept contextual filter arguments. These are not dynamic,
but can be passed manually through the field's settings. The View arguments field allows you
to add a comma separated list of arguments that are passed to the view. The order should
match the order of the contextual filters as configured.

In this recipe we could have added a Content: type contextual filter that fell back to Display all
results if the argument was missing. This allows the view to be reused in multiple references.
Perhaps there is one view that should limit the available references to all Articles created by the
current user. You would then add Article to the text field and pass the argument to the view.

See also
 f Chapter 7, Plug and Play with Plugins, to learn more about plugins

[69]

Chapter 4

Extending Drupal

This chapter dives into extending Drupal using a custom module:

 f Creating a module

 f Defining a custom page

 f Defining permissions

 f Providing the configuration on installation or update

 f Using Features 2.x

Introduction
A feature of Drupal that makes it desirable is the ability to customize it through modules.
Whether custom or contributed, modules extend the functionalities and capabilities of
Drupal. Modules can be used to not only extend Drupal, but also to create a way to provide
configuration and reusable features.

This chapter will discuss how to create a module and allow Drupal to discover it, allowing it to
be installed from the extend page. Permissions, custom pages, and default configurations all
come from modules. We will explore how to provide these through a custom module.

In addition to creating a module, we will discuss the Features module that provides a set of
tools for exporting the configuration and generating a module.

4

[70]

Extending Drupal

Creating a module
The first step to extend Drupal is to create a custom module. Although the task sounds
daunting, it can be accomplished in a few simple steps. Modules can provide functionalities
and customizations to functionalities provided by other modules, or they can be used as a
way to contain the configuration and a site's state.

In this recipe, we will create a module by defining an info file, a file containing information
that Drupal uses to discover extensions, and enabling the module.

How to do it...
1. Create a folder named mymodule in the modules folder in the base directory of your

Drupal site. This will be your module's directory.

2. Create a mymodule.info.yml file in your module's directory. This contains metadata
that identifies the module to Drupal.

3. Add a line to the name key to provide a name for the module:
name: My Module!

4. We need to provide the type key to define the type of extension. We provide the
value module:
type: module

5. The description key allows you to provide extra information about your module,
which will be displayed on the module's list page:
description: This is an example module from the Drupal 8 Cookbook!

6. All modules need to define the core key in order to specify a major release
compatibility:
core: 8.x

7. Save the mymodule.info.yml file, which resembles the following code:
name: My Module!
type: module
description: This is an example module from the Drupal 8 Cookbook!
core: 8.x

8. Log in to your Drupal site and visit Extend from the administrative toolbar.

9. Search for My Module to filter the list of options.

[71]

Chapter 4

10. Check the checkbox and click on Install to enable your module.

How it works...
Drupal utilizes info.yml files to define extensions. Drupal has a discovery system that locates
these files and parses them to discover modules. The info_parser service, provided by
the \Drupal\Core\Extension\InfoParser class, reads the info.yml file. The parser
guarantees that the required type, core, and name keys are present.

When a module is installed, it is added to the core.extension configuration object,
which contains a list of installed modules and themes. The collection of modules in the
core.extension module array will be installed and will have PHP namespaces resolved,
services loaded, and hooks registered.

When Drupal prepares to execute a hook or register services, it will iterate across
the values in the module key in core.extension.

There's more...
There are more details that we can explore about module info files.

Module namespaces
Drupal 8 uses the PSR-4 standard developed by the PHP Framework Interoperability Group.
The PSR-4 standard is for package-based PHP namespace autoloading. It defines a standard
to understand how to automatically include classes based on a namespace and class name.
Drupal modules have their own namespaces under the Drupal root namespace.

Using the module from the recipe, our PHP namespace will be Drupal\mymodule, which
represents the modules/mymodule/src folder.

[72]

Extending Drupal

With PSR-4, files need to contain only one class, interface, or trait. These files need to have
the same filename as the containing class, interface, or trait name. This allows a class loader
to resolve a namespace as a directory path and know the class's filename. The file can then
be automatically loaded when it is used in a file.

Module discovery locations
Drupal supports multiple module discovery locations. Modules can be placed in the following
directories and discovered:

 f /profiles/CURRENT PROFILE/modules

 f /sites/all/modules

 f /modules

 f /sites/default/modules

 f /sites/example.com/modules

The \Drupal\Core\Extension\ExtensionDiscovery class handles the discovery
of extensions by types. It will iteratively scan each location and discover modules that are
available. The discovery order is important. If the same module is placed in /modules but
also in the sites/default/modules directory, the latter will take precedence.

Defining a package group
Modules can define a package key to group modules on the module list page:

Projects that include multiple submodules, such as Drupal commerce, specify packages
to normalize the modules' list form. Contributed modules for the Drupal commerce project
utilize a package name, Commerce (contrib), to group on the module list page.

[73]

Chapter 4

Module dependencies
Modules can define dependencies to ensure that those modules are enabled before your
module can be enabled.

Here is the info.yml for the Responsive Image module:

name: Responsive Image
type: module
description: 'Provides an image formatter and breakpoint mappings to
output responsive images using the HTML5 picture tag.'
package: Core
version: VERSION
core: 8.x
dependencies:
 - breakpoint
 - image

The dependencies key specifies that the Breakpoint and Image modules need to be enabled
first before the Responsive Image module can be enabled. When enabling a module that
requires dependencies that are disabled, the installation form will provide a prompt asking
you if you would like to install the dependencies as well. If a dependency module is missing,
the module cannot be installed. The dependency will show a status of (missing).

A module that is a dependency of another module will state the information in it's description,
along with the other module's status. For example, the Breakpoint module will show that the
Responsive Image module requires it as a dependency and is disabled:

Specifying the module's version
There is a version key that defines the current module's version. Projects on Drupal.org do
not specify this directly, as the packager adds it when a release is created. However, this key
can be important for private modules to track the release information.

[74]

Extending Drupal

Versions are expected to be single strings, such as 1.0-alpha1, 2.0.1. You can also pass
VERSION, which will resolve to the current version of Drupal core.

Drupal.org does not currently support semantic versioning for
contributed projects. There is an ongoing policy discussion in the
issue queue, which can be found at https://www.drupal.org/
node/1612910.

See also...
 f Refer to the PSR-4: Autoloader specification at http://www.php-fig.org/psr/

psr-4/

Defining a custom page
In Drupal, there are routes that represent URL paths that Drupal interprets to return content.
Modules have the ability to define routes and methods that return data to be rendered and
then displayed to the end user.

In this recipe, we will define a controller that provides an output and a route. The route
provides a URL path that Drupal will associate with our controller to display the output.

Getting ready
Create a new module like the one in the first recipe. We will refer to the module as mymodule
throughout the recipe. Use your module's name as appropriate.

How to do it…
1. Firstly, we'll set up the controller. Create a src folder in your module's base directory

and another folder named Controller inside it.

2. Create MyPageController.php that will hold the route's controller class.

https://www.drupal.org/node/1612910
https://www.drupal.org/node/1612910
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/

[75]

Chapter 4

3. The PSR-4 standard states that filenames match the class names they hold, so we
will create a MyPageController class:
<?php
/**
 * @file
 * Contains \Drupal\mymodule\Controller\MyPageController class.
 */

namespace Drupal\mymodule\Controller;

use Drupal\Core\Controller\ControllerBase;

/**
 * Returns responses for My Module module.
 */
class MyPageController extends ControllerBase {

}

This creates the MyPageController class, which extends the \Drupal\Core\
Controller\ControllerBase class. This base class provides a handful of utilities
for interacting with the container.

The Drupal\mymodule\Controller namespace allows Drupal to automatically
load the file from /modules/mymodule/src/Controller.

4. Next, we will create a method that returns a string of text in our class:
 /**
 * Returns markup for our custom page.
 */
 public function customPage() {
 return [
 '#markup' => t('Welcome to my custom page!'),
];
 }

The customPage method returns a render array that the Drupal theming layer can
parse. The #markup key denotes a value that does not have any additional rendering
or theming processes.

5. Create a mymodule.routing.yml in the base directory of your module so that a
route can be added to this controller and method.

[76]

Extending Drupal

6. The first step is to define the route's internal name for the route to be referenced by:
mymodule.mypage:

7. Give the route a path (mypage):
mymodule.mypage:
 path: /mypage

8. The defaults key allows us to provide the controller through a fully qualified class
name, the method to use, and the page's title:
mymodule.mypage:
 path: /mypage
 defaults:
 _controller: '\Drupal\mymodule\Controller\
MyPageController::customPage'
 _title: 'My custom page'

You need to provide the initial \ when providing the fully qualified class name.

9. Lastly, define a requirements key to set the access callback:
mymodule.mypage:
 path: /mypage
 defaults:
 _controller: '\Drupal\mymodule\Controller\
MyPageController::customPage'
 _title: 'My custom page'
 requirements:
 _permission: 'access content'

Defining _access to TRUE for the requirements means that
access is always granted.

10. Visit Configuration and then Development to rebuild Drupal's caches.

[77]

Chapter 4

11. Visit /mypage on your Drupal site and view your custom page:

How it works…
Drupal uses routes, which define a path, that return content. Each route has a method in a
controller class that generates the content, in the form of a render array, to be delivered to
the user. When a request comes to Drupal, the system makes an attempt to match the path
to known routes. If the route is found, the route's definition is used to deliver the page. If the
route cannot be found, the 404 page is displayed.

The HTTP kernel takes the request and loads the route. It will invoke the defined controller
method or procedural function. The result of the invoked method or function is then handed
to the presentation layer of Drupal to be rendered into the content that can be delivered to
the user.

Drupal 8 builds on top of the Symfony HTTP kernel to provide the underlying functionality of
its route system. It has added the ability to provide access requirements, casting placeholders
into loaded objects, and partial page responses.

[78]

Extending Drupal

There's more…
Routes have extra capabilities that can be configured; we will explore those in the next section.

Parameters in routes
Routes have the ability to accept dynamic arguments that can be passed to the route controller's
method. Placeholder elements can be defined in the route using curly brackets in the URL that
denote dynamic values.

An example of a route might look like the following code:

mymodule.cats:
 path: '/cat/{name}'
 defaults:
 _controller: '\Drupal\mymodule\Controller\MyPageController::cats'
 requirements:
 _permission: 'access content'

This route specifies the /cat/{name} path. The {name} placeholder will accept dynamic
values and pass them to the controller's method:

class MyPageController {
 // ...
 public function cats($name) {
 return [
 '#markup' => t('My cats name is: @name', [
 '@name' => $name,
]),
];
 }
}

This method accepts the name variable from the route and substitutes it into the render array
to display it as text.

Drupal's routing system provides a method of upcasting a variable into a loaded object. There
are a set of parameter converter classes under the \Drupal\Core\ParamConverter
namespace. The EntityConverter class will read options defined in the route and replace
a placeholder value with a loaded entity object.

If we have an entity type called cat, we can turn the name placeholder into a method to be
provided the loaded the cat object in our controller's method:

mymodule.cats:
 path: '/cat/{name}'
 defaults:

[79]

Chapter 4

 _controller: '\Drupal\mymodule\Controller\MyPageController::cats'
 requirements:
 _permission: 'access content'
 options:
 parameters:
 name:
 type: entity:cat

This is not required for entities as the defined entity route
handler can automatically generate this. Entities are covered
in Chapter 10, The Entity API.

Validating parameters in routes
Drupal provides regular expression validation against route parameters. If the parameter fails
the regular expression validation, a 404 page will be returned. Using the recipe's example
route, we can add the validation to ensure that only alphabetical characters are used in the
route parameter:

mymodule.cats:
 path: '/cat/{name}'
 defaults:
 _controller: '\Drupal\mymodule\Controller\MyPageController::cats'
 requirements:
 _permission: 'access content'
 name: '[a-zA-z]+'

Under the requirements key, you can add a new value that matches the name of the
placeholder. You then set it to have the value of the regular expression you would like to use.

Route requirements
Routes can define different access requirements through the requirements key. Multiple
validators can be added. However, there must be one that provides a true result or else
the route will return 403, access denied. This is true if the route defines no requirement
validators.

Route requirement validators are defined by implementing \Drupal\Core\Routing\
Access\AccessInterface. Here are some of the common requirement validators
defined throughout Drupal core:

 f _entity_access validates that the current user has the ability to perform
entity_type.operation, such as node.view

 f _permission checks whether the current user has the provided permission

 f _user_is_logged_in validates that the current user is logged in, which is defined
with a Boolean value in the routing.yml

[80]

Extending Drupal

Providing dynamic routes
The routing system allows modules to define routes programmatically. This can be accomplished
by providing a routing_callbacks key that defines a class and method that will return an
array of the \Symfony\Component\Routing\Route objects.

If you are working with entities, refer to Chapter 10, The Entity API, to learn
about overriding the default route handler to create dynamic routes.

In the module's routing.yml, you will define the routing callbacks key and related class:

route_callbacks:
 - '\Drupal\mymodule\Routing\CustomRoutes::routes'

The \Drupal\mymodule\Routing\CustomRoutes class will then have a method named
routes, which returns an array of Symfony route objects:

<?php

namespace Drupal\mymodule\Routing;
use Symfony\Component\Routing\Route;

class CustomRoutes {
 public function routes() {
 $routes = [];

 // Create mypage route programmatically
 $routes['mymodule.mypage'] = new Route(
 // Path definition
 'mypage',
 // Route defaults
 [
 '_controller' => '\Drupal\mymodule\Controller\
MyPageController::customPage',
 '_title' => 'My custom page',
],
 // Route requirements
 [
 '_permission' => 'access content',
]
);
 return $routes;
 }
}

[81]

Chapter 4

If a module provides a class that interacts with routes, the best practice is to place it in the
Routing portion of the module's namespace. This helps you identify it's purpose.

The invoked method is expected to return an array of initiated Route objects. The Route class
takes the following arguments:

 f Path: This represents the route

 f Defaults: This is an array of default values

 f Requirements: This is an array of required validators

 f Options: This is an array that can be passed and its used optionally

Altering existing routes
When Drupal's route system is rebuilt due to a module being enabled or caches being rebuilt,
an event is fired that allows modules to alter routes defined statically in YAML or dynamically.
This involves implementing an event subscriber by extending \Drupal\Core\Routing\
RouteSubscribeBase, which subscribes the RoutingEvents::ALTER event.

Create src/Routing/RouteSubscriber.php in your module. It will hold the route
subscriber class:

<?php

namespace Drupal\mymodule\Routing;

use Drupal\Core\Routing\RouteSubscriberBase;
use Symfony\Component\Routing\RouteCollection;

class RouteSubscriber extends RouteSubscriberBase {

 /**
 * {@inheritdoc}
 */
 public function alterRoutes(RouteCollection $collection) {
 // Change path of mymodule.mypage to use a hyphen
 if ($route = $collection->get('mymodule.mypage')) {
 $route->setPath('/my-page');
 }
 }

}

[82]

Extending Drupal

The preceding code extends RouteSubscribeBase and implements the alterRoutes()
method. We make an attempt to load the mymodule.mypage route and, if it exists, we
change it's path to my-page. Since objects are always passed by reference, we do not
need to return a value.

For Drupal to recognize the subscriber, we need to describe it in the module's services.yml
file. In the base directory of your module, create a mymodule.services.yml file and add
the following code:

services:
 mymodule.route_subscriber:
 class: Drupal\mymodule\Routing\RouteSubscriber
 tags:
 - { name: event_subscriber }

This registers our route subscriber class as a service to the container so that Drupal can
execute it when the event is fired.

See also
 f Refer to the Symfony routing documentation at

http://symfony.com/doc/current/book/routing.html

 f Chapter 10, The Entity API

 f Refer to access checking on routes community documentation at
https://www.drupal.org/node/2122195

Defining permissions
In Drupal, there are roles and permissions used to define robust access control lists for users.
Modules use permissions to check whether the current user has access to perform an action,
view specific items, or other operations. Modules then define the permissions used so that
Drupal is aware of them. Developers can then construct roles, which are made up of enabled
permissions.

In this recipe, we will define a new permission to view custom pages defined in a module.
The permission will be added to a custom route and restrict access to the route path to users
who have a role containing the permission.

http://symfony.com/doc/current/book/routing.html
https://www.drupal.org/node/2122195

[83]

Chapter 4

Getting ready
Create a new module like the one in the first recipe. We will refer to the module as mymodule
throughout the recipe. Use your module's name as appropriate.

This recipe also modifies a route defined in the module. We will refer to this route as
mymodule.mypage. Modify the appropriate path in your module's routing.yml file.

How to do it…
1. Permissions are stored in a permissions.yml file. Add a mymodule.

permissions.yml to the base directory of your module.

2. First, we need to define the internal string used to identify this permission, such as
view mymodule pages:
view mymodule pages:

3. Each permission is a YAML array of data. We need to provide a title key that will be
displayed on the permissions page:
view mymodule pages:
 title: 'View my module pages'

4. Permissions have a description key to provide details of the permission on the
permissions page:
view mymodule pages:
 title: 'View my module pages'
 description: 'Allows users to view pages provided by My Module'

5. Save your permissions.yml, and edit the module's routing.yml to add
the permission.

6. Modify the route's requirements key to have a _permissions key that is equal to
the defined permission:
mymodule.mypage:
 path: /mypage
 defaults:
 _controller: '\Drupal\mymodule\Controller\
MyPageController::customPage'
 _title: 'My custom page'
 requirements:
 _permission: 'view mymodule pages'

[84]

Extending Drupal

7. Visit Configuration and then Development to rebuild Drupal's caches.

8. Visit People and then Permissions to add your permission to the authenticated user
and anonymous user roles.

9. Log out of your Drupal site, and view the /mypage page. You will see the content and
not receive an access denied page.

How it works...
Permissions and Roles are provided by the User module. The user.permissions service
discovers permissions.yml defined in installed modules. By default, the service is defined
through the \Drupal\user\PermissionHandler class.

Drupal does not save a list of all permissions that are available. The permissions for a system
are loaded when the permissions page is loaded. Roles contain an array of permissions.

When checking a user's access for a permission, Drupal checks all of the user's roles to see
whether they support that permission.

You can pass an undefined permission to a user access check and
not receive an error. The access check will simply fail, unless the
user is UID 1, which bypasses access checks.

[85]

Chapter 4

There's more…

Restrict access flag for permissions
Permissions can be flagged as having a security risk if enabled. This is the restrict
access flag. When this flag is set to restrict access: TRUE, it will add a warning
to the permission description.

This allows module developers to provide more context to the amount of control a permission
may give a user:

Defining permissions programmatically
Permissions can be defined by a module programmatically or statically in a YAML file.
A module needs to provide a permission_callbacks key in its permissions.yml
that contains an array of classes and their methods or a procedural function name.

For example, the Filter module provides granular permissions based on the different text
filters created in Drupal:

permission_callbacks:
- Drupal\filter\FilterPermissions::permissions

This tells the user_permissions service to execute the permissions method of the
\Drupal\Filter\FilterPermissions class. The method is expected to return an
array that matches the same structure as that of the permissions.yml file.

Dynamically defined permissions cannot use the restrict access flag
and need to manually add the security warning to the description,
just as \Drupal\Filter\FilterPermissions does.

Checking whether a user has permissions
The user account interface provides a method for checking whether a user entity has a
permission. To check whether the current user has a permission, you will get the current user,
and you need to invoke the hasPermission method:

\Drupal::currentUser()->hasPermission('my permission');

[86]

Extending Drupal

The \Drupal::currentUser() method returns the current active user object. This allows
you to check whether the active user has permissions to perform some sort of actions.

Providing the configuration on installation
or update

Drupal provides a configuration management system, which is discussed in Chapter 9,
Confiuration Management – Deploying in Drupal 8, and modules are able to provide
configuration on an installation or through an update system. Modules provide the
configuration through YAML files when they are first installed. Once the module is enabled,
the configuration is then placed in the configuration management system. Updates can be
made to the configuration, however, in code through the Drupal update system.

In this recipe, we will provide configuration YAMLs that create a new contact form and then
manipulate them through a schema version change in the update system.

Getting ready
Create a new module like the one in the first recipe. We will refer to the module as mymodule
throughout the recipe. Use your module's appropriate name.

How to do it…
1. Create a config folder in your module's base directory. All configuration YAMLs

should be in a subfolder of config.

2. Create a folder named install in the config folder. Configuration YAMLs in this folder
will be imported on module installation.

3. In the install folder, create a contact.form.contactus.yml to store the YAML
definition of the contact form, Contact Us:

[87]

Chapter 4

4. We will define the configuration of a contact form based on the contact.schema.
yml file provided by the Contact module:
langcode: en
status: true
dependences: {}
id: contactus
label: 'Contact Us'
recipients:
 - webmaster@example.com
reply: ''
weight: 0

The configuration entry is based on a schema definition, which we will cover in
Chapter 9, Confiuration Management – Deploying in Drupal 8. The langcode,
status, and dependencies are the required configuration management keys.

The id is the contact form's machine name and the label is the human display
name. The recipients key is a YAML array of valid e-mail addresses. The reply
key is a string of text for the Auto-reply field. And, finally, the weight defines the
form's weight in the administrative list.

5. Visit Extend and enable your module to import the configuration item.

6. The Contact Us form will now be located on the Contact forms overview page,
located under Structure:

7. Create a mymodule.install file in the module's base directory. We will create an
update hook to set a reply message for the contact form.

8. We will create a function called mymodule_update_8001() that will be read by the
update system and make our configuration changes:
<?php

/**
 * Update "Contact Us" form to have a reply message.

[88]

Extending Drupal

 */
function mymodule_update_8001() {
 $contact_form = \Drupal\contact\Entity\
ContactForm::load('contact_us');
 $contact_form->setReply(t('Thank you for contacting us, we will
reply shortly'));
 $contact_form->save();
}

This function uses the entity's class to load our configuration entity object. It loads
contact_us, which our module has provided, and sets the reply property to a new
value.

9. Visit /update.php in your browser to run the Drupal's database update system:

10. Review the Contact Us form settings and verify that the reply message has been set.

How it works…
Drupal's moduler_installer service, provided through \Drupal\Core\Extension\
ModuleInstaller, ensures that configuration items defined in the module's config folder
are processed on installation. When a module is installed, the config.installer service,
provided through \Drupal\Core\Config\ConfigInstaller, is called to process the
module's default configuration.

[89]

Chapter 4

In the event, the config.installer service makes an attempt to import the configuration
from the install folder that already exists and an exception will be thrown. Modules cannot
provide changes made to the existing configuration through static YAML definitions.

Since modules cannot adjust configuration objects through static YAML definitions provided
to Drupal, modules can utilize the database update system to modify the configuration.
Drupal utilizes a schema version for modules. The base schema version for a module is 8000.
Modules can provide update hooks in the form of hook_update_N, where N represents the
next schema version. When Drupal's updates are run, they will execute the proper update
hooks and update the module's schema version.

Configuration objects are immutable by default. In order to edit a configuration, a mutable
object needs to be loaded through the configuration factory service.

There's more…
We will discuss the configuration in Chapter 9, Confiuration Management – Deploying in
Drupal 8, however, we will now dive into some important notes when working with modules
and configurations.

Configuration subdirectories
There are three directories that the configuration management system will inspect in a
module's config folder, which are as follows:

 f install

 f optional

 f schema

The install folder specifies the configuration that will be imported. If the configuration
object exists, the installation will fail.

The optional folder contains the configuration that will be installed if the following
conditions are met:

 f The configuration does not already exist

 f It is a configuration entity

 f Its dependencies can be met

If any one of the conditions fail, the configuration will not be installed, but it will not halt the
module's installation process.

The schema folder provides definitions of configuration object definitions. This uses
YAML definitions to structure configuration objects and is covered in depth in Chapter 9,
Configuration Management.

[90]

Extending Drupal

Modifying the existing configuration on installation
The configuration management system does not allow modules to provide configuration on an
installation that already exists. For example, if a module tries to provide system.site and
defines the site's name, it would fail to install. This is because the System module provides
this configuration object on installation.

Drupal provides hook_install() that modules can implement in their .install file. This
hook is executed during the module's installation process. The following code will update the
site's title to Drupal 8 Cookbook! on the module's installation:

/**
 * Implements hook_install().
 */
function mymodule_install() {
 // Set the site name.
 \Drupal::configFactory()
 ->getEditable('system.site')
 ->set('name', 'Drupal 8 Cookbook!')
 ->save();
}

Configurable objects are immutable by default when loaded by the default config service.
In order to modify a configuration object, you need to use the configuration factory to receive
a mutable object. The mutable object can have set and save methods that are executed to
update the configuration in a configuration object.

See also
 f Chapter 9, Confiuration Management – Deploying in Drupal 8

Using Features 2.x
Many Drupal users create custom modules to provide specific sets of features that they
can reuse across multiple sites. In fact, there is a module for the sole purpose of providing
a means to export configuration and create modules that provide features. This is how the
Features modules received its name, in fact.

The Features module has two sub-modules. The main Features module provides all the
functionalities. The Features UI module provides a user interface for creating and managing
features.

We will use Features to export a module with a configuration that contains the default page
and article content types provided by the standard installation, so they can be used on other
installation profiles.

[91]

Chapter 4

How to do it...
1. The Features module requires Configuration Update Manager as a dependency.

Visit https://www.drupal.org/project/config_update and download the
latest Drupal 8 release and place it in your Drupal site's /modules folder.

2. Now, visit https://www.drupal.org/project/features and download the
latest Drupal 8 release and place it in your Drupal site's /modules folder.

3. Visit Extend and install the Features UI module, confirming the requirements to
install Features and Configuration Update Manager as well.

4. Visit Configuration and then Configuration Synchronization. The user interface for
Features is accessed as a tab from this page:

5. Click on Create new feature to start making a custom Feature module.

6. Provide a Name for the feature, such as Content Authoring.

7. Optionally, you can provide a description. This acts as the description key in the
module's info.yml.

8. Toggle the Content types grouping and check Article and Basic Page to mark them
for export.

https://www.drupal.org/project/features

[92]

Extending Drupal

9. The features module will automatically add detected dependencies or important
configuration items to also be exported, such as fields and view modes.

10. Click on Write to write the module to export the module and configuration to the /
modules/custom directory in your Drupal site.

11. Visit Extend to enable your newly created module.

How it works…
Features exports static YAML configuration files into the module's config/install folder.
Features modifies the standard configuration management workflow by ensuring that a
specific kind of configuration exists. Configuration management does not allow modules to
overwrite existing configuration objects but Features manages and allows this to happen.

To accomplish this, Features provides \Drupal\features\FeaturesConfigInstaller,
which extends the default config.install service class. It then alters the services
definition to use it's FeaturesConfigInstaller class instead of the default \Drupal\
Core\Config\ConfigInstaller class.

[93]

Chapter 4

Beyond adjusting the config.install service, Features harnesses all the functionalities of
the configuration management system to provide a simpler way to generate modules.

Any module can be considered a Feature's module by adding the
features: true key to it's info.yml. This will allow it to be
managed through the Features UI.

There's more…

Suggested feature modules
The features module provides an intelligent bundling method that reviews the current Drupal
site's configuration and suggests feature modules that should be created to preserve the
configuration. These are provided through package assignment plugins. These plugins use
logic to assign configurations to specific packages.

When you visit the Features UI, it will present you with suggested feature modules to be
exported. Expanding the items will list the configuration items that will be bundled. Clicking
on the suggested feature's link opens the creation form. Or the checkbox can be used in
conjunction with the download archive or write buttons at the bottom of the form.

The unpackaged section shows a configuration, which has not met any
of the packaging rules to group the configuration into a specified module.
This will need to be manually added to a created feature module.

[94]

Extending Drupal

Features bundles
In the Features module, there are bundles and bundles have their own assignment method
configurations. The purpose of bundles inside Features is to provide an automatic assignment
of configuration that can be grouped into exported modules:

A bundle has a human display name and machine name. The bundle's machine name will
be prefixed on all feature modules generated under this bundle. You also have the ability to
specify the bundle to act as an install profile. Features UI was heavily used in Drupal 7 to
construct distributions and spawn the concept of the bundle functionality.

Assignment methods can be rearranged and configured to your liking.

Managing the configuration state of Features
The Features UI provides a means to review changes to the feature's configuration that may
have been made. If a configuration item controlled by a Feature module has been modified,
it will show up under the differences section of the Features UI. This will allow you to import
or update the Feature module with the change.

[95]

Chapter 4

The Import option will force the site to use the configuration defined in the module's
configuration YAML files. For example, we have an exported content type whose description
was modified in the user interface after being exported.

The difference created by the Feature module is highlighted. If the difference was checked,
and if you click on Import changes, the content type's description would be reset to that
defined in the configuration.

From the main features overview table, the Feature module can be reexported to include the
change and update the exported YAML files.

See also
 f Refer to Features for the Drupal 8 session by Mike Potter at DrupalCon Los Angeles

at https://events.drupal.org/losangeles2015/sessions/features-
drupal-8

https://events.drupal.org/losangeles2015/sessions/features-drupal-8
https://events.drupal.org/losangeles2015/sessions/features-drupal-8

5
Frontend for the Win

In this chapter, we will explore the world of frontend development in Drupal 8:

 f Creating a custom theme based on Classy

 f Using the new asset management system

 f Twig templating

 f Using the Breakpoint module

 f Using the Responsive Image module module

Introduction
Drupal 8 brings many changes with regard to the frontend. It is now focused on the mobile-first
responsive design. Frontend performance has been given a high priority, unlike in the previous
versions of Drupal. There is a new asset management system based around libraries that will
deliver only the minimum required assets for a page that comes with Drupal 8.

In Drupal 8, we have a new feature, the Twig templating engine, that replaces the previously
used PHPTemplate engine. Twig is part of the large PHP community and embraces more of
Drupal 8's made elsewhere initiative. Drupal 7 supported libraries to define JavaScript and
CSS resources. However, it was very rudimentary and did not support the concept of library
dependencies.

There are two modules provided by Drupal core that implement the responsive design with
server-side components. The Breakpoint module provides a representation of media queries
that modules can utilize. The Responsive Image module implements the HTML5 picture tag
for image fields.

This chapter dives into harnessing Drupal 8's frontend features to get the most out of them.

Frontend for the Win

98

Creating a custom theme based on Classy
Drupal 8 ships with a new base theme that is intended to demonstrate the best practice and
CSS class management. The Classy theme is provided by Drupal core and is the base theme
for the default frontend theme, Bartik, and the administrative theme, Seven.

Unlike the previous versions of Drupal, Drupal 8 provides two base themes: Classy and Stable
as a means to jump start Drupal theming. Stable provides a more lean approach to frontend
theming with fewer classes and wrapping elements. In this recipe, we will create a new theme
called mytheme that uses Classy as its base.

How to do it...
1. In the root directory of your Drupal site, create a folder called mytheme in the

themes folder.

2. Inside the mytheme folder, create a mytheme.info.yml file so that Drupal can
discover the theme. We will then edit this file:

3. First, we need to define the themes name using the name key:
name: My Theme

4. All the themes need to provide a description key, which will be displayed on the
Appearance page:
description: My custom theme

Chapter 5

99

5. Next, we need to define the type of extension, that is, a theme, and the version of
core that is supported:
type: theme
core: 8.x

6. The base theme call allows us to instruct Drupal to use a specific theme as a base:
base theme: classy

7. The last item is a regions key that is used to define the regions of the blocks that
can be placed, which is a YAML-based array of key/value pairs:
regions:
 header: Header
 primary_menu: 'Primary menu'
 page_top: 'Page top'
 page_bottom: 'Page bottom'
 breadcrumb: Breadcrumb
 content: Content

8. Regions are rendered in the page template file, which will be covered in the next
recipe, Twig templates.

9. Log in to your Drupal site, and go to Appearance from the administrative toolbar.

10. Click on Install and set default in the My theme entry in order to enable and use the
new custom theme:

How it works...
In Drupal 8, the info.yml files define Drupal themes and modules. The first step to create a
theme is to provide the info.yml file so that the theme can be discovered. Drupal will parse
these values and register the theme.

Frontend for the Win

100

The following keys are required, as a minimum, when you define a theme:

 f name

 f description

 f type

 f base theme

 f core

The name key defines the human-readable name of the theme that will be displayed on the
Appearance page. The description will be shown under the themes display name on the
Appearance page. All Drupal projects need to define the type key to indicate the kind of
extension that is being defined. For themes, the type must always be theme. You need to also
define which version of Drupal the project is compatible with using the core value. All Drupal
8 projects will use the core: 8.x value. When you define a theme, you need to also provide
the base theme key. If your theme does not use a base theme, then you need to set the value
to false.

The libraries and region keys are optional, but these are keys that most themes provide.
Drupal's asset management system parses a theme's info.yml and adds those libraries,
if required. Regions are defined in an info.yml file and provide the areas into which the
Block module may place blocks.

There's more...
Next, we will dive into some additional information about themes.

Theme screenshots
Themes can provide a screenshot that shows up on the Appearance page. A theme's
screenshot can be provided by placing a screenshot.png in the theme folder or a file
specified in the info.yml file under the screenshot key.

If the screenshot is missing, a default is used, as seen with the Classy and Stark themes.
Generally, a screenshot is a Drupal site with generic content using the theme.

Themes, logos, and favicons
Drupal controls the site's favicon and logo settings as a theme setting. Theme settings are
active on a theme-by-theme basis and are not global. Themes have the ability to provide a
default logo by providing a logo.svg in the theme root folder. A favicon.ico placed in
a theme folder will also be the default value of the favicon for the website.

Chapter 5

101

Currently, there is no way to specify a logo of a different file type for a
theme. Previous versions of Drupal looked for logo.png. A feature has
been postponed for Drupal 8.1 to allow the themes to have the ability
to define the logo's filename and extension. Refer to the core issue for
more information at https://www.drupal.org/node/1507896.

You can change the site's logo and favicon by going to Appearance and then clicking on
Settings for your current theme. Unchecking the use default checkboxes for the favicon
and logo settings allows you to provide custom files.

Base themes and shared resources
Many content management systems that have a theme system support base (or parent) themes
differ mostly in the terminology used. The concept of a base theme is used to provide established
resources that are shared, reducing the amount of work required to create a new theme.

All libraries defined in the base theme will be inherited and used by default, allowing
subthemes to reuse existing styles and JavaScript. This allows frontend developers to
reuse work and only create specific changes that are required for the subtheme.

https://www.drupal.org/node/1507896

Frontend for the Win

102

The Subthemes will also inherit all Twig template overrides provided by the base theme.
This was one of the initiatives used for the creation of the Classy theme. Drupal 8 makes
many fewer assumptions compared to previous version as to what class names to provide on
elements. Classy overrides all of the core's templates and provides sensible default classes,
giving themes the ability to use them and accept those class names or be given a blank slate.

CKEditor stylesheets
As discussed in Chapter 2, The Content Authoring Experience, Drupal ships with the
WYSIWYG support and CKEditor as the default editor. The CKEditor module will inspect
the active theme, and its base theme if provided, and loads any stylesheets defined in
the ckeditor_stylesheets key as an array of values.

For example, the following code can be found in bartik.info.yml:

ckeditor_stylesheets:
 - css/base/elements.css
 - css/components/captions.css
 - css/components/table.css

This allows themes to provide style sheets that will style elements within the CKEditor module
to enhance the what you see is what you get element of the editor.

See also
 f To define a theme with an info.yml file, refer to

https://www.drupal.org/node/2349827

 f To use Classy as a base theme, refer to the community documentation at
https://www.drupal.org/theme-guide/8/classy

 f To create a Drupal 8 subtheme, refer to the community documentation at
https://www.drupal.org/node/2165673

Using the new asset management system
New to Drupal 8 is the asset management system. The asset management system allows
modules and themes to register libraries. Libraries define CSS stylesheets and JavaScript
files that need to be loaded with the page. Drupal 8 takes this approach for the frontend
performance. Rather than loading all CSS or JavaScript assets, only those required for the
current page in the specified libraries will be loaded.

In this recipe, we will define a libraries.yml file that will define a CSS stylesheet and
JavaScript file provided by a custom theme.

https://www.drupal.org/node/2349827
https://www.drupal.org/theme-guide/8/classy
https://www.drupal.org/node/2165673

Chapter 5

103

Getting ready
This recipe assumes that you have a custom theme created, such as the one you created
in the first recipe. When you see mytheme, use the machine name of the theme that you
have created.

How to do it...
1. Create a folder named css in your themes base directory.

2. In your css folder, add a style.css file that will hold the theme's CSS declarations.
For demonstration purposes, add the following CSS declaration to style.css:
body {
 background: cornflowerblue;
}

3. Then, create a js folder, and add a scripts.js file that will hold the themes
JavaScript items.

4. In your theme folder, create a mytheme.libraries.yml file and edit it, as shown in
the following screenshot:

5. Add the following YAML text to define the global-styling library for your theme
that will load the CSS file and JavaScript file:
global-styling:
 version: VERSION
 css:
 theme:
 css/style.css: {}
 js:
 js/scripts.js: {}

Frontend for the Win

104

6. This tells Drupal that there is a global-styling library. You have the ability to
specify a library version and use the VERSION defaults for your themes. It also
defines the css/styles.css stylesheet as part of the library under the theme
group.

7. Edit your mytheme.info.yml, and we need to add the declaration to our global-
styling library:
libraries:
 - mytheme/global-styling

8. Themes are able to specify a libraries key that defines the libraries that should
always be loaded. This YAML array lists libraries to be loaded for each page.

9. Go to Configuration and then to Development to rebuild Drupal's caches.

10. With your theme set to the default, go to your Drupal site.

11. Your theme's global-styling library will be loaded and the page's background
color will be styled appropriately:

How it works...
Drupal aggregates all the available library.yml files and passes them to the library.
discovery.parser service. The default class for this service provider is \Drupal\
Core\Asset\LibraryDiscoveryParser. This service reads the library definition from
each library.yml and returns its value to the system. Before parsing the file, the parser
allows themes to provide overrides and extensions to the library.

Chapter 5

105

Libraries are enqueuers as they are attached to rendered elements. Themes have the ability to
generically add libraries through their info.yml files via the libraries key. These libraries
will always be loaded on the page when the theme is active.

CSS stylesheets are added to the data, which will build the head tag of the page. JavaScript
resources, by default, are rendered in the footer of the page for performance reasons.

There's more…
We will explore the options surrounding libraries in Drupal 8 in more detail.

CSS groups
With libraries, you have the ability to specify CSS by different groups. Drupal's asset
management system provides the following CSS groups:

 f base

 f layout

 f component

 f state

 f theme

Stylesheets are loaded in the order in which the groups are listed. Each one of them relates
to a PHP constant defined in /core/includes/common.inc. This allows separation of
concerns when working with stylesheets. Drupal 8's CSS architecture borrows concepts from
the SMACSS system to organize CSS declarations.

Library asset options
Library assets can have configuration data attached to them. If there are no configuration
items provided, a simple set of empty brackets is added. This is why, in each example, files
end with {}.

The following example, taken from core.libraries.yml, adds HTML5shiv:

assets/vendor/html5shiv/html5shiv.min.js: { weight: -22, browsers: {
IE: 'lte IE 8', '!IE': false }, minified: true }

Let's take a look at the attributes of html5shiv.min.js:

 f The weight key ensures that the script is rendered earlier than other libraries
 f The browser tag allows you to specify conditional rules to load the scripting
 f You should always pass minified as true if the asset has already been minified

For CSS assets, you can pass a media option to specify a media query for the asset. Reviewing
classes which implement \Drupal\Core\Asset\AssetCollectionRendererInterface.

Frontend for the Win

106

Library dependencies
Libraries have the ability to specify other libraries as dependencies. This allows Drupal to
provide a minimum footprint on the frontend performance.

jQuery is only loaded if a JavaScript library specifies it as a dependency.
Refer to https://www.drupal.org/node/1541860.

Here's an example from the Quick Edit module's libraries.yml file:

quickedit:
 version: VERSION
 js:
 ...
 css:
 ...
 dependencies:
 - core/jquery
 - core/jquery.once
 - core/underscore
 - core/backbone
 - core/jquery.form
 - core/jquery.ui.position
 - core/drupal
 - core/drupal.displace
 - core/drupal.form
 - core/drupal.ajax
 - core/drupal.debounce
 - core/drupalSettings
- core/drupal.dialog

The Quick Edit module defines jQuery, the jQuery Once plugin, Underscore, and Backbone,
and selects other defined libraries as dependencies. Drupal will ensure that these are present
whenever the quickedit/quickedit library is attached to a page.

A complete list of the default libraries provided by Drupal core can be found in core.
libraries.yml, which is in core/core.libraries.yml.

Overriding and extending other libraries
Themes have the ability to override libraries using the libraries-override and
libraries-extend keys in their info.yml. This allows themes to easily customize
the existing libraries without having to add the logic for conditionally removing or adding
their assets when a particular library has been attached to a page.

https://www.drupal.org/node/1541860

Chapter 5

107

The libraries-override key can be used to replace an entire library, replace selected
files in a library, remove an asset from a library, or disable an entire library. The following
code will allow a theme to provide a custom jQuery UI theme:

libraries-override:
 core/jquery.ui:
 css:
 component:
 assets/vendor/jquery.ui/themes/base/core.css: false
 theme:
 assets/vendor/jquery.ui/themes/base/theme.css: css/jqueryui.
css

The override declaration mimics the original configuration. Specifying false will remove the
asset or else a supplied path will replace that asset.

The libraries-extend key can be used to load additional libraries with an existing library.
The following code will allow a theme to associate a CSS stylesheet with selected jQuery UI
declaration overrides, without always having them included in the rest of the theme's assets:

libraries-extend:
 core/jquery.ui:
- mytheme/jqueryui-theme

Using a CDN or external resource as a library
Libraries also work with external resources, such as assets loaded over a CDN. This is done by
providing a URL for the file location along with selected file parameters.

Here is an example to add the FontAwesome font icon library from the BootstrapCDN
provided by MaxCDN:

mytheme.fontawesome:
 remote: http://fontawesome.io/
 version: 4.4.0
 license:
 name: SIL OFL 1.1
 url: http://fontawesome.io/license/
 gpl-compatible: true
 css:
 base:
 https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-
awesome.min.css: { type: external, minified: true }

Remote libraries require additional meta information to work properly:

 remote: http://fontawesome.io/

Frontend for the Win

108

The remote key describes the library as using external resources. While this key is not validated
beyond its existence, it is best to define it with the external resource's primary website:

 version: 4.4.0

Like all libraries, a version is required. This should match the version of the external resource
being added:

 license:
 name: SIL OFL 1.1
 url: http://fontawesome.io/license/
 gpl-compatible: true

If a library defines the remote key, it needs to also define the license key. This
defines the license name, the URL for the license, and checks whether it is GPL
compatible. If this key is not provided, a \Drupal\Core\Asset\Extension\
LibraryDefinitionMissingLicenseException will be thrown:

 css:
 base:
 https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-
awesome.min.css: { type: external, minified: true }

Finally, specific external resources are added as normal. Instead of providing a relative file
path, the external URL is provided.

Manipulating libraries from hooks
Modules have the ability to provide dynamic library definitions and alter libraries. A module
can use the hook_library_info() hook to provide a library definition. This is not the
recommended way to define a library, but it is provided for edge use cases.

Modules do not have the ability to use libraries-override or libraries-extend,
and need to rely on the hook_library_info_alter() hook. The hook is documented in
core/lib/Drupal/Core/Render/theme.api.php or at https://api.drupal.org/
api/drupal/core!lib!Drupal!Core!Render!theme.api.php/function/hook_
library_info_alter/8.

Placing JavaScript in the header
By default, Drupal ensures that JavaScript is placed last on the page. This improves the page,
load performance by allowing the critical portions of the page to load first. Placing JavaScript
in the header is now an opt-in option.

In order to render a library in the header, you need to add the header: true key/value pair:

js-library:
 header: true

https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Render!theme.api.php/function/hook_library_info_alter/8
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Render!theme.api.php/function/hook_library_info_alter/8
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Render!theme.api.php/function/hook_library_info_alter/8

Chapter 5

109

 js:
 js/myscripts.js: {}

This will load a custom JavaScript library and its dependencies into the header of a page.

See also
 f Refer to the CSS architecture for Drupal 8: Separate concerns at

https://www.drupal.org/node/1887918#separate-concerns

 f SMACSS (http://smacss.com/book/)

Twig templating
Drupal 8's theming layer is complemented by Twig, a component of the Symfony framework.
Twig is a template language that uses a syntax similar to Django and Jinja templates. The
previous version of Drupal used PHPTemplate that required frontend developers to have a
rudimentary understanding of PHP.

In this recipe, we will override the Twig template to provide customizations for the e-mail form
element. We will use the basic Twig syntax to add a new class and provide a default placeholder.

Getting ready
This recipe assumes that you have a custom theme created, such as the one you created in
the first recipe. When you see mytheme, use the machine name of the theme you created.

At the time of writing this book, the Classy theme does not provide
a template suggestion for the e-mail input nor any customizations
to the input template that differ from core.

How to do it...
1. Create a template folder in your theme's base directory to hold your Twig templates.

2. To begin, you need to copy the input.html.twig file from core/modules/
system/templates/input.html.twig to your theme's template folder.

https://www.drupal.org/node/1887918#separate-concerns
http://smacss.com/book/

Frontend for the Win

110

3. Rename the input.html.twig file to input--email.html.twig in order to use
the proper theme hook suggestion, as shown in the following screenshot:

4. We will use the addClass twig function to add an input__email class:
<input{{ attributes.addClass('input__email') }}/>{{ children }}

5. Above the previous line, we will create a Twig variable using ternary operators to
provide a customer placeholder:
{% set placeholder = attributes.placeholder ? attributes.
placeholder : 'email@example.com' %}

This creates a new variable called placeholder using the set operator. The
question mark (?) operator checks whether the placeholder property is empty in
the attributes object. If it is not empty, it uses the existing value. If the value is
empty, it provides a default value.

6. Go to the Configuration tab and then to Development to rebuild Drupal's cache.
We need to do this because Drupal caches the generated Twig output. Any changes
made to a Twig template require a cache rebuild.

7. View an email field or form element and find the modification:

Chapter 5

111

How it works...
Drupal's theme system is built around hooks and hook suggestions. The element definition
of the e-mail input element defines the input__email theme hook. If there is no input__
email hook implemented through a Twig template or PHP function, it will step down to
just input.

Drupal theme hooks are defined with underscores (_) but use
hyphens (-) when used in Twig template files.

A processor, such as Drupal's theme layer, passes variables to Twig. Variables or properties of
objects can be printed by wrapping the variable name with curly brackets. All of core's default
templates provide information in the file's document block that details the available Twig
variables.

Twig has a simplistic syntax with basic logic and functions. The addClass method will take
the attributes variable and add the class provided in addition to the existing contents.

When providing a theme hook suggestion or altering an existing template, you will need to
rebuild Drupal's cache. The compiled Twig template, as PHP, is cached by Drupal so that
Twig does not need to compile each time the template is invoked.

There's more…

Security first
Twig automatically escapes the output by default, making Drupal 8 one of the most secure
versions yet. For Drupal 7, as a whole, most security advisors were for cross-site scripting
(XSS) vulnerabilities in contributed projects. With Drupal core, using Twig, these security
advisories should be severely reduced.

Theme hook suggestions
Drupal utilizes theme hook suggestions as ways to allow output variations based on different
conditions. It allows site themes to provide a more specific template for certain instances.

When a theme hook has double underscores (__), Drupal's theme system understands this,
and it can break apart the theme hook to find a more generic template. For instance, the
e-mail element definition provides input__email as its theme hook. Drupal understands
this as follows:

 f Look for a Twig template named input--email.html.twig or a theme hook that
defines input__email

Frontend for the Win

112

 f If you are not satisfied, look for a Twig template named input.html.twig or a
theme hook that defines the input

Theme hook suggestions can be provided by the hook_theme_suggestions() hook in a
.module or .theme file.

Debugging template file selection and hook suggestions
Debugging can be enabled to inspect the various template files that make up a page and their
theme hook suggestions, and check which are active. This can be accomplished by editing
the sites/default/services.yml file. If a services.yml file does not exist, copy the
default.services.yml to create one.

You need to change debug: false to debug: true under the twig.config section
of the file. This will cause the Drupal theming layer to print out the source code comments
containing the template information. When debug is on, Drupal will not cache the compiled
versions of Twig templates and render them on the fly.

There is another setting that prevents you from having to rebuild Drupal's cache on each
template file change, but do not leave debug enabled. The twig.config.auto_reload
boolean can be set to true. If this is set to true, the Twig templates will be recompiled if
the source code changes.

The Twig logic and operators
The Twig has ternary operators for logic. Using a question mark (?), we can perform a basic
is true or not empty operation, whereas a question mark and colon (?:) performs a basic is
false or is empty operation.

You may also use the if and else logic to provide different outputs based on variables.

See also
 f Refer to the Twig documentation at http://twig.sensiolabs.org/

documentation

 f Refer to the API documentation for hook_theme_suggestions at https://api.
drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21the
me.api.php/function/hook_theme_suggestions_HOOK/8

http://twig.sensiolabs.org/documentation
http://twig.sensiolabs.org/documentation
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21theme.api.php/function/hook_theme_suggestions_HOOK/8
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21theme.api.php/function/hook_theme_suggestions_HOOK/8
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21theme.api.php/function/hook_theme_suggestions_HOOK/8

Chapter 5

113

Using the Breakpoint module
The Breakpoint module provides a method for creating media query breakpoint definitions
within Drupal. These can be used by other components, such as the responsive image and
toolbar modules, to make Drupal responsive.

Breakpoints are a type of plugin that can be defined in a module's or theme's breakpoints.
yml in its directory. In this recipe, we will define three different breakpoints under a custom
group.

Breakpoints are defined solely in YAML files from installed modules
and themes and are not configurable through the user interface.

Getting ready
Ensure that the Breakpoint module is enabled. If you have used the standard Drupal installation,
the module is enabled.

This recipe assumes that you have a custom module created. When you see mymodule, use
the machine name of the module that you created.

How to do it...
1. Create mymodule.breakpoints.yml in your module's base directory. This file will

hold the breakpoint configurations.

2. Firstly, we will add a standard mobile breakpoint that does not have a media query,
following mobile first practices:
mymodule.mobile:
 label: Mobile
 mediaQuery: ''
 weight: 0

3. Secondly, we will create a standard breakpoint that will run on a larger viewport:
mymodule.standard:
 label: Standard
 mediaQuery: 'only screen and (min-width: 60em)'
 weight: 1

4. Thirdly, we will create a wide breakpoint for devices that have a large viewport:
mymodule.wide:
 label: Wide

Frontend for the Win

114

 mediaQuery: 'only screen and (min-width: 70em)'
 weight: 2

5. Go to the Configuration tab and then to Development to rebuild Drupal's cache and
make the system aware of the new breakpoints.

How it works...
The Breakpoint module defines the breakpoint configuration entity. Breakpoints do not have
any specific form of direct functionalities beyond providing a way to save media queries and
grouping them.

The Breakpoint module provides a default manager service. This service is used by other
modules to discover breakpoint groups and then all of the breakpoints within a group.

There's more...

Caveat for providing breakpoints from themes
Themes have the ability to provide breakpoints; however, they cannot be automatically
discovered if new ones are added once they have been installed. Drupal only reads
breakpoints provided by themes when a theme is either installed or uninstalled.

Inside breakpoint.manager, there are two hooks: one for the theme install and one
for the theme uninstall. Each hook retrieves the breakpoint manager service and rebuilds
the breakpoint definitions. Without any extra deployment steps, new breakpoints added to a
theme will not be discovered unless these hooks are fired.

Accessing breakpoints programmatically
Breakpoints are utility configurations for other modules. Breakpoints can be loaded by using
the breakpoint manager service and specifying a group. For example, the following code
returns all breakpoints used by the Toolbar module:

\Drupal::service('breakpoint.manager')
 getBreakpointsByGroup('toolbar');

This code invokes the Drupal container to return the service to manage breakpoints, which, by
default, is \Drupal\breakpoint\BreakpointManager. The getBreakpointsByGroup
method returns all breakpoints within a group, which are initiated as the \Drupal\
breakpoint\BreakpointInterface objects.

The Toolbar element class utilizes this workflow to push the breakpoint media query values as
JavaScript settings for the JavaScript model to interact with.

Chapter 5

115

Multipliers
The multipliers value is used to support pixel resolution multipliers. This multiplier is used
in coordination with retina displays. It is a measure of the viewport's device resolution as a
ratio of the device's physical size and independent pixel size. The following is an example of
standard multipliers:

 f 1x is normal

 f 1.5x supports Android

 f 2x supports Mac retina devices

See also
 f To work with breakpoints in Drupal 8, refer to the community documentation at

https://www.drupal.org/documentation/modules/breakpoint

Using the Responsive Image module
The Responsive Image module provides a field formatter for image fields that use the HTML5
picture tag and source sets. Utilizing the Breakpoint module, mappings to breakpoints are
made to denote an image style to be used at each breakpoint.

The responsive image field formatter works with using a defined responsive image style.
Responsive image styles are configurations that map image formats to specific breakpoints
and modifiers. First, you need to define a responsive image style, and then you can apply it
to an image field.

In this recipe, we will create a responsive image style set called Article image and apply it
to the Article content type's image field.

Getting ready
You will need to enable the Responsive Image module as it is not automatically enabled
with the standard installation.

How to do it...
1. Go to Configuration and then to Responsive image styles under the Media section.

Click on Add responsive image style to begin creating a new style set.

2. Provide a label that will be used to administratively identify the Responsive image
style set.

https://www.drupal.org/documentation/modules/breakpoint

Frontend for the Win

116

3. Select a breakpoint group that will be used as a source of breakpoints to define the
image style map.

4. Each breakpoint will have a fieldset. Expand the fieldset and select a single
image style, and then, pick an appropriate image style:

5. Additionally, choose a fallback image style in the event of a browser that doesn't
support source sets, such as Internet Explorer 8.

Chapter 5

117

6. Click on Save to save the configuration, and add the new style set:

7. Go to Structure and Content types, and select Manage Display from the Article
content type's drop-down menu.

8. Change the Image field's formatter to Responsive image.

9. Click on the Settings tab of the field formatter to choose your new Responsive image
style set. Select Article image from the Responsive image style dropdown:

10. Click on Update to save the field formatter settings, and then click on Save to save
the field display settings.

How it works...
The Responsive image style provides three components: a responsive image element, the
responsive image style configuration entity, and the responsive image field formatter. The
configuration entity is consumed by the field formatter and displayed through the responsive
image element.

Frontend for the Win

118

The responsive image style entity contains an array of breakpoints to image style mappings.
The available breakpoints are defined by the selected breakpoint groups. Breakpoint groups
can be changed anytime; however, the previous mappings will be lost.

The responsive image element prints a picture element with each breakpoint defining a
new source element. The breakpoint's media query value is provided as the media attribute
for the element.

For Internet Explorer 9, Drupal 8 ships with the picturefill
polyfill. Internet Explorer 9 does not recognize source elements
wrapped by a picture element. The polyfill wraps the sources
around a video element within the picture element.

There's more...

Performance first delivery
A benefit of using the responsive image formatter is performance. Browsers will only download
the resources defined in the srcset of the appropriate source tag. This not only allows you
to a deliver a more appropriate image size but also a smaller payload on smaller devices.

Removing picturefill polyfill
The Responsive Image module attaches the picturefill library to the responsive image
element definition. The element's template also provides HTML to implement the polyfill.
The polyfill can be removed by overriding the element's template and overriding the
picturefill library to be disabled.

The following snippet, when added to a theme's info.yml, will disable the picturefill
library:

libraries-override:
 core/picturefill: false

Then, the responsive-image.html.twig must be overridden by the theme to remove the
extra HTML generated in the template for the polyfill:

1. Copy responsive-image.html.twig from core/modules/responsive_
image/templates to the theme templates folder.

2. Edit responsive-image.html.twig and delete the Twig comment and IE
conditional to output the initial video tag.

3. Remove the last conditional, which provides the closing video tag.

Chapter 5

119

See also
 f Refer to the picture element on the Mozilla Developer Network at https://

developer.mozilla.org/en-US/docs/Web/HTML/Element/picture

 f Refer to picturefill for IE9 at http://scottjehl.github.io/
picturefill/#ie9

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/picture
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/picture
http://scottjehl.github.io/picturefill/#ie9
http://scottjehl.github.io/picturefill/#ie9

121

6
Creating Forms with

the Form API

In this chapter, we will explore the various recipes to work with forms in Drupal:

 f Creating a form

 f Using new HTML5 elements

 f Validating form data

 f Processing submitted form data

 f Altering other forms

Introduction
Drupal provides a robust API for creating and managing forms without writing any HTML.
Drupal handles form building, validation, and submission. Drupal handles the request to
either build the form or process the HTTP POST request. This allows developers to simply
define the elements in a form, provide any additional validation if needed, and then handle
a successful submission through specific methods.

This chapter contains various recipes to work with forms in Drupal through the Form API.
In Drupal 8, forms and form states are objects.

Creating Forms with the Form API

122

Creating a form
In this recipe, we will create a form, which will be accessible from a menu path. This will
involve creating a route that tells Drupal to invoke our form and display it to the end user.

Forms are defined as classes, which implement \Drupal\Core\Form\FormInterface.
The \Drupal\Core\Form\FormBase serves as a utility class that is intended to be
extended. We will extend this class to create a new form.

Getting ready
Since we will be writing the code, you will want to have a custom module. Creating a custom
module in Drupal is simply creating a folder and an info.yml file. For this recipe, we will
create a folder under /modules in your Drupal folder called drupalform.

In the drupalform folder, create drupalform.info.yml. The info.yml file is what
Drupal will parse to discover modules. An example of a module's info.yml file is as follows:

name: Drupal form example
description: Create a basic Drupal form, accessible from a route
type: module
version: 1.0
core: 8.x

The name will be your module's name, and the description will be listed on the Extend page.
Specifying the core tells Drupal what version of Drupal it is built for. Chapter 4, Extending
Drupal covers how to create a module in depth.

How to do it…
1. Create an src folder in your module directory. In this directory, create a Form directory,

which will hold the class that defines your form.

2. Next, create a file called ExampleForm.php in your module's src/Form directory.

Drupal utilizes PSR4 to discover and autoload classes.
For brevity, this defines that there should be one class per
file, with each filename matching the class name. The folder
structure will also mimic the namespace expected.

Chapter 6

123

3. We will edit the ExampleForm.php file and add the proper PHP namespace, classes
used, and the class itself:
<?php

/**
 * @file
 * Contains \Drupal\drupalform\Form\ExampleForm.
 **/

namespace Drupal\drupalform\Form;

use Drupal\Core\Form\FormBase;
use Drupal\Core\Form\FormStateInterface;

class ExampleForm extends FormBase {

}

The namespace defines the class in your module's Form directory. The autoloader
will now look into the drupalform module path and load the ExampleForm class
from the src/Form directory.

The use statement allows us to use just the class name when referencing FormBase
and, in the next steps, FormStateInterface. Otherwise, we would be forced to use
the fully qualified namespace path for each class whenever it is used.

4. \Drupal\Core\Form\FormBase is an abstract class and requires us to implement
four remaining interface methods: getFormId, buildForm, validateForm, and
submitForm. The latter two are covered in their own recipes; however, we will need
to define the method stubs:
class ExampleForm extends FormBase {

 /**
 * {@inheritdoc}
 */
 public function getFormId() {
 return 'drupalform_example_form';
 }

 /**
 * {@inheritdoc}
 */
 public function buildForm(array $form, FormStateInterface $form_
state) {

Creating Forms with the Form API

124

 // Return array of Form API elements.
 }

 /**
 * {@inheritdoc}
 */
 public function validateForm(array &$form, FormStateInterface
$form_state) {
 // Validation covered in later recipe, required to satisfy
interface
 }

 /**
 * {@inheritdoc}
 */
 public function submitForm(array &$form, FormStateInterface
$form_state) {
 // Validation covered in later recipe, required to satisfy
interface
 }
}

 � This code flushes out the initial class definition from the previous step.
FormBase provides utility methods and does not satisfy the interface
requirements for FormStateInterface. We define those here, as they
are unique across each form definition.

 � The getFormId method returns a unique string to identify the form, for
example, site_information. You may encounter some forms that append
_form to the end of their form ID. This is not required, and it is just a naming
convention often found in previous versions of Drupal.

 � The buildForm method is covered in the following steps. The validateForm
and submitForm methods are both called during the Form API processes and
are covered in later recipes.

5. The buildForm method will be invoked to return Form API elements that are
rendered to the end user. We will add a simple text field to ask for a company
name and a submit button:
 /**
 * {@inheritdoc}
 */
public function buildForm(array $form, FormStateInterface $form_
state) {

Chapter 6

125

 $form['company_name'] = array(
 '#type' => 'textfield',
 '#title' => $this->t('Company name'),
);
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => $this->t('Save'),
);
 return $form;
}

We have added a form element definition to the form array. Form elements are
defined with a minimum of a type to specify what the element is and a title to act
as the label. The title uses the t method to ensure that it is translatable.

Adding a submit button is done by providing an element with the type submit.

6. To access the form, we will create drupalform.routing.yml in the module's
folder. A route entry will be created to instruct Drupal to use \Drupal\Core\Form\
FormBuilder to create and display our form:
drupalform.form:
 path: '/drupal-example-form'
 defaults:
 _title: 'Example form'
 _form: '\Drupal\drupalform\Form\ExampleForm'
 requirements:
 _access: 'TRUE'

In Drupal, all routes have a name, and this example defines it as drupalform.
form. Routes then define a path attribute and override default variables. This route
definition has altered the route's title, specified it as a form, and given the fully
qualified namespace path to this form's class.

Routes need to be passed a requirements property with specifications or else the
route will be denied access.

7. Visit the Extend page and enable the Drupal form example module that we created.

Creating Forms with the Form API

126

8. Visit /drupal-example-form and the form is now visible, as shown in the
following screenshot:

How it works…
This recipe creates a route to display the form. By passing the _form variable in the defaults
section of our route entry, we are telling the route controller how to render our route's content.
The fully qualified class name, which includes the namespace, is passed to a method located
in the form builder. The route controller will invoke \Drupal::formBuilder()->getForm
(\Drupal\drupalform\Form\ExampleForm) based on the recipe. At the same time, this
can be manually called to embed the form elsewhere.

A form builder instance that implements \Drupal\Core\Form\FormBuilderInterface
will then process the form by calling buildForm and initiate the rendering process. The
buildForm method is expected to return an array of form elements and other API options.
This will be sent to the render system to output the form as HTML.

There's more…
Many components make up a form created through Drupal's Form API. We will explore a few of
them in depth.

Chapter 6

127

Form element definitions
A form is a collection of form elements, which are types of plugin in Drupal 8. Plugins are
small pieces of swappable functionalities in Drupal 8. Plugins and plugin development are
covered in Chapter 7, Plug and Play with Plugins. At the time of writing this book, the Drupal.
org Form API reference table was severely out of date and did not reflect all of the form
element types available.

Here are some of the most common element properties that can be used:

 f weight: This is used to alter the position of a form element in a form. By default,
elements will be displayed in the order in which they were added to the form array.
Defining a weight allows a developer to control element positions.

 f default_value: This gives a developer the ability to prefill the element with a
value. For example, when building configuration forms that have existing data or
when editing an entity.

 f placeholder: This is new to Drupal 8. Drupal 8 provides a new HTML5 support,
and this attribute will set the placeholder attribute on the HTML input.

The form state
The \Drupal\Core\Form\FormStateInterface object represents the current state
of the form and its data. The form state contains user-submitted data for the form along
with build state information. Redirection after form submission is handled through the
form state as well. You will interact more with the form state during the validation and
submission recipes.

The form cache
Drupal utilizes a cache table for forms. This holds the build table, as identified by form build
identifiers. This allows Drupal to validate forms during AJAX requests and easily build them
when required. It is important to keep the form cache in persistent storage; otherwise, there
may be repercussions, such as loss of form data or invalidating forms.

See also
 f Form API in Drupal 8 at https://www.drupal.org/node/2117411

 f The Drupal 8 Form API reference at https://api.drupal.org/api/drupal/
developer!topics!forms_api_reference.html/8

 f Chapter 4, Extending Drupal

 f Chapter 7, Plug and Play with Plugins, to learn more about derivatives

https://www.drupal.org/node/2117411
https://api.drupal.org/api/drupal/developer!topics!forms_api_reference.html/8
https://api.drupal.org/api/drupal/developer!topics!forms_api_reference.html/8

Creating Forms with the Form API

128

Using new HTML5 elements
With the release of Drupal 8, Drupal has finally entered into the realm of HTML5. The Form
API now allows utilization of HTML5 input elements out of the box. These include the following
element types:

 f tel

 f email

 f number

 f date

 f url

 f search

 f range

This allows your forms in Drupal to leverage native device input methods along with native
validation support.

Getting ready
This recipe will walk you through adding elements to a Drupal form. You will need to have
a custom form implemented through a module, such as the one created in the Creating a
form section.

How to do it…
1. In order to use the telephone input, you need to add a new form element definition

of the tel type to your buildForm method:
 $form['phone'] = array(
 '#type' => 'tel',
 '#title' => t('Phone'),
);

2. In order to use the e-mail input, you need to add a new form element definition
of the email type to your buildForm method. It will validate the format of e-mail
addresses in the Form API:
$form['email'] = array(
 '#type' => 'email',
 '#title' => t('Email'),
);

Chapter 6

129

3. In order to use the number input, you need to add a new form element definition of
the number type to your buildForm method. It will validate the range and format of
the number:
 $form['integer'] = array(
 '#type' => 'number',
 '#title' => t('Some integer'),
 // The increment or decrement amount
 '#step' => 1,
 // Miminum allowed value
 '#min' => 0,
 // Maxmimum allowed value
 '#max' => 100,
);

4. In order to use the date input, you need to add a new form element definition of the
date type to your buildForm method. You can also pass the #date_date_format
option to alter the format used by the input:
 $form['date'] = array(
 '#type' => 'date',
 '#title' => t('Date'),
 '#date_date_format' => 'Y-m-d',
);

5. In order to use the URL input, you need to add a new form element definition of
the url type to your buildForm method. The element has a validator to check
the format of the URL:
 $form['website'] = array(
 '#type' => 'url',
 '#title' => t('Website'),
);

6. In order to use the search input, you need to add a new form element definition of
the search type to your buildForm method. You can specify a route name that the
search field will query for autocomplete options:
 $form['search'] = array(
 '#type' => 'search',
 '#title' => t('Search'),
 '#autocomplete_route_name' => FALSE,
);

Creating Forms with the Form API

130

7. In order to use the range input, you need to add a new form element definition of
the range type to your buildForm method. It is an extension of the number element
and accepts a min, max, and step property to control the values of the range input:
 $form['range'] = array(
 '#type' => 'range',
 '#title' => t('Range'),
 '#min' => 0,
 '#max' => 100,
 '#step' => 1,
);

How it works…
Each type references an extended class of \Drupal\Core\Render\Element\
FormElement. It provides the element's definition and additional functions. Each element
defines a prerender method in the class that defines the input type attribute along with
other additional attributes.

Each input defines its theme as input__TYPE, allowing you to copy the input.html.twig
base to input.TYPE.html.twig for templating. The template then parses the attributes
and renders the HTML.

Some elements, such as e-mails, provide validators for the element itself. The e-mail element
defines the validateEmail method. Here is an example of the code from \Drupal\Core\
Render\Element\Email::valdateEmail:

 /**
 * Form element validation handler for #type 'email'.
 *
 * Note that #maxlength and #required is validated by _form_
validate() already.
 */
 public static function validateEmail(&$element, FormStateInterface
$form_state, &$complete_form) {
 $value = trim($element['#value']);
 $form_state->setValueForElement($element, $value);

 if ($value !== '' && !\Drupal::service('email.validator')-
>isValid($value)) {
 $form_state->setError($element, t('The email address %mail is
not valid.', array('%mail' => $value)));
 }
 }

Chapter 6

131

This code will be executed on form submission and validate the provider's e-mail. It does this
by taking the current value and trimming any whitespaces and using the form state object
to update the value. The email.validator service is invoked to validate the e-mail. If this
method returns false, the form state is invoked to mark the element as the one that has an
error. If the element has an error, the form builder will prevent form submission, returning the
user to the form to fix the value.

There's more…
Elements are provided through Drupal's plugin system and are explored in detail in the
next section.

Specific element properties
Elements can have their own unique properties along with individual validation methods. At
the time of writing, the Drupal 8 Form Reference table is incomplete and does not highlight
these new elements nor their properties. However, the classes can be examined and the
definition method can be read to learn about the properties of each element. These classes
are under the \Drupal\Core\Render\Element namespace located in /core/lib/
Drupal/Core/Render/Element:

Creating Forms with the Form API

132

Creating new elements
Each element used in the Form API extends the \Drupal\Core\Render\Element\
FormElement class, which is a plugin. Modules can provide new element types by adding
classes to their Plugins/Element namespace. Refer to Chapter 7, Plug and Play with Plugins
for more information on how to implement a plugin.

See also
 f Form API in Drupal 8 at https://www.drupal.org/node/2117411

 f Chapter 7, Plug and Play with Plugins

Validating form data
The Form API requires all form classes to implement the \Drupal\Core\Form\
FormInterface. The interface defines a validation method. The validateForm
method is invoked once a form has been submitted and provides a way to validate the data
and halt the processing of the data if required. The form state object provides methods for
marking specific fields as having the error, providing a user experience tool to alert your
users specifically to the problem input.

This recipe will be based on the custom module and form created in the Creating a form
section of this chapter. We will be validating the length of the submitted field.

Getting ready
This recipe will be using the module and custom form created in the first Creating a form recipe.

How to do it…
1. Open and edit the \Drupal\drupalform\Form\ExampleForm class in the src/

Form directory of the module.

2. Before validating the company_name value, we need to check whether the value
is empty using the isValueEmpty() method from the \Drupal\Core\Form\
FormStateInterface object:
 /**
 * {@inheritdoc}
 */
 public function validateForm(array &$form, FormStateInterface
$form_state) {
 if (!$form_state->isValueEmpty('company_name')) {

https://www.drupal.org/node/2117411

Chapter 6

133

 // Value is set, perform validation
 }
 }

3. The \Drupal\Form\FormStateInterface::isValueEmpty method takes the
key name of the form element. For example, $form['company_name'] from the
buildForm method is referenced through company_name in the isValueEmpty
method.

4. Next, we will check whether the value's length is greater than five:
 /**
 * {@inheritdoc}
 */
 public function validateForm(array &$form, FormStateInterface
$form_state) {
 if (!$form_state->isValueEmpty('company_name')) {
 if (strlen($form_state->getValue('company_name')) <= 5) {
 // Set validation error.
 }
 }
 }

The getValue takes a form element's key and returns the value. Since we have
already verified that the value is not empty, we can retrieve the value.

If you had any experience with previous versions of Drupal, note that
the form state is now an object and not an array.

5. If the logic check finds a value with a length of five or fewer characters, it will throw a
form error to prevent submission:
$form_state->setErrorByName('company_name', t ('Company name is
less than 5 characters'));

We can place the setErrorByName method in our strlen logic check. If the string
is fewer than five characters, an error is set on the element. The first parameter is the
element's key and the second parameter is the message to be presented to the user.

6. The entire validation method will resemble the following code:
 /**
 * {@inheritdoc}
 */
 public function validateForm(array &$form, FormStateInterface
$form_state) {
 if (!$form_state->isValueEmpty('company_name')) {

Creating Forms with the Form API

134

 if (strlen($form_state->getValue('company_name')) <= 5) {
 $form_state->setErrorByName('company_name', t('Company
name is less than 5 characters'));
 }
 }
 }

7. When the form is submitted, the Company name text field will have to have more
than five characters or be empty in order to be submitted.

How it works…
Before the form builder service invokes the form object's submitForm method, it invokes
the object's validateForm method. In the validation method, the form state can be used
to check values and perform logic checks. In the event that an item is deemed invalid and
an error is set on an element, the form cannot submit and will show errors to the user.

When an error is added to an element, an overall counter for the number of errors on the
form is incremented. If the form has any errors, the form builder service will not execute
the submit method.

This process is executed through the \Drupal\Core\Form\FormValidator class,
which is run through the form builder service.

There's more…

Chapter 6

135

Multiple validation handlers
A form can have multiple validation handlers. By default, all forms come with at least one
validator, which is its own validateForm method. There is more that can be added.
However, by default, the form will merely execute ::validateForm and all element
validators. This allows you to invoke static methods on other classes or other forms.

If a class provides method1 and method2, which it would like to execute as well, the following
code can be added to the buildForm method:

$form_state->setValidateHandlers([
 ['::validateForm'],
 ['::method1'],
 [$this, 'method2'],
]);

This sets the validator array to execute the default validateForm method and the two
additional methods. You can reference a method in the current class using two colons (::)
and the method name. Or, you can use an array consisting of a class instance and the
method to invoke.

Accessing multidimensional array values
Forms support nested form elements in the form array. The default \Drupal\Core\Form\
FormStateInterface implementation, \Drupal\Core\Form\FormState, supports
accessing multidimensional array values. Instead of passing a string, you can pass an array
that represents the parent array structure in the form array.

If the element is defined in $form['company']['company_name'], then we will pass
array('company', 'company_name') to the form state's methods.

Element validation methods
Form elements can have their own validators. The form state will aggregate all of the
element validation methods and pass them to the form validation service. This will run
with the form's validation.

There is a limit_validation_errors option, which can be set to allow selected invalid
errors to be passed. This option allows you to bypass validation on specific elements in your
form. This attribute is defined in the submit button, also known as the triggering element in
the form state. It is an array value consisting of form element keys.

The triggering element value does not operate in the same fashion as the
form state's methods in order to access multidimensional array values. In
order to access a nested value, you need to provide a partially constructed
string, representing the nested value. For example, $form['company']
['company_name'] will have to be added as company][company_name.

Creating Forms with the Form API

136

Processing submitted form data
A form's purpose is to collect data and do something with the data that was submitted.
All forms need to implement the \Drupal\Core\Form\FormInterface. The interface
defines a submit method. Once the Form API has invoked the class's validation method,
the submit method can be run.

This recipe will be based on the custom module and form created in the Creating a form
recipe of this chapter. We will convert the form to \Drupal\Core\FormConfigBaseForm,
allowing easy storage of the field element.

Getting ready
In this recipe, we will be using the module and custom form created in the first Creating a
form recipe.

How to do it…
1. In your module's directory, create a config directory, and then create a directory

inside it named install.

2. Create a file named drupalform.schema.yml; this file will tell Drupal about the
configuration item that we want to save.

3. Add the following configuration schema definition to drupalform.schema.yml:
drupalform.company:
 type: config_object
 label: 'Drupal form settings'
 mapping:
 company_name:
 type: string
 label: 'A company name'

This tells Drupal that we have the configuration with the name drupalform.
company and it has a valid option of company_name. We will cover this in more
detail in Chapter 9, Confiuration Management – Deploying in Drupal 8.

4. Replace the FormBase use statement to use the ConfigFormBase class:
<?php

/**
 * @file
 * Contains \Drupal\drupalform\Form\ExampleForm.
 **/

Chapter 6

137

namespace Drupal\drupalform\Form;

use Drupal\Core\Form\ConfigFormBase;
use Drupal\Core\Form\FormStateInterface;

5. Update the ExampleForm class to extend ConfigFormBase instead to harness
its implementations:
class ExampleForm extends ConfigFormBase

This allows us to reuse methods from the ConfigFormBase class and write less
about our own implementation.

6. For ExampleForm to implement ConfigFormBase, the
getEditableConfigNames method needs to be implemented to
satisfy the \Drupal\Core\Form\ConfigBaseTrait trait:
/**
 * {@inheritdoc}
 */
protected function getEditableConfigNames() {
 return ['drupalform.company'];
}

This function defines the configuration names, which will be editable by the
form. This brings all the configurations under drupalform[company] to be
editable when accessed through the form with the config method provided by
ConfigFormBaseTrait.

7. Remove the submit form element. Update the buildForm method to return data
from the parent's method rather than from $form itself. We also need to add a
#default_value option to company_name so that it uses an existing value the
next time our form is loaded:
 /**
 * {@inheritdoc}
 */
 public function buildForm(array $form, FormStateInterface $form_
state) {
 $form['company_name'] = array(
 '#type' => 'textfield',
 '#title' => t('Company name'),
 '#default_value' => $this->config('drupalform.company')-
>get('company_name'),
);
 return parent::buildForm($form, $form_state);
 }

Creating Forms with the Form API

138

The ConfigFormBase class implements the buildForm method to provide
a reusable submit button. It also unifies the presentation across Drupal
configuration forms:

8. The ConfigFormBase provides a configuration factory method. We will add a
default_value property to our element with the currently saved item:
 /**
 * {@inheritdoc}
 */
 public function buildForm(array $form, FormStateInterface $form_
state) {
 $form['company_name'] = array(
 '#type' => 'textfield',
 '#title' => t('Company name'),
 '#default_value' => $this->config('drupalform.company')-
>get('name'),
);
 return parent::buildForm($form, $form_state);
 }

The #default_value key is added to the element's definition. It invokes the
config method provided by ConfigFormBaseTrait to load our configuration
group and access a specific configuration value.

9. The final step is to save the configuration in the submitForm method:
 /**
 * {@inheritdoc}
 */
 public function submitForm(array &$form, FormStateInterface
$form_state) {
 parent::submitForm($form, $form_state);
 $this->config('drupalform.company')
 ->set('name', $form_state->getValue('company_name'));
 }

Chapter 6

139

The config method is invoked by specifying our configuration group. We then use
the set method to define name as the value from the company name text field.

10. When you edit your form and click on the submit button, the value that you entered
in the Company name field will now be saved in the configuration.

How it works…
The ConfigFormBase utilizes the ConfigFormBaseTrait to provide easy access to a
configuration factory. The class's implementation of buildForm also adds a submit button
and theme styling to forms. The submit handler displays a configuration saved message but
relies on implementing a module to save the configuration.

The form saves its data under the drupalform.company namespace. The company name
value is stored as name and can be accessed as drupalform.company.name. Note that
the configuration name does not have to match the form element's key.

There's more…

Multiple submit handlers
A form can have multiple submit handlers. By default, all forms implement a submit handler,
which is its own submitForm method. The form will execute ::submitForm automatically
and any defined on the triggering element. There is more that can be added. However, this
allows you to invoke static methods on other classes or other forms.

If a class provides method1 and method2, which it would like to execute as well, the following
code can be added to the buildForm method:

$form_state->setSubmitHandlers([
 ['::submitForm'],
 ['::method1'],
 [$this, 'method2']
]);

This sets the submit handler array to execute the default submitForm method and two
additional methods. You can reference a method in the current class using two colons (::)
and the method name. Or, you can use an array consisting of a class instance and the method
to be invoked.

See also
 f Chapter 9, Configuration Management- Deploying in Drupal 8

Creating Forms with the Form API

140

Altering other forms
Drupal's Form API does not just provide a way to create forms. There are ways to alter forms
through a custom module that allows you to manipulate the core and contributed forms. Using
this technique, new elements can be added, default values can be changed, or elements can
even be hidden from view to simplify the user experience.

The altering of a form does not happen in a custom class; this is a hook defined in the module
file. In this recipe, we will use the hook_form_FORM_ID_alter() hook to add a telephone
field to the site's configuration form.

Getting ready
This recipe assumes that you have a custom module to add the code to.

How to do it…
1. In the modules folder of your Drupal site, create a folder named mymodule.

2. In the mymodule folder, create a mymodule.info.yml, containing the
following code:
name: My module
description: Custom module that uses a form alter
type: module
core: 8.x
Next, create a .module file in your module's directory:
<?php

/**
 * @file
 * Custom module that alters forms.
 */

As a best practice, files have document block headers that describe the purpose of
the file and what it pertains to.

3. Add the mymodule_form_system_site_information_settings_alter()
hook. The form ID can be found by viewing the form's class and reviewing the
getFormId method:
/**
 * Implements hook_form_FORM_ID_alter().
 **/

Chapter 6

141

function mymodule_form_system_site_information_settings_
alter(&$form, \Drupal\Core\Form\FormStateInterface $form_state) {
 // Code to alter form or form state here
}

Drupal will call this hook and pass the current form array and its form state object.
The form array is passed by reference, allowing our hook to modify the array without
returning any values. This is why the $form parameter has the ampersand (&) before
it. In PHP, all objects are passed by reference.

When calling a class in a normal file, such as the module file, you need
to either use the fully qualified class name or add a use statement at
the beginning of the file. In this example, we can add \Drupal\Core\
Form\FormStateInterface.

4. Next, we add our telephone field to the form so that it can be displayed and saved:
/**
 * Implements hook_form_FORM_ID_alter().
 */
function mymodule_form_system_site_information_settings_
alter(&$form, \Drupal\Core\Form\FormStateInterface $form_state) {
 $form['site_phone'] = array(
 '#type' => 'tel',
 '#title' => t('Site phone'),
 '#default_value' => Drupal::config('system.site')-
>get('phone'),
);
}

We retrieve the current phone value from system.site so that it can be modified if
already set.

5. Visit the Extend page and enable the module My module that we created.

Creating Forms with the Form API

142

6. Review the Site Information form under Configuration and test setting the site
telephone number:

7. We need to add a submit handler in order to save the configuration for our new field.
We will need to add a submit handler to the form and a submit handler callback:
/**
 * Implements hook_form_FORM_ID_alter().
 */
function mymodule_form_system_site_information_settings_
alter(&$form, \Drupal\Core\Form\FormStateInterface $form_state) {
 $form['site_phone'] = array(
 '#type' => 'tel',
 '#title' => t('Site phone'),
 '#default_value' => Drupal::config('system.site')-
>get('phone'),
);
 $form['#submit'][] = 'mymodule_system_site_information_phone_
submit';
}

/**
 * Form callback to save site_phone
 * @param array $form
 * @param \Drupal\Core\Form\FormStateInterface $form_state
 */
function mymodule_system_site_information_phone_submit(array
&$form, \Drupal\Core\Form\FormStateInterface $form_state) {

Chapter 6

143

 $config = Drupal::configFactory()->getEditable('system.site');
 $config
 ->set('phone', $form_state->getValue('site_phone'))
 ->save();
}

The $form['#submit'] modification adds our callback to the form's submit
handlers. This allows our module to interact with the form once it has been submitted.

The mymodule_system_site_information_phone_submit callback is passed
the form array and form state. We load the current configuration factory to receive the
configuration that can be edited. We then load system.site and save phone based
on the value from the form state.

8. Submit the form and verify that the data has been saved.

How it works…
The \Drupal\system\Form\SiteInformationForm class extends \Drupal\Core\
Form\ConfigFormBase to handle the writing of form elements as individual configuration
values. However, it does not write the values automatically to the form state. In this recipe,
we need to add a submit handler to manually save our added field.

The form array is passed by reference, allowing modifications to be made in the hook to alter
the original data. This allows us to add an element or even modify existing items, such as
titles or descriptions.

There's more…

Adding additional validate handlers
Using a form alter hook, we can add additional validators to a form. The proper way to do this
is to load the current validators and add the new one to the array and reset the validators in
the form state:

$validators = $form_state->getValidateHandlers();
$validators[] = 'mymodule_form_validate';
$form_state->setValidateHandlers($validators);

First, we receive all of the currently set validators from the form state as the $validators
variable. We then append a new callback to the end of the array. Once the $validators
variable has been modified, we override the form state's validator array by executing the
setValidateHandlers method.

Creating Forms with the Form API

144

You can also use PHP array manipulation functions to add your validators
in different execution orders. For example, array_unshift will place
your validator at the beginning of the array so that it can run first.

Adding additional submit handlers
Using a form alter hook, we can add additional submit handlers to a form. The proper way to
do this is to load the current submit handlers, add the new one to the array, and reset the
validators in the form state:

$submit_handlers = $form_state->getSubmitHandlers();
$submit_handlers [] = 'mymodule_form_submit';
$form_state->setSubmitHandlers($submit_handlers);

First, we receive all of the currently set submit handlers from the form state as the
$submit_handlers variable. We then append a new callback to the end of the array.
Once the $submit_handlers variable has been modified, we override the form state's
submit handler array by executing the setSubmitHandlers method.

You can also use PHP array manipulation functions to add your callback
in different execution orders. For example, array_unshift will place
your callback at the beginning of the array so that it can run first.

7
Plug and Play

with Plugins
In this chapter, we will dive into the new Plugin API provided in Drupal 8:

 f Creating blocks using plugins

 f Creating a custom field type

 f Creating a custom field widget

 f Creating a custom field formatter

 f Creating a custom plugin type

Introduction
Drupal 8 introduces plugins. Plugins power many items in Drupal, such as blocks, field types,
field formatters, and many more. Plugins and plugin types are provided by modules. They
provide a swappable and specific functionality. Breakpoints, as discussed in Chapter 5, Front
End for the Win, are plugins. In this chapter, we will discuss how plugins work in Drupal 8 and
show you how to create blocks, fields, and custom plugin types.

Each version of Drupal has had subsystems, which provided pluggable components and
even contributed modules. A problem arose in the implementation and management of these.
Blocks, fields, and image styles each had an entirely different system to learn and understand.
The Plugin API exists in Drupal 8 to mitigate this problem and provide a base API to implement
pluggable components. This has greatly improved the developer experience when working with
Drupal core's subsystems. In this chapter, we will implement a block plugin. We will use the
Plugin API to provide a custom field type along with a widget and formatter for the field. The last
recipe will show you how to create and use a custom plugin type.

Plug and Play with Plugins

146

Creating blocks using plugins
In Drupal, a block is a piece of content that can be placed in a region provided by a theme.
Blocks are used to present specific kinds of content, such as a user login form, a snippet of
text, and many more.

Blocks are configuration entities, and the block module uses the Drupal plugin system as a
way to define blocks for modules. Custom blocks are defined in the PHP code in the module's
Plugin class namespace. Each class in the Plugin/Block namespace will be discovered
by the block module's plugin manager.

In this recipe, we will define a block that will display a copyright snippet and the current year,
and place it in the footer region.

Getting ready
Create a new module like the one shown in this recipe. We will refer to the module as mymodule
throughout the recipe. Use your module's appropriate name.

How to do it…
1. Create the src/Plugin/Block directory in your module. This will translate the

\Drupal\mymodule\Plugin\Block namespace and allow a block plugin discovery.

2. Create a Copyright.php file in the newly created folder so that we can define the
Copyright class for our block:

3. The Copyright class will extend \Drupal\Core\Block\BlockBase:
<?php

/**
 * @file

Chapter 7

147

 * Contains \Drupal\mymodule\Plugin\Block\Copyright.
 */
namespace Drupal\mymodule\Plugin\Block;
use Drupal\Core\Block\BlockBase;
class Copyright extends BlockBase {
}

4. We extend the BlockBase class, which implements \Drupal\Core\Block\
BlockPluginInterface and provides us with an implementation of nearly
all of its methods.

5. Blocks are annotated plugins. Annotated plugins use documentation blocks to
provide details of the plugin. We will provide the block's identifier, administrative
label, and category:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\Plugin\Block\Copyright.
 */

namespace Drupal\mymodule\Plugin\Block;

use Drupal\Core\Block\BlockBase;
/**
 * @Block(
 * id = "copyright_block",
 * admin_label = @Translation("Copyright"),
 * category = @Translation("Custom")
 *)
 */
class Copyright extends BlockBase {

}

6. The annotation document block of the class identifies the type of plugin through
@Block. Drupal will parse this and initiate the plugin with the properties defined
inside it. The id is the internal machine name, the admin_label is displayed on
the block listing page, and category shows up in the block select list.

7. We need to provide a build method to satisfy the \Drupal\Core\Block\
BlockPluginInterface interface. This creates the output to be displayed:
<?php
/**
 * @file

Plug and Play with Plugins

148

 * Contains \Drupal\mymodule\Plugin\Block\Copyright
 */

namespace Drupal\mymodule\Plugin\Block;

use Drupal\Core\Block\BlockBase;

/**
 * @Block(
 * id = "copyright_block",
 * admin_label = @Translation("Copyright"),
 * category = @Translation("Custom")
 *)
 */
class Copyright extends BlockBase {
 /**
 * {@inheritdoc}
 */
 public function build() {
 $date = new \DateTime();
 return [
 '#markup' => t('Copyright @year© My Company', [
 '@year' => $date->format('Y'),
]),
];
 }
}

The build method returns a render array that uses Drupal's t function to substitute
@year for the \DateTime object's output that is formatted as a full year.

Since PHP 5.4, a warning will be displayed if you have not
explicitly set a timezone in your PHP's configuration.

8. Rebuild Drupal's cache so that the new plugin can be discovered.

9. In the Footer fourth region, click on Place block.

10. Review the block list and add the custom block to your regions, for instance, the
footer region. Find the Copyright block, and click on Place block:

Chapter 7

149

11. Uncheck the Display title checkbox so that only our block's content can be rendered.

12. Review the copyright statement that will always keep the year dynamic:

How it works...
The plugin system works through plugin definitions and plugin managers for those definitions.
The \Drupal\Core\Block\BlockManager class defines the block plugins that need be
located in the Plugin/Block namespace. It also defines the base interface that needs to be
implemented along with the Annotation class, which is to be used, when parsing the class's
document block.

Plug and Play with Plugins

150

When Drupal's cache is rebuilt, all available namespaces are scanned to check whether
classes exist in the given plugin namespace. The definitions, via annotation, will be processed
and the information will be cached.

Blocks are then retrieved from the manager, manipulated, and their methods are invoked.
When viewing the Block layout page to manage blocks, the \Drupal\Core\Block\
BlockBase class's label method is invoked to display the human-readable name. When
a block is displayed on a rendered page, the build method is invoked and passed to the
theming layer to be output.

There's more...

Altering blocks
Blocks can be altered in two different ways: the plugin definition can be altered, the build
array, or the view array out.

A module can implement hook_block_alter in its .module file and modify the
annotation definitions of all the discovered blocks. The will allow a module to change
the default user_login_block from user login to Login:

/**
 * Implements hook_block_alter().
 */
function mymodule_block_alter(&$definitions) {
 $definitions['user_login_block']['admin_label'] = t('Login');
}

A module can implement hook_block_build_alter and modify the build information
of a block. The hook is passed the build array and the \Drupal\Core\Block\
BlockPluginInterface instance for the current block. Module developers can use this to
add cache contexts or alter the cache ability of metadata:

/**
 * Implements hook_block_build_alter().
 */
function hook_block_build_alter(array &$build, \Drupal\Core\Block\
BlockPluginInterface $block) {
 // Add the 'url' cache the block per URL.
 if ($block->getBaseId() == 'myblock') {
 $build['#contexts'][] = 'url';
 }
}

Chapter 7

151

You can test the modification of cache metadata by altering the
recipe's block to output a timestamp. With caching enabled, you
will see that the value persists on the same URL, but it will be
different across each page.

Finally, a module can implement hook_block_view_alter in order to modify the output to
be rendered. A module can add content to be rendered or remove content. This can be used
to remove the contextual links item, which allows inline editing from the front page of a site:

/**
 * Implements hook_block_view_alter().
 */
function hook_block_view_alter(array &$build, \Drupal\Core\Block\
BlockPluginInterface $block) {
 // Remove the contextual links on all blocks that provide them.
 if (isset($build['#contextual_links'])) {
 unset($build['#contextual_links']);
 }
}

Block settings forms
Blocks can provide a setting form. This recipe provides the text My Company for the copyright
text. Instead, this can be defined through a text field in the block's setting form.

Let's revisit the Copyright.php file that contained our block's class. A block can override
the default defaultConfiguration method, which returns an array of setting keys and
their default values. The blockForm method can then override the \Drupal\Core\Block\
BlockBase empty array implementation to return a Form API array to represent the settings
form:

 /**
 * {@inheritdoc}
 */
 public function defaultConfiguration() {
 return [
 'company_name' => '',
];
 }

 /**
 * {@inheritdoc}
 */
 public function blockForm($form, \Drupal\Core\Form\
FormStateInterface $form_state) {

Plug and Play with Plugins

152

 $form['company_name'] = [
 '#type' => 'textfield',
 '#title' => t('Company name'),
 '#default_value' => $this->configuration['company_name'],
];
 return $form;
 }

The blockSubmit method must then be implemented, which updates the block's configuration:

 /**
 * {@inheritdoc}
 */
 public function blockSubmit($form, \Drupal\Core\Form\
FormStateInterface $form_state) {
 $this->configuration['company_name'] = $form_state-
>getValue('company_name');
 }

Finally, the build method can be updated to use the new configuration item:

 /**
 * {@inheritdoc}
 */
 public function build() {
 $date = new \DateTime();
 return [
 '#markup' => t('Copyright @year© @company', [
 '@year' => $date->format('Y'),
 '@company' => $this->configuration['company_name'],
]),
];
 }

You can now go back and visit the Block layout form, and click on Configure in the
Copyright block. The new setting will be available in the block instance's configuration form.

Defining access to a block
Blocks, by default, are rendered for all users. The default access method can be overridden.
This allows a block to only be displayed to authenticated users or based on a specific
permission:

 /**
 * {@inheritdoc}
 */

Chapter 7

153

 protected function blockAccess(AccountInterface $account) {
 $route_name = $this->routeMatch->getRouteName();
 if ($account->isAnonymous() && !in_array($route_name,
 array('user.login', 'user.logout'))) {
 return AccessResult::allowed()
 ->addCacheContexts(['route.name',
 'user.roles:anonymous']);
 }
 return AccessResult::forbidden();
 }

The preceding code is taken from the user_login_block. It allows access to the block if
the user is logged out and is not on the login or logout page. The access is cached based on
the current route name and the user's current role being anonymous. If these are not passed,
the access returned is forbidden and the block is not built.

Other modules can implement hook_block_access to override the access of a block:

/**
 * Implements hook_block_access().
 */
function mymodule_block_access(\Drupal\block\Entity\Block $block,
$operation, \Drupal\Core\Session\AccountInterface $account) {
 // Example code that would prevent displaying the Copyright' block
in
 // a region different than the footer.
 if ($operation == 'view' && $block->getPluginId() == 'copyright') {
 return \Drupal\Core\Access\AccessResult::forbiddenIf($block-
>getRegion() != 'footer');
 }

 // No opinion.
 return \Drupal\Core\Access\AccessResult::neutral();
}

A module implementing the preceding hook will deny access to our Copyright block if it is not
placed in the footer region.

See also
 f Refer to Creating a custom plugin type recipe of this chapter

 f block.api.php at https://api.drupal.org/api/drupal/
core%21modules%21block%21block.api.php/8

https://api.drupal.org/api/drupal/core%21modules%21block%21block.api.php/8
https://api.drupal.org/api/drupal/core%21modules%21block%21block.api.php/8

Plug and Play with Plugins

154

Creating a custom field type
Fields are powered through the plugin system in Drupal. Field types are defined using the
plugin system. Each field type has its own class. A new field type can be defined through a
custom class that will provide schema and property information.

In this example, we will create a simple field type called "real name" to store the first and
last names.

Field types just define ways in which data can be stored and
handled through the Field API. Field widgets provide means for
editing a field type in the user interface. Field formatters provide
means for displaying the field data to users. Both are plugins and
will be covered in later recipes.

Getting ready
Create a new module like the one existing in the first recipe. We will refer to the module as
mymodule throughout the recipe. Use your module's appropriate name.

How to do it…
1. We need to create the src/Plugin/Field/FieldType directory in the module's

base location. The Field module discovers field types in the Plugin\Field\
FieldType namespace.

2. Create a RealName.php file in the newly created directory so that we can define the
RealName class. This will provide our real name field for the first and last names:

Chapter 7

155

3. The RealName class will extend the \Drupal\Core\Field\FieldItemBase class:
<?php
/**
 * @file
 * Contains \Drupal\mymodule\Plugin\Field\FieldType\RealName.
 */

namespace Drupal\mymodule\Plugin\Field\FieldType;

use Drupal\Core\Field\FieldItemBase;
use Drupal\Core\Field\FieldStorageDefinitionInterface;
use Drupal\Core\TypedData\DataDefinition;

class RealName extends FieldItemBase {

}

The \Drupal\Core\Field\FieldItemBase satisfies methods defined by
inherited interfaces except for schema and propertyDefinitions.

4. Field types are annotated plugins. Annotated plugins use documentation
blocks to provide details of the plugin. We will provide the field type's identifier,
label, description, category, and default widget and formatter:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\Plugin\Field\FieldType\RealName.
 */

namespace Drupal\mymodule\Plugin\Field\FieldType;

use Drupal\Core\Field\FieldItemBase;
use Drupal\Core\Field\FieldStorageDefinitionInterface;
use Drupal\Core\TypedData\DataDefinition;

/**
 * Plugin implementation of the 'realname' field type.
 *
 * @FieldType(
 * id = "realname",
 * label = @Translation("Real name"),

Plug and Play with Plugins

156

 * description = @Translation("This field stores a first and
last name."),
 * category = @Translation("General"),
 * default_widget = "string_textfield",
 * default_formatter = "string"
 *)
 */
class RealName extends FieldItemBase {

}

The @FieldType tells Drupal that this is a FieldType plugin. The following
properties are defined:

 � Id: This is the plugin's machine name

 � Label: This is the human-readable name for the field

 � description: This is the human-readable description of the field

 � category: This is the category where the field shows up in the user
interface

 � default_widget: This is the default form widget to be used for editing

 � default_formatter: This is the default formatter with which you can
display the field

5. The RealName class needs to implement the schema method defined in the
\Drupal\Core\Field\FieldItemInterface. This returns an array of the
database API schema information:
 /**
 * {@inheritdoc}
 */
 public static function schema(\Drupal\Core\Field\
FieldStorageDefinitionInterface $field_definition) {
 return array(
 'columns' => array(
 'first_name' => array(
 'description' => 'First name.',
 'type' => 'varchar',
 'length' => '255',
 'not null' => TRUE,
 'default' => '',
),
 'last_name' => array(
 'description' => 'Last name.',
 'type' => 'varchar',

Chapter 7

157

 'length' => '255',
 'not null' => TRUE,
 'default' => '',
),
),
 'indexes' => array(
 'first_name' => array('first_name'),
 'last_name' => array('last_name'),
),
);
 }

The schema method defines the columns in the field's data table. We will define a
column to hold the first_name and last_name values.

6. We also need to implement the propertySchema method to satisfy \Drupal\
Core\TypedData\ComplexDataDefinitionInterface. This returns a typed
definition of the values defined in the schema method:
 /**
 * {@inheritdoc}
 */
 public static function propertyDefinitions(\Drupal\Core\Field\
FieldStorageDefinitionInterface $field_definition) {
 $properties['first_name'] = \Drupal\Core\TypedData\DataDefinit
ion::create('string')
 ->setLabel(t('First name'));
 $properties['last_name'] = \Drupal\Core\TypedData\DataDefiniti
on::create('string')
 ->setLabel(t('Last name'));

 return $properties;
 }

This method returns an array that is keyed with the same column names provided in
schema. It returns a typed data definition to handle the field type's values.

7. Rebuild Drupal's cache so that the plugin system can discover the new field type.

Plug and Play with Plugins

158

8. The field will now appear on the field type management screen:

How it works…
Drupal core defines a plugin.manager.field.field_type service. By default, this is
handled through the \Drupal\Core\Field\FieldTypePluginManager class. This plugin
manager defines the field type plugins that should be in the Plugin/Field/FieldType
namespace, and all the classes in this namespace will be loaded and assumed to be field
type plugins.

The manager's definition also sets \Drupal\Core\Field\FieldItemInterface as the
expected interface that all the field type plugins will implement. This is why most field types
extend \Drupal\Core\Field\FieldItemBase to meet these method requirements.

As field types are annotated plugins, the manager provides \Drupal\Core\Field\
Annotation\FieldType as the class that fulfills the annotation definition.

When the user interface defines the available fields, the plugin.manager.field.field_
type service is invoked to retrieve a list of available field types.

There's more…

Altering field types
The \Drupal\Core\Field\FieldTypePluginManager class defines the alter method
as field_info. Modules that implement hook_field_info_alter in their .module
files have the ability to modify field type definitions discovered by the manager:

Chapter 7

159

/**
 * Implements hook_field_info_alter().
 */
function mymodule_field_info_alter(&$info) {
 $info['email']['label'] = t('E-mail address');
}

The preceding alter method will change the human-readable label for the Email field to the
e-mail address.

Defining whether a field is empty
The \Drupal\Core\TypedDate\ComplexDataInterface interface provides an
isEmpty method. This method is used to check whether the field's value is empty, for
example, when verifying that the required field has data. The \Drupal\Core\TypedData\
Plugin\DataType\Map class implements the method. By default, the method ensures that
the values are not empty.

Field types can provide their own implementations to provide a more robust verification.
For instance, the field can validate that the first name can be entered but not the last name,
or the field can require both the first and the last name.

See also
 f The Creating blocks using plugins recipe of this chapter

Creating a custom field widget
Field widgets provide the form interface for editing a field. These integrate with the Form API
to define how a field can be edited and the way in which the data can be formatted before it
is saved. Field widgets are chosen and customized through the form display interface.

In this recipe, we will create a widget for the field created in the Creating a custom field type
recipe in this chapter. The field widget will provide two text fields for entering the first and last
name items.

Getting ready
Create a new module such as the one existing in the first recipe. We will refer to the module
as mymodule throughout the recipe. Use your module's appropriate name.

Plug and Play with Plugins

160

How to do it…
1. We need to create the src/Plugin/Field/FieldWidget directory in the

module's base location. The Field module discovers field widgets in the
Plugin\Field\FieldWidget namespace.

2. Create a RealNameDefaultWidget.php file in the newly created directory so that
we can define the RealNameDefaultWidget class. This will provide a custom form
element to edit the first and last name values of our field:

3. The RealNameDefaultWidget class will extend the \Drupal\Core\Field\
WidgetBase class:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\Plugin\Field\FieldWidget\
RealNameDefaultWidget
 */

namespace Drupal\mymodule\Plugin\Field\FieldWidget;

use Drupal\Core\Field\WidgetBase;

class RealNameDefaultWidget extends WidgetBase {

}

Chapter 7

161

4. Field widgets are like annotated plugins. Annotated plugins use documentation
blocks to provide details of the plugin. We will provide the field widget's identifier,
label, and supported field types:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\Plugin\Field\FieldWidget\
RealNameDefaultWidget
 */

namespace Drupal\mymodule\Plugin\Field\FieldWidget;

use Drupal\Core\Field\WidgetBase;
use Drupal\Core\Field\FieldItemListInterface;
use Drupal\Core\Form\FormStateInterface;

/**
 * Plugin implementation of the 'realname_default' widget.
 *
 * @FieldWidget(
 * id = "realname_default",
 * label = @Translation("Real name"),
 * field_types = {
 * "realname"
 * }
 *)
 */
class RealNameDefaultWidget extends WidgetBase {

}

The @FieldWidget tells Drupal that this is a field widget plugin. It defines id to
represent the machine name, the human-readable name as label, and the field
types that the widget interacts with.

5. We need to implement the formElement method to satisfy the remaining
interface methods after extending \Drupal\Core\Field\WidgetBase:
 /**
 * {@inheritdoc}
 */
 public function formElement(FieldItemListInterface $items,
$delta, array $element, array &$form, FormStateInterface $form_
state) {

Plug and Play with Plugins

162

 $element['first_name'] = array(
 '#type' => 'textfield',
 '#title' => t('First name'),
 '#default_value' => '',
 '#size' => 25,
 '#required' => $element['#required'],
);
 $element['last_name'] = array(
 '#type' => 'textfield',
 '#title' => t('Last name'),
 '#default_value' => '',
 '#size' => 25,
 '#required' => $element['#required'],
);
 return $element;
 }

The formElement method returns a Form API array that represents the widget to
be set, and edits the field data.

6. Next, we need to modify our original RealName field type plugin class in order to
use the default widget that we created. Update the default_widget annotation
property as realname_default:
/**
 * Plugin implementation of the 'realname' field type.
 *
 * @FieldType(
 * id = "realname",
 * label = @Translation("Real name"),
 * description = @Translation("This field stores a first and
last name."),
 * category = @Translation("General"),
 * default_widget = "realname_default",
 * default_formatter = "string"
 *)
 */
class RealName extends FieldItemBase {

7. Rebuild Drupal's cache so that the plugin system can discover the new field widget.

Chapter 7

163

8. Add a Real name field and use the new Real name widget. For example, add it to a
Comment type:

How it works...
Drupal core defines a plugin.manager.field.widget service. By default, this is
handled through the \Drupal\Core\Field\FieldWidgetPluginManager class.
This plugin manager defines the field widget plugins that should be in the Plugin/Field/
FieldWidget namespace, and all the classes in this namespace will be loaded and
assumed to be field widget plugins.

The manager's definition also sets \Drupal\Core\Field\FieldWidgetInterface as
the expected interface that all the field widget plugins will implement. This is why most field
types extend \Drupal\Core\Field\WidgetBase to meet these method requirements.

As field widgets are annotated plugins, the manager provides \Drupal\Core\Field\
Annotation\FieldWidget as the class that fulfills the annotation definition.

The entity form display system uses the plugin.manager.field.widget service to load
field definitions and add the field's element, returned from the formElement method, to the
entity form.

Plug and Play with Plugins

164

There's more

Field widget settings and summary
The \Drupal\Core\Field\WidgetInterface interface defines three methods that can
be overridden to provide a settings form and a summary of the current settings:

 f defaultSettings: This returns an array of the setting keys and default values

 f settingsForm: This returns a Form API array that is used for the settings form

 f settingsSummary: This allows an array of strings to be returned and displayed on
the manage display form for the field

Widget settings can be used to alter the form presented to the user. A setting can be created
that allows the field element to be limited to only enter the first or last name with one text field.

See also
 f The Creating a custom plugin type recipe of this chapter

Creating a custom field formatter
Field formatters define the way in which a field type will be presented. These formatters
return the render array information to be processed by the theming layer. Field formatters
are configured on the display mode interfaces.

In this recipe, we will create a formatter for the field created in the Creating a custom field type
recipe in this chapter. The field formatter will display the first and last names with some settings.

Getting ready
Create a new module like the one existing in the first recipe. We will refer to the module as
mymodule throughout the recipe. Use your module's appropriate name.

How to do it…
1. We need to create the src/Plugin/Field/FieldFormatter directory in the

module's base location. The Field module discovers field formatters in the Plugin\
Field\ FieldFormatter namespace.

Chapter 7

165

2. Create a RealNameFormatter.php file in the newly created directory so that we
can define the RealNameFormatter class. This will provide a custom form element
to display the field's values:

3. The RealNameFormatter class will extend the \Drupal\Core\Field\
FormatterBase class:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\Plugin\Field\FieldFormatter\
RealNameFormatter
 */

namespace Drupal\mymodule\Plugin\Field\FieldFormatter;

use Drupal\Core\Field\FormatterBase;
use Drupal\Core\Field\FieldItemListInterface;

class RealNameFormatter extends FormatterBase {

}

4. Field formatters are like annotated plugins. Annotated plugins use documentation
blocks to provide details of the plugin. We will provide the field widget's identifier,
label, and supported field types:
<?php

/**
 * @file

Plug and Play with Plugins

166

 * Contains \Drupal\mymodule\Plugin\Field\FieldFormatter\
RealNameFormatter
 */

namespace Drupal\mymodule\Plugin\Field\FieldFormatter;

use Drupal\Core\Field\FormatterBase;
use Drupal\Core\Field\FieldItemListInterface;

/**
 * Plugin implementation of the 'realname_one_line' formatter.
 *
 * @FieldFormatter(
 * id = "realname_one_line",
 * label = @Translation("Real name (one line)"),
 * field_types = {
 * "realname"
 * }
 *)
 */

class RealNameFormatter extends FormatterBase {

}

5. We need to implement the viewElements method to satisfy the \Drupal\Core\
Field\FormatterInferface interface. This is used to render the field data:
 /**
 * {@inheritdoc}
 */
 public function viewElements(FieldItemListInterface $items,
$langcode) {
 $element = [];

 foreach ($items as $delta => $item) {
 $element[$delta] = array(
 '#markup' => $this->t('@first @last', array(
 '@first' => $item->first_name,
 '@last' => $item->last_name,
)
),
);
 }
 return $element;
 }

Chapter 7

167

6. Next, we need to modify our original RealName field type's plugin class in order
to use the default formatter that we created. Update the default_formatter
annotation property as realname_one_line:
/**
 * Plugin implementation of the 'realname' field type.
 *
 * @FieldType(
 * id = "realname",
 * label = @Translation("Real name"),
 * description = @Translation("This field stores a first and
last name."),
 * category = @Translation("General"),
 * default_widget = " string_textfield ",
 * default_formatter = "realname_one_line"
 *)
 */

7. Rebuild Drupal's cache so that the plugin system can discover the new field widget.

8. Update an entity view mode with a Real name field to use the Real name
(one line) formatter:

Plug and Play with Plugins

168

How it works…
Drupal core defines a plugin.manager.field.formatter service. By default, this is
handled through the \Drupal\Core\Field\FormatterPluginManager class. This
plugin manager defines the field formatter plugins that should be in the Plugin/Field/
FieldFormatter namespace, and all the classes in this namespace will be loaded and
assumed to be field formatter plugins.

The manager's definition also sets \Drupal\Core\Field\FormatterInterface as
the expected interface that all field formatter plugins will implement. This is why most
field formatters extend \Drupal\Core\Field\FormatterBase to meet these method
requirements.

As field formatters are annotated plugins, the manager provides \Drupal\Core\Field\
Annotation\FieldFormatter as the class that fulfills the annotation definition.

The entity view display system uses the plugin.manager.field.formatter service
to load field definitions and add the field's render array, returned from the viewElements
method, to the entity view render array.

There's more

Formatter settings and summary
The \Drupal\Core\Field\FormatterInterface interface defines three methods that
can be overridden to provide a settings form and a summary of the current settings:

 f defaultSettings: This returns an array of the setting keys and default values

 f settingsForm: This returns a Form API array that is used for the settings form

 f settingsSummary: This allows an array of strings to be returned and displayed on
the manage display form for the field

Settings can be used to alter how the formatter displays information. For example, these
methods can be implemented to provide settings to hide or display the first or last name.

See also
 f The Creating a custom plugin type recipe of this chapter

Chapter 7

169

Creating a custom plugin type
The plugin system provides means to create specialized objects in Drupal that do not require
the robust features of the entity system.

In this recipe, we will create a new plugin type called Unit that will work with units of
measurement and conversions. We will create a plugin manager, default plugin interface,
YAML discovery method, base class, and plugin definition.

This recipe is based on the work being done to export the Physical module to Drupal 8.
The Physical module provides a way to work with units of volume, weight, and dimensions
and attaches them to entities. It discovers unit plugins in the same way that the Breakpoint
module discovers breakpoint plugins.

Getting ready
Create a new module like the one existing in the first recipe. We will refer to the module as
mymodule throughout the recipe. Use your module's appropriate name.

How to do it…
1. All plugins need to have a service that acts as a plugin manager. Create a new

file in your module's src directory called UnitManager.php. This will hold the
UnitManager class.

2. Create the UnitManager class by extending the \Drupal\Core\Plugin\
DefaultPluginManager class:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\UnitManager.
 */

namespace Drupal\mymodule;

use Drupal\Core\Plugin\DefaultPluginManager;
use Drupal\Core\Cache\CacheBackendInterface;
use Drupal\Core\Extension\ModuleHandlerInterface;

class UnitManager extends DefaultPluginManager {

}

Plug and Play with Plugins

170

3. When creating a new plugin type, it is recommended that the plugin manager
provides a set of defaults for new plugins, if an item is missing. This is also
useful to define the default class a plugin should use:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\UnitManager.
 */

namespace Drupal\mymodule;

use Drupal\Core\Plugin\DefaultPluginManager;
use Drupal\Core\Cache\CacheBackendInterface;
use Drupal\Core\Extension\ModuleHandlerInterface;

class UnitManager extends DefaultPluginManager {
 /**
 * Default values for each unit plugin.
 *
 * @var array
 */
 protected $defaults = [
 'id' => '',
 'label' => '',
 'unit' => '',
 'factor' => 0.00,
 'type' => '',
 'class' => 'Drupal\mymodule\Unit',
];

}

4. Later, we will create the Unit class in our module that unit plugins will be instances of.

5. Next, we need to override the \Drupal\Core\Plugin|DefaultPluginManager
class constructor to define the module handler and cache backend:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\UnitManager.
 */

Chapter 7

171

namespace Drupal\mymodule;

use Drupal\Core\Plugin\DefaultPluginManager;
use Drupal\Core\Cache\CacheBackendInterface;
use Drupal\Core\Extension\ModuleHandlerInterface;

class UnitManager extends DefaultPluginManager {
 /**
 * Default values for each unit plugin.
 *
 * @var array
 */
 protected $defaults = [
 'id' => '',
 'label' => '',
 'unit' => '',
 'factor' => 0.00,
 'type' => '',
 'class' => 'Drupal\physical\Unit',
];

 /**
 * Constructs a new \Drupal\mymodule\UnitManager object.
 *
 * @param \Drupal\Core\Cache\CacheBackendInterface $cache_
backend
 * Cache backend instance to use.
 * @param \Drupal\Core\Extension\ModuleHandlerInterface $module_
handler
 * The module handler to invoke the alter hook with.
 */
 public function __construct(CacheBackendInterface $cache_
backend, ModuleHandlerInterface $module_handler) {
 $this->moduleHandler = $module_handler;
 $this->setCacheBackend($cache_backend, 'physical_unit_
plugins');
 }

}

6. We override the constructor so that we can specify a specific cache key. This allows
plugin definitions to be cached and cleared properly; otherwise, our plugin manager
will continuously read the disk to find plugins.

Plug and Play with Plugins

172

7. We also need to override the getDiscovery method. We need to implement a YAML
discovery method:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\UnitManager.
 */

namespace Drupal\mymodule;

use Drupal\Core\Plugin\DefaultPluginManager;
use Drupal\Core\Cache\CacheBackendInterface;
use Drupal\Core\Extension\ModuleHandlerInterface;

class UnitManager extends DefaultPluginManager {
 /**
 * Default values for each unit plugin.
 *
 * @var array
 */
 protected $defaults = [
 'id' => '',
 'label' => '',
 'unit' => '',
 'factor' => 0.00,
 'type' => '',
 'class' => 'Drupal\mymodule\Unit',
];

 /**
 * Constructs a new \Drupal\mymodule\UnitManager object.
 *
 * @param \Drupal\Core\Cache\CacheBackendInterface $cache_
backend
 * Cache backend instance to use.
 * @param \Drupal\Core\Extension\ModuleHandlerInterface $module_
handler
 * The module handler to invoke the alter hook with.
 */
 public function __construct(CacheBackendInterface $cache_
backend, ModuleHandlerInterface $module_handler) {
 $this->moduleHandler = $module_handler;

Chapter 7

173

 $this->setCacheBackend($cache_backend, 'physical_unit_
plugins');
 }

 /**
 * {@inheritdoc}
 */
 protected function getDiscovery() {
 if (!isset($this->discovery)) {
 $this->discovery = new YamlDiscovery('units', $this-
>moduleHandler->getModuleDirectories());
 $this->discovery = new ContainerDerivativeDiscoveryDecorator
($this->discovery);
 }
 return $this->discovery;
 }

}

8. The default plugin manager implementation supports an annotated plugin discovery,
such as field types, field widgets, and field formatters. By setting the discovery property
to YamlDiscovery, we are telling Drupal to look for a *.units.yml file in all the
module directories.

9. The next step is to create a mymodule.services.yml in your module's directory.
This will describe our plugin manager to Drupal, allowing a plugin discovery:
services:
 plugin.manager.unit:
 class: Drupal\mymodule\UnitManager
 arguments: ['@container.namespaces', '@cache.discovery', '@
module_handler']

10. Drupal utilizes services and dependency injection. By defining our class as a service,
we are telling the application container how to initiate our class. This will allow us to
retrieve the manager and access plugins even if another module replaces our defined
plugin manager.

11. Next, we will define the plugin interface that we defined in the plugin manager. The
plugin manager will validate the Unit plugins that implement this interface. Create
a UnitInterface.php file in your module's src directory to hold the interface:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\UnitInterface.

Plug and Play with Plugins

174

 */

namespace Drupal\mymodule;

/**
 * Interface UnitInterface.
 */
interface UnitInterface {

 /**
 * Returns the unit's label.
 *
 * @return string
 * The unit's label.
 */
 public function getLabel();

 /**
 * Returns the unit abbreviation.
 *
 * @return string
 * The abbreviation.
 */
 public function getUnit();

 /**
 * Returns the factor amount for conversions.
 *
 * @return int|float
 * The factor amount.
 */
 public function getFactor();

 /**
 * Converts a value to the base unit.
 *
 * @param int|float $value
 * The amount to convert.
 *
 * @return int|float
 * The converted amount.
 */
 public function toBase($value);

Chapter 7

175

 /**
 * Converts value from base unit to current unit.
 *
 * @param int|float $value
 * The amount to convert.
 *
 * @return int|float
 * The converted amount.
 */
 public function fromBase($value);

 /**
 * Rounds a value.
 *
 * @param int|float $value
 * The value to round.
 *
 * @return int|float
 * The rounded value.
 */
 public function round($value);

}

12. We provide an interface so that we can guarantee that we have these expected
methods when working with a Unit plugin and have an output, regardless of the
logic behind each method. It pushes for encapsulation when working with plugins.

13. Create a mymodule.units.yml file to provide default unit plugin definitions:
centimeters:
 label: Centimeters
 unit: cm
 factor: 1E-2
 type: dimensions
meters:
 label: Meters
 unit: m
 factor: 1
 type: dimensions
feet:
 label: Feet
 unit: ft
 factor: 3.048E-1
 type: dimensions

Plug and Play with Plugins

176

inches:
 label: Inches
 unit: in
 factor: 2.54E-2
 type: dimensions

14. As defined in our plugin's default definition, we need to provide a Unit class.
Create Unit.php in your module's src directory. This class will implement
our UnitInterface interface:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\Unit.
 */

namespace Drupal\mymodule;

use Drupal\Core\Plugin\PluginBase;

/**
 * Class Unit.
 */
class Unit extends PluginBase implements UnitInterface {

 /**
 * {@inheritdoc}
 */
 public function getFactor() {
 return (float) $this->pluginDefinition['factor'];
 }

 /**
 * {@inheritdoc}
 */
 public function getLabel() {
 return $this->t($this->pluginDefinition['label'], array(),
array('context' => 'unit'));
 }

 /**
 * {@inheritdoc}
 */
 public function getUnit() {

Chapter 7

177

 return $this->pluginDefinition['unit'];
 }

 /**
 * {@inheritdoc}
 */
 public function toBase($value) {
 return $this->round($value * $this->getFactor());
 }

 /**
 * {@inheritdoc}
 */
 public function fromBase($value) {
 return $this->round($value / $this->getFactor());
 }

 /**
 * {@inheritdoc}
 */
 public function round($value) {
 return round($value, 5);
 }

 /**
 * Returns the unit's label.
 *
 * @return string
 * Unit label.
 */
 public function __toString() {
 return $this->getLabel();
 }
}

15. This class implements all the required methods defined in our interface.
The toBase and fromBase methods allow us to convert the unit's value
from its defined factor value.

16. The Unit plugin is now implemented and can be integrated through a
custom field type or another custom code.

Plug and Play with Plugins

178

How it works…
Drupal 8 implements a service container, a concept adopted from the Symfony framework.
In order to implement a plugin, there needs to be a manager who can discover and process
plugin definitions. This manager is defined as a service in a module's services.yml with
its required constructor parameters. This allows the service container to initiate the class
when it is required.

In our example, the UnitManager plugin manager discovers the Unit plugin definitions in
YAML files that modules provide. After the first discovery, all the known plugin definitions
are then cached under the physical_unit_plugins cache key.

Plugin managers also provide a method for returning these definitions or creating an object
instance based on an available definition. The instance is created from the class key that we
defined in our plugin's default definition. This also allows a developer to use a custom class to
provide an extended Unit plugin as long as it extends the default Unit class or implements
the UnitInterface interface.

An example usage would be to create a custom form that allows users to convert values. The
following code can be placed in the submit method and will allow us to load our plugin for
feet and return the value in meters:

// Load the manager service.
$unit_manager = \Drupal::service('plugin.manager.unit');

// Create a class instance through the manager.
$feet_instance = $unit_manager->createInstance('feet');

// Convert 12ft into meters.
$meters_value = $feet_instance->toBase(12);

There's more

Specifying an alter hook
Plugin managers have the ability to define an alter hook. The following line of code will be
added to the UnitManager class's constructor to provide hook_physical_unit_alter.
This is passed to the module handler service for invocations:

 /**
 * Constructs a new \Drupal\mymodule\UnitManager object.
 *
 * @param \Drupal\Core\Cache\CacheBackendInterface
 $cache_backend

Chapter 7

179

 * Cache backend instance to use.
 * @param \Drupal\Core\Extension\ModuleHandlerInterface
 $module_handler
 * The module handler to invoke the alter hook with.
 */
 public function __construct(CacheBackendInterface
 $cache_backend, ModuleHandlerInterface $module_handler) {
 $this->moduleHandler = $module_handler;
 $this->alterInfo('physical_unit');
 $this->setCacheBackend($cache_backend,
 'physical_unit_plugins');
 }

Modules implementing hook_physical_unit_alter in the .module file have the ability to
modify all the discovered plugin definitions. Modules have the ability to remove defined plugin
entries or alter any information provided for the annotation definition.

Using a cache backend
Plugins can use a cache backend to improve performance. This can be done by specifying
a cache backend with the setCacheBackend method in the manager's constructor. The
following line of code will allow the Unit plugins to be cached and only discovered on a
cache rebuild.

The $cache_backend variable is passed to the constructor. The second parameter provides
the cache key. The cache key will have the current language code added as a suffix.

There is an optional third parameter that takes an array of strings to represent cache tags
that will cause the plugin definitions to be cleared. This is an advanced feature and plugin
definitions should normally be cleared through the manager's clearCachedDefinitions
method. The cache tags allow the plugin definitions to be cleared when a relevant cache is
cleared as well.

Accessing plugins through the manager
Plugins are loaded through the manager service, which should always be accessed through
the service container. The following line of code will be used in your module's hooks or classes
to access the plugin manager:

$unit_manager = \Drupal::service('plugin.manager.unit');

Plugin managers have various methods to retrieve plugin definitions, which are as follows:

 f getDefinitions: This method will return an array of plugin definitions. It first
makes an attempt to retrieve cached definitions, if any, and sets the cache of
discovered definitions before returning them.

 f getDefinition: This takes an expected plugin ID and returns its definition.

Plug and Play with Plugins

180

 f createInstance: This takes an expected plugin ID and returns an initiated class for
the plugin.

 f getInstance: This takes an array that acts as a plugin definition and returns an
initiated class from the definition.

See also
 f Services and dependency injection at https://www.drupal.org/node/2133171

https://www.drupal.org/node/2133171

8
Multilingual and

Internationalization
In this chapter, we will cover the following recipes to make that your site is multilingual
and internationalized:

 f Translating administrative interfaces

 f Translating configurations

 f Translating content

 f Creating multilingual views

Introduction
This chapter will cover the multilingual and internationalization features of Drupal 8, which
have been greatly enhanced since Drupal 7. The previous version of Drupal required many
extra modules to provide internationalization efforts, but now the majority is provided by
Drupal core.

Drupal core provides the following multilingual modules:

 f Language: This provides you with the ability to detect and support multiple languages

 f Interface translation: This takes installed languages and translates strings that are
presented through the user interface

 f Configuration translation: This allows you to translate configuration entities, such as
date formats and views

 f Content translation: This brings the power of providing content in different languages
and displaying it according to the current language of the user

Multilingual and Internationalization

182

Each module serves a specific purpose in creating the multilingual experience for your
Drupal site. Behind the scenes, Drupal supports the language code for all entities and
cache contexts. These modules expose the interfaces in order to implement and deliver
internationalized experiences.

Translating administrative interfaces
The interface translation module provides a method for translating strings found in the Drupal
user interface. Harnessing the Language module, interface translations are automatically
downloaded from the Drupal translation server. By default, the interface language is loaded
through the language code as a path prefix. With the default Language configuration, paths
will be prefixed with the default language.

Interface translations are based on strings provided in the code that are passed through the
internal translation functions.

In this recipe, we will enable Spanish, import the language files, and review the translated
interface strings to provide missing or custom translations.

Getting ready
Drupal 8 provides an automated installation process of translation files. For this to work, your
web server must be able to communicate with https://localize.drupal.org/. If your
web server cannot automatically download the files from the translation server, you can refer
to the manual installation instructions, which will be covered in the There's more section.

How to do it…
1. Go to Extend and install the Interface Translation module. It will prompt you to

enable the Language, File, and Field modules to be installed as well if they are not.

2. After the module is installed, click on Configuration. Go to the Languages page
under the Regional and Language section.

3. Click on Add language in the languages overview table:

https://localize.drupal.org/

Chapter 8

183

4. The Add language page provides a select list of all available languages that the
interface can be translated to. Select Spanish, and then click on Add language.

5. A batch process will run, install the translation language files, and import them.

6. The INTERFACE TRANSLATION column specifies the percentage of active translatable
interface strings that have a matching translation. Clicking on the link allows you to
view the User interface translation form:

7. The Filter Translatable Strings form allows you to search for translated strings or
untranslated strings. Select Only untranslated strings from the Search in select
list and click on Filter.

8. Using the text box on the right-hand side of the screen, a custom translation can
be added to Only untranslated strings. Type in a translation for the item.

9. Click on Save translations to save the modification.

10. Go to /es/node/add and you will notice that the Basic page content type
description will now match your translation.

Multilingual and Internationalization

184

How it works…
The interface translation module provides \Drupal\locale\LocaleTranslation, which
implements \Drupal\Core\StringTranslation\Translator\TranslatorInterface.
This class is registered under the string_translation service as an available lookup
method.

When the t function or the \Drupal\Core\StringTranslation\
StringTranslationTrait::t method is invoked, the string_translation service is
called to provide a translated string. The string_translation service will iterate through
the available translators and return a translated string, if possible.

Developers need to note that this is a key reason to ensure that
module strings are passed through translation functions. It allows
you to identify strings that need to be translated.

The translator provided in the interface translation will then attempt to resolve the provided
string against known translations for the current language. If a translation has been saved,
it will be returned.

There's more…
We will explore ways to install other languages, check translation statuses, and many more in
the following sections.

Manually installing language files
Translation files can be manually installed by downloading them from the Drupal.org
translation server and uploading them through the language interface. You can also use
the import interface to upload custom Gettext Portable Object (.po) files.

Drupal core and most contributed projects have .po files available at the Drupal translations
site, https://localize.drupal.org. On the site, click on Download and you will be able
to download a .po file for Drupal core in all available languages. Additionally, clicking on a
language will provide more translations for a specific language across projects.

https://localize.drupal.org

Chapter 8

185

You can import a .po file by going to the User interface translation form and selecting
the Import tab. You need to select the .po file and then the appropriate language. You have
the ability to treat the uploaded files as custom created translations. This is recommended if
you are providing a custom translation file that was not provided by Drupal.org. If you are
updating Drupal.org translations manually, make sure that you check the box that overwrites
existing noncustom translations. The final option allows you to replace customized translations
if the .po file provides them. This can be useful if you have translated missing strings that might
now be provided by the official translation file.

Drupal.org

Multilingual and Internationalization

186

Checking translation status
As you add new modules, the available translations will grow. The Interface translation
module provides a translation status report that is accessible from the Reports page. This will
check the default translation server for the project and check whether there is a .po available
or if it has changed. In the event of a custom module, you can provide a custom translation
server, which is covered in Providing translations for a custom module.

If an update is available, you will be alerted. You can then import the translation file updates
automatically or download and manually import them.

Exporting translations
In the User interface translation form, there is an Export tab. This form will provide
a Gettext Portable Object (.po) file. You have the ability to export all the available
source text that is discovered in your current Drupal site without translations. This will provide
a base .po for translators to work on.

Additionally, you can download a specific language. Specific language downloads can include
noncustomized translations, customized translations, and missing translations. Downloading
customized translations can be used to help make contributions to the multilingual and
internationalization efforts of the Drupal community!

Interface translation permissions
The interface translation module provides a single permission called Translate interface text.
This permission grants users the permission to interact with all of the module's capabilities.
It is flagged with a security warning as it allows users with this permission to customize all the
output text presented to users.

However, it does allow you to provide a role for translators and limits their access to just
translation interfaces.

Using interface translation to customize default English strings
The interface translation module is useful beyond its typical multilingual purposes. You can
use it to customize strings in the interface that are not available to be modified through typical
hook methods, or if you are not a developer!

Firstly, you will need to edit the English language from the Languages screen. Check the
checkbox for Enable interface translation for English and click on Save language. You will
now have the ability to customize existing interface strings.

This is only recommended for areas of the interface that cannot already be
customized through the normal user interface or provided API mechanisms.

Chapter 8

187

Interface text language detection
The Language module provides detection and selection rules. By default, the module will detect
the current language based on the URL, with the language code acting as a prefix to the current
path. For example, /es/node will display the node listing page in Spanish:

You can have multiple detection options enabled at once and use ordering to decide which
takes precedence. This can allow you to use the language code in the URL first, but, if missing,
a fallback to the language is specified by the user's browser.

Some detection methods have settings. For instance, the URL detection method can be based
on the default path prefix or subdomains.

Providing translations for a custom module
Modules can provide custom translations in their directories or point to a remote file.
These definitions are added to the module's info.yml file. First, you need to specify the
interface translation project key if it differs from the project's machine name.

You need to then specify a server pattern through the interface translation server
pattern key. This can be a relative path to Drupal's root, such as modules/custom/
mymodule/translation.po, or a remote file URL at http://example.com/files/
translations/mymodule/translation.po.

Distributions (or other modules) can implement hook_locale_translation_projects_
alter to provide this information on behalf of modules or alter defaults.

http://example.com/files/translations/mymodule/translation.po
http://example.com/files/translations/mymodule/translation.po

Multilingual and Internationalization

188

The server pattern accepts the following different tokens:

 f %core for the version of a course (for example, 8.x)

 f %project for the project's name

 f %version for the current version string

 f %language for the language code

More information on the interface translation keys and variables can be found in the local.
api.php document file located in the interface translation module's base folder.

See also
 f Refer to the Drupal translation server at https://localize.drupal.org/

translate/drupal8

 f You can contribute using the localization server at https://www.drupal.org/
node/302194

 f Refer to the locale.api.php documentation at https://api.drupal.org/
api/drupal/core%21modules%21locale%21locale.api.php/8

 f Refer to PO and POT files: https://www.drupal.org/node/1814954

Translating configuration
The Configuration translation module provides an interface for translating configurations
with Interface translation and Language as dependencies. This module allows you to translate
configuration entities. The ability to translate configuration entities adds an extra level of
internationalization.

Interface translation allows you to translate strings provided in your Drupal site's code base.
Configuration translation allows you to translate importable and exportable configuration
items that you have created, such as your site title or date formats.

In this recipe, we will translate date format configuration entities. We will provide localized
date formats for Danish to provide a more internationalized experience.

Getting ready
Your Drupal site needs to have two languages enabled in order to use Configuration
Translation. Install Danish from the Languages interface.

https://localize.drupal.org/translate/drupal8
https://localize.drupal.org/translate/drupal8
https://www.drupal.org/node/302194
https://www.drupal.org/node/302194
https://api.drupal.org/api/drupal/core%21modules%21locale%21locale.api.php/8
https://api.drupal.org/api/drupal/core%21modules%21locale%21locale.api.php/8
https://www.drupal.org/node/1814954

Chapter 8

189

How to do it…
1. Go to the Extend and install the Configuration Translation module. It will prompt

you to enable the Interface Translation, Language, File, and Field modules to be
installed as well if they are not.

2. After the module is installed, go to the Configuration. Go to the Configuration
translation page under the Regional and Language section.

3. Click on the list for the Date format option in the configuration entity option table:

4. We will translate the Default long date format to represent the Danish format.
Click on the Translate for the Default long date format row.

5. Click on Add to create a Danish translation:

Multilingual and Internationalization

190

6. For Danish, we will provide the following PHP date format: l j. F, Y – H.i. This will
display the day of the week, day of the month, the month, full year, and 24 hour
notation for time.

7. Click on Save translation.

8. Whenever a user is browsing your Drupal site with Danish as their language, the date
format will now be localized for their experience.

How it works…
The Configuration translation module requires Interface translation; however, it does not
work in the same fashion. The module modifies all entity types that extend the \Drupal\
Core\Config\Entity\ConfigEntityInterface interface. It adds a new handler
under the config_translation_list key. This is used to build a list of available
configuration entities and their bundles.

The module alters the configuration schema in Drupal and updates the default configuration
element definitions to use a specified class under \Drupal\config_translation\Form.
This allows \Drupal\config_translation\Form\ConfigTranslationFormBase and
its child classes proper saved translated configuration data that can be modified through the
configuration translation screens.

When the configuration is saved, it is identified as being part of a collection. The collection
is identified as language.LANGCODE and all translated configuration entities are saved
and loaded by this identifier. Here is an example of how the configuration items are stored
in the database:

When browsing the site in the es language code, the appropriate block.block.bartik_
account_menu configuration entity will be loaded. If you are using the default site, or no
language code, the configuration entity with an empty collection will be used.

Chapter 8

191

There's more…
Configuration entities and the ability to translate them are a big part of Drupal 8's multilingual
capabilities. We'll explore them in detail in the next recipe.

Altering configuration translation info definitions
Modules have the ability to invoke the hook_config_translation_info_alter hook to
alter discovered configuration mappers. For instance, the Node module does this to modify
the node_type configuration entity:

/**
 * Implements hook_config_translation_info_alter().
 */
function node_config_translation_info_alter(&$info) {
 $info['node_type']['class'] = 'Drupal\node\ConfigTranslation\
NodeTypeMapper';
}

This updates the node_type definition to use the \Drupal\node\ConfigTranslation\
NodeTypeMapper custom mapper class. This class adds the node type's title as a configurable
translation item.

Translating views
Views are configuration entities. When the Configuration translation module is enabled, it is
possible to translate Views. This will allow you to translate display titles, exposed form labels,
and other items. Refer to the Creating a multilingual view recipe in this chapter for
more information.

See also
 f In recipe Creating a Multilingual View of Chapter 8, Multilingual and

Internationalization

Translating content
The content translation module provides a method for translating content entities, such as
nodes and blocks. Each content entity needs to have translation enabled, which allows you
to granularly decide what properties and fields are translated.

Content translations are duplications of the existing entity but flagged with a proper language
code. When a visitor uses a language code, Drupal attempts to load content entities using that
language code. If a translation is not present, Drupal will render the default nontranslated entity.

Multilingual and Internationalization

192

Getting ready
Your Drupal site needs to have two languages enabled in order to use Content translation.
Install Spanish from the Languages interface.

How to do it…
1. Go to Extend, and install the Content translation module. It will prompt you to

enable the Language modules to be installed as well if they are not.

2. After the module is installed, go to Configuration. Go to the Content language
and translation page under the Regional and Language section.

3. Check the checkbox next to the Content to expose settings for the current
content types.

4. Enable the content translation for the Basic page and keep the provided default
settings that enable translation for each field. Click on Save configuration:

5. First, create a new Basic page node. We will create this in the site's default language.

Chapter 8

193

6. When viewing the new node, click on the Translate tab. From the Spanish language
row, click on Add to create a translated version of the node:

7. The content will be prepopulated with the default language's content. Replace the
title and body with the translated text:

8. Click on Save and keep published (this translation) to save the new translation.

Multilingual and Internationalization

194

How it works
The Content translation module works by utilizing language code flags. All content entities
and field definitions have a language code key. A content entity has a language code column,
which specifies what language the content entity is for. Field definitions also have a language
code column, which is used to identify the translation for the content entity. Content entities
can provide handler definitions for handling translations, or else the Content translation
module will provide its own.

Each entity and field record is saved with the proper language code to use. When an entity is
loaded, the current language code is taken into consideration to ensure that the proper entity
is loaded.

There's more

Flagging translations as outdated
The Content translation module provides a mechanism to flag translated entities as possibly
being outdated. The Flag other translations as outdated flag provides a way to make a note
of entities that will need updated translations:

This flag does not change any data but rather provides a moderation tool. This makes it
easy for translators to identify content, which has been changed and requires updating.
The translation tab for the content entity will highlight all translations, which are still
marked as outdated. As they are changed, the editor can uncheck the flag.

Chapter 8

195

Translating content links
Mostly Drupal menus contain links to nodes. Menu links are not translated by default, and
the Custom menu links option must be enabled under Content translation. You will need to
translate node links manually from the menu administration interface.

Enabling a menu link from the node create and edit form will not work with translations. If you
edit the menu settings from a translation, it will edit the nontranslated menu link.

Defining translation handlers for entities
The Content translation module requires entity definitions to provide information about
translation handlers. If this information is missing, it will provide its own defaults. The Entity
API is covered in Chapter 10, but we will quickly discuss how the content translation module
interacts with the Entity API.

Content entity definitions can provide a translation handler. If not provided, it will default
to \Drupal\content_translation\ContentTranslationHandler. A node provides
this definition and uses it to place the content translation information into the vertical tabs.

The content_translation_metadata key defines how to interact with translation
metadata information, such as flagging other entities as outdated. The content_
translation_deletion key provides a form class to handle entity translation deletion.

Currently, as of 8.0.1, no core modules provide implementations that override the default
content_translation_metadata or content_translation_deletion.

See also
 f Chapter 10, The Entity API

Creating multilingual views
Views, being configuration entities, are available for translation. However, the power of
multilingual views does not lie just in configuration translation. Views allow you to build
filters that react to the current language code. This ensures that the content, which has
been translated for the user's language, is displayed.

In this recipe, we will create a multilingual view that provides a block showing recent articles.
If there is no content, we will display a translated no results message.

Multilingual and Internationalization

196

Getting ready
Your Drupal site needs to have two languages enabled in order to use Content Translation.
Install Spanish from the Languages interface. Enable content translation for Articles. You will
also need to have some translated content as well.

How to do it…
1. Go to Views from Structure, and click on Add new view.

2. Provide a view name, such as Recent articles, and change the type of content
to Article. Mark that you would like to Create a block and then click on Save
and edit.

3. Add a new Filter criteria. Search for Translation language and add the filter for
Content. Set the filter to check the Interface text language selected for page.
This will only display that the content that has been translated or the base language
is the current language:

4. Add a No results behavior to the Text area option. Provide some sample text,
such as Currently no recent articles.

Chapter 8

197

5. Save the view.

6. Click on the Translate tab. Click on Add for the Spanish row to translate the view for
the language.

7. Expand the Master display settings and then the Recent articles display options
fieldsets. Modify the Display title option to provided a translated title:

8. Expand No results behavior to modify the text on the right-hand side of the screen
using the textbox on the left-hand side of the screen as the source for the original text:

9. Click on Save translation.

Multilingual and Internationalization

198

10. Place the block on your Drupal site. Visit the site through /es and notice the
translated Views block:

How it works…
Views provide the Translation language filter that builds off of this element. The Views plugin
systems provides a mechanism for gathering and displaying all available languages. These
will be saved as a token internally and then substituted with the actual language code when
the query is executed. If a language code is no longer available, you will see the Content
language for selected page and Views will fall back to the current language when viewed.

You will come across this option when editing views provided by Drupal
core or contributed modules. While this is not an option in the user
interface, it is a default practice to add a language filter defined as
LANGUAGE_language_content, which will force the view to
be multilingual.

The filter tells Views to query based on the language code of the entity and its fields.

Views are configuration entities. The Configuration translation module allows you to translate
views. Views can be translated from the main Configuration translation screens from the
Configuration area or by editing individual views.

Most translation items will be under the Master display settings tab unless overridden in
specific displays. Each display type will also have its own specific settings.

Chapter 8

199

There's more…

Translating exposed form items and filters
Each view has the ability to translate the exposed form from the Exposed Form section.
This does not translate the labels on the form but the form elements. You have the ability to
translate the submit button text, reset button label, sort label, and how ascending or
descending should be translated.

You can translate the labels for exposed filters from the Filters section. Each exposed
filter will show up as a collapsible fieldset allowing you to configure the administrative label
and front facing label.

By default, available translations need to be imported through the global interface
translation context.

Translating display and row format items
Some display formats have translatable items. These can be translated in each display
mode's section. For example, the following items can be translated with their display format:

 f The Table format allows you to translate the table summary

 f The RSS feed format allows you to translate the feed description

 f The Page format allows you to translate the page's title

 f The Block format allows you to translate the block's title

Multilingual and Internationalization

200

Translating page display menu items
Custom menu links can be translated through the Content translation module. Views using a
page display; however, they do not create custom menu link entities. The Views module takes
all views with a page display and registers their paths into the routing system directly, as if
defined in a module's routing.yml file.

For example, the People view that lists all users can be translated to have an updated tab
name and link description.

See also
 f Chapter 3, Displaying Content through Views

201

9
Configuration

Management –
Deploying in Drupal 8

In this chapter, we will explore the configuration management system and how to deploy
configuration changes. Here is a list of the recipes covered in this chapter:

 f Importing and exporting configurations

 f Synchronizing site configurations

 f Using command-line workflow processes

 f Using the filesystem for configuration storage

Introduction
Drupal 8 provides a new, unified system for managing configurations. In Drupal 8, all
configurations are saved in configuration entities that match a defined configuration
schema. This system provides a standard way of deploying the configuration between
Drupal site environments and updating the site configuration.

Once the configuration has been created, or imported, it goes into an immutable state.
If a module tries to install the configuration that exists, it will throw an exception and
be prevented. Outside the typical user interface, the configuration can only be modified
through the configuration management system.

Configuration Management – Deploying in Drupal 8

202

The configuration management system can be manipulated through a user interface provided
by the Configuration management module or through the command-line interface tools.
These tools allow you to follow the development paradigm of utilizing a production site and
development site where changes are made to the development site and then pushed to
production.

Instead of creating two different Drupal sites for the recipes in this chapter,
you can utilize the Drupal multisite functionality. For more information, refer
to the Installing Drupal recipe of Chapter 1, Up and Running with Drupal 8.
Note that if you use a multisite, you need to clone your development site's
database into the site acting as your production site to replicate a realistic
development and production site workflow.

Importing and exporting configurations
Configuration management in Drupal 8 provides a solution to a common problem when
working with a website across multiple environments. No matter what the workflow pattern
is, at some point the configuration needs to move from one place to another, such as from
production to a local environment. When pushing the development work to production, you
need to have some way to put the configuration in place.

Drupal 8's user interface provides a way to import and export configuration entities via the
YAML format. In this recipe, we will create a content type, export its configuration, and then
import it into another Drupal site.

In this recipe, we will export a single configuration entity from a development site.
The configuration YAML export will be imported into the production site in order to
update its configuration.

Getting ready
You will need a base Drupal site to act as the development site. Another Drupal site, which is a
clone of the development site, must be available to act as the production Drupal site.

How to do it…
1. To get started, create a new content type on the development site. Name the content

type Staff Page and click on Save and manage fields to save the content type. We
will not be adding any additional fields.

2. Once the content type has been saved, visit Extend and install the Configuration
Manager module if it is not installed:

Chapter 9

203

3. From your Drupal site's Configuration page, go to Configuration synchronization under
the Development group. This section allows you to import and export configuration:

Configuration Management – Deploying in Drupal 8

204

4. Click on the Export tab at the top of the page. The default page will be for a
Full archive export, which contains the configuration of your entire Drupal site.
Click on the Single item subtab to export a single configuration entity instead:

5. Select Content type from the Configuration type drop-down menu. Then, choose
your content type from the Configuration name drop-down menu. Its configuration
will populate the configuration textbox:

Chapter 9

205

6. Copy the YAML content from the textbox so that you can import it into your other
Drupal site.

7. On your production Drupal site, install the Configuration management module just as
you did for the development site, if it is not yet installed.

8. Visit the Configuration synchronization page and click on the Import tab.

9. Click on Single item and select Content type from the Configuration type:

Configuration Management – Deploying in Drupal 8

206

10. Paste your exported configuration YAML into the textbox and click on Import:

11. Click on Confirm on the confirmation form to finalize your import to the production
Drupal site for your custom content type.

12. Visit the Structure page and then the Content Types page to verify that your content
type has been imported.

Chapter 9

207

How it works…
At the most basic level, configurations are just a mapping of keys and values, which can be
represented as a PHP array and translated into YAML format.

Configuration management uses schema definitions for configuration entities. The schema
definition provides a configuration namespace and the available keys and data types. The
schema definition provides a typed data definition for each option that allows validation of
the individual values and configuration as a whole.

The export process reads the configuration data and translates it into YAML format. The
configuration manager then receives the configuration in the form of YAML and converts it
back to a PHP array. The data is then updated in the database.

When importing the configuration, Drupal checks the value of the configuration YAML's uuid
key, if present, against any current configuration with the same Universally Unique Identifier
(UUID). A UUID is a pattern used in software to provide a method of identifying an object
across different environments. This allows Drupal to correlate a piece of data from its UUID
since the database identifier can differ across environments. If the configuration item has a
matching machine name but a mismatching UUID, an error will be thrown.

There's more…

Configuration dependencies
Configuration entities define dependencies when they are exported. The dependency
definitions ensure that the configuration entity's schema is available and other module
functionality.

When you review the configuration export for field.storage.node.body.yml, it defines
node and text as dependencies:

dependencies:
 module:
 - node
 - text

If the node or text module is not enabled, the import will fail and throw an error.

Configuration Management – Deploying in Drupal 8

208

Saving to a YAML file for a module's configuration installation
Chapter 6, Creating Forms with the Form API, the providing configuration on install or update,
discusses how to use a module to provide configurations on the module's installation. Instead
of manually writing configuration YAML files for installation, the Configuration management
module can be used to export configurations and save them in your module's config/
install directory.

Any item exported through the user interface can be used. The only requirement is that
you need to remove the uuid key, as it denotes the site's UUID value and invalidates the
configuration when it makes an attempt at installation.

Configuration schemas
The configuration management system in Drupal 8 utilizes the configuration schema to
describe configurations that can exist. Why is this important? It allows Drupal to properly
implement typed data on stored configuration values and validate them, providing a
standardized way of handling configurations for translation and configuration items.

When a module uses the configuration system to store data, it needs to provide a schema
for each configuration definition it wishes to store. The schema definition is used to validate
and provide typed data definitions for its values.

The following code defines the configuration schema for the navbar_awesome module,
which holds two different Boolean configuration values:

navbar_awesome.toolbar:
 type: config_object
 label: 'Navbar Awesome toolbar settings'
 mapping:
 cdn:
 type: boolean
 label: 'Use the FontAwesome CDN library'
 roboto:
 type: boolean
 label: 'Include Roboto from Google Fonts CDN'

This defines the navbar_awesome.toolbar configuration namespace; it belongs to the
navbar_awesome module and has the toolbar configuration. We then need to have two
cdn and roboto subvalues that represent typed data values. A configuration YAML for this
schema would be named navbar_awesome.toolbar.yml after the namespace, and it
contains the following code:

cdn: true
roboto: true

Chapter 9

209

In turn, this is what the values will look like when represented as a PHP array:

[
 'navbar_awesome' => [
 'cdn' => TRUE,
 'roboto' => TRUE,
]
]

The configuration factory classes then provide an object-based wrapper around these
configuration definitions and provide validation of their values against the schema. For
instance, if you try to save the cdn value as a string, a validation exception will be thrown.

See also
 f Chapter 4, Extending Drupal

 f configuration schema/metadata in the Drupal.org community handbook at
https://www.drupal.org/node/1905070

Synchronizing site configurations
A key component to manage a Drupal website is configuration integrity. A key part of
maintaining this integrity is ensuring that your configuration changes that are made
in development are pushed upstream to your production environments. Maintaining
configuration changes by manually exporting and importing through the user interface
can be difficult and does not provide a way to track what has or has not been exported or
imported. At the same time, manually writing module hooks to manipulate the configuration
can be time consuming. Luckily, the configuration management solution provides you with
the ability to export and import the entire site's configuration.

A site export can only be imported into another copy of itself. This allows you to export your
local development environment's configuration and bring it to staging or production without
modifying the content or the database directly.

In this recipe, we will export the development site's complete configuration entities' definitions.
We will then take the exported configuration and import it into the production site. This will
simulate a typical deployment of a Drupal site with changes created in development that is
ready to be released in production.

https://www.drupal.org/node/1905070

Configuration Management – Deploying in Drupal 8

210

Getting ready
You will need a base Drupal site to act as the development site. Another Drupal site, which is a
clone of the development site, must be available to act as the production Drupal site.

You will need to get the Configuration management module enabled.

How to do it…
1. Visit the Configuration page and go to Configuration synchronization.

2. Navigate to the Export tab, and click on the Export button to begin the export and
download process:

3. Save the gzipped tarball; this contains an archive of all the site's configuration
as YAML.

4. Visit your other Drupal site and navigate to its Configuration synchronization page.

5. Click on the Import tab and then on the Full archive tab. Use the Configuration
archive file input, and click on Choose File to select the tarball you just downloaded.
Click on Upload to begin the import process.

Chapter 9

211

6. You will be taken to the Synchronize tab to review changes to be imported:

7. Click on Import all to update the current site's configuration to the items in
the archive.

8. A batch operation will begin with the import process:

How it works…
The Configuration synchronization form provides a way to interface with the config database
table for your Drupal site. When you visit the Export page and create the tarball, Drupal
effectively dumps the contents of the config table. Each row represents a configuration entity
and will become its own YAML file. The contents of the YAML file represent its database value.

When you import the tarball, Drupal extracts its content. The files are placed in the available
CONFIG_SYNC_DIRECTORY directory. The synchronization page parses the configuration
entity YAMLs and provides a difference check against the current site's configuration. Each
configuration item can be reviewed, and then all the items can be imported. You cannot
choose to selectively import individual items.

Configuration Management – Deploying in Drupal 8

212

There's more…

Universally Unique Identifier
When a Drupal site is installed, the UUID is set. This UUID is added to the exported
configuration entities and is represented by the uuid key. Drupal uses this key to identify
the source of the configuration. Drupal will not synchronize configurations that do not have
a matching UUID in their YAML definition.

You can review the site's current UUID value by reviewing the system.site configuration
object.

A synchronization folder
Drupal uses a synchronization folder to hold the configuration YAML files that are to be
imported into the current site. This folder is represented by the CONFIG_SYNC_DIRECTORY
constant. If you have not defined this in the global $config_directories variable in your
site's settings.php, then it will be a randomly named directory in your site's file directory.

When Drupal 8 entered its beta release cycle, this folder was
referenced as a staging folder and referenced by the CONFIG_
STAGING_DIRECTORY. This is now deprecated; however, the
internals of the configuration management system support
reading CONFIG_STAGING_DIRECTORY as CONFIG_SYNC_
DIRECTORY. This will be removed in Drupal 9.

The synchronization form will use the configuration management discovery service to look
for configuration changes to be imported from this folder.

Installing a configuration from a new site
Drupal's configuration management system will not allow the import of configuration entities
that originated at a different Drupal site. When a Drupal site is installed, the system.site
configuration entity saves a UUID for the current site instance. Only cloned versions of this
site's database can accept configuration imports from it.

The configuration installer profile is a custom distribution, which will allow you to import the
configuration despite the configuration's site UUID. The profile doesn't actually install itself.
When you use the profile, it will provide an interface to upload a configuration export that
will then be imported, as shown in the following screenshot:

Chapter 9

213

The distribution can be found at https://www.drupal.org/project/config_
installer.

Using command-line workflow processes
Drupal 8's configuration systems solve many problems encountered when exporting and
deploying configurations in Drupal 7. However, the task of synchronizing the configuration
is still a user interface task and requires the manipulation of archive files that contain the
configuration exports for a Drupal 8 site.

Configuration management can be done on the command line through Drush without
requiring it to be installed. This mitigates any requirement to log in to the production
website to import changes. It also opens the ability for more advanced workflows that
place the configuration in version control.

In this recipe, we will use Drush to export the development site's configuration to the
filesystem. The exported configuration files will then be copied to the production site's
configuration directory. Using Drush, the configuration will be imported into production
to complete the deployment.

https://www.drupal.org/project/config_installer
https://www.drupal.org/project/config_installer

Configuration Management – Deploying in Drupal 8

214

Getting ready…
You will need a base Drupal site to act as the development site. Another Drupal site, which is a
clone of the development site, must be available to act as the production Drupal site.

This recipe uses Drush. If you do not have Drush installed, instructions can be found at
http://docs.drush.org/en/master/install/. Drush needs to be installed at both
the locations where your Drupal sites are located.

How to do it…
1. For demonstration purposes, change your development site's name to Drush

Config Sync Demo!. This way, there is at least one configuration change to
be imported to the production Drupal site.

2. Open a command-line terminal and change your directory to the working directory
of your development Drupal site.

3. Use the drush config-export command to export the configuration to a
directory. The command will default to the sync configuration directory defined
in your Drupal 8 site.

If you have not explicitly defined a sync directory, Drupal automatically
creates a protected folder in the current site's uploaded files' directory,
with a unique hash suffix on the directory name.

4. You will receive a message that the configuration has been exported to the directory.

5. Using a method of your choice, copy the contents of the configuration sync folder to
your other Drupal sites that match the configuration sync folder. For example, a
default folder generated by Drupal can be sites/default/files/config_XYZ/
sync.

6. Open a command-line terminal and change your directory to your production Drupal
site's working directory.

7. Use the drush config-import command to begin the process of importing
your configuration.

http://docs.drush.org/en/master/install/

Chapter 9

215

8. Review the changes made to the configuration entity keys and enter y to confirm
the changes:

9. Check whether your configuration changes have been imported.

How it works…
The Drush command-line tool is able to utilize the code found in Drupal to interact with it.
The config-export command replicates the functionality provided by the Configuration
management module's full site export. However, you do not need to have the Configuration
management module enabled for the command to work. The command will extract the
available site configuration and write it to a directory, which is unarchived.

The config-import command parses the files in a directory. It will make an attempt to
run a difference check against the YAML files like the Configuration management module's
synchronize overview form does. It will then import all the changes.

There's more…

Drush config-pull
Drush provides a way of simplifying the transportation of configuration between sites.
The config-pull command allows you to specify two Drupal sites and move the export
configuration between them. You can either specify a name of a subdirectory under the
/sites directory or a Drush alias.

Configuration Management – Deploying in Drupal 8

216

The following command will copy a development site's configuration and import it into the
staging server's site:

drush config-pull @mysite.local @mysite.staging

Additionally, you can specify the --label option. This represents a folder key in the
$config_directories setting. The option defaults to sync automatically. Alternatively, you
can use the --destination parameter to specify an arbitrary folder that is not specified in
the setting of $config_directories.

Using the Drupal Console
Drush has been part of the Drupal community since Drupal 4.7 and is a custom built
command-line tool. The Drupal Console is a Symfony Console-based application used
to interact with Drupal. The Drupal Console project provides a means for configuration
management over the command line.

You can learn more about the Drupal Console in Chapter 13, Drupal CLI
or at http://www.drupalconsole.com/.

The workflow is the same, except the naming of the command. The configuration export
command is config:export, and it is automatically exported to your system's temporary
folder until a directory is passed. You can then import the configuration using the
config:import command.

Editing the configuration from the command line
Both Drush and Drupal Console support the ability to edit the configuration through the
command line in YAML format. Both the tools operate in the same fashion and have similar
command names:

 f Drush: config-edit [name]

 f Console: config:edit [name]

The difference is that Drush will list all the available options to be edited if you do not pass a
name, while Console allows you to search.

http://www.drupalconsole.com/

Chapter 9

217

When you edit a configuration item, your default terminal-based text editor will open. You
will be presented with a YAML file that can be edited. Once you save your changes, the
configuration is then saved on your Drupal site:

Exporting a single configuration item
Both Drush and Console provide their own mechanisms for exporting a single configuration
entity:

 f Drush: config-get [name]

 f Console: config:debug [name]

Configuration Management – Deploying in Drupal 8

218

Drush will print the configuration's output to the terminal, while Console's default behavior is
to write the output to the file disk. For example, the following commands will output the values
from system.site in YAML format:

$ drush config-get system.site
$ drupal config:debug system.site

Using version control and command-line workflow
A benefit of having the configuration exportable to YAML files is the fact that the configuration
can be kept in version control. The Drupal site's CONFIG_SYNC_DIRECTORY directory can be
committed to version control to ensure that it is transported across environments and properly
updated. Deployment tools can then use Drush or Console to automatically import changes.

The config-export command provided by Drush provides the Git integration:

drush config-export --add

Appending the --add option will run git add -p for an interactive staging of the changed
configuration files:

drush config-export --commit --message="Updating configuration "

The --commit and optional --message options will stage all configuration file changes and
commit them with your message:

drush config-export --push --message="Updating configuration "

Finally, you can also specify --push to make a commit and push it to the remote repository.

Chapter 9

219

See also
 f Chapter 13, The Drupal CLI

 f Drush at http://docs.drush.org/en/master/

 f Drupal Console at http://www.drupalconsole.com/

Using the filesystem for configuration storage
Originally, Drupal 8 utilized the filesystem for the configuration using the database as a
mere cache. During the development cycle, it was changed to keep the configuration in the
database and use YAMLs and disks for synchronization. It is possible to enable this setting
and have Drupal primarily utilize the disk for configuration storage. This change needs to be
defined before you install your Drupal site and existing installations cannot be converted.

In this recipe, we will configure Drupal to write and read its configuration from the filesystem
instead of the database. Configuration changes will automatically be imported on the cache
rebuild.

Overall, this is an advanced topic. This recipe will explain how to use an
alternative storage for the configuration in your Drupal site. For detailed
information on Drupal's change from disk to database storage, refer to
the issue that committed the change at https://www.drupal.org/
node/2161591.

How to do it…
1. Create a folder called config in the sites/default directory. Create the active and

sync folders in config. These will hold the configuration YAMLs for your Drupal site:

http://docs.drush.org/en/master/
http://www.drupalconsole.com/
https://www.drupal.org/node/2161591
https://www.drupal.org/node/2161591

Configuration Management – Deploying in Drupal 8

220

2. Copy the default.settings.php file and name it settings.php.

3. In the editor of your choice, edit the newly created settings.php.

4. Find the empty $config_directories array and provide definitions that point to
the newly created directories:
$config_directories = [
 CONFIG_ACTIVE_DIRECTORY => __DIR__ . 'config/active',
 CONFIG_SYNC_DIRECTORY => __DIR__ . 'config/sync',
];

The CONFIG_ACTIVE_DIRECTORY constant represents active and will be
deprecated in Drupal 9, since this is an alternative workflow. CONFIG_SYNC_
DIRECTORY represents the synchronization folder for the confirmation. The
__DIR__ PHP magic constant will represent the file's current working directory,
providing an absolute path to the configuration folders.

5. Find the section for Active configuration settings. At the time of writing, the
document block for the setting is at line 584.

6. Remove the # to uncomment $settings['bootstrap_config_storage'].
This will override the default configuration storage backend to use the file storage:
$settings['bootstrap_config_storage'] = array('Drupal\Core\Config\
BootstrapConfigStorageFactory', 'getFileStorage');

The \Drupal\Core\Config\BootstrapConfigStorageFactory class
method's getFileStorage will return an initiated class that provides a storage
backend for the configuration. We are telling it to return a file storage service.

7. Save your settings.php file.

8. Copy the default.services.yml file and name it services.yml in sites/
default to provide a mechanism for overriding the default service definitions
provided by the Drupal core.

9. Edit services.yml to alter the default config.storage.active implementation
by adding the following YAML definition to the end of the file:
services:
 config.storage.active:
 class: Drupal\Core\Config\FileStorage
 factory: Drupal\Core\Config\FileStorageFactory::getActive

This YAML will instruct Drupal to use the \Drupal\Core\Config\FileStorage
class and \Drupal\Core\Config\FileStorageFactory for active storage. This
is the same definition as the config.storage.staging service for configuration
synchronization except for the factory method call.

Chapter 9

221

10. Install your Drupal site and the active configuration will be in sites/default/
config/active. Your configuration will go live on the disk but will be cached
in the database.

11. Edit the block.block.bartik_search.yml file to modify the block's
configuration. Change the region from sidebar_first to sidebar_second.

12. Rebuild Drupal's cache and the configuration changes will be imported from the
disk and displayed on your Drupal site:

Configuration Management – Deploying in Drupal 8

222

How it works…
Drupal provides a constant that identifies the active and synchronization configuration folders,
CONFIG_ACTIVE_DIRECTORY and CONFIG_SYNC_DIRECTORY, respectively. Drupal uses,
and expects, the $config_directories global variable to be an array of configuration
folder names and their destinations.

The bootstrap_config_storage setting allows you to override the default database
storage backend for the configuration. The value needs to be a factory-based static method,
which returns a class implementing \Drupal\Core\Config\StorageInterface. The
example provided in settings.php uses the \Drupal\Core\Config\FileStorage
class. The \Drupal\Core\DrupalKernel then caches this storage backend and uses
it to retrieve configuration values.

The container's service for config.storage.active also needs to be overridden
to point to the appropriate class. This way, when modules or internal processes invoke
\Drupal::service('config.storage.active') they receive the proper storage
backend.

There's more…
Although deprecated, filesystem storage for the configuration explores how to provide
alternative storage backends. We will explore this in more detail.

Deprecated for Drupal 9
The concepts of an active configuration directory are deprecated and set to be removed by
Drupal 9. This is due to the change in the methodology of how the configuration management
works. However, just because it is deprecated in the Drupal core does not mean that it will go
away. The implementation can very easily be imported into a contributed or custom project.

The \Drupal\Core\Config\FileStorage class, which interacts with the configuration
as YAML files, will persist for synchronization purposes. To continue using filesystem-based
storage, you will need to just write your own file storage factory that the service calls instead
of the deprecated class provided by the core:

<?php

/**
 * @file
 * Contains \Drupal\mymodule\MyCustomFileStorageFactory.
 */

namespace Drupal\mymodule;

Chapter 9

223

/**
 * Provides a factory for creating config file storage objects.
 */
class MyCustomFileStorageFactory {

 /**
 * Returns a FileStorage object working with the active config
directory.
 *
 * @return \Drupal\Core\Config\FileStorage FileStorage
 * no longer creates an active directory.
 */
 static function getActive() {
 return new FileStorage(config_get_config_directory(CONFIG_ACTIVE_
DIRECTORY));
 }

}

This class can represent a service factory replacement. The getActive method instructs
the file storage backend to discover YAML files in the defined CONFIG_ACTIVE_DIRECTORY
location.

See also
 f The change default active config from file storage to DB storage issue at

https://www.drupal.org/node/2161591

 f The default active config changed from file storage to DB storage change
record at https://www.drupal.org/node/2241059

https://www.drupal.org/node/2161591
https://www.drupal.org/node/2241059

225

10
The Entity API

In this chapter, we will explore the Entity API to create custom entities and see how they
are handled:

 f Creating a configuration entity type

 f Creating a content entity type

 f Creating a bundle for a content entity type

 f Implementing custom access control for an entity

 f Providing a custom storage handler

 f Creating a route provider

Introduction
In Drupal, entities are a representation of data that have a specific structure. There are
specific entity types, which have different bundles and fields attached to those bundles.
Bundles are implementations of entities that can have fields attached to themselves. In
terms of programming, you can consider an entity that supports bundles an abstract class
and each bundle a class that extends that abstract class. Fields are added to bundles.
This is part of the reasoning for the term, as an entity type can contain a bundle of fields.

An entity is an instance of an entity type defined in Drupal. Drupal 8 provides two entity
types: configuration and content. Configuration entities are not fieldable and represent
a configuration within a site. Content entities are fieldable and can have bundles. Bundles
are controlled through configuration entities.

In Drupal 8, the Entity module lives on, even though most of its functionalities from Drupal 7 are
now in core. The goal of the module is to develop improvements for the developer experience
around entities by merging more functionalities into core during each minor release cycle (8.1.x,
8.2.x, and so on). Each recipe will provide a There's more section that relates to how the Entity
module can simplify the recipe.

The Entity API

226

Creating a configuration entity type
Drupal 8 harnesses the entity API for configuration to provide configuration validation and
extended functionality. Using the underlying entity structure, the configuration has a proper
Create, Read, Update, Delete (CRUD) process that can be managed. Configuration entities
are not fieldable. All the attributes of a configuration entity are defined in its configuration
schema definition.

Most common configuration entities interact with Drupal core's config_object type,
as discussed in Chapter 4, Extending Drupal, and Chapter 9, Configuration Management –
Deploying in Drupal 8, to store and manage a site's configuration. There are other uses of
configuration entities, such as menus, view displays, form displays, contact forms, tours,
and many more, which are all configuration entities.

In this recipe, we will create a new configuration entity type called SiteAnnouncement.
This will provide a simple configuration entity that allows you to create, edit, and delete
simple messages that can be displayed on the site for important announcements.

Getting ready
You will need a custom module to place code into in order to implement a configuration entity
type. Create an src directory for your classes.

How to do it…
1. In your module's base directory, create a config directory with a schema

subdirectory. In the subdirectory, make a file named mymodule.schema.yml
that will hold our configuration entity's schema:

Chapter 10

227

2. In your mymodule.schema.yml, add a definition to mymodule.announcement.*
to provide our label and message storage:
Schema for the configuration files of the Site Announcement.

mymodule.announcement.*:
 type: config_entity
 label: 'Site announcement'
 mapping:
 id:
 type: string
 label: 'ID'
 label:
 type: label
 label: 'Label'
 message:
 type: text
 label: 'Text'

We define the configuration entity's namespace as an announcement, which we
will provide to Drupal in the entity's annotation block. We tell Drupal that this is a
config_entity and provide a label for the schema.

Using the mapping array, we provide the attributes that make up our entity and
the data that will be stored.

3. Create an Entity directory in your module's src folder. First, we will create an
interface for our entity by making a SiteAnnouncementInterface.php file.
The SiteAnnouncementInterface will extend the \Drupal\Core\Config\
Entity\ConfigEntityInterface:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\
SiteAnnouncementInterface.
 */

namespace Drupal\mymodule\Entity;

use Drupal\Core\Config\Entity\ConfigEntityInterface;

interface SiteAnnouncementInterface extends ConfigEntityInterface
{

 /**
 * Gets the message value.

The Entity API

228

 *
 * @return string
 */
 public function getMessage();

}

This will be implemented by our entity and will be provided the method requirements.
It is best practice to provide an interface for entities. This allows you to provide
the required methods if another developer extends your entity or if you are doing
advanced testing and need to mock an object. We also provide a method for
returning our custom attribute.

4. Create SiteAnnouncement.php in your Entity directory in src. This file will
contain the SiteAnnouncement class, which extends \Drupal\Core\Config\
Entity\ConfigEntityBase and implements our entity's interface:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\SiteAnnouncement
 */

namespace Drupal\mymodule\Entity;

use Drupal\Core\Config\Entity\ConfigEntityBase;

class SiteAnnouncement extends ConfigEntityBase implements
SiteAnnouncementInterface {

 /**
 * The announcement's message.
 *
 * @var string
 */
 protected $message;

 /**
 * {@inheritdoc|}
 */
 public function getMessage() {
 return $this->message;
 }

}

Chapter 10

229

We added the message property defined in our schema as a class property. Our
method defined in the entity's interface is used to return that value and interact
with our configuration entity.

5. Entities use annotation documentation blocks. We will start our annotation block
by providing the entity's ID, label, configuration prefix, and configuration export
key names:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\SiteAnnouncement
 */

namespace Drupal\mymodule\Entity;

use Drupal\Core\Config\Entity\ConfigEntityBase;

/**
 * @ConfigEntityType(
 * id ="announcement",
 * label = @Translation("Site Announcement"),
 * config_prefix = "announcement",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label"
 * },
 * config_export = {
 * "id",
 * "label",
 * "message",
 * }
 *)
 */
class SiteAnnouncement extends ConfigEntityBase implements
SiteAnnouncementInterface {

 /**
 * The announcement's message.
 *
 * @var string
 */
 protected $message;

The Entity API

230

 /**
 * {@inheritdoc}
 */
 public function getMessage() {
 return $this->message;
 }

}

The annotation document block tells Drupal that this is an instance of the
ConfigEntityType plugin. The id is the internal machine name identifier for the
entity type and the label is the human-readable version. The config_prefix
matches with how we defined our schema with mymodule.announcement. The
entity keys definition tells Drupal which attributes represent our identifiers and labels.

When specifying config_export, we are telling the configuration management
system what properties are to be exportable when exporting our entity.

6. Next, we will add handlers to our entity. We will define the class that will display
the available entity entries and the forms to work with our entity:
/**
 * @ConfigEntityType(
 * id ="announcement",
 * label = @Translation("Site Announcement"),
 * handlers = {
 * "list_builder" = "Drupal\mymodule\
SiteAnnouncementListBuilder",
 * "form" = {
 * "default" = "Drupal\mymodule\SiteAnnouncementForm",
 * "add" = "Drupal\mymodule\SiteAnnouncementForm",
 * "edit" = "Drupal\mymodule\SiteAnnouncementForm",
 * "delete" = "Drupal\Core\Entity\EntityDeleteForm"
 * }
 * },
 * config_prefix = "announcement",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label"
 * },
 * config_export = {
 * "id",
 * "label",
 * "message",
 * }
 *)
 */

Chapter 10

231

The handlers array specifies classes that provide the interaction functionality
with our entity. The list_builder class will be created to show you a table of our
entities. The form array provides classes for forms to be used when creating, editing,
or deleting our configuration entity.

7. Lastly, for our annotation, we need to define routes for our delete, edit, and
collection (list) pages. Drupal will automatically build the routes based on
our annotation:
/**
 * @ConfigEntityType(
 * id ="announcement",
 * label = @Translation("Site Announcement"),
 * handlers = {
 * "list_builder" = "Drupal\mymodule\
SiteAnnouncementListBuilder",
 * "form" = {
 * "default" = "Drupal\mymodule\SiteAnnouncementForm",
 * "add" = "Drupal\mymodule\SiteAnnouncementForm",
 * "edit" = "Drupal\mymodule\SiteAnnouncementForm",
 * "delete" = "Drupal\Core\Entity\EntityDeleteForm"
 * }
 * },
 * config_prefix = "announcement",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label"
 * },
 * links = {
 * "delete-form" = "/admin/config/system/site-announcements/
manage/{announcement}/delete",
 * "edit-form" = "/admin/config/system/site-announcements/
manage/{announcement}",
 * "collection" = "/admin/config/system/site-announcements",
 * },
 * config_export = {
 * "id",
 * "label",
 * "message",
 * }
 *)
 */

There is a routing service for entities that will automatically provide Drupal a route
with the proper controllers based on this annotation. The add form route is not yet
supported and needs to be manually added.

The Entity API

232

8. Create a mymodule.routing.yml in your module's root directory to manually
provide a route to add a Site-announcement entity:
entity.announcement.add_form:
 path: '/admin/config/system/site-announcements/add'
 defaults:
 _entity_form: 'announcement.add'
 _title: 'Add announcement'
 requirements:
 _permission: 'administer content'

9. We can use the _entity_form property to tell Drupal to look up the class defined in
our handlers.

10. Before we implement our list_builder handler, we also need to add the route
in mymodule.routing.yml for our collection link definition, as this is not auto
generated by route providers:
entity.announcement.collection:
 path: '/admin/config/system/site-announcements'
 defaults:
 _entity_list: 'announcement'
 _title: 'Site Announcements'
 requirements:
 _permission: 'administer content

11. The _entity_list key will tell the route to use our list_builder handler to
build the page. We will reuse the administer content permission provided by
the Node module.

12. Create the SiteAnnouncementListBuilder class defined in our list_builder
handler by making a SiteAnnouncementListBuilder.php and extending the
\Drupal\Core\Config\Entity\ConfigEntityListBuilder:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\SiteAnnouncementListBuilder.
 */

namespace Drupal\mymodule;

use Drupal\Core\Config\Entity\ConfigEntityListBuilder;
use Drupal\mymodule\Entity\SiteAnnouncementInterface;

class SiteAnnouncementListBuilder extends ConfigEntityListBuilder
{

Chapter 10

233

 /**
 * {@inheritdoc}
 */
 public function buildHeader() {
 $header['label'] = t('Label');
 return $header + parent::buildHeader();
 }

 /**
 * {@inheritdoc}
 */
 public function buildRow(SiteAnnouncementInterface $entity) {
 $row['label'] = $entity->label();
 return $row + parent::buildRow($entity);
 }
}

13. In our list builder handler, we override the buildHeader and builderRow methods
so that we can add our configuration entity's properties to the table.

14. Now we need to create an entity form, as defined in our form handler array, to handle
our add and edit functionalities. Create SiteAnnouncementForm.php in the src
directory to provide the SiteAnnouncementForm class that extends the \Drupal\
Core\Entity\EntityForm class:
<?php

namespace Drupal\mymodule;

use Drupal\Component\Utility\Unicode;
use Drupal\Core\Entity\EntityForm;
use Drupal\Core\Form\FormStateInterface;
use Drupal\Core\Language\LanguageInterface;

class SiteAnnouncementForm extends EntityForm {
 /**
 * {@inheritdoc}
 */
 public function form(array $form, FormStateInterface $form_
state) {
 $form = parent::form($form, $form_state);

 /** @var \Drupal\mymodule\Entity\SiteAnnouncementInterface
$entity */
 $entity = $this->entity;

The Entity API

234

 $form['label'] = [
 '#type' => 'textfield',
 '#title' => t('Label'),
 '#required' => TRUE,
 '#default_value' => $entity->label(),
];
 $form['message'] = [
 '#type' => 'textarea',
 '#title' => t('Message'),
 '#required' => TRUE,
 '#default_value' => $entity->getMessage(),
];

 return $form;
 }

 /**
 * {@inheritdoc}
 */
 public function save(array $form, FormStateInterface $form_
state) {
 $entity = $this->entity;
 $is_new = !$entity->getOriginalId();

 if ($is_new) {
 // Configuration entities need an ID manually set.
 $machine_name = \Drupal::transliteration()
 ->transliterate($entity->label(),
LanguageInterface::LANGCODE_DEFAULT, '_');
 $entity->set('id', Unicode::strtolower($machine_name));

 drupal_set_message(t('The %label announcement has been
created.', array('%label' => $entity->label())));
 }
 else {
 drupal_set_message(t('Updated the %label announcement.',
array('%label' => $entity->label())));
 }

 $entity->save();

 // Redirect to edit form so we can populate colors.
 $form_state->setRedirectUrl($this->entity-
>toUrl('collection'));
 }
}

Chapter 10

235

15. We override the form method to add Form API elements to our label and message
properties. We also override the save method to provide user messages about the
changes that are made. We utilize the entity's toUrl method to provide a redirect
back to the collection (list) page. We use the transliteration service to generate
a machine name based on the label for our entity's identifier.

16. Next, we will provide a mymodule.links.action.yml file in your module's
directory. This will allow us to define action links on a route. We will be adding
an Add announcement link to our entity's add form on its collection route:
announcement.add:
 route_name: entity.announcement.add_form
 title: 'Add announcement'
 appears_on:
 - entity.announcement.collection

17. This will instruct Drupal to render the entity.announcement.add_form link on
the specified routes in the appears_on value.

18. Your module structure should look like the following screenshot:

19. Install your module and review the Configuration page. You can now manage the
Site Announcement entries from the Site Announcement link.

How it works
When creating a configuration schema definition, one of the first properties used for the
configuration namespace is type. This value can be config_object or config_entity.
When the type is config_entity, the definition will be used to create a database table
rather than structure the serialized data for the config table.

The Entity API

236

Entities are powered by the plugin system in Drupal, which means there is a plugin manager.
The default \Drupal\Core\Entity\EntityTypeManager provides discovery and handling
of entities. The ConfigEntityType class for the entity type's plugin class will force the
setting of the uuid and langcode in the entity_keys definition. The storage handler for
configuration entities defaults to \Drupal\Core\Config\Entity\ConfigEntityStorage.
The ConfigEntityStorage class interacts with the configuration management system to
load, save, and delete custom configuration entities.

There's more…
Drupal 8 introduces a typed data system that configuration entities, and fields use.

Available data types for schema definitions
Drupal core provides its own configuration information. There is a core.data_types.
schema.yml file located at core/config/schema. These are the base types of data that
core provides and can be used when making configuration schema. The file contains YAML
definitions of data types and the class which represents them:

boolean:
 label: 'Boolean'
 class: '\Drupal\Core\TypedData\Plugin\DataType\BooleanData'
email:
 label: 'Email'
 class: '\Drupal\Core\TypedData\Plugin\DataType\Email'
string:
 label: 'String'
 class: '\Drupal\Core\TypedData\Plugin\DataType\StringData'

When a configuration schema definition specifies an attribute that has an e-mail for its type,
that value is then handled by the \Drupal\Core\TypedData\Plugin\DataType\Email
class. Data types are a form of plugins and each plugin's annotation specifies constraints for
validation. This is built around the Symfony Validator component.

See also
 f Chapter 6, Creating Forms with the Form API

 f Chapter 4, Extending Drupal

 f Chapter 9, Confiuration Management – Deploying in Drupal 8

 f Refer to configuration schema/metadata at https://www.drupal.org/
node/1905070

https://www.drupal.org/node/1905070
https://www.drupal.org/node/1905070

Chapter 10

237

Creating a content entity type
Content entities provide base field definitions and also configurable fields through the Field
module. There is also support for revisions and translations with content entities. Display
modes, both form and view, are available for content entities to control how the fields are
edited and displayed. When an entity does not specify bundles, there is automatically one
bundle instance with the same name as the entity.

In this recipe, we will create a custom content entity that does not specify a bundle. We will
create a Message entity that can serve as a content entity for generic messages.

Getting ready
You will need a custom module to place code into in order to implement a configuration entity
type. Create an src directory for your classes.

How to do it…
1. Create an Entity directory in your module's src folder. First, we will create an

interface for our entity by making a MessageInterface.php file:

2. The MessageInterface will extend \Drupal\Core\Entity\
ContentEntityInterface:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\MessageInterface.
 */

namespace Drupal\mymodule\Entity;

use Drupal\Core\Entity\ContentEntityInterface;

The Entity API

238

interface MessageInterface extends ContentEntityInterface {

 /**
 * Gets the message value.
 *
 * @return string
 */
 public function getMessage();

}

This will be implemented by our entity and provide the method requirements. It is
best practice to provide an interface for entities. This allows you to provide required
methods if another developer extends your entity or if you are doing advanced testing
and need to mock an object. We also provide a method to return our main base field
definition (to be defined).

3. Create Message.php in your Entity directory in src. This file will contain the
Message class, which extends \Drupal\Core\Entity\ContentEntityBase
and implements our entity's interface:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\Message
 */

namespace Drupal\mymodule\Entity;

use Drupal\Core\Entity\ContentEntityBase;

class Message extends ContentEntityBase implements
MessageInterface {

}

4. We need to create an annotation document block to provide information about our
entity, such as its ID, label, entity keys, and so on:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\Message
 */

namespace Drupal\mymodule\Entity;

Chapter 10

239

use Drupal\Core\Entity\ContentEntityBase;

/**
 * Defines the message entity class.
 *
 * @ContentEntityType(
 * id = "message",
 * label = @Translation("Message"),
 * base_table = "message",
 * fieldable = TRUE,
 * entity_keys = {
 * "id" = "message_id",
 * "label" = "title",
 * "langcode" = "langcode",
 * "uuid" = "uuid"
 * },
 *)
 */
class Message extends ContentEntityBase implements
MessageInterface {

}

The id is the internal machine name identifier for the entity type and the label is
the human-readable version. The entity keys definition tells Drupal which attributes
represent our identifier and label.

base_table defines the database table in which the entity will be stored and
fieldable allows custom fields to be configured through the Field UI module.

5. Next, we will add handlers to our entity. We will use the default handlers provided
by Drupal:
/**
 * Defines the profile entity class.
 *
 * @ContentEntityType(
 * id = "message",
 * label = @Translation("Message"),
 * handlers = {
 * "list_builder" = "Drupal\mymodule\MessageListBuilder",
 * "form" = {
 * "default" = "Drupal\Core\Entity\ContentEntityForm",
 * "add" = "Drupal\Core\Entity\ContentEntityForm",
 * "edit" = "Drupal\Core\Entity\ContentEntityForm",
 * "delete" = "Drupal\Core\Entity\ContentEntityDeleteForm",

The Entity API

240

 * },
 * },
 * base_table = "message",
 * fieldable = TRUE,
 * entity_keys = {
 * "id" = "message_id",
 * "label" = "title",
 * "langcode" = "langcode",
 * "uuid" = "uuid"
 * },
 *)
 */

The handlers array specifies classes that provide the interaction functionality
with our entity. The list builder class will be created to show you a table of our
entities. The form array provides classes for forms to be used when creating,
editing, or deleting our content entity.

6. An additional handler can be added, the route_provider, to dynamically
generate our canonical (view), edit, and delete routes:
/**
 * Defines the profile entity class.
 *
 * @ContentEntityType(
 * id = "message",
 * label = @Translation("Message"),
 * handlers = {
 * "list_builder" = "Drupal\mymodule\MessageListBuilder",
 * "form" = {
 * "default" = "Drupal\Core\Entity\ContentEntityForm",
 * "add" = "Drupal\Core\Entity\ContentEntityForm",
 * "edit" = "Drupal\Core\Entity\ContentEntityForm",
 * "delete" = "Drupal\Core\Entity\ContentEntityDeleteForm",
 * },
 * "route_provider" = {
 * "html" = "Drupal\Core\Entity\Routing\
DefaultHtmlRouteProvider",
 * },
 * },
 * base_table = "message",
 * fieldable = TRUE,
 * entity_keys = {
 * "id" = "message_id",
 * "label" = "title",
 * "langcode" = "langcode",

Chapter 10

241

 * "uuid" = "uuid"
 * },
 * links = {
 * "canonical" = "/messages/{message}",
 * "edit-form" = "/messages/{message}/edit",
 * "delete-form" = "/messages/{message}/delete",
 * "collection" = "/admin/content/messages"
 * },
 *)
 */

There is a routing service for entities that will automatically provide Drupal a route
with the proper controllers based on this annotation. The add form route is not yet
supported and needs to be manually added.

7. We need to implement baseFieldDefinitions to satisfy the
FieldableEntityInterface interface, which will provide our field
definitions to the entity's base table:
 /**
 * {@inheritdoc}
 */
 public static function baseFieldDefinitions(EntityTypeInterface
$entity_type) {
 $fields['message_id'] = BaseFieldDefinition::create('integer')
 ->setLabel(t('Message ID'))
 ->setDescription(t('The message ID.'))
 ->setReadOnly(TRUE)
 ->setSetting('unsigned', TRUE);
 $fields['langcode'] = BaseFieldDefinition::create('language')
 ->setLabel(t('Language code'))
 ->setDescription(t('The message language code.'))
 ->setRevisionable(TRUE);
 $fields['uuid'] = BaseFieldDefinition::create('uuid')
 ->setLabel(t('UUID'))
 ->setDescription(t('The message UUID.'))
 ->setReadOnly(TRUE);

 $fields['title'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Title'))
 ->setRequired(TRUE)
 ->setTranslatable(TRUE)
 ->setRevisionable(TRUE)
 ->setSetting('max_length', 255)
 ->setDisplayOptions('view', array(
 'label' => 'hidden',

The Entity API

242

 'type' => 'string',
 'weight' => -5,
))
 ->setDisplayOptions('form', array(
 'type' => 'string_textfield',
 'weight' => -5,
))
 ->setDisplayConfigurable('form', TRUE);

 $fields['content'] = BaseFieldDefinition::create('text_long')
 ->setLabel(t('Content'))
 ->setDescription(t('Content of the message'))
 ->setTranslatable(TRUE)
 ->setDisplayOptions('view', array(
 'label' => 'hidden',
 'type' => 'text_default',
 'weight' => 0,
))
 ->setDisplayConfigurable('view', TRUE)
 ->setDisplayOptions('form', array(
 'type' => 'text_textfield',
 'weight' => 0,
))
 ->setDisplayConfigurable('form', TRUE);

 return $fields;
 }

8. The FieldableEntityInterface is implemented by the ContentEntityBase
class through the ContentEntityInterface. The method needs to return an
array of BaseFieldDefinitions for typed data definitions. This includes the
keys provided in the entity_keys value in our entity's annotation along with
any specific fields for our implementation.

9. The content base field definition will hold the actual text for the message.

10. Next, we will implement the getMessage method to satisfy our interface and
provide a means to retrieve our message's text value:
 /**
 * {@inheritdoc}
 */
 public function getMessage() {
 return $this->get('content')->value;
 }

Chapter 10

243

11. This method provides a wrapper around the defined base field's value and returns it.

12. Create a mymodule.routing.yml to manually provide a route to add a
message entity:
entity.message.add_form:
 path: '/messages/add'
 defaults:
 _entity_form: 'message.add'
 _title: 'Add message'
 requirements:
 _entity_create_access: 'message'

13. We can use the _entity_form property to tell Drupal to look up the class defined
in our handlers.

14. Before we implement our list_builder handler, we also need to add the route
to routing.yml for our collection link definition, as this is not auto generated by
route providers:
entity.message.collection:
 path: '/admin/content/messages'
 defaults:
 _entity_list: 'message'
 _title: 'Messages'
 requirements:
 _permission: 'administer messages'

15. The _entity_list key will tell the route to use our list_builder handler to build
the page.

16. Create the MessageListBuilder class defined in our list_builder handler by
making a MessageListBuilder.php file and extend \Drupal\Core\Entity\
EntityListBuilder. We need to override the default implementation to display
our base field definitions:
<?php

/**
 * @file Contains \Drupal\mymodule\MessageListBuilder
 */

namespace Drupal\mymodule;

use Drupal\Core\Entity\EntityInterface;
use Drupal\Core\Entity\EntityListBuilder;

class MessageListBuilder extends EntityListBuilder {
 public function buildHeader() {

The Entity API

244

 $header['title'] = t('Title');
 return $header + parent::buildHeader();
 }

 public function buildRow(EntityInterface $entity) {
 $row['title'] = $entity->label();
 return $row + parent::buildRow($entity);
 }

}

17. In our list builder handler, we override the buildHeader and builderRow methods
so that we can add our configuration entity's properties to the table.

18. Your module's structure should resemble the following screenshot:

19. Install your module. Visit /messages/add to create your first custom content entity
entry and then view it on /admin/content/messages:

Chapter 10

245

How it works…
Content entities are a version of the EntityType plugin. When you define a content
entity type, the annotation block begins with @ContentEntityType. This declaration,
and the properties in it, represents the definition to initiate an instance of the \Drupal\
Core\Entity\ContentEntityType class just like all other plugin annotations. The
ContentEntityType plugin class implements a constructor to provide default storage
and view_builder handlers, forcing us to implement the list_builder and form
handler arrays.

The plugin manager for entity types lives under the entity_type.manager service name
and is provided through \Drupal\Core\Entity\EntityTypeManager by default.
However, while the annotation defines the plugin information, our Message class that extends
ContentEntityBase provides a means for manipulating the data it represents.

There's more…
We will discuss how to add additional functionality to your entity, and use the Entity module to
simplify the developer expedience.

Using the AdminHtmlRouteProvider provider
Our Message entity type implementes the DefaultHtmlRouteProvider class. There
is also the \Drupal\Core\Entity\Routing\AdminHtmlRouteProvider class. This
overrides the getEditFormRoute and getDeleteFormRoute and marks them with
_admin_route. This will cause those forms to be rendered in the administration theme.

Simplifying base field definitions using the Entity module
Content entities need to define field definitions for each field listed in the entity_keys
array. This often results in a lot of boilerplate code to make identifier, language code, UUID,
and bundle entity reference fields. The Entity module provides the \Drupal\entity\
EntityKeysFieldsTrait trait. A content entity type class can use this trait to provide
field definitions for the possible entity_key values.

The Message content entity class can be reduced to the following code using this trait:

class Message extends ContentEntityBase implements MessageInterface {
 use EntityKeysFieldsTrait;

 /**
 * {@inheritdoc}
 */
 public function getMessage() {
 return $this->get('content')->value;
 }

The Entity API

246

 /**
 * {@inheritdoc}
 */
 public static function baseFieldDefinitions(EntityTypeInterface
$entity_type) {
 $fields = self::entityKeysBaseFieldDefinitions($entity_type);

 $fields['content'] = BaseFieldDefinition::create('text_long')
 ->setLabel(t('Content'))
 ->setDescription(t('Content of the message'))
 ->setTranslatable(TRUE)
 ->setDisplayOptions('view', array(
 'label' => 'hidden',
 'type' => 'text_default',
 'weight' => 0,
))
 ->setDisplayConfigurable('view', TRUE)
 ->setDisplayOptions('form', array(
 'type' => 'text_textfield',
 'weight' => 0,
))
 ->setDisplayConfigurable('form', TRUE);
 return $fields;
 }
}

The entityKeysBaseFieldDefinitions method provided by the trait will check whether
the possible entity_key values have been provided and adds a default base definition
for them. Now, we only need to worry about implementing base fields that are unique to
our entity types.

The entity type's admin permission
The entity access handler provided by core will check whether entities implement an
admin_permission option. If it is provided, it will be used as the basis for most access
checks unless a custom access handler is implemented. This can be done by providing the
following code snippet into an entity type's annotation:

* admin_permission = "administer messages",

The \Drupal\Core\Entity\EntityAccessControlHandler class will check whether
users have this permission when validating create access or any other access operation.

Chapter 10

247

Making the collection route a local task tab
In this recipe, we specified the message collection route as /admin/content/messages.
Without implementing this route as a local task under the /admin/content route, it will not
show up as a tab. This can be done by creating a links.task.yml file for the module.

In mymodule.links.task.yml, add the following YAML content:

entity.message.collection_tab:
 route_name: entity.message.collection
 base_route: system.admin_content
 title: 'Messages'

This instructs Drupal to use the entity.messages.collection route, defined in our
routing.yml file, to be based under the system.admin_content route:

See also
 f Chapter 6, Extending Drupal

Creating a bundle for a content entity type
Bundles allow you to have different variations of a content entity. All bundles share the same
base field definitions but not configured fields. This allows each bundle to have its own custom
fields. Display modes are also dependent on a specific bundle. This allows each bundle to
have its own configuration for the form mode and view mode.

Using the custom entity from the previous recipe, we will add a configuration entity to act
as the bundle. This will allow you to have different message types for multiple custom field
configurations.

The Entity API

248

Getting ready
You will need a custom module to place the code into in order to implement a configuration
entity type. Create an src directory for your classes. We need a custom content entity type
to be implemented, such as the one in the Creating a content entity type recipe.

How to do it…
1. Since content entity bundles are configuration entities, we need to define

our configuration entity schema. Create a config/schema directory and a
mymodule.schema.yml file that will contain the configuration entity's schema:
mymodule.message_type.*:
 type: config_entity
 label: 'Message type settings'
 mapping:
 id:
 type: string
 label: 'Machine-readable name'
 uuid:
 type: string
 label: 'UUID'
 label:
 type: label
 label: 'Label'
 langcode:
 type: string
 label: 'Default language'

2. We define the configuration entity's config prefix as message_type, which we
will provide to Drupal in the entity's annotation block. We tell Drupal that this
is a config_entity and provide a label for the schema.

3. With the mapping array, we provide the attributes that make up our entity and the
data that will be stored.

4. In your module's src/Entity directory, create an interface for our bundle by making
a MessageTypeInterface.php file. The MessageTypeInterface will extend the
\Drupal\Core\Config\Entity\ConfigEntityInterface:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\MessageTypeInterface.
 */

Chapter 10

249

namespace Drupal\mymodule\Entity;

use Drupal\Core\Config\Entity\ConfigEntityInterface;

interface MessageTypeInterface extends ConfigEntityInterface {
 // Empty for future enhancements.
}

5. This will be implemented by our entity and provide the method requirements. It is
best practice to provide an interface for entities. This allows you to provide required
methods if another developer extends your entity or if you are doing advanced testing
and need to mock an object.

6. We will be implementing a very basic bundle. It is still wise to provide an interface in
the event of future enhancements and mocking ability in tests.

7. Create a MessageType.php file in src/Entity. This will hold the
MessageType class, which will extend \Drupal\Core\Config\Entity\
ConfigEntityBundleBase and implement our bundle's interface:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\MessageType.
 */

namespace Drupal\mymodule\Entity;

use Drupal\Core\Config\Entity\ConfigEntityBundleBase;

class MessageType extends ConfigEntityBundleBase implements
MessageTypeInterface {

}

8. In most use cases, the bundle entity class can be an empty class that does not provide
any properties or methods. If a bundle provides additional attributes in its schema
definition, they would also be provided here, like any other configuration entity.

9. Entities need to be annotated. Create a base annotation for the ID, label, entity
keys, and configuration export keys:
<?php

/**
 * @file Contains \Drupal\mymodule\Entity\MessageType.
 */

The Entity API

250

namespace Drupal\mymodule\Entity;

use Drupal\Core\Config\Entity\ConfigEntityBundleBase;

/**
 * Defines the profile type entity class.
 *
 * @ConfigEntityType(
 * id = "message_type",
 * label = @Translation("Message type"),
 * config_prefix = "message_type",
 * bundle_of = "message",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label",
 * "uuid" = "uuid",
 * "langcode" = "langcode"
 * },
 * config_export = {
 * "id",
 * "label",
 * }
 *)
 */
class MessageType extends ConfigEntityBundleBase implements
MessageTypeInterface {

}

10. The annotation document block tells Drupal that this is an instance of the
ConfigEntityType plugin. The id is the internal machine name identifier for the
entity type and the label is the human-readable version. The config_prefix
matches with how we defined our schema with mymodule.message_type. The
entity keys definition tells Drupal which attributes represent our identifiers and labels.

11. When specifying config_export, we are telling the configuration management
system what properties are to be exported when exporting our entity.

12. We will then add handlers, which will interact with our entity:
/**
 * Defines the profile type entity class.
 *
 * @ConfigEntityType(
 * id = "message_type",
 * label = @Translation("Message type"),
 * handlers = {

Chapter 10

251

 * "list_builder" = "Drupal\mymodule\MessageTypeListBuilder",
 * "form" = {
 * "default" = "Drupal\Core\Entity\EntityForm",
 * "add" = "Drupal\Core\Entity\EntityForm",
 * "edit" = "Drupal\Core\Entity\EntityForm",
 * "delete" = "Drupal\Core\Entity\EntityDeleteForm"
 * },
 * },
 * config_prefix = "message_type",
 * bundle_of = "message",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label",
 * "uuid" = "uuid",
 * "langcode" = "langcode"
 * },
 * config_export = {
 * "id",
 * "label",
 * },
 *)
 */

13. The handlers array specifies classes that provide the interaction functionality with
our entity. The list builder class will be created to show you a table of our entities. The
form array provides classes for forms to be used when creating, editing, or deleting
our configuration entity.

14. An additional handler can be added, the route_provider, to dynamically generate
our canonical (view), edit, and delete routes:
/**
 * Defines the profile type entity class.
 *
 * @ConfigEntityType(
 * id = "message_type",
 * label = @Translation("Message type"),
 * handlers = {
 * "list_builder" = "Drupal\profile\MessageTypeListBuilder",
 * "form" = {
 * "default" = "Drupal\Core\Entity\EntityForm",
 * "add" = "Drupal\Core\Entity\EntityForm",
 * "edit" = "Drupal\Core\Entity\EntityForm",
 * "delete" = "Drupal\Core\Entity\EntityDeleteForm"
 * },

The Entity API

252

 * "route_provider" = {
 * "html" = "Drupal\Core\Entity\Routing\
DefaultHtmlRouteProvider",
 * },
 * },
 * config_prefix = "message_type",
 * bundle_of = "message",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label"
 * },
 * config_export = {
 * "id",
 * "label",
 * },
 * links = {
 * "delete-form" = "/admin/structure/message-types/{message_
type}/delete",
 * "edit-form" = "/admin/structure/message-types/{message_
type}",
 * "admin-form" = "/admin/structure/message-types/{message_
type}",
 * "collection" = "/admin/structure/message-types"
 * }
 *)
 */

15. There is a routing service for entities that will automatically provide Drupal a route
with the proper controllers based on this annotation. The add form route is not yet
supported and needs to be manually added.

16. We need to modify our content entity to use the bundle configuration entity that
we defined:
/**
 * Defines the profile entity class.
 *
 * @ContentEntityType(
 * id = "message",
 * label = @Translation("Message"),
 * handlers = {...},
 * base_table = "message",
 * fieldable = TRUE,
 * bundle_entity_type = "message_type",
 * field_ui_base_route = "entity.message_type.edit_form",
 * entity_keys = {

Chapter 10

253

 * "id" = "message_id",
 * "label" = "title",
 * "langcode" = "langcode",
 * "bundle" = "type",
 * "uuid" = "uuid"
 * },
 * links = {...},
 *)
 */

17. The bundle_entity_type key specifies the entity type used as the bundle.
The plugin validates this as an actual entity type and marks it for configuration
dependencies. With the field_ui_base_route key pointed to the bundle's
main edit form, it will generate the Manage Fields, Manage Form Display,
and Manage Display tabs on the bundles. Finally, the bundle entity key instructs
Drupal which field definition to use in order to identify the entity's bundle, which is
created in the next step.

18. A new field definition needs to be added to provide the type field that we defined
to represent the bundle entity key:
 $fields['type'] = BaseFieldDefinition::create('entity_
reference')
 ->setLabel(t('Message type'))
 ->setDescription(t('The message type.'))
 ->setSetting('target_type', 'message_type')
 ->setSetting('max_length', EntityTypeInterface::BUNDLE_MAX_
LENGTH);

19. The field that identifies the bundle will be typed as an entity reference. This allows
the value to act as a foreign key to the bundle's base table.

20. In your mymodule.routing.yml, provide a route for adding a Message Type
entity:
entity.message_type.add_form:
 path: '/admin/structure/message-types/add'
 defaults:
 _entity_form: 'message_type.add'
 _title: 'Add message type'
 requirements:
 _entity_create_access: 'message_type'

21. We can use the _entity_form property to tell Drupal to look up the class defined
in our handlers.

The Entity API

254

22. Before we implement our list_builder handler, we also need to add the route
to routing.yml for our collection link definition, as this is not auto generated by
route providers:
entity.message_type.collection:
 path: '/admin/structure/message-types'
 defaults:
 _entity_list: 'message_type'
 _title: 'Message types'
 requirements:
 _permission: 'administer message types'

23. The _entity_list key will tell the route to use our list_builder handler to build
the page.

24. Create the MessageTypeListBuilder class defined in our list_builder
handler in a MessageTypeListBuilder.php file and extend \Drupal\Core\
Config\Entity\ConfigEntityListBuilder. We need to override the default
implementation to display our configuration entity properties:
<?php

/**
 * @file Contains \Drupal\mymodule\MessageListBuilder
 */

namespace Drupal\mymodule;

use Drupal\Core\Entity\EntityInterface;
use Drupal\Core\Config\Entity\ConfigEntityListBuilder;

class MessageTypeListBuilder extends EntityListBuilder {
 public function buildHeader() {
 $header['label'] = t('Label');
 return $header + parent::buildHeader();
 }

 public function buildRow(EntityInterface $entity) {
 $row['label'] = $entity->label();
 return $row + parent::buildRow($entity);
 }

}

Chapter 10

255

25. In our list builder handler, we override the buildHeader and builderRow methods
so that we can add our configuration entity's properties to the table:

26. Your module's structure should resemble the following screenshot:

How it works…
Bundles are most utilized in the configured field levels via the Field and Field UI
modules. When you create a new field, it has a base storage item for its global settings.
Once a field is added to a bundle, there is a new field configuration that is created and
assigned to the bundle. Fields can then have their own settings for a specific bundle
along with form and view display configurations.

Content entity bundles work just like any other configuration entity implementation,
but they extend the usability of the Field API for your content entity types.

The Entity API

256

There's more…
We will discuss how to add additional functionality to your entity bundle, and use the Entity
module to simplify the developer expedience.

Provide action links for adding new bundles
There are special links called action links in Drupal. These appear at the top of the
page and are generally used for links that allow the creation of an item by creating a
links.action.yml file.

In your mymodule.links.action.yml, each action link defines the route it will link to,
titles, and the routes it appears on:

message_type_add:
 route_name: entity.message_type.add_form
 title: 'Add message type'
 appears_on:
 - entity.message_type.collection

The appears_on key accepts multiple values that will allow this route link to appear on
multiple pages:

See also
 f Chapter 4, Extending Drupal

 f Chapter 9, Configuration Management

 f Recipe Creating a Confiuration Entity Type in Chapter 10, The Entity API

Chapter 10

257

Implementing custom access control for
an entity

All entities have a set of handlers that control specific pieces of functionalities. One handler
in particular handles access control. When the access handler is not specified, the base \
Drupal\Core\Entity\EntityType module will implement \Drupal\Core\Entity\
EntityAccessControlHandler as the access handler. By default, this will check whether
any modules have implemented hook_entity_create_access or hook_entity_type_
create_access and use their opinions. Otherwise, it defaults to the admin permission for
the entity type, if implemented.

In this recipe, we will provide an admin permission for our entity along with create, update,
view, and delete permissions for each of the entity's bundles. We will base this on an entity
called Message.

Getting ready
You will need a custom module to place the code into in order to implement a configuration
entity type. Create an src directory for your PSR-4 style classes. We need to implement a
custom content entity type, such as the one in the Creating a content entity type recipe.

How to do it…
1. First, we need to define an administration permission for the entity. This is done by

adding the admin_permission key to the entity's annotation document block:
/**
 * Defines the profile entity class.
 *
 * @ContentEntityType(
 * id = "message",
 * label = @Translation("Message"),
 * handlers = {...},
 * base_table = "message",
 * fieldable = TRUE,
 * admin_permission = "administer messages",
 * entity_keys = {
 * "id" = "message_id",
 * "label" = "title",
 * "langcode" = "langcode",
 * "uuid" = "uuid"
 * },
 * links = {...},
 *)
 */

The Entity API

258

2. The entity access handler provided by core will check whether entities implement this
option. If it is provided, it will be used as the basis for most access checks unless a
custom access handler is implemented.

3. Create a mymodule.permissions.yml to provide the administrative permission
to Drupal. We will be defining a permission callback as well to support dynamic
permissions based on current bundles:
administer messages:
 title: 'Administer messages'
 restrict access: true
permission_callbacks:
 - \Drupal\mymodule\MessagePermissions::messageTypePermissions

4. Along with defining specific permissions, we need to specify the class and static
methods to return dynamic permissions. Refer to the Defining permissions recipe in
Chapter 4, Extending Drupal, for more information.

5. Create the MessagePermissions class in the src directory. This will contain the
profileTypePermissions method that returns an array of permissions. Our class
will add create, view, update, and delete permissions to our entities:
<?php

/**
 * @file
 * Contains \Drupal\mymodule\MessagePermissions.
 */

namespace Drupal\mymodule;

use Drupal\Core\StringTranslation\StringTranslationTrait;
use Drupal\mymodule\Entity\MessageType;

/**
 * Defines a class containing permission callbacks.
 */
class MessagePermissions {
 use StringTranslationTrait;

 /**
 * Returns an array of message type permissions.
 *
 * @return array
 * Returns an array of permissions.
 */

Chapter 10

259

 public function messageTypePermissions() {
 $perms = [];
 // Generate message permissions for all message types.
 foreach (MessageType::loadMultiple() as $type) {
 $perms += $this->buildPermissions($type);
 }
 return $perms;
 }

 /**
 * Builds a standard list of permissions for a given profile
type.
 *
 * @param \Drupal\mymodule\Entity\MessageType $message_type
 * The machine name of the message type.
 *
 * @return array
 * An array of permission names and descriptions.
 */
 protected function buildPermissions(MessageType $message_type) {
 $type_id = $message_type->id();
 $type_params = ['%type' => $message_type->label()];

 return [
 "add $type_id message" => [
 'title' => $this->t('%type: Add message', $type_params),
],
 "view $type_id message" => [
 'title' => $this->t('%type: View message', $type_params),
],
 "edit $type_id message" => [
 'title' => $this->t('%type: Edit message', $type_params),
],
 "delete $type_id message" => [
 'title' => $this->t('%type: Delete message', $type_
params),
],
];
 }
}

6. In our permission callback, messageTypePermissions, we invoke the
MessageType::loadMultiple method with no parameters. This will return
all the available entities for message_type. We then pass this entity to another
method, which defines create, read, update, and delete permissions.

The Entity API

260

7. To utilize the dynamic permissions, we will extend the default
\Drupal\Core\Entity\EntityAccessControlHandler.
Create a MessageAccessControlHandler class for your module:
<?php

/**
 * @file Contains \Drupal\mymodule\MessageAccessControlHandler.
 */

namespace Drupal\mymodule;

use Drupal\Core\Entity\EntityAccessControlHandler;

/**
 * Defines the access control handler for the message entity type.
 */
class MessageAccessControlHandler extends
EntityAccessControlHandler {

}

8. We will override the checkAccess method. The default implementation notes in the
documentation state that this method is supposed to be overridden by entities using
custom access checking:
<?php

/**
 * @file Contains \Drupal\mymodule\MessageAccessControlHandler.
 */

namespace Drupal\mymodule;

use Drupal\Core\Access\AccessResult;
use Drupal\Core\Entity\EntityAccessControlHandler;
use Drupal\Core\Entity\EntityInterface;
use Drupal\Core\Session\AccountInterface;

/**
 * Defines the access control handler for the message entity type.
 */
class MessageAccessControlHandler extends
EntityAccessControlHandler {

Chapter 10

261

 /**
 * {@inheritdoc}
 */
 protected function checkAccess(EntityInterface $entity,
$operation, AccountInterface $account) {
 // Re-use admin permission check.
 $result = parent::checkAccess($entity, $operation, $account);

 if ($result->isNeutral()) {
 // Check if user has permission: ex, "add message message".
 $result = AccessResult::allowedIfHasPermission($account,
"$operation {$entity->bundle()} message");
 }

 return $result;
 }

}

9. In our overridden method, we check the parent class result. This handles our admin
permission check and the basic you cannot delete a new, non-saved entity logic.
If the parent class comes back neutral, we can check it based on our dynamic
permissions and return that.

10. We need to follow the same pattern for the parent checkCreateAccess method,
which is called on create. It specifies that it should be overridden if you are
implementing custom access checks:
 /**
 * {@inheritdoc}
 */
 protected function checkCreateAccess(AccountInterface $account,
array $context, $entity_bundle = NULL) {
 // Re-use admin permission check.
 $result = parent::checkCreateAccess($account, $context,
$entity_bundle);

 if ($result->isNeutral()) {
 $result = AccessResult::allowedIfHasPermission($account,
"add $entity_bundle message");
 }

 return $result;
 }

The Entity API

262

11. For this method, we follow the same pattern and reuse the parent's check for the
admin permission.

12. After the access handler is created, we need to add it to the list of our entities'
handlers:
 * handlers = {
 * "list_builder" = "Drupal\mymodule\ProfileTypeListBuilder",
 * "access" = "Drupal\mymodule\MessageAccessControlHandler",
 * "form" = {
 * "default" = "Drupal\Core\Entity\EntityForm",
 * "add" = "Drupal\Core\Entity\EntityForm",
 * "edit" = "Drupal\Core\Entity\EntityForm",
 * "delete" = "Drupal\Core\Entity\EntityDeleteForm"
 * },
 * "route_provider" = {
 * "html" = "Drupal\Core\Entity\Routing\
DefaultHtmlRouteProvider",
 * },
 * },

13. Rebuild Drupal's caches.

14. Verify that the permissions are available on the permission's overview page:

Chapter 10

263

How it works…
Entities are powered by the plugin system in Drupal, which means that there is a plugin
manager. The default \Drupal\Core\Entity\EntityTypeManager provides the
discovery and handling of entities. Both the ContentEntityType and ConfigEntityType
entity types and classes extend the base \Drupal\Core\Entity\EntityType class.

The EntityType class constructor provides a default access handler if it is not provided,
through the \Drupal\Core\Entity\EntityAccessControlHandler class. There
are several methods provided by the class, but the notable ones are checkAccess,
checkCreateAccess, and checkFieldAccess. These are designed to be overridden by
entity implementations that need their own access checking.

Every core module that provides an entity type implements this to override at least
checkAccess and checkCreateAccess.

 \Drupal\Core\Access\AccessibleInterface defines an access method and all
the entities inherit this interface. The default implementation in \Drupal\Core\Entity\
Entity will invoke checkCreateAccess if the operation is create; otherwise, it invokes
the generic access method of the access controller, which will invoke entity access hooks
and the class' own checkAccess method.

There's more…
We will discuss how to implement custom access control for an entity, and use the Entity to
simplify the controlling access.

Controlling access to entity fields
The checkFieldAccess method can be overridden to control access to specific entity fields
when modifying an entity. Without being overridden by a child class, the \Drupal\Core\
Entity\EntityAccessControlHandler::checkFieldAccess will always return an
allowed access result. The method receives the following parameters:

 f The view and edit operations

 f The current field's definition

 f The user session to check access against

 f And a possible list of field item values

Entity types can implement their own access control handlers and override this method to
provide granular control over the modification of their base fields. A good example would be
the User module and its \Drupal\user\UserAccessControlHandler.

User entities have a pass field that is used for the user's current password. There is also a
created field that records when the user was added to the site.

The Entity API

264

For the pass field, it returns denied if the operation is view, but allows access if the
operation is edit:

case 'pass':
 // Allow editing the password, but not viewing it.
 return ($operation == 'edit') ? AccessResult::allowed() :
AccessResult::forbidden();

The created field uses the opposite logic. When a user became part of the site can be
viewed, but should not be able to be edited:

case 'created':
 // Allow viewing the created date, but not editing it.
 return ($operation == 'view') ? AccessResult::allowed() :
AccessResult::forbidden();

See also
 f Chapter 4, Extending Drupal

Providing a custom storage handler
Storage handlers control the loading, saving, and deleting of an entity. \Drupal\Core\
Entity\ContentEntityType provides the base entity type definition for all content entity
types. If it is not specified, then the default storage handler is \Drupal\Core\Entity\Sql\
SqlContentEntityStorage. This class can be extended to implement alternative load
methods or adjustments on save.

In this recipe, we will implement a method that supports loading an entity by a specific
property instead of having to write a specific loadByProperties method call.

Getting ready
You will need a custom module to place the code into in order to implement a configuration
entity type. Create an src directory for your PSR-4 style classes. A custom content entity type
needs to be implemented, such as the one in the Creating a content entity type recipe.

Chapter 10

265

How to do it…
1. Create a MessageStorage class in the module's src directory. This class will extend

the default \Drupal\Core\Entity\Sql\SqlContentEntityStorage class:
<?php

/**
 * @file Contains \Drupal\mymodule\MessageStorage.
 */

namespace Drupal\mymodule;

use Drupal\Core\Entity\Sql\SqlContentEntityStorage;

/**
 * Defines the entity storage for messages.
 */
class MessageStorage extends SqlContentEntityStorage {

}

2. By extending the default storage class for our entity type, we can simply add new
methods that are relevant to our requirements rather that implementing the extra
business logic.

3. Create a loadMultipleByType method and we will use this method to provide
a simple way of loading all profiles of a specific bundle:
 /**
 * Load multiple messages by bundle type.
 *
 * @param string $message_type
 * The message type.
 *
 * @return array|\Drupal\Core\Entity\EntityInterface[]
 * An array of loaded message entities.
 */
 public function loadMultipleByType($message_type) {
 return $this->loadByProperties([
 'type' => $message_type,
]);
 }

4. We pass the type property so that we can query it based on the message bundle
and return all matching message entities.

The Entity API

266

5. Update the entity's annotation block to have the new storage handler defined:
 * handlers = {
 * "list_builder" = "Drupal\mymodule\MessageListBuilder",
 * "storage" = "Drupal\mymodule\MessageStorage",
 * "form" = {
 * "default" = "Drupal\Core\Entity\EntityForm",
 * "add" = "Drupal\Core\Entity\EntityForm",
 * "edit" = "Drupal\Core\Entity\EntityForm",
 * "delete" = "Drupal\Core\Entity\EntityDeleteForm"
 * },
 * "route_provider" = {
 * "html" = "Drupal\Core\Entity\Routing\
DefaultHtmlRouteProvider",
 * },
 * },

6. You can now programmatically interact with your profile entities using the
following code:
// Get the entity type manager from the container.
\Drupal::entityTypeManager()

 // Access the storage handler.
 ->getStorage('message')

 // Invoke the new method on custom storage class.
 ->loadMultipleByType('message');

How it works…
When defining a content entity type, the annotation block begins with @ContentEntityType.
This declaration, and the properties in it, represents the definition to initiate an instance of the
\Drupal\Core\Entity\ContentEntityType class just like all other plugin annotations.

In the class constructor, there is a merge to provide default handlers for the storage
handler if it is not provided. This will always default to \Drupal\Core\Entity\Sql\
SqlContentEntityStorage as it provides methods and logic to help its parent class,
ContentEntityStorageBase, interact with the SQL-based storage.

Chapter 10

267

Configuration entities can have their default \Drupal\Core\Config\
Entity\ConfigEntityStorage as well. However, for configuration
entities, the configuration management utilizes the \Drupal\Core\
Config\StorageInterface implementations for storage rather than
classes, which extend ConfigEntityStorage. This logic resides in the
configuration factory service.

Extending SqlContentEntityStorage reuses methods required for default Drupal
implementations and provides an easy method to create custom methods to interact with
loading, saving, and so on.

There's more…
We will discuss about the custom storage handler and utilizing of different storage backend.

Utilizing a different storage backend for an entity
Drupal provides mechanisms for supporting different database storage backends that are
not provided by Drupal core, such as MongoDB. While it is not stable for Drupal 8 at the
time of writing this book, there is a MongoDB module that provides storage interaction.

The module provides \Drupal\mongodb\Entity\ContentEntityStorage, which
extends \Drupal\Core\Entity\ContentEntityStorageBase. This class overrides
the methods used to create, save, and delete, to write them to a MongoDB collection.

While there are many more steps to provide a custom storage backend for content entities
and their fields, this serves as an example for how you can choose to place a custom entity
in a different storage backend.

See also
 f Chapter 4, Extending Drupal

 f Chapter 7, Plug and Play with Plugins

Creating a route provider
Entities can implement a route provider that will create the route definitions for the entity's
canonical (view), edit, and delete routes. As of Drupal 8.0.1, the add path for an entity is not
handled through the default route provider.

In this recipe, we will extend the default \Drupal\Core\Entity\Routing\
DefaultHtmlRouteProvider and provide the add routes for our entity.

The Entity API

268

Getting ready
You will need a custom module to place the code into in order to implement a configuration
entity type. Create an src directory for your classes. A custom content entity type needs
to be implemented, such as the one in the Creating a content entity type recipe.

How to do it…
1. Create a MessageHtmlRouteProvider class in the src directory that extends

\Drupal\Core\Entity\Routing\DefaultHtmlRouteProvider:
<?php

/**
 * @file Contains \Drupal\mymodule\MessageHtmlRouteProvider.
 */

namespace Drupal\mymodule;

use Drupal\Core\Entity\Routing\DefaultHtmlRouteProvider;

/**
 * Provides HTML routes for the message entity type.
 */
class MessageHtmlRouteProvider extends DefaultHtmlRouteProvider {

}

2. Override the provided getRoutes method and collect the parent class's collection of
routes returned:
<?php

/**
 * @file Contains \Drupal\mymodule\MessageHtmlRouteProvider.
 */

namespace Drupal\mymodule;

use Drupal\Core\Entity\EntityTypeInterface;
use Drupal\Core\Entity\Routing\DefaultHtmlRouteProvider;

/**
 * Provides HTML routes for the message entity type.
 */

Chapter 10

269

class MessageHtmlRouteProvider extends DefaultHtmlRouteProvider {

 /**
 * {@inheritdoc}
 */
 public function getRoutes(EntityTypeInterface $entity_type) {
 $collection = parent::getRoutes($entity_type);

 return $collection;
 }
}

3. The parent method for getRoutes invokes other methods that check whether the
entity has defined edit, canonical, or delete route links in its annotation definition.
If the entity has, it will return those as a \Symfony\Component\Routing\
RouteCollection containing the available routes.

4. Add a new route to the collection that represents the message entity's add route.
This will allow us to remove the mymodule.routing.yml file:
 /**
 * {@inheritdoc}
 */
 public function getRoutes(EntityTypeInterface $entity_type) {
 $collection = parent::getRoutes($entity_type);

 $route = (new Route('/messages/add'))
 ->addDefaults([
 '_entity_form' => 'message.add',
 '_title' => 'Add message',
])
 ->setRequirement('_entity_create_access', 'message');
 $collection->add('entity.message.add_form', $route);

 return $collection;
 }

5. This section of the code defines the route programmatically. The definition created
in the routing.yml is implemented in the \Symfony\Component\Routing\
Route instance:

Delete the mymodule.routing.yml file!

The Entity API

270

6. Now, we will add routes based on each bundle, iterate through each message bundle,
and add a new route that will provide a route to add a message based on the type
specified in the route:
 /**
 * {@inheritdoc}
 */
 public function getRoutes(EntityTypeInterface $entity_type) {
 $collection = parent::getRoutes($entity_type);

 $route = (new Route('/messages/add'))
 ->addDefaults([
 '_entity_form' => 'message.add',
 '_title' => 'Add message',
])
 ->setRequirement('_entity_create_access', 'message');
 $collection->add('entity.message.add_form', $route);

 /** @var \Drupal\mymodule\Entity\MessageTypeInterface
$message_type */
 foreach (MessageType::loadMultiple() as $message_type) {
 $route = (new Route('/messages/add/{message_type}'))
 ->addDefaults([
 '_entity_form' => 'message.add',
 '_title' => "Add {$message_type->label()} message",
])
 ->setRequirement('_entity_create_access', 'message');
 $collection->add("entity.message.{$message_type->id()}.add_
form", $route);
 }

 return $collection;
 }

7. This new code loads all the message type entities and adds a new route to each.
A route will be created at /messages/add/{message_type} that will predefine
the type of message being created.

How it works…
Entities are powered by the plugin system in Drupal, which means that there is a plugin
manager. The default \Drupal\Core\Entity\EntityTypeManager provides discovery
and handling of entities. The \Drupal\Core\Entity\EntityTypeManagerInterface
specifies a getRouteProviders method that is expected to return an array of strings that
provide the fully qualified class name of an implementation of the \Drupal\Core\Entity\
Routing\EntityRouteProviderInterface interface.

Chapter 10

271

There is an event subscriber defined in core.services.yml called the entity_
route_subscriber. This service subscribes to the dynamic route event. When this
happens, it uses the entity type manager to retrieve all entity type implementations, which
provide route subscribers. It then aggregates all the \Symfony\Component\Routing\
RouteCollection instances received and merges them into the main route collection for
the system.

There's more…
Drupal 8 introduces a router types and provide the add routes for our entity.

The Entity API module provides add generation
In Drupal 8, the Entity module lives on, even though most of its functionalities from Drupal 7 are
now in core. The goal of the module is to develop improvements for the developer experience
around entities. One of these is the generation of the add form and its routes.

The Entity module provides two new route provider aimed specifically for add routes, the
\Drupal\entity\Routing\CreateHtmlRouteProvider and \Drupal\entity\
Routing\AdminCreateHtmlRouteProvider. The latter option forces the add form
to be presented in the administrative theme.

With the Entity module installed, you can add a create entry for the router_providers
array pointing to the new route provider:

 * "route_provider" = {
 * "html" = "Drupal\Core\Entity\Routing\
DefaultHtmlRouteProvider",
 * "create" = "Drupal\entity\Routing\CreateHtmlRouteProvider",
 * },

Then, you just need to define the add-form entry in your entity's links definition,
if not already present:

* links = {
 * "add-form" = "/admin/structure/message-types/add",
 * "delete-form" = "/admin/structure/message-types/{message_type}/
delete",
 * "edit-form" = "/admin/structure/message-types/{profile_type}",
 * "admin-form" = "/admin/structure/message-types/{profile_type}",
 * "collection" = "/admin/structure/message-types"
 * }

This reduces the amount of boilerplate code required to implement an Entity.

The Entity API

272

Providing a collection route
In the previous recipe, we also needed to define a collection route manually. The route
provider can be used to provide this collection route:

 $route = (new Route('/admin/content/messages'))
 ->addDefaults([
 '_entity_list' => 'message',
 '_title' => 'Messages',
])
 ->setRequirement('permission', $entity_type-
>getAdminPermission());
 $collection->add('entity.message.collection', $route);

This route definition will replace the one in routing.yml. Route generation items should
exist in their own handlers, even if only for a specific item. The collection route generation
will go into a CollectionHtmlRouteProvider class and can be added as a new route
handler. The reasoning is that for ease of deprecation in the event such a functionality is
added to Drupal core.

See also
 f Chapter 4, Extending Drupal

 f Refer to the Routing system in Drupal 8 at https://www.drupal.org/
developing/api/8/routing

https://www.drupal.org/developing/api/8/routing
https://www.drupal.org/developing/api/8/routing

273

11
Off the Drupalicon

Island

In this chapter, we will see how to use third-party libraries, such as JavaScript, CSS, and PHP
in detail:

 f Implementing and using a third-party JavaScript library

 f Implementing and using a third-party CSS library

 f Implementing and using a third-party PHP library

 f Using Composer manager

Introduction
Drupal 8 comes with a Proudly Built Elsewhere attitude. There has been an effort made to use
more components created by the PHP community at large and other communities. Drupal 8 is
built with Symfony. It includes Twig as its templating system, the provided WYSIWYG editor as
its CKEditor, and uses PHPUnit for testing.

How does Drupal 8 promote using libraries made elsewhere? The new asset management
system in Drupal 8 makes it easier to use frontend libraries. Drupal implements PSR-0 and
PSR-4 from the PHP Framework Interoperability Group (PHP-FIG) and PHP Standards
Recommendations (PSRs) are suggested standards used to increase interoperability
between PHP applications. This has streamlined integrating third-party PHP libraries.

Both areas will be constantly improved with each minor release of Drupal 8. These areas will
be mentioned throughout the chapter.

Off the Drupalicon Island

274

Implementing and using a third-party
JavaScript library

In the past, Drupal has only shipped with jQuery and a few jQuery plugins used by Drupal core
for the JavaScript API. This has changed with Drupal 8. Underscore.js and Backbone.js
are now included in Drupal, bringing two popular JavaScript frameworks to its developers.

However, there are many JavaScript frameworks that can be used. In Chapter 5, Frontend for
the Win, you learned about the asset management system and libraries. In this recipe, we will
create a module that provides Angular.js as a library and a custom Angular application;
the demo is available on the AngularJS home page.

Getting ready
In this example, we will use Bower to manage our third-party angular.js library components.
If you are not familiar with Bower, it is simply a package manager for frontend components.
Instead of using Bower, you can just manually download and place the required files.

If you do not have Bower, you can follow the instructions to install it from bower.io at
http://bower.io/#install-bower. If you do not want to install Bower, we will provide
links to manually download libraries.

Having a background of AngularJS is not required but is beneficial. This recipe implements the
example from the home page of the library.

How to do it…
1. Create a custom module named mymodule that will serve the AngularJS library and

its implementation:
name: My Module!
type: module
description: Provides an AngularJS app.
core: 8.x

2. Run the bower init to create a bower project in your module. We will use most of
the default values for the prompted questions:
$ bower init

? name mymodule

? description Example module with AngularJS

? main file

? what types of modules does this package expose?

? keywords

http://bower.io/#install-bower

Chapter 11

275

? authors Matt Glaman <nmd.matt@gmail.com>

? license GPL

? homepage

? set currently installed components as dependencies? Yes

? would you like to mark this package as private which prevents it
from being accidentally published to the registry? No

{

 name: 'mymodule',

 authors: [

 'Matt Glaman <nmd.matt@gmail.com>'

],

 description: 'Example module with AngularJS',

 main: '',

 moduleType: [],

 license: 'GPL',

 homepage: '',

 ignore: [

 '**/.*',

 'node_modules',

 'bower_components',

 'test',

 'tests'

]

}

? Looks good? Yes

3. Next, we will install the AngularJS library using bower install:
$ bower install --save angular

bower angular#* cached git://github.com/angular/
bower-angular.git#1.5.0

bower angular#* validate 1.5.0 against git://github.
com/angular/bower-angular.git#*

bower angular#^1.5.0 install angular#1.5.0

angular#1.5.0 bower_components/angular

The --save option will ensure that the package's dependency is saved in the
created bower.json. If you do not have Bower, you can download AngularJS from
https://angularjs.org/ and place it in a bower_components folder.

https://angularjs.org/

Off the Drupalicon Island

276

4. Create mymodule.libraries.yml. We will define AngularJS as its own library entry:
angular:
 js:
 bower_components/angular/angular.js: {}
 css:
 component:
 'bower_components/angular/angular-csp.css': {}

5. When the angular library is attached, it will add the AngularJS library file and attach
the CSS stylesheet.

6. Next, create a mymodule.module file. We will use the theme layer's preprocess
functions to add a ng-app attribute to the root HTML element:
<?php

/**
 * Implements hook_preprocess_html().
 */
function mymodule_preprocess_html(&$variables) {
 $variables['html_attributes']['ng-app'] = '';
}

7. AngularJS uses the ng-app attribute as a directive for bootstrapping an AngularJS
application. It marks the root of the application.

8. We will use a custom block to implement the HTML required for the AngularJS example.
Make a src/Plugin/Block directory and make an AngularBlock.php file.

9. Extend the BlockBase class and implement the build method to return our Angular
app's HTML:
<?php

/**
 * @file
 * Contains \Drupal\mymmodule\Plugin\Block\AngularBlock.
 */

namespace Drupal\mymodule\Plugin\Block;

use Drupal\Core\Block\BlockBase;

Chapter 11

277

/**
 * Provides a block for AngularJS example.
 *
 * @Block(
 * id = "mymodule_angular_block",
 * admin_label = @Translation("AngularJS Block")
 *)
 */
class AngularBlock extends BlockBase {

 public function build() {
 return [
 'input' => [
 '#type' => 'textfield',
 '#title' => $this->t('Name'),
 '#placeholder' => $this->t('Enter a name here'),
 '#attributes' => [
 'ng-model' => 'yourName',
],
],
 'name' => [
 '#markup' => '<hr><h1>Hello {{yourName}}!</h1>',
],
 '#attached' => [
 'library' => [
 'mymodule/angular',
],
],
];
 }

}

10. We return a render array that contains the input, name, and our library
attachments. The input array returns the Form API render information for a
text field. The name returns a regular markup that will bind Angular's changes
to the yourName scope variable.

11. Install your custom module.

12. Visit the block layout form from the Structure page and place your block.

Off the Drupalicon Island

278

13. View your Drupal site and interact with your block, which is powered by AngularJS:

How it works…
The simplicity of integrating with a JavaScript framework is provided by the new asset
management system in Drupal 8. The usage of Bower is optional, but it is usually a
preferred method used to manage frontend dependencies. Using Bower, we can place
bower_components in an ignore file that can be used to keep third-party libraries
out of version control.

See also
 f Refer to the core issue to add Backbone.js and Underscore.js at

https://www.drupal.org/node/1149866

 f The recipe Using the new asset management system, in Chapter 5, Frontend for
the Win

 f Chapter 4, Extending Drupal, in recipe Creating a Module

https://www.drupal.org/node/1149866

Chapter 11

279

Implementing and using a third-party
CSS library

Drupal provides many things. However, one thing that it does not provide is any kind of CSS
component library. In the recipe Using the new asset management system, in Chapter 5,
Frontend for the Win, we added FontAwesome as a library. CSS frameworks implement robust
user interface design components and they can be quite large if using a compiled version with
everything bundled. The asset management system can be used to define each component as
its own library to only deliver the exact files required for a strong frontend performance.

In this recipe, we will implement the Semantic UI framework, using the CSS only distribution,
which provides each individual component's CSS file. We will register the form, button,
label, and input components as libraries. Our custom theme will then alter the Drupal
elements for buttons, labels, and inputs to have the Semantic UI classes and load
the proper library.

Getting ready
In this example, we will use Bower to manage our third-party components. If you are
not familiar with Bower, it is simply a package manager used for frontend components.
Instead of using Bower, you can just manually download and place the required files.

How to do it…
1. For this recipe, create a new custom theme named mytheme using Classy as a

base theme. This way, we can reuse some existing styling. If you are unfamiliar with
creating a base theme, refer to the recipe Creating a custom theme based on Classy,
in Chapter 5, Frontend for the Win.

2. Using your terminal, navigate to your theme's directory. Run bower init to create a
bower project:
$ bower init

? name mytheme

? description Example theme with Semantic UI

? main file

? what types of modules does this package expose?

? keywords

? authors Matt Glaman <nmd.matt@gmail.com>

? license GPL

? homepage

Off the Drupalicon Island

280

? set currently installed components as dependencies? Yes

? would you like to mark this package as private which prevents it
from being accidentally published to the registry? No

{

 name: 'mytheme',

 authors: [

 'Matt Glaman <nmd.matt@gmail.com>'

],

 description: 'Example theme with Semantic UI,

 main: '',

 moduleType: [],

 license: 'GPL',

 homepage: '',

 ignore: [

 '**/.*',

 'node_modules',

 'bower_components',

 'test',

 'tests'

]

}

? Looks good? Yes

3. Next, user bower install to save the Semantic UI library:
$ bower install --save semantic-ui

bower semantic-ui#* not-cached git://github.com/Semantic-
Org/Semantic-UI.git#*

bower semantic-ui#* resolve git://github.com/Semantic-
Org/Semantic-UI.git#*

bower semantic-ui#* download https://github.com/
Semantic-Org/Semantic-UI/archive/2.1.8.tar.gz

bower semantic-ui#* extract archive.tar.gz

bower semantic-ui#* resolved git://github.com/Semantic-
Org/Semantic-UI.git#2.1.8

bower jquery#>=1.8 not-cached git://github.com/jquery/
jquery-dist.git#>=1.8

Chapter 11

281

bower jquery#>=1.8 resolve git://github.com/jquery/
jquery-dist.git#>=1.8

bower jquery#>=1.8 download https://github.com/jquery/
jquery-dist/archive/2.2.0.tar.gz

bower jquery#>=1.8 extract archive.tar.gz

bower jquery#>=1.8 resolved git://github.com/jquery/
jquery-dist.git#2.2.0

bower semantic#^2.1.8 install semantic#2.1.8

bower jquery#>=1.8 install jquery#2.2.0

The --save option will ensure that the package's dependency is saved in the
created bower.json. If you do not have Bower, you can download Semantic UI
from https://github.com/semantic-org/semantic-ui/ and place it in
a bower_components folder.

4. Create mytheme.libraries.yml in your theme's base directory. This will hold
our main Semantic UI definition along with specific component library definitions.

5. First, we will add a new library to the form component:
semantic_ui.form:
 js:
 bower_components/semantic/dist/components/form.js: {}
 css:
 component:
 bower_components/semantic/dist/components/form.css: {}

The form component for Semantic UI has a stylesheet and JavaScript file. Our library
ensures that both are loaded when the library is attached.

6. The button, input, and label components do not have any JavaScript files. Add a
library for each component:
semantic_ui.button:
 css:
 component:
 bower_components/semantic/dist/components/button.css: {}
semantic_ui.input:
 css:
 component:
 bower_components/semantic/dist/components/input.css: {}
semantic_ui.label:
 css:
 component:
 bower_components/semantic/dist/components/label.css: {}

https://github.com/semantic-org/semantic-ui/

Off the Drupalicon Island

282

7. Now that the libraries are defined, we can use the attach_library Twig function to
add our libraries to the appropriate templates when we add the Semantic UI classes.

8. Copy the form.html.twig file from the Classy theme's templates folder and
paste it into your theme' templates folder. We will attach mytheme/semantic_
ui.form and add the ui and form classes:
{{ attach_library('mytheme/semantic_ui.form') }}
<form{{ attributes.addClass(['ui', 'form']) }}>
 {{ children }}
</form>

The attach_library function will attach the specified library. Use the addClass
method from Twig to add the ui and form classes. Semantic UI requires all elements
to have the matching ui class.

9. Next, copy the input.html.twig file from the Classy theme and paste it into your
theme's template folder. We will attach mytheme/semantic_ui.input and add
the ui and input classes:
{{ attach_library('mytheme/semantic_ui.input') }}
<input{{ attributes.addClass(['ui', 'input']) }} />{{ children }}

10. Copy the input.html.twig file that we just created and use it to make input—
submit.html.twig. This template file will be used for submit and other buttons:
{{ attach_library('mytheme/semantic_ui.button') }}
<input{{ attributes.addClass(['ui', 'button', 'primary']) }} />{{
children }}

11. Finally, copy the form-element-label.html.twig file from Classy to your theme.
We will add the label library and appropriate class, along with the defaults that Classy
has defined:
{{ attach_library('mytheme/semantic_ui.label') }}

{%
 set classes = [
 title_display == 'after' ? 'option',
 title_display == 'invisible' ? 'visually-hidden',
 required ? 'js-form-required',
 required ? 'form-required',
 'ui',
 'label',
]
%}
{% if title is not empty or required -%}
 <label{{ attributes.addClass(classes) }}>{{ title }}</label>
{%- endif %}

Chapter 11

283

12. View a form and check whether it has been styled by the Semantic UI CSS framework:

How it works…
The simplicity of integrating with a CSS framework is provided by the new template system,
Twig, and the asset management system in Drupal 8. The usage of Bower is optional, but it
is usually a preferred method for managing frontend dependencies and can be used to keep
third-party libraries out of version control.

While it may be a task to add each component as its own library and attach when specifically
needed, it ensures optimal asset delivery. With CSS and JavaScript aggregation enabled, each
page will only have the minimal resources that are needed. This is an advantage when the
entire Semantic UI minified is still 524 kb.

See also
 f Refer to Semantic UI at http://semantic-ui.com/

 f In the recipe Creating a custom theme based on Classy, in Chapter 5, Frontend for
the Win

 f In the recipe Using the new asset management system, in Chapter 5, Frontend for
the Win

 f In the recipe Twig templating, in Chapter 5, Frontend for the Win

http://semantic-ui.com/

Off the Drupalicon Island

284

Implementing and using a third-party
PHP library

Drupal 8 uses Composer for package dependencies and autoloading classes based on
PSR standards. This allows us to use any available PHP library much more easily than in
previous versions of Drupal.

In this recipe, we will add the Stack/Cors library to add CORS support to Drupal 8. Stack/
Cors is a stack middleware that adds support to the Access-Control-Allow-Origin header
used in web applications. Without specification, AJAX requests across different domains
may fail.

In order to test CORS, you will need to make a cross-domain asynchronous
JavaScript request. The Access-Control-Allow-Origin header defines
domains that are allowed to perform these requests.

Getting ready
You need to have Composer installed in order to use the Composer manager workflow. You
can follow the Getting Started documentation at https://getcomposer.org/doc/00-
intro.md. We will add the asm89/stack-cors library as a dependency to our Drupal
installation.

How to do it…
1. Using your terminal, navigate to your Drupal site's root directory.

2. Use the require command from Composer to add the library:
composer require asm89/stack-cors

3. Composer will then add the library to the composer.json file and install the library
along with any dependencies. Its namespace will now be registered.

4. Now, we need to implement a module that registers the Stack/Cors library as
a middleware service. We'll call the module asm_stack_cors. Add the following
code to the asm_stack_cors.info.yml file:
name: Stack/Cors
type: module
description: Adds CORS support to Drupal via the asm89/stack-cors
library
core: 8.x

https://getcomposer.org/doc/00-intro.md
https://getcomposer.org/doc/00-intro.md

Chapter 11

285

5. Create asm_stack_cors.services.yml. This will register the library with Drupal's
service container:
parameters:
 cors:
 enabled: true
 allowedHeaders: []
 allowedMethods: ['GET']
 allowedOrigins: ['*']
 exposedHeaders: []
 maxAge: false
 supportsCredentials: false

services:
 asm_stack_cors.cors:
 class: Asm89\Stack\Cors
 arguments: ['%cors%']
 tags:
 - { name: http_middleware }

6. Next, we will need to implement a compiler pass injection. This will allow us to inject
our service into the container when it is compiled. Create a src/Compiler directory
and make CorsPass.php.

7. The CorsPass.php will provide the CorsPass class, which implements \Symfony\
Component\DependencyInjection\Compiler\CompilerPassInterface:
<?php

/**
 * @file
 * Contains \Drupal\webprofiler\Compiler\StoragePass.
 */

namespace Drupal\asm_stack_cors\Compiler;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler\
CompilerPassInterface;

/**
 * Class CorsPass
 */
class CorsPass implements CompilerPassInterface {

 /**

Off the Drupalicon Island

286

 * {@inheritdoc}
 */
 public function process(ContainerBuilder $container) {
 if (FALSE === $container->hasDefinition('asm_stack_cors.
cors')) {
 return;
 }

 $cors_config = $container->getParameter('cors');

 if (!$cors_config['enabled']) {
 $container->removeDefinition('asm_stack_cors.cors');
 }
 }

}

8. Enable the new Stack/Cors module. The stack middleware service will
be registered and now support CORS requests. To test this, modify the
allowedOrigins to only accept your Drupal 8 site's domain:
parameters:
 cors:
 enabled: true
 allowedHeaders: []
 allowedMethods: ['GET']
 allowedOrigins: ['http://drupal-8-cookbook.platform']
 exposedHeaders: []
 maxAge: false
 supportsCredentials: false

9. Make a request to your website and pass an Origin header for a different website,
such as http://example.com. The request should return a 403 Forbidden
since it is not an allowed domain:

$ curl -I 'http://drupal-8-cookbook.platform/' --header 'origin:
http://example.com'

HTTP/1.1 403 Forbidden

Server: nginx/1.9.6

Date: Sat, 13 Feb 2016 05:04:45 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

X-Powered-By: PHP/5.6.8

Cache-Control: no-cache

Chapter 11

287

How it works…
Drupal 8 utilizes Symfony components. One of them is the service container and the services
it has registered. During the building of the container, there is a compiler pass process that
allows alterations of the container's services.

First, we need to register the service in the module's services.yml file. The \Drupal\
Core\DependencyInjection\Compiler\StackedKernelPass class provided by the
core will automatically load all the services tagged with http_middleware, such as our
asm_stack_cors.cors service.

Our arguments definition loads items defined in the parameters.cores that are used
for the class's constructor.

With our provided CorePass class, we are also tapping into the container's compile cycle.
We check the parameter values for the cors section to see whether they are enabled.
If the enabled setting is set to false, we remove our service from the container.

See also
 f Refer to the Cross-Origin Resource Sharing specification at

http://www.w3.org/TR/cors/

 f Refer to the Symfony Service Container documentation at
http://symfony.com/doc/current/book/service_container.html

 f Refer to the Symfony Dependency Injection component documentation at
http://symfony.com/doc/current/components/dependency_injection/
introduction.html

Using Composer manager
Drupal 8 has an interesting predicament. It utilizes third-party PHP libraries Proudly Built
Elsewhere that are managed through Composer. However, the packages managed by Composer
are committed into version control and Composer is (as of 8.0.x) not part of the Drupal build or
installation process.

The Composer manager module provides a way to fully support a Composer-based workflow
when working with Drupal. Drupal Commerce requires a Composer-based workflow because
it uses third-party PHP libraries. In this recipe, we will examine the Drupal Commerce
composer.json file and install the module.

Ideally, future versions of Drupal, such as 8.1.x or 8.2.x, will remove the need
for the Composer manager and the previous recipe can use a composer.
json in the module itself to define the external library dependency.

http://www.w3.org/TR/cors/
http://symfony.com/doc/current/book/service_container.html
http://symfony.com/doc/current/components/dependency_injection/introduction.html
http://symfony.com/doc/current/components/dependency_injection/introduction.html

Off the Drupalicon Island

288

Getting ready
You need to have Composer installed in order to use the Composer manager workflow.
You can follow the Getting Started documentation at https://getcomposer.org/
doc/00-intro.md.

How to do it…
1. Download the latest version of Composer manager, and place it in your Drupal site's

modules folder:

2. The Drupal 8 version will most likely remain as an Other release, as the goal is to
improve Drupal core's Composer integration and remove the need for this module.

3. Download the Drupal Commerce module and place it in your Drupal site's modules
folder. Do not install the module.

4. The Drupal Commerce module contains a composer.json that requires three
external PHP libraries:
{
 "name": "drupal/commerce",
 "type": "drupal-module",
 "description": "Drupal Commerce is a flexible eCommerce
solution.",
 "homepage": "http://drupal.org/project/commerce",
 "license": "GPL-2.0+",
 "require": {
 "commerceguys/intl": "dev-master",
 "commerceguys/pricing": "dev-master",
 "commerceguys/tax": "dev-master"
 },
 "minimum-stability": "dev"
}

https://getcomposer.org/doc/00-intro.md
https://getcomposer.org/doc/00-intro.md

Chapter 11

289

5. In order to allow Composer to download our dependencies, we need to run a script
provided by Composer manager that will patch Drupal core's composer.json.
Run this command from the root of your Drupal site's directory:
php modules/composer_manager/scripts/init.php

6. Now, Drupal core's composer.json will be aware of any module requirements.
The next command will download all the required dependencies:
composer drupal-update

7. The commerceguys/intl, commerceguys/pricing, and commerceguys/tax
libraries will now be in the root vendor folder of your Drupal site.

8. You can now successfully install Drupal Commerce and its submodules:

How it works…
The composer.json in the root Drupal 8 directory actually acts as a meta configuration. It
defines a requirement for the Wikimedia library that merges the composer.json files. The
Composer manager module adds the discovered composer.json files used for extensions to
the list of files to be merged.

When you run the init.php script, it updates the root composer.json file to manually
add a namespace to the module's Composer script and two custom commands: drupal-
rebuild and drupal-update:

 "autoload": {
 "psr-4": {
 "Drupal\\Core\\Composer\\": "core/lib/Drupal/Core/
Composer",

Off the Drupalicon Island

290

 "Drupal\\composer_manager\\Composer\\": "modules/contrib/
composer_manager/src/Composer"
 }
 },
 "scripts": {
 "pre-autoload-dump": "Drupal\\Core\\Composer\\
Composer::preAutoloadDump",
 "post-autoload-dump": "Drupal\\Core\\Composer\\
Composer::ensureHtaccess",
 "post-package-install": "Drupal\\Core\\Composer\\Composer::ven
dorTestCodeCleanup",
 "post-package-update": "Drupal\\Core\\Composer\\Composer::vend
orTestCodeCleanup",
 "drupal-rebuild": "Drupal\\composer_manager\\Composer\\
Command::rebuild",
 "drupal-update": "Drupal\\composer_manager\\Composer\\
Command::update"
 },

The drupal-rebuild command updates the files that are to be merged. Then, the drupal-
update command will download or update the required dependencies.

Currently, the discovery of the extension composer.json files is the
major functionality provided by the module. You can follow the issue
to provide automatic discovery at https://www.drupal.org/
node/2609568.

There's more…
Soon Drupal core will support Composer in custom and contributed modules. We will cover
how to simplify the previous Implementing and using a third-party PHP library recipe using a
composer.json file in your module.

Updating the Stack/Cors recipe
The Implementing and using a third-party PHP library recipe manually adds the asm89/
stack-cors library to the root composer.json as a dependency. A problem with this
is that any Drupal core upgrade will remove this modification, this being one reason we
require Composer manager.

This can be mitigated by adding a composer.json in your module's base directory file that
contains the following code:

{
 "name": "drupal/asm_stack-cors",

https://www.drupal.org/node/2609568
https://www.drupal.org/node/2609568

Chapter 11

291

 "type": "drupal-module",
 "description": "Implements stack middleware Stack/Cors",
 "license": "GPL-2.0+",
 "require": {
 "asm89/stack-cors": "^0.2.1"
 },
 "minimum-stability": "dev"
}

Drupal 8 has the Wikimedia composer-merge-plugin as a dependency. This package
allows you to merge multiple composer.json files into one, such as a composer.json
that is provided by modules. Composer manager provides the missing steps that allow the
module's composer.json be merged into the root composer.json and download the
PHP library.

See also
 f Refer to the Composer documentation for replace at

https://getcomposer.org/doc/04-schema.md#replace

 f Refer to the wikimedia/composer-merge-plugin library at
https://github.com/wikimedia/composer-merge-plugin

 f Refer to wikimedia/composer-merge-plugin manage contrib
dependencies at https://www.drupal.org/node/2609568

https://getcomposer.org/doc/04-schema.md#replace
https://github.com/wikimedia/composer-merge-plugin
https://www.drupal.org/node/2609568

293

12
Web Services

Drupal 8 ships with the RESTful functionality, to implement web services to interact with your
application. This chapter shows you how to enable these features and build your own API:

 f Enabling RESTful interfaces

 f Using GET to retrieve data

 f Using POST to create data

 f Using PATCH to update data

 f Using Views to provide custom data sources

 f Authentication

Introduction
There are several modules provided by Drupal 8 that enable the ability to turn it into a
web services provider. The Serialization module provides a means of serializing data to,
or deserializing from formats such as JSON and XML. The RESTful Web Services module
then exposes entities and other APIs through web APIs.

The HAL module serializes entities using Hypertext Application Language format. (HAL) is an
Internet Draft standard convention used to hyperlink between resources in an API. HAL JSON
is required when working with POST and PATCH methods. For authentication, the HTTP Basic
Authentication module provides a simplistic authentication via HTTP headers.

This chapter covers how to work with the RESTful Web Services module and the supporting
modules around developing a RESTful API powered by Drupal 8. We will cover how to use the
GET, POST, and PATCH HTTP methods to manipulate content on the website. Additionally, we
will cover how to use Views to provide custom content that lists endpoints. And finally, we will
cover how to handle custom authentication for your API.

Web Services

294

In an article, Putting off PUT, the team behind the web services
initiative chose to not implement PUT and only support PATCH.
For more information, refer to the original article at https://
groups.drupal.org/node/284948. However, the API is
open for contributed modules to add the PUT support for core
resources or their own.

Enabling RESTful interfaces
The RESTful Web Services module provides routes that expose endpoints for your RESTful API. It
utilizes the Serialization module to handle the normalization to a response and denormalization
of data from requests. Endpoints support specific formats and authentication providers.

There is one caveat: RESTful Web Services does not provide a user interface and relies on
a single configuration object to enable RESTful endpoints for content entities. Individual
endpoints are not their own configuration entities.

When the RESTful Web Services module is first installed, it will enable GET, POST, PATCH,
and DELETE methods for the node entity. Each method will support the hal_json format
and basic_auth for its support authentication methods. This ends up with a highly coupled
relationship between the HAL and HTTP Basic Authentication modules.

In this recipe, we will install RESTful Web Services and enable the proper permissions to allow
the retrieval of nodes via REST to receive our formatted JSON.

We will cover using GET, POST, PATCH, and DELETE in other recipes.
This recipe covers the installation and configuration of the base modules
to enable web services.

Getting ready
There is a configuration change that might be required if you are running PHP 5.6, the
always_populate_raw_post_data setting. If you try to enable the RESTful Web
Services module without changing the default setting, you will see the following error
message on installation:

The always_populate_raw_post_data PHP setting should be set to -1 in
PHP version 5.6. Please check the PHP manual for information on how
to correct this. (Currently using always_populate_raw_post_data PHP
setting version Not set to -1.)

You will need to modify your PHP's configuration to set always_populate_raw_post_data
to -1.

https://groups.drupal.org/node/284948
https://groups.drupal.org/node/284948

Chapter 12

295

How to do it…
1. Visit Extend from the administrative toolbar and install the Web Services modules:

Serialization, RESTful Web Services, and HAL:

2. The RESTful Web Services module provides the default installation configuration in
its config/install/rest.settings.yml file. This enables the entity:node
endpoint, allowing it to be manipulated over a RESTful interface:
resources:
 entity:node:
 GET:
 supported_formats:
 - hal_json
 supported_auth:
 - basic_auth
 POST:
 supported_formats:
 - hal_json
 supported_auth:
 - basic_auth
 PATCH:
 supported_formats:
 - hal_json
 supported_auth:
 - basic_auth
 DELETE:
 supported_formats:
 - hal_json
 supported_auth:
 - basic_auth

Web Services

296

3. In the rest.settings configuration namespace, there is a resources section.
Each enabled RESTful interface resides under an entity:ENTITY_TYPE format
with each HTTP method it supports. This YAML settings enables GET, POST, PATCH,
and DELETE using HAL JSON and Basic Auth.

4. The RESTful Web Services module exposes each HTTP method as a permission for
each endpoint. Visit the Permissions form from the People page.

5. Enable the Access GET on Content resource permission for anonymous and
authenticated users:

6. Additionally, you can enable DELETE, PATCH, and POST on other roles, such as
authenticated users.

7. Save the permissions form. Node entities are now available in REST endpoints.

How it works…
The RESTful Web Services module works by implementing an event subscriber service,
rest.resource_routes, that adds routes to Drupal based on implementations of its
RestResource plugin. Each plugin returns the available routes based on HTTP methods
that are enabled for the resource.

When routes are built, the \Drupal\rest\Routing\ResourceRoutes class uses the
RestResource plugin manager to retrieve all the available definitions. The rest.settings
configuration object is loaded and inspected. If the resource plugin provides an HTTP method
that is enabled in the rest.settings.resources definitions, it begins to build a new route.
Verification is done against the defined supported formats and supported auth definitions. If
the basic validation passes, the new route is added to the RouteCollection and returned.

Chapter 12

297

If you provide a supported_formats or supported_auth value that is not available, the
endpoint will still be created. There will be an error, however, if you attempt to use the route
with the invalid plugin. For example, routes need to define an authentication provider key,
whether it is a disabled provider or an empty YAML array.

There's more…
The RESTful Web Services module provides a robust API that has some additional items to
make a note of. We will explore these in the next recipe.

Soft dependency on the HAL module
For all intents and purposes, the HAL module is not technically a dependency when you install
the RESTful Web Services module. The issue, however, resides in the fact that the default
installation configuration sets the allowed format to hal_json. In the event that the HAL
module is not enabled, an error will be thrown using the default node endpoint configuration.

There is work being done in the Drupal core issue queue to resolve the high coupling of the
web services modules.

RestResource plugin to expose data through RESTful Web
Services
The RESTful Web Services module defines a RestResource plugin. This plugin is used to
define resource endpoints. They are discovered in a module's Plugin/rest/resource
namespace and need to implement the \Drupal\rest\Plugin\ResourceInterface
interface.

Drupal 8 provides two implementations of the RestResource plugin. The first is the
EntityResource class that is provided by the RESTful Web Services module. It implements a
driver class that allows it to represent each entity type. The second is the Database Logging
module that provides its own RestResource plugin as well. It allows you to retrieve logged
messages by IDs.

The \Drupal\rest\Plugin\ResourceBase class provides an abstract base class that
can be extended for RestResource plugin implementations. If the child class provides a
method that matches the available HTTP methods, it will support them. For example, if a class
has only a get method, you can only interact with that endpoint through HTTP GET requests.
On the other hand, you can provide a trace method that allows an endpoint to support HTTP
TRACE requests.

Web Services

298

The REST UI module
As stated in the recipe's introduction, the RESTful Web Services module does not have a
user interface to enable, disable, or configure REST endpoints. The REST UI module provides
an interface to configure the available REST endpoints. While the interface is rudimentary,
it provides a way to enable and disable content entity endpoints. You can then edit the
endpoints and enable or disable the specific HTTP methods and their supported formats.

The REST UI module can be downloaded from Drupal.org at https://www.drupal.org/
project/restui.

Rate limiting your API
Many APIs implement a rate limit to prevent abuse of public APIs. When you have publicly
exposed APIs, you need to control the amount of traffic hitting the service and prevent
abusers from slowing down or stopping your service.

The Rate Limiter module implements multiple ways to control access to your public APIs.
There is an option to control the rate limit on specific requests, IP address-based limiting,
and IP whitelisting.

You can download the Rate Limiter module from https://www.drupal.org/project/
rate_limiter.

https://www.drupal.org/project/restui
https://www.drupal.org/project/restui

Chapter 12

299

See also
 f Refer to the Drupal.org documentation for the RESTful Web Services module at

https://www.drupal.org/documentation/modules/rest

 f Change record: Accept header based routing got replaced by a query parameter,
https://www.drupal.org/node/2501221

 f Chapter 7, Plug and Play with Plugins

 f Refer to the Rate Limiter module at https://www.drupal.org/project/rate_
limiter

 f Refer to the REST UI module at https://www.drupal.org/project/restui

Using GET to retrieve data
The RESTful Web Services module's entity resource plugin implements a get method that is
called when an HTTP GET request is made on an appropriate route. The entity is processed
and then returned in the appropriate format requested.

In this recipe, we will enable the REST endpoint for taxonomy term entities through GET
through both the JSON and HAL JSON formats. Since there is no user interface provided
by the Drupal core to edit the RESTful Web Services settings, we will use a command-line
tool to modify the values.

Since both Drush and Console, as discussed in Chapter 9, Configuration
Management – Deploying in Drupal 8, in the recipe Using command-line
workflow processes, support manipulating configuration objects, this recipe
will provide commands for both.

Getting ready
We will be modifying the rest.settings configuration object using command-line tools.
You need to have either Drush or Drupal Console installed with the ability to manipulate
your Drupal site.

If you are using Mac OS X and Vim is the default editor on the command line, you may
experience difficulties. Vim does not always report its exit code as expected, and the
command-line tool may not recognize that you have finished editing your code. Each
command-line tool provides a method used to specify an editor (such as Nano).

We need to have a taxonomy vocabulary created with some terms so that there is data to
be retrieved.

https://www.drupal.org/documentation/modules/rest
https://www.drupal.org/node/2501221
https://www.drupal.org/project/rate_limiter
https://www.drupal.org/project/rate_limiter
https://www.drupal.org/project/restui

Web Services

300

How to do it…
1. Visit Extend from the administrative toolbar and install the Web Services modules:

Serialization, RESTful Web Services, and HAL.

2. Once the modules are installed, open a terminal and navigate to your Drupal
site's directory.

3. Edit the rest.settings configuration by running the appropriate configuration
edit command:
For Drush
drush config-edit rest.settings

For Console
drupal config:edit rest.settings

4. Once the editor is loaded, we need to add an entity:taxonomy_term section with
a GET definition:
resources:
 'entity:taxonomy_term':
 GET:
 support_formats:
 - json
 - hal_json
 supported_auth:
 - cookie

5. The entity:taxnomy_term points to the entity resource plugin's derivative for
the taxonomy term entity. The definitions under GET provide the supported formats,
which can be returned, and supported authentications.

6. Commit the changes in your editor so that they can be imported into your Drupal site.

7. We need to rebuild Drupal's routes for our endpoints to be activated, since the
definition only lives in a configuration object:
For Drush
drush cache-rebuild

For Console
drupal router:rebuild

8. Console provides a way to rebuild the routing system, whereas with Drush you need
to rebuild all caches.

9. Visit the Permissions form from the People page. Enable the Access GET on
Taxonomy term resource permission for anonymous and authenticated users.

Chapter 12

301

10. Access a taxonomy term by visiting your Drupal site with the /taxonomy/term/1?_
format=json path. You will see the following response in your browser:
{"message":"Not acceptable"}

11. In order to retrieve data through the endpoint, you need to pass the appropriate
Accept header. You can use curl to simulate a request that passes this header:
curl --request GET \
 --url 'http://example.com/taxonomy/term/1?_format=json' \
 --header 'accept: application/json'

12. The command will return the formatted JSON with your taxonomy term's information.

How it works…
The RESTful Web Services module compiles routes based on the rest.settings.resources
values. When we implement a content entity endpoint, it actually adds a variation to the
canonical URL. It allows us to specify a request format on the same path and have the data
returned in that format.

The default routes provided by the \Drupal\rest\Plugin\ResourceBase class, the
base class for resource plugins, return \Drupal\rest\RequestHandler::handle for
the controller. This method checks the passed _format parameter against the configured
plugin. If the format is valid, the data is passed to the appropriate serializer.

The serialized data is then returned in the request with appropriate content headers.

There's more…
There are details that involve the way in which a request is formulated to a Drupal web service
resource. We will explore these now.

Using _format instead of the Accept header
Early in the Drupal 8 life cycle, up until 8.0.0-beta12, Drupal supported the use of the Accept
header instead of using the _format parameter. Unfortunately, there were issues with external
caches since HTML and other formats are served on the same path, only having different
Accept headers. The only solution to prevent cache poisoning on these external caches, such
as Varnish, was to ensure the implementation of the Vary: Accept header. There were,
however, too many issues regarding CDNs and variance of implementation, so the _format
parameter was introduced instead of appending extensions (.json, .xml) to paths.

Web Services

302

A detail of the problem can be found on these core issues:

 f Refer to external caches mix up response formats on URLs where content negotiation
is in use at https://www.drupal.org/node/2364011

 f Check how to implement query parameter-based content negotiation as an
alternative to extensions at https://www.drupal.org/node/2481453

See also
 f Refer to Change record: Accept header-based routing got replaced by a query

parameter at https://www.drupal.org/node/2501221

 f Chapter 9, Configuration Management – Deploying in Drupal 8, in the recipe
Using command-line workflow processes

Using POST to create data
When working with RESTful Web Services, the HTTP POST method is used to create new
entities. We will use the Basic HTTP Authentication to authenticate a user and create
a new node.

In this recipe, we will use the exposed node endpoint to create a new piece of article content
through the RESTful Web Services module. It is a requirement to use HAL JSON when making
POST requests, which is provided as the default format for the node endpoint.

Getting ready
We will be using the Article content type provided by the standard installation.

How to do it…
1. Visit Extend from the administrative toolbar and install the Web Services modules:

Serialization, RESTful Web Services, and HAL

2. We also need to install the HTTP Basic Authentication module. This will allow us to
authenticate our requests, and it is the default method for the node endpoint.

3. Enable the Access POST on Content resource permission for authenticated users.

4. First, we will start constructing the pieces of our JSON payload. We need to provide
a _links entry that contains objects defining relationship links, which is part of the
Hypertext Application Language definition implemented by Drupal:
{
 "_links": {
 "type": {

https://www.drupal.org/node/2364011
https://www.drupal.org/node/2481453
https://www.drupal.org/node/2501221

Chapter 12

303

 "href": "http://example.com/rest/type/node/page"
 }
 }
}

5. The _links is a collection of href values that link to /rest/some/path.

6. We can now provide the title and body values after our _links definition:
{
 "_links": {
 "type": {
 "href": "http://example.com/rest/type/node/page"
 }
 },
 "title": [
 { "value" : "Article via POST!" }
],
 "body": [
 { "value" : "We created this over the RESTful API!" }
]
}

7. Before we send our JSON payload, we need to retrieve a CSRF token. We do this by
performing a GET request against /rest/session/token:
curl --request GET \
 --url http://example.com/rest/session/token \
 --header 'accept: text/plain'

8. We can send send the request containing our body payload to the /entity/node?_
format=hal_json path through an HTTP POST to create our node:
curl --verbose --request POST \
 --url 'http://example.com/entity/node?_format=hal_json' \
 --user admin:admin \
 --header 'accept: application/hal+json' \
 --header 'content-type: application/hal+json' \
 --data '{"_links":{"type":{"href":"http://example.com/
rest/type/node/page"}},"title":[{"value":"Article via
POST!"}],"body":[{"value":"We created this over the RESTful
API!"}]}'

9. We have to append ?_format=hal_json to ensure that our response comes
back in a non-HTML format.

10. A successful request will return an empty message with a 201 header code.

Web Services

304

11. View your Drupal site and verify that the node was created.

How it works…
When working with content entities and the POST method, the endpoint is different to the one
used for GET requests. The \Drupal\rest\Plugin\rest\resource\EntityResource
class extends the \Drupal\rest\Plugin\ResourceBase base class, which provides a route
method. If a resource plugin provides an https://www.drupal.org/link-relations/
create link template, then that path will be used for the POST path.

The link template is hardcoded to https://www.drupal.org and does
not relate to your host name. I tried to research why the creation link uses
the drupal.org domain. The information can be found at https://www.
drupal.org/node/2019123 and can be resolved by navigating to
https://www.drupal.org/node/2113345.

The EntityResource class defines /entity/{entity_type} as the create link template.
It then overrides the getBaseRoute method to ensure that the entity_type parameter is
properly populated from the definition.

The EntityResource class will run a set of conditions for the request. First, it will validate
the POST request by checking whether the entity is null. Then the current user is authorized to
create the entity type, if the current user also has access to edit all fields provided, and finally
it checks that an identifier was not passed. The last condition is important as updates are only
to be made through a PATCH request.

https://www.drupal.org
https://www.drupal.org/node/2019123
https://www.drupal.org/node/2019123
https://www.drupal.org/node/2113345

Chapter 12

305

If the entity is validated, it will be saved. On a successful save, an empty HTTP 201 response
will be returned.

There is currently an issue in the Drupal core issue queue to support
JSON for POST and PATCH requests (https://www.drupal.org/
node/1964034).

There's more…
Working with POST requests requires some specific formatting to be covered in the recipe.
We'll explain them in the next recipe.

Understanding available _links requirements
As stated previously, Drupal requires the use of HAL JSON for the format of requests using the
POST method. This is done to ensure that the entity is properly created with any relationships
it requires, such as the entity type for a content entities bundle. Another example would be to
create a comment over a RESTful interface. You would need to provide a _links entry for the
user owning the comment.

The rest.link_manager service uses the rest.link_manager.type and rest.link_
manager.relation and is responsible for returning the URIs for types and relations. By
default, a bundle will have a path that resembles /rest/type/{entity_type}/{bundle}
and relations will resemble /rest/relation/{entity_type}/{bundle}/{field_name}.

Taking a user reference as an example; we would have to populate a uid field, as follows:

{
 "_links": {
 "type": {
 "href": "http://master-rpusmp4jcny2c.us.platform.sh/rest/type/
node/page"
 },
 "http://example.com/rest/relation/node/article/uid": [
 {
 "href": "http://example.com/user/1?_format=hal_json",
 "lang": "en"
 }
]
 }
}

Unfortunately, the documentation is sparse, and the best way to learn what _links are
required is to perform a GET request and study the returned _links from the HAL JSON.

Web Services

306

Working with images
Most RESTful APIs utilize base64 encoding of files to support POST operations for uploading an
image. Unfortunately, this is not supported in the Drupal core. While there is a serializer.
normalizer.file_entity.hal service that serializes file entities into HAL JSON, it does
not currently work as of 8.0.x and does not appear to be part of 8.1.x.

The \Drupal\hal\Normalizer\FileEntityNormalizer class supports denormalization;
however, it does not handle base64 and expects binary data.

There is a Drupal core issue for this problem, which is available at https://www.drupal.
org/node/1927648.

Using Cross-Site Request Forgery tokens
When working with a POST request, you will need to pass a Cross-Site Request Forgery token
if you are authenticating with a session cookie. The X-CSRF-Token header is required when
using a session cookie to prevent accidental API requests.

If you are using the cookie provider for authentication, you will need to request a CSRF token
from the /rest/session/token route:

curl --request GET \
 --url http://example.com/rest/session/token

Take the token string returned in the response and use it as the value for the X-CSRF-Token
header in your POST request:

curl --request POST \
 --url 'http://example.com/entity/node/?_format=hal_json' \
 --header 'content-type: application/hal+json' \
 --header 'x-csrf-token: tmd1RcICiED9D4GCt0_npMWlIOI4MkgW_2lnYKfjlMc'

See also
 f Refer to the Drupal core issue to support POST with json at

https://www.drupal.org/node/1964034

 f Refer to how to serialize file content (base64) to support REST GET/POST/PATCH
on file entity at https://www.drupal.org/node/1927648

https://www.drupal.org/node/1927648
https://www.drupal.org/node/1927648
https://www.drupal.org/node/1964034
https://www.drupal.org/node/1927648

Chapter 12

307

Using PATCH to update data
When working with RESTful Web Services, the HTTP PATCH method is used to update entities.
We will use the Basic HTTP Authentication to authenticate a user and update a node.

In this recipe, we will use the exposed node endpoint to create a new piece of article content
through the RESTful Web Services module. It is a requirement to use HAL JSON when making
PATCH requests, which is provided as the default format for the node endpoint.

Getting ready
We will be using the Article content type provided by the standard installation.

How to do it…
1. Visit Extend from the administrative toolbar and install the Web Services modules:

Serialization, RESTful Web Services, and HAL

2. We need to also install the HTTP Basic Authentication module. This will allow
us to authenticate our requests, and it is the default method for the node endpoint.

3. Enable the Access PATCH on Content resource permission for authenticated users.

4. Create a sample article node on your Drupal site that we will modify using the
REST endpoint:

Web Services

308

5. First, we will start building our JSON payload. We need to provide a _links entry
that contains objects that define relationship links, which is part of the Hypertext
Application Language definition implemented by Drupal:
{
 "_links": {
 "type": {
 "href": "http://master-rpusmp4jcny2c.us.platform.sh/rest/
type/node/page"
 }
 }
}

6. The _links is a collection of href values that link to /rest/some/path.

7. We will change the node's title by adding a title attribute:
{
 "_links": {
 "type": {
 "href": "http://master-rpusmp4jcny2c.us.platform.sh/rest/
type/node/page"
 }
 },
 "title": [
 { "value" : "Node updated via REST!" }
]
}

8. Before we send our JSON payload, we need to retrieve a CSRF token. We do this by
performing a GET request against /rest/session/token:
curl --request GET \
 --url http://example.com/rest/session/token \
 --header 'accept: text/plain'

9. We can send the request containing our body payload to the /node/NODE_ID?_
format=hal_json path through an HTTP POST to create our node. Replace
NODE_ID with the appropriate identifier for the node on your Drupal site:
curl --verbose --request PATCH \
 --url 'http://example.com/node/52?_format=hal_json' \
 --user admin:admin \
 --header 'accept: application/hal+json' \
 --header 'content-type: application/hal+json' \
 --data '{"_links":{"type":{"href":"http://example.com/rest/type/
node/page"}},"title":[{"value":"Node updated via REST!"}]}'

Chapter 12

309

10. If it is successful, you will receive a 204 HTTP code with no content.

11. View your Drupal site and verify that the node was updated:

How it works…
When working with content entities and the PATCH method, the endpoint is the same as
the GET method path. The only validation is the matching of the content type in the headers,
which needs to be application/hal+json. The current user's access is checked to see
whether they have the permission to update the entity type and each of the submitted fields
provided in the request body.

Each field provided will be updated on the entity and then validated. If the entity is validated,
it will be saved. On a successful save, an empty HTTP 204 response will be returned.

There is currently an issue in the Drupal core issue queue to support
JSON for POST and PATCH requests (https://www.drupal.org/
node/1964034).

See also
 f Refer to the Drupal core issue to support POST with json at

https://www.drupal.org/node/1964034

https://www.drupal.org/node/1964034
https://www.drupal.org/node/1964034
https://www.drupal.org/node/1964034

Web Services

310

Using Views to provide custom data sources
The RESTful Web Services module provides Views plugins that allow you to expose data over
Views for your RESTful API. This allows you to create a view that has a path and outputs data
using a serializer plugin. You can use this to output entities, such as JSON, HAL JSON, or XML,
and it can be sent with appropriate headers.

In this recipe, we will create a view that outputs the users of the Drupal site, providing their
username, e-mail, and picture if provided.

How to do it…
1. Visit Extend from the administrative toolbar and install the Web Services modules:

Serialization, RESTful Web Services, and HAL.

2. Visit Structure and then Views. Click on Add new view. Name the view API Users
and have it show Users.

3. Check the Provide a REST export checkbox, and use the api/users path. This is
where requests will be made:

4. Click on Save and edit.

5. Change the format of the row plugin from Entity to Fields instead so that
we can control the specific output.

6. Ensure that your view has the following user entity fields: Name, Email, and Picture.

7. Change the User: Name field to the Plain text formatter and do not link it to the user,
so the response does not contain any HTML.

8. Save your view.

Chapter 12

311

9. Access your view by visiting /api/users and you will receive a JSON response
containing the user information:
[
 {
 "name": "houotrara",
 "mail": "houotrara@example.com",
 "user_picture": " <img src=\"http://example.com/sites/
default/files/pictures/2016-01/generateImage_a7JEUp.jpeg\"
width=\"89\" height=\"87\" alt=\"Abdo bene blandit comis esse
eum lobortis minim qui.\" title=\"Abdo aptent bene saepius si
vulputate.\" typeof=\"foaf:Image\" />\n\n"
 },
 {
 "name": "cragedrelohi",
 "mail": "cragedrelohi@example.com",
 "user_picture": " <img src=\"http://example.com/sites/
default/files/pictures/2016-01/generateImage_pQDdBa.jpeg\"
width=\"94\" height=\"98\" alt=\"Aliquip decet eu iaceo jus obruo
praesent premo.\" title=\"Exerci turpis wisi. Commodo gravis
scisco venio.\" typeof=\"foaf:Image\" />\n\n"
 }
]

How it works…
The RESTful Web Services module provides a display, row, and format plugin that allows
you to export content entities to a serialized format. The REST Export display plugin is
what allows you to specify a path to access the RESTful endpoint, and properly assigns
the Content-Type header for the requested format.

The Serializer style is provided as the only supported style plugin for the REST
Export display. This style plugin only supports row plugins that identify themselves
as data display types. It expects data from the row plugin to be raw so that it can be
passed to the appropriate serializer.

You then have the option of using the Data entity or Data field row plugins. Instead
of returning a render array from their render method, they return raw data that will be
serialized into the proper format.

With the row plugins returning raw format data and the data then serialized by the style
plugin, the display plugin will then return the response, converted into the proper format
via the Serialization module.

Web Services

312

There's more…
Views provide a way to deliver specific RESTful endpoints. We will explore some additional
features in the next recipe.

Controlling the key name in JSON output
The Data fields row plugin allows you to configure field aliases. When the data is returned
through the view, it will have Drupal's machine names. This means that custom fields will look
something like field_my_field, which may not make sense to the consumer. By clicking on
Settings next to Fields you can set aliases in the modal form:

When you provide an alias, the fields will match. For example, user_picture can be
changed to avatar and the mail key can be changed to e-mail:

[{
 "name": "houotrara",
 "mail": "houotrara@example.com",
 "avatar": "
}]

Controlling access of RESTful Views
When you create a RESTful endpoint with Views, you are not using the same permissions
created by the RESTful Web Services module. You need to define the route permissions
within the view, allowing you to specify specific roles or permissions for the request.

Chapter 12

313

The default GET method provided by the EntityResource plugin does not provide a way to
list entities, and allows any entity to be retrieved by an ID. Using Views, you can provide a list
of entities, limiting them to specific bundles and many more.

Using Views, you can even provide a new endpoint to retrieve a specific entity. Using
Contextual filters, you can add route parameters and filters to limit and validate entity
IDs. For example, you may want to expose the article content over the API, but not pages.

Add a URL formatter for the image field
As you may have noticed, our user_picture field returned the complete HTML for the image
and not a URL for the image directly. In fact, currently, there is no option, as of 8.0.x, to return
the URL or endpoint resource for the image file. There is, however, an item in the issue queue
to resolve this, which is available at https://www.drupal.org/node/2517030, slated
for 8.1.x.

You have the option of implementing your own field formatter or applying the patch in your
build to get the formatter. Or, you can use the Backports module. At the time of writing this
book, the URL field formatter is the only patch provided by the module. However, the purpose
of the module is to implement a functionality that is not provided by Drupal but will be
provided in the near future. You can get the Backports module at https://www.drupal.
org/project/backports.

See also
 f Refer to the Backports module at https://www.drupal.org/project/

backports

Authentication
Using the RESTful Web Services module, we define specific supported authentication
providers for an endpoint. The Drupal core provides a cookie provider, which authenticates
through a valid cookie, such as your regular login experience. Then, there is the HTTP Basic
Authentication module to support HTTP authentication headers.

There are alternatives that provide more robust authentication methods. With cookie-based
authentication, you need to use CSRF tokens to prevent unrequested page loads by an
unauthorized party. When you use the HTTP authentication, you are sending a password for
each request in the request header.

A popular, and open, authorization framework is OAuth. OAuth is a proper authentication
method that uses tokens and not passwords. In this recipe, we will implement the Simple
OAuth module to provide OAuth 2.0 authentication for GET and POST requests.

https://www.drupal.org/node/2517030
https://www.drupal.org/project/backports
https://www.drupal.org/project/backports
https://www.drupal.org/project/backports
https://www.drupal.org/project/backports

Web Services

314

Getting ready
If you are not familiar with OAuth or OAuth 2.0, it is a standard for authorization. The
implementation of OAuth revolves around the usage of tokens sent in HTTP headers.
Refer to the OAuth home page for more information at http://oauth.net/.

How to do it…
1. Download the Simple OAuth module and place it in your Drupal site's

modules directory.

2. Visit Extend from the administrative toolbar and install the Web Services modules:
Serialization, RESTful Web Services, HAL, and Simple OAuth.

3. Edit the rest.settings configuration by running the appropriate configuration
edit command:
For Drush
drush config-edit rest.settings

For Console
drupal config:edit rest.settings
Modify the entity:node resource and replace basic_auth for the GET
and POST method with token_bearer.
resources:
 'entity:node':
 GET:
 supported_formats:
 - hal_json
 supported_auth:
 - token_bearer
 POST:
 supported_formats:
 - hal_json
 supported_auth:
 - token_bearer

4. Commit the changes in your editor so that they can be imported into your Drupal site.

5. We need to rebuild Drupal's routes for our endpoint to be activated, since the
definition only lives in a configuration object:
For Drush
drush cache-rebuild

For Console
drupal router:rebuild

http://oauth.net/

Chapter 12

315

6. Enable the Access GET on Content resource and Access POST on Content
resource permissions for authenticated users.

7. View your user profile, and click on the OAuth 2 Tokens tab.

8. Click on the Add Access Token button to create an OAuth token. Then, save the
following form:

9. Copy the generated token; this will allow you to authenticate requests.

10. Rest a node over REST with the Authorization: Bearer [token] header:
curl --request GET \
 --url 'http://example.com/node/1?_format=hal_json' \
 --header 'accept: application/json' \
 –-header 'authorization: Bearer JT9zgBgMEDlk2QIF0ecpZEOcsYC7-
x649Bovo83HXQM'
How it works

In a typical authentication request, there is an authentication manager that uses the
authentication_collector service to collect all the tagged authentication provider
servers. Based on the provider's set priority, each service is invoked to check whether it
applies to the current request. Each applied authentication provider then gets invoked to
see whether the authentication is invalid.

For the RESTful Web Services module, the process is more explicit. The providers identified
in the supported_auth definition for the endpoint are the only services that run through
the applies and authenticates process.

Web Services

316

There's more…
We will explore more information on working with authentication providers and the RESTful
Web Services module.

Authentication provider services
When working with the RESTful Web Services module endpoints, the supported_auth
values reference services tagged with authentication_provider. Out of the box, Drupal
supports cookie authentication. The following code is provided by the basic_auth module to
support the HTTP header authentication:

services:
 basic_auth.authentication.basic_auth:
 class: Drupal\basic_auth\Authentication\Provider\BasicAuth
 arguments: ['@config.factory', '@user.auth', '@flood', '@entity.
manager']
 tags:
 - { name: authentication_provider, provider_id: 'basic_auth',
priority: 100 }

An authentication provider can be created by making a class in your module's
Authentication\Provider namespace and implementing the \Drupal\Core\
Authentication\AuthenticationProviderInterface interface. Then, register
the class as a service in your module's services.yml.

Page cache request policies and authenticated web service
requests
When working with data that expects authenticated users, the authentication service provider
needs to also provide a page cache service handler. Services that are tagged with page_
cache_request_policy have the ability to check whether the content is cached or not.

The following code is taken from the basic_auth module:

 basic_auth.page_cache_request_policy.disallow_basic_auth_requests:
 class: Drupal\basic_auth\PageCache\DisallowBasicAuthRequests
 public: false
 tags:
 - { name: page_cache_request_policy }

The \Drupal\basic_auth\PageCache\DisallowBasicAuthRequests class implements
the \Drupal\Core\PageCache\RequestPolicyInterface interface. The check method
allows the page cache policy to explicitly deny or remain neutral on a page's ability to be cached.
The basic_auth module checks whether the default authentication headers are present. For
the simple_oauth module, it checks whether a valid token is present.

Chapter 12

317

This is an important security measure if you are implementing
your own authentication services.

A page cache policy service can be implemented by making a class in your module's
PageCache namespace and implementing the \Drupal\Core\PageCache\
ResponsePolicyInterface interface. Then, we need to register the class as a
service in your module's services.yml.

IP Authentication Provider
Some APIs that implement server-to-server communication will authenticate using
IP address whitelists. For this use case, we have the IP Consumer Auth module.
Whitelisted IP addresses are controlled by a form that saves a configuration value.
If an IP address is whitelisted, the user is authenticated as an anonymous user. While
this may not be recommended for POST, PATCH, and DELETE requests, it can provide a
simple way to control specific GET endpoints in a private network.

You can download IP Consumer Auth from its project page at https://www.drupal.
org/project/ip_consumer_auth.

See also
 f Refer to the OAuth Community Site at http://oauth.net/

 f Refer to the OAuth module for OAuth 1.0 support at https://www.drupal.org/
project/oauth

 f Refer to the simple OAuth module for OAuth 2.0 support at https://www.drupal.
org/project/simple_oauth

 f Refer to the IP Consumer Auth module at https://www.drupal.org/project/
ip_consumer_auth

https://www.drupal.org/project/ip_consumer_auth
https://www.drupal.org/project/ip_consumer_auth
http://oauth.net/
https://www.drupal.org/project/oauth
https://www.drupal.org/project/oauth
https://www.drupal.org/project/simple_oauth
https://www.drupal.org/project/simple_oauth
https://www.drupal.org/project/ip_consumer_auth
https://www.drupal.org/project/ip_consumer_auth

319

13
The Drupal CLI

There are two command-line tools for Drupal 8: Console and Drush. In this chapter, we will
discuss how they make working with Drupal easier by covering the following recipes:

 f Rebuilding cache in Console or Drush

 f Using Drush to interact with the database

 f Using Drush to manage users

 f Scaffolding code through Console

 f Making a Drush command

 f Making a Console command

Introduction
In the previous chapters of this book, there have been recipes that provide ways of using
command-line tools to simplify working with Drupal. There are two contributed projects that
provide Drupal with a command-line interface experience.

First, there is Drush. Drush was first created for Drupal 4.7 and has become an integral
tool used for day-to-day Drupal operations. However, with Drupal 8 and its integration with
Symfony, there came Drupal Console. Drupal Console is a Symfony Console-based application
that allows it to reuse more components and integrate more easily with contributed modules.

This chapter contains recipes that will highlight operations that can be simplified by using
Drush or Console. By the end of this chapter, you will be able to work with your Drupal sites
through the command line.

The Drupal CLI

320

At the time of writing, Drush was still the primary tool of choice for Drupal 8
as it had a larger feature set. However, Console is rapidly being developed
and features are been added regularly. Due to this rapid development, the
commands will still exist but the output may differ.

To get started, refer to the following installation guides for each tool:

 f Drush: http://docs.drush.org/en/master/install/

 f Console: https://hechoendrupal.gitbooks.io/drupal-console/
content/en/getting/installer.html

Rebuilding cache in Console or Drush
Drupal utilizes caching to store plugin definitions, routes, and so on. When you add a new
plugin definition or new route, you need to rebuild Drupal's cache for it to be recognized.

In this recipe, we will walk you through using both Drush and Console to clear various cache
bins in Drupal. It is important to know how to clear specific cache bins so that you do not need
to rebuild everything, if possible.

How to do it…
1. Open a terminal and navigate to an installed Drupal directory.

2. We use the cache-rebuild command in Drush to rebuild all of Drupal's caches,
including routes:
$ drush cache-rebuild

Cache rebuild complete.

3. Drush will bootstrap Drupal to a full site and invoke a full cache clear.

4. In Console, we use the cache:rebuild command to clear specific cache bins:
$ drupal cache:rebuild

 Select cache. [all]:

 > all

 Rebuilding cache(s), wait a moment please.

 [OK] Done clearing cache(s).

5. If you select all, the same operation is run in Drush. However, Console is set up to
allow distinct cache bins in future development.

http://docs.drush.org/en/master/install/
https://hechoendrupal.gitbooks.io/drupal-console/content/en/getting/installer.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/getting/installer.html

Chapter 13

321

6. If you only need to rebuild your routes in Drupal, you can use the router:rebuild
command in Console:
$ drupal router:rebuild

Rebuilding routes, wait a moment please

 [OK] Done rebuilding route(s).

7. Instead of clearing all caches to rebuild routes, it can be done directly with this
command.

8. Drush provides twig-compile to rebuild template changes without clearing
all caches:
$ drush twig-compile

How it works…
Both Drush and Console will load files off your Drupal site and bootstrap the application.
This allows the commands to invoke functions and methods found in Drupal.

Currently, Drush does not implement the dependency injection container, and still needs to
rely on procedural functions in Drupal. Console, however, harnesses the dependency injection
container, allowing it to reuse Drupal's container and services.

Using Drush to interact with the database
When working with any application that utilizes a database, there are times when you will
need to export a database and import it elsewhere. Most often, you would do this with a
production site to work on it locally. This way, you can create a new configuration that can be
exported and pushed to production, as discussed in Chapter 9, Configuration Management –
Deploying in Drupal 8.

In this recipe, we will export a database dump from a production site in order to set up the
local development. The database dump will be imported over the command line and sanitized.
We will then execute an SQL query through Drush to verify sanitization.

Getting ready
Drush has the ability to use site aliases. Site aliases are configuration items that allow you to
interact with a remote Drupal site. In this recipe, we will use the following alias to interact with
a fictional remote site to show how a typical workflow will go to fetch a remote database.

The Drupal CLI

322

Note that you do not need to use a Drush alias to download the database dump created in the
recipe; you can use any method you are familiar with (manually, from the command line, use
mysqldump or phpMyAdmin):

 $aliases['drupal.production] = array(

 'uri' => 'example.com',

 'remote-host' => 'example.com',

 'remote-user' => 'someuser',

 'ssh-options' => '-p 2222',

);

Read the Drush documentation for more information on site aliases at
http://docs.drush.org/en/master/usage/#site-aliases.
Site aliases allow you to interact with remote Drupal installations.

We will also assume that the local development site has not yet been configured to connect to
the database.

How to do it…
1. We will use the sql-dump command to export the database into a file. The command

returns the output that needs to be redirected to a file:
$ drush @drupal.production sql-dump > ~/prod-dump.sql

This will take the data from sql-dump and save it in prod-dump.sql in your
home directory.

2. Navigate to your local Drupal site's directory and copy sites/default/default.
settings.php to sites/default/settings.php.

3. Edit the new settings.php file and add a database configuration array at the end
of the file:
// Database configuration.
$databases['default']['default'] = array(
 'driver' => 'mysql',
 'host' => 'localhost',
 'username' => 'mysql',
 'password' => 'mysql',
 'database' => 'data',
 'prefix' => '',
 'port' => 3306,
 'namespace' => 'Drupal\\Core\\Database\\Driver\\mysql',
);

http://docs.drush.org/en/master/usage/#site-aliases

Chapter 13

323

4. This will add our database connection information as the default database in the
global $databases variable.

5. Using the sql-cli command, we can import the database dump that we created:
$ drush sql-cli < ~/prod-dump.sql

This will then run the SQL dump as a set of commands on the database, importing
your data.

6. The sql-sanitize command allows you to obfuscate user e-mails and passwords
in the database:
$ drush sql-sanitize

This will update all of the users in the user table by changing their usernames
and passwords.

7. To verify that our information has been sanitized, we will use the sql-query
command to run a query against the database:
$ drush sql-query "SELECT uid, name, mail FROM users_field_data;"

The command will return a list of the results.

How it works…
When working with Drush, we have the ability to use Drush aliases. A Drush alias contains a
configuration that allows the tool to connect to a remote server and interact with that server's
installation of Drush.

You need to have Drush installed on your remote server in
order to use a site alias for it.

The sql-dump command executes the proper dump command for the database driver,
which is typically MySQL and the mysqldump command. It streams to the terminal and
must be piped to a destination. When piped to a local SQL file, we can import it and execute
the create commands to import our database schema and data.

With the sql-cli command, we are able to execute SQL commands to the database through
Drush. This allows us to redirect the file contents to the sql-cli command and run the set of
SQL commands. With the data imported, the sql-sanitize command replaces usernames
and passwords.

Finally, the sql-query command allows us to pass an SQL command directly to the database
and return its results. In our recipe, we query the users_field_data to verify that e-mails
have been sanitized.

The Drupal CLI

324

There's more…
Working with Drupal over the command line simplifies working with the database. We will
explore this in more detail in the following sections.

Using gzip with sql-dump
Sometimes databases can be quite large. The sql-dump command has a gzip option that
will output the SQL dump using the gzip command. In order to run the command, you would
simply do:

$ drush sql-dump –-gzip dump.sql.gz

The end result provides a reduction in the dump file:

-rw-r--r-- 1 user group 3058522 Jan 14 16:10 dump.sql

-rw-r--r-- 1 user group 285880 Jan 14 16:10 dump.sql.gz

If you create a gzipped database dump, make sure
that you unarchive it before attempting an import with
the sql-cli command.

Using Console to interact with the database
At the time of writing this book, Console does not provide a command for sanitizing
the database. There are the database:connect and database:client commands,
which will launch a database client. This allows you to be logged into the database's
command-line interface:

$ drupal database:client

$ drupal database:connect

These commands are similar to the sql-cli and sql-connect commands from Drush.
The client command will bring you to the database's command-line tool, where connect
shows the connection string.

Console also provides the database:dump command. Unlike Drush, this will write the
database dump for you in the Drupal directory:

$ drupal database:dump

 [OK] Database exported to: /path/to/drupal/www/data.sql

See also
 f Chapter 9, Configuration Management – Deploying in Drupal 8

Chapter 13

325

 f Refer to Dumping Data in SQL Format with mysqldump at http://dev.mysql.
com/doc/refman/5.7/en/mysqldump-sql-format.html

Using Drush to manage users
When you need to add an account to Drupal, you will visit the People page and manually add
a new user. Drush provides the complete user management for Drupal, from creation to role
assignment, password recovery, and deletion. This workflow allows you to create users easily
and provides them with a login without having to enter your Drupal site.

In this recipe, we will create a staff role with a staffmember user and log in as that user
through Drush.

How to do it…
1. Use the role-create command to create a new role labeled staff:

$ drush role-create staff

Created "staff"

2. Use the role-lists command to verify that the role was created in Drupal:
$ drush role-list

 ID Role Label

 anonymous Anonymous user

 authenticated Authenticated user

 administrator Administrator

 staff Staff

3. The user-create command will create our user:
$ drush user-create staffmember

 User ID : 2

 User name : staffmember

 User roles : authenticated

 User status : 1

4. In order to add the role, we need to use the user-add-role command:
$ drush user-add-role staff staffmember

Added role staff role to staffmember

5. We will now log in as the staffmember user using the user-login command:
$ drush user-login staffmember --uri=http://example.com

http://example.com/user/reset/2/1452810532/Ia1nJvbr2UQ3Pi_
QnmITlVgcCWzDtnKmHxf-I2eAqPE

http://dev.mysql.com/doc/refman/5.7/en/mysqldump-sql-format.html
http://dev.mysql.com/doc/refman/5.7/en/mysqldump-sql-format.html

The Drupal CLI

326

6. Provide the uri option to ensure that a correct URL points to a one time login link.

7. Copy the link and paste it in your browser to log in as that user.

How it works…
When you reset a password in Drupal, a special one-time login link is generated. The login link
is based on a generated hash. The Drush command validates the given user, which exists in the
Drupal site and then passes it to the user_pass_reset_url function from the User module.

The URL is made up of the user's ID, the timestamp when the link was generated, and a
hash based on the user's last login time, link generation, and e-mail. When the link is loaded,
this hash is rebuilt and verified. For example, if the user has logged in since the time it was
generated, the link will become invalid.

When used on a machine that has a web browser installed, Drush will make an attempt to
launch the link in a web browser for you. The browser option allows you to specify which
browser should be launched. Additionally, you can use no-browser to prevent one from
being launched.

There's more…
The command line offers the ability to simplify user management and user administration.
Next, we will explore more on this topic in detail.

Chapter 13

327

Advanced user-login use cases
The user-login command is a useful tool that allows some advanced use cases. For instance,
you can append a path after the username and be launched to that path. You can pass a UID or
e-mail instead of a username in order to log in as a user.

You can use the user-login to secure your admin user account. In Drupal, the user with the
identifier of 1 is treated as the root, and can bypass all permissions. Many times, this is the
default maintenance account used to work on the Drupal site. Instead of logging in manually,
you can set the account to a very robust passphrase and use the user-login command
when you need to access your site. With this, the only users who should be able to log in as
the administrator account are those with access to run Drush commands on the website.

Using Drupal Console
Console also provided commands to interact with users. While they do not allow the creation
of users or roles, they provide basic user management.

The user:login:url command will generate a one time login link for the specified user ID .
This uses the same methods as the Drush command:

$ drupal user:login:url 2

The user:password:reset command allows you to reset a user's password to the new
provided password. You can provide the user ID and new password as arguments, but if
missing, the values will be prompted for interactively:

$ drupal user:password:reset 2 newpassword

The create:users command provides an interactive way to generate bulk users, which are
useful to debug. However, it cannot make individual users with specific passwords like Drush.

Scaffolding code through Console
When Drupal Console was first introduced, one of the biggest highlights was its ability
to scaffold code. The project has turned into a much larger Drupal runner over the
command-line interface, but much of its resourcefulness is code generation.

As you may have noticed in the previous chapters and recipes, there can be a few mundane
tasks and a bit of boilerplate code. Drupal Console enables Drupal developers to create
various components without having to write all of the boilerplate code.

In Chapter 10, The Entity API we covered the creation of a custom entity type. In this recipe,
we will automate most of that process using Console to generate our content entity.

The Drupal CLI

328

Getting ready
For this recipe, you need to have Drupal Console installed. The tool will generate everything
else for us. You will need to have a Drupal 8 site installed. Many of Console's commands will
not work (or be listed) unless they can access an installed Drupal site. This is because of the
way it interacts with Drupal's service container.

How to do it…
1. From the root of your Drupal site, generate a module with the generate:module

command and follow the interactive process. Use the defaults prompted besides
giving it a module name:
$ drupal generate:module

 Welcome to the Drupal module generator

Enter the new module name: My module

Enter the module machine name [my_module]:

Enter the module Path [/modules/custom]:

Enter module description [My Awesome Module]:

Enter package name [Other]:

Enter Drupal Core version [8.x]:

Do you want to generate a .module file (yes/no) [no]: no

Define module as feature [no]? no

Do you want to add a composer.json file to your module [yes]? yes

Would you like to add module dependencies [no]?

Do you confirm generation [yes]?

 Generated or updated files

Site path: /path/to/drupal8/www

1 - modules/custom/my_module/my_module.info.yml

2 – modules/custom/my_module/composer.json

2. The command walks you through prompts to generate the info.yml and will output
the path of the generated info.yml and composer.json files.

Chapter 13

329

3. Next, we will generate our content entity. Provide a module name:
$ drupal generate:entity:content

Enter the module name: my_module

Enter the class of your new entity [DefaultEntity]:
CustomContentEntity

Enter the name of your new entity [custom_content_entity]:

Enter the label of your new entity [Custom content entity]:

Do you want this (content) entity to have bundles (yes/no) [no]:

 Generated or updated files

Site path: /Users/mglaman/Drupal/sites/drupal8/www

1 - modules/custom/my_module/my_module.routing.yml

2 - modules/custom/my_module/my_module.permissions.yml

3 - modules/custom/my_module/my_module.links.menu.yml

4 - modules/custom/my_module/my_module.links.task.yml

5 - modules/custom/my_module/my_module.links.action.yml

6 - modules/custom/my_module/src/CustomContentEntityInterface.php

7 - modules/custom/my_module/src/
CustomContentEntityAccessControlHandler.php

8 - modules/custom/my_module/src/Entity/CustomContentEntity.php

9 - modules/custom/my_module/src/Entity/
CustomContentEntityViewsData.php

10 - modules/custom/my_module/src/CustomContentEntityListBuilder.
php

11 - modules/custom/my_module/src/Entity/Form/
CustomContentEntitySettingsForm.php

12 - modules/custom/my_module/src/Entity/Form/
CustomContentEntityForm.php

13 - modules/custom/my_module/src/Entity/Form/
CustomContentEntityDeleteForm.php

14 - modules/custom/my_module/custom_content_entity.page.inc

15 – modules/custom/my_module/templates/custom_content_entity.
html.twig

4. When the command is finished executing, it will output all of the created files.

The Drupal CLI

330

5. Install your my module using Console:
$ drupal module:install my_module

 [OK] The following module(s) were installed successfully: my_
module

 Rebuilding cache(s), wait a moment please.

 [OK] Done clearing cache(s).

6. View Structure and find your Custom content entity settings:

How it works…
One of the biggest features of Console was its ability to reduce the time spent by developers to
create code for Drupal 8. Console utilizes the Twig templating engine to provide code generation.
These Twig templates contain variables and logic that are compiled into the end result code.

A set of generator classes receive specific parameters, which are received through the
appropriate command, and pass them to Twig for rendering. This allows Console to easily
stay up to date with changes in Drupal core and still provide valuable code generation.

Making a Drush command
Drush provides an API that allows developers to write their own commands. These commands
can be part of a module and loaded through a Drupal installation, or they can be placed in the
local user's Drush folder for general purposes.

Chapter 13

331

Often, contributed modules create commands to automate user interface operations.
However, creating a custom Drush command can be useful for specific operations. In this
recipe, we will create a command that loads all the users who have not logged in in the last
10 days and resets their password.

Getting ready
For this recipe, you need to have Drush installed. We will be creating a command in a local
user directory.

How to do it…
1. Create a file named disable_users.drush.inc in the ~/.drush folder for

your user:
<?php

/**
 * @file
 * Loads all users who have not logged in within 10 days and
disables them.
 */

2. Add the Drush command hook that will allow Drush to discover our commands
provided by the file:
/**
 * Implements hook_drush_command().
 **/
function disable_users_drush_command() {
 $items = [];
 $items['disable-users'] = [
 'description' => 'Disables users after 10 days of inactivity',
];
 return $items;
}

3. This hook returns an array of command configurations; the hook should be prefixed
with the part of the file before .drush.inc.

4. Next, we will create the command callback function, which will end up holding all of
our logic:
/**
 * Implements drush_hook_COMMAND().
 */

The Drupal CLI

332

function drush_disable_users_disable_users() {

}

5. Since our filename is disable_users.drush.inc and our command is disable-
users, the hook turns out to be drush_disable_users_disable_users.

6. Update the function to create a DateTime object, representing 10 days ago. We will
use this to generate a timestamp for our query:
/**
 * Implements drush_hook_COMMAND().
 */
function drush_disable_users_disable_users() {
 // Get the default timezone and make a DateTime object for 10
days ago.
 $system_date = \Drupal::config('system.date');
 $default_timezone = $system_date->get('timezone.default') ?:
date_default_timezone_get();
 $now = new DateTime('now', new DateTimeZone($default_timezone));
 $now->modify('-10 days');
}

7. We load the system.date configuration object to get the default time zone and
properly construct a DateTime object, modified 10 days ago.

8. Now, we will add our query, which will query all the user entities who have a login
timestamp greater than 10 days:
/**
 * Implements drush_hook_COMMAND().
 */
function drush_disable_users_disable_users() {
 // Get the default timezone and make a DateTime object for 10
days ago.
 $system_date = \Drupal::config('system.date');
 $default_timezone = $system_date->get('timezone.default') ?:
date_default_timezone_get();
 $now = new DateTime('now', new DateTimeZone($default_timezone));
 $now->modify('-10 days');

 $query = \Drupal::entityQuery('user')
 ->condition('login', $now->getTimestamp(), '>');
 $results = $query->execute();

 if (empty($results)) {
 drush_print('No users to disable!');
 }
}

Chapter 13

333

9. If there are no results, an empty array will be returned.

10. Next, we will iterate over the results and mark the user as disabled:
/**
 * Implements drush_hook_COMMAND().
 */
function drush_disable_users_disable_users() {
 // Get the default timezone and make a DateTime object for 10
days ago.
 $system_date = \Drupal::config('system.date');
 $default_timezone = $system_date->get('timezone.default') ?:
date_default_timezone_get();
 $now = new DateTime('now', new DateTimeZone($default_timezone));
 $now->modify('-10 days');

 $query = \Drupal::entityQuery('user')
 ->condition('login', $now->getTimestamp(), '>');
 $results = $query->execute();

 if (empty($results)) {
 drush_print('No users to disable!');
 }

 foreach ($results as $uid) {
 /** @var \Drupal\user\Entity\User $user */
 $user = \Drupal\user\Entity\User::load($uid);
 $user->block();
 $user->save();
 }

 drush_print(dt('Disabled !count users', ['!count' =>
count($results)]));
}

11. The result is an array of user IDs. We loop over them to load the user, mark them as
disabled, and then save them to commit the changes.

12. Drush's cache will need to be cleared in order to discover your new command:
$ drush cache-clear drush

13. Check whether the command exists:
$ drush disable-users --help

Disables users after 10 days of inactivity

The Drupal CLI

334

How it works…
Drush works by scanning specific directories for files that follow the COMMANDFILE.drush.
inc pattern. You can think of COMMANDFILE for Drush as a representation of a module name
in Drupal's hook system. When implementing a Drush hook, in the HOOK_drush format, you
need to replace HOOK with your COMMANDFILE name, just as you would do in Drupal with a
module name.

In this recipe, we created a disable_users.drush.inc file. This means that all hooks and
commands in the file need to use disable_users for hook invocations. Drush uses this to
load the hook_drush_command hook that returns our command information.

We then provide the functionality of our logic in the drush_hook_command hook. For this
hook, we replace hook with our commandfile name. This was disable_users, giving
us drush_disable_users_command. We replace command with the command that
we defined in hook_drush_command, which was disable-users. We then have our final
drush_disable_users_disable_users hook.

There's more…
Drush commands have additional options that can be specified in their definitions. We explore
their abilities to control the required level of Drupal integration for a command.

Specifying the level of Drupal's bootstrap
Drush commands have the ability to specify the level of Drupal's bootstrap before being
executed. Drupal has several bootstrap levels in which only specific parts of the system are
loaded. By default, a command's bootstrap is at DRUSH_BOOTSTRAP_DRUPAL_LOGIN, which
is at the same level as accessing Drupal over the web.

Commands, depending on their purpose, can choose to avoid bootstrapping Drupal at all
or only until the database system is loaded. Drush commands that are utilities, such as the
Git Release Notes module, provide a Drush command that does not interact with Drupal.
It specifies a bootstrap of DRUSH_BOOTSTRAP_DRUSH, as it only interacts with repositories to
generate change logs based on git tags and commits.

See also
 f Refer to how to creating custom Drush commands at http://docs.drush.org/

en/master/commands/

 f Refer to how to installing Drush at http://docs.drush.org/en/master/
install/

 f Refer to the Drush Bootstrap process at http://docs.drush.org/en/master/
bootstrap/

http://docs.drush.org/en/master/commands/
http://docs.drush.org/en/master/commands/
http://docs.drush.org/en/master/install/
http://docs.drush.org/en/master/install/
http://docs.drush.org/en/master/bootstrap/
http://docs.drush.org/en/master/bootstrap/

Chapter 13

335

Making a Console command
Drupal Console makes use of the Symfony Console project and other third-party libraries
to utilize modern PHP best practices. In doing so, it follows Drupal 8 practices as well.
This allows Console to use namespaces for the command detection and interaction with
Drupal by reading its class loader.

This allows developers to easily create a Console command by implementing a custom class
in a module.

In this recipe, we will create a command that loads all the users who have not logged in in the
last 10 days and resets their password. We will generate the base of our command using the
scaffolding commands.

Getting ready
For this recipe, you need to have Drupal Console installed. The tool will generate everything
else for us. You will need to have a Drupal 8 site installed.

How to do it…
1. Create a new module that will hold your Console command, such as

console_commands:
$ drupal generate:module

 // Welcome to the Drupal module generator

 Enter the new module name:
 > Console commands

 Enter the module machine name [console_commands]:
 >

 Enter the module Path [/modules/custom]:
 >

 Enter module description [My Awesome Module]:
 >

 Enter package name [Other]:
 >

The Drupal CLI

336

 Enter Drupal Core version [8.x]:
 >

 Define module as feature (yes/no) [no]:
 >

 Do you want to add a composer.json file to your module (yes/no)
[yes]:
 >

 Would you like to add module dependencies (yes/no) [no]:
 >

 Do you confirm generation? (yes/no) [yes]:
 >

Generated or updated files
Site path: /path/to/drupal8/www
1 - modules/custom/console_commands/console_commands.info.yml
2 - modules/custom/console_commands/console_commands.module
3 - modules/custom/console_commands/composer.json

2. Next, we will generate the command's base files using the generate:command
command. Call the Disable Users command:
$ drupal generate:command

 // Welcome to the Drupal Command generator
 Enter the module name [console_commands]:
 > console_commands

 Enter the Command name. [console_commands:default]:
 > console_commands:disable_users

 Enter the Command Class. (Must end with the word 'Commmand').
[DefaultCommand]:
 > DisableUsersCommand

 Is the command aware of the drupal site installation when
executed?. (yes/no) [yes]:
 > yes

 Do you confirm generation? (yes/no) [yes]:
 > yes

Chapter 13

337

Generated or updated files
Site path: /path/to/drupal8/www
1 - modules/custom/console_commands/src/Command/
DisableUsersCommand.php

3. Edit the created DisableUsersCommand.php file and remove the boilerplate
example code from the execute method:
 /**
 * {@inheritdoc}
 */
 protected function execute(InputInterface $input,
OutputInterface $output) {
 }

4. The execute method is invoked by Symfony Console and contains all the
execution operations.

5. Update the function to create a DateTime object, representing 10 days ago.
We will use this to generate a timestamp for our query:
 /**
 * {@inheritdoc}
 */
 protected function execute(InputInterface $input,
OutputInterface $output) {
 // Get the default timezone and make a DateTime object for 10
days ago.
 $system_date = \Drupal::config('system.date');
 $default_timezone = $system_date->get('timezone.default') ?:
date_default_timezone_get();
 $now = new \DateTime('now', new \DateTimeZone($default_
timezone));
 $now->modify('-10 days');
 }

6. We load the system.date configuration object to get the default time zone and
properly construct a DateTime object, modified for 10 days ago.

7. Now, we will add our query, which will query all the user entities who have a login
timestamp greater than 10 days:
 /**
 * {@inheritdoc}
 */
 protected function execute(InputInterface $input,
OutputInterface $output) {
 // Get the default timezone and make a DateTime object for 10
days ago.

The Drupal CLI

338

 $system_date = \Drupal::config('system.date');
 $default_timezone = $system_date->get('timezone.default') ?:
date_default_timezone_get();
 $now = new \DateTime('now', new \DateTimeZone($default_
timezone));
 $now->modify('-10 days');

 $query = \Drupal::entityQuery('user')
 ->condition('login', $now->getTimestamp(), '>');
 $results = $query->execute();

 if (empty($results)) {
 $output->writeln('<info>No users to disable!</info>');
 }
 }

8. To output to the terminal, you need to use the write or writeln functions from the
OutputInterface object.

9. Next, we will iterate over the results and mark the user as disabled:
 /**
 * {@inheritdoc}
 */
 protected function execute(InputInterface $input,
OutputInterface $output) {
 // Get the default timezone and make a DateTime object for 10
days ago.
 $system_date = \Drupal::config('system.date');
 $default_timezone = $system_date->get('timezone.default') ?:
date_default_timezone_get();
 $now = new \DateTime('now', new \DateTimeZone($default_
timezone));
 $now->modify('-10 days');

 $query = \Drupal::entityQuery('user')
 ->condition('login', $now->getTimestamp(), '>');
 $results = $query->execute();

 if (empty($results)) {
 $output->writeln('<info>No users to disable!</info>');
 }

 foreach ($results as $uid) {
 /** @var \Drupal\user\Entity\User $user */
 $user = \Drupal\user\Entity\User::load($uid);

Chapter 13

339

 $user->block();
 $user->save();
 }

 $total = count($results);
 $output->writeln("Disabled $total users");
 }

10. The result is an array of user IDs. We loop over them to load the user, mark them as
disabled, and then save them to commit the changes.

11. Enable the module in order to access the command:
$ drupal module:install console_commands

12. Run your command:
$ drupal console_commands:disable_users

Disabled 1 users

How it works…
Console provides integration with modules using namespace discovery methods. When Console
is run in a Drupal installation, it will discover all the available projects. It then discovers any files
in the \Drupal\{ a module }\Command namespace that implement \Drupal\Console\
Command\Command.

Console will rescan the Drupal directory for available commands every time it is invoked, as it
does not keep a cache of available commands.

There's more…
Drupal Console provides a much more intuitive developer experience, as it follows Drupal
core's coding formats. We will touch on how Console can be used to create entities.

Using a Console command to create entities
A benefit of Console is its ability to utilize Symfony Console's question helpers for
a robust interactive experience. Drupal Commerce utilizes Console to provide a
commerce:create:store command to generate stores. The purpose of the
command is to simplify the creation of a specific entity.

The \Drupal\commerce_store\Command\CreateStoreCommand class overrides
the default interact method that is executed to prompt data from the user. It will prompt
users to enter the store's name, e-mail, country, and currency.

Developers can implement similar commands to give advanced users a simpler way to work
with modules and configuration.

The Drupal CLI

340

See also
 f Refer to how to create custom commands at https://hechoendrupal.

gitbooks.io/drupal-console/content/en/extending/creating-
custom-commands.html

 f Refer to how to installing Drupal Console at https://hechoendrupal.
gitbooks.io/drupal-console/content/en/getting/installer.html

https://hechoendrupal.gitbooks.io/drupal-console/content/en/extending/creating-custom-commands.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/extending/creating-custom-commands.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/extending/creating-custom-commands.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/getting/installer.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/getting/installer.html

341

Index
Symbols
@drupalsecurity, Twitter

URL 7
_format

using, instead of Accept header 301, 302
_links requirements 305

A
About text formats link 28
access

controlling, of RESTful Views 312
controlling, to entity fields 263
defining, to blocks 152

Access-Control-Allow-Origin header 284
access flag

restricting, for permissions 85
Acquia Dev Desktop

about 18
URL 18

action links
about 256
providing, for adding new bundle 256

AdminHtmlRouteProvider provider
using 245

administrative interfaces
translating 182, 183

Aggregation
using 65

alter hook
specifying 178

AngularJS
reference link 275

API
rate limiting 298

Article content type 48

asset management system
using 102-104

authenticated web service requests 316, 317
authentication 313-315
authentication provider services 316
autoloader specification, PSR-4

reference link 74

B
Backports module

reference link 313
base field definitions

simplifying, Entity module used 245, 246
base themes 101
Bitnami 18
block

access, defining to 152
altering 150, 151
creating, from View 55-57
creating, plugins used 146-150
exposed forms, enabling as 58
setting form 151, 152

block.api.php
reference link 153

Bootstrap
download link 11

Bower.io
reference link 274

Breakpoint module
about 113
using 113, 114

breakpoints
accessing, programmatically 114

breakpoints, Drupal 8
reference link 115

342

breakpoints, providing from themes
caveat 114

bundle
creating, for content entity type 247-255

C
cache

rebuilding, in Console 320, 321
rebuilding, in Drush 320, 321

cache backend
using 179

CDN
using, as library 107, 108

CKEditor
URL, for blog post 26

CKEditor module 24
CKEditor plugins 26
CKEditor stylesheets 102
Classy

about 98
reference link 102

code
scaffolding, through Console 327-330

collection route
local task tab, making 247
providing 272

command line
configuration, editing from 216

command line workflow
using 218

command line workflow processes
using 213-215

Composer
reference link 284

Composer manager
using 287-290

configuration
editing, from command line 216
exporting 202-207
importing 202-207
new site, installing from 212
providing, on installation or update 86-89
translating 188-190

configuration dependencies 207
configuration entities 225

configuration entity type
creating 226-235

configuration installer
reference link 213

configurations
configuration schemas 208, 209
configuration storage

filesystem, using for 219-222
configuration subdirectories 89
configuration translation info definitions

altering 191
Configuration translation module 188
Console

about 319
cache, rebuilding in 320, 321
code, scaffolding through 327-330
references 340
URL, for installation guides 320
used, for interacting with database 324
using 327

Console command
making 335-339
used, for creating entities 339

content
adding 27, 28
editing 27, 28
linking 30, 31
listing 48-50
translating 191-194

content entities 225
content entity type

bundle, creating for 247-255
creating 237-245

content links
translating 195

content management system, Drupal
bulk moderation 29
Pathauto project 29
Save as draft feature 29

content's menu link
managing, from form 32

content translation module 191
contextual filters

about 58
displaying as tab, on user page 60
exclusion option 61

343

multiple option 61
previewing with 60
validation 60, 61

contextual links module 33
Create, Read, Update, Delete (CRUD) 226
Cross-Origin Resource Sharing specification

reference link 287
Cross-Site Request Forgery tokens

using 306
cross site scripting (XSS) 111
CSS architecture, for Drupal 8

reference link 109
CSS groups 105
custom access control

implementing, for entity 257-263
custom CKEditor WYSIWYG configuration

text format, creating with 24-26
custom content type

creating 34-36
custom data sources

providing, Views used 310, 311
custom Drush commands

reference link 334
custom field formatter

creating 164-168
settings 168

custom field type
creating 154-158

custom field widget
creating 159-163

custom module
translations, providing for 187

custom page
defining 74-77

custom plugin type
creating 169-178

custom storage handler
providing 264-266

custom theme
creating, based off of Classy 98, 99

D
data

creating, POST used 302-305
retrieving, GET used 299-301
updating, PATCH used 307-309

database
creating 5

database interaction
Console, using for 324
Drush, using for 321-323

database prefixes 6
database user

creating 5
data types, for schema definitions 236
default admin interfaces

editing 52-54
default English strings

customizing, interface translation
module used 186

default to hidden form items
providing, programmatically 43

dependency injection
reference link 180

Derivatives 57
developer experience change

reference link 10
different storage backend

utilizing, for entity 267
display format

translating 199
display output

customizing, of node 43-45
displays

about 51
attachment 51
block 51
embed 51
Entity Reference 51
feed 51
page 51

distribution
downloading 8
using 8

distribution documentation, on Drupal.org
URL 9

Drupal
installing, with Drush 7-9
security updates 7
URL, for default installation of PHP 2
URL, for downloading 2
URL, for recommended release 2

344

Drupal 8
installing 2-5
multisites, using in 14, 15
requisites 2

Drupal 8 core field types
adding 36
Date field 38
e-mail field 37
Entity Reference field 38, 39
Link field 36
Telephone field 37

Drupal 8 Form API
reference link 127

Drupal 8 release
upcoming updates 40
View, using with Entity Reference field 40

Drupal 8 subtheme
reference link, for community

documentation 102
Drupal 9

active configuration directory,
deprecated 222, 223

DrupalCI
about 21
URL 21

Drupal Console
reference link 216
using 216

Drupal Core Initiative
Views 51

Drupal distributions
reference link 8

Drupal.org documentation, for RESTful
Web Services

reference link 299
Drupal's bootstrap

level, specifying of 334
DrupalVM

about 16
URL 18

DrupalVM archive
URL, for downloading 16

Drush
about 7, 319
cache, rebuilding in 320, 321
config-pull command 215, 216
Drupal, installing with 7-9

modules, installing with 13
URL 214
URL, for installation guides 320, 334
used, for interacting with database 321-323
used, for managing users 325, 326

Drush Bootstrap process
reference link 334

Drush command
making 330-334

drush make
URL 9

Drush site install
URL 8

dynamic arguments
utilizing 58-60

dynamic routes
providing 80, 81

E
element properties, form

default_value 127
placeholder 127
weight 127

Embed display
using 52

entities
about 225
creating, Console command used 339
custom access control, implementing

for 257-263
different storage backend, utilizing for 267
translation handlers, defining for 195

entity fields
access, controlling to 263

Entity module
about 225, 271
used, for simplifying base field

definitions 245, 246
Entity Reference result View

providing 66-68
entity type

admin permission 246
environment setup

tools 16, 17
existing configuration

modifying, on installation 90

345

exposed filters
translating 199
versus non-exposed filters 54

exposed form items
translating 199

exposed forms
enabling, as blocks 58

external caches mix up response formats,
on URLs

reference link 302
external resource

using, as library 107, 108

F
favicon 101
Features 2.x

using 90-93
Features module

about 90-93
bundles 94
configuration state, managing of 94
reference link 91, 95

field types
altering 158

field widget
settings 164

filesystem
using, for configuration storage 219-222

filter identifiers 55
Filter module 26
form

additional submit handlers, adding 144
additional validate handlers, adding 143
altering 140-143
content's menu link, managing from 32
creating 122-126
element properties 127
element validation methods 135
multidimensional array values, accessing 135
multiple submit handlers 139
multiple validation handlers 135

Form API
new elements, creating 132
specific element properties 131

Form API, in Drupal 8
reference link 127, 132

format style plugins 51
form cache 127
form data

validating 132-134
form display

customizing, of node 40-42
form display modes

managing 43
form element definitions 127
form state 127

G
GET

used, for retrieving data 299-301
Gettext Portable Object (.po) files 184
gzip

using, with sql-dump 324

H
header

JavaScript, placing in 108
Honeypot

download link 10
hook_library_info_alter() hook

reference link 108
hooks

libraries, manipulating from 108
hook suggestions

debugging 112
hook_theme_suggestions

reference link 112
Hypertext Application Language

(HAL) 293, 302

I
image field

URL formatter, adding for 313
images

working with 306
inline editing

providing 32, 33
installation

existing configuration, modifying on 90
installing

Drupal 8 2-5

346

Drupal, with Drush 7-9
modules 10-13
modules, with Drush 13
themes 10-13

interface text language detection 187
interface translation module

about 182
used, for customizing default

English strings 186
interface translation permissions 186
IP Authentication Provider 317
IP Consumer Auth

download link 317
IP Consumer Auth module

reference link 317

J
JavaScript

placing, in header 108
JSON output

key name, controlling in 312

K
Kalabox

about 18
URL 18

key name
controlling, in JSON output 312

L
language files

installing, manually 184, 185
Language module 187
libraries

extending 106, 107
manipulating, from hooks 108
overriding 106, 107

libraries-override key 107
libraries.yml file, Quick Edit module

example 106
library

CDN, using as 107, 108
external resource, using as 107, 108

library asset options 105

library dependencies 106
locale.api.php

reference link, for documentation 188
localization server

reference link 188
logos 100

M
makefiles 9
manager

plugins, accessing through 179
menu

creating 30, 31
Menu UI module 31
Message entity 257
module

creating 70, 71
discovering 13
installing 10-13
installing, with Drush 13
package group, defining 72
uninstalling 14
version, specifying 74

module dependencies 73
module discovery locations 72
module namespaces 71, 72
module's configuration installation

saving, to YAML file for 208
module.test files 20
multilingual view

creating 195-198
multipliers 115
multi-site documentation, on Drupal.org

reference link 16
multisites

security concerns 16
using, in Drupal 8 14, 15

mysqldump
reference link 325

N
new HTML5 elements

using 128-131
new site

installing, from configuration 212

347

node
display output, customizing of 43-45
form display, customizing of 40-42

non-exposed filters
versus exposed filters 54

O
OAuth

URL 314
OAuth Community Site

reference link 317

P
page cache request policies 316, 317
page display menu items

translating 200
page title

altering 60
parameters

validating, in routes 79
parameters, in routes 78, 79
PATCH

used, for updating data 307-309
Pathauto

about 29
URL 29

permissions
access flag, restricting for 85
defining 82-84
defining, programmatically 85

PHP Framework Interoperability Group
(PHP-FIG) 273

phpMyAdmin 6
PHP Standards Recommendations

(PSRs) 273
PHPUnit

running 18, 19
PHPUnit manual

URL 21
picture element, on Mozilla Developer

Network
reference link 119

picturefill, for IE9
reference link 119

plugins
accessing, through manager 179
used, for creating blocks 146-150

PO files
reference link 188

POST
used, for creating data 302-305

POT files
reference link 188

Q
query parameter-based content negotiation

reference link 302
Quick Edit module 33, 106

R
Rate Limiter module

about 298
download link 298, 299

relationship
adding, in View 61-64
provided, by entity reference fields 64
provided, through custom code 64, 65

Responsive Image module
about 115
performance 118
picturefill library 118
using 115-118

RESTful interfaces
enabling 294-297

RESTful Views
access, controlling of 312

RestResource plugin
used, for exposing data through RESTful

Web Services 297
REST UI module

about 298
download link 298
reference link 299

route provider
creating 267-270

routes
access requirements 79
dynamic routes, providing 80, 81
existing routes, altering 81, 82

348

overriding, with Views 55
parameters 78, 79
parameters, validating in 79
reference link 82

Routing system, Drupal 8
reference link 272

row format items
translating 199

row plugin 51
run-tests.sh script

--concurrency option 19
--help option 19
--list option 19
--sqlite option 19
--url option 19
about 20

S
security concerns, of multisites 16
security updates, Drupal 7
Semantic UI

reference link 283
services

reference link 180
settings, custom field formatter

defaultSettings 168
settingsForm 168
settingsSummary 168

settings, field widget
defaultSettings 164
settingsForm 164
settingsSummary 164

shared resources 101
Simpletest

running 18, 19
running, without Drupal installed 20
specific tests, running 20
URL 21

single configuration item
exporting 217

site aliases, Drush
URL, for documentation 322

site configurations
synchronizing 209-211

SMACSS
reference link 109

soft dependency, on HAL module 297
sql-dump

gzip, using with 324
Stable 98
Stack/Cors recipe

updating 290, 291
style plugin 51
submitted form data

processing 136-139
Symfony Dependency Injection component

reference link 287
Symfony routing documentation

reference link 82
Symfony Service Container documentation

reference link 287
sync folder 212

T
template file selection

debugging 112
testbot project page

URL 21
text format

creating, with custom CKEditor WYSIWYG
configuration 24-26

theme, defining with info.yml file
reference link 102

theme hook
suggestions 111

themes
about 100
discovering 13
installing 10-13

theme screenshots 100
third-party CSS library

implementing 279-283
using 279-283

third-party JavaScript library
implementing 274-278

third-party PHP library
implementing 284-287
using 284-287

Translate interface text 186
translation handlers

defining, for entities 195

349

translations
exporting 186
flagging, as outdated 194
providing, for custom module 187

translation server, Drupal
reference link 188

translation status
checking 186

Twig documentation
reference link 112

Twig templating 109-111

U
Universally Unique Identifier (UUID) 207, 212
URL formatter

adding, for image field 313
user-login command

use cases 327
users

managing, Drush used 325, 326

V
Vagrant

about 16
URL 16

VDC Initiative
reference link 52

version control
using 218

View
about 28, 51
block, creating from 55-57
relationship, adding in 61-64
routes, overriding with 55
translating 191
used, for providing custom

data sources 310, 311
using 65

View arguments field 68
Views, in Drupal Core Initiative 51
Views listing content

listing 48-50
VirtualBox

about 16
URL 16

W
wikimedia/composer-merge-plugin library

reference link 291
wikimedia/composer-merge-plugin manage

contrib dependencies
reference link 291

WYSIWYG editor
configuring 24-26

X
XAMPP

about 18
URL 18

X-CSRF-Token header 306

Thank you for buying

Drupal 8 Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Drupal 8 Configuration
Management
ISBN: 978-1-78398-520-3 Paperback: 148 pages

Make the most of Drupal 8's coolest new feature—the
Configuration Management system

1. Understand Configuration Management
from a non-developer perspective.

2. Achieve a faster moving configuration
between environments.

3. Create custom configuration inside your
own modules.

Learning Drupal 8
ISBN: 978-1-78216-875-1 Paperback: 328 pages

Create complex websites quickly and easily using the
building blocks of Drupal 8, the most powerful version
of Drupal yet

1. Build complete, complex websites with no prior
knowledge of web development entirely using
the intuitive Drupal user interface.

2. Follow a practical case study chapter-by-chapter
to construct a complete website as you progress.

3. Ensure your sites are modern, responsive and
mobile-friendly through utilizing the full features
available in Drupal 8.

Please check www.PacktPub.com for information on our titles

Learning Phalcon PHP
ISBN: 978-1-78355-509-3 Paperback: 328 pages

Learn Phalcon interactively and build high-performance
web applications

1. Learn how to install and configure Phalcon
PHP on your server.

2. Develop a fully functional multi-module
application with Phalcon PHP.

3. A step-by-step guide with in-depth coverage
of Phalcon and best practices.

Learning PHP 7 High
Performance
Second Edition
ISBN: 978-1-78355-419-5 Paperback: 260 pages

Get up and running with the highly customizable and
powerful e-commerce solution, Magento

1. Build your first Magento extension, step by step.

2. Extend the core Magento functionality, such as
the API.

3. A practical and succinct guide to test your
Magento code.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Up and Running with Drupal 8
	Introduction
	Installing Drupal
	Using a distribution
	Installing modules and themes
	Using multisites in Drupal 8
	Tools for setting up an environment
	Running Simpletest and PHPUnit

	Chapter 2: The Content Authoring Experience
	Introduction
	Configuring the WYSIWYG editor
	Adding and editing content
	Creating a menu and linking content
	Providing inline editing
	Creating a custom content type
	Applying new Drupal 8 core field types
	Customizing the form display of a node
	Customizing the display output of a node

	Chapter 3: Displaying Content through Views
	Introduction
	Listing content
	Editing the default admin interfaces
	Creating a block from a View
	Utilizing dynamic arguments
	Adding a relationship in a View
	Providing an Entity Reference result View

	Chapter 4: Extending Drupal
	Introduction
	Creating a module
	Defining a custom page
	Defining permissions
	Providing the configuration on installation
or update
	Using Features 2.x

	Chapter 5: Frontend for the Win
	Introduction
	Creating a custom theme based on Classy
	Using the new asset management system
	Twig templating
	Using the Breakpoint module
	Using the Responsive Image module

	Chapter 6: Creating Forms with the Form API
	Introduction
	Creating a form
	Using new HTML5 elements
	Validating form data
	Processing submitted form data
	Altering other forms

	Chapter 7: Plug and Play with Plugins
	Introduction
	Creating blocks using plugins
	Creating a custom field type
	Creating a custom field widget
	Creating a custom field formatter
	Creating a custom plugin type

	Chapter 8: Multilingual and Internationalization
	Introduction
	Translating administrative interfaces
	Translating configuration
	Translating content
	Creating multilingual views

	Chapter 9: Configuration Management – Deploying in Drupal 8
	Introduction
	Importing and exporting configurations
	Synchronizing site configurations
	Using command-line workflow processes
	Using the filesystem for configuration storage

	Chapter 10: The Entity API
	Introduction
	Creating a configuration entity type
	Creating a content entity type
	Creating a bundle for a content entity type
	Implementing custom access control for
an entity
	Providing a custom storage handler
	Creating a route provider

	Chapter 11: Off the Drupalicon Island
	Introduction
	Implementing and using a third-party JavaScript library
	Implementing and using a third-party
CSS library
	Implementing and using a third-party
PHP library
	Using Composer manager

	Chapter 12: Web Services
	Introduction
	Enabling RESTful interfaces
	Using GET to retrieve data
	Using POST to create data
	Using PATCH to update data
	Using Views to provide custom data sources
	Authentication

	Chapter 13: The Drupal CLI
	Introduction
	Rebuilding cache in Console or Drush
	Using Drush to interact with the database
	Using Drush to manage users
	Scaffolding code through Console
	Making a Drush command
	Making a Console Command

	Index

