Quick answers to common problems

Drupal 8 Development
Cookbook

Over 60 hands-on recipes that get you acquainted with Drupal 8's
features and help you harness its power

Matt Glaman [] open source

PUBLISHING

Drupal 8 Development
Cookbook

Over 60 hands-on recipes that get you acquainted with
Drupal 8's features and help you harness its power

Matt Glaman

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Drupal 8 Development Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016
Production reference: 1040316

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-147-3

www . packtpub.com

www.packtpub.com

Credits

Author
Matt Glaman

Reviewer
Todd Zebert

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Manish Nainani

Content Development Editor
Deepti Thore

Technical Editor
Naveenkumar Jain

Copy Editors
Ting Baker

Rashmi Sawant

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Matt Glaman is a developer at Commerce Guys. He is an open source developer who has
been working with Drupal since 2013. He has also been developing web apps for many years
prior to this. Since then, he has contributed to over 60 community projects, including being a
co-maintainer of Drupal Commerce. While mostly focusing on Drupal and PHP development,
he created https://contribkanban.com, an Angular]S application, to provide Kanban
boards for the Drupal community to collaborate with.

I would like to thank, and | am grateful to, my beautiful and loving wife for
putting up with the late nights split between work, spending time contributing
to the Drupal community, and writing this book. | would also like to thank my
two sons; thank you for giving up your playtime so that Daddy could write

this book.

Thank you, Andy Giles, for helping me get to my first Drupal camp

and kicking off my Drupal career. | would also like to thank my mentors
Bojan Zivanovié, David Snopek, Ryan Szrama, and everyone else in the
Drupal community!

https://contribkanban.com

About the Reviewer

Todd Zebert has been involved with Drupal since version 6. He is a full-stack web developer
proficient in a variety of technologies, and he is currently working as a lead web developer for
Miles. He has also been a technical reviewer for Developing with Drush, Packt Publishing.

He has a diverse background in technology, including infrastructure, network engineering,
project management, and IT leadership. His experience with web development started with
the original Mosaic graphical web browser, SHTML/CGI, and Perl.

He's an entrepreneur involved with the Los Angeles start-up community. He's a believer
in volunteering, open source, the Maker movement, and contributing back. He's also an
advocate for Science, Technology, Engineering, Art, and Math (STEAM) education.

I'd like to thank the Drupal community, which is like no other.

Finally, I'd like to thank my pre-teen son with whom | get to share my interest
in technology and program video games and microcontrollers.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books

PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents

Preface v
Chapter 1: Up and Running with Drupal 8 1
Introduction 1
Installing Drupal 2
Using a distribution 8
Installing modules and themes 10
Using multisites in Drupal 8 14
Tools for setting up an environment 16
Running Simpletest and PHPUnit 18
Chapter 2: The Content Authoring Experience 23
Introduction 23
Configuring the WYSIWYG editor 24
Adding and editing content 27
Creating a menu and linking content 30
Providing inline editing 32
Creating a custom content type 34
Applying new Drupal 8 core field types 36
Customizing the form display of a node 40
Customizing the display output of a node 43
Chapter 3: Displaying Content through Views 47
Introduction 47
Listing content 48
Editing the default admin interfaces 52
Creating a block from a View 55
Utilizing dynamic arguments 58
Adding a relationship in a View 61
Providing an Entity Reference result View 66

Table of Contents

Chapter 4: Extending Drupal 69
Introduction 69
Creating a module 70
Defining a custom page 74
Defining permissions 82
Providing the configuration on installation or update 86
Using Features 2.x 90

Chapter 5: Frontend for the Win 97
Introduction 97
Creating a custom theme based on Classy 98
Using the new asset management system 102
Twig templating 109
Using the Breakpoint module 113
Using the Responsive Image module 115

Chapter 6: Creating Forms with the Form API 121
Introduction 121
Creating a form 122
Using new HTML5 elements 128
Validating form data 132
Processing submitted form data 136
Altering other forms 140

Chapter 7: Plug and Play with Plugins 145
Introduction 145
Creating blocks using plugins 146
Creating a custom field type 154
Creating a custom field widget 159
Creating a custom field formatter 164
Creating a custom plugin type 169

Chapter 8: Multilingual and Internationalization 181
Introduction 181
Translating administrative interfaces 182
Translating configuration 188
Translating content 191
Creating multilingual views 195

Chapter 9: Configuration Management - Deploying in Drupal 8 201
Introduction 201
Importing and exporting configurations 202
Synchronizing site configurations 209

Table of Contents

Using command-line workflow processes 213
Using the filesystem for configuration storage 219
Chapter 10: The Entity API 225
Introduction 225
Creating a configuration entity type 226
Creating a content entity type 237
Creating a bundle for a content entity type 247
Implementing custom access control for an entity 257
Providing a custom storage handler 264
Creating a route provider 267
Chapter 11: Off the Drupalicon Island 273
Introduction 273
Implementing and using a third-party JavaScript library 274
Implementing and using a third-party CSS library 279
Implementing and using a third-party PHP library 284
Using Composer manager 287
Chapter 12: Web Services 293
Introduction 293
Enabling RESTful interfaces 294
Using GET to retrieve data 299
Using POST to create data 302
Using PATCH to update data 307
Using Views to provide custom data sources 310
Authentication 313
Chapter 13: The Drupal CLI 319
Introduction 319
Rebuilding cache in Console or Drush 320
Using Drush to interact with the database 321
Using Drush to manage users 325
Scaffolding code through Console 327
Making a Drush command 330
Making a Console command 335
Index 341

Preface

Drupal is a content management system used to build websites for small businesses,
e-commerce, enterprise systems, and many more. Created by over 4,500 contributors,
Drupal 8 provides many new features for Drupal. Whether you are new to Drupal, or an
experienced Drupalist, Drupal 8 Development Cookbook contains recipes that help you
immerse yourself in what Drupal 8 has to offer.

What this book covers

Chapter 1, Up and Running with Drupal 8, covers the requirements to run Drupal 8, walks you
through the installation process, and extends Drupal.

Chapter 2, The Content Authoring Experience, dives into the content management experience
in Drupal, including working with the newly bundled CKEditor.

Chapter 3, Displaying Content through Views, explores how to use Views to create different
ways to list and display your content in Drupal.

Chapter 4, Extending Drupal, explains how to work with Drupal's Form API to create custom
forms to collect data.

Chapter 5, Frontend for the Win, teaches you how to create a theme, work with the new
templating system, Twig, and harness Drupal's responsive design features.

Chapter 6, Creating Forms with the Form API, teaches you how to write a module for Drupal,
the building blocks of functionalities in Drupal.

Chapter 7, Plug and Play with Plugins, introduces plugins, one of the newest components in
Drupal. This chapter walks you through developing the plugin system to work with fields.

Chapter 8, Multilingual and Internationalization, introduces features provided by Drupal 8
to create an internationalized website that supports multiple languages for content and
administration.

(v |-

Preface

Chapter 9, Configuration Management — Deploying in Drupal 8, explains the configuration
management system, new to Drupal 8, and how to import and export site configurations.

Chapter 10, The Entity API, dives into the Entity API in Drupal, allowing you to create custom
configurations and content entities.

Chapter 11, Off the Drupalicon Island, explains how Drupal allows you to embrace the mantra
of proudly built elsewhere and includes third-party libraries in your Drupal site.

Chapter 12, Web Services, shows you how to turn your Drupal 8 site into a web services API
provider through a RESTful interface.

Chapter 13, The Drupal CLI, explores working with Drupal 8 through two command-line tools
created by the Drupal community: Drush and Drupal Console.

What you need for this book

In order to work with Drupal 8 and to run the code examples found in this book, the following
software will be required:

Web server software stack:

» Web server: Apache (recommended), Nginx, or Microsoft IIS
» Database: MySQL 5.5 or MariaDB 5.5.20 or higher
» PHP: PHP 5.5.9 or higher

Chapter 1, Up and Running with Drupal 8, details all of these requirements and includes a
recipe that highlights an out of the box development server setup.

You will also need a text editor. Here is a list of suggested popular editors and IDEs:

» Atom.io editor: https://atom.io/

» PHPStorm (specific Drupal integration): https://www. jetbrains.com/
phpstorm/

» Vim with Drupal configuration: https://www.drupal .org/project/vimrc
» Your operating system's default text editor or command-line file editors

Who this book is for

This book is for those who have been working with Drupal, such as site builders and backend
and frontend developers, and who are eager to see what awaits them when they start using
Drupal 8.

i |

https://atom.io/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.drupal.org/project/vimrc

Preface

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The \Drupal\Core\Url class provides static
methods to generate an instance of itself, such as : : fromRoute ()."

A block of code is set as follows:

/**
* {@inheritdoc}
*/
public function alterRoutes (RouteCollection $collection) {
if ($route = $collection->get ('mymodule.mypage)) {
Sroute->setPath('/my-page') ;
}

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

/**
* {@inheritdoc}
*/
public function alterRoutes (RouteCollection $collection) {
if ($route = $collection->get ('mymodule.mypage)) {

$route->setPath('/my-page');
}
}

Any command-line input or output is written as follows:

$ php core/scripts/run-tests.sh PHPUnit

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Scroll down the page and
click Install and set as default under Bootstrap to enable and set the theme as default."

% Warnings or important notes appear in a box like this.

S

Q Tips and tricks appear like this.

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub. com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.

You can download this file from https://www.packtpub.com/sites/default/files/
downloads/Drupal8 Development Cookbook ColorImages.pdf.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http: //www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http: //www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/Drupal8_Development_Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8_Development_Cookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Up and Running
with Drupal 8

In this chapter we'll get familiar with Drupal 8 and cover:

» Installing Drupal

» Using a distribution

» Installing modules and themes

» Using multisites in Drupal 8

» Tools for setting up an environment
» Running Simpletest and PHPUnit

Introduction

This chapter will kick off with an introduction to getting a Drupal 8 site installed and running.
We will walk through the interactive installer that most will be familiar with from previous
versions of Drupal, and from the command line with Drush.

Once we have installed a standard Drupal 8 site, we will cover the basics of extending Drupal.
We will discuss using distributions and installing contributed projects, such as modules and
themes. We will also include uninstalling modules, as this has changed in Drupal 8.

The chapter will wrap up with recipes on how to set up a multisite installation in Drupal 8,
getting a local development environment configured and running the available test suites.

Up and Running with Drupal 8

Installing Drupal

Just like most things, there are many different methods for downloading Drupal and installing
it. In this recipe, we will focus on downloading Drupal from https://www.drupal.org/
and setting it up on a basic Linux, Apache, MySQL, PHP (LAMP) server.

In this recipe, we will set-up the files for Drupal 8 and go through the installation process.

Getting ready

Before we start, you are going to need the below mentioned development environments that
meet the new system requirements for Drupal 8:

» Apache 2.0 (or higher) or Nginx 1.1 (or higher) web server.
» PHP 5.5.9 or higher.

» MySQL 5.5 or MariaDB 5.5.20 for your database. You will need a user with privileges
to create databases, or a created database with a user that has privileges to make
tables in that database.

» Ability to upload or move files to the server!

» Drupal also requires specific PHP extensions and configuration. Generally a
default installation of PHP should suffice. See https://www.drupal.org/
requirements/php for up to date requirements information.

Drupal 8 ships with Symfony components. One of the new
dependencies in Drupal 8, to support the Symfony routing system, is

that the Drupal Clean URL functionality is required. If the server is
’ using Apache, ensure that mod_rewrite is enabled. If the server is

using Nginx, the ngx_http rewrite module must be enabled.

We will be downloading Drupal 8 and placing its files in your web server's document root.
Generally, this is the /var/www folder. If you used a tool such as XAMPP, WAMP, or MAPP
please consult the proper documentation to know your document root.

How to do it...

We need to follow the below steps to install Drupal 8:

1. First we need to head to Drupal . org and download the latest release of Drupal 8.x!
You can find the most recent and recommended release at the bottom of this page:
https://www.drupal.org/project/drupal. Extract the archive and place the
files to your document root as the folder drupals:

https://www.drupal.org/
https://www.drupal.org/requirements/php
https://www.drupal.org/requirements/php
Drupal.org
https://www.drupal.org/project/drupal

Chapter 1

Downloads

Recommended releases

These are stable, well-tested versions that are actively supported.

The next patch release of Drupal 8 is ready for new
Drupal core 8.0.2 development and use on production sites.

Released: Jan 06 2016

If you need stability and features from the widest variety
Drupal core 741 of contributed modules and themes, this is the version for

Released: Oct 21 2015 you-

Open your browser and visit your web server, for example
http://localhost/drupals, to be taken to the Drupal installation wizard. You
will land on the new multilingual options install screen. Select your language and
click Save and continue.

Drupal

Choose language Choose language

Choose profile English -

Verify requirements

Set up database

Install site

Configure site

3. Onthe next screen keep the default Standard option for the installation profile.
This will provide us with a standard configuration with the most commonly used
modules installed.

4. The next step will verify your system requirements. If your system does not have
any reportable issues, the screen will be skipped.

(3 |-

Up and Running with Drupal 8

4 If you have requirement issues, the installer will report what

the specific issues are. Nearly every requirement will link to

a Drupal . org handbook page with solution steps.

5. Enter the database information for Drupal. In most cases, you only need to supply
the username, password, and database name and leave the other defaults. If your
database does not exist, the installer will attempt to create the database:

Dru pal 8.0.0-dev

Database configuration

Database type *
© MySQL, MariaDB, Percona Server, or equivalent

SQLite
Set up database

. Database name *
Install site

Configure site
Database username *

Database password

» ADVANCED OPTIONS

Save and continue

See the There's more section in for information on setting up
s your database and any possible users.

6. Your Drupal 8 site will begin installing! When it is done installing the base modules,
you will be taken to a site configuration screen.

7. The configure site form provides the base configuration for your Drupal site. Enter
your site name and the e-mail address for the site. The site email will be used to send
administrative notifications and as the originating email for outgoing emails from the
Drupal site. The form allows you to set regional information regarding the country and
time zone of the site. Setting the timezone ensures time values display correctly.

Drupal.org

Chapter 1

8. Fill in the site maintenance account information, also known as user 1, which acts in
a similar way to root on Unix based systems. The site maintenance account is crucial.
As stated, this acts as the first user and resembles the root user in Unix-based
systems. In Drupal, the user with the user ID of 1 can bypass permission checks and
have global access.

9. Enter the site's regional information and whether the site should check for
updates available for modules enabled and Drupal itself. By checking for updates
automatically, your site will report anonymous usage statistics to Drupal . org along
with providing a summary of your version status. You have the option to also opt-in for
the site to email you notifications of new releases, including security releases.

10. When satisfied click Save and continue and Congratulations, you installed Drupal!

Drupal 8 supports a multilingual installation. When you visit the installer it reads the
language code from the browser. With this language code, it will then select a supported
language. If you choose a non-English installation the translation files will be automatically
downloaded from https://localize.drupal.org/. Previous versions of Drupal did
not support automated multilingual installations.

The installation profile instructs Drupal what modules to install by default. Contributed install
profiles are termed distributions. The next recipe discusses distributions

When verifying requirements, Drupal is checking application versions and configurations.
For example, if your server has the PHP Xdebug extension installed, the minimum
max nested_value must be 256 or else Drupal will not install.

The Drupal installation process can be very straight forward, but there are a few items
worth discussing.

Creating a database user and a database

In order to install Drupal you will need to have access to a database server and an existing
(or ability to create) database (or the ability to create one). This process will depend on your
server environment setup.

If you are working with a hosting provider, there is more than likely a web based control panel.
This should allow you to create databases and users. Refer to your hosting's documentation.

Drupal.org
https://localize.drupal.org/

Up and Running with Drupal 8

If you are using phpMyAdmin on your server, often installed by MAMP, WAMP, and XAMPP,
and have root access, you can create your databases and users.

>

>

>

>

>

Sign into phpMyAdmin as the root user

Click Add a new User from the bottom of the privileges page

Fill in the user's information

Select to create a database for the user with all privileges granted

You can now use that user's information to connect Drupal to your database

If you do not have a user interface but have command line access, you can set up your
database and user using the MySQL command line. These instructions can be found in
the core/INSTALL.mysqgl . txt files:

1.

Log into MySQL:

$ mysqgl -u username -p

Create the database you will use:

$ CREATE DATABASE database CHARACTER SET utf8 COLLATE utf8
general ci;

Create a new user to access the database:

$ CREATE USER username@localhost IDENTIFIED BY 'password';

Grant the new user permissions on the database:

$ GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP,
INDEX, ALTER, CREATE TEMPORARY TABLES ON databasename.* TO
'username'@'localhost' IDENTIFIED BY 'password';

If you are installing Drupal with a PostgresSQL or SQLite database, see

the appropriate installation instructions, either INSTALL . pgsqgl . txt

or INSTALL.sqglite.txt.

Database prefixes

Drupal, like other content management systems, allows you to prefix its database tables
from the database set-up form. This prefix will be placed before table names to help make
them unique. While not recommended this would allow multiple installations to share

one database. Utilizing table prefixes can, however, provide some level of security through
obscurity since the tables will not be their default names.

Chapter 1

¥ ADVANCED OPTIONS

Host *

localhost *

Port number
3306

Table name prefix

| 3
If more than one application will be sharing this
database, a unique table name prefix - such as drupal -
will prevent collisions.

Downloading and installing with Drush

You may also install Drupal using the PHP command line tool Drush. Drush is a command line
tool created by the Drupal community and must be installed. Drush is covered in Chapter 13,
Drupal CLI.

The pm-download command will download packages from Drupal .org. The site-install
command will allow you to specify an installation profile and other options for installing a Drupal
site. The installation steps in this recipe could be run through Drush as:

$ cd /path/to/document/root

$ drush pm-download drupal-8 drupal8
$ cd drupals
$

drush site-install standard -locale=en-US --account-name=admin
-account-pass=admin -account-email=demo@example.com -db-url=mysql://
user:pass@localhost/database

We use Drush to download the latest Drupal 8 and place it in a folder named drupals. Then
the site-install command instructs Drush to use the standard install profile, configure
the maintenance account, and provides a database URI string so that Drupal can connect to
its database.

Security updates

If you choose to disable the update options, you will have to check manually for module
upgrades. While most upgrades are for bug fixes or features, some are for security updates.
It is highly recommended that you subscribe to the Drupal security team's updates. These
updates are available on Twitter at edrupalsecurity or the feeds on
https://www.drupal.org/security.

Drupal.org
https://www.drupal.org/security

Up and Running with Drupal 8

» For more on multilingual, see Chapter 8, Multilingual and Internationalization
» For more on using the command line and Drupal, see Chapter 13, Drupal CLI

» See the Drupal.org handbook on installing Drupal https://www.drupal.org/
documentation/install

» Drush site install http://drushcommands . com/drush-8x/site-install/
site-install

Using a distribution

A distribution is a contributed installation profile that is not provided by Drupal core. Why
would you want to use a distribution? Distributions provide a specialized version of Drupal
with specific feature sets. On Drupal . org when you download an installation profile it
not only includes the profile and its modules but a version of Drupal core. Hence the name
distribution. You can find a list of all Drupal distributions here
https://www.drupal.org/project/project distribution.

How to do it...

We will follow these steps to download a distribution to use as a customized version of
Drupal 8:

1. Download a distribution from Drupal . org. For this recipe let's use the Demo
Framework provided by Acquia https://www.drupal .org/project/df.
Select the recommended version for the 8.x branch.

3. Extract the folder contents to your web server's document root. You'll notice there is
Drupal core and, within the profiles folder, the installation profile's folder df.

Install Drupal as you would normally, by visiting your Drupal site in your browser.

5. Demo Framework declares itself as an exclusive profile. Distributions which declare
this are automatically selected and assumed to be the default installation option.

The exclusive flag was added with Drupal 7.22 to

improve the experience of using a Drupal distribution

http://drupal.org/node/1961012.

6. Follow the installation instructions and you'll have installed the distribution!

Drupal.org
http://drushcommands.com/drush-8x/site-install/site-install
http://drushcommands.com/drush-8x/site-install/site-install
Drupal.org
https://www.drupal.org/project/project_distribution
Drupal.org
https://www.drupal.org/project/df
http://drupal.org/node/1961012

Chapter 1

Installation profiles work by including additional modules that are part of the contributed
project realm or custom modules. The profile will then define them as dependencies to be
installed with Drupal. When you select an installation profile, you are instructing Drupal to
install a set of modules on installation.

Distributions provide a specialized version of Drupal with specific feature sets, but there are a
few items worth discussing.

Makefiles

The current standard for generating a built distribution is the utilization of Drush and
makefiles. Makefiles allow a user to define a specific version of Drupal core and other
projects (themes, modules, third party libraries) that will make up a Drupal code base.
It is not a dependency management workflow, like Composer, but is a build tool.

If you look at the Demo Framework's folder you will see drupal -org.make and
drupal-org-core.make. These are parsed by the Drupal . org packager to compile
the code base and package itasa .zip or .tar.gz, like the one you downloaded.

Installing with Drush

As shown in the first recipe, you can install a Drupal site through the Drush tool. You can
instruct Drush to use a specific installation profile by providing it as the first argument.
The following command would install the Drupal 8 site using the Demo Framework.

$ drush pm-download df

$ drush site-install df -db-url=mysql://user:pass@localhost/database

» See Chapter 13, Drupal CLI, for information on makefiles.

» Drush documentation page for drush make
http://www.drush.org/en/master/make/

» Distribution documentation on Drupal . org,
https://www.drupal.org/documentation/build/distributions

Drupal.org
http://www.drush.org/en/master/make/
Drupal.org
https://www.drupal.org/documentation/build/distributions

Up and Running with Drupal 8

Installing modules and themes

Drupal 8 provides more functionality out of the box than previous versions of Drupal - allowing
you to do more with less. However, one of the more appealing aspects of Drupal is the ability to
extend and customize.

In this recipe, we will download and enable the Honeypot module, and tell Drupal to use the
Bootstrap theme. The Honeypot module provides honeypot and timestamp anti-spam measures
on Drupal sites. This module helps protect forms from spam submissions. The Boostrap theme
implements the Bootstrap front-end framework and supports using Bootswatch styles for
theming your Drupal site.

Getting ready

If you have used Drupal previously, take note that the folder structure has changed. Modules,
themes, and profiles are now placed in their respective folders in the root directory and no
longer under sites/all. For more information about the developer experience change, see
https://www.drupal.org/node/22336.

Downloading the example code

purchased from your account at http://www.packtpub. com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How to do it...

Let's install modules and themes:

.\'Q You can download the example code files for all Packt books you have

1. Visithttps://www.drupal.org/project/honeypot and download the latest
8.x release for Honeypot.

2. Extract the archive and place the honeypot folder inside the modules folder inside
of your Drupal core installation:

https://www.drupal.org/node/22336
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://www.drupal.org/project/honeypot

Chapter 1

[l Www 14 items
[core 29 items
- modules 7 items

* [config 3items

* [src 2 items
& composerjson 445 bytes
honeypot.api.php 3.3kB

|| honeypot.info.yml 326 bytes
honeypot.install 1.4 kB

|] honeypot.Links.menu.yml 215 bykes
honeypot.module 11.8 kB

|] honeypot.permissions.yml 240 bytes

|| honeypot.routing.yml 230 bytes

|| LICEMNSE.bxt 18.1 kB

[] README.Ext 1.4 kB

|] README.Ext 1.8kB
i profiles 1item
¢ sites 9 items
* i@ themes 2 items
aukoload.php 525 bytes

3. In Drupal, log in and select the Extend option to access the list of available modules.
Using the search text field, type in Honeypot. Check the checkbox and click Install.

5. Once enabled, search for it again. Clicking on the module's description will expand
the row and expose links to configure permissions and module settings:

honeypot

Enter a part of the module name or description
¥ SPAM CONTROL

“ Honeypot ¥ Mitigates spam form submissions using the honeypot method.

Machine name: honeypot
Version: 8.x-1.19-betald

M Permissions % Configure

6. Visithttps://www.drupal.org/project/bootstrap and download the latest
8.x release for Bootstrap.

s

https://www.drupal.org/project/bootstrap

Up and Running with Drupal 8

7. Extract the archive and place the bootstrap folder inside the themes folder inside
your Drupal core installation.

Fl COTE JICEMS
* @ modules 2items
» [l profiles 1 item
* [sites 9items
~|@l themes 2items
* [config 2items

* [css 13 items

v [docs 8items

* @ arunt 4 items

v [includes 8items
i is Jitems

¥ [starterkits 2 items

» [l templates 15 items
bootstrap.api.php 6.2 kB

| | bootstrap.info.yml 1.4kB

| | bootstrap.libraries.yml 257 bytes

| | bootstrap.make.example 303 bytes
bootstrap.theme 2.4kB

= bowerjson 158 bytes

®) Favicon.ico 1.1 kB

8. In Drupal, select the Appearance option to manage your Drupal themes.

9. Scroll down the page and click Install and set as default under Bootstrap to enable
and set the theme as default:

Uninstalled themes

Bootstrap 3

for Drupal

Bootstrap 8.x-3.0-beta2
Built to use Bootstrap, a sleek, intuitive, and powerful front-
end framework for faster and easier web development.

Install | Install and set as default

Chapter 1

The following outlines the procedure for installing a module or theme and how Drupal
discovers these extensions.

Discovering modules and themes

Drupal scans specific folder locations to identify modules and themes defined by the
.info.yml file in their directory. The following is the order in which projects will be discovered:

» Respective core folder (modules, themes)
» Current installed profile
» Theroot modules or themes folder

» The current site directory (default or current domain)

Module installation

By placing the module inside the root modules folder, we are allowing Drupal to discover the
module and allow it to be installed. When a module is installed, Drupal will register its code
with the system through the module installer service. The service will check for required
dependencies and prompt for them to be enabled if required. The configuration system will
run any configuration definitions provided by the module on install. If there are conflicting
configuration items, the module will not be installed.

Theme installation

Atheme is installed through the theme installer service and sets any default
configuration by the theme along with rebuilding the theme registry. Setting a theme to
default is a configuration change in system. theme.default to the theme's machine
name (in the recipe it would be bootstrap.)

The following outlines the procedure for installing a module or theme and some more
information on it.

Installing a module with Drush

Modules can be downloaded and enabled through the command line using drush. The
command to replicate the recipe would resemble:

$ drush pm-download honeypot

$ drush pm-enable honeypot

It will prompt you to confirm your action. If there were dependencies for the module, it would
ask if you would like to enable those, too.

[}

Up and Running with Drupal 8

Uninstalling a module

One of the larger changes in Drupal 8 is the module disable and uninstall process. Previously

modules were first disabled and then uninstalled once disabled. This left a confusing process

which would disable its features, but not clean up any database schema changes. In Drupal 8
modules cannot just be disabled but must be uninstalled. This ensures that when a module is
uninstalled it can be safely removed from the code base.

A module can only be uninstalled if it is not a dependency of another module or does
not have a configuration item in use - such as a field type - which could disrupt the
installation's integrity.

With a standard installation, the Comment module cannot be uninstalled
until you delete all Comment fields on the article content type. This is
’ because the field type is in use.

See also...

» Chapter 4, Extending Drupal, to learn about setting defaults on enabling a module
» Chapter 9, Confiuration Management - Deploying in Drupal 8

Using multisites in Drupal 8

Drupal provides the ability to run multiple sites from one single Drupal code base instance.
This feature is referred to as multisite. Each site has a separate database; however, projects
stored in modules, profiles, and themes can be installed by all of the sites.

Site folders can also contain their own modules and themes. When provided, these can only
be used by that one site.

The default folder is the default folder used if there is not a matching domain name.

Getting ready

If you are going to work with multisite functionality, you should have an understanding of how
to setup virtual host configurations with your particular web server. In this recipe, we will use
two subdomains under localhost called dev1 and dev2.

Chapter 1

How to do it...

We will use multisites in Drupal 8 by two subdomains under localhost:

1. Copysites/example.sites.phptosites/sites.php.
2. Create adevl.localhost and adev2.localhost folder inside of the sites folder.

3. Copythe sites/default/default.settings.php file into devl.localhost
and dev2.localhost as settings.php in each respective folder:

([www 14items Folder
v core 20items Folder
* [modules Zitems Folder
* [profiles 1item Folder
- [sites items Folder
b2 default Sitems Folder
- devi.localhost 2items Folder
* i Files 1item Folder
settings.php 27.7kB Program
- dev2.localhost 2items Folder
¥ [Files 1item Folder
settings.php 277 kB Program
|| development.senvices.yml 249 bytes Text
example.settings.local.php 2.5kB Program
example.sites.php 2.3kB Program
|_"| README.EtxE 515 bytes Text
sites.php 24 kB Program

Visit devl.localhost and run the installation wizard.
5. Visitdev2.localhost and see that you still have the option to install a site!

The sites.php must exist for multisite functionality to work. By default, you do not need to
modify its contents. The sites.php file provides a way to map aliases to specific site folders.
The file contains the documentation for using aliases.

The DrupalKernel class provides findSitePath and getSitePath to discover the site
folder path. On Drupal's bootstrap this is initiated and reads the incoming HTTP host to load
the proper settings.php file from the appropriate folder. The settings.php file is then
loaded and parsed into a \Drupal\Core\Site\Settings instance. This allows Drupal to
connect to the appropriate database.

]

Up and Running with Drupal 8

Let's understand the security concerns of using multisite:

Security concerns

There can be cause for concern if using multisite. Arbitrary PHP code executed on a Drupal
site might be able to affect other sites sharing the same code base. Drupal 8 marked the
removal of the PHP Filter module that allowed site administrators to use PHP code in
the administrative interface. While this mitigates the various ways an administrator had
easy access to run PHP through an interface it does not mitigate the risk wholesale. For
example, the PHP Filter module is now a contributed project and could be installed.

» Multi-site documentation on Drupal .org, https://www.drupal .org/
documentation/install/multi-site

Tools for setting up an environment

One of the initial hurdles to getting started with Drupal is a local development environment.
This recipe will cover how to set up the DrupalVM project by Jeff Geerling. DrupalVM is a
VirtualBox virtual machine run through Vagrant, provisioned and configured with Ansible.

It will set up all of your services and build a Drupal installation for you.

Luckily you only need to have VirtualBox and Vagrant installed on your machine and DrupalVM
works on Windows, Mac OS X, and Linux.

Getting ready

To get started, you will need to install the two dependencies required for DrupalVM:

» VirtualBox: https://www.virtualbox.org/wiki/Downloads

» Vagrant: http://www.vagrantup.com/downloads.html

How to do it...

Let's set up the DrupalVM project by Jeff Geerling. DrupalVM is a VirtualBox virtual machine
run through Vagrant, provisioned and configured with Ansible:

1. Download the DrupalVM archive from https://github.com/geerlingguy/
drupal-vm/archive/master.zip.

6]

Drupal.org
https://www.drupal.org/documentation/install/multi-site
https://www.drupal.org/documentation/install/multi-site
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html
https://github.com/geerlingguy/drupal-vm/archive/master.zip
https://github.com/geerlingguy/drupal-vm/archive/master.zip

Chapter 1

Extract the archive and place the project in your directory of choice.
Copy example.drupal .make.yml t0 drupal .make.yml.
Copy example.config.yml to config.yml

ok 0N

Edit config.yml and modify the local path setting to be the directory where
you've placed the DrupalVM project. This will be synchronized into the virtual
machine:

vagrant_synced_folders:
- local path: /path/to/drupalvm
destination: /var/www
type: nfs
create: true

6. Open aterminal and navigate to the directory where you have placed the
DrupalVM project.

7. Enter the command vagrant up to tell Vagrant to build the virtual machine and
begin the provisioning process.

8. While this process is ongoing, modify your hosts file to provide easy access to the
development site. Add the line 192.168.88.88 drupalvm.dev to your hosts file.

9. Open your browser and access http://www.drupalvm.com/.
10. Login to your Drupal site with the username admin and password admin.

DrupalVM is a development project that utilizes the Vagrant tool to create a VirtualBox
virtual machine. Vagrant is configured through the project's vagrantfile. Vagrant then
uses Ansible - an open source IT automation platform - to install Apache, PHP, MySQL,
and other services on the virtual machine.

The config.yml file has been set up to provide a simple way to customize variables for the
virtual machine and provisioning process. It also uses Drush to create and install a Drupal 8
site, or whatever components are specified in drupal .make .yml. This file is a Drush make
file, which contains a definition for Drupal core by default and can be modified to include other
contributed projects.

The vagrant up command tells Vagrant to either launch an existing virtual machine or create
one anew in a headless manner. When Vagrant creates a new virtual machine it triggers the
provisioning process. In this instance Ansible will read the provisioning/playbook.yml file
and follow each step to create the final virtual machine. The only files needing to be modified,
however, are the config.yml and drupal .make.yml files.

[}

http://www.drupalvm.com/

Up and Running with Drupal 8

There's more...

The topic of automating and streamlining a local environment is quite popular right now with
quite a few different options. If you are not comfortable with using Vagrant, there are a few
other options that provide a server installation and Drupal.

Acquia Dev Desktop

Acquia Dev Desktop is developed by Acquia and can be found at
https://docs.acquia.com/dev-desktop?. It is an automated environment installer
for Windows and Mac. The Dev Desktop application allows you to create a regular Drupal
installation or select from a distribution.

XAMPP + Bitnami

XAMPP - Apache + MySQL + PHP + Perl - is a cross platform environment installation.
XAMPP is an open source project from Apache Friends. XAMPP has partnered with Bitnami
to provide free all-in-one installations for common applications - including Drupal 8! You can
download XAMPP at https://www.apachefriends.org/download.html.

Kalabox

Kalabox is developed by the Kalamuna group and intends to be a robust workflow solution
for Drupal development. Kalabox is cross-platform compatible, allowing you to easily work
on Windows machines. It is based for the command line and provides application binaries
for you to install. You can learn more about Kalabox at
http://www.kalamuna.com/products/kalabox/.

» See Chapter 13, Drupal CLI, for information on makefiles
» DrupalVM documentation http://docs.drupalvm.com/en/latest/

» Drupal.org community documentation on local environment set-up
https://www.drupal.org/node/157602

Running Simpletest and PHPUnit

Drupal 8 ships with two testing suites. Previously Drupal only supported Simpletest. Now
there are PHPUnit tests as well. In the official change record, PHPUnit was added to provide
testing without requiring a full Drupal bootstrap, which occurs with each Simpletest test.
Read the change record here: https://www.drupal.org/node/2012184.

]

https://docs.acquia.com/dev-desktop2
https://www.apachefriends.org/download.html
http://www.kalamuna.com/products/kalabox/
http://docs.drupalvm.com/en/latest/
Drupal.org
https://www.drupal.org/node/157602
https://www.drupal.org/node/2012184

Chapter 1

Getting ready

Currently core comes with Composer dependencies prepackaged and no extra steps need to
be taken to run PHPUnit. This recipe will demonstrate how to run tests the same way that the
QA testbot on Drupal . org does.

The process of managing Composer dependencies may change, but is

currently postponed due to Drupal.org's testing and packaging infrastructure.
T~ Read more here https://www.drupal .org/node/1475510.

How to do it...

1. First enable the Simpletest module. Even though you might only want to run
PHPUnit, this is a soft dependency for running the test runner script.

2. Open acommand line terminal and navigate to your Drupal installation directory
and run the following to execute all available PHPUnit tests:

php core/scripts/run-tests.sh PHPUnit

3. Running Simpletest tests required executing the same script, however, instead of
passing PHPUnit as the argument, you must define the url option and tests option:
php core/scripts/run-tests.sh --url http://localhost --all

4. Review test output!

The run-tests. sh script has been shipped with Drupal since 2008, then named
run-functional-tests.php. The command interacts with the other suites in Drupal to
run all or specific tests and sets up other configuration items. We will highlight some of the
useful options below:

» --help: This displays the items covered in the following bullets

» -list: This displays the available test groups that can be run

» --url: This is required unless the Drupal site is accessible through
http://localhost:80

» -sqlite: This allows you to run Simpletest without having to have Drupal installed

» -concurrency: This allows you to define how many tests run in parallel

[}

Drupal.org
https://www.drupal.org/node/1475510

Up and Running with Drupal 8

There's more...

Is run-tests a shell script?

The run-tests. shisn't actually a shell script. It is a PHP script which is why you must
execute it with PHP. In fact, within core/scripts each file is a PHP script file meant to be
executed from the command line. These scripts are not intended to be run through a web
server which is one of the reasons for the . sh extension. There are issues with discovered
PHP across platforms that prevent providing a shebang line to allow executing the file

as a normal bash or bat script. For more info view this Drupal . org issue at
https://www.drupal.org/node/655178.

Running Simpletest without Drupal installed

With Drupal 8, Simpletest can be run from SQLlite and no longer requires an installed
database. This can be accomplished by passing the sqlite and dburl options to the
run-tests . sh script. This requires the PHP SQLite extension to be installed.

Here is an example adapted from the DrupalCl test runner for Drupal core:

php core/scripts/run-tests.sh --sqlite /tmp/.ht.sqlite --die-on-fail
--dburl sqlite://tmp/.ht.sqlite --all

Combined with the built in PHP webserver for debugging you can run Simpletest without a
full-fledged environment.

Running specific tests
Each example thus far has used the all option to run every Simpletest available. There

are various ways to run specific tests:
» --module: This allows you to run all the tests of a specific module
» --class: This runs a specific path, identified by a full namespace path
» -file: This runs tests from a specified file

» —directory: This run tests within a specified directory

Previously in Drupal, tests were grouped inside module.test files,
which is where the file option derives from. Drupal 8 utilizes the
g PSR-4 autoloading method and requires one class per file.

Drupal.org
https://www.drupal.org/node/655178

Chapter 1

DrupalCl

With Drupal 8 came a new initiative to upgrade the testing infrastructure on Drupal . org.
The outcome was DrupalCl. DrupalCl is open source and can be downloaded and run locally.
The project page for DrupalCl is https://www.drupal .org/project/drupalci

The test bot utilizes Docker and can be downloaded locally to run tests. The project ships
with a Vagrant file to allow it to be run within a virtual machine or locally. Learn more on the
testbot's project page: https://www.drupal.org/project/drupalci testbot

» PHPUnit manual: https://phpunit.de/manual/4.8/en/writing-tests-
for-phpunit.html

» Drupal PHPUnit handbook: https://drupal.org/phpunit
» Simpletest fromthe command line: https://www.drupal .org/node/645286

Drupal.org
https://www.drupal.org/project/drupalci
https://www.drupal.org/project/drupalci_testbot
https://drupal.org/phpunit
https://www.drupal.org/node/645286
https://phpunit.de/manual/4.8/en/writing-tests-for-phpunit.html
https://phpunit.de/manual/4.8/en/writing-tests-for-phpunit.html

The Content Authoring
Experience

In this chapter we will explore what Drupal 8 brings to the content authoring experience:

» Configuring the WYSIWYG editor

» Adding and editing content

» Creating a menu and linking content

» Providing inline editing

» Creating a custom content type

» Applying new Drupal 8 core field types
» Customizing the form display of a node

» Customizing the display output of a node

Introduction

In this chapter we'll cover the Drupal 8 content authoring experience. We will show you how to
configure text formats and set up the bundled CKEditor that ships with Drupal 8. We will look
at how to add and manage content, along with utilizing menus for linking to content. Drupal 8
ships with inline editing for per-field modifications from the front-end.

This chapter dives into creating custom content types and harnessing different fields to create
advanced content. We'll cover the five new fields added to Drupal 8 core and how to use
them, along with getting new field types through contributed projects. We will go through
customizing the content's display and modifying the new form display added in Drupal 8.

s

The Content Authoring Experience

Configuring the WYSIWYG editor

Drupal 8 caused the collaboration between the Drupal development community and the
CKEditor development community. Because of this, Drupal now ships with CKEditor out of the
box as the default What You See Is What You Get (WYSIWYG) editor. The new Editor module
provides an API for integrating WYSIWYG editors. Even though CKEditor is provided out of the
box, contributed modules can provide integrations with other WYSIWYG editors.

Text formats control the formatting of content and WYSIWYG editor configuration for content
authors. The standard Drupal installation profile provides a fully configured text format with
CKEditor enabled. We will walk through the steps of recreating this text format.

In this recipe we will create a new text format with a custom CKEditor WYSIWYG configuration.

Getting ready

Before starting, make sure that the CKEditor module is enabled, which also requires Editor
as a dependency. Editor is the module that provides an API to integrate WYSIWYG editors
with text formats.

How to do it...

Let's create a new text format with a custom CKEditor WYSIWYG configuration:

1. Visit Configuration and head to Text formats and editors under the Content
authoring heading.

2. Click on Add text format to begin creating the new text format:

Text formats and editors 77

Home » Administration » Configuration » Content authoring

Text formats define the HTML tags, code, and other formatting that can be used
when entering text. Improper text format configuration is a security risk.
Learn mere on the Filter module help page.

Text formats are presented on content editing pages in the order defined on this
page. The first format available to a user will be selected by default.

3. Enter a name for the text format, such as editor format.

4. Select which roles have access to this format - this allows you to have granular
control over what users can use when authoring content.

=

Chapter 2

5. Select CKEditor from the Text editor select list. The configuration form for CKEditor
will then be loaded.

6. You may now use an in-place editor to drag buttons onto the provided toolbar to
configure your CKEditor toolbar:

Text editor
CKEditor

TOOLBAR CONFIGURATION
Move a button into the Active toolbar to enable it, or into the list of Available buttons to
disable it. Buttons may be moved with the mouse or keyboard arrow keys. Toolbar group

names are provided to support screen reader users. Empty toolbar groups will be removed
upon save.

Available buttons Button divider

Active toolbar Show group names

B I || = s

i
it
>
B
B

7. Select any of the Enabled filters you would like, except for Display any HTML as
Plain text. That would be counter intuitive to using a WYSIWYG editor!

The Filter modules provide text formats that control over how rich text fields are presented to
the user. Drupal will render rich text saved in a text area based on the defined text format for

the field. Text fields with (formatted) in their title will respect text format settings, others will
render in plain text.

The text formats and editors screen warns of a security risk

due to improper configuration. That is because you could grant
s an anonymous user access to a text format that allows full

HTML, or allow image sources to be from remote URLs.

The Editor module provides a bridge to WYSIWYG editors and text formats. It alters the text
format form and rendering to allow the integration of WYSIWYG editor libraries. This allows
each text format to have its own configuration for its WYSIWYG editor.

=]

The Content Authoring Experience

Out of the box the Editor module alone does not provide an editor. The CKEditor module
works with the Editor API to enable usage of that WYSIWYG editor.

Drupal can support other WYSWIG editors, such as MarkltUp or TinyMCE through
contributed modules.

Drupal provides granular control of how rich text is rendered and extensible ways as well,
which we will discuss further.

Filter module

When string data is added to a field that supports text formats, the data is saved and
preserved as it was originally entered. Enabled filters for a text format will not be applied
until the content is viewed. Drupal works in such a way that it saves the original content
and only filters on display.

With the Filter module enabled, you gain the ability to specify how text is rendered based

on the roles of the user who created the text. It is important to understand the filters applied
to a text format that uses a WYSIWYG editor. For example, if you selected the Display any
HTML as plain text option, the formatting done by the WYSIWYG editor would be stripped
out when viewed.

CKEditor plugins

The CKEditor module provides a plugin type called CKEditorPlugin. Plugins are small
pieces of swappable functionality within Drupal 8. Plugins and plugin development are
covered in Chapter 7, Plug and Play with Plugins. This type provides integration between
CKEditor and Drupal 8.

The image and link capabilities are plugins defined within the CKEditor module. Additional
plugins can be provided through contributed projects or custom development.

See the \Drupal\ckeditor\Annotation\CKEditorPlugin class for the plugin
definition and the suggested \Drupal\ckeditor\Plugin\CKEditorPlugin\
DrupalImage class as a working example.

» The official blog post from CKEditor about how Drupal adopted it as the official
WYSIWYG editor: http://ckeditor.com/blog/CKEditor-Joins-Drupal.

» Chapter 7, Plug and Play with Plugins.

http://ckeditor.com/blog/CKEditor-Joins-Drupal

Chapter 2

Adding and editing content

The main functionality of a content management system is in the name itself - the ability to
manage content; that is, to add, edit, and organize content. Drupal provides a central form
that allows you to manage all of the content within your website and allows you to create new
content. Additionally, you can view a piece of content and have the ability to click an edit link
when viewing it.

Getting ready

This recipe assumes you have installed the standard installation profile and have the default
node content types available for use.

How to do it...

Let's manage the content by adding, editing, and organizing the content:

1. Visit Content to view the content management overview from.

2. Click Add content to view the list of available content types. Select article as the
piece of content you would like to make.

3. Provide a title for the piece of content. Titles are always required for content.
Fill in body text for the article:

Body (Edit summary)
B I || = = =1|92 || Format ~ || [8] Source
4
Text format | Basic HTML v About text formats
e ';‘??‘j:b
|_Basic HTML
Tags Editor format
— ~ | Restricted HTML
Full HTML :))
Enter a comma-separaweunseororexample: Amsterdam, Mexico City, "Cleveland, Ohio

The Content Authoring Experience

You may change the text format to customize what kind of text is

allowed. If the user only has one format available there will be no

select box, but the About text formats link will still be present.

4. Once you have added your text, click Save and publish at the bottom of the form.
You will then be redirected to view the newly created piece of content.

5. Note that the URL for the piece of content is /node/#. This is the default path for
content and can be changed by editing the content.

Click on Edit from the tabs right above the content.

7. From the right sidebar, click on URL Path Settings to expand the section and enter
a custom alias. For example /awesome-article (note the required "/".):

¥ URL PATH SETTINGS

URL alias
fawesome-article

The alternative URL for this content. Use a relative path. For
example, enter "fabout” for the about page.

8. Save the content and notice the URL for your article is /awesome-article.

9. You could also edit this article from the Content table by clicking Edit there instead
of from viewing the content.

The Content page is a View, which will be discussed in Chapter 3, Displaying Content
through Views. This creates a table of all the content in your site that can be searched
and filtered. From here you can view, edit, or delete any single piece of content.

In Drupal there are content entities that provide a method of creation, editing, deletion,
and viewing. Nodes are a form of a content entity. When you create a node it will build the
proper form that allows you to fill in the piece of content's data. The same process follows
for editing content.

When you save the content, Drupal writes the node's content to the database along with all
of its respective field data.

=]

Chapter 2

Drupal 8's content management system provides many features; we will cover some
extra information.

Save as draft

New to Drupal 8 is the ability to easily save a piece of content as a draft instead of directly
publishing it. Instead of clicking on Save and publish, click the arrow next to it to expand the
option of Save as unpublished.

Save and publish -) Preview -
Save as unpublished

Pathauto

There is a contributed project called Pathauto that simplifies the process of providing URL
aliases. It allows you to define patterns that will automatically create URL aliases for content.
This module utilizes tokens to allow for very robust paths for content.

The Pathauto project can be found at https://www.drupal.org/project/pathauto.

Bulk moderation

You also have the capability to perform bulk actions on content. The table provides checkboxes
at the beginning of each row. For each selected item, you can choose an item from With
selection to make bulk changes - such as deleting, publishing, and unpublishing content:

With selection

Delete content v
Delete content

Make content sticky

Make content unsticky

Promote content to front page

Publish content

Save content

Remove content from front page
| Unpublish content

CONTENT TYPE

Article

Apply

» Chapter 2, The Content Authoring Experience in recipe Customizing the Form Display
of a Node

s

https://www.drupal.org/project/pathauto

The Content Authoring Experience

Creating a menu and linking content

Drupal provides a way to link content being authored to a specified menu on the website,
generally the main menu. You can, however, create a custom menu for providing links to
content. In this recipe we will show you how to create a custom menu and link content to it.
We will then place the menu as a block on the page, in the sidebar.

Getting ready

This recipe assumes you have installed the standard installation profile and have the default
node content types available for use. You should have some content created to create a link to.

How to do it...

Visit Structure and click on Menus.
Click on Add Menu.
Provide the title Sidebar and optional summary and then click on Save.

Once the menu has saved, click on the Add link button.

ok 0Nk

Enter in a link title and then begin typing the title for a piece of content. The form will
provide autocomplete suggestions for linkable content:

Menu link title *
Link to content B
The text to be used for this link in the menu.
Link *
lo|
Lorem ipsum Iso enter an internal path such as /node/add or an

exrernal URL sUCN as Niip://example.com. ENter <rront= 1o InK to the front page.

¥/ Enabled
A flag for whether the link should be enabled in menus or hidden.

Description

Shown when hovering over the menu link.

Show as expanded

If selected and this menu link has children, the menu will always appear expanded.
Parent link

<Sidebar= v

The maximum depth for a link and all its children is fixed. Some menu links may not be available as parents if selecting
them would exceed this limit.

NED

Chapter 2

Click on Save to save the menu link.
7. With the menu link saved, visit Structure, and then Block layout.

Click on Place block next to Sidebar first. In the modal, search for the Sidebar menu
and click on Place block:

Place block

+Add custom block

[sidebar]

BLOCK CATEGORY OPERATIONS

Sidebar Menus Place block

9. Save the following forms and, at the bottom of the block list, click on Save.
View your Drupal site and you will see the menu:

Sidebar Lorem ipsum

Submitted by admin on

Link to content

Lorem ipsum

Search

Menus and links are part of Drupal core. The ability to make custom menus and menu links
is provided through the Menu Ul module. This module is enabled on the standard installation
profile, but may not be in others.

The Link input of the menu link form allows you to begin typing node titles and easily link to
existing content. This was a piece of functionality not available in previous versions of Drupal!
It will automatically convert the title into the internal path for you. Link input also accepts

a regular path, such as /node/1 or an external path.

Es

The Content Authoring Experience

You must have a valid path; you cannot add empty links to a menu.

There is work being done to allow adding empty or ID selector link
T~ paths: https://www.drupal.org/node/1543750.

There's more...

Managing a contents menu link from its form

A piece of content can be linked to a menu from the add or edit form. The menu settings
section allows you to toggle the availability of a menu link. The menu link title will reflect the
content's title by default.

The parent item allows you to decide which menu and which item it will appear under. By
default content types only have the main menu allowed. Editing a content type can allow
multiple menus, or only choosing a custom menu.

This allows you to populate a main menu or complimentary menu without having to visit the
menu management screens.

Providing inline editing

A touted feature of Drupal 8 is the ability to provide inline editing. Inline editing is enabled by
default with the standard installation profile through the Quick Edit module. The Quick Edit
module allows for editing individual fields while viewing a piece of content and integrates with
the Editor module for WYSIWYG editors!

How to do it...

Let's provide inline editing:

1. Visit a piece of created content.

2. In order to enable inline editing, you must toggle contextual links on the page by
clicking Edit in the upper right of the administrative toolbar:

=

https://www.drupal.org/node/1543750

Chapter 2

= Manage Wy Shortcuts _§ admin # Edit

My account Log out

Site-Install
o

3. This will toggle the contextual links available on the page. Click on the context link
next to the content and select Quick edit:

Lorem ipsum

View Edit Delete

Submitted by admin on Sun, 10/04/2015 - 13:16 s

Lorem ipsum '
Quick edit
Edit

Add new comment
Delete

Hover over the body text and click to Edit.
You can now edit the text with a minimal version of the WYSIWYG editor toolbar.
Once you have changed the text, click Save.

N o oo s

The changes will be saved immediately.

The Contextual links module provides privileged users with shortcut links to modify blocks or
content. The contextual links are toggled by clicking Edit in the toolbar. The Edit link toggles
the visibility of contextual links on the page. Previously, in Drupal 7, contextual links appeared
as cogs when a specific region was hovered over.

The Quick Edit module builds on top of the contextual links features. It allows field formatters,
which display field data, to describe how they will interact. By default Quick Edit sets this to a
form. Clicking on an element will use JavaScript to load a form and save data via AJAX calls.

Quick Edit will not work on administrative pages.

The Content Authoring Experience

Creating a custom content type

Drupal excels in the realm of content management by allowing different types of content.

In this recipe we will walk through creating a custom content type. We will create a Services
type that has some basic fields and would be used in a scenario that brings attention to a
company's provided services.

You will also learn how to add fields to a content type in this recipe; which generally goes hand
in hand when making a new content type on a Drupal site.

How to do it...

1. Visit Structure and then Content types. Click Add content type to begin creating a
new content type.

2. Enter Services as the name and an optional description.

3. Select Display settings and uncheck the Display author and date information
checkbox. This will hide the author and submitted time from services pages.

Home » Administration » Structure » Content types
Individual content types can have different fields, behaviors, and permissions assigned to them.
Name *
Services [£]| Machine name: services [Edit]
The human-readable name of this content type. This text will be displayed as part of the list on the Add content page. This name must

be unique.

Description

Describe this content type. The text will be displayed on the Add content page.

Submission form settings
Title Display author and date information

Author username and publish date will be displayed
Publishing options

Published , Promoted to front
page

Display settings
Don't display post information

Menu settings

Save and manage fields

4. Press the Save and manage fields button to save our new content type and manage
its fields.

S E

Chapter 2

5. By default, new content types have a Body field automatically added to them. We will
keep this field in place.

6. We will add a field that will provide a way to enter a marketing headline for the
service. Click on Add field.

Select Text (plain) from the drop down and enter Marketing headline as the label:

Add field <~

Home » Administration » Structure » Content types » Services » Manage fields

Add a new field Re-use an existing field
Text (plain) v | 9T | -gelect an existing field -
Label *

Marketing headl| | Machine name: field_marketing_headline [Edit]

» Text (plain) is a regular text field. The Text (formatted)
option will allow you to use text formats on the displayed
"~ textin the field.

7. Save the field settings on the next form. On the next form you may hit Save settings
to finish adding the field.

The field has now been added and content of this type can be created:

Manage fields ¢

Manage fields see

Home » Administration » Structure » Content types » Services

+Add field

LABEL MACHINE NAME FIELD TYPE OPERATIONS
Body body Text (formatted, long, with summary) Edit -
Marketing headline field_marketing_headline Text (plain) Edit -

s

The Content Authoring Experience

In Drupal there are entities that have bundles. A bundle is just a type of entity that can have
specific configuration and fields attached. When working with nodes, a bundle is generally
referred to as a content type.

Content types can be created as long as the Node module is enabled. When a content type
is created through the user interface, it invokes the node _add_body field() function.
This function adds the default body field for content types.

Fields can only be managed or added if the Field Ul module is enabled. The Field Ul module
exposes the Manage Fields, Manage Form Display, and Manage Display for entities - such
as nodes and blocks.

Applying new Drupal 8 core field types

The field system is what makes creating content in Drupal so robust. With Drupal 8 some
of the most used contributed field types have been merged into Drupal core as their own
module. In fact, Entity reference is no longer a module but part of the main Field APl now.

This recipe is actually a collection of mini-recipes to highlight the new fields: Link, Email,
Telephone, Date, and Entity referencel

Getting ready

The standard installation profile does not enable all of the modules that provide these field
types by default. For this recipe you will need to manually enable select modules so you can
create the field. The module that provides the field type and its installation status in the
standard profile will be highlighted.

Each recipe will start off expecting that you have enabled the module, if needed, and to be at
the Manage fields form of a content type and have clicked on Add field and provided a field
label. The recipes cover the settings for each field.

How to do it...

This section contains a series of mini recipes, showing how to use each of the new core
field types.

Link
The Link field is provided by the Link module. It is enabled by default with the

standard installation profile. It is a dependency of the Menu Ul, Custom Menu Links,
and Shortcut module.

NEQ

Chapter 2
The Link field type does not have any additional field level settings that are used
across all bundles.

Click Save field settings to begin customizing the field for this specific bundle.

Using the Allowed link type setting, you can control whether provided URLs can be
external, internal, or both. Selecting Internal or Both will allow linking to content by
autocompleting the title.

The Allow link text defines if a user must provide text to go along with the link. If no
text is provided, then the URL itself is displayed.

The field formatter for a Link field allows you to specify rel="nofollow" or if the
link should open in a new window.

The e-mail field
The Email field is provided by core and is available without enabling additional modules:

1.

The Email field type does not have any additional field level settings that are used
across all bundles.

Click Save field settings to begin customizing the field for this specific bundle.

There are no further settings for an Email field instance. This field uses the HTML5
e-mail input, which will leverage browser input validation.

The field formatter for an Email field allows you to display the e-mail as plain text or
amailto: link.

The Telephone field

The Telephone field is provided by the Telephone module. It is not enabled by default with the
standard installation profile:

1.

The Telephone field type does not have any additional field level settings that are
used across all bundles.

Click Save field settings to begin customizing the field for this specific bundle.

There are no further settings for a Telephone field instance. This field uses the
HTML5 e-mail input, which will leverage browser input validation.

The field formatter for a Telephone field allows you to display the telephone number
as a plain text item, or using the tel: 1link with an optional replacement title for
the link.

The Content Authoring Experience

Date
The Date field is provided by the Datetime module. It is enabled by default with the standard
installation profile.

1. The Date module has a setting that defines what kind of data it will be storing:
date and time, or date only. This setting cannot be changed once field data has
been saved.

2. Click Save field settings to begin customizing the field for this specific bundle.

The Date field has two ways of providing a default value. It can either be the current
date or a relative date using PHP's date time modifier syntax.

4. By default, Date fields use the HTML5 date and time inputs, resulting in a native
date and time picker provided by the browser.

5. Additionally, Date fields can be configured to use a select list for each date and
time component:

2017
2018
2019
2020 _ ¢
v v v v v

Date (HTMLS)
mm/dd/2017

6. The default date field formatter display uses Drupal's time formats to render the
time format. These are configured under Configuration and Regional and language
in the Date and time formats form.

7. Dates and times can be displayed as Time ago to provide a semantic display of
how far in the future or past a time is. The formats for both are customizable in
the display settings.

8. Finally, dates and times can be displayed using a custom format as specified by the
PHP date formats.

The Entity Reference

The Entity Reference field is part of core and is available without enabling additional modules.
Unlike other fields, Entity Reference appears as a grouping of specific items when adding a
field. That is because you must pick a type of entity to reference!

1. The interface allows you to select a Content, File, Image, Taxonomy term, User,
or Other. Selecting one of the predefined options will preconfigure the field's target
entity type.

NED

Chapter 2

2. When creating an Entity Reference field using the Other choice, you must specify the
type of item to reference. This option cannot be changed once data is saved.

You will notice there are two groups: content and configuration.

p Drupal uses configuration entities. Even though configuration is an
% option, you may not benefit from referencing those entity types. Only
’ content entities have a way to be viewed. Referencing configuration

entities would fall under an advanced use case implementation.

3. Click Save field settings to begin customizing the field for this specific bundle.

4. The Entity Reference field has two different methods for allowing users to search for
content: using the default autocomplete or a View.

5. Depending on the type of entity you are referencing, there will be different entity
properties you may sort the results based on.

6. The default field widget for an Entity Reference field is to use autocomplete, however
there is the option to use a select list or checkboxes for the available options.

7. The values of an Entity Reference field can display the referenced entity's label or the
rendered output. When rendering a label it can be optionally linked to the entity itself.
When displaying a rendered entity you may choose a specific view mode.

When working with fields in Drupal 8, there are two steps. When you first create a field you are
defining a base field to be saved. This configuration is a base that specifies how many values a
field can support and any additional settings defined by the field type. When you attach a field
to a bundle it is considered a field storage and contains configuration unique to that specific
bundle. If you have the same Link field on the Article and Page content type, the label, link
type, and link text settings are for each instance.

Each field type provides a method for storing and presents a specific type of data. The benefit
of using these fields comes from validation and data manipulation. It also allows you to utilize
HTML5 form inputs. By using HTML5 for telephone, e-mail, and date the authoring experience
uses the tools provided by the browser instead of additional third party libraries. This also
provides a more native experience when authoring with mobile devices.

s

The Content Authoring Experience

There's more...

Having Drupal 8 released with new fields was a large feature and we will cover some
additional topics.

Upcoming updates

Each of the recipes covers a field type that was once part of the contributed project space.
These projects provided more configuration options than are found in core at the time of
writing this book. Over time more and more features will be brought into core from their
source projects.

For instance, the Datetime module is based on the contributed date project. However not
all of the contributed project's features have made it to Drupal core. Each minor release of
Drupal 8 could see more features moved to core.

Views and Entity Reference

Using a View with an Entity Reference field is covered in Chapter 3, Displaying Content through
Views. Using a View, you can customize the way results are fetched for a reference field.

» Chapter 3, Displaying Content through Views, providing an entity reference result view

Customizing the form display of a node

New in Drupal 8 is the availability of form display modes. Form modes allow a site administrator
to configure different field configurations for each content entity bundle edit form. In the case
of nodes, you have the ability to rearrange and alter the display of fields and properties on the
node edit form.

In this recipe we'll modify the default form for creating the Article content type that comes
with the standard installation profile.

Chapter 2

Create Article 7

Home » Add content

corall
Title Last saved: Not saved yet

Author: admin

Body (Edit summary) Create new revision

B I||® =||:= 1=|/9 G| Fomat -|| [Source
e e » MENU SETTINGS
» COMMENT SETTINGS
» URL PATH SETTINGS
» AUTHORING INFORMATION
» PROMOTION OPTIONS
4
Text format | Basic HTML - | About text formats

How to do it...

1. To customize the form display mode, visit Structure and then Content Types.

2. We will modify the Article content type's form. Click on the expand the operations
drop down and select Manage form display.

Content types v

Home » Administration » Structure

+ Add content type

NAME DESCRIPTION OPERATIONS

) Use articles for time-sensitive content like news, 5
Article Manage fields -

press releases or blog posts.
Manage form display

Basic Use basic pages for your static content, such as an Manage display

page '"About us' page. Edit
Delete

3. First we will modify the Comments field. From the Widget dropdown choose the
Hidden option to remove it from the form. Follow the same steps for the sticky at
top of lists field.

4. Click on the settings cog for the Body field. Enter in a placeholder for the field,
such as Enter your article text here. Click on Update.

The Content Authoring Experience

- Note:

The placeholder will only appear on a textarea using a
text format that does not provide a WYSIWYG editor.

5. Click the Save button at the bottom of the page to save your changes. You have now
customized the form display!

6. Visit Content, Add Content, and then Article. Note that the comment settings are no

longer displayed, nor the sticky options under promotion options:

Create Article 77

Home » Add content

Title *

Body (Edit summary)

BT, = o= = A8 Sy (] Format

@ Source

Text format | Basic HTML v

About text formats

Last saved: Not saved yet
Author: admin

Create new revision

» MENU SETTINGS
» URL PATH SETTINGS
» AUTHORING INFORMATION

» PROMOTION OPTIONS

Entities in Drupal have various view modes for each bundle. In Drupal 7 there were only

display view modes, which are covered in the next recipe. Drupal 8 brings in new form
modes to allow for more control of how an entity edit form is displayed.

Form display modes are configuration entities. Form display modes dictate how the
\Drupal\Core\EntityContentEntityForm class will build a form when an entity
is edited. This will always be set to default unless changed or specified specifically to a

different mode programmatically.

Since form display modes are configuration entities they can be exported using

configuration management.

=

Chapter 2

Hidden field properties will have no value, unless there is a provided default value. For example,
if you hide the Authoring information without providing code to set a default value the content
will be authored by anonymous (no user).

There's more...

Managing form display modes

Form display modes for all entities are managed under one area and are enabled for each
bundle type. You must first create a display mode and then it can be configured through the
bundle manage interface.

Programmatically providing a default to hidden form items

In Chapter 6, Creating Forms with the Form API, we will have a recipe that details altering
forms. In order to provide a default value for an entity property hidden on the form display,
you will need to alter the form and provide a default value. The Field API provides a way to
set a default value when fields are created.

» Chapter 10, The Entity API
» Chapter 6, Creating Forms with the Form API

Customizing the display output of a node

Drupal provides display view modes that allow for customization of the fields and other
properties attached to an entity. In this recipe we will adjust the teaser display mode of

an Article. Each field or property has a control for displaying the label, the format to display
the information in, and additional settings for the format.

Harnessing view displays allows you to have full control over how content is viewed on your
Drupal site.

How to do it...

1. Now it is time to customize the form display mode by visiting Structure and then
Content Types.

2. We will modify the Article content type's display. Click on the dropdown button arrow
and select Manage display.

The Content Authoring Experience

3. Click on the Teaser view mode option to modify it. The teaser view mode is used in
node listings, such as the default home page.

Edit Manage fields Manage form display Manage display

Default RS5 Teaser

Home » Administration » Structure » Content types » Article » Manage display

Content items can be displayed using different view modes: Teaser, Full content, Print, RSS, etc. Teaseris a short format that is typically used in lists of multiple
content items. Full content is typically used when the content is displayed on its own page.

Here, you can define which fields are shown and hidden when Ariicle content is displayed in each view mode, and define how the fields are displayed in each

view mode.
Show row weights
FIELD LABEL FORMAT
Image : Image style: Medium (220x220)
* ~lRIEE M Lzl = v Linked to content
Body)
+ - Hidden - v Summary or trimmed v Trimmed limit: 600 characters
Tags . .
+ Above v Label v Link to the referenced entity
Links

Visible v

4. Change the format for Tags to be Hidden. Additionally, this can be accomplished by
dragging it to the hidden section. The tags on an article will no longer be displayed
when viewing a teaser view mode.

5. Click on the settings cog for the Body field to adjust the trimmed limit. The trim limit
is a fallback for Summary or trimmed when the summary of a textarea field is not
provided. Modify this from 600 to 300.

Press Save to save all of your changes that you have made.
7. View the home page and see that your changes have taken affect!

Fusce bibendum finibus risus

Submitted by admin on Sun, 10/04/2015 - 13:16

Lorem 1psum dolor sit amet, consectetur adipiscing elit. Morbi en
dolor vehicula, ullameorper quam sed, bibendum diam. Proin
cursus enismod nisi sit amet ultricies. Suspendisse tincidunt vitae

sem nec facilisis. Sed hendrerit risus eros, quis fringilla ligula

cursus et.

Read more Add new comment

=

Chapter 2

View display modes are configuration entities. View display modes dictate how the
\Drupal\Core\EntityContentEntityForm class will build a view display when an entity
is viewed. This will always be set to default unless changed or specified as a different mode
programmatically.

Since view display modes are configuration entities they can be exported using
configuration management.

Displaying Content
through Views

This chapter will cover the Views module and how to use a variety of its major features:

» Listing content

» Editing the default admin interfaces
» Creating a block from a View

» Utilizing dynamic arguments

» Adding a relationship in a View

» Providing an Entity Reference result View

Introduction

For those who have used Drupal previously, Views is in core for Drupal 8! If you are new to
Drupal, Views has been one of the most used contributed projects for Drupal 6 and Drupal 7.

To briefly describe Views, it is a visual query builder, allowing you to pull content from the
database and render it in multiple formats. Select administrative areas and content listings
provided out of the box by Drupal are all powered by Views. We'll dive into how to use Views to
customize the administrative interface, customize ways to display your content, and interact
with the entity reference field.

Displaying Content through Views

Listing content

Views does one thing, and it does it well: listing content. The power behind the Views module
is the amount of configurable power it gives the end user to display content in various forms.

This recipe will cover creating a content listing and linking it in the main menu. We will use the
Article content type provided by the standard installation and make an articles landing page.
Getting ready
The Views Ul module must be enabled in order to manipulate Views from the user interface.
By default this is enabled with the standard installation profile.
How to do it...

Let's list the Views listing content:

1. Visit Structure and then Views. This will bring you to the administrative overview of all
the views that have been created:

Views v
List Settings

Home » Administration » Structure

Enabled
VIEW NAME DESCRIPTION TAG PATH OPERATIONS

Content
Displays: Page Find and manage content. default fadmin/content Edit -
Machine name: content

Custom block
library

Displays: Page Find and manage custom blacks. default [Jadminjstructure/block/block-content Edit -
Machine name:

block_content

Files
Displays: Page, Page Find and manage files. default Jadminjcontentyfiles,/admin/content/files/usage/% Edit -
Machine name: files

Chapter 3

Click on Add new view to begin creating a new view.

The first step is to provide the View name of Articles, which will serve as the

administrative and (by default) displayed title.

4. Next, we modify the VIEW SETTINGS. We want to display Content of the type Articles
and leave the tagged with empty. This will force the view to only show content of the

article content type.

5. Choose to Create a page. The Page title and Path will be auto populated based on
the view name and can be modified as desired. For now, leave the display and other

settings at their default values.

VIEW BASIC INFORMATION

View name *

Articled| [E| Machine name: articles [Edit]

Description

VIEW SETTINGS

Show:| Content w of type: Article v tagged with:

PAGE SETTINGS

¥ Create a page

Page title

Articles

Path

articles

PAGE DISPLAY SETTINGS

Display format:
Unformatted list v |of:| teasers v

sorted by:

Newest first »

6. Click on Save and edit to continue modifying your new view.

7. Inthe middle column, under the Page settings section we will change the Menu item

settings. Click on No menu to change the default.

@]

Displaying Content through Views

8. Select Normal menu entry. Provide a menu link title and optional description. Keep
the Parent set to <Main Navigation>.

Page: Menu item entry x

Type Menu link title
No menu entry Articles]

® Normal menu entry Description

Menu tab view all articles

Default menu tab Shown when hovering over the menu link.

Parent

<Main navigation> v

The maximum depth for a link and all its children is fixed. Some menu links
may not be available as parents if selecting them would exceed this limit
Weight

0

In the menu, the heavier links will sink and the lighter links will be positioned
nearer the top.

9. Click on Apply at the bottom of the form.
10. Once the view is saved you will now see the link in your Drupal site's main menu.

The first step for creating a view involves selecting the type of data you will be displaying.
This is referred to as the base table, which can be any type of entity or data specifically
exposed to Views.

Nodes are labeled as Content in Views and you will find throughout
i Drupal this interchanged terminology.

When creating a Views page we are adding a menu path that can be accessed. It tells Drupal
to invoke Views to render the page, which will load the view you create and render it.

There are display style and row plugins that format the data to be rendered. Our recipe
used the unformatted list style to wrap each row in a simple div element. We could have
changed this to a table for a formatted list. The row display controls how each row is output.

Chapter 3

There's more...

Views has been one of the must-use modules since it first debuted, to the point that almost
every Drupal 7 site used the module. In the following section we will dive further into Views.

Views in Drupal Core Initiative

Views has been a contributed module up until Drupal 8. In fact, it was one of the most used
modules. Although the module is now part of Drupal core it still has many improvements that
are needed and are being committed.

Some of these changes will be seen through minor Drupal releases, such as 8.1x and 8.2.x,
as development progresses and probably not through patch releases (8.0.10).

Views and displays

When working with Views, you will see some different terminology. One of the key items to
grasp is what a display is. A view can contain multiple displays. Each display is of a certain
type. Views comes with the following display types:

» attachment: This is a display that becomes attached to another display in the
same view

» block: This allows you to place the view as a block

» embed: The display is meant to be embedded programmatically

» Entity Reference: This allows Views to provide results for an entity reference field

» feed: This display returns an XML based feed and can be attached to another display
to render a feed icon

» page: This allows you to display the view from a specific route
Each display can have its own configuration, too. However, each display will share the same

base table (content, files, etc.). This allows you to take the same data and represent it in
different ways.

Format style plugins: style and row
Within Views there are two types of style plugins that represent how your data is displayed -
style and row.
» The style plugin represents the overall format
» The row plugin represents each result row's format
For example, the grid style will output multiple div elements with specified classes to create

a responsive grid. At the same time, the table style creates a tabular output with labels
used as table headings.

i

Displaying Content through Views

Row plugins define how to render the row. The default content will render the entity as defined
by its selected display mode. If you choose Fields you manually choose which fields to include
in your view.

Each format style plugin has a corresponding Twig file that the theme layer uses. You can
define new plugins in custom modules or use contributed modules to access different options.

Using the Embed display

Each of the available display types has a method to expose itself through the user interface,
except for Embed. Often, contributed and custom modules use Views to render displays
instead of manually writing queries and rendering the output. Drupal 8 provides a special
display type to simplify this.

If we were to add an Embed display to the view created in the recipe, we could pass the
following render array to output our view programmatically.

$view render = [
'#type' => 'view',
'#name' => 'articles',
'#display id' => 'embed 1',
1

When rendered, the #type key tells Drupal this is a view element. We then point it to our new
display embed_1. In actuality, the Embed display type has no special functionality, in fact it is
a simplistic display plugin. The benefit is that it does not have additional operations conducted
for the sake of performance.

» VDC Initiative:
https://www.drupal .org/community-initiatives/drupal-core/vdc

» Chapter 7, Plug and Play with Plugins, to learn more about plugins

Editing the default admin interfaces

With the addition of Views in Drupal core, many of the administrative interfaces are powered
by Views. This allows customization of default admin interfaces to enhance site management
and content authoring experiences.

. In Drupal 7 and 6 there was the administrative Views module,
which provided a way to override administrative pages with Views.
s This module is no longer required, as the functionality comes with
Drupal core out of the box!

=

https://www.drupal.org/community-initiatives/drupal-core/vdc

Chapter 3

In this recipe we will modify the default content overview form that is used to find and edit
content. We will add the ability to filter content by the user who authored it.

How to do it...

1. Visit Structure and then Views. This will bring you to the administrative overview of all
existing views.

2. From the Enabled section, select the Edit option for the Content view. This is the view
displayed on /admin/content when managing content.

3. In order to filter by the content author, we must add a FILTER CRITERIA to our view,
which we will expose the following for users to modify:

FILTER CRITERIA Add -
Content: Published status or admin user

Content: Publishing status (grouped)

Content: Type (exposed)

Content: Title (exposed)

Content: Translation language (exposed)

4. Click on Add to add a new filter. In the search text box type Authored by to search the
available options. Select Content: Authored by and click Apply (all displays):

Add filter criteria x

For Search Type

All displays v authored by === -

#| Content: Authored by
The user authoring the content. If you need more fields than the uid add the content: author relationship

) Content revision: Authored by
The username of the content author.

Selected: Content: Authored by

Apply (all displays) Cancel

5. Check Expose this filter to visitors, to allow them to change it via checkbox. This will
allow users to modify the data for the filter.

6. You may modify the Label and add a Description to improve the usability of the filter
option for your use case.

-

Displaying Content through Views

7. Click on Apply (all displays) once more to finish configuring the filter. It will now show
up in the list as filter criteria active. You will also see the new filter in the preview
below the form.

8. Click on Save to commit all changes to the view.

9. View /admin/content and you will have your filter. Content editors will be able to
search for content authored by a user through autocompleted username searches:

Published status Type Title Language

- Any - v|| -Any- A - Any - A

Authored by

admin (1)

Enter a comma separated list of user names.

Filter Reset

When a view is created that has a path matching an existing route, it will override it and
present itself. That is how the /admin/content and other administrative pages are able
to be powered by Views.

¢ If you were to disable the Views module you can still manage
content and users. The default forms are tables that do not
’ provide filters or other extra features.

Drupal uses the overridden route and uses Views to render the page. From that point on the
page is handled like any other Views page would be rendered.

We will dive into additional features available through Views that can enhance the way you use
Views and present them on your Drupal site.

Exposed versus non-exposed

Filters allow you to narrow the scope of the data displayed in a view. Filters can either be
exposed or not; by default a filter is not exposed. An example would be using the Content:
Publishing status set to Yes (published) to ensure a view always contains published content.
This is an item you would configure for displaying content to site visitors. However, if it were for
an administrative display, you may want to expose that filter. This way content editors have the
ability to view, easily, what content has not been published yet or has been unpublished.

All filter and sort criteria can be marked as exposed.

=

Chapter 3

Filter identifiers

Exposed filters work by parsing query parameters in the URL. For instance, on the content
management form, changing the Type filter will add type=Article amongst others to the
current URL.

With this recipe the author filter would show up as uid in the URL. Exposed filters have a
Filter identifier option that can change the URL component.

Filter identifier

jid

This will appear in the URL after the ? to identify this filter. Cannot be blank.

This could be changed to author or some other value to enhance the user experience behind
the URL, or mask the Drupal-ness of it.

Overriding routes with Views

Views is able to replace administrative pages with enhanced versions due to the way the route
and module system works in Drupal. Modules are executed in order of the module's weight

or alphabetical order if weights are the same. Naturally, in the English alphabet, the letter

V comes towards the end of the alphabet. That means any route that Views provides will be
added towards the end of the route discovery cycle.

If a view is created and it provides a route path, it will override any that exist on that path.
There is not a collision checking mechanism (and there was not in Views before merging into
Drupal core) that prevents this.

This allows you to easily customize most existing routes. But, beware that you could easily
have conflicting routes and Views will normally override the other.

Creating a block from a View

Previous recipes have shown how to create and manipulate a page created by a view. Views
provides different display types that can be created, such as a block. In this recipe we will
create a block powered by Views. The Views block will list all Tag taxonomy terms that have
been added to the Article content type.

Getting ready

This recipe assumes you have installed the standard installation profile and have the default
node content types available for use.

Displaying Content through Views

How to do it...

1. Visit Structure and then Views. This will bring you to the administrative overview
of all the views that have been created.

2. Click on Add new view to begin creating a new view.

The first step is to provide the View name of Tags, which will serve as the
administrative and (by default) displayed title.

4. Next, we modify the View settings. We want to display Taxonomy terms of the type
Tags. This will make the view default to only displaying taxonomy terms created
under the Tags vocabulary

5. Check the Create a block checkbox.

Choose the HTML List option from the Display format choices. Leave the row style
as Fields.

Block: How should this view be styled x

For
All displays v

Style
Grid

= HTML List
Table
Unformatted list

If the style you choose has settings, be sure to click the settings button that will appear next to it in the View summary.

You may also adjust the settings for the currently selected style.

Apply (all displays) Cancel

7. We want to display all of the available tags. To change this, click the current pager
style link. Pick the Display all items radio and click Apply (all displays). On the next
model, click Save to keep the offset at 0.

8. Next we will sort the view by tag name instead of order of creation. Click Add on the
Sort criteria section. Add Taxonomy term: Name and click Apply (all displays) to
use the default sort by ascending.

Chapter 3

Displays

Display name: Block

TITLE BLOCK SETTINGS

Title: Tags Block name: Mone

FORMAT Block category: Lists {Views)

Format: HTML List | Settings Allow settings: Items per page

Show: Fields | Settings Access: Permission | View published content

FIELDS Add - HEADER Add
Taxonomy term: Name FOOTER Add
FILTER CRITERIA Add NO RESULTS BEHAVIOR Add
SORT CRITERIA Add hd PAGER

Taxonomy term: Name (asc) Use pager: Display all items | All items

More link: No

Link display: None

9. Press Save to save the view.

10. Visit Structure and Block layout to place the block on your Drupal site. Press Place
block for the Sidebar region in the Bartik theme.

11. Filter the list by typing your view's name. Press Place block to add your view's block
to the block layout.

12. Finally click on block to commit your changes!

In the Drupal 8 plugin system there is a concept called Derivatives. Plugins are small pieces
of swappable functionality within Drupal 8. Plugins and plugin development are covered

in Chapter 7, Plug and Play with Plugins. A derivative allows a module to present multiple
variations of a plugin dynamically. In the case of Views, it allows the module to provide
variations of a ViewsBlock plugin for each view that has a block display. Views implements
the \Drupal\views\Plugin\Block\ViewsBlock\ViewsBlock class, providing the base
for the dynamic availability of these blocks. Each derived block is an instance of this class.

When Drupal initiates the block, Views passes the proper configuration required. The view is
then executed and the display is rendered whenever the block is displayed.

7}

Displaying Content through Views

We will explore some of the other ways in which Views interacts with blocks.

Exposed forms as blocks

Pages and feeds have the ability to provide blocks, however not for the actual content
displayed. If your view utilizes exposed filters you have the option to place the exposed
form in a block. With this option enabled you may place the block anywhere on the page,
even pages not for your view!

Page: Put the exposed form in a block X

If set, any exposed widgets will not appear with this view. Instead, a block will be made available to the Drupal block administration
system, and the exposed form will appear there. Note that this block must be enabled manually, Views will not enable it for you

® Yes

No

To enable the exposed filters as a block, you must first expand the Advanced section on
the right side of the Views edit form. Click on the Exposed form in block option from the
Advanced section. In the options modal that opens, select the Yes radio button and click
Apply. You then have the ability to place the block from the Block layout form.

An example for using an exposed form in a block is for a search result view. You would add an
exposed filter for keywords that control the search results. With the exposed filters in a block
you can easily place it in your site's header. When an exposed £ilters block is submitted,

it will direct users to your view's display.

» Chapter 7, Plug and Play with Plugins, to learn more about derivatives

Utilizing dynamic arguments

Views can be configured to accept contextual filters. Contextual filters allow you to provide a
dynamic argument that modifies the view's output. The value is expected to be passed from
the URL; however, if it is not present there are ways to provide a default value.

In this recipe we will create a new page called My Content, which will display a user's
authored content on the route /user/%/content.

NED

Chapter 3

How to do it...

1. Visit Structure and then Views. This will bring you to the administrative overview
of all the views created. Click on Add new view to begin creating a new view.

2. Setthe View name to My Content.

Next, we modify the View settings. We want to display Content of the type All and
leave the Tagged with empty. This will allow all content to be displayed.

4. Choose to Create a page. Keep the page title the same. We need to change the path
to be user/%/content. Click Save and edit to move to the next screen and add the
contextual filter.

When building a views page, adding a percentage sign to the path
S identifies a route variable.

5. Toggle the Advanced portion of the form on the right hand side of the page. Click on
Add in the Contextual filters section.

Select Content: Authored by and then click Apply (all displays).

7. Change the default value When the filter is not in the URL to Display "Access Denied"
to prevent all content from being displayed with a bad route value.

¥ WHEN THE FILTER VALUE IS NOTIN THE URL

Default actions
Display all results for the specified field
Provide default value
Show "Page not found”
Display a summary
Display contents of "No results found"
® Display "Access Denied”

» EXCEPTIONS

8. Click Apply (all displays) and save the form.
9. \Visit /user/1/content and you will see content created by the root admin!

Contextual filters mimic the route variables found in the Drupal routing system. Variables are
represented by percentage signs as placeholders in the view's path. Views will match up each
placeholder with contextual filters by order of their placement. This allows you to have multiple
contextual filters; you just need to ensure they are ordered properly.

s

Displaying Content through Views

Views is aware of how to handle the placeholder because the type of data is selected when
you add the filter. Once the contextual filter is added there are extra options available for
handling the route variable.

There's more...

We will explore extra options available when using contextual filters.

Previewing with contextual filters

You are still able to preview a view from the edit form. You simply add the contextual filter
values in to the text form concatenated by a forward slash (/). In this recipe you could
replace visiting /user/1/content with simply inputting 1 into the preview form and
updating the preview.

Displaying as a tab on the user page

Even though the view created in the recipe follows a route under /user, it will not show up
as a local task tab until it has a menu entry defined. From the Page settings section you will
need to change No menu from the Menu option. Clicking on that link will open the menu link
settings dialog.

Select Menu tab and provide a Menu link title, such as My Content. Click on Apply and save
your view.

Altering the page title

With contextual filters you have the ability to manipulate the current page's title. When adding
or editing a contextual filter you can modify the page title. From the When the filter value is
present in the URL or a default is provided section, you may check the Override title option.

This text box allows you to enter in a new title that will be displayed. Additionally, you can
use the information passed from the route context using the format of $# where the # is the
argument order.

Validation

Contextual filters can have validation attached. Without specifying extra validation, Views will
take the expected argument and try to make it just work. You can add validation to help limit
this scope and filter out invalid route variables.

You can enable validation by checking Specify validation criteria from the When the filter
value is present in the URL or a default is provided section. The default is set to - Basic
Validation - which allows you to specify how the view should react if the data is invalid;
based on our recipe, if the user was not found.

&)

Chapter 3

The list of Validator options is not filtered by the contextual filter item you selected, so some
may not apply. For our recipe one might want User ID and select the Validate user has access
to the User. This validator would make sure the current user is able to view the route's user's
profile. Additionally, it can be restricted further based on role.

¢| Specify validation criteria
Validator

User ID v
¥ Validate user has access to the User

Access operation to check
® View

Edit

Delete

Multiple arguments

® Single ID
One or more |Ds separated by , or +
Restrict user based on role

Action to take if filter value does not validate
Display "Access Denied" v

This gives you more granular control over how the view operates when using contextual filters
for route arguments.

Multiple and exclusion

You may also configure the contextual filter to allow AND or OR operations along with exclusion.
These options are under the More section when adding or editing a contextual filter.

The Allow multiple values option can be checked to enable AND or OR operations. If the
contextual filter argument contains a series of values concatenated by plus (+) signs it acts as
an OR operation. If the values are concatenated by commas (,) it acts as an AND operation.

When the Exclude option is checked the value will be excluded from the results rather than
the view being limited by it.

Adding a relationship in a View

As stated at the beginning of the chapter, Views is a visual query builder. When you first create
a view, a base table is specified to pull data from. Views automatically knows how to join
tables for field data, such as body text or custom attached fields.

[ei-

Displaying Content through Views

When using an entity reference field, you have the ability to display the value as the raw
identifier, the referenced entity's label, or the entire rendered entity. However, if you add a
Relationship based on a reference field you will have access to display any of that entity's
available fields.

In this recipe, we will update the Files view, used for administering files, to display the
username of the user who uploaded the file.

How to do it...

1. Visit Structure and then Views. This will bring you to the administrative overview of all
the views that have been created

Find the Files view and click Edit.
Click on Advanced to expand the section and then click Add next to Relationships.

4. Search for user. Select the User who uploaded relationship option and click Apply
(this display).

Add relationships

For Search
This page (override) user

TITLE CATEGORY DESCRIPTION
User who uploaded File The user ID of the file.
File File Usage A file that is associated with this user, usually because it is in a field on the user.

User File Usage A user that is associated with this file, usually because this file is in a field on the user.

User using Picture User Relate each User with a Picture set to the image.

Selected: User who uploaded

Apply (this display)

5. Next we will be presented with a configure form for the relationship. Click Apply (this
display) to use the defaults.

Add a new field by clicking Add in the Fields section.
7. Search for name and select the Name field and click Apply (this display).

&

Chapter 3

8. This view uses aggregation, which presents a new configuration form when first
adding a field. Click Apply and continue to use the defaults.

We will discuss Views and aggregation in the There's more... section.

9. We will use the default field settings that will provide the label Name and format it as
the username and link to the user's profile. Click Apply (all displays).

Configure field: User: Name x

For

‘ All displays (except overridden) »

The user or author name.

Relationship
User who uploaded «

Create a label

Label

Name
Place a colon after the label

"~ Exclude from display
Enable to load this field as hidden. Often used to group fields, or to use as token in another field.

Formatter

User name A

Link to the user

» STYLE SETTINGS

» REWRITE RESULTS

Apply (all displays) Cancel Remove

10. Click on Save to finish editing the view and commit your changes.

Drupal stores data in a normalized format. Database normalization, in short, involves the
organization of data in specific related tables. Each entity type has its own database table
and all fields have their own database table. When you create a view and specify what kind
of data will be shown, you are specifying a base table in the database that Views will query.
Views will automatically associate fields that belong to the entity and the relationship to
those tables for you.

(&5}

Displaying Content through Views

When an entity has an Entity reference field you have the ability to add a relationship to the

referenced entity type's table. This is an explicit definition, whereas fields are implicit. When

the relationship is explicitly defined all of the referenced entity type's fields come into scope.
The fields on the referenced entity type can then be displayed, filtered, and sorted by.

There's more...

Using relationships in Views allows you to create some powerful displays. We will discuss
aggregation and additional information about relationships.

Relationships provided by entity reference fields

Views uses a series of hooks to retrieve data that it uses to represent ways to interact with
the database. One of these is the hook field views data hook, which processes a field
storage configuration entity and registers its data with Views. The Views module implements
this on behalf of Drupal core to add relationships, and reverse relationships, for Entity
reference fields.

Since Entity reference fields have set schema information, Views can dynamically generate
these relationships by knowing the field's table name, destination entity's table name, and
the destination entity's identifier column.

Relationships provided through custom code

There are times where you would need to define a relation on your own with custom code.
Typically, when working with custom data in Drupal, you would more than likely create a new
entity type, covered in Chapter 9, Confiuration Management — Deploying in Drupal 8. This is not
always the case, however, and you may just need a simple method of storing data. An example
can be found in the Database Logging module. The Database Logging module defines schema
for a database table and then uses hook views_ data to expose its database table to Views.

The dblog_ schema hook implementation returns a uid column on the watchdog database
table created by the module. That column is then exposed to Views with the following definition:

$data['watchdog'] ['uid'] = array(

'title' => t('UID'),

'help' => t('The user ID of the user on which the log entry
was written..'),

'field' => array(
'id' => 'numeric',

),

'filter' => array(

'id' => 'numeric',
),
'argument' => array(
'id' => 'numeric',

=

Chapter 3

)

'relationship' => array(
'title' => t('User'),
'help' => t('The user on which the log entry as written.'),
'base' => 'users',
'base field' => 'uid',
'id' => 'standard',

)

)i

This array tells Views that the watchdog table has a column named uid. It is numeric
in nature for its display, filtering capabilities and sorting capabilities. The relationship
key is an array of information that instructs Views how to use this to provide a relationship
(LEFT JOIN) onthe users table. The User entity uses the users table and has the
primary key of uid.

Using Aggregation and views.

There is a view setting under the Advanced section that allows you to enable aggregation.
This feature allows you to enable the usage of SQL aggregate functions, such as MIN, MAX,
SUM, AVG, and COUNT. In this recipe, the Files view uses aggregation to SUM the usage
counts of each file in the Drupal site.

Aggregation settings are set for each field and when enabled have their own link to configure
the settings.

FIELDS Add -
File: File ID (Fid) [hidden] | Aggregation settings

File: Filename (Name) | Aggregation settings

File: File MIME type (Mime type) | Aggregation settings
File: File size (5ize) | Aggregation settings

File: Status (Status) | Aggregation settings

File: Created (Upload date) | Aggregation settings

File: Changed (Changed date) | Aggregation settings

(File usage) SUM(File Usage: Use count) (Used in} |
Aggregation settings

Displaying Content through Views

Providing an Entity Reference result View

The Entity reference field, covered in Chapter 2, The Content Authoring Experience, can utilize
a custom view for providing the available field values. The default entity reference field will
display all available entities of the type it is allowed to reference. The only available filter is
based on the entity bundle, such as only returning Article nodes. Using an entity reference
view you can provide more filters, such as only content that user has authored.

In this recipe we will create an entity reference view that filters content by the author. We will add
the field to the user account form, allowing users to select their favorite contributed content.

How to do it...

1. Visit Structure and then Views. This will bring you to the administrative overview
of all the views that have been created. Click on Add new view to begin creating a
new view.

2. Set the View name to My Content Reference View. Modify the View settings. We
want to display Content of the type All and leave the Tagged with empty.

3. Do not choose to create a page or block. Click Save and edit to continue working on
your view.

4. Click on the Add button to create a new display. Select the Entity Reference option to
create the display.

You have unsaved changes.

Displays

Entity Reference* + Add Edit view name/description -
Display name: Entity Reference Duplicate Entity Reference -
FORMAT Access: Permission | View published content » ADVANCED

Format: Entity Reference list | Settings HEADER Add

Show: Entity Reference inline fields | Settings FOOTER Add

Add | -
FIELDS NO RESULTS BEHAVIOR Add

Cantent: Title
PAGER

FILTER CRITERIA Add - .
Items to display:

Caontent: Publishing status (= Yes) Display a specified number of items | 10 items

SORT CRITERIA Add = Maore link: No

Content: Authored on (desc) Link display: None

Save Cancel

(&)

Chapter 3

5. The Format will be automatically set to Entity Reference List, which utilizes fields.
Click on Settings next to it to modify the style format.

6. For Search Fields, check the Content:Title option then click Apply. This is what the
field will autocomplete search on.

7. You will need to modify the Content: Title field to stop it from wrapping the result
as a link. Click on the field label and uncheck Link to the Content. Click Apply (all
displays) to save.

Configure field: Content: Title

For

All displays

"I Create a label

"1 Exclude from display
Enable to load this field as hidden. Often used to group fields, or to use as token in another field.

Formatter
Plain text v

[ILink to the Content

» STYLE SETTINGS
» REWRITE RESULTS
» NO RESULTS BEHAVIOR

» ADMINISTRATIVE TITLE

Apply (all displays) Cancel Remove

Click on Save to save the view.

9. Go to Configuration and then Account settings to be able to Manage fields on
user accounts.

10. Add a new Entity Reference field that references Content, call it Highlighted
contributions, and allow it to have unlimited values. Click the Save field
settings button.

&7}

Displaying Content through Views

11. Change the Reference type method to use View: Filter by an entity reference view
and select the view we have just created:

¥ REFERENCE TYPE

Reference method *
Views: Filter by an entity reference view

View used to select the entities *
my_content_reference_view - Entity Reference

Choose the view and display that select the entities that can be referenced.
Only views with a display of type "Entity Reference” are eligible.

View arguments

Provide a comma separated list of arguments to pass to the view.

The entity reference field definition provides selection plugins. Views provides an entity
reference selection plugin. This allows entity reference to feed data into a view to receive
available results.

The display type for Views requires you to select which fields will be used to search against
when using the autocomplete widget. If not using the autocomplete widget and using the
select list or checkboxes and radio buttons, then it will return the view's entire results.

View arguments

Entity reference view displays can accept contextual filter arguments. These are not dynamic,
but can be passed manually through the field's settings. The View arguments field allows you
to add a comma separated list of arguments that are passed to the view. The order should
match the order of the contextual filters as configured.

In this recipe we could have added a Content: type contextual filter that fell back to Display all
results if the argument was missing. This allows the view to be reused in multiple references.
Perhaps there is one view that should limit the available references to all Articles created by the
current user. You would then add Article to the text field and pass the argument to the view.

» Chapter 7, Plug and Play with Plugins, to learn more about plugins

&)

Extending Drupal

This chapter dives into extending Drupal using a custom module:

» Creating a module

» Defining a custom page

» Defining permissions

» Providing the configuration on installation or update

» Using Features 2.x

Introduction

A feature of Drupal that makes it desirable is the ability to customize it through modules.
Whether custom or contributed, modules extend the functionalities and capabilities of
Drupal. Modules can be used to not only extend Drupal, but also to create a way to provide
configuration and reusable features.

This chapter will discuss how to create a module and allow Drupal to discover it, allowing it to
be installed from the extend page. Permissions, custom pages, and default configurations all
come from modules. We will explore how to provide these through a custom module.

In addition to creating a module, we will discuss the Features module that provides a set of
tools for exporting the configuration and generating a module.

[69]

Extending Drupal

Creating a module

The first step to extend Drupal is to create a custom module. Although the task sounds
daunting, it can be accomplished in a few simple steps. Modules can provide functionalities
and customizations to functionalities provided by other modules, or they can be used as a
way to contain the configuration and a site's state.

In this recipe, we will create a module by defining an info file, a file containing information
that Drupal uses to discover extensions, and enabling the module.

How to do it...

1. Create a folder named mymodule in the modules folder in the base directory of your
Drupal site. This will be your module's directory.

2. Create a mymodule.info.yml file in your module's directory. This contains metadata
that identifies the module to Drupal.

3. Add a line to the name key to provide a name for the module:
name: My Module!
4. We need to provide the type key to define the type of extension. We provide the
value module:
type: module
5. The description key allows you to provide extra information about your module,
which will be displayed on the module's list page:
description: This is an example module from the Drupal 8 Cookbook!
6. All modules need to define the core key in order to specify a major release
compatibility:

core: 8.X

7. Save the mymodule.info.yml file, which resembles the following code:

name: My Module!

type: module

description: This is an example module from the Drupal 8 Cookbook!
core: 8.x

Log in to your Drupal site and visit Extend from the administrative toolbar.

9. Search for My Module to filter the list of options.

[70]

Chapter 4

10. Check the checkbox and click on Install to enable your module.

Home » Administration

Download additional contributed modules to extend your site's functionality.

Regularly review available updates to maintain a secure and current site. Always run the update script each
time a module is updated. Enable the Update Manager module to update and install modules and themes.

mymodule

Enter a part of the module name or description
¥ OTHER

= My Module!

Drupal utilizes info.yml files to define extensions. Drupal has a discovery system that locates
these files and parses them to discover modules. The info_parser service, provided by

the \Drupal\Core\Extension\InfoParser class, reads the info.yml file. The parser
guarantees that the required type, core, and name keys are present.

When a module is installed, it is added to the core . extension configuration object,
which contains a list of installed modules and themes. The collection of modules in the
core.extension module array will be installed and will have PHP namespaces resolved,
services loaded, and hooks registered.

When Drupal prepares to execute a hook or register services, it will iterate across
the values in the module key in core.extension.

There's more...

There are more details that we can explore about module info files.

Module namespaces

Drupal 8 uses the PSR-4 standard developed by the PHP Framework Interoperability Group.
The PSR-4 standard is for package-based PHP namespace autoloading. It defines a standard
to understand how to automatically include classes based on a namespace and class name.
Drupal modules have their own namespaces under the Drupal root namespace.

Using the module from the recipe, our PHP namespace will be Drupal\mymodule, which
represents the modules/mymodule/src folder.

[71]

Extending Drupal

With PSR-4, files need to contain only one class, interface, or trait. These files need to have
the same filename as the containing class, interface, or trait name. This allows a class loader
to resolve a namespace as a directory path and know the class's filename. The file can then
be automatically loaded when it is used in a file.

Module discovery locations
Drupal supports multiple module discovery locations. Modules can be placed in the following
directories and discovered:
» /profiles/CURRENT PROFILE/modules
» /sites/all/modules
» /modules
» /sites/default/modules
» /sites/example.com/modules
The \Drupal\Core\Extension\ExtensionDiscovery class handles the discovery
of extensions by types. It will iteratively scan each location and discover modules that are

available. The discovery order is important. If the same module is placed in /modules but
also inthe sites/default/modules directory, the latter will take precedence.

Defining a package group
Modules can define a package key to group modules on the module list page:

» CORE

» CORE (EXPERIMENTAL)
» FIELD TYPES

¥ MULTILINGUAL

Configuration Translation » Provides a translation interface for configuration.

Content Translation » Allows users to translate content entities.

Interface Translation » Translates the built-in user interface.

Language » Allows users to configure languages and apply them to content.

Projects that include multiple submodules, such as Drupal commerce, specify packages
to normalize the modules' list form. Contributed modules for the Drupal commerce project
utilize a package name, Commerce (contrib), to group on the module list page.

[72]

Chapter 4

Module dependencies

Modules can define dependencies to ensure that those modules are enabled before your
module can be enabled.

Here is the info.yml for the Responsive Image module:

name: Responsive Image
type: module
description: 'Provides an image formatter and breakpoint mappings to
output responsive images using the HTML5 picture tag.'
package: Core
version: VERSION
core: 8.x
dependencies:
- breakpoint
- image

The dependencies key specifies that the Breakpoint and Image modules need to be enabled
first before the Responsive Image module can be enabled. When enabling a module that
requires dependencies that are disabled, the installation form will provide a prompt asking
you if you would like to install the dependencies as well. If a dependency module is missing,
the module cannot be installed. The dependency will show a status of (missing).

A module that is a dependency of another module will state the information in it's description,
along with the other module's status. For example, the Breakpoint module will show that the
Responsive Image module requires it as a dependency and is disabled:

Breakpoint ¥ Manage breakpoints and breakpoint groups for responsive designs.
Machine name: breakpoint
Version: 8.0.0-rcd
Required by: Responsive Image (disabled), Toolbar

© Help

Responsive Image ¥ Provides an image formatter and breakpoint mappings to output responsive images using the
HTMLS5 picture tag
Machine name: responsive_image
Version: 8.0.0-rc4
Requires: Breakpoint.Image,File,Field

Specifying the module's version

There is a version key that defines the current module's version. Projects on Drupal.org do
not specify this directly, as the packager adds it when a release is created. However, this key
can be important for private modules to track the release information.

[73]

Extending Drupal

Versions are expected to be single strings, suchas 1.0-alphal, 2.0.1. You can also pass
VERSION, which will resolve to the current version of Drupal core.

. Drupal.org does not currently support semantic versioning for
% contributed projects. There is an ongoing policy discussion in the
s issue queue, which can be found at https://www.drupal.org/
node/1612910.

» Refer to the PSR-4: Autoloader specification at http://www.php-fig.org/psr/
psr-4/

Defining a custom page

In Drupal, there are routes that represent URL paths that Drupal interprets to return content.
Modules have the ability to define routes and methods that return data to be rendered and
then displayed to the end user.

In this recipe, we will define a controller that provides an output and a route. The route
provides a URL path that Drupal will associate with our controller to display the output.

Getting ready

Create a new module like the one in the first recipe. We will refer to the module as mymodule
throughout the recipe. Use your module's name as appropriate.

How to do it...

1. Firstly, we'll set up the controller. Create a src folder in your module's base directory
and another folder named Controller inside it.

2. Create MyPageController.php that will hold the route's controller class.

| mymodule » mymodule.infoyml Bl Controller L4 MyPageController.php

README txt N src >

[74]

https://www.drupal.org/node/1612910
https://www.drupal.org/node/1612910
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/

Chapter 4

3. The PSR-4 standard states that filenames match the class names they hold, so we
will create a MyPageController class:
<?php
/**
* @file
* Contains \Drupal\mymodule\Controller\MyPageController class.

*/
namespace Drupal\mymodule\Controller;
use Drupal\Core\Controller\ControllerBase;

/**
* Returns responses for My Module module.
*/

class MyPageController extends ControllerBase {

}

This creates the MyPageController class, which extends the \Drupal\Core\
Controller\ControllerBase class. This base class provides a handful of utilities
for interacting with the container.

The Drupal\mymodule\Controller namespace allows Drupal to automatically
load the file from /modules/mymodule/src/Controller.

4. Next, we will create a method that returns a string of text in our class:

/**
* Returns markup for our custom page.
*/

public function customPage() {
return [

'"#markup' => t('Welcome to my custom page!'),
1;
}

The customPage method returns a render array that the Drupal theming layer can
parse. The #markup key denotes a value that does not have any additional rendering
or theming processes.

5. Create a mymodule.routing.yml in the base directory of your module so that a
route can be added to this controller and method.

[75]

Extending Drupal

6. The first step is to define the route's internal name for the route to be referenced by:

mymodule.mypage:

7. Give the route a path (mypage):

mymodule.mypage:
path: /mypage

8. The defaults key allows us to provide the controller through a fully qualified class
name, the method to use, and the page's title:

mymodule.mypage:
path: /mypage
defaults:

_controller: '\Drupall\mymodule\Controller)\
MyPageController: :customPage'
_title: 'My custom page'

You need to provide the initial \ when providing the fully qualified class name.

9. Lastly, define a requirements key to set the access callback:

mymodule.mypage:
path: /mypage
defaults:
_controller: '\Drupall\mymodule\Controller)\
MyPageController: :customPage'
_title: 'My custom page'
requirements:
_permission: 'access content!'

1
‘Q Defining _access to TRUE for the requirements means that

access is always granted.

10. Visit Configuration and then Development to rebuild Drupal's caches.

[76]

Chapter 4

11. Visit /mypage on your Drupal site and view your custom page:
My account Log out

Site-Install

s
®e

Home

Search

My custom page

Welcome to my custom page!

Q

Tools

Add eontent

Drupal uses routes, which define a path, that return content. Each route has a method in a
controller class that generates the content, in the form of a render array, to be delivered to
the user. When a request comes to Drupal, the system makes an attempt to match the path
to known routes. If the route is found, the route's definition is used to deliver the page. If the
route cannot be found, the 404 page is displayed.

The HTTP kernel takes the request and loads the route. It will invoke the defined controller
method or procedural function. The result of the invoked method or function is then handed
to the presentation layer of Drupal to be rendered into the content that can be delivered to
the user.

Drupal 8 builds on top of the Symfony HTTP kernel to provide the underlying functionality of
its route system. It has added the ability to provide access requirements, casting placeholders
into loaded objects, and partial page responses.

[77]

Extending Drupal

Routes have extra capabilities that can be configured; we will explore those in the next section.

Parameters in routes

Routes have the ability to accept dynamic arguments that can be passed to the route controller's
method. Placeholder elements can be defined in the route using curly brackets in the URL that
denote dynamic values.

An example of a route might look like the following code:

mymodule.cats:
path: '/cat/{name}"'
defaults:
_controller: '\Drupal\mymodule\Controller\MyPageController::cats'
requirements:
_permission: 'access content'

This route specifies the /cat/{name} path. The {name} placeholder will accept dynamic
values and pass them to the controller's method:

class MyPageController ({
//
public function cats($name) {
return [
'"#markup' => t('My cats name is: @name', [
'@name' => Sname,

This method accepts the name variable from the route and substitutes it into the render array
to display it as text.

Drupal's routing system provides a method of upcasting a variable into a loaded object. There
are a set of parameter converter classes under the \Drupal \Core\ParamConverter
namespace. The EntityConverter class will read options defined in the route and replace
a placeholder value with a loaded entity object.

If we have an entity type called cat, we can turn the name placeholder into a method to be
provided the loaded the cat object in our controller's method:

mymodule.cats:
path: '/cat/{name}"'
defaults:

[78]

Chapter 4

_controller: '\Drupal\mymodule\Controller\MyPageController::cats'
reguirements:
_permission: 'access content'
options:
parameters:
name:
type: entity:cat

This is not required for entities as the defined entity route
handler can automatically generate this. Entities are covered
g in Chapter 10, The Entity API.

Validating parameters in routes

Drupal provides regular expression validation against route parameters. If the parameter fails
the regular expression validation, a 404 page will be returned. Using the recipe's example
route, we can add the validation to ensure that only alphabetical characters are used in the
route parameter:

mymodule.cats:
path: '/cat/{name}"
defaults:
_controller: '\Drupal\mymodule\Controller\MyPageController::cats'
requirements:
_permission: 'access content'

name: '[a-zA-z]+'

Under the requirements key, you can add a new value that matches the name of the
placeholder. You then set it to have the value of the regular expression you would like to use.

Route requirements

Routes can define different access requirements through the requirements key. Multiple
validators can be added. However, there must be one that provides a true result or else
the route will return 403, access denied. This is true if the route defines no requirement
validators.

Route requirement validators are defined by implementing \Drupal\Core\Routing\
Access\AccessInterface. Here are some of the common requirement validators
defined throughout Drupal core:

» _entity access validates that the current user has the ability to perform
entity type.operation, such asnode.view
» permission checks whether the current user has the provided permission

» user_ is logged_ in validates that the current user is logged in, which is defined
with a Boolean value in the routing.yml

[79]

Extending Drupal

Providing dynamic routes

The routing system allows modules to define routes programmatically. This can be accomplished
by providing a routing_ callbacks key that defines a class and method that will return an
array of the \ Symfony\Component \Routing\Route objects.

If you are working with entities, refer to Chapter 10, The Entity AP, to learn
i about overriding the default route handler to create dynamic routes.

In the module's rout ing.yml, you will define the routing callbacks key and related class:

route callbacks:
- '"\Drupal\mymodule\Routing\CustomRoutes: :routes'

The \Drupal\mymodule\Routing\CustomRoutes class will then have a method named
routes, which returns an array of Symfony route objects:

<?php

namespace Drupal\mymodule\Routing;
use Symfony\Component\Routing\Route;

class CustomRoutes {
public function routes () {
Sroutes = [];

// Create mypage route programmatically
Sroutes ['mymodule.mypage'] = new Route (
// Path definition
'mypage’,
// Route defaults
[
' controller' => '\Drupal\mymodule\Controller\
MyPageController: :customPage',
' title' => 'My custom page',
1,
// Route requirements
[

' permission' => 'access content',

) ;

return Sroutes;

[80]

Chapter 4

If a module provides a class that interacts with routes, the best practice is to place it in the
Routing portion of the module's namespace. This helps you identify it's purpose.

The invoked method is expected to return an array of initiated Route objects. The Route class
takes the following arguments:

» Path: This represents the route

» Defaults: This is an array of default values

» Requirements: This is an array of required validators

» Options: This is an array that can be passed and its used optionally

Altering existing routes

When Drupal's route system is rebuilt due to a module being enabled or caches being rebuilt,
an event is fired that allows modules to alter routes defined statically in YAML or dynamically.
This involves implementing an event subscriber by extending \Drupal\Core\Routing\
RouteSubscribeBase, which subscribes the RoutingEvents: : ALTER event.

Create src/Routing/RouteSubscriber.php in your module. It will hold the route
subscriber class:

<?php
namespace Drupal\mymodule\Routing;

use Drupal\Core\Routing\RouteSubscriberBase;
use Symfony\Component\Routing\RouteCollection;

class RouteSubscriber extends RouteSubscriberBase {

/**

* {@inheritdoc}

*/
public function alterRoutes (RouteCollection $collection) {

// Change path of mymodule.mypage to use a hyphen

if ($route = $collection->get ('mymodule.mypage')) {

Sroute->setPath('/my-page') ;
}
}

[81]

Extending Drupal

The preceding code extends RouteSubscribeBase and implements the alterRoutes ()
method. We make an attempt to load the mymodule . mypage route and, if it exists, we
change it's path to my-page. Since objects are always passed by reference, we do not
need to return a value.

For Drupal to recognize the subscriber, we need to describe it in the module's services.yml
file. In the base directory of your module, create a mymodule.services.yml file and add
the following code:

services:
mymodule.route subscriber:
class: Drupal\mymodule\Routing\RouteSubscriber
tags:
- { name: event subscriber }

This registers our route subscriber class as a service to the container so that Drupal can
execute it when the event is fired.

» Refer to the Symfony routing documentation at
http://symfony.com/doc/current /book/routing.html

» Chapter 10, The Entity API

» Refer to access checking on routes community documentation at
https://www.drupal .org/node/2122195

Defining permissions

In Drupal, there are roles and permissions used to define robust access control lists for users.
Modules use permissions to check whether the current user has access to perform an action,
view specific items, or other operations. Modules then define the permissions used so that
Drupal is aware of them. Developers can then construct roles, which are made up of enabled
permissions.

In this recipe, we will define a new permission to view custom pages defined in a module.
The permission will be added to a custom route and restrict access to the route path to users
who have a role containing the permission.

[82]

http://symfony.com/doc/current/book/routing.html
https://www.drupal.org/node/2122195

Chapter 4

Getting ready

Create a new module like the one in the first recipe. We will refer to the module as mymodule
throughout the recipe. Use your module's name as appropriate.

This recipe also modifies a route defined in the module. We will refer to this route as
mymodule . mypage. Modify the appropriate path in your module's rout ing.yml file.

How to do it...

1.

Permissions are stored in a permissions.yml file. Add a mymodule.
permissions.yml to the base directory of your module.

First, we need to define the internal string used to identify this permission, such as
view mymodule pages

view mymodule pages:

Each permission is a YAML array of data. We need to provide a title key that will be
displayed on the permissions page:
view mymodule pages:

title: 'View my module pages'

Permissions have a description key to provide details of the permission on the
permissions page:
view mymodule pages:

title: 'View my module pages'

description: 'Allows users to view pages provided by My Module'

Save your permissions.yml, and edit the module's routing.yml to add
the permission.

Modify the route's requirements key to have a _permissions key that is equal to
the defined permission:

mymodule.mypage:
path: /mypage
defaults:

_controller: '\Drupal\mymodule\Controller\
MyPageController: :customPage'

_title: 'My custom page'
reqguirements:
_permission: 'view mymodule pages'

[83]

Extending Drupal

7. Visit Configuration and then Development to rebuild Drupal's caches.

8. Visit People and then Permissions to add your permission to the authenticated user
and anonymous user roles.

@ Back to site E Manage * Shortcuts 1 admin
ANONYMOUS AUTHENTICATED
PERMISSION ADMINISTRATOR
USER USER

Create and modify styles for generating image meodifications such as thumbnails.
My Module!

View my module pages

Y pag

Allows users to view pages provided by My Module
Node

Access the Content overview page
Get an overview of all content.

Administer content

Warning: Give to trusted roles anly; this permission has security implications.
Promote, change ownership, edit revisions, and perform other tasks across all
content types.

9. Log out of your Drupal site, and view the /mypage page. You will see the content and
not receive an access denied page.

Permissions and Roles are provided by the User module. The user.permissions service
discovers permissions.yml defined in installed modules. By default, the service is defined
through the \Drupal\user\PermissionHandler class.

Drupal does not save a list of all permissions that are available. The permissions for a system
are loaded when the permissions page is loaded. Roles contain an array of permissions.

When checking a user's access for a permission, Drupal checks all of the user's roles to see
whether they support that permission.

* You can pass an undefined permission to a user access check and
% not receive an error. The access check will simply fail, unless the
’ user is UID 1, which bypasses access checks.

[84]

Chapter 4

There's more...

Restrict access flag for permissions

Permissions can be flagged as having a security risk if enabled. This is the restrict
access flag. When this flag is set to restrict access: TRUE, it will add a warning
to the permission description.

This allows module developers to provide more context to the amount of control a permission
may give a user:

ANONYMOUS AUTHENTICATED
PERMISSION ADMINISTRATOR
USER USER

Administer content

Warning: Give to trusted roles only; this permission has security implications.
Promorte, change ownership, edit revisions, and perform other tasks across all
content types.

Defining permissions programmatically

Permissions can be defined by a module programmatically or statically in a YAML file.
A module needs to provide a permission_callbacks key in its permissions.yml
that contains an array of classes and their methods or a procedural function name.

For example, the Filter module provides granular permissions based on the different text
filters created in Drupal:

permission_callbacks:
- Drupal\filter\FilterPermissions: :permissions

This tells the user permissions service to execute the permissions method of the
\Drupal\Filter\FilterPermissions class. The method is expected to return an
array that matches the same structure as that of the permissions.yml file.

Dynamically defined permissions cannot use the restrict access flag

and need to manually add the security warning to the description,
’ justas \Drupal\Filter\FilterPermissions does.

Checking whether a user has permissions

The user account interface provides a method for checking whether a user entity has a
permission. To check whether the current user has a permission, you will get the current user,
and you need to invoke the hasPermission method:

\Drupal: :currentUser () ->hasPermission('my permission') ;

[85]

Extending Drupal

The \Drupal: :currentUser () method returns the current active user object. This allows
you to check whether the active user has permissions to perform some sort of actions.

Providing the configuration on installation

or update

Drupal provides a configuration management system, which is discussed in Chapter 9,
Confiuration Management — Deploying in Drupal 8, and modules are able to provide
configuration on an installation or through an update system. Modules provide the
configuration through YAML files when they are first installed. Once the module is enabled,
the configuration is then placed in the configuration management system. Updates can be
made to the configuration, however, in code through the Drupal update system.

In this recipe, we will provide configuration YAMLs that create a new contact form and then
manipulate them through a schema version change in the update system.

Getting ready

Create a new module like the one in the first recipe. We will refer to the module as mymodule
throughout the recipe. Use your module's appropriate name.

How to do it...

1. Create a config folder in your module's base directory. All configuration YAMLs
should be in a subfolder of config.

2. Create a folder named install in the config folder. Configuration YAMLs in this folder
will be imported on module installation.

3. Inthe install folder, create a contact.form.contactus.yml to store the YAML
definition of the contact form, Contact Us:

Mame ~

v B config
¥ [install
contact.form.contactus.yml
mymodule.infoyml
mymodule.permissions.yml
mymodule.routing.yml
> B src

[86]

Chapter 4

4. We will define the configuration of a contact form based on the contact . schema.
yml file provided by the Contact module:

langcode: en
status: true
dependences: {}
id: contactus
label: 'Contact Us'
recipients:
- webmaster@example.com
reply: ''
weight: 0

The configuration entry is based on a schema definition, which we will cover in
Chapter 9, Confiuration Management - Deploying in Drupal 8. The langcode,
status, and dependencies are the required configuration management keys.

The id is the contact form's machine name and the label is the human display
name. The recipients key is a YAML array of valid e-mail addresses. The reply
key is a string of text for the Auto-reply field. And, finally, the weight defines the
form's weight in the administrative list.

5. Visit Extend and enable your module to import the configuration item.

The Contact Us form will now be located on the Contact forms overview page,
located under Structure:

+ Add contact form

FORM RECIPIENTS SELECTED OPERATIONS

Contact Us webmaster@example.com No Edit -

Personal contact form Selected user No Manage fields -
Website feedback admin@example.com Yes Edit -

7. Create amymodule.install file in the module's base directory. We will create an
update hook to set a reply message for the contact form.

8. We will create a function called mymodule update 8001 () that will be read by the
update system and make our configuration changes:

<?php

/**

* Update "Contact Us" form to have a reply message.

[87]

Extending Drupal

*/
function mymodule update 8001 ()

$contact form = \Drupal\contact\Entity\
ContactForm: :load('contact us');

$contact form->setReply(t('Thank you for contacting us, we will
reply shortly'));

$contact form-s>save() ;

}

This function uses the entity's class to load our configuration entity object. It loads
contact_us, which our module has provided, and sets the reply property to a new
value.

9. \Visit /update.php in your browser to run the Drupal's database update system:

Site-Install
Drupal database update
The version of Drupal you are updating from has been
Review updates automatically detected.
Run updates ¥ 1 PENDING UPDATE
Review log

mymodule module

« 8001 - Update "Contact Us" form to have a
reply message.

Apply pending updates

10. Review the Contact Us form settings and verify that the reply message has been set.

Drupal's moduler installer service, provided through \Drupal\Core\Extension\
ModulelInstaller, ensures that configuration items defined in the module's config folder
are processed on installation. When a module is installed, the config. installer service,
provided through \Drupal\Core\Config\ConfigInstaller, is called to process the
module's default configuration.

[88]

Chapter 4

In the event, the config. installer service makes an attempt to import the configuration
from the install folder that already exists and an exception will be thrown. Modules cannot
provide changes made to the existing configuration through static YAML definitions.

Since modules cannot adjust configuration objects through static YAML definitions provided
to Drupal, modules can utilize the database update system to modify the configuration.
Drupal utilizes a schema version for modules. The base schema version for a module is 8000.
Modules can provide update hooks in the form of hook update N, where N represents the
next schema version. When Drupal's updates are run, they will execute the proper update
hooks and update the module's schema version.

Configuration objects are immutable by default. In order to edit a configuration, a mutable
object needs to be loaded through the configuration factory service.

There's more...

We will discuss the configuration in Chapter 9, Confiuration Management - Deploying in
Drupal 8, however, we will now dive into some important notes when working with modules
and configurations.

Configuration subdirectories
There are three directories that the configuration management system will inspect in a

module's config folder, which are as follows:
» install
» optional
» schema

The install folder specifies the configuration that will be imported. If the configuration
object exists, the installation will fail.

The optional folder contains the configuration that will be installed if the following
conditions are met:

» The configuration does not already exist

» Itis a configuration entity

» Its dependencies can be met

If any one of the conditions fail, the configuration will not be installed, but it will not halt the
modaule's installation process.

The schema folder provides definitions of configuration object definitions. This uses
YAML definitions to structure configuration objects and is covered in depth in Chapter 9,
Configuration Management.

[89]

Extending Drupal

Modifying the existing configuration on installation

The configuration management system does not allow modules to provide configuration on an
installation that already exists. For example, if a module tries to provide system.site and
defines the site's name, it would fail to install. This is because the System module provides
this configuration object on installation.

Drupal provides hook install () that modules can implement in their . install file. This
hook is executed during the module's installation process. The following code will update the
site's title to Drupal 8 Cookbook! on the module's installation:

/**
* Implements hook install().
*/
function mymodule install() {

// Set the site name.

\Drupal: :configFactory ()
->getEditable('system.site')
->set ('name', 'Drupal 8 Cookbook!')
->save () ;

}

Configurable objects are immutable by default when loaded by the default config service.
In order to modify a configuration object, you need to use the configuration factory to receive
a mutable object. The mutable object can have set and save methods that are executed to
update the configuration in a configuration object.

» Chapter 9, Confiuration Management - Deploying in Drupal 8

Using Features 2.x

Many Drupal users create custom modules to provide specific sets of features that they
can reuse across multiple sites. In fact, there is a module for the sole purpose of providing
a means to export configuration and create modules that provide features. This is how the
Features modules received its name, in fact.

The Features module has two sub-modules. The main Features module provides all the
functionalities. The Features Ul module provides a user interface for creating and managing
features.

We will use Features to export a module with a configuration that contains the default page
and article content types provided by the standard installation, so they can be used on other
installation profiles.

[90]

How to do it...

Chapter 4

1. The Features module requires Configuration Update Manager as a dependency.
Visit https://www.drupal.org/project/config update and download the
latest Drupal 8 release and place it in your Drupal site's /modules folder.

2. Now,visit https://www.drupal.org/project/features and download the
latest Drupal 8 release and place it in your Drupal site's /modules folder.

3. Visit Extend and install the Features Ul module, confirming the requirements to

install Features and Configuration Update Manager as well.

4. Visit Configuration and then Configuration Synchronization. The user interface for

Features is accessed as a tab from this page:

Features v
Synchronize Import Export Features
Features Configure Bundles Differences

Home » Administration » Configuration » Development » Synchronize

Export packages of configuration into modules.

Bundle

=NOone-—- v Create new feature

FEATURE DESCRIPTION VERSION

The following packages are not exported.
Default comments comment » Provide Default comments comment type and related configuration.
Allows commenting on content

Article article » Provide Article content type and related configuration. Use articles for
time-sensitive content like news, press releases or blog posts.

Basic page page » Provide Basic page content type and related configuration. Use basic
pages for your static content, such as an 'About us' page.

STATUS

Not exported

Not exported

Not exported

STATE

5. Click on Create new feature to start making a custom Feature module.

Provide a Name for the feature, such as Content Authoring.

7. Optionally, you can provide a description. This acts as the description key in the

module's info.yml.

8. Toggle the Content types grouping and check Article and Basic Page to mark them

for export.

[91]

https://www.drupal.org/project/features

Extending Drupal

9. The features module will automatically add detected dependencies or important
configuration items to also be exported, such as fields and view modes.

¥ Content type (o)

¥ Article (article)

¥ Basic page (page)
» Custom block type (1)

» Entity form display (3)

» Entity view display (4)

¢
¢
v
v

» Field (3)
¥ Body (node.articie.body)
¥| Body (node.page.bedy)

10. Click on Write to write the module to export the module and configuration to the /
modules/custom directory in your Drupal site.

11. Visit Extend to enable your newly created module.

Features exports static YAML configuration files into the module's config/install folder.
Features modifies the standard configuration management workflow by ensuring that a
specific kind of configuration exists. Configuration management does not allow modules to
overwrite existing configuration objects but Features manages and allows this to happen.

To accomplish this, Features provides \Drupal\features\FeaturesConfigInstaller,
which extends the default config.install service class. It then alters the services
definition to use it's FeaturesConfigInstaller class instead of the default \Drupal\
Core\Config\ConfigInstaller class.

[92]

Chapter 4

Beyond adjusting the config.install service, Features harnesses all the functionalities of
the configuration management system to provide a simpler way to generate modules.

Any module can be considered a Feature's module by adding the
features: truekeytoit's info.yml. This will allow it to be
s
managed through the Features Ul.

Suggested feature modules

The features module provides an intelligent bundling method that reviews the current Drupal
site's configuration and suggests feature modules that should be created to preserve the
configuration. These are provided through package assignment plugins. These plugins use
logic to assign configurations to specific packages.

- User user ¥ Provide User related configuration.
Action Remove the Administrator role from the selected users
Add the Administrator role to the selected users
Dependencies File Image User
Entity form user.user.default
display
Entity view user.user.default user.user.compact
display
Field Picture
Field storage user.user_picture

When you visit the Features Ul, it will present you with suggested feature modules to be
exported. Expanding the items will list the configuration items that will be bundled. Clicking
on the suggested feature's link opens the creation form. Or the checkbox can be used in
conjunction with the download archive or write buttons at the bottom of the form.

The unpackaged section shows a configuration, which has not met any

of the packaging rules to group the configuration into a specified module.
s . .
This will need to be manually added to a created feature module.

[93]

Extending Drupal

Features bundles

In the Features module, there are bundles and bundles have their own assignment method
configurations. The purpose of bundles inside Features is to provide an automatic assignment
of configuration that can be grouped into exported modules:

BUNDLE

--New-- =

Bundle name

A unigue human-readable name of this bundle.

Distribution description

A description of the bundle.

Include install profile

Select this option to have your features packaged into an install profile.

Show row weights

ASSIGNMENT

DESCRIPTION ENABLED OPERATIONS
METHOD
+ Packages Detect and add existing package modules.

Exclude configuration items from packaging by various methods
+ Exclude i i 9 i X packaging by Configure
including by configuration type.

A bundle has a human display nhame and machine name. The bundle's machine name will
be prefixed on all feature modules generated under this bundle. You also have the ability to
specify the bundle to act as an install profile. Features Ul was heavily used in Drupal 7 to
construct distributions and spawn the concept of the bundle functionality.

Assignment methods can be rearranged and configured to your liking.

Managing the configuration state of Features

The Features Ul provides a means to review changes to the feature's configuration that may
have been made. If a configuration item controlled by a Feature module has been modified,
it will show up under the differences section of the Features Ul This will allow you to import
or update the Feature module with the change.

[94]

Chapter 4

The Import option will force the site to use the configuration defined in the module's
configuration YAML files. For example, we have an exported content type whose description
was modified in the user interface after being exported.

Content authoring

¥ NODE.TYPE.ARTICLE

dependencies

third_party_settings

main

third_party_settings::
third_party_settings::
third_party _settings::

third_party_settings::

ACTIVE SITE CONFIG

dependencies::module
dependencies::module::0 : menu_ui
description : Use <em=articles for content
like news, press releases or blog posts.

menu_ui
menu_ui
menu_ui

menu_ui

+

::available_menus
::available_menus::0 :

iparent : main:

Import changes Import the selected changes above into the active configuration.

FEATURE CODE CONFIG

description : Use <em=>articles</em=> for time-
sensitive content like news, press releases or blog
posts.

The difference created by the Feature module is highlighted. If the difference was checked,
and if you click on Import changes, the content type's description would be reset to that
defined in the configuration.

From the main features overview table, the Feature module can be reexported to include the
change and update the exported YAML files.

» Refer to Features for the Drupal 8 session by Mike Potter at DrupalCon Los Angeles
athttps://events.drupal.org/losangeles2015/sessions/features-

drupal-8

[95]

https://events.drupal.org/losangeles2015/sessions/features-drupal-8
https://events.drupal.org/losangeles2015/sessions/features-drupal-8

Frontend for the Win

In this chapter, we will explore the world of frontend development in Drupal 8:

» Creating a custom theme based on Classy
» Using the new asset management system
» Twig templating

» Using the Breakpoint module

» Using the Responsive Image module module

Introduction

Drupal 8 brings many changes with regard to the frontend. It is now focused on the mobile-first
responsive design. Frontend performance has been given a high priority, unlike in the previous
versions of Drupal. There is a new asset management system based around libraries that will
deliver only the minimum required assets for a page that comes with Drupal 8.

In Drupal 8, we have a new feature, the Twig templating engine, that replaces the previously
used PHPTemplate engine. Twig is part of the large PHP community and embraces more of
Drupal 8's made elsewhere initiative. Drupal 7 supported libraries to define JavaScript and
CSS resources. However, it was very rudimentary and did not support the concept of library
dependencies.

There are two modules provided by Drupal core that implement the responsive design with
server-side components. The Breakpoint module provides a representation of media queries
that modules can utilize. The Responsive Image module implements the HTML5 picture tag
for image fields.

This chapter dives into harnessing Drupal 8's frontend features to get the most out of them.

Frontend for the Win

Creating a custom theme based on Classy

Drupal 8 ships with a new base theme that is intended to demonstrate the best practice and
CSS class management. The Classy theme is provided by Drupal core and is the base theme
for the default frontend theme, Bartik, and the administrative theme, Seven.

Unlike the previous versions of Drupal, Drupal 8 provides two base themes: Classy and Stable
as a means to jump start Drupal theming. Stable provides a more lean approach to frontend
theming with fewer classes and wrapping elements. In this recipe, we will create a new theme
called mytheme that uses Classy as its base.

How to do it...

1. Inthe root directory of your Drupal site, create a folder called mytheme in the
themes folder.

2. Inside the mytheme folder, create a mytheme.info.yml file so that Drupal can
discover the theme. We will then edit this file:

autoload.php mytheme.info.ym|

composer.json README .txt
composer.lock

|| core >
example.gitignore
index.php

|| modules

1 profiles
README .txt
robots.txt

N sites L

=9 themes

update.php
8 vendor >

web.config

3. First, we need to define the themes name using the name key:
name: My Theme

4. All the themes need to provide a description key, which will be displayed on the
Appearance page:

description: My custom theme

Chapter 5

10.

Next, we need to define the type of extension, that is, a theme, and the version of
core that is supported:

type: theme

core: 8.x

The base theme call allows us to instruct Drupal to use a specific theme as a base:

base theme: classy

The last item is a regions key that is used to define the regions of the blocks that

can be placed, which is a YAML-based array of key/value pairs:

regions:
header: Header

primary menu:

page_top: 'Page top'

page_bottom: 'Page bottom!'

breadcrumb: Breadcrumb

Content

'Primary menu'

content:
Regions are rendered in the page template file, which will be covered in the next
recipe, Twig templates.
Log in to your Drupal site, and go to Appearance from the administrative toolbar.

Click on Install and set default in the My theme entry in order to enable and use the
new custom theme:

Uninstalled themes

My Theme

My custom theme

Install

no screenshot

Stark 8.0.0-rc3

An intentionally plain theme with no styling to
demenstrate default Drupal’s HTML and CS5.
Learn how to build a custom theme from
Stark in the Theming Guide.

Stable 8.0.0-rc3
A default base theme using Drupal 8.0.0's

care markup, CS8, and JavaScript.
Install and set as default P 3 ! v
Install | Install and set as default

Install | Install and set as default

In Drupal 8, the info.yml files define Drupal themes and modules. The first step to create a
theme is to provide the info.yml file so that the theme can be discovered. Drupal will parse

these values and register the theme.

s

Frontend for the Win
The following keys are required, as a minimum, when you define a theme:

» name
» description

> type
» Dbase theme

> core

The name key defines the human-readable name of the theme that will be displayed on the
Appearance page. The description will be shown under the themes display hame on the
Appearance page. All Drupal projects need to define the type key to indicate the kind of
extension that is being defined. For themes, the type must always be theme. You need to also
define which version of Drupal the project is compatible with using the core value. All Drupal
8 projects will use the core: 8.x value. When you define a theme, you need to also provide
the base theme key. If your theme does not use a base theme, then you need to set the value
to false.

The libraries and region keys are optional, but these are keys that most themes provide.
Drupal's asset management system parses a theme's info.yml and adds those libraries,

if required. Regions are defined in an info.yml file and provide the areas into which the
Block module may place blocks.

There's more...

Next, we will dive into some additional information about themes.

Theme screenshots

Themes can provide a screenshot that shows up on the Appearance page. A theme's
screenshot can be provided by placing a screenshot . png in the theme folder or a file
specified in the info.yml file under the screenshot key.

If the screenshot is missing, a default is used, as seen with the Classy and Stark themes.
Generally, a screenshot is a Drupal site with generic content using the theme.

Themes, logos, and favicons

Drupal controls the site's favicon and logo settings as a theme setting. Theme settings are
active on a theme-by-theme basis and are not global. Themes have the ability to provide a
default logo by providing a 1ogo. svg in the theme root folder. A favicon.ico placed in
a theme folder will also be the default value of the favicon for the website.

100

Chapter 5

Currently, there is no way to specify a logo of a different file type for a
+ theme. Previous versions of Drupal looked for 1ogo . png. A feature has

been postponed for Drupal 8.1 to allow the themes to have the ability
T~ to define the logo's filename and extension. Refer to the core issue for

more information at https://www.drupal.org/node/1507896.

You can change the site's logo and favicon by going to Appearance and then clicking on
Settings for your current theme. Unchecking the use default checkboxes for the favicon
and logo settings allows you to provide custom files.

¥ LOGO IMAGE S5ETTINGS

_| Use the default logo supplied by the theme

Path to custom logo

Examples: logo.svg (for a file in the public filesystem), public://logo.svg, Or
core/themes/seven/logo.svg.

Upload logo image
Choose File | No file chosen

If you don't have direct file access to the server, use this field to upload your logo.

¥ SHORTCUT ICON SETTINGS
Your shortcut icon, or "favicon', is displayed in the address bar and bookmarks of most browsers.
"I Use the default shortcut icon supplied by the theme

Path to custom icon

Examples: favicon.ico (for a file in the public filesystem), public://favieon. ico, of
core/themes/seven/favicon. ico.

Upload icon image
Choose File | No file chosen

If you don't have direct file access to the server, use this field to upload your shortcut icon.

Base themes and shared resources

Many content management systems that have a theme system support base (or parent) themes
differ mostly in the terminology used. The concept of a base theme is used to provide established
resources that are shared, reducing the amount of work required to create a new theme.

All libraries defined in the base theme will be inherited and used by default, allowing
subthemes to reuse existing styles and JavaScript. This allows frontend developers to
reuse work and only create specific changes that are required for the subtheme.

https://www.drupal.org/node/1507896

Frontend for the Win

The subthemes will also inherit all Twig template overrides provided by the base theme.

This was one of the initiatives used for the creation of the Classy theme. Drupal 8 makes
many fewer assumptions compared to previous version as to what class names to provide on
elements. Classy overrides all of the core's templates and provides sensible default classes,
giving themes the ability to use them and accept those class hames or be given a blank slate.

CKEditor stylesheets

As discussed in Chapter 2, The Content Authoring Experience, Drupal ships with the
WYSIWYG support and CKEditor as the default editor. The CKEditor module will inspect
the active theme, and its base theme if provided, and loads any stylesheets defined in
the ckeditor stylesheets key as an array of values.

For example, the following code can be found in bartik.info.yml:

ckeditor stylesheets:
- css/base/elements.css
- css/components/captions.css
- css/components/table.css

This allows themes to provide style sheets that will style elements within the CKEditor module
to enhance the what you see is what you get element of the editor.

» To define a theme with an info.yml file, refer to
https://www.drupal .org/node/2349827

» To use Classy as a base theme, refer to the community documentation at
https://www.drupal .org/theme-guide/8/classy

» To create a Drupal 8 subtheme, refer to the community documentation at
https://www.drupal .org/node/2165673

Using the new asset management system

New to Drupal 8 is the asset management system. The asset management system allows
modules and themes to register libraries. Libraries define CSS stylesheets and JavaScript
files that need to be loaded with the page. Drupal 8 takes this approach for the frontend
performance. Rather than loading all CSS or JavaScript assets, only those required for the
current page in the specified libraries will be loaded.

In this recipe, we will define a 1ibraries.yml file that will define a CSS stylesheet and
JavaScript file provided by a custom theme.

102

https://www.drupal.org/node/2349827
https://www.drupal.org/theme-guide/8/classy
https://www.drupal.org/node/2165673

Chapter 5

Getting ready

This recipe assumes that you have a custom theme created, such as the one you created
in the first recipe. When you see mytheme, use the machine name of the theme that you
have created.

How to do it...

1. Create a folder named css in your themes base directory.

2. Inyour css folder, add a style. css file that will hold the theme's CSS declarations.
For demonstration purposes, add the following CSS declaration to style.css:
body {

background: cornflowerblue;
}

3. Then, create a js folder, and add a scripts. js file that will hold the themes
JavaScript items.

4. Inyour theme folder, create a mytheme.libraries.yml file and edit it, as shown in
the following screenshot:

autoload.php D mythems b_ @ stylecss
composer.json README.txt D is >
composer.lock mytheme.info.yml
D core > mytheme.libraries.yml
example.gitignore
index.php
[modules »
9 profiles »
README.txt
robots.txt
9 sites »
[themes .
update.php
29 vendor »
web.config
5. Add the following YAML text to define the global-styling library for your theme

that will load the CSS file and JavaScript file:
global-styling:
version: VERSION
css:
theme:
css/style.css: {}
js:
js/scripts.js: {}

Frontend for the Win

6. This tells Drupal that there is a global-styling library. You have the ability to
specify a library version and use the VERSION defaults for your themes. It also
defines the css/styles.css stylesheet as part of the library under the theme

group.

7. Edit your mytheme.info.yml, and we need to add the declaration to our global-
styling library:

libraries:
- mytheme/global-styling
8. Themes are able to specify a libraries key that defines the libraries that should
always be loaded. This YAML array lists libraries to be loaded for each page.
9. Go to Configuration and then to Development to rebuild Drupal's caches.
10. With your theme set to the default, go to your Drupal site.

11. Your theme's global-styling library will be loaded and the page's background
color will be styled appropriately:

£\
= 0O Elements Network | Sources | Timeline Profiles Resources Audits Console o1 : X

Sources | Content scripts Snippets [(index) style.cssTnxjakl x [0

¥ () master-rpusmp4jcny2c.us.platform.sh
¥ Jcore
¥ [assets/vendor
» [0 misc
» I modules
¥ [themes
» (classy/css/components
» (] seven/css/compaonents
¥ [sites/default/themes/mytheme fcss

B style.css?nxjakl

Drupal aggregates all the available 1ibrary.yml files and passes them to the 1ibrary.
discovery.parser service. The default class for this service provider is \Drupal\
Core\Asset\LibraryDiscoveryParser. This service reads the library definition from
each library.yml and returns its value to the system. Before parsing the file, the parser
allows themes to provide overrides and extensions to the library.

104

Chapter 5

Libraries are enqueuers as they are attached to rendered elements. Themes have the ability to
generically add libraries through their info.yml files via the 1ibraries key. These libraries
will always be loaded on the page when the theme is active.

CSS stylesheets are added to the data, which will build the head tag of the page. JavaScript
resources, by default, are rendered in the footer of the page for performance reasons.

There's more...

We will explore the options surrounding libraries in Drupal 8 in more detail.

CSS groups

With libraries, you have the ability to specify CSS by different groups. Drupal's asset
management system provides the following CSS groups:

» Dbase

» layout

» component
» state

» theme

Stylesheets are loaded in the order in which the groups are listed. Each one of them relates
to a PHP constant defined in /core/includes/common. inc. This allows separation of
concerns when working with stylesheets. Drupal 8's CSS architecture borrows concepts from
the SMACSS system to organize CSS declarations.

Library asset options

Library assets can have configuration data attached to them. If there are no configuration
items provided, a simple set of empty brackets is added. This is why, in each example, files
end with {}.

The following example, taken from core.libraries.yml, adds HTML5shiv:

assets/vendor/html5shiv/html5shiv.min.js: { weight: -22, browsers: {
IE: 'lte IE 8', '!IE': false }, minified: true }

Let's take a look at the attributes of html5shiv.min. js:

» The weight key ensures that the script is rendered earlier than other libraries
» The browser tag allows you to specify conditional rules to load the scripting
» You should always pass minified as true if the asset has already been minified

For CSS assets, you can pass a media option to specify a media query for the asset. Reviewing
classes which implement \Drupal\Core\Asset\AssetCollectionRendererInterface

Frontend for the Win

Library dependencies

Libraries have the ability to specify other libraries as dependencies. This allows Drupal to
provide a minimum footprint on the frontend performance.

jQuery is only loaded if a JavaScript library specifies it as a dependency.
S Refer to https://www.drupal .org/node/1541860.

Here's an example from the Quick Edit module's 1ibraries.yml file:

quickedit:
version: VERSION
js:
css:
dependencies:

- core/jquery

- core/jquery.once

- core/underscore

- core/backbone

- core/jquery.form

- core/jquery.ui.position

- core/drupal

- core/drupal.displace

- core/drupal.form

- core/drupal.ajax

- core/drupal.debounce

- core/drupalSettings
- core/drupal.dialog

The Quick Edit module defines jQuery, the jQuery Once plugin, Underscore, and Backbone,
and selects other defined libraries as dependencies. Drupal will ensure that these are present
whenever the quickedit/quickedit library is attached to a page.

A complete list of the default libraries provided by Drupal core can be found in core.
libraries.yml, whichisin core/core.libraries.yml.

Overriding and extending other libraries

Themes have the ability to override libraries using the 1ibraries-override and
libraries-extend keys in their info.yml. This allows themes to easily customize
the existing libraries without having to add the logic for conditionally removing or adding
their assets when a particular library has been attached to a page.

106

https://www.drupal.org/node/1541860

Chapter 5

The libraries-override key can be used to replace an entire library, replace selected
files in a library, remove an asset from a library, or disable an entire library. The following
code will allow a theme to provide a custom jQuery Ul theme:

libraries-override:
core/jquery.ui:
css:
component :
assets/vendor/jquery.ui/themes/base/core.css: false
theme:

assets/vendor/jquery.ui/themes/base/theme.css: css/jgqueryui.
css

The override declaration mimics the original configuration. Specifying false will remove the
asset or else a supplied path will replace that asset.

The libraries-extend key can be used to load additional libraries with an existing library.
The following code will allow a theme to associate a CSS stylesheet with selected jQuery Ul
declaration overrides, without always having them included in the rest of the theme's assets:

libraries-extend:
core/jquery.ui:
- mytheme/jqueryui-theme

Using a CDN or external resource as a library

Libraries also work with external resources, such as assets loaded over a CDN. This is done by
providing a URL for the file location along with selected file parameters.

Here is an example to add the FontAwesome font icon library from the Boot st rapCDN
provided by MaxCDN:

mytheme.fontawesome:
remote: http://fontawesome.io/
version: 4.4.0
license:
name: SIL OFL 1.1
url: http://fontawesome.io/license/
gpl-compatible: true
css:
base:

https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-
awesome.min.css: { type: external, minified: true }

Remote libraries require additional meta information to work properly:

remote: http://fontawesome.io/

Frontend for the Win

The remote key describes the library as using external resources. While this key is not validated
beyond its existence, it is best to define it with the external resource's primary website:

version: 4.4.0

Like all libraries, a version is required. This should match the version of the external resource
being added:

license:
name: SIL OFL 1.1
url: http://fontawesome.io/license/
gpl-compatible: true

If a library defines the remote key, it needs to also define the 1icense key. This
defines the license name, the URL for the license, and checks whether it is GPL
compatible. If this key is not provided, a \Drupal\Core\Asset\Extension\
LibraryDefinitionMissinglLicenseException will be thrown:

css:
base:

https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-
awesome.min.css: { type: external, minified: true }

Finally, specific external resources are added as normal. Instead of providing a relative file
path, the external URL is provided.

Manipulating libraries from hooks

Modules have the ability to provide dynamic library definitions and alter libraries. A module
can use the hook library info () hook to provide a library definition. This is not the
recommended way to define a library, but it is provided for edge use cases.

Modules do not have the ability to use 1ibraries-override or libraries-extend
and need to rely on the hook_library info alter () hook. The hook is documented in
core/lib/Drupal/Core/Render/theme.api.php orathttps://api.drupal.org/
api/drupal/core!lib!Drupal!Core!Render!theme.api.php/function/hook
library info alter/s8.

Placing JavaScript in the header

By default, Drupal ensures that JavaScript is placed last on the page. This improves the page,
load performance by allowing the critical portions of the page to load first. Placing JavaScript
in the header is now an opt-in option.

In order to render a library in the header, you need to add the header: true key/value pair:

js-library:
header: true

108

https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Render!theme.api.php/function/hook_library_info_alter/8
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Render!theme.api.php/function/hook_library_info_alter/8
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Render!theme.api.php/function/hook_library_info_alter/8

Chapter 5

js:
js/myscripts.js: {}

This will load a custom JavaScript library and its dependencies into the header of a page.

See also

» Refer to the CSS architecture for Drupal 8: Separate concerns at
https://www.drupal.org/node/1887918#separate-concerns

» SMACSS (http://smacss.com/book/)

Twig templating

Drupal 8's theming layer is complemented by Twig, a component of the Symfony framework.
Twig is a template language that uses a syntax similar to Django and Jinja templates. The
previous version of Drupal used PHPTemplate that required frontend developers to have a
rudimentary understanding of PHP.

In this recipe, we will override the Twig template to provide customizations for the e-mail form
element. We will use the basic Twig syntax to add a new class and provide a default placeholder.

Getting ready

This recipe assumes that you have a custom theme created, such as the one you created in
the first recipe. When you see mytheme, use the machine name of the theme you created.

At the time of writing this book, the Classy theme does not provide

a template suggestion for the e-mail input nor any customizations
’ to the input template that differ from core.

How to do it...

1. Create a template folder in your theme's base directory to hold your Twig templates.

2. To begin, you need to copy the input .html . twig file from core/modules/
system/templates/input.html.twig to your theme's template folder.

https://www.drupal.org/node/1887918#separate-concerns
http://smacss.com/book/

Frontend for the Win

3. Rename the input.html.twig file to input--email.html.twig in order to use
the proper theme hook suggestion, as shown in the following screenshot:

[t L input--email.html. twig
is »

mytheme.info.yml

mytheme.libraries.yml

BB templates »

|| mytheme >
README txt

4. We will use the addClass twig function to add an input___email class:
<input{{ attributes.addClass('input email') }}/>{{ children }}

5. Above the previous line, we will create a Twig variable using ternary operators to
provide a customer placeholder:

{% set placeholder = attributes.placeholder ? attributes.

)

placeholder : 'email@example.com' %}

This creates a new variable called placeholder using the set operator. The
question mark (?) operator checks whether the placeholder property is empty in
the attributes object. If it is not empty, it uses the existing value. If the value is
empty, it provides a default value.

6. Go to the Configuration tab and then to Development to rebuild Drupal's cache.
We need to do this because Drupal caches the generated Twig output. Any changes
made to a Twig template require a cache rebuild.

7. View an email field or form element and find the modification:

<1— END OUTPUT from 'core/themes/classy/templates/form/form—element-label.html.twig' ——=
<!— THEME DEBUG —-=
<!— THEME HOOK: "input__email' ——=
<!— FILE NAME SUGGESTIONS:
¥ input—email.html.twig
® input—email.html.twig
input.html.twig
—_—
<!— BEGIN OUTPUT from 'sites/default/themes/: = p
<input data-drupal-selector="edit-field-email-@-value" type="email"

id="edit-field-email-@-value" name="field_emaill@]
[valuel” value size="6@" maxlength="254" placeholder="email@example.com" class="form-email input__email'=
<1— END OUTPUT from 'sites/default/themes/mytheme/templates/input——email.html.twig® ——=

Chapter 5

Drupal's theme system is built around hooks and hook suggestions. The element definition
of the e-mail input element defines the input _email theme hook. If there is no input
email hook implemented through a Twig template or PHP function, it will step down to

just input.

Drupal theme hooks are defined with underscores (_) but use
s hyphens (-) when used in Twig template files.

A processor, such as Drupal's theme layer, passes variables to Twig. Variables or properties of
objects can be printed by wrapping the variable name with curly brackets. All of core's default
templates provide information in the file's document block that details the available Twig
variables.

Twig has a simplistic syntax with basic logic and functions. The addClass method will take
the attributes variable and add the class provided in addition to the existing contents.

When providing a theme hook suggestion or altering an existing template, you will need to
rebuild Drupal's cache. The compiled Twig template, as PHP, is cached by Drupal so that
Twig does not need to compile each time the template is invoked.

Security first

Twig automatically escapes the output by default, making Drupal 8 one of the most secure
versions yet. For Drupal 7, as a whole, most security advisors were for cross-site scripting
(XSS) vulnerabilities in contributed projects. With Drupal core, using Twig, these security
advisories should be severely reduced.

Theme hook suggestions

Drupal utilizes theme hook suggestions as ways to allow output variations based on different
conditions. It allows site themes to provide a more specific template for certain instances.

When a theme hook has double underscores (__), Drupal's theme system understands this,
and it can break apart the theme hook to find a more generic template. For instance, the
e-mail element definition provides input _email as its theme hook. Drupal understands
this as follows:

» Look for a Twig template named input--email.html.twig or a theme hook that
defines input _ email

Frontend for the Win

» If you are not satisfied, look for a Twig template named input .html.twigora
theme hook that defines the input

Theme hook suggestions can be provided by the hook theme suggestions () hook in a
.module or . theme file.

Debugging template file selection and hook suggestions

Debugging can be enabled to inspect the various template files that make up a page and their
theme hook suggestions, and check which are active. This can be accomplished by editing
the sites/default/services.yml file. If a services.yml file does not exist, copy the
default.services.yml to create one.

You need to change debug: falseto debug: true underthe twig.config section
of the file. This will cause the Drupal theming layer to print out the source code comments
containing the template information. When debug is on, Drupal will not cache the compiled
versions of Twig templates and render them on the fly.

There is another setting that prevents you from having to rebuild Drupal's cache on each
template file change, but do not leave debug enabled. The twig.config.auto_reload
boolean can be set to true. If this is set to true, the Twig templates will be recompiled if
the source code changes.

The Twig logic and operators

The Twig has ternary operators for logic. Using a question mark (?), we can perform a basic
is true or not empty operation, whereas a question mark and colon (? :) performs a basic is
false or is empty operation.

You may also use the if and else logic to provide different outputs based on variables.

» Refer to the Twig documentation at http://twig.sensiolabs.org/
documentation

» Refer to the APl documentation for hook theme suggestions athttps://api.
drupal .org/api/drupal/core%211ib%21Drupal%21Core%21Render%21the
me.api.php/function/hook theme suggestions HOOK/8

http://twig.sensiolabs.org/documentation
http://twig.sensiolabs.org/documentation
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21theme.api.php/function/hook_theme_suggestions_HOOK/8
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21theme.api.php/function/hook_theme_suggestions_HOOK/8
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21theme.api.php/function/hook_theme_suggestions_HOOK/8

Chapter 5

Using the Breakpoint module

The Breakpoint module provides a method for creating media query breakpoint definitions
within Drupal. These can be used by other components, such as the responsive image and
toolbar modules, to make Drupal responsive.

Breakpoints are a type of plugin that can be defined in a module's or theme's breakpoints.
yml in its directory. In this recipe, we will define three different breakpoints under a custom

group.

Breakpoints are defined solely in YAML files from installed modules
L and themes and are not configurable through the user interface.

Getting ready

Ensure that the Breakpoint module is enabled. If you have used the standard Drupal installation,
the module is enabled.

This recipe assumes that you have a custom module created. When you see mymodule, use
the machine name of the module that you created.

How to do it...

1. Create mymodule.breakpoints.yml in your module's base directory. This file will
hold the breakpoint configurations.

2. Firstly, we will add a standard mobile breakpoint that does not have a media query,
following mobile first practices:
mymodule.mobile:
label: Mobile
mediaQuery: ''
weight: 0

3. Secondly, we will create a standard breakpoint that will run on a larger viewport:

mymodule.standard:
label: Standard
mediaQuery: 'only screen and (min-width: 60em)'
weight: 1

4. Thirdly, we will create a wide breakpoint for devices that have a large viewport:

mymodule.wide:
label: Wide

Frontend for the Win

mediaQuery: 'only screen and (min-width: 70em)'
weight: 2

5. Go to the Configuration tab and then to Development to rebuild Drupal's cache and
make the system aware of the new breakpoints.

The Breakpoint module defines the breakpoint configuration entity. Breakpoints do not have
any specific form of direct functionalities beyond providing a way to save media queries and
grouping them.

The Breakpoint module provides a default manager service. This service is used by other
modules to discover breakpoint groups and then all of the breakpoints within a group.

There's more...

Caveat for providing breakpoints from themes

Themes have the ability to provide breakpoints; however, they cannot be automatically
discovered if new ones are added once they have been installed. Drupal only reads
breakpoints provided by themes when a theme is either installed or uninstalled.

Inside breakpoint .manager, there are two hooks: one for the theme install and one
for the theme uninstall. Each hook retrieves the breakpoint manager service and rebuilds
the breakpoint definitions. Without any extra deployment steps, new breakpoints added to a
theme will not be discovered unless these hooks are fired.

Accessing breakpoints programmatically
Breakpoints are utility configurations for other modules. Breakpoints can be loaded by using

the breakpoint manager service and specifying a group. For example, the following code
returns all breakpoints used by the Toolbar module:

\Drupal: :service ('breakpoint.manager')
getBreakpointsByGroup ('toolbar') ;

This code invokes the Drupal container to return the service to manage breakpoints, which, by
default, is \Drupal\breakpoint \BreakpointManager. The getBreakpointsByGroup
method returns all breakpoints within a group, which are initiated as the \Drupal\
breakpoint\BreakpointInterface objects

The Toolbar element class utilizes this workflow to push the breakpoint media query values as
JavaScript settings for the JavaScript model to interact with.

114

Chapter 5

Multipliers
The multipliers value is used to support pixel resolution multipliers. This multiplier is used
in coordination with retina displays. It is a measure of the viewport's device resolution as a
ratio of the device's physical size and independent pixel size. The following is an example of
standard multipliers:

» 1xis normal

» 1.5x supports Android

» 2x supports Mac retina devices

» To work with breakpoints in Drupal 8, refer to the community documentation at
https://www.drupal.org/documentation/modules/breakpoint

Using the Responsive Image module

The Responsive Image module provides a field formatter for image fields that use the HTML5
picture tag and source sets. Utilizing the Breakpoint module, mappings to breakpoints are
made to denote an image style to be used at each breakpoint.

The responsive image field formatter works with using a defined responsive image style.
Responsive image styles are configurations that map image formats to specific breakpoints
and modifiers. First, you need to define a responsive image style, and then you can apply it
to an image field.

In this recipe, we will create a responsive image style set called Article image and apply it
to the Article content type's image field.

Getting ready

You will need to enable the Responsive Image module as it is not automatically enabled
with the standard installation.

How to do it...

1. Go to Configuration and then to Responsive image styles under the Media section.
Click on Add responsive image style to begin creating a new style set.

2. Provide a 1abel that will be used to administratively identify the Responsive image
style set.

https://www.drupal.org/documentation/modules/breakpoint

Frontend for the Win

3. Select a breakpoint group that will be used as a source of breakpoints to define the
image style map.

4. Each breakpoint will have a fieldset. Expand the fieldset and select a single
image style, and then, pick an appropriate image style:

Breakpoint group *
Bartik v
Select a breakpoint group from the installed themes and modules.

¥ 1X WIDE [ALL AND (MIN-WIDTH: 851PX)]

Type
1 Select multiple image styles and use the sizes attribute.

O Select a single image style.
"' Do not use this breakpoint.

See the Responsive Image help page for information on the sizes attribute.

Image style
Large (480x480) A

Select an image style for this breakpoint.

¥ 1X NARROW [ALL AND (MIN-WIDTH: 560PX) AND (MAX-WIDTH: 850PX)]

Type
1 Select multiple image styles and use the sizes attribute.

O Select a single image style.
"1 Do not use this breakpoint.

See the Responsive Image help page for information on the sizes attribute.

Image style
| Medium (220x220) v
Select an image style for this breakpoint.

5. Additionally, choose a fallback image style in the event of a browser that doesn't
support source sets, such as Internet Explorer 8.

Chapter 5

6. Click on Save to save the configuration, and add the new style set:

Responsive image styles 7
Home » Administration » Configuration » Media
I +" Responsive image style Article image saved.

A responsive image style associates an image style with each breakpoint defined by your theme.

+ Add responsive image style

LABEL MACHINE NAME OPERATIONS

Article image article_image Edit -

7. Go to Structure and Content types, and select Manage Display from the Article
content type's drop-down menu.

Change the Image field's formatter to Responsive image.

9. Click on the Settings tab of the field formatter to choose your new Responsive image
style set. Select Article image from the Responsive image style dropdown:

FIELD LABEL FORMAT

& Image - Hidden - = Format settings: Responsive image

Responsive image style *
Article image
Configure Responsive Image Styles
Link image to
Nothing «

10. Click on Update to save the field formatter settings, and then click on Save to save
the field display settings.

The Responsive image style provides three components: a responsive image element, the
responsive image style configuration entity, and the responsive image field formatter. The
configuration entity is consumed by the field formatter and displayed through the responsive
image element.

Frontend for the Win

The responsive image style entity contains an array of breakpoints to image style mappings.
The available breakpoints are defined by the selected breakpoint groups. Breakpoint groups
can be changed anytime; however, the previous mappings will be lost.

The responsive image element prints a picture element with each breakpoint defining a
new source element. The breakpoint's media query value is provided as the media attribute
for the element.

. For Internet Explorer 9, Drupal 8 ships with the picturefill
% polyfill. Internet Explorer 9 does not recognize source elements
e wrapped by a picture element. The polyfill wraps the sources
around a video element within the picture element.

There's more...

Performance first delivery

A benefit of using the responsive image formatter is performance. Browsers will only download
the resources defined in the srcset of the appropriate source tag. This not only allows you
to a deliver a more appropriate image size but also a smaller payload on smaller devices.

Removing picturefill polyfill

The Responsive Image module attaches the picturefill library to the responsive image
element definition. The element's template also provides HTML to implement the polyfill.
The polyfill can be removed by overriding the element's template and overriding the
picturefill library to be disabled.

The following snippet, when added to a theme's info.yml, will disable the picturefill
library:

libraries-override:
core/picturefill: false

Then, the responsive-image.html . twig must be overridden by the theme to remove the
extra HTML generated in the template for the polyfill:

1. Copy responsive-image.html.twig from core/modules/responsive
image/templates to the theme templates folder.

2. Edit responsive-image.html.twig and delete the Twig comment and IE
conditional to output the initial video tag.

3. Remove the last conditional, which provides the closing video tag.

Chapter 5

See also

» Refer to the picture element on the Mozilla Developer Network at https://
developer.mozilla.org/en-US/docs/Web/HTML/Element /picture

» Refertopicturefill forlEQ athttp://scottjehl.github.io/
picturefill/#ie9

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/picture
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/picture
http://scottjehl.github.io/picturefill/#ie9
http://scottjehl.github.io/picturefill/#ie9

Creating Forms with
the Form API

In this chapter, we will explore the various recipes to work with forms in Drupal:

» Creating a form

» Using new HTML5 elements

» Validating form data

» Processing submitted form data

» Altering other forms

Introduction

Drupal provides a robust API for creating and managing forms without writing any HTML.
Drupal handles form building, validation, and submission. Drupal handles the request to
either build the form or process the HTTP POST request. This allows developers to simply
define the elements in a form, provide any additional validation if needed, and then handle
a successful submission through specific methods.

This chapter contains various recipes to work with forms in Drupal through the Form API.
In Drupal 8, forms and form states are objects.

Creating Forms with the Form API

Creating a form

In this recipe, we will create a form, which will be accessible from a menu path. This will
involve creating a route that tells Drupal to invoke our form and display it to the end user.

Forms are defined as classes, which implement \Drupal\Core\Form\FormInterface.
The \Drupal\Core\Form\FormBase serves as a utility class that is intended to be
extended. We will extend this class to create a new form.

Getting ready

Since we will be writing the code, you will want to have a custom module. Creating a custom
module in Drupal is simply creating a folder and an info.yml file. For this recipe, we will
create a folder under /modules in your Drupal folder called drupalform.

In the drupalform folder, create drupalform. info.yml. The info.yml file is what
Drupal will parse to discover modules. An example of a module's info.yml file is as follows:

name: Drupal form example

description: Create a basic Drupal form, accessible from a route
type: module

version: 1.0

core: 8.x

The name will be your module's name, and the description will be listed on the Extend page.
Specifying the core tells Drupal what version of Drupal it is built for. Chapter 4, Extending
Drupal covers how to create a module in depth.

How to do it...

1. Create an src folder in your module directory. In this directory, create a Form directory,
which will hold the class that defines your form.

2. Next, create a file called ExampleForm. php in your module's src/Form directory.
Drupal utilizes PSR4 to discover and autoload classes.

For brevity, this defines that there should be one class per
VS file, with each filename matching the class name. The folder

structure will also mimic the namespace expected.

122

Chapter 6

We will edit the ExampleForm. php file and add the proper PHP namespace, classes
used, and the class itself:

<?php

/**
* @file
* Contains \Drupal\drupalform\Form\ExampleForm.

**/
namespace Drupalldrupalform\Form;

use Drupal\Core\Form\FormBase;
use Drupal\Core\Form\FormStateInterface;

class ExampleForm extends FormBase {

}

The namespace defines the class in your module's Form directory. The autoloader
will now look into the drupal form module path and load the ExampleForm class
from the src/Form directory.

The use statement allows us to use just the class name when referencing FormBase
and, in the next steps, FormStateInterface. Otherwise, we would be forced to use
the fully qualified namespace path for each class whenever it is used.

\Drupal\Core\Form\FormBase is an abstract class and requires us to implement
four remaining interface methods: getFormId, buildForm, validateForm, and
submitForm. The latter two are covered in their own recipes; however, we will need
to define the method stubs:

class ExampleForm extends FormBase {

/**
* {@inheritdoc}
*/

public function getFormId()
return 'drupalform_example_form';

}

/**
* {@inheritdoc}
*/
public function buildForm(array $form, FormStateInterface $form
state) {

Creating Forms with the Form API

12

// Return array of Form API elements.

[**
* {@inheritdoc}
*/

public function validateForm(array &$form, FormStateInterface

$form state) ({

// Validation covered in later recipe, required to satisfy

interface

}

[**
* {@inheritdoc}
*/

public function submitForm(array &S$Sform, FormStateInterface

$form state) ({

// Validation covered in later recipe, required to satisfy

interface

}

o This code flushes out the initial class definition from the previous step.
FormBase provides utility methods and does not satisfy the interface
requirements for FormStateInterface. We define those here, as they
are unique across each form definition.

o The getFormId method returns a unique string to identify the form, for
example, site information. You may encounter some forms that append
__formto the end of their form ID. This is not required, and it is just a naming
convention often found in previous versions of Drupal.

o The buildForm method is covered in the following steps. The validateForm
and submitForm methods are both called during the Form API processes and
are covered in later recipes.

The buildForm method will be invoked to return Form API elements that are
rendered to the end user. We will add a simple text field to ask for a company
name and a submit button:

[**
* {@inheritdoc}

*/

public function buildForm(array $form, FormStateInterface $form
state) {

Chapter 6

$form['company name'] = array(

'#type' => 'textfield',

"#title' => Sthis->t ('Company name'),
) ;

Sform['submit'] = array(
'#type' => 'submit',
"#value' => Sthis->t('Save'),

)i
return Sform;

}

We have added a form element definition to the form array. Form elements are
defined with a minimum of a type to specify what the element is and a title to act
as the label. The title uses the t method to ensure that it is translatable.

Adding a submit button is done by providing an element with the type submit.

6. To access the form, we will create drupalform.routing.yml in the module's
folder. A route entry will be created to instruct Drupal to use \Drupal\Core\Form\
FormBuilder to create and display our form:

drupalform.form:
path: '/drupal-example-form!'
defaults:
_title: 'Example form'
_form: '\Drupal\drupalform\Form\ExampleForm'
reguirements:
_access: 'TRUE'

In Drupal, all routes have a name, and this example defines it as drupalform.
form. Routes then define a path attribute and override default variables. This route
definition has altered the route's title, specified it as a form, and given the fully
qualified namespace path to this form's class.

Routes need to be passed a requirements property with specifications or else the
route will be denied access.

7. Visit the Extend page and enable the Drupal form example module that we created.

Creating Forms with the Form API

8. Visit /drupal-example-formand the form is now visible, as shown in the
following screenshot:

= Manage Y Shortcuts § admin &' Edit

My account Log out

s y
f Site-Install

Home

e Example form

Company name

Tools

This recipe creates a route to display the form. By passing the _form variable in the defaults
section of our route entry, we are telling the route controller how to render our route's content.
The fully qualified class name, which includes the namespace, is passed to a method located
in the form builder. The route controller will invoke \Drupal: : formBuilder () - s5getForm
(\Drupal\drupalform\Form\ExampleForm) based on the recipe. At the same time, this
can be manually called to embed the form elsewhere.

A form builder instance that implements \Drupal\Core\Form\FormBuilderInterface
will then process the form by calling buildForm and initiate the rendering process. The
buildForm method is expected to return an array of form elements and other API options.
This will be sent to the render system to output the form as HTML.

Many components make up a form created through Drupal's Form API. We will explore a few of
them in depth.

126

Chapter 6

Form element definitions

A form is a collection of form elements, which are types of plugin in Drupal 8. Plugins are
small pieces of swappable functionalities in Drupal 8. Plugins and plugin development are
covered in Chapter 7, Plug and Play with Plugins. At the time of writing this book, the Drupal.
org Form API reference table was severely out of date and did not reflect all of the form
element types available.

Here are some of the most common element properties that can be used:

» weight: This is used to alter the position of a form element in a form. By default,
elements will be displayed in the order in which they were added to the form array.
Defining a weight allows a developer to control element positions.

» default_value: This gives a developer the ability to prefill the element with a
value. For example, when building configuration forms that have existing data or
when editing an entity.

» placeholder: This is new to Drupal 8. Drupal 8 provides a new HTML5 support,
and this attribute will set the placeholder attribute on the HTML input.

The form state

The \Drupal\Core\Form\FormStateInterface object represents the current state
of the form and its data. The form state contains user-submitted data for the form along
with build state information. Redirection after form submission is handled through the
form state as well. You will interact more with the form state during the validation and
submission recipes.

The form cache

Drupal utilizes a cache table for forms. This holds the build table, as identified by form build
identifiers. This allows Drupal to validate forms during AJAX requests and easily build them
when required. It is important to keep the form cache in persistent storage; otherwise, there
may be repercussions, such as loss of form data or invalidating forms.

» Form APl in Drupal 8 at https://www.drupal .org/node/2117411

» The Drupal 8 Form API reference at https://api.drupal.org/api/drupal/
developer!topics!forms api reference.html/8

» Chapter 4, Extending Drupal
» Chapter 7, Plug and Play with Plugins, to learn more about derivatives

https://www.drupal.org/node/2117411
https://api.drupal.org/api/drupal/developer!topics!forms_api_reference.html/8
https://api.drupal.org/api/drupal/developer!topics!forms_api_reference.html/8

Creating Forms with the Form API

Using new HTMLS5 elements

With the release of Drupal 8, Drupal has finally entered into the realm of HTML5. The Form
API now allows utilization of HTML5 input elements out of the box. These include the following
element types:

>

>

>

>

>

>

tel
email
number
date
url
search

range

This allows your forms in Drupal to leverage native device input methods along with native
validation support.

Getting ready

This recipe will walk you through adding elements to a Drupal form. You will need to have
a custom form implemented through a module, such as the one created in the Creating a
form section.

How to do it...

1.

128

In order to use the telephone input, you need to add a new form element definition
of the tel type to your buildForm method:

Sform['phone'] = array(
'#type' => 'tel',
'#title' => t('Phone'),

) ;

In order to use the e-mail input, you need to add a new form element definition
of the email type to your buildForm method. It will validate the format of e-mail
addresses in the Form API:
Sform['email'] = array(
"#type' => 'email',
'#title' => t('Email'),
)

Chapter 6

3.

In order to use the number input, you need to add a new form element definition of
the number type to your buildForm method. It will validate the range and format of
the number:
Sform['integer'] = array(
'#type' => 'number’',
"#title' => t('Some integer'),
// The increment or decrement amount
'#step' => 1,
// Miminum allowed value
"#min' => 0,
// Maxmimum allowed value
"#max' => 100,
)

In order to use the date input, you need to add a new form element definition of the
date type to your buildForm method. You can also pass the #date date format
option to alter the format used by the input:

Sform['date'] = array(
'#type' => 'date',
'#title' => t('Date'),
'#date_date format' => 'Y-m-4d',
)i

In order to use the URL input, you need to add a new form element definition of
the url type to your buildForm method. The element has a validator to check
the format of the URL:

Sform['website'] = array(
'#type' => 'url',
'#title' => t('Website'),

)

In order to use the search input, you need to add a new form element definition of
the search type to your buildForm method. You can specify a route name that the
search field will query for autocomplete options:

Sform['search'] = array(
'#type' => 'search',
'#title' => t('Search'),
'#autocomplete route name' => FALSE,
)

Creating Forms with the Form API

7. In order to use the range input, you need to add a new form element definition of
the range type to your buildForm method. It is an extension of the number element
and accepts a min, max, and step property to control the values of the range input:

Sform['range'] = array(
'#type' => 'range',
'#title' => t('Range'),
"#min' => 0,

"#max' => 100,
'#step' => 1,

Each type references an extended class of \Drupal\Core\Render\Element\
FormElement. It provides the element's definition and additional functions. Each element
defines a prerender method in the class that defines the input type attribute along with
other additional attributes.

Each input defines its theme as input __ TYPE, allowing you to copy the input .html.twig
base to input . TYPE.html . twig for templating. The template then parses the attributes
and renders the HTML.

Some elements, such as e-mails, provide validators for the element itself. The e-mail element
defines the validateEmail method. Here is an example of the code from \Drupal\Core\
Render\Element\Email: :valdateEmail

/**
* Form element validation handler for #type 'email'.
*
* Note that #maxlength and #required is validated by _form_
validate () already.
*/
public static function validateEmail (&$element, FormStateInterface
$form state, &$complete form) {
Svalue = trim(S$Selement ['#value'l) ;
$form state->setValueForElement ($element, $value) ;

if ($value !== '' && !\Drupal::service('email.validator') -
>isValid($value)) {
Sform_state->setError($Selement, t('The email address %mail is
not valid.', array('$mail' => S$value)));

}

130

Chapter 6

This code will be executed on form submission and validate the provider's e-mail. It does this
by taking the current value and trimming any whitespaces and using the form state object

to update the value. The email .validator service is invoked to validate the e-mail. If this
method returns false, the form state is invoked to mark the element as the one that has an
error. If the element has an error, the form builder will prevent form submission, returning the
user to the form to fix the value.

Elements are provided through Drupal's plugin system and are explored in detail in the
next section.

Specific element properties

Elements can have their own unique properties along with individual validation methods. At
the time of writing, the Drupal 8 Form Reference table is incomplete and does not highlight
these new elements nor their properties. However, the classes can be examined and the
definition method can be read to learn about the properties of each element. These classes
are under the \Drupal\Core\Render\Element hamespace located in /core/lib/
Drupal/Core/Render/Element:

core | lib Drupal Core Render Element @

MName -

Ackions.php

Ajax.php

Button.php
Checkbox.php
Checkboxes.php
Colorphp
CompositeFormElementTrait.php
Container.php
Date.php

Details.php
Dropbutton.php
Elementinterface.php
Email.php
Fieldgroup.php
Fieldset.php

File.php

Creating Forms with the Form API

Creating new elements

Each element used in the Form API extends the \Drupal\Core\Render\Element\
FormElement class, which is a plugin. Modules can provide new element types by adding
classes to their Plugins/Element namespace. Refer to Chapter 7, Plug and Play with Plugins
for more information on how to implement a plugin.

» Form APl in Drupal 8 at https://www.drupal .org/node/2117411
» Chapter 7, Plug and Play with Plugins

Validating form data

The Form API requires all form classes to implement the \Drupal\Core\Form\
FormInterface. The interface defines a validation method. The validateForm
method is invoked once a form has been submitted and provides a way to validate the data
and halt the processing of the data if required. The form state object provides methods for
marking specific fields as having the error, providing a user experience tool to alert your
users specifically to the problem input.

This recipe will be based on the custom module and form created in the Creating a form
section of this chapter. We will be validating the length of the submitted field.

Getting ready

This recipe will be using the module and custom form created in the first Creating a form recipe.

How to do it...

1. Open and edit the \Drupal\drupalform\Form\ExampleForm class in the src/
Form directory of the module.

2. Before validating the company name value, we need to check whether the value
is empty using the isValueEmpty () method from the \Drupal\Core\Form)\
FormStateInterface object:

/**
* {@inheritdoc}
*/
public function validateForm(array &$form, FormStateInterface
$form state)
if (!$form state->isValueEmpty ('company name')) {

132

https://www.drupal.org/node/2117411

Chapter 6

6.

// Value is set, perform validation

}

The \Drupal\Form\FormStateInterface: :isValueEmpty method takes the
key name of the form element. For example, $form[' company name'] from the
buildForm method is referenced through company name in the isvalueEmpty
method.
Next, we will check whether the value's length is greater than five:
/**
* {@inheritdoc}
*/
public function validateForm(array &$form, FormStateInterface
$form state) ({
if (!$form state->isValueEmpty ('company name')) {
if (strlen(Sform state->getValue('company name')) <= 5) {
// Set validation error.

}

The getvalue takes a form element's key and returns the value. Since we have
already verified that the value is not empty, we can retrieve the value.

If you had any experience with previous versions of Drupal, note that
s the form state is now an object and not an array.

If the logic check finds a value with a length of five or fewer characters, it will throw a
form error to prevent submission:

$form state->setErrorByName ('company name', t ('Company name is
less than 5 characters'));

We can place the setErrorByName method in our strlen logic check. If the string
is fewer than five characters, an error is set on the element. The first parameter is the
element's key and the second parameter is the message to be presented to the user.

The entire validation method will resemble the following code:
/**
* {@inheritdoc}
*/
public function validateForm(array &$form, FormStateInterface
$form state) ({

if (!$form state->isValueEmpty ('company name')) {

Creating Forms with the Form API

if (strlen(Sform state->getValue ('company name')) <= 5) {
$form state->setErrorByName ('company name', t ('Company
name is less than 5 characters'));

}
}
}

7. When the form is submitted, the Company name text field will have to have more
than five characters or be empty in order to be submitted.

€ 1 error has been found:
Company name

Home

Search

Example form

Company name

| Four

Tools save

Add content

Before the form builder service invokes the form object's submitForm method, it invokes
the object's validateForm method. In the validation method, the form state can be used
to check values and perform logic checks. In the event that an item is deemed invalid and
an error is set on an element, the form cannot submit and will show errors to the user.

When an error is added to an element, an overall counter for the number of errors on the
form is incremented. If the form has any errors, the form builder service will not execute
the submit method.

This process is executed through the \Drupal\Core\Form\FormValidator class,
which is run through the form builder service.

Chapter 6

Multiple validation handlers

A form can have multiple validation handlers. By default, all forms come with at least one
validator, which is its own validateForm method. There is more that can be added.
However, by default, the form will merely execute ::validateFormand all element
validators. This allows you to invoke static methods on other classes or other forms.

If a class provides methodl and method2, which it would like to execute as well, the following
code can be added to the buildForm method:

S$form state->setValidateHandlers ([
['::validateForm'],
['::methodl'],

[Sthis, 'method2'],

1)

This sets the validator array to execute the default validateForm method and the two
additional methods. You can reference a method in the current class using two colons (: :)
and the method name. Or, you can use an array consisting of a class instance and the
method to invoke.

Accessing multidimensional array values

Forms support nested form elements in the form array. The default \Drupal\Core\Form\
FormStateInterface implementation, \Drupal\Core\Form\FormState, supports
accessing multidimensional array values. Instead of passing a string, you can pass an array
that represents the parent array structure in the form array.

If the element is defined in $form['company'] ['company name'], then we will pass
array ('company', 'company name') to the form state's methods.

Element validation methods

Form elements can have their own validators. The form state will aggregate all of the
element validation methods and pass them to the form validation service. This will run
with the form's validation.

Thereisa limit validation errors option, which can be set to allow selected invalid
errors to be passed. This option allows you to bypass validation on specific elements in your
form. This attribute is defined in the submit button, also known as the triggering element in
the form state. It is an array value consisting of form element keys.

The triggering element value does not operate in the same fashion as the
+ form state's methods in order to access multidimensional array values. In
% order to access a nested value, you need to provide a partially constructed
’ string, representing the nested value. For example, Sform[' company']
['company name'] will have to be added as company] [company name.

Creating Forms with the Form API

Processing submitted form data

A form's purpose is to collect data and do something with the data that was submitted.
All forms need to implement the \Drupal\Core\Form\FormInterface. The interface
defines a submit method. Once the Form API has invoked the class's validation method,
the submit method can be run.

This recipe will be based on the custom module and form created in the Creating a form
recipe of this chapter. We will convert the form to \Drupal\Core\FormConfigBaseForm,
allowing easy storage of the field element.

Getting ready

In this recipe, we will be using the module and custom form created in the first Creating a
form recipe.

How to do it...

1. Inyour module's directory, create a config directory, and then create a directory
inside it named install.

2. Create a file named drupalform. schema.yml; this file will tell Drupal about the
configuration item that we want to save.
3. Add the following configuration schema definition to drupalform. schema.yml:
drupalform.company:
type: config object
label: 'Drupal form settings'
mapping:
company name:
type: string
label: 'A company name'

This tells Drupal that we have the configuration with the name drupalform.
company and it has a valid option of company name. We will cover this in more
detail in Chapter 9, Confiuration Management - Deploying in Drupal 8.

4. Replace the FormBase use statement to use the ConfigFormBase class:
<?php
/**
* @file

* Contains \Drupalldrupalform\Form\ExampleForm.

**/

136

Chapter 6

namespace Drupalldrupalform\Form;

use Drupal\Core\Form\ConfigFormBase;
use Drupal\Core\Form\FormStateInterface;

Update the ExampleForm class to extend ConfigFormBase instead to harness
its implementations:

class ExampleForm extends ConfigFormBase

This allows us to reuse methods from the ConfigFormBase class and write less
about our own implementation.

For ExampleForm to implement ConfigFormBase, the
getEditableConfigNames method needs to be implemented to
satisfy the \Drupal\Core\Form\ConfigBaseTrait trait:

/**

* {@inheritdoc}

*/
protected function getEditableConfigNames () {

return ['drupalform.company'l];

}

This function defines the configuration names, which will be editable by the
form. This brings all the configurations under drupalform[company] to be
editable when accessed through the form with the config method provided by
ConfigFormBaseTrait

Remove the submit form element. Update the buildForm method to return data
from the parent's method rather than from $form itself. We also need to add a
#default value option to company name SO that it uses an existing value the
next time our form is loaded:
/**
* {@inheritdoc}
*/
public function buildForm(array $form, FormStateInterface $form
state) {
$form['company name'] = array(
'#type' => 'textfield',
'#title' => t ('Company name'),
'#default value' => $this->config('drupalform.company') -
>get ('company name'),
)

return parent::buildForm($form, $form state);

Creating Forms with the Form API

The ConfigFormBase class implements the buildForm method to provide
a reusable submit button. It also unifies the presentation across Drupal
configuration forms:

Example form

Company name

Save configuration

8. The CconfigFormBase provides a configuration factory method. We will add a
default value property to our element with the currently saved item:

/**
* {@inheritdoc}
*/
public function buildForm(array $form, FormStateInterface $form
state) {
S$form['company name'] = array(
"#type' => 'textfield',
'#title' => t('Company name'),
'#default value' => $this->config('drupalform.company') -

>get ('name'),
) ;
return parent::buildForm($form, $form state);

}

The #default_value key is added to the element's definition. It invokes the
config method provided by ConfigFormBaseTrait to load our configuration
group and access a specific configuration value.

9. The final step is to save the configuration in the submitForm method:

/**

* {@inheritdoc}

*/
public function submitForm(array &S$Sform, FormStateInterface

$form state) ({
parent::submitForm($form, $form state);
Sthis->config('drupalform.company')
->set ('name', $form state->getValue ('company name')) ;

138

Chapter 6

The config method is invoked by specifying our configuration group. We then use
the set method to define name as the value from the company name text field.

10. When you edit your form and click on the submit button, the value that you entered
in the Company name field will now be saved in the configuration.

The ConfigFormBase utilizes the ConfigFormBaseTrait to provide easy access to a
configuration factory. The class's implementation of buildForm also adds a submit button
and theme styling to forms. The submit handler displays a configuration saved message but
relies on implementing a module to save the configuration.

The form saves its data under the drupal form. company hamespace. The company name
value is stored as name and can be accessed as drupalform. company .name. Note that
the configuration name does not have to match the form element's key.

Multiple submit handlers

A form can have multiple submit handlers. By default, all forms implement a submit handler,
which is its own submitForm method. The form will execute ::submitForm automatically
and any defined on the triggering element. There is more that can be added. However, this
allows you to invoke static methods on other classes or other forms.

If a class provides methodl and method2, which it would like to execute as well, the following
code can be added to the buildForm method:

Sform state->setSubmitHandlers ([
['"::submitForm'],
['"::methodl'],

[Sthis, 'method2']

1)

This sets the submit handler array to execute the default submitForm method and two
additional methods. You can reference a method in the current class using two colons (: :)
and the method name. Or, you can use an array consisting of a class instance and the method
to be invoked.

» Chapter 9, Configuration Management- Deploying in Drupal 8

Creating Forms with the Form API

Altering other forms

Drupal's Form API does not just provide a way to create forms. There are ways to alter forms
through a custom module that allows you to manipulate the core and contributed forms. Using
this technique, new elements can be added, default values can be changed, or elements can
even be hidden from view to simplify the user experience.

The altering of a form does not happen in a custom class; this is a hook defined in the module
file. In this recipe, we will use the hook_form FORM ID alter () hook to add a telephone
field to the site's configuration form.

Getting ready

This recipe assumes that you have a custom module to add the code to.

How to do it...

1. Inthe modules folder of your Drupal site, create a folder named mymodule.

2. Inthe mymodule folder, create a mymodule. info.yml, containing the
following code:
name: My module
description: Custom module that uses a form alter
type: module
core: 8.x

Next, create a .module file in your module's directory:
<?php

/**
* @file
* Custom module that alters forms.

*/

As a best practice, files have document block headers that describe the purpose of
the file and what it pertains to.

3. Addthe mymodule form system site information settings alter ()
hook. The form ID can be found by viewing the form's class and reviewing the
getFormId method:

/**
* Implements hook form FORM ID alter().
**/

140

Chapter 6

function mymodule form system site information settings
alter (&S$form, \Drupal\Core\Form\FormStatelInterface $form state) {

// Code to alter form or form state here

}

Drupal will call this hook and pass the current form array and its form state object.
The form array is passed by reference, allowing our hook to modify the array without
returning any values. This is why the $form parameter has the ampersand (&) before
it. In PHP, all objects are passed by reference.

W When calling a class in a normal file, such as the module file, you need
~ to either use the fully qualified class name or add a use statement at
Q the beginning of the file. In this example, we can add \Drupal\Core\
Form\FormStateInterface

Next, we add our telephone field to the form so that it can be displayed and saved:
/**
* Implements hook form FORM ID alter().
*/
function mymodule form system site information settings
alter (&$form, \Drupal\Core\Form\FormStatelInterface $form state) ({
Sform['site phone'] = array(
'#type' => 'tel',
'#title' => t('Site phone'),
'#default value' => Drupal::config('system.site') -
>get ('phone"') ,
) ;
}

We retrieve the current phone value from system. site so that it can be modified if
already set.

Visit the Extend page and enable the module My module that we created.

Creating Forms with the Form API

6.

142

Review the Site Information form under Configuration and test setting the site
telephone number:

¥ ERROR PAGES

Default 403 (access denied) page

This page is displayed when the requested document is denied to the current user. Leay
page

Default 404 (not found) page

This page is displayed when no other content matches the requested document. Leave f

Site phone

Save configuration

We need to add a submit handler in order to save the configuration for our new field.
We will need to add a submit handler to the form and a submit handler callback:
/**
* Implements hook form FORM ID alter().
*/
function mymodule form system site information settings
alter (&$form, \Drupal\Core\Form\FormStatelInterface $form state) ({
Sform['site phone'] = array(
'#type' => 'tel',
"#title' => t('Site phone'),
'#default value' => Drupal::config('system.site')-
>get ('phone') ,
)i
Sform['#submit'] [] = 'mymodule system site information phone
submit';

}

/**

* Form callback to save site phone

* @param array Sform

* @param \Drupal\Core\Form\FormStateInterface $form state
*/

function mymodule system site information phone submit (array
&Sform, \DrupallCore\Form\FormStateInterface $form state) {

Chapter 6

Sconfig = Drupal::configFactory()->getEditable('system.site');
Sconfig

->set ('phone', $form state->getValue('site phone'))

->save () ;

}

The $form['#submit '] modification adds our callback to the form's submit
handlers. This allows our module to interact with the form once it has been submitted.

The mymodule system site information phone submit callback is passed
the form array and form state. We load the current configuration factory to receive the
configuration that can be edited. We then load system. site and save phone based
on the value from the form state.

8. Submit the form and verify that the data has been saved.

The \Drupal\system\Form\SiteInformationForm class extends \Drupal\Core\
Form\ConfigFormBase to handle the writing of form elements as individual configuration
values. However, it does not write the values automatically to the form state. In this recipe,
we need to add a submit handler to manually save our added field.

The form array is passed by reference, allowing modifications to be made in the hook to alter
the original data. This allows us to add an element or even modify existing items, such as
titles or descriptions.

There's more...

Adding additional validate handlers

Using a form alter hook, we can add additional validators to a form. The proper way to do this
is to load the current validators and add the new one to the array and reset the validators in
the form state:

$validators = $form state->getValidateHandlers() ;
$validators[] = 'mymodule form validate';
$form state->setValidateHandlers ($validators) ;

First, we receive all of the currently set validators from the form state as the $validators
variable. We then append a new callback to the end of the array. Once the $validators
variable has been modified, we override the form state's validator array by executing the
setValidateHandlers method

Creating Forms with the Form API

You can also use PHP array manipulation functions to add your validators

in different execution orders. For example, array unshift will place
’ your validator at the beginning of the array so that it can run first.

Adding additional submit handlers

Using a form alter hook, we can add additional submit handlers to a form. The proper way to
do this is to load the current submit handlers, add the new one to the array, and reset the
validators in the form state:

$submit handlers = $form state->getSubmitHandlers() ;
$submit handlers [] = 'mymodule form submit';
S$form state->setSubmitHandlers ($submit_handlers) ;

First, we receive all of the currently set submit handlers from the form state as the
$submit handlers variable. We then append a new callback to the end of the array.
Once the ssubmit handlers variable has been modified, we override the form state's
submit handler array by executing the set SubmitHandlers method.

You can also use PHP array manipulation functions to add your callback

in different execution orders. For example, array unshift will place
g your callback at the beginning of the array so that it can run first.

Plug and Play
with Plugins

In this chapter, we will dive into the new Plugin API provided in Drupal 8:

» Creating blocks using plugins

» Creating a custom field type

» Creating a custom field widget

» Creating a custom field formatter

» Creating a custom plugin type

Introduction

Drupal 8 introduces plugins. Plugins power many items in Drupal, such as blocks, field types,
field formatters, and many more. Plugins and plugin types are provided by modules. They
provide a swappable and specific functionality. Breakpoints, as discussed in Chapter 5, Front
End for the Win, are plugins. In this chapter, we will discuss how plugins work in Drupal 8 and
show you how to create blocks, fields, and custom plugin types.

Each version of Drupal has had subsystems, which provided pluggable components and

even contributed modules. A problem arose in the implementation and management of these.
Blocks, fields, and image styles each had an entirely different system to learn and understand.
The Plugin API exists in Drupal 8 to mitigate this problem and provide a base API to implement
pluggable components. This has greatly improved the developer experience when working with
Drupal core's subsystems. In this chapter, we will implement a block plugin. We will use the
Plugin API to provide a custom field type along with a widget and formatter for the field. The last
recipe will show you how to create and use a custom plugin type.

Plug and Play with Plugins

Creating blocks using plugins

In Drupal, a block is a piece of content that can be placed in a region provided by a theme.
Blocks are used to present specific kinds of content, such as a user login form, a snippet of
text, and many more.

Blocks are configuration entities, and the block module uses the Drupal plugin system as a
way to define blocks for modules. Custom blocks are defined in the PHP code in the module's
Plugin class hamespace. Each class in the Plugin/Block namespace will be discovered
by the block module's plugin manager.

In this recipe, we will define a block that will display a copyright snippet and the current year,
and place it in the footer region.

Getting ready

Create a new module like the one shown in this recipe. We will refer to the module as mymodule
throughout the recipe. Use your module's appropriate name.

How to do it...

1. Create the src/Plugin/Block directory in your module. This will translate the
\Drupal\mymodule\Plugin\Block namespace and allow a block plugin discovery.

2. Create a Copyright .php file in the newly created folder so that we can define the
Copyright class for our block:

Name -

v B src

¥ || Plugin
v B Block

R Copyright.php

3. The Copyright class will extend \Drupal\Core\Block\BlockBase:
<?php

/**

* @file

146

Chapter 7

* Contains \Drupal\mymodule\Plugin\Block\Copyright.
*/

namespace Drupal\mymodule\Plugin\Block;

use Drupal\Core\Block\BlockBase;

class Copyright extends BlockBase {

}

We extend the BlockBase class, which implements \Drupal\Core\Block\
BlockPluginInterface and provides us with an implementation of nearly
all of its methods.

Blocks are annotated plugins. Annotated plugins use documentation blocks to
provide details of the plugin. We will provide the block's identifier, administrative
label, and category:

<?php
/**
* @file

* Contains \Drupal\mymodule\Plugin\Block\Copyright.
*/

namespace Drupal\mymodule\Plugin\Block;

use Drupal\Core\Block\BlockBase;

/**

* @Block (

* id = "copyright block",

* admin label = @Translation("Copyright"),
* category = @Translation("Custom")

*)

*/

class Copyright extends BlockBase {

}

The annotation document block of the class identifies the type of plugin through
@Block. Drupal will parse this and initiate the plugin with the properties defined
inside it. The id is the internal machine name, the admin_label is displayed on
the block listing page, and category shows up in the block select list.

We need to provide a build method to satisfy the \Drupal\Core\Block\
BlockPluginInterface interface. This creates the output to be displayed:
<?php

/**

* @file

Plug and Play with Plugins

* Contains \Drupal\mymodule\Plugin\Block\Copyright
*/

namespace Drupal\mymodule\Plugin\Block;

use Drupal\Core\Block\BlockBase;

/**

* @Block (

* id = "copyright block",

* admin label = @Translation("Copyright"),

* category = @Translation ("Custom")
*)
*/
class Copyright extends BlockBase {
/**
* {@inheritdoc}
*/

public function build()
$date = new \DateTime () ;
return [
'#markup' => t('Copyright @year© My Company', [
'@year' => $date->format('Y'),

The build method returns a render array that uses Drupal's t function to substitute
@year for the \DateTime object's output that is formatted as a full year.

1
‘Q Since PHP 5.4, a warning will be displayed if you have not

explicitly set a timezone in your PHP's configuration.

Rebuild Drupal's cache so that the new plugin can be discovered.
9. Inthe Footer fourth region, click on Place block.

10. Review the block list and add the custom block to your regions, for instance, the
footer region. Find the Copyright block, and click on Place block:

148

Chapter 7

Primary admin actions core Place block
Tabs core Place block
Copyright Custom i Place block
Execute PHP Devel Place block
Search form Forms Place block
Switch user Forms : Place block

11. Uncheck the Display title checkbox so that only our block's content can be rendered.
12. Review the copyright statement that will always keep the year dynamic:

Drupal 8 Cookbook

Search Welcome to Drupal 8 Cookbook

No front page content has been created yet.

The plugin system works through plugin definitions and plugin managers for those definitions.
The \Drupal\Core\Block\BlockManager class defines the block plugins that need be
located in the P1ugin/Block hamespace. It also defines the base interface that needs to be
implemented along with the Annotation class, which is to be used, when parsing the class's
document block.

Plug and Play with Plugins

When Drupal's cache is rebuilt, all available namespaces are scanned to check whether
classes exist in the given plugin namespace. The definitions, via annotation, will be processed
and the information will be cached.

Blocks are then retrieved from the manager, manipulated, and their methods are invoked.
When viewing the Block layout page to manage blocks, the \Drupal\Core\Block\

BlockBase class's 1abel method is invoked to display the human-readable name. When
a block is displayed on a rendered page, the build method is invoked and passed to the

theming layer to be output.

Altering blocks

Blocks can be altered in two different ways: the plugin definition can be altered, the build
array, or the view array out.

A module can implement hook block alterinits .module file and modify the
annotation definitions of all the discovered blocks. The will allow a module to change
the default user login block from user login to Login:

/**

* Implements hook block alter().

*/

function mymodule block alter (&$definitions) {
$definitions['user login block'] ['admin label'] = t('Login');

}

A module can implement hook block build alter and modify the build information

of a block. The hook is passed the build array and the \Drupal\Core\Block\
BlockPluginInterface instance for the current block. Module developers can use this to
add cache contexts or alter the cache ability of metadata:

/**
* Implements hook block build alter().
*/
function hook_block_build alter (array &$build, \Drupal\Core\Block\
BlockPluginInterface $block) {
// Add the 'url' cache the block per URL.
if ($block->getBaseId() == 'myblock') ({
$build['#contexts'] [] = 'url';

150

Chapter 7

You can test the modification of cache metadata by altering the

recipe's block to output a timestamp. With caching enabled, you
s will see that the value persists on the same URL, but it will be

different across each page.

Finally, a module can implement hook_block view_ alter in order to modify the output to
be rendered. A module can add content to be rendered or remove content. This can be used
to remove the contextual links item, which allows inline editing from the front page of a site:

/**
* Implements hook block view_alter().
*/
function hook_block_view_alter (array &$build, \Drupal\Core\Block\
BlockPluginInterface S$block) {
// Remove the contextual links on all blocks that provide them.
if (isset (Sbuild['#contextual links']))
unset (sbuild['#contextual links']);

}
}

Block settings forms

Blocks can provide a setting form. This recipe provides the text My Company for the copyright
text. Instead, this can be defined through a text field in the block's setting form.

Let's revisit the Copyright . php file that contained our block's class. A block can override
the default defaultConfiguration method, which returns an array of setting keys and
their default values. The blockForm method can then override the \Drupal\Core\Block\
BlockBase empty array implementation to return a Form APl array to represent the settings
form:

/**
* {@inheritdoc}
*/
public function defaultConfiguration()
return [
'company name' => '',

1;

/**
* {@inheritdoc}
*/
public function blockForm($form, \Drupal\Core\Form\
FormStateInterface $form state) {

Plug and Play with Plugins

S$form['company name'] = [

'#type' => 'textfield',

'#title' => t ('Company name'),

'#default value' => $this->configuration['company name'],
1
return Sform;

}
The blockSubmit method must then be implemented, which updates the block's configuration:

/**
* {@inheritdoc}
*/
public function blockSubmit ($form, \Drupal\Core\Form\
FormStatelInterface $form state) {

$this->configuration['company name'] = $form state-
>getValue ('company name') ;

}

Finally, the build method can be updated to use the new configuration item:

/**
* {@inheritdoc}
*/

public function build()
$date = new \DateTime () ;
return [

'"#markup' => t('Copyright @year© @company', [
'@year' => $date->format('Y'),
'@company' => $this->configuration['company name'],
1),
1
}

You can now go back and visit the Block layout form, and click on Configure in the
Copyright block. The new setting will be available in the block instance's configuration form.

Defining access to a block

Blocks, by default, are rendered for all users. The default access method can be overridden.
This allows a block to only be displayed to authenticated users or based on a specific
permission:

[**
* {@inheritdoc}

*/

152

Chapter 7

protected function blockAccess (AccountInterface $account) {

$route name = $this->routeMatch->getRouteName () ;
if ($account->isAnonymous () && !in array(S$Sroute name,
array ('user.login', 'user.logout'))) {

return AccessResult::allowed()

->addCacheContexts (['route.name',
'user.roles:anonymous']) ;

}

return AccessResult::forbidden() ;

}

The preceding code is taken from the user login block. It allows access to the block if
the user is logged out and is not on the login or logout page. The access is cached based on
the current route name and the user's current role being anonymous. If these are not passed,
the access returned is forbidden and the block is not built.

Other modules can implement hook block access to override the access of a block:

/**

* Implements hook block access().

*/
function mymodule block_ access (\Drupal\block\Entity\Block $block,
$operation, \Drupal\Core\Session\AccountInterface $account) {

// Example code that would prevent displaying the Copyright' block
in

// a region different than the footer.

if ($operation == 'view' && $block->getPluginId() == 'copyright') {

return \Drupal\Core\Access\AccessResult: :forbiddenIf ($block-

>getRegion () != 'footer');

}

// No opinion.
return \Drupal\Core\Access\AccessResult: :neutral() ;

}

A module implementing the preceding hook will deny access to our Copyright block if it is not
placed in the footer region.

See also

» Refer to Creating a custom plugin type recipe of this chapter

» block.api.php at https://api.drupal.org/api/drupal/
core%2lmodules%21lblock%21block.api.php/8

https://api.drupal.org/api/drupal/core%21modules%21block%21block.api.php/8
https://api.drupal.org/api/drupal/core%21modules%21block%21block.api.php/8

Plug and Play with Plugins

Creating a custom field type

Fields are powered through the plugin system in Drupal. Field types are defined using the
plugin system. Each field type has its own class. A new field type can be defined through a
custom class that will provide schema and property information.

In this example, we will create a simple field type called "real name" to store the first and
last names.

Field types just define ways in which data can be stored and
4 handled through the Field API. Field widgets provide means for

editing a field type in the user interface. Field formatters provide
’ means for displaying the field data to users. Both are plugins and

will be covered in later recipes.

Getting ready

Create a new module like the one existing in the first recipe. We will refer to the module as
mymodule throughout the recipe. Use your module's appropriate name.

How to do it...

1. We need to create the src/Plugin/Field/FieldType directory in the module's
base location. The Field module discovers field types in the Plugin\Field\
FieldType hamespace.

2. Create a RealName . php file in the newly created directory so that we can define the
RealName class. This will provide our real name field for the first and last names:

Mame -~

v B src

¥ | Plugin
v M Field

¥ || FieldType

B RealName.php

The RealName class will extend the \Drupal\Core\Field\FieldItemBase
<?php
/**
* @file
* Contains \Drupal\mymodule\Plugin\Field\FieldType\RealName.
*/

namespace Drupal\mymodule\Plugin\Field\FieldType;

use Drupal\Core\Field\FieldItemBase;
use Drupal\Core\Field\FieldStorageDefinitionInterface;
use Drupal\Core\TypedData\DataDefinition;

class RealName extends FieldItemBase {

}

The \Drupal\Core\Field\FieldItemBase satisfies methods defined by
inherited interfaces except for schema and propertyDefinitions.

Field types are annotated plugins. Annotated plugins use documentation
blocks to provide details of the plugin. We will provide the field type's identifier,
label, description, category, and default widget and formatter:

<?php

/**

* @file

* Contains \Drupal\mymodule\Plugin\Field\FieldType\RealName.
*/

namespace Drupal\mymodule\Plugin\Field\FieldType;

use Drupal\Core\Field\FieldItemBase;
use Drupal\Core\Field\FieldStorageDefinitionInterface;
use Drupal\Core\TypedData\DataDefinition;

/**

* Plugin implementation of the 'realname' field type.
*

* @FieldType (

* id = "realname",

* label = @Translation("Real name"),

Chapter 7

class:

Plug and Play with Plugins

156

* description = @Translation("This field stores a first and
last name."),

* category = @Translation("General"),

* default widget = "string textfield",

* default formatter = "string"

*)

*/

class RealName extends FieldItemBase {

}

The @FieldType tells Drupal that this is a FieldType plugin. The following
properties are defined:

o Id:Thisisthe plugin's machine name
o Label: This is the human-readable name for the field
o description: This is the human-readable description of the field

o category: This is the category where the field shows up in the user
interface

o default widget: This is the default form widget to be used for editing

o default formatter: This is the default formatter with which you can
display the field

The RealName class needs to implement the schema method defined in the
\Drupal\Core\Field\FieldItemInterface. This returns an array of the
database API schema information:
/**
* {@inheritdoc}
*/
public static function schema (\Drupal\Core\Field\
FieldStorageDefinitionInterface $field definition) {
return array (
'columns' => array(
'first name' => array(
'description' => 'First name.',
'type' => 'varchar',
'length' => '255',
'not null' => TRUE,
'default' => '"',
),

'last _name' => array(
'description' => 'Last name.',
'type' => 'varchar',

Chapter 7

'length' => '255',
'not null' => TRUE,
'default' => '"',
),
),

'indexes' => array(
'first name' => array('first name'),
'last name' => array('last name'),

),
)i
1

The schema method defines the columns in the field's data table. We will define a
column to hold the first name and last name values.

We also need to implement the propertySchema method to satisfy \Drupal\
Core\TypedData\ComplexDataDefinitionInterface. This returns a typed
definition of the values defined in the schema method:
/**
* {@inheritdoc}
*/
public static function propertyDefinitions (\Drupal\Core\Field\
FieldStorageDefinitionInterface $field definition) {
Sproperties['first name']l = \Drupal\Core\TypedData\DataDefinit
ion::create('string')
->setLabel (t ('First name')) ;

S$properties['last name']l = \Drupal\Core\TypedData\DataDefiniti
on::create('string')

->setLabel (t ('Last name')) ;

return S$properties;

}

This method returns an array that is keyed with the same column names provided in
schema. It returns a typed data definition to handle the field type's values.

Rebuild Drupal's cache so that the plugin system can discover the new field type.

Plug and Play with Plugins

8. The field will now appear on the field type management screen:

Add field 77

Home » Administration » Structure » Comment types » Edit » Manage fields

Add a new field
¥ - Select a field type - j
General
Boolean
Comments
Date
Email
Link
Number
List (float)

Drupal core defines a plugin.manager.field.field_type service. By default, this is
handled through the \Drupal\Core\Field\FieldTypePluginManager class. This plugin
manager defines the field type plugins that should be in the Plugin/Field/FieldType
namespace, and all the classes in this namespace will be loaded and assumed to be field

type plugins.

The manager's definition also sets \Drupal\Core\Field\FieldItemInterface as the
expected interface that all the field type plugins will implement. This is why most field types
extend \Drupal\Core\Field\FieldItemBase to meet these method requirements.

As field types are annotated plugins, the manager provides \Drupal\Core\Field\
Annotation\FieldType as the class that fulfills the annotation definition.

When the user interface defines the available fields, the plugin.manager.field.field
type service is invoked to retrieve a list of available field types.

Altering field types

The \Drupal\Core\Field\FieldTypePluginManager class defines the alter method
as field info. Modules that implement hook field info_alter intheir .module
files have the ability to modify field type definitions discovered by the manager:

158

Chapter 7

[**

* Implements hook field info alter().

*/

function mymodule field info alter (&$info) ({
Sinfol['email'] ['label'] = t('E-mail address') ;

}

The preceding alter method will change the human-readable label for the Email field to the
e-mail address.

Defining whether a field is empty

The \Drupal\Core\TypedDate\ComplexDataInterface interface provides an
isEmpty method. This method is used to check whether the field's value is empty, for
example, when verifying that the required field has data. The \Drupal\Core\TypedData\
Plugin\DataType\Map class implements the method. By default, the method ensures that
the values are not empty.

Field types can provide their own implementations to provide a more robust verification.
For instance, the field can validate that the first name can be entered but not the last name,
or the field can require both the first and the last name.

See also

» The Creating blocks using plugins recipe of this chapter

Creating a custom field widget

Field widgets provide the form interface for editing a field. These integrate with the Form API
to define how a field can be edited and the way in which the data can be formatted before it
is saved. Field widgets are chosen and customized through the form display interface.

In this recipe, we will create a widget for the field created in the Creating a custom field type
recipe in this chapter. The field widget will provide two text fields for entering the first and last
name items.

Getting ready

Create a new module such as the one existing in the first recipe. We will refer to the module
as mymodule throughout the recipe. Use your module's appropriate name.

Plug and Play with Plugins

How to do it...

1. We need to create the src/Plugin/Field/Fieldwidget directory in the
module's base location. The Field module discovers field widgets in the
Plugin\Field\FieldWidget nhamespace.

2. Create a RealNameDefaultWidget .php file in the newly created directory so that
we can define the RealNameDefaultWidget class. This will provide a custom form
element to edit the first and last name values of our field:

Mame -

v [src
¥ | Plugin
v 9 Field
» [FieldType
¥ |1 FieldWidget
RealNameDefaultWidget.php

3. The RealNameDefaultWidget class will extend the \Drupal\Core\Field\
WidgetBase class:

<?php
/**

* @file
* Contains \Drupal\mymodule\Plugin\Field\Fieldwidget\

RealNameDefaultWidget
*/
namespace Drupal\mymodule\Plugin\Field\FieldWidget;

use Drupal\Core\Field\WidgetBase;

class RealNameDefaultWidget extends WidgetBase ({

160

Chapter 7

Field widgets are like annotated plugins. Annotated plugins use documentation
blocks to provide details of the plugin. We will provide the field widget's identifier,
label, and supported field types:

<?php

/**

* @file

* Contains \Drupal\mymodule\Plugin\Field\FieldwWidget\
RealNameDefaultWidget

*/

namespace Drupal\mymodule\Plugin\Field\FieldWidget;

use Drupal\Core\Field\WidgetBase;
use Drupal\Core\Field\FieldItemListInterface;
use Drupal\Core\Form\FormStateInterface;

* Plugin implementation of the 'realname default' widget.

* @FieldWidget (

* id = "realname default"