

Drupal 8 Module Development

Build and customize Drupal 8 modules and extensions
efficiently

Daniel Sipos

BIRMINGHAM - MUMBAI

Drupal 8 Module Development

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1251017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78216-877-5

www.packtpub.com

http://www.packtpub.com

Credits

Author
Daniel Sipos

Copy Editor
Dhanya Baburaj

Reviewers
Todd Zebert
Tracy Charles Smith

Project Coordinator
Ritika Manoj

Commissioning Editor
Amarabha Banerjee

Proofreader
Safis Editing

Acquisition Editor
Nigel Fernandes

Indexer
Rekha Nair

Content Development Editor
Aditi Gour

Graphics
Jason Monteiro

Technical Editor
Diksha Wakode

Production Coordinator
Shantanu Zagade

About the Author
Daniel Sipos is a senior web developer specializing in Drupal. He has been working with
Drupal sites since version 6 and started, like many others, as a site builder. He's a self-
taught programmer with many years of experience in working professionally on complex
Drupal 7 and 8 projects. In his spare time, he runs webomelette.com, a Drupal website
where he writes technical articles, tips, and techniques related to Drupal development.

https://www.webomelette.com/

About the Reviewers
Todd Zebert has been involved with Drupal since shortly after the launch of version 6. He
is a full stack web developer, is proficient in a variety of technologies, and is currently a
lead web developer for Miles. He has also been a technical reviewer for the Packt books
Developing with Drush and Drupal 8 Development Cookbook, and the related video series
Drupal 8 Development Solutions.
He's a frequent presenter at conferences on Drupal, JavaScript, and frontend technologies.
He has a technology blog at Medium.

Todd has a diverse background in technology, including infrastructure, network
engineering, project management, and IT leadership. His experience with web development
started shortly after the release of the original Mosaic graphical web browser, with
SHTML/CGI and Perl.

Todd is an entrepreneur and is involved with the Los Angeles start-up community. He's a
believer in volunteering, open sourcing, the Maker movement, and contributing back. He's
also an advocate for STEAM (Science, Technology, Engineering, Art, and Math) education.

I'd like to thank the Drupal community, especially the Los Angeles Drupal group.

Finally, I'd like to thank my teen son with whom I get to share my interest in
technology and science , often while doing Maker-ish things together, with
microcontrollers and other electronics.

Tracy Charles Smith began working with computers at the age of 10 years. His background
includes network support, web development, customer service, project management, and
financial management.

His entrepreneurial spirit is a key component to his success in interacting with clients and
team members on business and user-experience related technology solutions. In fact, he
used that passion to found his own technology-consulting firm called Alpha Geek Tech,
LLC. He also served as the technology director for Quiddities Dev. Inc., in Santa Cruz, CA,
before moving back to the DC area to join Phase2 in 2010 as a senior developer. Tracy now
works as a senior project manager at Phase2, supporting growth and support clients
in government and private enterprise. His diverse development background complements
his project management skills.

Tracy was also the lead programmer and architect for 12seconds.tv in 2007 (a video
messaging platform), which leveraged Drupal. He also authored Drupal Intranets with
Open Atrium.

He earned a BS in computer information systems and business administration from
Wingate University.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at www.amazon.in/dp/178216877X.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

http://www.amazon.in/dp/178216877X

Table of Contents
Preface 1

Chapter 1: Developing for Drupal 8 7

Introducing Drupal (for developers) 8
Developing for Drupal 8 8

Technologies that drive Drupal 9
PHP 10
Databases and MySQL 10
The web server 11
HTML, CSS, and JavaScript 11

Drupal architecture 11
Drupal core, modules, and themes 11
Hooks, plugins, and events 12
Services and the dependency injection container 14
From request to response 14

Drupal's major subsystems 15
Routing 15
Entities 16
Fields 17
Menus 17
Views 18
Forms 18
Configuration 19
Plugins 19
The theme system 20
Caching 21
Other subsystems 21

Tools for developing in Drupal 21
Version control 22
Composer 22
The API site and coding standards 22
The developer (Devel) module 23
Drush (the Drupal shell) 23
Drupal Console 24
Developer settings 24

Summary 25

Chapter 2: Creating Your First Module 26

Creating a module 27
Your first hook implementation 29

[ii]

Route and controller 31
The route 31

Route variables 32
Namespaces 33
The Controller 34

Services 35
What is a service? 36
The HelloWorldSalutation service 36
Tagged services 38

Using services in Drupal 8 38
Injecting the service into our Controller 39
The form 41

Altering forms 46
Custom submit handlers 48
Rendering forms 49

Service dependencies 50
Blocks 51

Our first block plugin 52
Block configuration 54

Working with links 57
The URL 57
The link 57
Which way to link? 58

Event Dispatcher and redirects 59
Redirecting from a Controller 59
Redirecting from a subscriber 60
Dispatching events 64

Summary 67

Chapter 3: Logging and Mailing 68

Logging 69
The Drupal 8 logging theory 70
Our own logger channel 71
Our own logger 72
Logging for Hello World 73
Logging summary 75

Mail API 76
The theory of the Mail API 76
Implementing hook_mail() 77
Sending emails 78
Altering someone else's emails 81
Custom mail plugins 82

[iii]

The mail plugin 83
Using mail plugins 85

Tokens 86
The Token API 87
Using tokens 88
Defining new tokens 90
Token summary 92

Summary 93

Chapter 4: Theming 94

Business logic versus presentation logic 95
Twig 96
Theme hooks 96
Theme hook suggestions 99
Render arrays 101

The structure of a render array 102
#type 102
#theme 103
#markup 103

The render pipeline 104
Assets and libraries 106

Libraries 107
Attaching libraries 108

Common theme hooks 110
Lists 110
Links 111
Tables 112

Attributes 113
Theming our Hello World module 114
Summary 119

Chapter 5: Menus and Menu Links 120

The menu system 120
Menus 121
Menu links 121

Multiple types of menu links 122
Local tasks 122
Local actions 123
Contextual links 123

MenuLink trees 124
Menu link tree manipulators 124
Menu active trail 125

[iv]

Rendering menus 125
Working with menu links 128

Defining menu links 128
Working with menu links 129

Defining local tasks 130
Defining local actions 132
Defining contextual links 132
Summary 136

Chapter 6: Data Modeling and Storage 137

Different types of data storage 138
State API 139
Tempstore 141

PrivateTempStore 142
A note about anonymous users 143

SharedTempStore 143
Tempstore conclusion 145

UserData 145
Configuration 146

Introduction 147
What is configuration used for? 147
Managing configuration 148

Different types of configuration 150
Configuration storage 150

Schema 152
Overrides 155

Global overrides 155
Module overrides 156
Language overrides 158
Priority 159

Interacting with simple configuration 159
Entities 161

Content versus configuration entity types 161
Entity type plugins 163

Identifiers 164
Bundles 164
Database tables 165
Entity keys 165
Links 166
Entity translation 166
Entity revisions 166
Configuration export 167
Handlers 168

[v]

Fields 169
Configuration entity fields 170
Content entity fields 171

Base fields 172
Configurable fields 174
Field storage 175

Entity types summary 176
TypedData 176

Why? 176
What? 177
The low-level API 178

DataType plugins 178
Data definitions 179

Content entities 181
TypedData summary 183

Interacting with the Entity API 183
Querying and loading entities 184

Building queries 184
Loading entities 186
Reading entities 187
Manipulating entities 192
Creating entities 193
Rendering content entities 194
Pseudo-fields 196
Content entity validation 197

Validation summary 202
Summary 202

Chapter 7: Your Own Custom Entity and Plugin Types 203

Custom content entity type 204
Custom plugin type 218
Custom configuration entity type 224
The Importer plugin 236
Content entity bundles 241

Drush command 251
Summary 256

Chapter 8: The Database API 257

The Schema API 258
Running queries 261

Select queries 262
Handling the result 263

[vi]

More complex select queries 264
Range queries 265

Pagers 266
Insert queries 269
Update queries 270
Delete queries 270
Transactions 271
Query alters 272
Update hooks 274

Summary 277

Chapter 9: Custom Fields 279

Field type 281
Field widget 291
Field formatter 299
Field settings 304
Using as a base field 306
Summary 308

Chapter 10: Access Control 309

Introduction to the Drupal access system 310
Roles and permissions under the hood 311

Defining permissions 312
Checking the user credentials 313
Route access 314

Custom route access 317
Static approach 317
Service approach 320

Programmatically checking access on routes 322
Bonus - dynamic route options for access control 324
CSRF protection on routes 328
Altering routes 329

Entity access 332
Injecting services into Entity handlers 335
Entity access hooks 336
Field access 338
Entity access in routes 339
Node access grants 340

Block access 348
Summary 350

Chapter 11: Caching 351

[vii]

Introduction 352
Cacheability metadata 354

Cache tags 355
Cache contexts 356
Max-age 357
Using the cache metadata 357

Caching in block plugins 360
Caching access results 361

Placeholders and lazy building 361
Lazy builders 363

Using the Cache API 365
Creating our own cache bin 368

Summary 369

Chapter 12: JavaScript and the Ajax API 370

JavaScript in Drupal 371
Drupal behaviors 371

Our library 372
The JavaScript 373

Drupal settings 375
Ajax API 377

Ajax links 377
Ajax in forms 380
States (Form) system 387

Summary 389

Chapter 13: Internationalization and Languages 390

Introduction 391
Language 391
Content Translation 392
Configuration Translation 392
Interface Translation 393

Internationalization 394
Content entities and the Translation API 398
Summary 399

Chapter 14: Batches, Queues, and Cron 401

Batch powered update hooks 402
Batch operations 404

Creating the batch 404
Batch operations 406

[viii]

Cron 411
Queues 413

Introduction to the Queue API 413
Cron based queue 414
Processing a queue programmatically 417
Lock API 419

Summary 422

Chapter 15: Views 423

Entities in Views 424
Exposing custom data to Views 425

Views data 425
Views fields 427
Views relationships 429
Views sorts and filters 431
Views arguments 431
Altering Views data 432

Custom Views field 434
Field configuration 438

Custom Views filter 441
Custom Views argument 445
Views theming 447
Views hooks 448
Summary 448

Chapter 16: Working with Files and Images 450

The filesystem 451
Stream wrappers 453
Managed versus unmanaged files 454
Using the File and Image fields 455
Working with managed files 457

Attaching managed files to entities 457
Helpful functions for dealing with managed files 459
Managed file uploads 460

Managed file form element 462
Entity CRUD hooks 464
Managed file usage service 465
Processing the CSV file 468

Our own stream wrapper 471
Working with unmanaged files 481
Private file system 481
Images 485

[ix]

Image toolkits 485
Image styles 486
Rendering images 487

Summary 489

Chapter 17: Automated Testing 490

Testing methodologies in Drupal 8 491
PHPUnit 492
Registering tests 493
Unit tests 494

Mocked dependencies 499
Kernel tests 505

TeamCleaner test 506
CsvImporter test 508

Functional tests 512
Configuration for functional tests 513
Hello World page test 514
Hello World form test 518

Functional JavaScript tests 519
Time test 520
CsvImporter test 522

Summary 527

Chapter 18: Drupal 8 Security 529

Cross-Site Scripting (XSS) 529
Sanitization methods in Drupal 8 530
Double escaping 531

SQL Injection 532
Cross-Site Request Forgery (CSRF) 533
Summary 534

Index 535

Preface
Drupal 8 is a powerful web-based content management system (CMS) that can be used to
build anything from simple websites to powerful applications. While it is useful out of the
box, it is designed with developers in mind.

The purpose of this book is to talk about the most common ways a Drupal 8 website can be
extended to provide new functionality. In doing so, the book will cover a number of
extension points, but also illustrate many subsystems and APIs that can help you model,
structure, and wire your business requirements.

Alongside the obligatory theoretical explanations, it will use a practical, example-based
approach in order to break down complex topics and make them easier to understand. So,
join me on this journey to discover exactly how powerful Drupal 8 actually is.

What this book covers
Chapter 1, Developing for Drupal 8, provides an introduction to module development in
Drupal 8. In doing so, it introduces the reader to the various subsystems and outlines the
requirements for running a Drupal 8 application.

Chapter 2, Creating Your First Module, gets the ball rolling by creating the first Drupal 8
module of the book. Its main focus is to explore the most common things module
developers need to know from the get-go.

Chapter 3, Logging and Mailing, is about the tools available for doing something every web-
based application does and/or should be doing, that is, sending emails and logging events.

Chapter 4, Theming, presents the theme system from a module developer's perspective in
Drupal 8.

Chapter 5, Menus and Menu Links, explores the world of menus in Drupal 8 and shows how
to programmatically create and work with menu links.

Chapter 6, Data Modeling and Storage, looks at the various types of storage available in
Drupal 8, from the state system to configuration and entities.

Preface

[2]

Chapter 7, Your Own Custom Entity and Plugin Types, takes a hands-on approach creating a
custom configuration and content entity type, as well as custom plugin type to wire up a
practical functional example.

Chapter 8, The Database API, presents the database abstraction layer and how we can work
directly with data stored in custom tables.

Chapter 9, Custom Fields, exemplifies the creation of the three plugins necessary for creating
a custom field that can be used on a Drupal 8 content entity type.

Chapter 10, Access Control, explores the world of access restrictions in Drupal 8, from roles
and permissions to route and entity access checks.

Chapter 11, Caching, looks at the various cache mechanisms available for module
developers to improve the performance of their functionality.

Chapter 12, JavaScript and the AJAX API, introduces module developers to the specificities
of writing JavaScript in Drupal 8, as well as the powerful AJAX system, which can be used
to build advanced interactions.

Chapter 13, Internationalization and Languages, deals with the practices Drupal 8 module
developers need to observe in order to ensure that the application can be properly
translated.

Chapter 14, Batches, Queues, and Cron, explores the various ways module developers can
structure their data processing tasks in a reliable way.

Chapter 15, Views, looks at the various ways module developers can programmatically
interact with Views and even expose their own data to them.

Chapter 16, Working with Files and Images, explores the various file and image APIs that
allow module developers to store, track, and manage files in Drupal 8.

Chapter 17, Automated Testing, explores the various types of automated test module
developers can write for their Drupal 8 applications to ensure stable and resilient code.

What you need for this book
Readers don't need much to follow along with this book. A local environment setup capable
of installing and running Drupal 8 (preferably with Composer) should suffice.

Preface

[3]

Who this book is for
The primary target of this book is Drupal 7 developers who want to learn how to write
modules and do development in Drupal 8. It is also intended for Drupal site builders who
have basic object-oriented programming skills, as well as PHP programmers without that
much Drupal experience.

A little bit of Symfony experience is helpful but not mandatory.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, path
names, dummy URLs, user input, and Twitter handles are shown as follows: "Just assign
the names of the layers you want to activate to the admin/reports/dblog environment
variable."

A block of code is set as follows:

hello_world.logger.channel.hello_world:
 parent: logger.channel_base
 arguments: ['hello_world']

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Users can now reach this
page from the module administration page by clicking on the Help link for each individual
module that has this hook implemented."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Drupal- 8-Module- Development. We also have other code bundles from
our rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ / www. packtpub. com/ sites/ default/ files/
downloads/Drupal8ModuleDevelopment_ ColorImages. pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https:/ /www. packtpub. com/ books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/Drupal-8-Module-Development
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Drupal8ModuleDevelopment_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Developing for Drupal 8

Drupal is a web-based Content Management System (CMS). While it is useful out of the
box, it is designed with developers in mind. The purpose of this book is to explain how
Drupal can be extended in many ways and for many purposes. To this end, the version we
will use will be the latest one at the time of writing this book--Drupal 8.2. In this book, we
will cover a wide range of development topics. We'll discuss how to create a Drupal 8
module, and as we go through the chapters, many concepts and tips that will help you
build what you need will be introduced. The goal is not only to explain how things work
but also to go through some examples to demonstrate them. Since no book can contain
everything, I hope that after reading this book, you'll be able to expand on this knowledge
on your own using the resources I reference and by looking into the Drupal code yourself.
As helpful as such a book can be for learning any kind of software development, if you
really want to progress, you will need to apply the knowledge you learned and explore the
source code yourself. Only by doing this you will be able to understand complex systems
with many dependencies and layers.

This chapter introduces the terminology, tools, and processes for developing Drupal 8.
While subsequent chapters focus on code, this chapter focuses on concepts. We'll talk about
the architecture of Drupal and how you can hook into Drupal at strategic places to extend it
for accomplishing new tasks.

The following are the major topics we will be covering in this chapter:

An introduction to Drupal development
Drupal 8 architecture
The major subsystems
Tools for developing in Drupal

By the end of this chapter, you will understand the architectural aspects of Drupal and be
ready to start writing code.

Developing for Drupal 8

[8]

Introducing Drupal (for developers)
Out of the box, Drupal performs all of the standard functions of a web-based content
management system:

Visitors can view published information on the site; navigate through menus,
view listings, and individual pages; and so on
Users can create accounts and leave comments
Administrators can manage the site configuration and control the permissions
levels of users
Editors can create, preview, and then publish content when it is ready
Content can be syndicated to RSS, where feed readers can pick up new articles as
they are published
With several built-in themes, even the look and feel of the site can be changed
easily

With Drupal 8, the scope of what a site builder can do has greatly increased. Core
multilingual capabilities make it much easier to configure the site to use multiple languages,
creating content listings a few clicks away out of the box, and content management, in
general, has greatly improved.

Developing for Drupal 8
As fantastic as these features are, they will certainly not satisfy the needs of all users. To
that end, Drupal's capabilities can be easily extended with modules, themes, and
installation profiles. Take a look at Drupal's main website, (http:/ /drupal. org), and you
will find thousands of modules that provide new features and thousands of themes that
transform the look and feel of the site.

The fact that almost all aspects of Drupal's behavior can be intercepted and transformed
through the module and theme mechanisms has led many to claim that Drupal isn't just a
CMS, but a Content Management Framework (CMF) capable of being re-tooled to specific
needs and functional requirements. This is particularly the case with Drupal 8--the latest
version of Drupal and the focus of this book--as great progress has been made on the
extensibility front too.

http://drupal.org
http://drupal.org
http://drupal.org
http://drupal.org
http://drupal.org
http://drupal.org
http://drupal.org

Developing for Drupal 8

[9]

Establishing whether Drupal is rightly called a CMS or CMF is beyond our purpose here,
but it is certain that Drupal's most tremendous asset is its extensibility. Want to use a
directory server for authentication? There's a Drupal module for that. Want to export data
to Comma-Separated Version (CSV) files? There are several modules for that (depending
on what data you want to export). Interested in Facebook support, integration with Twitter,
or adding a Share This button? Yup, there are modules for all of these too--all of which are
available at Drupal.org and provided by developers like you.

Want to integrate Drupal with that custom tool you wrote to solve your special business
needs? There may not be a module for that, but with a little bit of code, you can write your
own. In fact, that is the subject of this book--providing you with the knowledge and tools to
achieve your own goals.

In summary, the purpose of this book is to get you ramped up (as quickly as possible) for
Drupal 8 module development. As we move chapter by chapter, we will cover the APIs and
tools that you will use to build custom Drupal sites, and we won't stick to theory. Most
chapters provide working, practically oriented example code designed to show you how to
implement the concepts we talk about. We will follow Drupal coding conventions and
utilize Drupal design patterns in an effort to illustrate the correct way to write code within
the Drupal development context.

While I certainly can't write the exact code to meet your needs, my hope is that the code
mentioned in these chapters can serve as a foundation for your bigger and better
applications.

So let's get started with a few preliminary matters.

Technologies that drive Drupal
Installing Drupal 8 in the traditional way is documented both on Drupal.org and in the
INSTALL.txt file found inside the /core folder of the installation, so I won't go into it
here. I will, however, mention that a better way of installing Drupal 8, especially for
developers, is using the accepted Composer template for Drupal 8 projects found on
GitHub (https:// github. com/ drupal- composer/ drupal- project). However, the
instructions for setting up your site are well covered there as well.

Instead, let's talk a bit about the technologies that power (or are needed by) Drupal 8.

https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project
https://github.com/drupal-composer/drupal-project

Developing for Drupal 8

[10]

PHP
Drupal is written in the PHP programming language. PHP is a widely supported,
multiplatform, and web-centric scripting language. Since Drupal is written in PHP, this
book will largely feature code written in PHP, albeit with Drupal standard practices being
kept in mind.

It is very important to note that the minimum version of PHP required for Drupal 8 to run
(and install via Composer) is 5.5.9. Moreover, since the current version of PHP (at the time
of writing this book) is PHP 7, I personally recommend that you run Drupal 8. It's best to
start off right.

Regarding the style of PHP, a very important change compared to Drupal 7 is the heavy use
of object-oriented code and design patterns. Granted, many procedural style approaches
remain throughout the Drupal 8 code base, but the use of a good number of popular
external libraries (such as Symfony components) has pushed the overall Drupal code to be
more modern. For this reason, it is also quite important that you have at least some basic
understanding of object-oriented programming (OOP), especially PHP related, if you want
to do Drupal 8 development.

Databases and MySQL
In the past, Drupal has supported two databases--MySQL and PostgreSQL. Drupal 7 and 8
have moved beyond this. Drupal now uses the powerful PHP Data Objects (PDO) library
that is standard in PHP 5/7. This library is an abstraction layer that allows developers to
support numerous databases, including MySQL, PostgreSQL, SQLite, and MariaDB.

The minimum database versions for Drupal 8 are as follows:

MySQL 5.5.3/MariaDB 5.5.20/Percona Server 5.5.8 or higher with PDO and an
InnoDB-compatible primary storage engine
PostgreSQL 9.1.2 or higher with PDO
SQLite 3.7.11 or higher

Additionally, Drupal provides a powerful database API along with some SQL coding
conventions that make it easy to interact with your database--both combined allow you to
write safe and portable SQL. However, more and more abstractions have been made at
different levels, removing the need for SQL writing almost completely. However, we will
still see some examples just so your toolbox does not miss anything, as well as cover all the
tools at your disposal for querying your database.

Developing for Drupal 8

[11]

The web server
Apache has long been the predominant web server, but it is by no means the only server.
While Drupal was originally written with Apache in mind, many other web servers
(including IIS, Lighttpd, and NGINX) can run Drupal.

We do not explicitly cover the web server layer anywhere in this book, primarily because
development rarely requires working at that low level. However, Drupal expects a fair
amount of processing from the web server layer, including handling of URL rewriting. For
more information on what you can expect, you can consult the relevant documentation
page on https://www. drupal. org/ docs/ 8/system- requirements/ web- server.

HTML, CSS, and JavaScript
The de facto web data format is HTML (Hypertext Markup Language) styled with CSS
(Cascading Style Sheets). Client-side interactive components are scripted with JavaScript.
As Drupal developers, we will encounter all three of these technologies in this book.
Although you don't need to be a JavaScript ninja to understand the code here, you will get
the most from this book if you are comfortable with these three technologies.

Drupal architecture
In the preceding section, we introduced the technologies that drive Drupal. However, how
do they all fit together? How is Drupal code organized? In this section, we provide an
overview of Drupal's architecture, with a focus on Drupal 8.

Drupal core, modules, and themes
From an architectural standpoint, we can break up Drupal into three pieces--its core,
modules, and themes.

When we discuss Drupal 8 core, we can interpret it in two ways. A more restrictive
interpretation sees it as a functionality covered in all the code it ships with, without
modules and themes. The more widespread interpretation sees it as the total code base it
ships with (out of the box).

https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server
https://www.drupal.org/docs/8/system-requirements/web-server

Developing for Drupal 8

[12]

Although the most widespread interpretation is the latter (not least because it differentiates
all the functionalities its standard installation contains versus all others provided by
contributed modules and themes), it is interesting to consider the first one as well, even if
just for a minute. In this way, we can distinguish, architecturally, the base code from the
modules and themes that provide various functionalities and layouts (both from the core
installation and from external modules and themes). Along these lines will be also the
hooks and events that glue everything together, allowing us to intercept and inject ties to
our own functionality.

The core libraries are made up of code belonging to the Drupal project and those from the
wider PHP community, which Drupal borrows under open source licensing. This latter
approach is new in Drupal 8 and has been regarded by many as a positive shift toward
getting off the Drupal island and embracing outside libraries, frameworks, and
communities.

Essentially, the core libraries provide the functions and services used throughout Drupal.
Facilities for interacting with the database, translating between languages, sanitizing user
data, building forms, encoding data, and many such utilities are found in Drupal's core
libraries.

The modules (both core and contributed) are where most of the actual functionality and
business logic is. If enabled, they can provide functionality or extend the existing
functionality. Most of the core modules are needed and cannot be disabled due to their
importance in the standard Drupal installation. However, contributed ones can be installed
and uninstalled as needed.

The themes (both core and contributed) are an important part of the theme system and are
used in the presentation logic. They provide HTML templates within which content and
data can be rendered to the user, as well as CSS styling and even client-side scripting for
some nice visual interactions. Themes can extend other themes and can also contain some
PHP logic to process the data before being rendered.

Hooks, plugins, and events
Now that we have seen what the core libraries, modules, and themes do, let's talk briefly
about hooks and events to understand how they are all connected.

Developing for Drupal 8

[13]

Hooks are a very typical Drupal procedural concept that allows Drupal core and modules
to basically ask for data from other modules and themes (or expose it). By doing this, the
latter can provide a new functionality or alter the existing ones. It is the responsibility of the
code that calls the hook to make use of whatever the hook implementations return. The
format and interface for what the latter need to return is usually documented in the hook
documentation.

Concretely, hooks work by scanning installed modules and themes and looking for a
function that follows a specific naming pattern (in other words, a hook implementation). This
is, in most cases, in the following format--module_name_hook_name. Additionally, there
are also alter hooks, which have the word alter tacked on the end of the function name
and are used to change data passed as a reference to the hook implementation. We will see
examples of hooks later in the book.

Developers with a background in OOP or with a strong knowledge of
design patterns might recognize this as being similar to the event handling
paradigm captured in the Passive Observer pattern. When some particular
event occurs, Drupal allows modules the opportunity to respond to that
event.

In previous versions of Drupal, hooks were KING. Yes, I wrote this with capital letters, my
Caps Lock did not get stuck. This is because they were the way to add or extend a
functionality in modules. As such, they were the single most important aspect of Drupal
programming. In Drupal 8, however, although still important, they took a backseat to new
concepts, such as plugins and events.

In Drupal 8, I dare to say that plugins are king. Much of the functionalities that used to be
tied to Drupal via hooks is now added in through another Drupal typical concept--plugins
(not to be confused with WordPress plugins). Drupal 8 plugins are discoverable bits of the
functionality centralized by a manager and that are used for certain tasks and features. We
will see more about plugins and provide many examples later in the book.

A third extension point introduced in Drupal 8 is the event system. Unlike the first two,
however, this is not specific to Drupal, but is, in fact, the actual Symfony
EventDispatcher component (http:/ /symfony. com/ doc/current/ components/ event_
dispatcher.html). Events are primarily used in Drupal to intercept certain actions or flows
in order to either stop or modify them. Many request to response tasks that were handled via
hooks in the past are now being handled by dispatching events to check whether any
modules are interested in, for example, delivering the response to the user.

http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html
http://symfony.com/doc/current/components/event_dispatcher.html

Developing for Drupal 8

[14]

Services and the dependency injection container
Another architecturally important element of Drupal 8 is the Symfony dependency injection
component (http:/ /symfony. com/ doc/ current/ components/ dependency_ injection. html),
concretely represented by the service container.

This component is a staple of modern OOP PHP programming and as such has become
foundational to Drupal 8. It allows us to create services that can be injected in various places
(and receive themselves services as dependencies). They are then used for the heavy
business logic of our functionality. Additionally, they are at times also used as an extension
point because the service container is able to collect certain services that are marked as
serving a specific purpose and use them automatically. In other words, simply by defining a
simple service, we can provide our own functionality or even change the existing logic.

We will encounter many services, and we will see how we can declare our own later in this
book.

From request to response
Now that we have listed the most important architectural pieces of Drupal, let's briefly see
how these are used in delivering responses to the requests a user makes on a Drupal 8
website. To this end, we will analyze a very simplified example of a typical request as it is
handled on a Drupal 8 website:

A user enters the http://example.com/node/123 URL in a web browser and
presses Enter.
The browser contacts the web server at example.com and requests the resource
at /node/123.
The web server recognizes that the request must be handled by PHP and starts
up (or contacts) a PHP environment to handle the request.
PHP executes Drupal's front controller file (index.php), which then creates a
new Request object from the resource that was requested.
Symfony's HTTPKernel handles this request object by dispatching a number of
events, such as kernel.request, kernel.controller, kernel.response,
and kernel.view.
The route that maps to that request is identified through the kernel.request
event.

http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html
http://symfony.com/doc/current/components/dependency_injection.html

Developing for Drupal 8

[15]

The route controller is identified, and the kernel.controller event is used to
perform any alterations on the used controller and to resolve the arguments that
need to be passed to it. In our case, this route is registered by the Node module
through the main Entity system, which identifies the entity ID, loads it, and
builds the markup to be returned as part of Response.
If the respective controller (or handler) returns something other than a Response
object, the kernel.view event is dispatched to check whether there is any code
that can transform that into a Response object. In most cases, in Drupal 8, we
typically return render arrays, which are transformed into Response objects.
Once a Response is created, the front controller returns it to the browser and
terminates the request.

In this context, as Drupal 8 module developers, we spend most of our times inside
controllers and services, trying to figure out what we need to return to the page. We then
rely on Drupal to transform our render array into a proper response to the user, but we can
also return one ourselves directly. Moreover, the theme system comes into play here, as
well as the block system, because our content gets to be wrapped into a block that is placed
in a region surrounded by other regions that contain blocks. However, if it sounds
complicated now, don't worry, we will cover in detail all these aspects with examples, and
it will become clear in no time.

However, as a quick conclusion, we can see that events are mostly used (but not only) at the
highest levels of a request, whereas plugins and hooks are mostly used at lower levels,
within the process of calculating, building a page, or handling a specific business logic.

Drupal's major subsystems
In the preceding section, we took a bird's-eye view of Drupal's architecture. Now, we will
refine our perspective a bit. We will walk through the major subsystems that Drupal 8 has
to offer.

Routing
It all starts with a route, doesn't it? Any interaction with a Drupal 8 website has its
beginning in a user (or system) accessing a certain path (or resource). This translates into a
route, which maps that resource to a flow that (hopefully) returns a successful response
back or at least a graceful failure.

Developing for Drupal 8

[16]

The Drupal 8 routing system is a major shift away from how it was in its previous versions.
In Drupal 7 and earlier versions, the routing system was a very Drupal-specific thing (a
drupalism, if you will). Many of us remember hook_menu as a staple hook each Drupal
developer had to know very well. All of that has been abandoned in Drupal 8 in favor of the
Symfony Routing component (http:/ /symfony. com/ doc/current/ components/ routing.
html). Also, since I mentioned hook_menu, I will also mention that its other main functions
have also been taken over in Drupal 8 by other subsystems, such as plugins.

In this book, we will see how we can define our own route and map it to a controller that
will render our page. We will cover a few of the more important route options and take a
look at how we can control access to these routes.

Entities
Progressively, entities have become a very powerful way of modeling data and content in
Drupal. The most famous type of entity has always been the Node, and it has been
historically the cornerstone of content storage and display. In Drupal 8, the entire entity
system has been revamped to make other entity types potentially just as important. They
have been brought to the forefront and have been properly connected with other systems.

All entity types can have multiple bundles, which are different variations of the same entity
type and can have different fields on them (while sharing some fields).

Drupal core still ships with the Node entity type, with a few bundles such as Basic Page and
Article. In addition, it comes with a few other entity types, such as User, Comment, and
File. However, creating your own entity type in Drupal 8 has become much more
standardized compared to Drupal 7 where contributed modules had to be brought into
play.

These are not the only types of entities we have in Drupal 8. The examples mentioned
previously are all content entity types. Drupal 8 introduced a new type, configuration entity
types. The former are oriented toward content, but in reality, they are for anything that
holds data that can be input into the database and is specific to that environment. They are
not used for storing configuration, though. Users and content are great examples, as they do
not need to be (usually) deployable from one environment to other. The latter, on the other
hand, are exportable items of the configuration of which there can be more than one. For
example, a content entity bundle is a great example because there can be more than one
bundle for a certain entity type; they have some metadata and information stored that can
differ from bundle to bundle, and they need to be deployed on all environments. That is,
they are fundamental to the correct functioning of the site.

http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html
http://symfony.com/doc/current/components/routing.html

Developing for Drupal 8

[17]

Understanding the entity system is indispensable for doing development in Drupal 8
because it provides a powerful way of modeling custom data and content that goes past the
traditional nodes that previously were used and is, in my opinion, too much way past their
purpose.

Fields
Now that we have an idea of what entities are, let's take a look at how data is actually
stored on these entities.

I have alluded in the preceding section to how certain entity bundles can have various
fields. This means that each entity type bundle can have any number of fields that are
responsible for holding data. Additionally, each entity type itself can have fields for storing
data. Okay, but what? Let's break this down.

There are two types of Fields in Drupal 8--base fields and configurable fields. The former
are fields that are defined in the code for each entity type you define (or alter), whereas the
latter are usually created and configured in the UI and attached to a bundle of that entity
type and exported via configuration. So, essentially, both types can end up in the code to be
deployed.

Fields can also be of multiples types, depending on the data they store. For example, you
can have string (or text) fields, numeric fields, date fields, email fields, and so on. As
developers, we can create our own field types if the existing ones are not good enough for
our data.

In this book, we will take a look at how we can define base fields on a certain entity type
and create our own field type with its own data input widget and output formatter. Site
builders can then use this field type on any entity type.

Menus
Any site needs some sort of navigation, right? Drupal not only maintains content, but also
provides details about how the site itself is organized, that is, it structures how content is
related.

The principle way that it does this is through the menu subsystem. The latter provides APIs
to generate, retrieve, and modify elements that describe the site structure. Put in common
parlance, it handles the system's navigational menus.

Developing for Drupal 8

[18]

Menus are hierarchical, that is, they have a tree-like structure. A menu item can have
multiple children, each of which may have their own children, and so on. In this way, we
can use the menu system to structure our site into sections and subsections.

In this book, we will see how we can work programmatically with menus and menu links.

Views
Listing of content and data is always an important capability content management systems
covet; this is what Views provides in Drupal 8, and it does so well.

If you've been building (not even necessarily developing) sites in previous versions of
Drupal, you'll understand everything with this simple phrase--Views is now in Drupal core.
If you haven't, Views has always been a staple Drupal contributed module used on
probably all Drupal installations to a certain extent and is an indispensable tool for site
builders and even developers.

The purpose of the Views module is to expose data and content in a way that allows the
creation of configurable listings. It includes things such as filters, sorts, display options, and
many other features. As developers, we often find a need to write our own field or filter
plugin to work with Views or expose data from our custom entities or external data sources.

Views is a core Drupal 8 module tied to the general architecture and used for most list
pages (especially, admin pages) provided by Drupal core. Although it's a very site building-
oriented tool, in this book, we will take a look at how we can create plugins that extend its
capabilities to offer site builders even more.

Forms
Unless your site has three pages and five paragraphs of text, the likelihood that you will
need to capture user input via some type of form is very high. Also, if you've been coding
PHP applications, you know how forms have always been a pain from the point of view of
securely and efficiently rendering and processing the submitted data. As soon as you use a
PHP framework such as Symfony, you will note that an API is in place to take much of that
load off your shoulders.

Developing for Drupal 8

[19]

The same goes with Drupal 8 and its powerful Form API. Historically, it has been a great
abstraction over having to output your own form elements and deal with posted values. It
allows you to define your own form definition in OOP and handle validation and
submission in a logical way. Its render and processing is taken care of by Drupal securely,
so you don't have to worry about any of that. In Drupal 8, theming form elements have
become much easier than in previous versions.

In this book, we will encounter some forms and see how they actually work in practice.

Configuration
One of the major pet-peeves of Drupal developers (and developers of other popular CMSes
for that matter) has always been the way configuration is handled and deployed from one
environment to the next. Drupal 7 stored most of its configuration in the database, so
various solutions had to be concocted by developers to get that moved up the latter as
development progressed.

In Drupal 8, great advancements have been made in this respect with the introduction of a
centralized configuration system that although stores all configuration in the database,
allows it all to be exported into YML files (and then reimported). So, from a development
point of view, we have it much easier now if certain features depend on configuration (for
example, a new Field).

Configuration is also of two kinds--simple and complex (configuration entities we noted in
the Entities section). The difference between the two is that the former is always singular in
that it stores just a value (or multiple values together), once--the site name and email
address, for example. You only have one site name. The latter, on the other hand, represents
multiple instances of the same configuration type, for example, multiple View definitions or
multiple entity bundles. In this book, we will see a bit of both.

Plugins
Plugins are new to Drupal in its latest version and are an elegant solution to an important
problem--the encapsulating and reusing functionalities. Right off the bat, you should not
confuse them with things such as the WordPress plugins, which are more akin to Drupal
modules. Instead, you should think of plugins as components of reusable code that can be
used and managed by a central system. They are typically used to allow others to contribute
their own distinct functionality within your own system. Looking at it from the other
direction, Drupal core, for example, handles many things in a certain way, but allows you to
provide your own plugins to handle those things in a different way.

Developing for Drupal 8

[20]

An interesting way of looking at plugins is also as being opposite to entities, not for data
storage, but for functionality. Instead of creating a type of data that gets stored, you create a
type of functionality that is used. The two usually work hand in hand, especially when it
comes to manipulating the data in different ways.

Plugins are a great new extension point for developers to add their own functionality and
are a critical subsystem for Drupal 8 developers to know. An important aspect of how they
work is their discoverability. Most plugin types (but definitely not all) are discovered via
something called Annotations. Annotations are a form of DocBlock comments, borrowed
from the Doctrine library (http:/ /docs. doctrine- project. org/ projects/ doctrine-
common/en/latest/ reference/ annotations. html), by which we can describe classes,
methods, and even properties with certain metadata. This metadata is then read to
determine what that item is without the need for instantiating the class. In Drupal 8, we use
annotations only at a class level to denote that it is a plugin implementation with certain
characteristics. That is how most plugins are discovered in Drupal 8.

The second most common discoverability method for plugins is via a YAML file, and a
popular example of these are menu links (as we will see later in the book). However, for
now, you should know that plugins are very widely used, and we will create quite a few
plugins in this book.

The theme system
The responsibility of theming a given piece of data is spread out over the Drupal core,
modules, and the themes themselves. So, as a module developer, it is important to know
that both modules and themes can theme data or content.

In this book, we will focus on the aspects that happen at the module level. We will not
concern ourselves with styling or layouts, but work primarily with theming definitions and
templates that are needed within the module. Typically, it is the best practice to ensure that
modules are able to theme their data. If done right, themes can then come into play and
override that theming to change the presentation.

A major shift in Drupal 8 compared to older versions is the move to the open source Twig
templating system (https:/ /twig. sensiolabs. org/). This makes the separation of logic
from a presentation that much clearer and makes fronted developers' job much easier, not
to mention more secure.

http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/
https://twig.sensiolabs.org/

Developing for Drupal 8

[21]

Caching
The last major subsystem that I will include here is the caching layer. Drupal 8 has gone to
great lengths to improve the performance of building pages and rendering data. To this
end, the caching system has become an important part to consider whenever we either do
complex or heavy calculations or render content.

From a module developer's perspective, there are two main pillars of the caching system.
The first one provides developers a cache backend to store the result of complex data
calculations. This data can be read in the next requests to avoid the need for redoing those
calculations. This goes hand in hand with cache invalidation when something in the system
changes that would require the calculations to be redone. The second pillar is the render
cache, which allows developers to wrap their data output with metadata that describe in
what context and when that data output needs to be invalidated or changed. The entire
markup of that bit gets cached and invalidated based on the rules of the metadata.

We will see these in action in a later chapter dedicated to caching.

Other subsystems
There are other subsystems in Drupal 8 of varying importance. I chose to include the
preceding ones because I deemed them to be the most important to be introduced up front
and especially from the point of view of a module developer. However, as we progress
through the book, we will definitely encounter others.

Tools for developing in Drupal
Drupal is a sophisticated platform, and from the glimpse provided in this chapter, we can
already see that there are numerous systems and structures to keep track of. In this section,
I will provide tools that simplify or streamline the development process.

Going forward, I assume that you have your own web server stack and your own PHP
development tools. However, if you are just getting started, you may want to look at
Acquia Dev Desktop from Acquia (http:/ /acquia. com). It offers entire application stacks to
get you started on Windows, Linux, or macOS X. Alternatively, if you are even just a bit
more advanced, you can consider the Drupal VM (https:/ /www. drupalvm. com/), a Vagrant
and Ansible-based local development environment ready for Drupal.

http://acquia.com
http://acquia.com
http://acquia.com
http://acquia.com
http://acquia.com
http://acquia.com
http://acquia.com
https://www.drupalvm.com/
https://www.drupalvm.com/
https://www.drupalvm.com/
https://www.drupalvm.com/
https://www.drupalvm.com/
https://www.drupalvm.com/
https://www.drupalvm.com/
https://www.drupalvm.com/
https://www.drupalvm.com/
https://www.drupalvm.com/

Developing for Drupal 8

[22]

As for a code editor, I personally use PhpStorm (as many others do), but you are free to use
whatever IDE you want because Drupal itself doesn't require anything special. Also, while
running a PHP debugger is certainly not necessary, you may find running Xdebug or the
Zend Debugger to be useful. I personally recommend a PHP debugger wholeheartedly, not
only for debugging itself, but also for understanding the processes that happens under the
hood.

Version control
Any software development needs to happen through a version controlled environment. By
now, Drupal is universally using Git. So, you should make sure that you have Git installed
locally, even if just to be able to check out the code examples we write in this book, which
will be hosted on GitHub.

Composer
As I alluded to earlier, installing Drupal 8 is best done via a Composer template project.
However, you may also install it straight from Git by checking out the latest tag or commit
in the Drupal.org Git repository (https:/ / www. drupal. org/ project/ drupal/ git-
instructions). If you do this, you will need to install its dependencies via Composer, and
Drupal has many.

To this end, you will need to have Composer available on your development environment
and have a basic understanding of how to use it.

The API site and coding standards
A lot of background knowledge is required for writing good Drupal code. Of course, the
aim of a book such as this is to try to provide as much of that background knowledge as
possible. However, self-documentation and research still remain key, and there are a
number of resources that a Drupal developer should have on-hand.

The first is the official online API documentation. Just about every function in Drupal is
documented using in-line code documentation. The Doxygen program is then used to
extract that documentation and format it. You can access the full API documentation online
at http://api.drupal. org.

https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
https://www.drupal.org/project/drupal/git-instructions
http://api.drupal.org
http://api.drupal.org
http://api.drupal.org
http://api.drupal.org
http://api.drupal.org
http://api.drupal.org
http://api.drupal.org
http://api.drupal.org
http://api.drupal.org

Developing for Drupal 8

[23]

Along with using the Drupal APIs, we strive to comply with Drupal's coding conventions.
Best practices in software development include keeping code clean, consistent, and
readable. One aspect of this is removing nuances in code formatting by following a fixed
standard.

This is particularly important on a platform such as Drupal, where thousands of developers
all contribute to the code. Without coding standards, the code would become a cluttered
mishmash of styles, and valuable development time will be spent merely deciphering code
instead of working on it.

The Drupal site has a manual on coding standards that each Drupal developer needs to
become familiar with (https:/ / www. drupal. org/ docs/ develop/ standards/ coding-
standards). It won't happen overnight; you will get better with experience, but you can also
configure your IDE to, for instance, flag any issues with your code formatting.

A third resource for developers new to Drupal 8 but who have experience with Drupal 7 is
the change records database (https:/ /www. drupal. org/ list- changes/ drupal). On this
page, you'll find an inventory of the most important API and usage changes with some
handy explanations that will be extremely helpful for Drupal 7 developers looking up how
certain functions have been changed.

The developer (Devel) module
On your development environment, you can install a handy module called Devel (http:/ /
drupal.org/project/ devel), which provides several sophisticated tools designed to help
developers create and debug Drupal code.

The following are a few of the features of this module:

Functions used for dumping objects and arrays into formatted Drupal output
Tools for analyzing database usage and performance
A content generator for quickly populating your site with testing content

Drush (the Drupal shell)
Sometimes, it is much easier to run some tasks with a single command in a console. Drush
(http://drupal.org/ project/ drush) provides a command-line Drupal interface. It can be
used to execute tasks with a few keystrokes at the console.

https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
https://www.drupal.org/list-changes/drupal
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/devel
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush
http://drupal.org/project/drush

Developing for Drupal 8

[24]

When developing, we often have to clear caches, run specific tasks, or deploy data to a
remote server. Drush can help accomplish tasks like this. Additionally, we can write our
own Drush commands that perform various custom tasks, for example, to be used in cron
jobs. So having Drush installed is a must for any serious Drupal developer.

Drupal Console
If Drush is a tool that has been around for many years, the Drupal Console (https:/ /
drupalconsole.com/) project is new to Drupal 8. Its purpose is similar to that of Drush, and
in this way, it complements it, if at times even overlaps with it. However, one thing is clear-
-its scope is much broader, especially in its handy commands that generate boilerplate code,
which can get quite lengthy.

Although in this book we won't be using this tool, it's recommended that you install it as
you progress with learning Drupal 8 module development and start generating certain code
structures faster. That being said, I advise caution in using it at the expense of actually
understanding what the code it generates actually does. Always strive to understand what
you are doing, and never give in to blindly copying and pasting code from Stack Overflow
or any other resource without grasping fully what it does.

Developer settings
While doing local development, it's beneficial to (sometimes) disable things such as caching
in order to be quicker. Drupal 8 takes caching to a whole new level, so many hook
implementations, for example, get cached. To circumvent this, we can use some local
settings that disable caching, prevent CSS and JavaScript file aggregation, and do similar
things.

These settings are found inside the example.settings.local.php file in the /sites
folder of the installation. To benefit from these, you will need to make sure that they are
included in your main settings.php file (either by copying them inside or including a file
such as this).

A word of caution--do keep in mind that by developing with caching disabled at all times,
you run the risk of overlooking certain aspects that won't work properly with caching
enabled (such as invalidations). So, do try to toggle on/off these settings to ensure a
production-like environment will work just as well as under your development conditions.

https://drupalconsole.com/
https://drupalconsole.com/
https://drupalconsole.com/
https://drupalconsole.com/
https://drupalconsole.com/
https://drupalconsole.com/
https://drupalconsole.com/

Developing for Drupal 8

[25]

Summary
This chapter has been an overview of Drupal 8 for developers. We saw what technologies
Drupal uses. We took a look at Drupal's architecture. We took a cursory glance at several
prominent subsystems of Drupal. We also got a feel of which developer-oriented tools are
to be used while working with Drupal.

Starting with the next chapter, we will be working with code. In fact, each of the subsequent
chapters will focus on practical aspects of working with Drupal.

In the next chapter, we will create our first Drupal 8 module with the obligatory Hello
World example.

2
Creating Your First Module

Now that we have covered some of the introductory aspects of Drupal 8 module
development, it’s time to dive right into the meat of what we are doing here--module
creation.

Here are some of the important topics that we will cover in this chapter:

Creating a new Drupal 8 module--the files that are necessary to get started
Creating a route and controller
Creating and using a service
Creating a form
Creating a custom block
Working with links
Using the Event Dispatcher

Concretely, in this chapter, we will create a new custom module called Hello World. In this
module, we will define a route that maps to a Controller and that outputs the age-old
programming message. So, this will be our first win.

Next, we will define a service that our Controller will use to pimp up our message. After all,
we don't want the same message presented to the user all day long. This simple example,
however, will illustrate what services are and how to interact with the Service Container in
order to make use of them.

Then, we will create a form where an administrator will be able to override the message
shown on our page. It will be stored in a configuration, and we will alter our service to
make use of that configuration. The key takeaway here will be the use of the Form API.
However, we will also discuss how to store some basic configuration values and add
dependencies to our existing services.

Creating Your First Module

[27]

Finally, we want to become a bit more flexible. Why should users only be greeted on a
specific page? We will create a custom block that can be placed anywhere on the site and
will display the same message. Here, we will see how block plugins are defined and how
they can expose their own configuration forms to be more flexible.

Although not strictly related to our Hello World example, we will also look at how to work
with links programmatically in Drupal 8. It's a very common task any Drupal 8 developer
needs to do very often. So, we will cover the basics, and some pointers as to where to look
for more info will be given. Moreover, we will also look at using the Event Dispatcher
component, and more importantly, subscribing to events. We'll illustrate this with a fairly
common example of why you'd need to do this--performing redirects from incoming
requests.

By the end of this chapter, you should have the foundational knowledge necessary to build
your own module from scratch. Moreover, you should be able to understand and
implement some of the most commonly used techniques in Drupal 8 module development.

Creating a module
Creating a simple Drupal 8 module is not difficult. You only need one file to get it
recognized by the core installation and to be able to enable it. In this state, it won't do much,
but it will be installable. Let's first take a look at how to do this, and then we will
progressively add meat to it in order to achieve the goals set out at the beginning of the
chapter.

Custom Drupal 8 modules typically belong inside the /custom directory of the /modules
folder found inside the root Drupal installation. You would put contributed modules inside
a /contrib directory instead, in order to have a clear distinction. This is a standard
practice, so that is where we will place our custom module, called Hello World.

We will start by creating a folder called hello_world. This will also be the module's
machine name used in many other places. Inside, we will need to create an info file that
describes our module. This file is named hello_world.info.yml. This naming structure
is important--first, the module name, then info and followed by the .yml extension. You
will hear about this file being often referred to as the module's info file (due to it having
had the .info extension in the past before Drupal 8 used YAML).

Creating Your First Module

[28]

Inside this file, we will need to add some minimal info that describes our module. We will
go with something like this:

name: Hello World
description: Hello World module
type: module
core: 8.x
package: Custom

Some of this is self-explanatory, but let's see what these lines mean. The first two represent
the human-readable name and description of the module. The type key means that this is a
module info file rather than a theme. In Drupal 8, this has become mandatory. The core
key specifies that this module works with the version 8 of Drupal, and it won't be installable
on previous or future versions. Finally, we will place this in a generic Custom package so
that it gets categorized in this group on the modules administration screen.

That is pretty much it. The module can now be enabled either through the UI at
/admin/modules or via Drush using the drush en hello_world command.

Before we move on, let's see what other options you can add (and probably will need to add
at some point or another) into the info file:

Module dependencies: If your module depends on one or more other modules, you can
specify this in its info file like so:

dependencies:
 - drupal:views
 - ctools:ctools

The dependencies should be named in the project:module format, where project is the
project name as it appears in the URL of the project on Drupal.org and module is the
machine name of the module. You can even include version restrictions, for example,
ctools:ctools (>=8.x-3.x).

Configuration: If your module has a general configuration form that centralizes the
configuration options of the module, you can specify the route of that form in the info file.
Doing so will add a link to that form on the admin/modules UI page where modules are
being installed.

Creating Your First Module

[29]

Your first hook implementation
The module as it stands doesn't do much. In fact, it does nothing. However, do pat yourself
on the back, as you have created your first Drupal 8 module. Before we move on to the
interesting stuff we planned out, let's implement our first hook responsible for providing
some helpful info about our module.

As we hinted at in the first chapter, when Drupal encounters an event for which there is a
hook (and there are hundreds of such events), it will look through all of the modules for
matching hook implementations. Now, how does it find the matching implementations? It
looks for the functions that are named in the module_name_hook_name format, where
hook_name is replaced by the name of the hook being implemented. The name of a hook is
whatever comes after hook_. We will see an example below when we implement
hook_help(). However, once it finds the implementations, it will then execute each of
them, one after another. Once all hook implementations have been executed, Drupal will
continue its processing.

Depending on the module size, it's recommended that you place all your hook
implementations inside a .module file. There will be cases, however, when you'll organize
them in other files, either by including those files inside the .module file yourself or using
specific file naming conventions that gets them included by Drupal. However, for now, we
stick with the default.

So, let's create a .module file in our module folder called hello_world.module and place
an opening PHP tag at the top. In previous versions of Drupal, a .module PHP file was also
required to get started with, but in Drupal 8, it is no longer necessary. That being said, we
will create one now. Then, we can have the following hook_help() implementation inside
(and typically all other hook implementations):

use Drupal\Core\Routing\RouteMatchInterface;

/**
 * Implements hook_help().
 */
function hello_world_help($route_name, RouteMatchInterface $route_match) {
 switch ($route_name) {
 case 'help.page.hello_world':
 $output = '';
 $output .= '<h3>' . t('About') . '</h3>';
 $output .= '<p>' . t('This is an example module.') . '</p>';
 return $output;

 default:
 }

Creating Your First Module

[30]

}

As you can see, the name of the function respects the above-mentioned format--
module_name_hook_name--because we are implementing hook_help. So, we replaced
hook with the module name and hook_name with help. Moreover, this particular hook
takes two parameters that we can use inside it; though, in our case, we only use one, that is,
the route name.

The purpose of this hook is to provide Drupal some help text about what this module does.
You won't always implement this hook, but it's good to be aware of it. The way it works is
that each new module receives its own route inside the main p module, where users can
browse this info--ours is help.page.hello_world. So, in this implementation, we will tell
Drupal (and more, specifically, the core Help module) the following--if a user is looking at
our module's help route (page), show the info contained in the $output variable. And that's
pretty much it.

According to the Drupal coding standards, the DocBlock message above the hook
implementation needs to stay short and concise, as in the preceding example. We do not
generally document anything further for Drupal core hooks or popular contrib module
hooks because they should be documented elsewhere. If, however, you are implementing a
custom hook defined in one of your modules, it's okay to add a second paragraph
describing what it does.

Users can now reach this page from the module administration page by clicking on the
Help link for each individual module that has this hook implemented. Easy, right?

Creating Your First Module

[31]

Even though we are not really providing any useful info through this hook, implementing it
made helped us understand how a hook is implemented and what the naming convention
is for doing so. Additionally, we saw an example of a traditional (procedural) Drupal
extension point that module developers can use. In doing so, we literally extended the
capability of the Help module by allowing it to give more info to users.

Now, let's move on to creating something of ours own.

Route and controller
The first real piece of functionality we set out to create was a simple Drupal 8 page that
outputs the age-old Hello World string. For doing this, we will need two things--a route and
a controller. So, let's start with the first one.

The route
Inside our module, we will need to create our routing file that will hold all our statically
defined routes. The name of this file will be hello_world.routing.yml. By now, I
assume that you understand what the deal is with the file naming conventions in a Drupal 8
module. However, in any case, this is another YAML file in which we will need to put the
YAML formatted data:

hello_world.hello:
 path: '/hello'
 defaults:
 _controller:
'\Drupal\hello_world\Controller\HelloWorldController::helloWorld'
 _title: 'Our first route'
 requirements:
 _permission: 'access content'

This is our first route definition. It starts with the route name (hello_world.hello)
followed by all the necessary info about it, below, in a YAML formatted multidimensional
array. The standard practice is to have the route name start with the module name it is in,
followed by route qualifiers as needed.

Creating Your First Module

[32]

So, what does the route definition contain? There can be many options here, but, for now,
we will stick with the simple ones that serve our purpose. For more info about all that you
can configure, visit the relevant documentation page on https:/ /www. drupal. org/docs/ 8/
api/routing-system/ structure- of- routes. It is a good resource to keep on hand.

First, we have a path key, which indicates the path we want this route to work on. Then, we
have a defaults section, which usually contains info relevant to the handlers responsible
for delivering something when this route is accessed. In our case, we set the controller and
method responsible for delivering the page and the title of the page. Finally, we have a
requirements section, which usually has to do with conditions that need to be met for this
route to be accessible (or be hit)--things such as permissions and format. In our case, we will
require users to have the access content permission, which most visitors will have.
Don't worry, we will cover more about access in a later chapter.

That is all we need for our first route definition. Also, note that the Drupal 8 routing system
is essentially identical to that of Symfony, albeit with some modifications here and there,
and although our route definition is done, we will now need to create the Controller that
maps to it and can deliver something to the user.

Before we do that, let's look at an example of a very common routing requirement you will
most likely have to use really soon. We don't need this for the functionality we're building
in this chapter, so I won't include it in the final code. However, it's important that you know
how this works.

Route variables
A very common requirement is to have a variable route parameter (or more) that gets used
by the code that maps to the route, for example, the ID or path alias of the page you want to
show. These parameters can be added by wrapping a certain path element into curly braces,
like so:

path: '/hello/{param}'

Here, {param} will map to a $param variable that gets passed as an argument to the
controller or handler responsible for this route. So, if the user goes to the hello/jack path,
the $param variable will have the jack value and the controller can use that.

https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes

Creating Your First Module

[33]

Additionally, Drupal 8 comes with parameter converters that transform the parameter into
something more meaningful. For example, an entity can be autoloaded and passed to the
Controller directly instead of an ID. Also, if no entity is found, the route acts as a 404, saving
us a few good lines of code. To achieve this, we will also need to describe the parameter so
that Drupal knows how to autoload it. We can do so by adding a route option for that
parameter:

options:
 parameters:
 param:
 type: entity:node

So, we have now mapped the {param} parameter to the node entity type. Hence, if the user
goes to hello/1, the Node with the ID of 1 will be loaded (if it exists).

We can do one better. If, instead of {param},we name the parameter {node} (the machine
name of the entity type), we can avoid having to write the parameters option in the route
completely. Drupal will figure out that it is an entity and will try to load that node by itself.
Neat, no?

So keep these things in mind the next time you need to write dynamic routes.

Namespaces
Before moving on with the Controller we set out to write, let's break down the namespace
situation in Drupal 8 and how the folder structure is inside a module.

Drupal 8 uses the PSR-4 namespace autoloading standard. In effect, this means that the
namespace of all Drupal core and module classes starts with \Drupal. For modules, the
base namespace is \Drupal\module_name, where module_name is the machine name of
the module. This then maps to the /src folder found inside the module directory (for main
integration files). For PHPUnit tests, we have a different namespace, as we will see later in
the book.

So essentially, we will need a /src folder inside our module to place all of our classes that
need to be autoloaded. So, we can go ahead and create it.

Creating Your First Module

[34]

The Controller
Now that we have found out more or less where we have to place our Controller, let's begin
by creating a Controller folder inside our module's /src folder. Although not
mandatory, this is a standard practice for Controller placement. Inside this folder, we can
have our first Controller class file, that is, HelloWorldController.php.

Inside the file, we again have something simple (after the opening PHP tags):

namespace Drupal\hello_world\Controller;

use Drupal\Core\Controller\ControllerBase;

/**
 * Controller for the salutation message.
 */
class HelloWorldController extends ControllerBase {

 /**
 * Hello World.
 *
 * @return string
 */
 public function helloWorld() {
 return [
 '#markup' => $this->t('Hello World')
];
 }

}

As expected, we start with the namespace declaration. If you read the preceding section, the
namespace choice will make sense. Then, we have our Controller class that extends the
Drupal 8 ControllerBase, which happens to provide some helper tools (such as the
StringTranslationTrait, which I will explain later in the book). If you remember our
route definition, we have a helloWorld method that returns an array.

If you've worked with previous versions of Drupal, this array (called a render array) will be
familiar. Otherwise, what you need to know right now is that we are returning simple
markup with the Hello World text wrapped in the translation service I hinted at in the
previous paragraph. After the Controller returns this array, there will be an
EventSubscriber that takes this array, runs it through the Drupal theme layer, and
returns the HTML page as a response. The actual content returned in the Controller will be
wrapped in the Main page content block that is usually placed in the main content
region.

Creating Your First Module

[35]

Now, our simple Controller is done. If we now clear the cache, we can go to /hello where
we should encounter a new page that outputs the Our first route title and the Hello World
content. Success!:

Services
I don't like the Controller making the decision on how to greet my users, first of all, because
Controllers need to stay lean. I want my users to be greeted a bit more dynamically,
depending on the time of day, and that will increase the complexity. Second of all, maybe I
will want this greeting to be done elsewhere also (as, it turns out, I will do), and there is no
way I am copying and pasting this logic somewhere else, nor am I going to misuse the
Controller just to be able to call that method. The solution? We delegate the logic of
constructing the greeting to a service and use that service in our Controller to simply output
the greeting.

Creating Your First Module

[36]

What is a service?
A service is an object that gets instantiated by a Service Container and is used to handle
operations in a reusable way, for example, performing calculations and interacting with the
database, an external API, or any number of things. Moreover, it can take dependencies
(other services) and use them to help out. Services are a core part of the dependency
injection (DI) principle that is commonly used in modern PHP applications and in Drupal
8.

If you don't have any experience with these concepts, an important thing to note is also that
they are globally registered with the service and instantiated only once per request. This
means that altering them after you requested them from the container means that they stay
altered even if you request them again. In essence, they are singletons. So, you should write
your services in such a way that they stay immutable, and most of the data they need to
process is either from a dependency or passed in from the client that uses it (and does not
affect it).

Many Drupal 8 core service definitions can be found inside the
core.services.yml file located in the root /core folder. So, if you are
ever looking for service names to use, your best bet is to look there.
Additionally, core modules also have service definitions inside their
respective *.services.yml files. So, make sure that you also check there.

The HelloWorldSalutation service
Now that we have a general idea as to what a service is, let's create one to see all this in
practice.

As I mentioned earlier, I want my greetings to be more dynamic, that is, I want the
salutation to depend on the time of day. So, we will create a (HelloWorldSalutation)
class that is responsible for doing that and place it in the /src folder (or module’s
namespace root):

namespace Drupal\hello_world;

use Drupal\Core\StringTranslation\StringTranslationTrait;

/**
 * Prepares the salutation to the world.
 */
class HelloWorldSalutation {

 use StringTranslationTrait;

Creating Your First Module

[37]

 /**
 * Returns the salutation
 */
 public function getSalutation() {
 $time = new \DateTime();
 if ((int) $time->format('G') >= 06 && (int) $time->format('G') < 12) {
 return $this->t('Good morning world');
 }

 if ((int) $time->format('G') >= 12 && (int) $time->format('G') < 18) {
 return $this->t('Good afternoon world');
 }

 if ((int) $time->format('G') >= 18) {
 return $this->t('Good evening world');
 }
 }
}

By now, I assume that the namespace business is clear, so I won't explain it again. Let's see
what else we did here. First, we used the StringTranslationTrait in order to expose the
translation function (I will explain this later on). Second, we created a rudimentary method
that returns a different greeting depending on the time of day. This could probably have
been done better, but for the purposes of this example, it works just fine.

If there is any reason to believe that you will have more than one
salutation services, you should create an interface this class can
implement. This way, you'll be able to always type hint that interface
instead of the class and make the implementations swappable.

Now that we have our class, it's time to define it as a service. We don't want to be going all
new HelloWorldSalutation() all over our code base, but instead, register it with the
Service Container and use it from there as a dependency. How do we do that?

First, we will need, yet again, a YAML file in our hello_world.services.yml module.
This file starts with the services key, under which will be all the service definitions of our
module. So, our file will look like this (for now):

services:
 hello_world.salutation:
 class: Drupal\hello_world\HelloWorldSalutation

Creating Your First Module

[38]

This is the simplest possible service definition you can have. You give it a name
(hello_world.salutation) and map it to a class to be instantiated. It is a standard
practice to have the service name start with your module name.

Once we clear the cache, the service will get registered with the Service Container and will
be available to use.

Tagged services
Service definitions can also be tagged in order to inform the container as to a specific
purpose that they serve. Typically, these are picked up by a collector service that uses them
for a given subsystem. As an example, if we wanted to tag the hello_world.salutation
service, it would look something this:

hello_world.salutation:
 class: Drupal\hello_world\HelloWorldSalutation
 tags:
 - {name: tag_name}

Tags can also get a priority, as we will see in some examples later in this book.

Using services in Drupal 8
Before we go and use our service in the Controller we created, let's take a breather and run
through the ways you can make use of services once they are registered.

There are essentially two ways--statically and injected. The first is done by a static call to the
Service Container, whereas the second uses dependency injection to pass the object through
the constructor (or in some rare cases, a setter method). However, let's check out how, why,
and what is the real difference.

Statically, you would use the global Drupal class to instantiate a service:

$service = \Drupal::service('hello_world.salutation');

This is how we use services in the .module files and classes, which are not exposed to the
Service Container and into which we cannot inject--although the latter instances are rare. A
few popular services also have shorthand methods on the \Drupal class, accessing them
faster (and easier for IDE autocompletion), for example,
\Drupal::entityTypeManager(). I recommend that you inspect the \Drupal class and
take a look at the ones with shorthand methods available.

Creating Your First Module

[39]

It is not the best practice, and for me, it is personally unacceptable to use the static method
of service instantiation inside a Controller, service, plugin or any other class where an
injection is an option. The reason is that it defeats much of the purpose of using a service, as
it couples the two, and it becomes a nightmare to test. Inside hook implementations and
other Drupal-specific procedural code, on the other hand, we have no choice, and it is
normal to do so.

Just because a code is inside a .module file, it doesn't mean that it should
be there. In general, these modules should only contain things such as
hook implementations or any other implementations that require a certain
naming convention to be respected. They should also be lean and have
their work delegated to services.

The proper way to use services is to inject them where needed. Admittedly, this approach is
a bit more time-consuming, but, as you progress, it will become second nature. Also, since
there are a few different ways to inject dependencies (based on the receiver), we will not
cover them here. Instead, we will see how they work throughout this book, at the right time.
We will take a look at a very important example right now in the next section.

Injecting the service into our Controller
We have now closed the parenthesis on how services can be used. Let's take a look at how
to inject our newly created service into our Controller.

We will need to add some code to our Controller (typically at the beginning of the class so
that we can immediately identify the presence of this code when looking at it):

 /**
 * @var \Drupal\hello_world\HelloWorldSalutation
 */
 protected $salutation;

 /**
 * HelloWorldController constructor.
 *
 * @param \Drupal\hello_world\HelloWorldSalutation $salutation
 */
 public function __construct(HelloWorldSalutation $salutation) {
 $this->salutation = $salutation;
 }

 /**
 * {@inheritdoc}
 */

Creating Your First Module

[40]

 public static function create(ContainerInterface $container) {
 return new static(
 $container->get('hello_world.salutation')
);
 }

In addition to this, ensure that you include the relevant use statements at the top of the file:

use Drupal\hello_world\HelloWorldSalutation;
use Symfony\Component\DependencyInjection\ContainerInterface;

So, what is going on here? First, we give the Controller a constructor method, which takes
our service as an argument and stores it as a property. For me, this is usually the very first
method in the class, but how does this constructor get its argument? It gets it via the
create() method, which receives the Service Container as a parameter and is free to
choose the service(s) needed by the Controller constructor. This is usually my second
method in a class. I prefer this order because it's very easy to check whether they are
present. Also, their presence is important, especially when inheriting and observing what
the parent is injecting, but how does this injection business work in reality?

In a nutshell, after the route is found and the responsible Controller is resolved, a check is
made to see whether the latter implements ContainerInjectionInterface. Our
Controller does so via its parent ControllerBase. If it does, the Controller gets
instantiated via the create() method and the container is passed to it. From there, it is
responsible for creating a new static version of itself with the required services from the
container--not that complicated, really!

The create() method is a staple practice in the Drupal 8 dependency injection pattern, so
you will see it quite a lot. However, one thing to keep in mind is that you should never pass
the entire container to the class you instantiate with it because you are no longer doing
dependency injection then.

A note about ControllerBase, which we are extending--it is a standard practice to extend
it. It provides some nice traits, implements interfaces that are required and shows what the
class purpose is immediately. However, from the point of view of dependency injection, I
advise against using the helper methods that return services (for example,
entityManager()). They, unfortunately, load services statically, which is not the best
practice in this case. You should instead inject them yourself as we did earlier in this
chapter.

Creating Your First Module

[41]

Okay, now to turn back to our example. Now that we have the service injected, we can use
it to render the dynamic salutation:

 return [
 '#markup' => $this->salutation->getSalutation(),
];

There we have it. Now, our greeting is dependent on the time of day and our Controller is
dependent on our salutation service.

One thing I would like to specify about our example is that I disregarded caching for the
sake of simplicity. With the cache turned on, the page would be cached and served with
potentially the wrong salutation. However, we'll have an entire chapter dedicated to
caching, where we will cover all these intricacies, so there is no point in complicating our
example.

The form
So, now, our page displays a greeting dynamically depending on the time of day. However,
we now want an administrator to specify what the greeting should actually be, in other
words, to override the default behavior of our salutation if they so choose.

The ingredients for achieving this will be as follows:

A route (a new page) that displays a form that the administrator can add the
greeting with
A configuration object that will store the greeting

In building this functionality, we will also take a look at how to add a dependency to our
existing service. So, let's get started with our new route that naturally goes inside the
hello_world.routing.yml file:

hello_world.greeting_form:
 path: '/admin/config/salutation-configuration'
 defaults:
 _form: '\Drupal\hello_world\Form\SalutationConfigurationForm'
 _title: 'Salutation configuration'
 requirements:
 _permission: 'administer site configuration'

Creating Your First Module

[42]

Most of this route definition is the same as we saw earlier. There is one change, though, that
it maps to a form instead of a Controller. This means that the entire page is a form page.
Also, since the path is within the administration space, it will use the administration theme
of the site. What is left to do now is to create our form class inside the /Form folder of our
namespace (a standard practice directory for storing forms, but not mandatory).

Due to the power of inheritance, our form is actually very simple. However, I will explain
what goes on in the background and guide you on your path to building more complex
forms. So, here we have our form:

namespace Drupal\hello_world\Form;

use Drupal\Core\Form\ConfigFormBase;
use Drupal\Core\Form\FormStateInterface;

/**
 * Configuration form definition for the salutation message.
 */
class SalutationConfigurationForm extends ConfigFormBase {

 /**
 * {@inheritdoc}
 */
 protected function getEditableConfigNames() {
 return ['hello_world.custom_salutation'];
 }

 /**
 * {@inheritdoc}
 */
 public function getFormId() {
 return 'salutation_configuration_form';
 }

 /**
 * {@inheritdoc}
 */
 public function buildForm(array $form, FormStateInterface $form_state) {
 $config = $this->config('hello_world.custom_salutation');

 $form['salutation'] = array(
 '#type' => 'textfield',
 '#title' => $this->t('Salutation'),
 '#description' => $this->t('Please provide the salutation you want to
use.'),
 '#default_value' => $config->get('salutation'),
);

Creating Your First Module

[43]

 return parent::buildForm($form, $form_state);
 }

 /**
 * {@inheritdoc}
 */
 public function submitForm(array &$form, FormStateInterface $form_state)
{
 $this->config('hello_world.custom_salutation')
 ->set('salutation', $form_state->getValue('salutation'))
 ->save();

 parent::submitForm($form, $form_state);
 }
}

Before going into the explanation, I should say that this is it. Clearing the cache and
navigating to admin/config/salutation-configuration will present you with your
simple configuration form via which you can save a custom salutation message:

Later on, we will make use of that value. However, first, let's talk a bit about forms in
general, and then this form in particular.

Creating Your First Module

[44]

A form in Drupal 8 is represented by a class that implements FormInterface. Typically,
we either extend from FormBase or from ConfigFormBase, depending on what its
purpose is. In this case we created a configuration form so we extended from the latter class.

There are four main methods that come into play in this interface:

getFormId(): Returns a unique, machine-readable name for the form.

buildForm(): Returns the form definition (an array of form element definitions
and some extra metadata, as needed).

validateForm(): The handler that gets called to validate the form submission. It
receives the form definition and a $form_state object that contains, among
others, the submitted values. You can flag invalid values on their respective form
elements, which means that the form is not submitted but refreshed (with the
offending elements highlighted).

submitForm(): The handler that gets called when the form is submitted (if
validation has passed without errors). It receives the same arguments as
validateForm(). You can perform operations, such as saving the submitted
values, or trigger some other kind of flow.

Defining a form, in a nutshell, means creating an array of form element definitions. The
resulting form is very similar to the render array we mentioned earlier and which we will
describe in more depth in the Chapter 5, Creating Your First Module. When creating your
forms, you have a large number of form element types to use. A complete reference of what
they are and what their options are (their definition specificities) can be found on the
Drupal Form API reference page (https:/ /api. drupal. org/api/ drupal/ elements/ 8. 2.x).
Keep this page close to you throughout your Drupal 8 development.

From a dependency injection point of view, forms can receive arguments from the Service
Container in the same way we injected the salutation service into our Controller. As a
matter of fact, ConfigFormBase ,which we are extending in our preceding form above,
injects the config.factory service because it needs to use it for reading and storing
configuration values. This is primarily why we extend from that form--so that we don't
have to write this code ourselves. Drupal is full of these helpful classes we can extend and
provides a bunch of useful boilerplate techniques that are very commonly used across the
Drupal ecosystem.

https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x

Creating Your First Module

[45]

If the form you are building is not storing or working with your configuration, you will
typically extend from FormBase, which provides some static methods and traits and also
implements some interfaces. The same word of caution goes for its helper service methods
as for the ControllerBase.

Let's turn to our preceding form class and dissect it a bit now that we know a thing or two
about forms.

Check the getFormId() method that we have now. We also have a buildForm() and
submitForm(), but not validateForm(). The latter is not mandatory, and we don't
actually need it for our example, but if we did, we could have something like this:

 /**
 * {@inheritdoc}
 */
 public function validateForm(array &$form, FormStateInterface
$form_state) {
 $salutation = $form_state->getValue('salutation');
 if (strlen($salutation) > 20) {
 $form_state->setErrorByName('salutation', $this->t('This salutation
is too long'));
 }
 }

In this validation handler, we basically check whether the submitted value for the
salutation element is longer than 20 characters. If so, we set an error on that element (to
turn it red usually) and specify an error message on the form state specific to this error. The
form will then be refreshed and the error will be presented, and the submit handler, in this
case, will not be called.

For the purposes of our example, this is, however, not necessary, so I will not include it in
the final code.

If we return to our form class, we will also see a strange getEditableConfigNames()
method. This is required by the ConfigFormBaseTrait, which is used in the
ConfigFormBase class that we are extending, and it needs to return an array of
configuration object names that this form needs and which this form intends to edit. This is
because there are two ways of loading configuration objects: editable and immutable. With
this method, we inform it that we want to edit that configuration item.

Creating Your First Module

[46]

As we see on the first line of buildForm(), we are using the config() method of the
above-mentioned trait to load up our editable configuration object from the Drupal 8
configuration factory. This is to check the value that is currently stored in it. Then, we
define our form elements (one, in our case, a simple text field). As #default_value (the
value present in the element when the user goes to the form) on that form element, we will
put whatever is in the configuration object. The rest of the element options are self-
explanatory and pretty standard across all element types. Consult the Form API reference to
see what other options are available and for which element types. Finally, at the end of the
method, we also called the parent method because that provides the form's submit button,
which for our purposes is enough.

The last method we wrote is the submit handler, which basically loads up the editable
configuration object, puts the submitted value in it, and saves it. Finally, it also calls the
parent method, which then simply sets a success message to the user on the screen using
drupal_set_message()--a standard way of showing the user success or error messages
from a code context.

That is pretty much it; this will work just fine.

From the point of view of configuration, we used ConfigFormBase to make our lives easier
and combine the form aspect with that of the configuration storage. In a later chapter, we
will talk a bit more about the different types of storage and also cover how to work with the
configuration objects in more detail, as well as what these entail.

Altering forms
Before going ahead with our proposed functionality, I would like to open a parenthesis and
discuss forms in detail. One of the principal things that you will do as a module developer
in Drupal is alter forms defined by other modules or Drupal core. So, it behooves us to talk
about it early on and what better moment than now when defining the form itself is still
fresh in our minds.

Obviously, the form we just created belongs to us and we can change it however we want.
However, many forms out there have been defined by others, and there will be just as many
times that you will want to make changes to them. Drupal provides us with a very flexible,
albeit still procedural way, of doing so--a suite of alter hooks, but what are alter hooks?

Creating Your First Module

[47]

The first thing we did in this chapter was implement hook_help(). That is an example of
an invoked hook by which a caller (Drupal core or any module) asks all other modules to
provide input. This input is then aggregated in some way and made use of. The other type
of hooks we have in Drupal are the alter hooks, which are used to allow other modules to
make changes to an array or an object before that array or object is used for whatever it is
used for. So, in the case of forms, there are some alter hooks that allow modules to make
changes to the form before it's processed for rendering.

You may be wondering why am I saying that for making changes to a form we have more
than one alter hook. Let me explain by giving an example of how other modules could alter
the form we just defined:

/**
 * Implements hook_form_alter().
 */
function my_module_form_alter(&$form, \Drupal\Core\Form\FormStateInterface
$form_state, $form_id) {
 if ($form_id == 'salutation_configuration_form') {
 // Perform alterations.
 }
}

In the preceding code, we implemented the generic hook_form_alter(), which gets fired
for all forms when being built. The first two arguments are the form and form state (the
same as we saw in the form definition), the former being passed by reference. This is the
typical alter concept--we make changes to an existing variable and don't return anything.
The third parameter is the form ID, the one we defined in the getFormId() method of our
form class. We check to ensure that the form is correct and then we can make alterations to
the form.

This is, however, almost always the wrong approach because the hook is fired for all forms
indiscriminately. Even if we don't actually do anything for most of them, it's still a useless
function call, not to mention that if we want to alter 10 forms in our module, there will be a
lot of if conditionals in there--the price we pay for procedural functions. Instead, though,
we can do this:

/**
 * Implements hook_form_FORM_ID_alter().
 */
function my_module_form_salutation_configuration_form_alter(&$form,
\Drupal\Core\Form\FormStateInterface $form_state, $form_id) {
 // Perform alterations.
}

Creating Your First Module

[48]

Here, we are implementing hook_form_FORM_ID_alter(), which is a dynamic alter hook
in that its name contains the actual ID of the form we want to alter. So, with this approach,
we ensure that this function is called only when it's time to alter our form, and the other
benefit is that if we need to alter another one, we can implement the same for that and have
our logic neatly separated.

Custom submit handlers
So, up to now, we have seen how other modules can make changes to our form. That means
adding new form elements, changing existing ones, and things like that, but what about our
validation and submit handlers (those methods that get called when the form is submitted).
How can those be altered?

Typically, for the forms defined as we did, it's pretty simple. Once we alter the form and
inspect the $form array, we can find a #submit key, which is an array that has one item--
::submitForm. This is simply the submitForm() method on the form class. So, what we
can do is either remove this item and add our own function or simply add another item to
that array:

/**
 * Implements hook_form_FORM_ID_alter().
 */
function my_module_form_salutation_configuration_form_alter(&$form,
\Drupal\Core\Form\FormStateInterface $form_state, $form_id) {
 // Perform alterations.
 $form['#submit'][] = 'hello_world_salutation_configuration_form_submit';
}

And the callback we added to the #submit array above can look like this:

/**
 * Custom submit handler for the form_salutation_configuration form.
 *
 * @param $form
 * @param \Drupal\Core\Form\FormStateInterface $form_state
 */
function my_module_salutation_configuration_form_submit(&$form,
\Drupal\Core\Form\FormStateInterface $form_state) {
 // Do something when the form is submitted.
}

Creating Your First Module

[49]

So, the cool thing is that you can choose to tack on your own callback or replace the existing
one. Keep in mind that the order they are in that array is the order they get executed. So,
you can also change the order.

There is another case though. If the submit button on the form has a #submit property
specifying its own handler, the default form #submit handlers we saw just now won't fire
anymore. This was not the case with our form. So, in that situation, you will need to add
your own handler to that array. Hence, the only difference is the place you tack on the
submit handler. A prominent example of such a form is the Node add/edit form.

Finally, when it comes to the validation handler, it works exactly the same as with the
submit, but it all happens under the #validate array key.

Feel free to experiment with altering existing forms and inspect the variables they receive as
arguments. I strongly encourage you to become familiar with the common form data and
keep the documentation on form elements close by (https:/ /api. drupal. org/ api/ drupal/
elements/8.2.x).

Rendering forms
Staying on forms for just a bit longer, let's quickly learn how to render forms
programmatically. Also, we have already seen how to map a form to a route definition so
that the page being built contains the form when accessing the route path. However, there
are times where we need to render a form programmatically, either inside a Controller or a
block or wherever you want. We can do this using the FormBuilder service.

The form builder can be injected using the form_builder service key or used statically via
the shorthand:

$builder = \Drupal::formBuilder();

Once we have it, we can build a form, like so:

$form =
$builder->getForm('Drupal\hello_world\Form\SalutationConfigurationForm');

In the preceding code, $form will be a render array of the form that we can return, for
example, inside a Controller. We'll talk more about render arrays a bit later on, and you'll
understand how they get turned into actual form markup. However, for now, this is all you
need to know about rendering forms programmatically--you get the form builder and
request from it the form using the fully qualified name of the form class.

https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x
https://api.drupal.org/api/drupal/elements/8.2.x

Creating Your First Module

[50]

With this, we can close the parenthesis on forms.

Service dependencies
In the preceding section, we created a form that allows administrators to set a custom
salutation message to be shown on the page. This message was stored in a configuration
object that we can now load in our HelloWorldSalutation service. So, let's do just that in
a two-step process.

First, we will need to alter our service definition to give our service an argument--the
Drupal 8 configuration factory (the service responsible for loading config objects). This is
how our service definition should look:

 hello_world.salutation:
 class: Drupal\hello_world\HelloWorldSalutation
 arguments: ['@config.factory']

The addition is the argument's key, which is an array of service names proceeded by @. In
this case, config.factory is the responsible service name, which if we check in the
core.services.yml file, we will note that it maps to the
Drupal\Core\Config\ConfigFactory class.

So, with this change, the HelloWorldSalutation class will be passed an instance of
ConfigFactory. All we need to do now is to adjust our class to actually receive it:

 /**
 * @var \Drupal\Core\Config\ConfigFactoryInterface
 */
 protected $configFactory;

 /**
 * HelloWorldSalutation constructor.
 *
 * @param \Drupal\Core\Config\ConfigFactoryInterface $config_factory
 */
 public function __construct(ConfigFactoryInterface $config_factory) {
 $this->configFactory = $config_factory;
 }

Creating Your First Module

[51]

There's nothing too complicated going on here. We added a constructor and set config
factory in a property. We can now use this config factory to load our configuration object
that we saved in the form. However, before we do that, we should also use the
ConfigFactoryInterface class at the top of the file:

use Drupal\Core\Config\ConfigFactoryInterface;

Now, at the top of the getSalutation() method, we can add the following bit:

 $config = $this->configFactory->get('hello_world.custom_salutation');
 $salutation = $config->get('salutation');
 if ($salutation != "") {
 return $salutation;
 }

With the preceding code, we can load the configuration object we saved in the form, and
from it, we request the salutation key, where if you remember, we stored our message. If
there is a value in there, we will return it. Otherwise, the code will continue and our
previous logic of time-based greeting apply.

So, now if we reload our initial page, the message we saved through the form should show
up. If we then return to the form and remove the message, this page should default back to
the original dynamic greeting. Neat, right?

Let's now take a look at how we can create a custom block that we can place anywhere we
like and which will output the same thing as our page.

Blocks
Custom blocks in Drupal 8 are plugins. Finally, we encounter our first plugin type. For the
sake of full disclosure, the content blocks that you create through the UI to place in a region
and the custom blocks that are placed in a region are content entities. So, the block system is
a good example of how entities and plugins work hand in hand in Drupal 8, and not to
make matters too complex for you, configuration entities (about which we will learn in a
later chapter) also play a big role here.

The block system in Drupal 8 is a great shift from its predecessor. Before, you had to
implement two obligatory hooks plus two optional hooks if you wanted the block to have a
configuration, and the latter was always saved somewhere that had nothing to do with the
block itself. In Drupal 8, we work with a simple plugin class that can be made container-
aware (that is, we can inject dependencies into it) and we can store configuration in a logical
fashion.

Creating Your First Module

[52]

So, how do we create a custom block plugin easily? All we need is one class, placed in the
right namespace--Drupal\module_name\Plugin\Block. In this case (with plugins), the
folder naming is important. The plugin discoverability is dependent on the plugin type
itself, and this one has the Plugin\Block namespace bit in it. Enough talk, let's create a
simple block that just renders the same as our Controller did previously, and I will explain
things along the way.

Our first block plugin
So, this is our plugin class--HelloWorldSalutationBlock--that does just that:

namespace Drupal\hello_world\Plugin\Block;

use Drupal\Core\Block\BlockBase;
use Drupal\Core\Plugin\ContainerFactoryPluginInterface;
use Symfony\Component\DependencyInjection\ContainerInterface;
use Drupal\hello_world\HelloWorldSalutation as HelloWorldSalutationService;

/**
 * Hello World Salutation block.
 *
 * @Block(
 * id = "hello_world_salutation_block",
 * admin_label = @Translation("Hello world salutation"),
 *)
 */
class HelloWorldSalutationBlock extends BlockBase implements
ContainerFactoryPluginInterface {

 /**
 * Drupal\hello_world\HelloWorldSalutation definition.
 *
 * @var \Drupal\hello_world\HelloWorldSalutation
 */
 protected $salutation;

 /**
 * Construct.
 *
 * @param array $configuration
 * A configuration array containing information about the plugin
instance.
 * @param string $plugin_id
 * The plugin_id for the plugin instance.
 * @param string $plugin_definition

Creating Your First Module

[53]

 * The plugin implementation definition.
 * @param \Drupal\hello_world\HelloWorldSalutation $salutation
 */
 public function __construct(array $configuration, $plugin_id,
$plugin_definition, HelloWorldSalutationService $salutation) {
 parent::__construct($configuration, $plugin_id, $plugin_definition);
 $this->salutation = $salutation;
 }

 /**
 * {@inheritdoc}
 */
 public static function create(ContainerInterface $container, array
$configuration, $plugin_id, $plugin_definition) {
 return new static(
 $configuration,
 $plugin_id,
 $plugin_definition,
 $container->get('hello_world.salutation')
);
 }

 /**
 * {@inheritdoc}
 */
 public function build() {
 return [
 '#markup' => $this->salutation->getSalutation(),
];
 }
}

Before even going through the explanation, you should know that clearing the cache and
placing this block through the UI block management will do what we wanted. However,
let's understand what is going on here first.

Perhaps the strangest thing you'll note is the DocBlock comment at the top of the class,
which denotes that this is a Block plugin--the annotation. As I mentioned in the first
chapter, annotations are the most common discovery mechanisms for plugins in Drupal
core. In this case, the plugin definition we need is made up of an ID and administration
label.

Creating Your First Module

[54]

Properly defined plugin types have an AnnotationInterface
implementation, which describes the properties that one can or should use
in the annotation. So, if you are unsure what needs to be used, ensure that
you look for this class for that specific plugin type.

Then, we see that our class extends BlockBase and also implements the
ContainerFactoryPluginInterface. The former, similar to the Controller and Form we
saw earlier, provides a number of helpful things a block plugin needs. However, we cannot
really get around to extending this class because block plugins are quite complex, working
with things such as context and configuration. So, ensure that you always extend this class.
The latter is, however, optional. That interface makes this block plugin Container-aware,
that is, at the moment of instantiation, it uses the create() method to build itself using the
container for dependencies, and, sure enough, we have our create() method below.

Before moving on to the actual block building, we will need to talk a bit about the
dependency injection in plugins. As you see, the signature of this create() method is
different to the one we saw in the Controller. This is also why we are using a different
container-aware interface. The reason is that plugins are constructed with a few extra
parameters: $configuration, $plugin_id, and $plugin_definition. The first contains
any configuration values that were stored with the plugin (or passed when building), the
second is the ID set in the plugin annotation (or other discovery mechanism), and the third
is an array that contains the metadata on this plugin (including all the info found in the
annotation). However, apart from this, it's business as usual when it comes to dependency
injection. If a plugin type base class doesn't implement this interface, you can do so yourself
directly in your plugin. You can do this with most plugins (there are a few exceptions,
which cannot be made container-aware unfortunately, but very rare).

Finally, we have a build() method, which is responsible for building the block content. It
needs to return a render array (just like our Controller did), and as you can see, we are
using our injected service and it returns the same greeting. That is pretty much what we
need to do to achieve our goal. There are other important aspects to block plugins we will
cover later, such as caching and access, but we have specific chapters for those topics.

Block configuration
Before we close the book on our custom block plugin, though, let's take a look at how we
can add a configuration form to it. This way, we can practice using some more Form API
elements and see how we can store and use block configuration.

Creating Your First Module

[55]

Even though our functionality is complete (for the moment), let's imagine that we need a
Boolean-like control on our block configuration so that when an admin places the block,
they can toggle something and that value can be used in the build() method. We can
achieve this with three to four methods on our plugin class.

First, we will need to implement the defaultConfiguration() method, in which we can
describe the items of configuration that we are storing for this block and the default values
of these items. So, we can have something like this:

 /**
 * {@inheritdoc}
 */
 public function defaultConfiguration() {
 return [
 'enabled' => 1,
];
 }

We return an array of keys and values that will be in the configuration. Also, since we said
we are going with a Boolean field, we'll use the number 1 as the value to a fictitious key,
enabled.

Next, we will need to implement the blockForm() method, which provides our form
definition for this configuration item:

 /**
 * {@inheritdoc}
 */
 public function blockForm($form, FormStateInterface $form_state) {
 $config = $this->getConfiguration();

 $form['enabled'] = array(
 '#type' => 'checkbox',
 '#title' => t('Enabled'),
 '#description' => t('Check this box if you want to enable this
feature.'),
 '#default_value' => $config['enabled'],
);

 return $form;
 }

Creating Your First Module

[56]

Let's not forget the use statement at the top of the file:

use Drupal\Core\Form\FormStateInterface;

As you can see, this is a typical Form API definition for one form element of the type
checkbox. Additionally, we are using the getConfiguration() handy method of the
parent class to load up the configuration values that get saved with this block. If none have
been saved, you'll note that the enabled key will be present in it with the default value we
set above (1).

Lastly, we will need the submit handler that will do the necessaries to store the
configuration. I used inverted commas because we don't actually have to do anything
related to storage, but just map the value submitted in the form to the relevant key in the
configuration. The block system does it for us. Also, no extra processing is needed, in our
case, either:

 /**
 * {@inheritdoc}
 */
 public function blockSubmit($form, FormStateInterface $form_state) {
 $this->configuration['enabled'] = $form_state->getValue('enabled');
 }

It couldn't be simpler than this. Now when we place our custom block somewhere, the form
we are presented with will incorporate our form elements that allow us to toggle the
enabled key. What remains to be done is to make use of this value inside the build()
method. We can do that similarly to how we loaded the configuration values inside the
buildForm() method:

$config = $this->getConfiguration();

Alas, we don't really need this configuration in our example block, so we won't be adding it
to our code. However, it is important for you to know how to do it, so we covered it here.
Moreover, before moving on, I also want to specify that you can use an optional method to
handle validation on the configuration form, that is, blockValidate(), which will take the
same parameters as blockSubmit() and will work the same way as the validation handler
we saw when we built our standalone form. So, I won't repeat that here.

Creating Your First Module

[57]

Working with links
One of the principle characteristics of a web application is the myriad of links between its
resources. They are in fact the glue that brings it together. So, in this section, I want to show
you a few common techniques used while working with links programmatically in Drupal
8.

There are two main aspects when talking about link building in Drupal--the URL and the
actual link tag itself. So, creating a link involves a two-step process that deals with these
two, but can also be shortened into a single call via some helper methods.

The URL
URLs in Drupal 8 are represented with the Drupal\Core\Url class, which has a number of
static methods that allow you to create an instance. The most important of these is
::fromRoute(), which takes a route name, route parameters (if any are needed for that
route), and an array of options to create a new instance of Url. There are other such
methods available that turn all sorts of other things into a Url, most notably, the
::fromUri() method that takes in an internal or external URL. Sometimes, these methods
are very helpful, especially when dealing with dynamically obtained data (such as a URL).
However, when hardcoding, it's always best to work with route names because that allows
you to later change the actual path behind that route without affecting your code.

There are many options that can be passed to the Url when creating it, inside the $options
array. You can pass an array of query parameters, a fragment, and others. These will then
help construct a URL as complex as you need without having to deal with strings yourself. I
suggest that you check out the documentation above the ::fromUri() method because it
describes them all. Also, keep in mind that the options are pretty much the same, regardless
of the method that you use to create the Url object.

The link
Now that we have a Url object, we can use it to generate a link. We can do this in two ways:

Use the LinkGenerator service (named link_generator) and call its
generate() method passing the link text and the Url object we have obtained.
This will return a GeneratedLink object, which contains the actual string
representation of the link, that is, the markup.

Creating Your First Module

[58]

Use the Link class, which wraps a render element (we will talk more about
render elements in the Theming chapter) to represent the link.

Let's take a look at an example of both, from start to finish.

Consider this example of generating a link using the service:

$url = Url::fromRoute('my_route', ['param_name' => $param_value]);
$link = \Drupal::service('link_generator')->generate('My link', $url);

We can then directly print $link because it implements the __toString() method.

Now, consider this example of generating a link using the Link class:

$url = Url::fromRoute('my_other_route');
$link = Link::fromTextAndUrl('My link', $url);

We now have $link as a Link object whose toRenderable() returns a render array of the
#type => 'link'. Behind the scenes, at render time, it will also use the link generator to
transform that into a link string.

If we have a Link object, we can also use the link generator ourselves to generate a link
based on it:

$link = \Drupal::service('link_generator')->generateFromLink($linkObject);

Which way to link?
As we saw, we have a number of ways to create links and URL representations, but when it
comes to creating a link, which method should we use? There are advantages and
disadvantages for each one.

When it comes to URL, as mentioned, it's a good idea to stick to hardcoding routes rather
than URIs. However, if you are working with dynamic data, such as user input or stored
strings, the other methods are perfectly valid. I recommend that you look at the Url class in
detail because you will be using it quite a bit as you develop Drupal 8 modules.

Creating Your First Module

[59]

Regarding the actual links, using the service to generate a link means that you are creating a
string at your point in the code. This means that it cannot be altered later in the process. On
the other hand, using the Link class falls nicely in line with the entire render array rationale
of delaying the actual generation to the last possible moment. We will talk more about
render arrays later on. So, the choice you make depends on the link you need to generate
and your answer to the following question: is the link something that might have to be
alterable by other modules/themes? If so, proceed with the render array. Otherwise, you
might consider generating if you can inject the service properly.

Event Dispatcher and redirects
A common thing you'll have to do as a module developer is to intercept a given request and
redirect it to another page, and more often than not, this will have to be dynamic,
depending on the current user or other contextual info. Drupal 7 developers know very well
that this has always been an easy task. Simply implement hook_init(), which gets called
on each request and then use the famous drupal_goto() function. This, however, is no
longer the case in Drupal 8. What we have to do now is subscribe to the kernel.request
event (remember this from the preceding chapter?) and then change the response directly.
However, before seeing an example of this, let's take a look at how we can perform a
simpler redirect from within a Controller.

Redirecting from a Controller
In this chapter, we wrote a Controller that returns a render array. We know from the
preceding chapter that this is picked up by the theme system and turned into a response. In
Chapter 4, Theming, we will go into a bit more detail and see how this process is done.
However, this render pipeline can also be bypassed if the Controller returns a response
directly. Let's consider the following example:

return new Response('my text');

This will bypass much of Drupal, in fact, and return a blank white page with only the "my
text" string on it. The Response class we're using is from the Symfony HTTP Foundation
component.

However, we also have a handy RedirectResponse class that we can use, and it will
redirect the browser to another page:

return new RedirectResponse('node/1');

Creating Your First Module

[60]

The first parameter is the URL where we want to redirect. Typically, this should be an
absolute URL; however, browsers nowadays are smart enough to handle a relative path
also, as in the preceding example. So, in this case, the Controller will redirect us to that path.

Redirecting from a subscriber
Many times, our business logic says that we need to perform a redirect from a certain page
to another if various conditions match. For these, we can subscribe to the request event and
simply change the response--essentially bypassing the normal process, which would have
gone through all the layers of Drupal. However, before we see an example, let's talk about
the Event Dispatcher for just a bit.

The central player in this system is the event_dispatcher service, which is an instance of
the ContainerAwareEventDispatcher class. This service allows the dispatching of
named events that take a payload in the form of an Event object, which wraps the data that
needs to be passed around. Typically, the code responsible for dispatching an event will
create an Event subclass with some handy methods for accessing the data that needs to be
passed around. Finally, instances of EventSubscriberInterface listen to events that
have certain names and can alter the Event object that has been passed. Essentially, then,
this system allows subscribers to change data before the business logic uses it for
something. In this respect, it is a prime example of an extension point in Drupal 8. Finally,
registering event subscribers is a matter of creating a service tagged with
event_subscriber and that implements the interface.

Let's now take a look at an example event subscriber that listens to the kernel.request
event and redirects it to the home page if a user with a certain role tries to access our Hello
World page. This will demonstrate both how to subscribe to events and how to perform a
redirect. It will also show us how to use the current route match service to inspect the
current route.

Let's create this subscriber by first writing the service definition for it:

hello_world.redirect_subscriber:
 class: \Drupal\hello_world\EventSubscriber\HelloWorldRedirectSubscriber
 arguments: ['@current_user']
 tags:
 - {name: event_subscriber}

Creating Your First Module

[61]

As you see, we have the regular service definition with one argument and with the
event_subscriber tag. The dependency is actually the service that points to the current
user (either logged in or anonymous) in the form of an AccountProxyInterface. This is a
wrapper to the AccountInterface, which represents the actual current user. Also, when I
say user, I mean an object that has certain data about the user and not the actual entity
object with all the field data. Certain things about the user are, however, accessible from the
AccountInterface, such as the ID, the name, roles, and email. I recommend that you
check out the interface for more info. However, for our example, we will use it to check
whether the user has the non_grata role, which will trigger the redirect I mentioned.

Next, let's look at the event subscriber class itself:

namespace Drupal\hello_world\EventSubscriber;

use Drupal\Core\Session\AccountProxyInterface;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use Symfony\Component\HttpFoundation\RedirectResponse;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\HttpKernel\KernelEvents;

/**
 * Subscribes to the Kernel Request event and redirects to the homepage
 * when the user has the "non_grata" role.
 */
class HelloWorldRedirectSubscriber implements EventSubscriberInterface {

 /**
 * @var \Drupal\Core\Session\AccountProxyInterface
 */
 protected $currentUser;

 /**
 * HelloWorldRedirectSubscriber constructor.
 *
 * @param \Drupal\Core\Session\AccountProxyInterface $currentUser
 */
 public function __construct(AccountProxyInterface $currentUser) {
 $this->currentUser = $currentUser;
 }

 /**
 * {@inheritdoc}
 */
 public static function getSubscribedEvents() {
 $events['kernel.request'][] = ['onRequest', 0];

Creating Your First Module

[62]

 return $events;
 }

 /**
 * Handler for the kernel request event.
 *
 * @param \Symfony\Component\HttpKernel\Event\GetResponseEvent $event
 */
 public function onRequest(GetResponseEvent $event) {
 /** @var Request $request */
 $request = $event->getRequest();
 $path = $request->getPathInfo();
 if ($path !== '/hello') {
 return;
 }

 $roles = $this->currentUser->getRoles();
 if (in_array('non_grata', $roles)) {
 $event->setResponse(new RedirectResponse('/'));
 }
 }
}

As expected, we store the current user as a class property so that we can use it later on.
Then, we implement the EventSubscriberInterface::getSubscribedEvents()
method. This method needs to return a multidimensional array, which is basically a
mapping between event names and the class methods to be called if that event is
dispatched. And this is how we actually register methods to listen to one event or another,
and we can listen to multiple events in the same subscriber class. It's typically a good idea
to separate these, however, into different, more topical, classes. The callback method name
is inside an array whose second value represents the priority of this callback compared to
others you or other modules may define. The higher the number, the higher the priority, the
earlier in the process it will run.

In our example, we listen to the kernel.request event I mentioned in the previous
chapter. This event is dispatched by Symfony's HttpKernel, passing an instance of
GetResponseEvent which basically wraps the Request object. The name of the Event
class usually well describes the purpose of the event. In this case it is looking for a
Response object to deliver to the browser. If we inspect the class, we can note that it has a
setResponse() method on it, which we can use to set the response. If a subscriber
provides one, it stops the event propagation (none of the other listeners with a lower
priority are given a chance) and the response is returned.

Creating Your First Module

[63]

So, in our onRequest() callback method, we check the current path being requested, and if
it is ours and the current user has the non_grata role, we set the RedirectResponse onto
the event to redirect it to the home page. This will do the job we set out to do. If you go to
the /hello page as a user with that role, you should be redirected to the home page. That
being said, I don't like many aspects about this implementation. So, let's fix them.

First, we will hardcode the kernel.request event name (I did, can't blame you for that).
Any decent code that dispatches events will use a class constant to define the event name.
The subscribers should also reference that constant, and Symfony has the KernelEvents
class just for that. Check it out and see what other events are dispatched by the HttpKernel,
as they are all referenced there.

So, instead of hardcoding the string, we can have this:

$events[KernelEvents::REQUEST][] = ['onRequest', 0];

Second, the way we do the path handling in the onRequest() method is all sorts of wrong.
We are hardcoding the /hello path in this condition. What if we change the route path
because our boss wants the path to be /greeting? I also don't like the way we passed the
path to the RedirectResponse. The same thing applies (although in the case of the home
page, not so much): what if the path we want to redirect to changes? Let's fix these
problems using routes instead of paths. The are system specific and are unlikely to change
because of business requirements.

We are now unable to understand which route is being accessed from the Request object.
Instead, we can use the current_route_match service--a very popular one you'll use
often--which gives us loads of info about the current route. So, let's inject that into our event
subscriber. By now, you should know how to do this on your own (check the final code if
you still have trouble). Once that is done, we can do this instead:

public function onRequest(GetResponseEvent $event) {
 $route_name = $this->currentRouteMatch->getRouteName();

 if ($route_name !== 'hello_world.hello') {
 return;
 }

 $roles = $this->currentUser->getRoles();
 if (in_array('non_grata', $roles)) {
 $url = Url::fromUri('internal:/');
 $event->setResponse(new RedirectResponse($url->toString()));
 }
}

Creating Your First Module

[64]

From the CurrentRouteMatch service, we can figure out the name of the current route, the
entire route object, parameters from the URL, and other useful things. Do check out the
class for more info on what you can do, as I guarantee that they will come in handy.

Instead of checking against the pathname, we now check against the route name. So, if we
change the path in the route definition, our code will still work. Then, instead of just adding
the path to the RedirectResponse, we can build it first using the Url class used in the
preceding section. Granted, in our example, it is probably overkill, but had we redirected it
to a known route, we could have built it based on that, and our code would have been more
robust. Additionally, using the Url class, we can also check other things such as access, and
its toString() method simply turns it into a string that can be used for the
RedirectResponse.

With this, we will get the same redirect, but in a much cleaner and more robust way.

Dispatching events
Since we have discussed how to subscribe to events in Drupal 8, it would only be fair to
quickly take a look at how we can dispatch our own events. After all, the Symfony Event
Dispatcher component is one of the principle vectors of extensibility in Drupal 8.

To demonstrate this, we will create an event to be dispatched whenever our
HelloWorldSalutation::getSalutation() method is called. The purpose is to inform
other modules that this happened and potentially allow them to alter the message that
comes out of the configuration object-not really a solid use case, but good enough to
demonstrate how we can dispatch events.

The first thing that we will need to do is to create an event class that will be dispatched. It
can go into the root of our module's namespace:

namespace Drupal\hello_world;

use Symfony\Component\EventDispatcher\Event;

/**
 * Event class to be dispatched from the HelloWorldSalutation service.
 */
class SalutationEvent extends Event {

 const EVENT = 'hello_world.salutation_event';

 /**
 * The salutation message.

Creating Your First Module

[65]

 *
 * @var string
 */
 protected $message;

 /**
 * @return mixed
 */
 public function getValue() {
 return $this->message;
 }

 /**
 * @param mixed $message
 */
 public function setValue($message) {
 $this->message = $message;
 }
}

The main purpose of this event class is that an instance of it will be used to transport the
value of our salutation message. This is why we created the $message property on the class
and added the getter and setter methods. Moreover, we use it to define a constant for the
actual name of the event that will be dispatched. Finally, the class extends from the base
Event class that comes with the Event Dispatcher component as a standard practice. We
could also use that class directly, but we would not have our data stored in it as we do now.

Next, its time to inject the Event Dispatcher service into our HelloWorldSalutation
service. We have already been injecting config.factory, so we just need to add a new
argument to the service definition:

arguments: ['@config.factory', '@event_dispatcher']

Of course, we will also receive it in the constructor and store it as a class property:

/**
 * @var \Symfony\Component\EventDispatcher\EventDispatcherInterface
 */
protected $eventDispatcher;

/**
 * HelloWorldSalutation constructor.
 *
 * @param \Drupal\Core\Config\ConfigFactoryInterface $config_factory
 * @param \Symfony\Component\EventDispatcher\EventDispatcherInterface
$eventDispatcher
 */

Creating Your First Module

[66]

public function __construct(ConfigFactoryInterface $config_factory,
EventDispatcherInterface $eventDispatcher) {
 $this->configFactory = $config_factory;
 $this->eventDispatcher = $eventDispatcher;
}

We will also have the obligatory use statement for the EventDispatcherInterface at the
top of the file:

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

Now, we can make use of the dispatcher, and it's actually pretty simple. Instead of using the
following code:

if ($salutation != "") {
 return $salutation;
}

We can have the following code:

if ($salutation != "") {
 $event = new SalutationEvent();
 $event->setValue($salutation);
 $event = $this->eventDispatcher->dispatch(SalutationEvent::EVENT,
$event);
 return $event->getValue();
}

We decided that if we are to return a salutation message from the configuration object, we
want to inform other modules and allow them to change it. So, we first create an instance of
our Event class and feed it the relevant data (the message). Then, we dispatch the named
event and pass the event object along with it. The Event Dispatcher returns the event that
has been dispatched with any changes that might have been applied to it. So, we get the
data from that instance and return it.

Pretty simple, isn't it? What can subscribers do? It's very similar to what we saw regarding
the example on redirects in the preceding paragraph. All a subscriber needs to do is listen
for the SalutationEvent::EVENT event and do something based on that. One thing that it
can do is use the setValue() method on the received event object to change the salutation
message. It can also use the stopPropagation() method from the base Event class to
inform the Event Dispatcher to no longer trigger other listeners that have subscribed to this
event.

Creating Your First Module

[67]

Summary
In this chapter, we covered a great deal of info about the things you need to know when
developing Drupal 8 modules. The first thing we did was create our very own module
skeleton that can be installed on a Drupal 8 site. Then, we saw how to create a new page at a
specific path (route) and show some basic data on that page. Nothing too complex, but
enough to illustrate one of the most common tasks you will do as a module developer. We
then took that to new level and abstracted the logic for that data calculation into a service.
Not only that, but we also saw how we can use that service, and, more importantly, how we
should use it. Next, we saw how we can work with the Form API in Drupal 8 to allow
administrators to add some configuration to the site. A very important takeaway here was
also that the Form API page in Drupal 8 will prove invaluable going forward because you
have many different types of form elements at your disposal. So, keep that close by. Also,
since we talked about forms, we also saw how we can alter the existing forms defined by
other modules--an invaluable technique for any module developer.

Next, we created our first custom block in Drupal 8, which allowed us to reuse our service
and be more flexible with where we show our data.

Then, we looked at how to create URLs and links programmatically in Drupal 8. In the
functionality we built in this module, we don't need any links, yet. However, it is a common
practice to work with them, so we had to learn early how to generate links and work with
URLs properly in Drupal 8.

In our last section, we explored the Symfony Event Dispatcher component, a bit that allows
us to dispatch and subscribe to events. We saw some examples of how we can subscribe to
one of the main Kernel events in order to redirect the page, but we also saw how to dispatch
our own event. The latter was meant to allow subscribers to make changes to our data, but
we also saw how we can invoke our own alter hooks for the same purpose.

Most of the topics we covered in this chapter were meant to give you an initial boost and
the tools to start developing modules in Drupal 8. They represent the absolute most
common things--I believe--any new Drupal developer encounters and has to do. You will
probably find that many of the things you will learn in the rest of this book will serve you
only after some of the things we covered in this chapter are done in your module.

In the next chapter, we will look at two important aspects most applications will need to
use. One is logging--the better your site logs its errors and important actions, the easier it
will be to debug and trace back issues. Another is mailing--websites usually need to send
out emails to users in one way or another, so it's important that we see how that works in
Drupal 8.

3
Logging and Mailing

In the preceding chapter, we learned how to do some of the more common things most
Drupal 8 module developers will have to know how to do, starting with the basics, that is,
creating a Drupal module.

In this chapter, we will take things further and cover some other important tasks that a
developer will have to perform.

We will take a look at how logging works in Drupal 8. In doing so, we will cover
some examples by expanding on our Hello World module.
We will look at the Mail API in Drupal 8, namely, how we can send emails with
the default setup (PHP mail). However, more than that, I will show you how to
create your own email system to integrate with your (perhaps external) mail
service; remember plugins? This will be yet another good example of using a
plugin to extend existing capabilities.
At the end of the chapter, we will also look at the Drupal 8 token system. We'll do
so in the context of us being able to replace certain tokens with contextual data so
that the emails we send out are a bit more dynamic.

By the end of this chapter, you should be able to add logging to your Drupal 8 module and
feel comfortable sending emails programmatically. Additionally, you'll understand how
tokens work, and as a bonus, see how you can define your own tokens.

Logging and Mailing

[69]

Logging
The main logging mechanism in Drupal is a database log by which client code can use an
API to save messages into watchdog table. The messages in there are cleared after they
reach a certain number, but meanwhile they can be viewed in the browser via a handy
interface (at admin/reports/dblog):

Alternatively, a core module that is disabled by default, Syslog, can be used to
complement/replace this logging mechanism with the Syslog of the server the site is
running on. For the purpose of this book, we will focus on how logging works with any
mechanism, but we will also take a look at how we can implement our own logging system
in Drupal 8.

Drupal 7 developers are very familiar with the watchdog() function they use for logging
their messages. This is a procedural API for logging that exposes a simple function that
takes some parameters, which make the logging flexible--$type (the category of the
message), $message, $variables (an array of values to replace placeholders found in the
message), $severity (a constant), and $link (a link to where the message should link to
from the UI). It's pretty obvious that this solution is a very Drupal-specific one and not
really common to the wider PHP community.

Logging and Mailing

[70]

In Drupal 8, this has changed. The Database Logging module remains, the table for storing
the messages is still called watchdog, but this logging destination is just one possible
implementation that can be done. This is because the logging framework in Drupal 8 has
been refactored to be object-oriented and PSR-3 compatible, and Database Logging is just
the default implementation.

The Drupal 8 logging theory
Before going ahead with our example, let's cover some theoretical notions regarding the
logging framework in Drupal 8. In doing so, we will try to understand the key players we
will need to interact with.

First, we have LoggerChannel, which represents a category of logged messages. They
resemble the former $type argument to the Drupal 7 watchdog() function. A key
difference, however, is that they are objects through which we do the actual logging via the
logger plugins themselves. In this respect, they are used by our second main player,
LoggerChannelFactory, a service that is normally our main contact with the logging
framework as a client code.

To understand these things better, let’s consider the following example of a simple usage:

\Drupal::logger('hello_world')->error('This is my error message');

That's it. We just used the available registered loggers to log an error message through the
hello_world channel. This is our own custom channel that we just came up with and that
simply categorizes this message as belonging to the hello_world category (the module we
started in the preceding chapter). Moreover, you'll see that I used the static call. Under the
hood, the logger factory service is loaded, a channel is requested from it, and the error()
method is called on it:

\Drupal::service('logger.factory')->get('hello_world')->error('This is my
error message');

When you request a channel from LoggerChannelFactory, you give it a name, and based
on that name, it creates a new instance of LoggerChannel, which is the default channel. It
will then pass to that channel all the available loggers so that when we call any of the
RfcLoggerTrait logging methods on it, it will delegate to those.

Logging and Mailing

[71]

We also have the option of creating our own channel. An advantage of doing this is that we
can inject it directly into our classes instead of the entire factory from where we can request
the channel. Also, we can do it in a way in which we don't even require the creation of a
new class, but will inherit from the default one. We'll see how to do that in the next section.

The third main player is LoggerInterface implementation, which follows the PSR-3
standard. If we look at the DbLog class, which is the database logging implementation we
mentioned earlier, we will note that it also uses RfcLoggerTrait that takes care of all the
necessary methods so that the actual LoggerInterface implementation only has to handle
the main log() method. This class is then registered as a service with logger tag, which in
turn registers it with LoggerChannelFactory (that also acts as a service collector).

As we saw in Chapter 2, Creating Your First Module, tags can be used to categorize service
definitions and we can have them collected by another service for a specific purpose. In this
case, all services tagged with logger have a purpose, and they can be gathered and used by
LoggerChannelFactory.

I know that I have thrown quite a few theories at you, but these are some concepts
important to understand. However, don't worry; as usual, we will go through some
examples.

Our own logger channel
I mentioned earlier how we can define our own logger channel so that we don't have to
always inject the entire factory. So, let's take a look at how to create one for the Hello World
module we're now writing.

Most of the time, all we have to do is add the following definition to our
hello_world.services.yml file:

 hello_world.logger.channel.hello_world:
 parent: logger.channel_base
 arguments: ['hello_world']

Before talking about the actual logger channel, let's see what this weird service definition
actually means because this is not something we've seen before--I mean, where's the class?

Logging and Mailing

[72]

The parent key means that our service will inherit the definition from another service. In
our case, the parent key is logger.channel_base, and this means that the class used will
be Drupal\Core\Logger\LoggerChannel (the default). If we look closely at the
logger.channel_base service definition in core.services.yml, we'll also see a
factory key, which means that this service class is not being instantiated by the service
container but by another service, namely logger.factory service's get() method.

The arguments key is also slightly different. First of all, we don't have the @ sign. That is
because this sign is used to denote a service name, whereas our argument is a simple string.
As a bonus tidbit, if the string is preceded and followed by a %, it denotes a parameter that
can be defined in any *.services.yml file.

Getting back to our example then, if you remember the logger theory, this service definition
will mean that requesting this service will perform, under the hood, the following task:

\Drupal::service('logger.factory')->get('hello_world');

It uses the logger factory to load a channel with a certain argument. So, now we can inject
our hello_world.logger.channel.hello_world service and call any of the
LoggerInterface methods on it directly in our client code.

Our own logger
Now that we have a channel for our module, let's assume that we want to also log messages
elsewhere. They are fine to be stored in the database, but let's also send an email whenever
we encounter an error log. In this section, we will only cover the logging architecture
needed for this and defer the actual mailing implementation to the second part of this
chapter when we discuss mailing.

The first thing that we will need to create is LoggerInterface implementation, which
typically goes in the Logger folder of our namespace. So, let's call ours MailLogger; the
following is the code for it:

namespace Drupal\hello_world\Logger;

use Drupal\Core\Logger\RfcLoggerTrait;
use Psr\Log\LoggerInterface;

/**
 * A logger that sends an email when the log type is error.
 */
class MailLogger implements LoggerInterface {

Logging and Mailing

[73]

 use RfcLoggerTrait;

 /**
 * {@inheritdoc}
 */
 public function log($level, $message, array $context = array()) {
 // Log our message to our logging system.
 }
}

The first thing to note is that we are implementing the PSR-3 LoggerInterface. This will
require a bunch of methods, but we will take care of most of them via RfcLoggerTrait.
The only one left to implement is the log() method, which will be responsible for doing
the actual logging. For now, we will keep it empty.

By itself, having this class does nothing. We will need to register it as a tagged service so
that LoggingChannelFactory picks it up and passes it to the logging channel when
something needs to be logged. Let's take a look at what that definition looks like:

 hello_world.logger.hello_world:
 class: Drupal\hello_world\Logger\MailLogger
 tags:
 - { name: logger }

As it stands, our logger doesn't need any dependencies. However, you will note a new
property called tags via which we literally tag this service with logger tag. This will
register it as a specific service that another service (called a collector) looks for. In this case,
the latter isLoggingChannelFactory, if you remember.

Clearing the cache now should enable our logger. This means that when a message is being
logged, via any channel, our logger is also used, together with any other enabled loggers
(by default, the database one). The preceding service definition that we wrote is used to
toggle that. So, if we want our logger to be the only one, we will need to disable the DB Log
module from Drupal core.

We will continue working on this class later in this chapter when we will cover sending out
emails programmatically.

Logging for Hello World
Now that we have all the tools at our disposable, and, more importantly, understand how
logging works in Drupal 8, let's add some logging to our module.

Logging and Mailing

[74]

There is one place where we can log an action that may prove helpful. Let's log an info
message when an administrator changes the greeting message via the form we wrote. This
should naturally happen in the submit handler of SalutationConfigurationForm.

If you remember my rant in the preceding chapter, there is no way we should use a service
statically if we can instead inject it, and we can easily inject services into our form. So, let's
do this now.

First of all, FormBase already implements ContainerInjectionInterface, so we don't
need to implement it in our class, as we are extending from it somewhere down the line.
Second of all, ConfigFormBase class we are directly extending already has
config.factory injected, so this complicates things for us a bit--well, not really. All we
need to do is copy over the constructor and create() method, add our own service, store it
in a property, and pass the services it needs to the parent constructor call. It will look like
this:

 /**
 * @var \Drupal\Core\Logger\LoggerChannelInterface
 */
 protected $logger;

 /**
 * SalutationConfigurationForm constructor.
 *
 * @param \Drupal\Core\Config\ConfigFactoryInterface $config_factory
 * The factory for configuration objects.
 */
 public function __construct(ConfigFactoryInterface $config_factory,
LoggerChannelInterface $logger) {
 parent::__construct($config_factory);
 $this->logger = $logger;
 }

 /**
 * {@inheritdoc}
 */
 public static function create(ContainerInterface $container) {
 return new static(
 $container->get('config.factory'),
 $container->get('hello_world.logger.channel.hello_world')
);
 }

Logging and Mailing

[75]

And the relevant use statements at the top:

use Drupal\Core\Config\ConfigFactoryInterface;
use Drupal\Core\Logger\LoggerChannelInterface;
use Symfony\Component\DependencyInjection\ContainerInterface;

As you can see, we get all the services any of the parents need and the one we need (our
logger channel) via the create() method. Also, in our constructor, we store the channel as
a property and then pass the parent arguments to the parent constructor. Now, we have our
hello_world logger channel available in our configuration form class. So, let's use it.

At the end of the submitForm() method, let's add the following line:

$this->logger->info('The Hello World salutation has been changed to
@message', ['@message' => $form_state->getValue('salutation')]);

We are logging a regular information message. However, since we also want to log the
message that has been set, we use the second argument, which represents an array of
context values. Under the hood, the database logger will extract the context variables that
start with @, !, or % with the values from the entire context array. This is done using the
LogMessageParser service (standard syntax in Drupal), and we'll see more of this in a
later chapter when we will discuss internationalization. If you implement your own logger
plugin, you will have to handle this yourself as well--but we'll see that in action soon.

Now, we are done with logging a message when the salutation configuration form is saved.

Logging summary
In this first section, we saw how logging works in Drupal 8. Specifically, we covered few
theories so that you understand a bit how things play together and you don't just
mindlessly use the logger factory without actually having a clue what goes on under the
hood.

As examples, we created our own logging channel, which allows us to inject it wherever we
need without having to always go through the factory. We will use this channel going
forward for the Hello World module. Additionally, we created our own logger
implementation. It won't do much at the moment, except getting registered, but we will use
it in the next section to send emails when errors get logged to the site.

Logging and Mailing

[76]

Finally, we used the logging framework (and our channel) in our salutation configuration
form to log a message whenever the form is submitted. In doing so, we also passed the
message that was saved so that it also gets included in the log. This should already work
with the database log so go ahead and save the configuration form and then check the
logging UI for that information message.

Mail API
Now that we know how to log things in our application, let's turn our attention to the
Drupal 8 Mail API. Our goal for this section is to see how we can send emails
programmatically in Drupal 8. In achieving this goal, we will explore the default mail
system that comes with the core installation (which uses PHP mail), and also create our own
system that can theoretically use an external API to send mails. We won't go all the way
with the latter because it's beyond the scope of this book. We will stop after covering what
needs to be done from a Drupal point of view.

In the next and final section, we will look at tokens so that we can make our mailings a bit
more dynamic. However, before we do that, let's get into the Mail API in Drupal 8.

The theory of the Mail API
Like before, let's first cover this API from a theoretical point of view. It's important to
understand the architecture before diving into examples.

Sending emails programmatically in Drupal is a two-part job. The first thing we will need to
do is define something of a template for the email in our module. This is not a template in
the traditional sense, but rather a procedural data wrapper to the email you want to send.
It's referred to in our code as the key or message ID, but I believe that template is a better word
to describe it, and it works by--you guessed it--implementing a hook.

The second thing that we will need to do is use the Drupal mail manager to send an email
using one of the defined templates and specifying the module that defines it. If this sounds
confusing, don't worry, it will become clear with the example that follows its explanation
later on.

The template is created by implementing hook_mail(). This hook is a special one, as it does
not work like most others. It gets called by the mail manager when a client (some code) is
trying to send an email for the module that implements it and with a certain template ID it
defines.

Logging and Mailing

[77]

The MailManager is actually a plugin manager that is also responsible for sending the
emails using a mail system (plugin). The default mail system is PhpMail, which uses PHP's
native mail() function to send out email. If we create our own mail system, that will mean
creating a new plugin. Also, the plugin itself is the one delivering the mails as the manager
defers to it. As you can see, we can't go even a chapter ahead without creating plugins.

Each mail plugin needs to implement MailInterface, which exposes two methods--
format() and mail(). The first one does the initial preparation of the mail content
(message concatenation, and so on), whereas the latter finalizes and does the sending.

However, how does the mail manager know which plugin to use? It checks a configuration
object called system.mail, which stores the default plugin (PhpMail) and can also store
overrides for each individual module and any module and template ID combination. So, we
can have multiple mail plugins each used for different things. A quirky thing about this
configuration object is that there is no admin form where you can specify which plugin does
what. You have to adjust this configuration object programmatically as needed. One way
you can manipulate this is via hook_install() and hook_uninstall() hooks. These
hooks are used to perform some tasks whenever a module is installed/uninstalled. So, this is
where we will change the configuration object to add our own mail plugin a bit later.

However, now that we have looked at few theories, let's take a look at how we can use the
default mail system to send out an email programmatically. You remember our unfinished
logger from the preceding section? That is where we will send our email whenever the
logged message gets an error.

Implementing hook_mail()
As I mentioned earlier, the first step for sending mails in Drupal 8 is implementing
hook_mail(). In our case, it can look something like this:

/**
 * Implements hook_mail().
 */
function hello_world_mail($key, &$message, $params) {
 switch ($key) {
 case 'hello_world_log':
 $message['from'] = \Drupal::config('system.site')->get('mail');
 $message['subject'] = t('There is an error on your website');
 $message['body'][] = $params['message'];

 break;
 }
}

Logging and Mailing

[78]

This hook receives three parameters--the message key (template) that is used to send the
mail, the message of the email that needs to be filled in, and an array of parameters passed
from the client code. As you can see, we are defining a key (or template) named
hello_world_log, which has a simple static subject, and as a body, it will have whatever
comes from the $parameters array in its message key. Since the email From is always the
same, we will use the site-wide email address that can be found in the system.site
configuration object. You'll note that we are not in a context where we can inject the
configuration factory as we did when we built the form. Instead, we can use the static
helper to load it.

Additionally, you'll note that the body is itself an array. This is because we can build (if we
want) multiple items in that array that can be later imploded as paragraphs in the mail
plugin's format() method. This is in any case what the default mail plugin does, so here
we need to build an array.

Another useful key in the $message array is the header key, which you can use to add
some custom headers to the mail. In this case, we don't need to because the default PhpMail
plugin adds all the necessary headers. Also, if we write our own mail plugin, we can then
add our headers in there as well--and all other keys of the $message array, for that matter.
This is because the latter is passed around as a reference, so it keeps getting built up in the
process from the client call to the hook_mail() implementation to the plugin.

That is about all we need to do with hook_mail(). Let's now see how to use this in order to
send out an email.

Sending emails
We wanted to use our MailLogger to send out an email whenever we are logging an error.
So let's go back to our class and add this logic.

This is what our log() method can look like:

 /**
 * {@inheritdoc}
 */
 public function log($level, $message, array $context = array()) {
 if ($level !== RfcLogLevel::ERROR) {
 return;
 }

 $to = $this->configFactory->get('system.site')->get('mail');
 $langode = $this->configFactory->get('system.site')->get('langcode');
 $variables = $this->parser->parseMessagePlaceholders($message,

Logging and Mailing

[79]

$context);
 $markup = new FormattableMarkup($message, $variables);
 \Drupal::service('plugin.manager.mail')->mail('hello_world',
'hello_world_log', $to, $langode, ['message' => $markup]);
 }

First of all, we stated that we only want to send mails for errors, so in the first lines, we
check whether the attempted log is of that level and return otherwise. In other words, we
don't do anything if we're not dealing with an error and rely on other registered loggers for
those.

Next, we determine who we want the email to be sent to and the langcode to send it in
(both are mandatory arguments to the mail manager's mail() method). We opt to use the
site-wide email address (just as we did for the From value). We also use the same
configuration object as we used earlier in the hook_mail() implementation. In the next
code snippet, we will take care of injecting the config factory into the class.

When we talk about langcode, we refer to the machine name of a language
object. In this case, that is what is being stored for the site-wide default
language. Also, we'll default to that for our emails. In a later chapter, we
will cover more aspects regarding internationalization and multilingual in
Drupal 8.

Then, we prepare the message that is being sent out. For this, we use the
FormattableMarkup class to which we pass the message string and an array of variable
values that can be used to replace the placeholders in our message. We can retrieve these
values using the LogMessageParser service the same way as the DbLog logger does. With
this, we are basically extracting the placeholder variables from the entire context array of
the logged message.

Lastly, we will use the mail manager plugin to send the email. The first parameter to its
mail() method is the module we want to use for the mailing. The second is the key (or
template) we want to use for it (which we defined in hook_mail()). The third and fourth
are self-explanatory, whereas the fifth is the $params array we encountered in
hook_mail(). If you look back on that, you'll note that we used the message key as the
body. Here, we populate that key with our markup object, which has a _toString()
method that renders it with all the placeholders replaced.

Logging and Mailing

[80]

You may wonder why I did not inject the Drupal mail manager as I did in the rest of the
dependencies. Unfortunately, the core mail manager uses the logger channel factory itself,
which in turn depends on our MailLogger service. So if we make the mail manager a
dependency of the latter, we find ourselves in a circular loop. So when the container gets
rebuilt, a big fat error is thrown. It might still work, but it's not alright. So, I opted to use it
statically, because, in any case, this method is very small and would be difficult to test due
to its expected result being difficult to assert (it sends an email). Sometimes, you have to
make these choices, as the alternative would have been to inject the entire service container
just to trick it. However, that is a code smell and would not have helped anyway had I
wanted to write a test for this class.

Even if I did not inject the mail manager, I did inject the rest. So, let's take a look at what we
have now at the top:

 /**
 * @var \Drupal\Core\Logger\LogMessageParserInterface
 */
 protected $parser;

 /**
 * @var \Drupal\Core\Config\ConfigFactoryInterface
 */
 protected $configFactory;

 /**
 * MailLogger constructor.
 *
 * @param \Drupal\Core\Logger\LogMessageParserInterface $parser
 * @param \Drupal\Core\Config\ConfigFactoryInterface $config_factory
 */
 public function __construct(LogMessageParserInterface $parser,
ConfigFactoryInterface $config_factory) {
 $this->parser = $parser;
 $this->configFactory = $config_factory;
 }

Let's check out the relevant use statements:

use Drupal\Core\Logger\LogMessageParserInterface;
use Drupal\Core\Config\ConfigFactoryInterface;

Logging and Mailing

[81]

There seems nothing out of the ordinary. We just take in the services I mentioned above.
Also, let's quickly see the service definition of our mail logger as it looks now:

 hello_world.logger.hello_world:
 class: Drupal\hello_world\Logger\MailLogger
 arguments: ['@logger.log_message_parser', '@config.factory']
 tags:
 - { name: logger }

We simply have two new arguments--nothing new to you by now.

Clearing the caches and logging an error should send the logged message (with the
placeholders replaced) to the site email address (and from the same address) using the PHP
native mail() function. Congratulations! You just sent out your first email
programmatically in Drupal 8.

Altering someone else's emails
Drupal is powerful not only because it allows us to add our own functionality but also
because it allows us to alter the existing functionality. An important vector for doing this
are the alter hooks. Remember these from Chapter 2, Creating Your Own Module? These are
hooks that are used to change the value of an array or object before it is used for whatever
purpose it was going to be used for. When it comes to sending mails, we have an alter hook
that allows us to change things on the mail definition before it goes out--
hook_mail_alter(). For our module, we don't need to implement this hook. However,
for the sake of making it complete, let's take a look at how we could use this hook to, for
example, change the header of an existing outgoing email:

/**
 * Implements hook_mail_alter().
 */
function hello_world_mail_alter(&$message) {
 switch ($message['key']) {
 case 'hello_world_log':
 $message['headers']['Content-Type'] = 'text/html; charset=UTF-8;
format=flowed; delsp=yes';
 break;
 }
}

Logging and Mailing

[82]

So, what is going on here? First of all, this hook implementation gets called in each module
it is implemented in. It's not like hook_mail() in this respect, as it allows us to alter mails
defined in our module and sent from other modules as well. However, in our example, we
will just alter the mail we defined earlier.

The only parameter (passed by reference as it is usual with alter hooks) is the $message
array, which contains all the things we built in hook_mail(), as well as the key (template)
and other things added by the mail manager itself, such as the headers. So, in our example,
we are setting an HTML header so that whatever is getting sent out could be rendered as an
HTML. After this hook is invoked, the mail system formatter is also called, which, in the
case of the PhpMail plugin, transforms all HTML tags into plain text, essentially canceling
out our header. However, if we implement our own plugin, we can prevent that and
successfully send out HTML emails with proper tags and everything.

So, that is basically all there is to altering existing outgoing mails. Next, we will take a look
at how we can create our own mail plugin that uses a custom external mail system. We
won't go into details here, but we will prepare the architecture that will allow us to bring in
the API we need and use it easily.

Custom mail plugins
In the preceding section, we saw how we can use the Drupal 8 mail API to send emails
programmatically in Drupal 8. In doing so, we used the default PHP mailer, which
although is good enough for our example, might not be so for our application. For example,
we might want to use an external service via an API.

In this section, we will teach you how to do this. To this end, we will need to write our own
mail plugin that does just that, and then simply tell Drupal to use that system instead of the
default one. Yet another plugin-based, noninvasive, extension point.

Before we start, I would like to mention that we won't go into any kind of detail related to
the potential external API. Instead, we will stop at the Drupal 8-specific parts, so the code
you will find in the repository won't do much--it will be used as an example only. It's up to
you to use this technique if you need to.

Logging and Mailing

[83]

The mail plugin
So let's start by creating our Mail plugin class, and if you remember, plugins go inside the
Plugin folder of our module namespace. Mail plugins belong inside a Mail folder. So this
is what a simple skeleton mail plugin class can look like:

namespace Drupal\hello_world\Plugin\Mail;

use Drupal\Core\Mail\MailFormatHelper;
use Drupal\Core\Mail\MailInterface;
use Drupal\Core\Plugin\ContainerFactoryPluginInterface;
use Symfony\Component\DependencyInjection\ContainerInterface;

/**
 * Defines the Hello World mail backend.
 *
 * @Mail(
 * id = "hello_world_mail",
 * label = @Translation("Hello World mailer"),
 * description = @Translation("Sends an email using an external API
specific to our Hello World module.")
 *)
 */
class HelloWorldMail implements MailInterface,
ContainerFactoryPluginInterface {

 /**
 * {@inheritdoc}
 */
 public static function create(ContainerInterface $container, array
$configuration, $plugin_id, $plugin_definition) {
 return new static();
 }

 /**
 * {@inheritdoc}
 */
 public function format(array $message) {
 // Join the body array into one string.
 $message['body'] = implode("\n\n", $message['body']);

 // Convert any HTML to plain-text.
 $message['body'] = MailFormatHelper::htmlToText($message['body']);
 // Wrap the mail body for sending.
 $message['body'] = MailFormatHelper::wrapMail($message['body']);

 return $message;
 }

Logging and Mailing

[84]

 /**
 * {@inheritdoc}
 */
 public function mail(array $message) {
 // Use the external API to send the email based on the $message array
 // constructed via the `hook_mail()` implementation.
 }
}

As you can see, we have a relatively easy plugin annotation, no unusual arguments there.
Then, you will note that we implemented the mandatory MailInterface, which comes
with the two methods implemented in the following paragraph.

I mentioned the format() method earlier and stated that it is responsible for doing certain
processing before the message is ready to be sent. The preceding implementation is a copy
from the PhpMail plugin to exemplify just what kind of task would go there. However, you
can do whatever you want in here, including allowing HTML tags. Imploding the body is
something you will probably want to do anyway, as it is kind of expected that the mail
body is constructed as an array by hook_mail().

The mail() method, on the other hand, is left empty. This is because it's up to you to use
the external API to send the email. For this, you can use the $message array we
encountered in the hook_mail() implementation.

Lastly, note that ContainerFactoryPluginInterface is another interface that our class
implements. If you remember, that is what plugins need to implement in order for them to
become container aware (for the dependencies to be injectable). Since this was only example
code, it doesn't have any dependencies, so I did not include a constructor and left the
create() method empty. Most likely, you will have to inject something, such as a PHP
client library, that works with your external API. So, it doesn't hurt to see this again.

That is pretty much it for our plugin class. Now, let's take a look at how we can use it
because for the moment, our hello_world_log emails are still being sent with the default
PHP mailer.

Logging and Mailing

[85]

Using mail plugins
As I mentioned earlier, there is no UI in Drupal to select which plugin the mail manager
should use for sending emails programmatically. It figures it out in the getInstance()
method by checking the system.mail configuration object, and more specifically, the
interface key inside that (which is an array).

By default, this array contains only one record, that is, 'default' => 'php_mail'. That
means that, by default, all emails sent use the plugin with the php_mail ID. In order to get
our plugin in the game, we have a few options:

We can replace this value with our plugin ID, which means that all emails will be
sent with our plugin
We can add a new record with the key in the module_name_key_name format,
which means that all emails sent for a module with a specific key (or template)
will use that plugin
We can add a new record with the key in the module_name format, which means
that all emails sent for a module will use that plugin (regardless of their key)

For our example, we will set all emails sent from the hello_world module to use our new
plugin. We can do this using the hook_install() implementation that runs whenever the
module is installed:

/**
 * Implements hook_install().
 */
function hello_world_install() {
 $config = \Drupal::configFactory()->getEditable('system.mail');
 $mail_plugins = $config->get('interface');
 if (in_array('hello_world', array_keys($mail_plugins))) {
 return;
 }

 $mail_plugins['hello_world'] = 'hello_world_mail';
 $config->set('interface', $mail_plugins)->save();
}

As you can see, in this function, we load the configuration object as editable (so we can
change it), and if we don't yet have a record with hello_world in the array of mail plugins
we set it and map our plugin ID to it. Lastly, we save the object.

Logging and Mailing

[86]

Install (and uninstall) hooks need to go inside a .install PHP file in the root of our
module. So this function goes inside a new hello_world.install file. Also, if our module
has been already enabled, we will need to first uninstall it and then install it again to get this
function to fire.

The opposite of this function is hook_uninstall(), which goes in the same file and--
expectedly--gets fired whenever the module is uninstalled. Since we don't want to change a
site-wide configuration object and tie it to our module's plugin, we should implement this
hook as well. Otherwise, if our module gets uninstalled, the mail system will fail because it
will try to use a nonexistent plugin. So, let's tie up our loose ends:

/**
 * Implements hook_uninstall().
 */
function hello_world_uninstall() {
 $config = \Drupal::configFactory()->getEditable('system.mail');
 $mail_plugins = $config->get('interface');
 if (!in_array('hello_world', array_keys($mail_plugins))) {
 return;
 }

 unset($mail_plugins['hello_world']);
 $config->set('interface', $mail_plugins)->save();
}

As you can see, what we did here is basically the opposite. If the record we set previously
exists, we unset it and save the configuration object, and that's it.

So, now, any mails sent programmatically for the hello_world module will use this
plugin. Easy, right? However, since the plugin we wrote is not ready, the code you find in
the repository will have the relevant line from the hook_install() implementation
commented out so that we don't actually use it.

Tokens
The last thing we will cover in this chapter is the Token API in Drupal 8. We will cover a
few theories and, as usual, demonstrate them via examples on our existing "Hello World"
module code. We will do this in the context of the mails we are sending out for error logs.

It would be nice if we could include some personalized information in the mail text without
having to hardcode it in the module code or configuration. For example, in our case, we
might want to include in the email the username of the current user that is triggering the
error log that is being emailed.

Logging and Mailing

[87]

Let's first understand how the Token API works, before going into our "Hello World"
module.

The Token API
Tokens in Drupal are a standard formatted placeholder, which can be found inside a string
and replaced by a real value extracted from a related object. The format tokens use is
type:token, where type is the machine-readable name of a token type (a group of related
tokens), and token is the machine-readable name of a token within this group.

The power of the Token API in Drupal is not only given by its flexibility but also by the fact
that it is already a popular API. It is flexible because you can define groups, which contain
related tokens, linked by the data object that contains their value (for example, a Node
object or User object). It is popular because in previous versions of Drupal, it was the
contributed module many others were dependent on to define their own tokens, and it is
now available in Drupal 8 core with many tokens already defined out of the box. So, you'll
find many existing tokens that you can use in your code, and if not, you can define your
own.

There are three main components of this API--at least from the point of view of a Drupal 8
module developer. These components are two hooks--hook_token_info() and
hook_tokens()--and the Token service, which is used to perform the replacement.

The first hook is used to define one or more token types and tokens. It essentially registers
them with the system. The second is fired at the moment a token is found inside a string (a
replacement is attempted by the service) and is used to do the replacement of the tokens
based on the data that is passed to it from the service. For example, the User module defines
two token types and a number of tokens inside hook_token_info(). Inside
hook_tokens(), it checks whether the token is one of its own and tries to replace it with
the contextual data (either a User object or the currently logged-in User object). To read the
documentation related to each of these in detail and to see an extended example, you can
find them either on the Drupal.org API page or inside the token.api.php file. There, you
will also find alter hooks that correspond to these two and can be used to alter either the
defined token information or logic to replace these tokens written by other modules or
Drupal core.

Logging and Mailing

[88]

The Token service is what you can use as module developers if you have to replace tokens
found inside a string. We will see how this is used in the next section.

Using tokens
If you remember, the custom MailLogger we wrote had a $context array as an argument
to its log() method. This contains some relevant information to the thing being logged--
channel, uri, timestamp, user, and others. We could use this data in conjunction with
the token API to include information about the user who was signed in at the moment the
error happened and was logged-in in the email. This can be useful information.

We will need to do two simple things to achieve this. First, we will need to alter our
MailLogger::log() method to get the user account that was signed in and pass it to the
mailer in the $param array:

 /**
 * {@inheritdoc}
 */
 public function log($level, $message, array $context = array()) {
 if ($level !== RfcLogLevel::ERROR) {
 return;
 }

 /** @var AccountProxyInterface $account */
 $account = $context['user'];
 $to = $this->configFactory->get('system.site')->get('mail');
 $langode = $this->configFactory->get('system.site')->get('langcode');
 $variables = $this->parser->parseMessagePlaceholders($message,
$context);
 $markup = new FormattableMarkup($message, $variables);
 \Drupal::service('plugin.manager.mail')->mail('hello_world',
'hello_world_log', $to, $langode, ['message' => $markup, 'user' =>
$account]);
 }

An important thing to note here is that we are talking about the currently logged-in user,
which means that it is not a fully loaded user, but a simple AccountProxyInterface,
which is a more shallow object rather than the full entity--the user session basically. If you
are ever dealing with this object and need the entire User entity, you'll need to load it by its
ID. However, in our case, the user module's hook_tokens() implementation does that for
us, as we will see in a moment.

Logging and Mailing

[89]

Finally, we will need to alter our hook_mail() implementation to handle this user and add
another string to our mail body and, of course, replace a token:

/**
 * Implements hook_mail().
 */
function hello_world_mail($key, &$message, $params) {
 switch ($key) {
 case 'hello_world_log':
 $message['from'] = \Drupal::config('system.site')->get('mail');
 $message['subject'] = t('There is an error on your website');
 $message['body'][] = $params['message'];
 if (isset($params['user'])) {
 $user_message = 'The user that was logged in: [current-user:name]';
 $message['body'][] = \Drupal::token()->replace($user_message,
['current-user' => $params['user']]);
 }

 break;
 }
}

As you can see, if we receive the user parameter, we will add a new paragraph to our
email. This is a simple string that informs us about the user who was logged in. However,
in doing so, we use the token service (statically) to replace that string with the token value.
The replace() method of the service takes a string and optionally an array of data objects
keyed by the type (group) of the tokens they should be used for.

The choice of a token and type in this case is important. The User module defines the user
and current-user types. The difference between the two types, if you check inside
user_tokens(), is that the latter simply delegates to the former after it loads a full user
entity. We could, alternatively, have done that ourselves and then passed the user type, but
why should we? If somebody has done that for us already, we should not have to do it
again.

So, that's it. Now, the email message will get an extra line that contains the dynamically
generated username of the currently logged-in user at the time the error happened. Under
the hood, the token service scans the string, extracts the token, and calls all hook_tokens()
implementations. The User module is the one that can return the replacement for this token
based on the User object it receives.

Logging and Mailing

[90]

Defining new tokens
We just saw how we can programmatically use existing tokens inside our strings and get
them replaced with minimal effort. All we need is the token service and the data object that
can be used to replace the token. Keep in mind that there are tokens which don't even
require any data objects due to their global nature. The hook_tokens() implementation
will take care of that--let's see how.

In the preceding chapter, we created functionalities for a dynamic "Hello World" message,
which are either calculated or loaded from a configuration object. How about we expose the
message to a token? This would make its usage more flexible because our string becomes
exposed to the entire token system.

As mentioned, we will start with the hook_token_info() implementation:

/**
 * Implements hook_token_info().
 */
function hello_world_token_info() {
 $type = [
 'name' => t('Hello World'),
 'description' => t('Tokens related to the Hello World module.'),
];

 $tokens['salutation'] = [
 'name' => t('Salutation'),
 'description' => t('The Hello World salutation value.'),
];

 return [
 'types' => ['hello_world' => $type],
 'tokens' => ['hello_world' => $tokens],
];
}

In here, we will need to define two things--the types and the tokens. In our case, we are
defining one of each. The type is hello_world and comes with a human-readable name
and description in case it needs to be rendered somewhere in the UI. The token is
salutation and belongs to the hello_world type. It also gets a name and description. At
the end, we return an array that contains both.

Logging and Mailing

[91]

What follows is the hook_tokens() implementation in which we handle the replacement
of our token:

/**
 * Implements hook_tokens().
 */
function hello_world_tokens($type, $tokens, array $data, array $options,
\Drupal\Core\Render\BubbleableMetadata $bubbleable_metadata) {
 $replacements = [];
 if ($type == 'hello_world') {
 foreach ($tokens as $name => $original) {
 switch ($name) {
 case 'salutation':
 $replacements[$original] =
\Drupal::service('hello_world.salutation')->getSalutation();
 $config = \Drupal::config('hello_world.custom_salutation');
 $bubbleable_metadata->addCacheableDependency($config);
 break;

 }
 }
 }

 return $replacements;
}

There is a bit more going on here, but I'll explain everything. This hook gets fired for each
type located inside a string (after all have been scanned and grouped accordingly), and the
$type is the first parameter. Inside $tokens, we get an array of tokens located in that
string, which belong to the $type. The $data array contains the objects needed to replace
the tokens, keyed by the type. This array can be empty (as it will be in our case).

Inside the function, we loop through each token of this group and try to replace it. We only
know of one, and we use our HelloWorldSalutation service to determine the
replacement string.

Finally, the function needs to return an array of all replacements found (which can be
multiple if multiple tokens of the same type are found inside a string).

Logging and Mailing

[92]

The bubbleable_metadata parameter is a special cache metadata object that describes this
token in the cache system. It is needed because tokens get cached, so if any dependent
object changes, the cache needs to be invalidated for this token as well. By default, all
objects inside the $data array are read and included in this object. However, in our case, it
is empty, yet we still depend on a configuration object that can change--the one that stores
the overridden salutation message. So, we will need to add a dependency on that
configuration object even if the actual value for the salutation we compute uses the same
HelloWorldSalutation service we used before. So, we have a simple example here, but
with a complex twist.

That's all there is to defining our token. It can now also be used inside strings and replaced
using the Token service. Something like this:

$final_string = \Drupal::token()->replace('The salutation text is:
[hello_world:salutation]');

As you can see, we pass no other parameters. If our token were dependent on an entity
object, for example, we would have passed it in the second parameter array and would
have made use of it inside hook_tokens() to compute the replacement.

Token summary
The token system is an important part of Drupal because it allows us to easily transform
raw data into useful values using placeholder strings. It is a widely used and flexible system
that many contributed modules build (and will build) upon. The great thing about tokens is
the UI component. There are modules that will allow users to define strings in the UI but
make it possible to fill it up with various tokens that it will replace. Also, this is something
you can do as a module developer.

Logging and Mailing

[93]

Summary
In this chapter, we discussed many things. We saw how logging works in Drupal 8, how the
mail API can be used programmatically (and extended), and how the token system can be
employed to make our text more dynamic.

While going through this chapter, we also enriched our Hello World module. So, apart from
understanding the theory about logging, we created our own logging channel service and
logger plugin. For the latter, we decided to send out emails when log messages were of the
type error. In doing this, we took a look at the mail API and how we can use it
programmatically. We saw that, by default, PHP's native mail() function is used to send
out emails, but we can create our own plugin very easily to use whatever external service
we want--yet another great example of extensibility via plugins.

Lastly, we looked at tokens in Drupal 8. We saw what components make up the API, how
we can programmatically use existing tokens (replace them with the help of contextual
data), and how we can define our own tokens for others to use. These are the main tenets of
extensibility (and sharing)--using something someone else has exposed to you, and
exposing something for someone else to use.

In the next chapter, we will look at another great topic--theming. Even though you may
think that this falls within the purview of a frontend developer, module developers play an
important role. Yes, much of the styling, client-side scripting, and visual architecture can be,
and is, done by what we call themers. However, module developers need to understand and
use theming tools to ensure that their data is rendered in the proper way. So, in the next
chapter, we will focus on that.

4
Theming

The most obvious part of Drupal's theming system is the Appearance admin page found at
admin/appearance, which lists all the themes installed on your website. The page is
shown in the following screenshot:

When you choose a theme from the Appearance page, you are applying a specific graphic
design to your website's data and functionality. However, the applied theme is in reality
only a small part of the entire theming layer.

This book mostly focuses on building modules that encapsulate chunks of a functionality.
However, since we're ultimately building a web application, everything outputted by our
functionality will need to be marked up with HTML. In Drupal, this process of wrapping
data in HTML and CSS is called theming.

Theming

[95]

In this chapter, we will discuss how our module should integrate with the theme layer. We
will talk about the architecture of the system, theme templates, hooks, render arrays, and
others. Then, we will provide some practical examples.

Business logic versus presentation logic
We will start this chapter by discussing an important architectural choice modern
applications make--how to turn data into a presentation.

So, what would be the best way to get our data and functionality marked up? Do we simply
wrap each piece of data in HTML and return the whole as a giant string, as shown in the
following example?

return '<div class="wrapper">' . $data . '</div>';

No, we don't. Like all other well-designed applications, Drupal separates its business logic
from its presentation logic. It's true, previous versions of Drupal did have this kind of
approach, especially when it came to theme functions, but even so, they were easily
overridable. So, constructs like these were not found smack in the middle of business logic
but were encapsulated in a special theming function that was called by the client code. So,
the separation of business logic from presentation logic was clearly there, if at times, not so
much one between PHP and HTML code.

Traditionally, the primary motivations for this separation of concerns were as follows:

To make the code easier to maintain
To make it possible to easily swap out one layer's implementation without having
to rewrite the other layers

As we will see, Drupal takes the "swapability" aspect quite far. You might think that the
theme you select on the Appearance page is responsible for applying the HTML and CSS
for the website. This is true, but only to some extent. There are thousands of contributed
modules on Drupal.org. Also, you can write a bunch of your own. Should the theme be
responsible for marking up all of those modules' data? Obviously not.

Since a module is most intimately familiar with its own data and functionality, it is its own
responsibility to provide the default theme implementation (a theme hook)--that initial look
and feel that is independent of design but that should be displayed correctly, regardless of
the theme. However, as long as the module uses the theme system properly, a theme will be
able to override any HTML and/or CSS by swapping the module's implementation with its
own.

Theming

[96]

In other words, after data is retrieved and manipulated inside the module (the business
logic), it will need to provide the default theme implementation to wrap it inside its
markup. Sometimes a particular theme will need to override this implementation in order
for it to achieve a specific design goal. If the theme provides its own implementation,
Drupal will use the theme implementation instead of the module's default implementation.
This is usually called overriding. Otherwise, the default fallback will still be there. The theme
also provides the option of applying styling via CSS only and leaving the markup provided
by the module intact.

Twig
Theme engines are responsible for doing the actual output via template files. Although
previous versions of Drupal were capable of using different theme engines, one stood out
and was used 99.9 percent of the time (statistic made up by me on the spot)--PHPTemplate.
This theme engine used PHP files with .tpl.php extension and contained both markup
and PHP. Seasoned Drupal developers grew accustomed to this practice, but it was always
more difficult for frontend developers to use and theme against.

In Drupal 8, it was abandoned in favor of the Twig templating engine created by
SensioLabs (the people responsible for the Symfony project). As mentioned, theme
functions were also deprecated in favor of outputting everything through a Twig file. This
brought about many improvements to the theme system and quite some joy to the frontend
community. For example, it improved security and readability and made it much less
important to be actually versed in PHP to be able to take part in the theming of a Drupal
site.

All Twig template files in Drupal 8 have .html.twig extension.

Theme hooks
Since we have covered some of the principles behind the Drupal theme system--most
notably, the separation of concerns--let's go a bit deeper and take a look at how they are
actually put into practice. This all starts with the theme hooks. Yes, Drupal always loves to
call things hooks.

Theming

[97]

Theme hooks define how a specific piece of data should be rendered. They are registered
with the theme system by modules (and themes) using hook_theme(). In doing so, they
get a name, a list of variables they output (the data that needs to be wrapped with markup),
and other options.

The modules and themes that register theme hooks also need to provide an implementation
(one that will be used by default). In Drupal 7, this was done in the following two ways--
either via a PHP function that returned a string (markup) or a PHPTemplate template file.
Both were equally important, but the latter was always more "correct" in my (and many
people's) opinion. This is also supported by the fact that the functions in Drupal 8 have been
completely ditched in favor of Twig templates. Also, together with a complete overhaul of
the theme system, almost everything is now outputted via a Twig template file, which is
great.

As an example, let's take a look at two common ways of registering a theme hook we’ll
often find. For this, we will use Drupal core examples:

function hook_theme($existing, $type, $theme, $path) {
 return [
 'item_list' => array(
 'variables' => array('items' => array(), 'title' => '', 'list_type'
=> 'ul', 'wrapper_attributes' => array(), 'attributes' => array(), 'empty'
=> NULL, 'context' => array()),
),
 'select' => array(
 'render element' => 'element',
),
];
}

In the preceding hook_theme() example, I included two theme hooks from Drupal core.
One is based on variables, whereas the other is based on a render element. There are, of
course, many more options that can be defined here, and I strongly encourage that you read
the Drupal.org API documentation page for this hook.

However, right off the bat, you can see how easy it is to register a theme hook. In the first
case, we have item_list, which, by default (if not otherwise specified), will map to the
item-list.html.twig file for outputting the variables. In its definition, we can encounter
the variables it uses, with some handy defaults in case they are not passed in from the
client. The second theme hook is select, which doesn't use variables but a render element
(that we will discuss soon). Also, its template file is easy to determine--select.html.twig.
I encourage you to check out both these template files in the core code (provided by the
System module).

Theming

[98]

In addition to the actual implementation, the modules and themes that register a theme
hook can also provide a default template preprocessor. In the Drupal world, this concept is
very familiar, but in a nutshell, its responsibility is to "preprocess" (that is, prepare) data
before being sent to the template. For example, if a theme hook receives an entity (a
complex data object) as its only variable, a preprocessor can be used to break that entity into
tiny pieces that are needed to be output in the template (such as title and description).

Template preprocessors are simply procedural functions that follow a naming pattern and
are called by the theme system before the template is rendered. As I mentioned earlier, the
modules and themes that register a theme hook can also provide a default preprocessor. So,
for a theme hook named component_box, the default preprocessor function would look
like this:

function template_preprocess_component_box(&$variables) {
 // Prepare variables.
}

The function name starts with the word template to denote that it is the original
preprocessor for this theme hook, then follows the conventional preprocess word, and the
name ends with the name of the theme hook. The argument is always an array passed as a
reference and contains some info regarding that theme hook, and more importantly, the
data variables that were defined with the theme hook and passed to it from the calling code.
That is what we are usually working with in this function. Also, since it's passed by a
reference, we don't return anything in this function, but we always manipulate the values in
the $variables array. In the end, the template file is available to print out variables named
after the keys of this array. The values will be, of course, the values that map to those keys.

Another module (or theme) can override this preprocessor function by implementing its
own. However, in its naming, it needs to replace the word template with the module
name (to avoid collisions). If one such override exists, both preprocessors will be called in a
specific order. The first is always the default one, followed by the ones defined by modules
and then the ones defined by themes. This is another great extension point of Drupal
because altering data or options found inside the preprocessor in many cases can go a long
way in customizing the existing functionality to your liking.

Alternatively, to follow the preceding naming convention, you also have the option to
register the preprocessor function names in the hook_theme() definition when you register
the theme hook. However, I recommend that you stick to the default naming convention
because it's much easier to spot what the purpose of the function is. As you become more
advanced, you'll, in turn, appreciate being able to quickly understand these convention
functions at a quick glance.

Theming

[99]

I mentioned a bit earlier that modules and themes can also override theme hooks defined by
other modules and themes. There are two ways to do this. The most common one is for a
theme to override the theme hook. This is because of the rationale I was talking about
earlier--a module defines a default implementation for its data, but a theme can then take
over its presentation with ease. Also, the way themes override a theme hook is by simply
creating a new Twig file with the same name as the original and placing it somewhere in its
templates folder. If that theme is enabled, it will be used instead. A less common but
definitely valid use case is for a module to override a theme hook defined by another
module. For example, this might be because you need to change how data is rendered by a
popular contributed module. To achieve this, you will need to implement
hook_theme_registry_alter() and change the template file used by the existing theme
hook. It's also worth adding that you can change the entire theme hook definition using this
hook if you want, not just the template. Also, since we mentioned this hook, note that theme
hooks, upon definition, are stored and cached in a theme registry for optimized
performance, and that registry is what we are altering with this hook. This also means that
we regularly need to clear the cache when we make changes to the theme registry.

All this is good and fine, but the business logic still has to interact with the theme system to
tell it which particular theme hook to use. In Drupal 7, we had the theme() function, which
took the hook name as an argument and was responsible for everything--determining
which template file (or function) was to be used, calling the preprocessors, processors, and
so on. In Drupal 8, the theme() function no longer exists and has been replaced with a
more robust system based on render arrays, which contain the theme hook information, the
variables, and any other metadata on how that component needs to be rendered. We will
also talk about render arrays in this chapter.

Theme hook suggestions
A great thing about theme hooks is their reusability. However, one problem you'll
encounter is that theme hook templates lose context when a theme hook is reused. For
example, the item_list theme hook whose definition we saw in the previous section has
no idea what list it is theming. And this makes it difficult to style differently depending on
what that content is. Fortunately, we can provide context to the theme system using a theme
hook pattern instead of the original theme hook name, and this pattern looks something like
this:

base_theme_hook__some_context

Theming

[100]

The parts of the pattern are separated with a double underscore, since some theme hooks
could be confusing if we were to use a single underscore to delineate the parts of the
pattern, and together they are called a theme hook suggestion. However, how does this work?

Client code (the render arrays as we will see soon), when using a theme hook to render a
piece of data, can append the context to the theme hook. The theme system will then check
for the following:

If there is a template file that matches that suggestion (inside a theme), it uses it
instead of the original theme hook template
Alternatively, if there is a theme hook registered which has that actual name it
uses that instead
Alternatively, it checks for the base theme hook and uses that instead (the
fallback)

In this case, the caller (the render array) is responsible for "proposing" a suggestion. For
example, consider the following render array:

 return [
 '#theme' => 'item_list__my_list',
 '#items' => $items
];

The base theme hook is item_list, which is rendered using the item-list.html.twig
template file provided by Drupal core. If there is no item-list--my-list.html.twig
template file in the theme, and there is no item_list__my_list theme hook registered,
the default item_list theme hook will be used. Otherwise, we will follow the order that I
mentioned before. A module can register that suggestion as a hook, which will be used
instead. However, a theme can override that further by just creating the template file with
that name.

And all this is done so that when rendering something with a reusable theme hook, we give
the possibility to themers and manipulators to determine what exactly is being themed.
However, the example we saw just now is static in the sense that we hardcoded my_list as
the theme hook suggestion. We can do better than that.

Theming

[101]

A module that registers a theme hook can also provide a list of suggestions that should go
with that theme hook automatically. It does so by implementing
hook_theme_suggestions_HOOK(), where HOOK is the theme hook name. This hook is
fired at runtime by the theme system, trying to determine how a certain render array needs
to be rendered. It receives the same $variables array as an argument as we do when
implementing a template preprocessor. This means that we can make use of those variables
and dynamically provide theme hook suggestions. We will see an example of this later in
the chapter.

Moreover, as module developers, we can also provide a list of theme hook suggestions to
theme hooks registered by other modules or Drupal core. We can do so by implementing
hook_theme_suggestions_HOOK_alter(), where we receive available suggestions for
that theme hook in addition to the variables.

In summary, theme hook suggestions are a powerful way of adding some context to the
generic theme hooks that are responsible for rendering multiple things.

Render arrays
Render arrays also existed in the previous versions of Drupal and they were important to
the theme system. In Drupal 8, however, they have become the thing--a core part of the
Render API that is responsible for transforming markup representations into actual markup.

Acknowledging my limits as a writer, I will defer to the definition found in the Drupal.org
documentation that best describes what render arrays are:

… a hierarchical associative array containing data to be rendered and properties describing
how the data should be rendered.

Simple, but powerful.

One of the principle reasons behind having render arrays is that they allow Drupal to delay
the actual rendering of something into markup to the very last moment. In Drupal 7, often-
times as module developers, we would call the actual rendering service on an array in order
to turn it into markup,for example, in preprocessor functions so that the resulting strings
can be printed in the template. However, this made it impossible to change that data later in
the pipeline,for example, in another preprocessor that comes after the one which did the
rendering.

Theming

[102]

For this reason, in Drupal 8, we no longer have to/should render anything manually (except
in very specific circumstances). We work with render arrays at all times, including the time
up to them being printed in the template. Drupal will know how to turn them into markup.
This way, modules and themes can intercept render arrays at various levels in the process
and make alterations.

We will now talk about render arrays and the different aspects of working with them.

The structure of a render array
Render arrays are rendered by the renderer service (RendererInterface), which
traverses the array and recursively renders each level. Each level of the array can have one
or more elements, which can be two types--properties and children. The properties are the
one whose keys are preceded by a # sign, whereas children are the ones which are not. The
children can be themselves an array with properties and children. However, each level
needs to have at least one property in order to be considered a level because it is responsible
for telling the render system how that level needs to be rendered. As such, property names
are specific to the Render API and to the actual thing they need to render while the names
of children can be flexible. In addition to these two types (yes, I lied, there can be more than
two), we can also have the variables defined by a theme hook, which are also preceded by
the # sign. They are not properties per se, but are known by the theme system because they
have been registered.

There are many properties the Render API uses to process a render array. Some of them are
quite important, such as #cache and #attached. However, there are a few that are
mandatory in order for a render array to make sense, in that they define their core
responsibility. The following are the properties from among which each render array needs
to have at least one.

#type
The #type property specifies that the array contains data that needs to be rendered using a
particular render element. Render elements are plugins (yes, plugins) that encapsulate a
defined piece of a renderable component. They essentially wrap another render array,
which can use a theme hook or a more complex render array to process the data they are
responsible for rendering. You can think of them as essentially standardized render arrays.

Theming

[103]

There are two types of render elements--generic and form input elements. Both have their
respective plugin types, annotations and interfaces. They are similar in that they both
render a standardized piece of HTML; however, the form input elements have the
complexity of having to deal with form processing, validation, data mapping, and so on.
Remember, when we defined our form in Chapter 2, Creating Your First Module, we
encountered arrays with # signs. These were (form) render elements with different options
(properties).

To find examples of these two types of render elements, look for plugins that implement the
ElementInterface and FormElementInterface interfaces.

#theme
The #theme property ties in strongly with what we've been talking earlier in this chapter--
theme hooks. It specifies that the render array needs to render some kind of data using one
of the theme hooks defined. Together with this property, you will usually encounter other
properties that map to the name of the variables the theme hook has registered in
hook_theme(). These are the variables the theme system uses to render the template.

This is the property you will use in your business logic to convey that your data needs to be
rendered using a specific theme hook. If you thought that you can only use theme hooks
you registered, you'd be incorrect. There are many theme hooks that have been already
registered by Drupal core and also contributed modules that make the life of a Drupal
developer much easier. Just look inside drupal_common_theme() for a bunch of common
theme hooks that you can perhaps use.

#markup
Sometimes, registering a theme hook and a template for outputting some data can be
overkill. Imagine that all you have is a string you need to wrap in a tag or
something. In this case, you can use the #markup property, which specifies that the array
provides directly the HTML string that needs to be output. Note, however, that the
provided HTML string is run through
\Drupal\Component\Utility\Xss::filterAdmin for sanitization (mostly, XSS
protection). This is perfectly fine because if the HTML you are trying to include here is
stripped out, it's a good indication that you are overusing the #markup property and should
instead be registering a theme hook.

Theming

[104]

Going a bit further than just simple markup is the #plain_text property via which you
can specify that the text provided by this render array needs to be escaped completely. So,
basically if you need to output some simple text, you have the choice between these two for
very fast output.

Now, if you remember, in Chapter 2, Creating Your First Module, our controller at some
point returned this array:

 return [
 '#markup' => $this->t('Hello World')
];

This is the simplest render array you'll ever see. It has only one element, a tiny string output
using the #markup property. Later in this chapter, we will adjust this and use a render array
provided by our HelloWorldSalutation service in order to make things a bit more
themable. That will be the section where we put into practice many of the things we learn
here.

However, as small as you see this array here, it is only a part of a larger hierarchical render
array that builds up the entire Drupal page and that contains all sorts of blocks and other
components. Also, responsible for building this entire big thing is the Drupal render
pipeline.

The render pipeline
In Chapter 1, Developing for Drupal 8, when we outlined a high level example of how
Drupal 8 handles a user request in order to turn it into a Response, we touched on the
render pipeline. So, let's see what this is about, as there are essentially two render pipelines
to speak of--the Symfony render pipeline and the Drupal one.

As you know, Drupal 8 uses many Symfony components, one of which being the
HTTPKernel component (http:/ /symfony. com/ doc/ current/ components/ http_ kernel.
html). Its main role is to turn a user request (built from PHP super globals into a Request
object) into a standardized response object that gets sent back to the user. These objects are
defined in the Symfony HTTP Foundation component
(http://symfony.com/components/HttpFoundation). To assist in this process, it uses the
Event Dispatcher component to dispatch events meant to handle the workload on multiple
layers. As we saw, this is what happens in Drupal 8, as well.

http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/doc/current/components/http_kernel.html
http://symfony.com/components/HttpFoundation

Theming

[105]

Controllers in Drupal 8 can return one of two things--either a Response object directly or a
render array. If they return the first, the job is almost done, as the Symfony render pipeline
knows exactly what to do with that (assuming the response is correct). However, if they
return a render array, the Drupal render pipeline kicks in at a lower level to try to turn that
into a Response. We always need a Response.

The kernel.view event is triggered in order to determine who can take care of this render
array. Luckily, Drupal 8 comes with the MainContentViewSubscriber that listens to this
event and checks the request format and whether the controller has returned a render array.
Based on the request format, it instantiates a MainContentRendererInterface object
(which by default--and most of the time--will be the HTML-based HtmlRenderer) and asks
it to turn the render array into a Response. Then, it sets the Response onto the event so that
the Symfony render pipeline can continue on its merry way.

In addition to the HTML renderer, Drupal 8 comes with a few others that need to handle
different types of requests:

The AjaxRenderer handles Ajax requests and integrates with the Ajax
framework. We'll see examples of an Ajax-powered functionality later in the
book.
The DialogRenderer handles requests meant to open up a dialog on the screen.
The ModalRenderer handles requests meant to open up a modal on the screen.

Returning to the HTML renderer, let's see what it does to turn our render arrays into actual
relevant HTML on a Response object. Without going into too much detail, here is the high-
level of what it does:

Its first goal is to build a render array which has the #type => 'page' as a
property because this is the render element responsible for the entire page. So, if
the controller has it, it's done in this respect. However, usually, it won't have it so
it dispatches an event to determine who can build this render array.
By default, the SimplePageVariant plugin is used for building up the page
array, but with the Block module enabled, the BlockPageVariant plugin is
used, taking things even further down some levels in the render pipeline. The
main content area gets wrapped with blocks in the sidebar, header, footer, and so
on.
Once it has the page render array, it wraps it into yet another render element
which is the #type => 'html' (responsible for things such as the <head>
elements).

Theming

[106]

Once it has the main render array of the entire page, it uses the Renderer service
to traverse it and do the actual rendering at each level (and there can be many). It
does so by translating render elements (#type), theme hooks (#theme), simply
markedup text (#markup), or plain text (#plain_text) into their respective
HTML representations.

So, as you see, the render pipeline starts at the Symfony level, goes down into Drupal
territory when it encounters render arrays, but continues going down to build each
component found on a page around the main content returned by the Controller. Then, it
comes back up those levels all the way until a great render array is created and can be
turned into HTML. Also, as it goes back up, various metadata can bubble up to the main
render array.

I purposefully left out caching from this equation, which, although very important, we will
cover in a later chapter. However, suffice it to say, cache metadata is one such example that
bubbles up from the lower levels all the way to the top and is gathered to determine page
level caching, but more on that later on.

Assets and libraries
Now that we know more about the render arrays, how they are structured and the pipeline
they go through, we can talk a bit about asset management from a module development
perspective, as although it is usually a theme responsibility, module developers also often
have to add and use CSS and JS files to their modules, and it all happens in the render
arrays.

Working with CSS and JS files has become standardized in Drupal 8 compared to its
preceding version, where you had more than one way to do things. It is doing so via the
concept of Libraries, which are now in Drupal 8 core and also work differently than their D7
contrib module counterpart (Libraries API). So, let's see what we have by going through
some examples of making use of some CSS of JS files.

There are three steps to this process:

Creating your CSS/JS file.1.
Creating a library that includes them.2.
Attaching that library to a render array.3.

Theming

[107]

Libraries
Assuming that you already have the CSS/JS files, libraries are defined inside a
module_name.libraries.yml file in the module root folder. A simple example of a
library definition inside this file would look like this:

my-library:
 version: 1.x
 css:
 theme:
 css/my_library.css: {}
 js:
 js/my_library.js: {}

At the top in the preceding example, we have the library machine name, whereas we have
its definition at the bottom. We can specify a version number for our library and then add
as many CSS and JS file references. The file paths are relative to the module folder this
library definition is in and we can add some options between the curly braces (more
advanced, but we will see an example in a moment).

Additionally, you'll note that the CSS file has an extra level key called theme. This is to
indicate the type of CSS to be included and can be one of the following (based on
SMACSS(https:// smacss. com/) standards):

base: Usually contains CSS reset/normalizers and HTML element styling
layout: High-level page styling, such as grid systems
component: UI elements and reusable components
state: Styles used in client-side changes to components
theme: Visual styling of components

The choice here is also reflected in the weighting of the CSS file inclusion, the latter being
the "heaviest", meaning that it will be included last.

Another important aspect of using libraries in any application is the ability to include
externally hosted files (usually from a CDN) for better performance. Let's take a look at an
example library definition that uses externally hosted files:

angular.angularjs:
 remote: https://github.com/angular/angular.js
 version: 1.4.4
 license:
 name: MIT
 url: https://github.com/angular/angular.js/blob/master/LICENSE
 gpl-compatible: true

https://smacss.com/
https://smacss.com/
https://smacss.com/
https://smacss.com/
https://smacss.com/
https://smacss.com/
https://smacss.com/
https://smacss.com/

Theming

[108]

 js:
 https://ajax.googleapis.com/ajax/libs/angularjs/1.4.4/angular.min.js: {
type: external, minified: true }

This example is taken from the Drupal.org (https:/ /www. drupal. org/ docs/ 8/ creating-
custom-modules/adding- stylesheets- css- and- javascript- js-to- a-drupal- 8-module)
on defining libraries in Drupal 8. However, as you can see, the structure is the same as our
previous example, except that it has some more meta information regarding the external
library. And instead of a local path reference, we have a remote URL to the actual resource.
Moreover, we also see some options within the curly braces by which we can specify that
the file is actually externally located and it is minified.

An important change when it comes to JS in Drupal 8 is that Drupal no longer always
includes all libraries such as jQuery. It does so only where and when it's needed. This has,
therefore, brought the concept of library dependencies to the forefront, as certain scripts
require other libraries to be loaded for them to work.

Let's assume that my-library depends on jQuery and specify it as a dependency. All we
need to add to our library definition is the following; keep in mind that the dependencies
key is at the same YML level as css and js:

dependencies:
 - core/jquery

With this, we declare the Drupal core jQuery library to be required by our library. This
means that if we somewhere use our library and jQuery is not included, Drupal will process
the dependencies and include them all, and a side-benefit of this is that dependencies are
always included before your scripts, so you can also control that.

The core/jquery notation indicates that the extension (module or theme) that defines the
jquery library is the Drupal core. If it had been a module or theme, core would have been
replaced by the module or theme machine name. So, for example, to use our new library
somewhere, it would be referenced as module_name/my-library.

Attaching libraries
Speaking of using a library, let's see what are some of the more important ways you as a
module developer can make use of a library in your code.

https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module

Theming

[109]

The most common way you'll be using libraries is attaching them to your render arrays.
Typically, this means that the library is needed for the rendering of that component so that
if the said component is missing from the page, the library assets are no longer included.

Here is what a render array would look like with the preceding library we defined attached
to it:

 return [
 '#theme' => 'some_theme_hook',
 '#some_variable' => $some_variable,
 '#attached' => [
 'library' => [
 'my_module/my-library',
],
],
];

The #attached property is important here, and it signifies that we are essentially attaching
something to the render array, which in our case happens to be a library. In Drupal 7, we
could attach CSS and JS files directly, but we now have a standardized libraries API to do so
in a more robust way.

However, you may have cases in which the library you need is not linked to a specific
render array (a component on the page) but to the entire page itself--all pages or a subset.
To attach libraries on an entire page, you can implement hook_page_attachments();
consider the following example:

function hook_page_attachments(array &$attachments) {
 $attachments['#attached']['library'][] = 'my_module/my-library';
}

This hook is called on each page, so you can also attach libraries contextually (for example,
if the user has a specific role or something like that). Moreover, there is also the
hook_page_attachments_alter() hook that you can use to alter any existing
attachments (for example, to remove any attachment from the page).

Another way you can attach libraries is inside a preprocess function. We talked about
preprocess functions earlier in this chapter; it's simple to achieve:

function my_module_preprocess_theme_hook(&$variables) {
 $variables['#attached']['library'][] = 'my_module/my_library';
}

All we have to do is add the #attached key (if it doesn't already exist) to the variables
array.

Theming

[110]

These three methods of attaching libraries are the most common ones you'll encounter and
use yourself. However, there are a few other ways and places attachments can be done--you
can alter an existing render element definition and you can attach libraries straight in a
Twig file. I recommend that you read the Drupal.org (https:/ /www. drupal. org/ docs/ 8/
creating-custom- modules/ adding- stylesheets- css- and-javascript- js-to- a-drupal- 8-
module) for more information on these methods.

Common theme hooks
In this section, we will look at three common theme hooks that come with Drupal core that
you are likely to use quite often. The best way to understand them is, of course, referring to
an example of how to use them. So, let's get to it.

Lists
One of the most common HTML constructs are lists (ordered or unordered), and any web
application ends up having many of them, either for listing items or for components that do
not even look like lists but for the purposes of marking up; an ul or ol fits the bill best.
Luckily, Drupal has always had the item_list theme hook, which is flexible enough to
allow us to use it in almost all cases.

The item_list theme hook is defined inside drupal_common_theme(), is preprocessed
(by default) in template_preprocess_item_list(), uses the item-list.html.twig
template by default, and has no default theme hook suggestions (because it's so generic and
registered outside the context of any business logic). If we inspect its definition, we'll note
that it takes a number of variables that build up its flexibility. Let's take a look at an
example of how to use it.

Imagine that we have the following array of items:

 $items = [
 'Item 1',
 'Item 2'
];

The simplest way we can render this as an is as follows:

 return [
 '#theme' => 'item_list',
 '#items' => $items
];

https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module
https://www.drupal.org/docs/8/creating-custom-modules/adding-stylesheets-css-and-javascript-js-to-a-drupal-8-module

Theming

[111]

Do note that the respective is wrapped in a <div class="item_list"> and that the
items in our array can also be render arrays themselves.

If we want to change the list into an , we set the #list_type variable to ol. We can
even have a title heading (<h3>) before the list if we set the #title variable. Moreover, we
can add even more attributes on the <div> wrapper. For more information on how the
other options work, I suggest that you inspect the template file and preprocessor function.
However, these are the ones you'll most often use.

Links
In Chapter 2, Creating Your First Module, we briefly looked at how you can work with links
programmatically and how to build and render them in two different ways. We also noted
that it's better to use the #link render element (and we now understand what this is) if we
want the link to be alterable somewhere down the line. Now, let's take a look at how we can
build a list of links using the helpful links theme hook.

The links theme hook takes an array of links to be rendered, optional attributes, an
optional heading, and a flag to set the active class dynamically. It then uses the
links.html.twig template to construct a , much like the item_list hook.

The most important variable here is the array of links, as it needs to contain individual
arrays with the following keys--title (the link text), url (a Url object), and attributes
(an array of attributes to add to each link item). If you look inside the
template_preprocess_links preprocessor, you'll see that it takes each of these items
and transforms them into a render array with the #type => 'link' (the render element).

In addition to the array of links, you can also pass a heading (just like with item_list) and
a flag for setting the active class--set_active_class. The latter will make it add an is-
active class onto the item in the list and the link itself if the link matches the current
route. Handy stuff, isn't it? However, for more information, check out the documentation
above the template_preprocess_links() implementation. Now, let's see a quick
example of using this in practice:

 $links = [
 [
 'title' => 'Link 1',
 'url' => Url::fromRoute('<front>'),
],
 [
 'title' => 'Link 1',
 'url' => Url::fromRoute('hello_world.hello'),

Theming

[112]

]
];

 return [
 '#theme' => 'links',
 '#links' => $links,
 '#set_active_class' => true,
];

That is all. We build an array of link data and then construct the render array using the
links theme hook. We also use the set_active_class option just for kicks. This means
that the is-active class will be present on the first link if this is rendered on the home
page or on the second link if rendered on the Hello World page. As simple as that.

Tables
The last common theme hook we will look at now will help you build tables. It has always
been a Drupal best practice to use the theme hook when building tables rather than creating
the markup yourself. This is also in part because it has always been very flexible. So, let's
take a look.

The table theme hook takes a bunch of variables, many of them optional. The most
important, however, are the header (an array of header definitions) and rows (a
multidimensional array of row definitions). It is beside the point to repeat all the possible
options you have for building tables here because they are all very well documented above
the template_preprocess_table() preprocessor function. So, do ensure that you check
there for more information. Instead, we'll focus on a simple example of rendering a table,
and we will do so via an example:

 $header = ['Column 1', 'Column 2'];
 $rows = [
 ['Row 1, Column 1', 'Row 1, Column 2'],
 ['Row 2, Column 1', 'Row 2, Column 2']
];

 return [
 '#theme' => 'table',
 '#header' => $header,
 '#rows' => $rows,
];

Theming

[113]

So, as you can see, we have the two critical variables. We have the list of header items and
the rows (whose cells are in the array in the same order as the header). Of course, you have
many more options, including attributes at all levels of the table, handy sorting capability
that makes it easy to integrate with a database query, and more. I strongly encourage you to
explore these options in the documentation.

Attributes
In the previous three examples of theme hooks, we encountered the concept of attributes
in the context of using them to render HTML elements. Attributes here are understood in
the same way as with HTML. For example, class, id, style, and href are all HTML
element attributes. Why is this important?

The reusability of theme hooks makes it so that we cannot hardcode all our HTML
attributes in the Twig template files. We can have some, including classes, but there will
always be the case when the business logic will need to inform the theme hook of certain
classes or other attribute values to print on the HTML element, for example, an active
class on a link. This is why, we have this concept of attributes.

Most theme hooks you'll see will have attributes in some form or another, usually the
variable being called $attributes, $wrapper_attributes, or something of this nature.
Also, this variable always needs to be a multidimensional array with the attribute data you
want to be passed. The keys in this array are the name of the attribute, whereas the value is
the attribute value. If the value can have multiple items, such as classes, it will also be an
array. Consider the following example:

 $attributes = [
 'id' => 'my-id',
 'class' => ['class-one', 'class-two'],
 'data-custom' => 'my custom data value'
];

As you can see, we have some common attributes, but you can also make up your own as
needed (usually in the form of data attributes). However, in no way is this mandatory, and
you can add only the ones you actually need. Do always, though, read the documentation
on the theme hook to see how they are used and which elements are actually going to get
them.

Theming

[114]

From an API point of view, Drupal handles attributes via a handy class Attribute. You'll
note that many template preprocessors will take that array and construct a new Attribute
object for manipulating them with more ease. Additionally, such an object is also renderable
because it implements the MarkupInterface and Twig will know directly how to
transform it into a string.

So, keep that in mind if you are writing your own theme hooks and need to handle
attributes with more class (pun intended).

Theming our Hello World module
The HelloWorldController we built in Chapter 2, Creating Your First Module, currently
uses a service to retrieve the string to be used as the salutation and then returns a simple
markup render array with it. Let's imagine now that we want to output this message, but
wrap it in our own specific markup. To make an easy thing complicated, we want to break
up the salutation string into parts so that they can be styled slightly differently.
Additionally, we want to allow others to override our theme using suggestions that can
depend on whether or not the salutation has been overridden via the configuration form.
So, let's see how we can do these things.

To get things started, this is the markup we are after:

<div class="salutation">
 Good morning world
</div>

The first thing we need to do is to define our own theme hook capable of outputting this. To
this end, we implement hook_theme():

/**
 * Implements hook_theme().
 */
function hello_world_theme($existing, $type, $theme, $path) {
 return [
 'hello_world_salutation' => [
 'variables' => ['salutation' => NULL, 'target' => NULL, 'overridden'
=> FALSE],
],
];
}

Theming

[115]

For now, we only return one theme hook called hello_world_salutation, which takes
the variables you can see. Each of them has a default value in case one is not passed from
the client (render array). The first two are obvious, but we also want to have a flag on
whether or not the salutation has been overridden. This will help with the theme hook
suggestions.

By default, if we don't specify a template filename, this theme hook will look for a Twig
template with the name hello-world-salutation.html.twig inside the /templates
folder of our module. Since this is good enough for us, let's go ahead and create it:

<div {{ attributes }}>
 {{ salutation }}
 {% if target %}
 {{ target }}
 {% endif %}
</div>

Twig notation is easy to understand. The {{ }} means that we are printing a variable with
that name (which can be even a render array) and {% %} refers to control structures, such as
if statements or loops. Do check out the Twig documentation (https:/ / twig. symfony. com/)
for more information if you are unsure.

There are some great ways to debug what values end up being printed in
the Twig template. You can use the native Twig dump() function, which
will output things using the PHP var_dump() or you can install the Devel
module and use the kint() function, which will format things in a more
readable way.

We wrapped the target variable in an if statement so that if by any chance it's missing, we
don't print an empty span tag. It's best practice to have your template mirror the
possibilities of the theme hook being called with the defaults.

Finally, we also have an attributes array we are printing on the wrapper. We did not
define this, but each theme hook comes with it. The variable is an Attribute object, as we
discussed earlier, which gets printed into a string of the individual attributes. Instead of
printing the class we want in here, we will use the preprocessor to make things more
dynamic.

https://twig.symfony.com/
https://twig.symfony.com/
https://twig.symfony.com/
https://twig.symfony.com/
https://twig.symfony.com/
https://twig.symfony.com/
https://twig.symfony.com/
https://twig.symfony.com/
https://twig.symfony.com/
https://twig.symfony.com/

Theming

[116]

Let's implement the preprocessor next:

/**
 * Default preprocessor function for the hello_world_salutation theme hook.
 */
function template_preprocess_hello_world_salutation(&$variables) {
 $variables['attributes'] = [
 'class' => ['salutation'],
];
}

As we talked about earlier, at this stage, we are still working with an array of attributes. The
theme system will turn it into the Attribute object before rendering the template, which in
turn will know how to handle that.

Other modules or themes can now implement this preprocessor themselves and change the
classes (or any other wrapper attributes) as they need. Had we hardcoded the class in the
template file, they would have had to override the entire template--which although still a
viable option is overkill if you just need to add a class.

Now, let's allow themers to have different implementations for our salutation message,
depending on whether or not it is overridden by an admin. I know this particular example
is quite a stretch, but it allows us to demonstrate the approach. That's what this is all about.

So, as we discussed, we can define a suggestion for our theme hook:

/**
 * Implements hook_theme_suggestions_HOOK().
 */
function hello_world_theme_suggestions_hello_world_salutation($variables) {
 $suggestions = [];

 if ($variables['overridden'] == TRUE) {
 $suggestions[] = 'hello_world_salutation__overridden';
 }

 return $suggestions;
}

If you remember, our theme hook had the overridden variable that can be used for this
flag. So, in our theme hook suggestion implementation, we check for it, and if it is true, we
add our suggestion. This function gets called on the fly at the moment of rendering and the
most specific suggestion encountered is used if, of course, the salutation is overridden. If
that is the case, it will try hello_world_salutation__overridden and if not found, it
will fall back to hello_world_salutation, which exists.

Theming

[117]

Themes can now have two different templates that render the salutation in two different
ways, depending on whether or not the message has been overridden:

hello-world-salutation.html.twig

hello-world-salutation--overridden.html.twig

Okay, our theme hook is now ready for use. Let's use it.

Since our theme template breaks our salutation message up into pieces, and can even
receive the overridden flag, it will not be enough to just use this theme hook in the
HelloWorldController. Instead, we will need to go back to our service and have it return
the render array responsible for outputting the salutation. After all, business logic knows
the structural aspects of how a certain component needs to be rendered. Theming just needs
to style and alter that based on the flexibility offered by a good functional implementation.

However, let's not override the getSalutation() method on the service, but instead
create a new one called getSalutationComponent(). This will then return the render
array that can output the whole thing:

 /**
 * Returns the Salutation render array.
 */
 public function getSalutationComponent() {
 $render = [
 '#theme' => 'hello_world_salutation',
];

 $config = $this->configFactory->get('hello_world.custom_salutation');
 $salutation = $config->get('salutation');

 if ($salutation != "") {
 $render['#salutation'] = $salutation;
 $render['#overridden'] = TRUE;
 return $render;
 }

 $time = new \DateTime();
 $render['#target'] = $this->t('world');

 if ((int) $time->format('G') >= 06 && (int) $time->format('G') < 12) {
 $render['#salutation'] = $this->t('Good morning');
 return $render;
 }

 if ((int) $time->format('G') >= 12 && (int) $time->format('G') < 18) {
 $render['#salutation'] = $this->t('Good afternoon');

Theming

[118]

 return $render;
 }

 if ((int) $time->format('G') >= 18) {
 $render['#salutation'] = $this->t('Good evening');
 return $render;
 }
}

This is how it will look. We start by creating the render array that uses our new theme hook.
Then, we look in the configuration object, and if there is a message stored there, we use that,
set the overridden flag to true, and return the render array. You'll note that we didn't set a
target, which means that it won't get printed in the template file (as expected). If,
however, it is not overridden, we proceed with our previous logic and set the message
dynamically while keeping the target the same, and that's it. You can easily see how this
now maps to what the theme hook and template expect for the different cases.

A couple of points to be made before going forward. First, I want to reiterate the warning
that due to things such as caching, the dynamic salutation message won't actually work as
expected. We'd need to set some cache metadata to prevent this render array from being
cached in order for it to work. However, we will see more on that in Chapter 11, Caching.
Second, you will have noted that the variables we defined in the theme hook show up now
proceeded by a # sign as if they were properties known to the render system. As we saw
earlier, they are in fact not properties, but they are known by the theme system as variables
because we defined them as such. So, it's important to be able to distinguish these kinds of
things when reading code that you didn't write yourself. There are, of course, many
properties you don't know off the top of your head (I certainly don't know most), but with
experience, you'll be able to read the code, figure out the source, and understand what it
means. In this, the difference between a good developer and a great one is the ability of the
latter to figure things out by reading the source code rather than relying on documentation.

Now, we have a service that can return a string representation of our message and a fully
fledged renderable component. It follows that we edit our Controller and have it return this
component instead of its own render array:

 /**
 * Hello World.
 *
 * @return array
 */
 public function helloWorld() {
 return $this->salutation->getSalutationComponent();
 }

Theming

[119]

You'll note that we don't need the #markup property anymore, as we have our own render
array. For the salutation token and the block we created, I choose not to use this
component but rely on the string version. So, this way, we keep both options in the code for
you to see.

Summary
The Drupal 8 theming system is complex and flexible, thus, it is impossible to cover it fully
in one chapter of a module development book. However, we did go through the basics
necessary to get you started--understanding the core tenets of the theme system, some of its
most important Drupal specificities and practical use cases.

We started this chapter by discussing the abstract principle of separating business from
presentation logic--a principle that is used by all modern web applications. We saw why it
is critical for flexible and dynamic theming. Next, we discussed a great deal about how
Drupal does this separation--the mighty theme hooks that act as a bridge between the two
layers. Here, we also covered some of the highly used practices surrounding them--
preprocessor functions and theme hook suggestions for added flexibility. Then, we covered
how the business logic can actually use theme hooks--the render arrays (perhaps one of the
most important Drupal constructs). Also, since we were on the subject, we outlined the
Drupal and Symfony render pipeline to get a better understanding of the process building
up an entire page worth of render array. Next, we discussed libraries and how we can
"attach" them to render arrays. We will definitely see some more examples later in the book
when we talk about JavaScript. Finally, we started transitioning into the practical aspects of
theming a module by exemplifying a few common theme hooks found in Drupal 8 core. In
doing so, we also encountered the important topic of Attributes, an important one to
understand when dealing with making theme hooks more dynamic. We ended the chapter
with an overhauling of our Hello World salutation message to create a themable
component. We did so by putting into practice much of what we learned about theme
hooks earlier on--we defined a theme hook and template, a preprocess function, and a
theme hook suggestion and built a render array dynamically to use them. All in all, not a
bad day in the life of a Drupal 8 module developer.

In the next chapter, we will look at menus and the different types of menu links in Drupal 8.
What kind of web application would it be without any menu links in it?

5
Menus and Menu Links

Navigation is an important part of any web application. The ability to create menus and
links easily in order to connect pages together is a core aspect of any content management
system. Drupal 8 is fully equipped with both the site-building capabilities and developer
API to easily build and manipulate menus and links.

In this chapter, we will discuss menus and menu links from a Drupal 8 module developer
perspective. In doing so, we will touch upon a few key aspects:

The general architecture of the menu system in Drupal 8
Manipulating and rendering menus
Defining various types of menu links

By the end of this chapter, you should be able to understand what menus and menu links
are, how to use them in your code, and how to define menu links in your module. So, let's
get started.

The menu system
Before we get our hands dirty with menus and menu links, let's talk a bit about the general
architecture behind the menu system. To this end, I want to describe a bit about its main
components, what some of its key players are, and what classes you should be looking at.
As always, no great developer has ever relied solely on a book or documentation to figure
out complex systems.

Menus and Menu Links

[121]

Menus
Menus are configuration entities represented by the following class:
Drupal\system\Entity\Menu. I mentioned in Chapter 1 , Developing for Drupal 8, that we
have something called configuration entities in Drupal 8, which we will explore in detail
later in this book. However, for now, it's enough to understand that menus can be created
through the UI and become an exportable configuration. Additionally, this exported
configuration can also be included inside a module so that it gets imported when the
module is first installed. This way, a module can ship with its own menus that are already
created. We will see how this latter aspect works when we talk about the different kinds of
storage in Drupal 8. For now, we will work with either menus that come with Drupal 8
core.

Each menu can have multiple menu links, structured hierarchically in a tree with a
maximum depth of 9. The ordering of the menu links can be done easily through the UI or
via the weighting of the menu links, if defined in code.

Menu links
At their most basic level, menu links are plugins, but this time discoverable via a YAML
discovery (instead of annotations like we are used to). To this end, the regular menu links
are defined inside a module_name.links.menu.yml file and can be altered by other
modules by implementing hook_menu_links_discovered_alter(). When I say regular,
I mean those links that take you to menus. We will see next that there are also a few other
types.

One of the reasons for the YAML discovery is that links are more definition than
functionality, so they don't necessarily require classes, but can be represented through some
lines inside a YAML file.

There are some important classes you should check out in this architecture--
MenuLinkManager (the plugin manager) and MenuLinkBase (menu link plugins base class
and which implements the MenuLinkInterface).

Menu links are, however, also content entities. The links created via the UI are stored as
entities because they are considered content. The way this works is that for each created
MenuLinkContent entity, a plugin derivative is created. We are getting dangerously close
to advanced topics, which are too early to cover. However, in a nutshell, via these
derivatives, it's as if a new menu link plugin is created for each MenuLinkContent entity,
making the latter behave as any other menu link plugin. This is a very powerful system
specific to Drupal 8.

Menus and Menu Links

[122]

Menu links have a number of properties, among which is a path or route. When created via
the UI, the path can be external or internal or can reference an existing resource. When
created programatically, you'll typically use a route.

Multiple types of menu links
The menu links we've been discussing so far are the links that show up in the menus. There
are also a few different kinds of links that show up elsewhere but are still considered menu
links and work similarly.

Local tasks
Local tasks, otherwise known as tabs, are grouped links that usually show up above the
main content of a page (depending on the region where the tabs block is placed). They are
usually used to group together related links that have to deal with the current page. For
example, on an entity page, such as the Node Details page, you can have two tabs--one for
viewing the Node and one for editing it (and maybe one for deleting it),in other words, for
local tasks, as shown in the following screenshot:

Local tasks take access rules into account, so if the current user does not have access to the
route of a given tab, the link is not rendered. Moreover, if that leaves only the main link,
that link doesn't get rendered, as there is no point. So, for tabs, a minimum of two links are
needed.

Modules can define local task links inside a module_name.links.task.yml file, whereas
other modules can alter them by implementing hook_menu_local_tasks_alter().

Menus and Menu Links

[123]

Local actions
Local actions are links that relate to a given route and are typically used for operations. For
example, on a list page, you might have a local action link to create a new list item, which
will take you to the relevant form page. In the following screenshot, we can see a local
action link used to create a new user on the main user management page:

Modules can define local action links inside a module_name.links.action.yml file,
whereas other modules can alter them by implementing
hook_menu_local_actions_alter().

Contextual links
Contextual links are used by the Contextual module to provide handy links next to a given
component (a render array). You probably encountered this when hovering over a block,
for example, and getting that little icon with a dropdown that has the Configure block link:

Menus and Menu Links

[124]

Contextual links are tied to render arrays. In fact, any render array can show a group of
contextual links that are previously defined.

Modules can define contextual links inside a module_name.links. contextual.yml file,
whereas other modules can alter them by implementing
hook_contextual_links_alter().

MenuLink trees
As I mentioned in the section about Menus, menu links are stored hierarchically inside a
menu. This hierarchy is represented via a menu link tree. There are a number of key players
here.

We have the MenuLinkTree service, which is the interface used to load and prepare the tree
of a certain menu. The loading is deferred to the MenuTreeStorage service, which does so
on the basis of a MenuTreeParameters object that contains metadata on certain restrictions
to be applied on the menu links that are loaded. We will see some examples of this a bit
later.

What comes out of the MenuLinkTree service is an array of MenuLinkTreeElement that is
essentially a value object that wraps around the MenuLinkInterface plugins and that
provides some extra data about its placement in the tree it finds itself in. One such
important piece of information is the subtree (the array of MenuLinkTreeElement objects
that are below it).

Menu link tree manipulators
When loading a menu link tree, you get the entire tree that fits the specified parameters.
However, when using that tree, you probably want to perform some checks and remove
certain items. A common example is to remove the menu links to which the user doesn't
have access. This is where manipulators come into place.

The MenuLinkTree service has a transform() method, which alters a tree based on an
array of manipulators. The latter take the form of callables, typically service names with
specific methods. So, the actual manipulators are services that traverse the tree and make
alterations to the tree items, their order, and so on.

Menus and Menu Links

[125]

Menu active trail
A menu trail is a list (array) of menu link plugins that are parents of a menu link. For the
active trail, that specific menu link represents the current route (if there is a menu link for
that route).

The Drupal 8 menu system also has a service that can be used to determine the active trail
of the current route if used by a menu link. Passing a menu name to look inside of the
MenuActiveTrail service returns an array of plugin IDs of the parents all the way up to
the menu root, if the current route is in fact an active link. The following is a method that
can be used to check that--getActiveLink().

Rendering menus
Now that we have covered some theory about the menu system, it's time to get our hands
dirty with some code. The first thing we will look at is how to work with menus
programmatically in view of rendering them in our module. For this, we will work with the
default Administration menu that comes with Drupal core and has many links in it, at
various levels. Note that the code we write in this section will not be included in the code
repository.

Drupal core provides a block called SystemMenuBlock, which can be used to render any
menu inside a block. However, let's take a look at how we can do this ourselves instead.

The first thing we will need to do is get the MenuLinkTree service. We can inject it or,if
that's not possible, get it statically via the helper \Drupal class:

$menu_link_tree = \Drupal::menuTree();

Next, we will need to create a MenuTreeParameters object so that we can use it to load our
menu tree. There are two ways we can do this. We can either create it ourselves and set our
own options on it or we can get a default one based on the current route:

$parameters = $menu_link_tree->getCurrentRouteMenuTreeParameters('admin');

Providing the name of a menu (in our case, "admin"), this method gives us a
MenuTreeParameters instance with the following options set on it:

The links in the active trail of the current route are marked as expanded, that is,
they will show up in the resulting tree that we load
The children of the links in the active trail that have the "expanded" property set
are also included in the resulting tree

Menus and Menu Links

[126]

Essentially, this set of parameters gives us a tree within the context of the current route we
are on. In other words, it will load all the root links in the menu and all the children of the
root link that is in the active trail of the current route. It will leave out the children of the
other root links.

You can, of course, further customize this set of parameters or create one from scratch. For
example, if we want to load only the tree of a root link inside a menu, we could do it as
follows:

$parameters = new MenuTreeParameters();
$parameters->setRoot($plugin_id);

In the preceding code, $plugin_id is the ID of the menu link that should be at the root of
the tree (defined in the YAML file or derived from a derivative).

I encourage you to look inside the MenuTreeParameters class and take a look at the other
options that you have to load a tree.

For our example, we want to work with the entire menu tree of the Administration menu,
so just instantiating a new MenuTreeParameters object will be enough, as we want to load
all links in the menu. We can do this as follows:

$tree = $menu_link_tree->load('admin', $parameters);

Now, we have an array of MenuLinkTreeElement objects inside $tree, including the
following things:

The link property, which is the menu link plugin
The subtree property, which is an array of MenuLinkTreeElement objects
going down the tree
Various metadata about the link within the tree (depth, whether in the active
trail, whether it has children, access, and so on)

However, it is an important thing to note that notwithstanding any MenuTreeParameters
we may have had, we are now sitting on top of all menu links in that menu, regardless of
any access check. It is our responsibility to make sure that we don't render links to pages the
user has no access to (as they will get a 403 when they get there). To do this, we use the
manipulators we discussed earlier, which are simple methods on a service.

Menus and Menu Links

[127]

The Drupal 8 menu system comes with a few default manipulators, which can be found
inside the DefaultMenuLinkTreeManipulators service. Most of the times, they will be
enough for you:

Access (handled by the checkAccess() method): Checks whether the user has
access to the links in the tree. If they don't, the link becomes an instance of
InaccessibleMenuLink and any links in its subtree are cleared out
Node Access (handled by the checkNodeAccess() method): Checks whether the
user has access to the Node entity linked to by the menu link. If you know that
the menu has links to Nodes, you can use this before the regular access check
because it's a bit more performant.
Index and Sort (handled by the generateIndexAndSort() method): Creates
unique indexes in the tree and sorts it by them.
Flatten (handled by the flatten() method): Flattens the menu tree to one level.

If these are not enough, you can add your own manipulators as needed. All you have to do
is define a service as a public method and then reference it when transforming the tree.
However, speaking of transforming, let's go ahead and use the access check manipulator to
ensure that the current user has access to our tree links:

 $manipulators = [
 ['callable' => 'menu.default_tree_manipulators:checkAccess']
];
 $tree = $menu_link_tree->transform($tree, $manipulators);

As I said earlier, we will use the transform() method on the service and pass an array of
callables. The latter are nothing more than the service name, followed by : and the method
name to be used. So, if you create your own service, you can reference it the same way.

Now, each MenuLinkTreeElement that remains in the tree has its access property filled
with an instance of AccessResultInterface (a system of denoting access that we will
talk more about in a later chapter). If the link is not accessible, it becomes an instance of
InaccessibleMenuLink, so we know that we cannot render it, and even if we did render
it, it will go to the home page rather than the 403.

Now, all we have to do is turn this tree into a render array:

$menu = $menu_link_tree->build($tree);

Inside $menu, we now have a render array that uses the menu theme hook using a theme
hook suggestion based on the menu name. So, in our case, it will be menu__admin.
Remember what these are from the theming chapter?

Menus and Menu Links

[128]

The menu theme hook will use, by default, the menu.html.twig (or menu--
admin.html.twig if it exists inside a theme) to render the menu links inside a simple,
albeit hierarchical, HTML list.

As a quick recap from the theming chapter, at this point you have a few options to gain full
control over the output of the menu:

Creating a new theme hook and mimicking what the build() method does to
build the render array
Altering the theme registry to switch out the template with your own
Overriding the template inside a theme
Implementing a preprocessor for the theme hook and altering variables there

So, as you can see, you have many options. The choice you make depends on what you
need to achieve, how happy you are with what the default markup is, and so on.

Working with menu links
Now that we know how to load and manipulate trees of menu links, let's talk a bit more
about the regular menu links. In this section, we will look at how our module can define
menu links and how we can work with them programmatically once we get our hands on
them from a tree or somewhere else.

Defining menu links
In our "Hello World" module, we defined a couple of routes, one of which is the /hello
path, which shows our themed salutation component. Let's create a link to that path that
goes in the main menu that comes with Drupal core.

As I mentioned, menu links are defined inside a *.links.menu.yml file. So, let's create
that file for our module and add our menu link definition in it:

hello_world.hello:
 title: 'Hello'
 description: 'Get your dynamic salutation.'
 route_name: hello_world.hello
 menu_name: main
 weight: 0

Menus and Menu Links

[129]

In a typical YAML notation, we have the machine name (in this case, also the plugin ID)
hello_world.hello followed by the relevant information below it. These are the most
common things you will define for a menu link:

The title is the menu link title, whereas the description is, by default, set as
the title attribute on the resulting link tag
The route_name indicates the route to be used behind this link
The menu_name indicates the menu that it should be in; this is the machine name
of the menu
The weight can be used to order links within the menu

An additional common property is parent with which you can indicate another menu link
the current one should be a child of. As such, you can build the hierarchy.

Once this is in, you should clear the cache and check out the links in the menu. You'll note
that you can edit it, but some things cannot be changed through the UI due to them being
defined in code.

Note that links that are created as a result of plugin derivatives, such as the ones created in
the UI, have machine names (plugin IDs) in the following format:

main_plugin_id:plugin_derivative_id

The main_plugin_id is the ID of the menu link plugin that is responsible for deriving
multiple links, whereas the plugin_derivative_id is the ID given to each individual
derivative. For example, in the case of MenuLinkContent entities, the format is like this:

menu_link_content:867c544e-f1f7-43aa-8bf7-22fcb08a4b50

The UUID in the preceding code is actually the UUID of the menu link content entity, which
happens to be the plugin derivative ID.

Working with menu links
I mentioned earlier that MenuLinkTreeElement objects wrap individual menu links, but
what can we do with these programmatically if you choose to work with this data yourself
and not rely on the menu theme hook? Let's cover a few common things you can do.

Menus and Menu Links

[130]

First of all, the most important thing to do is to access the menu link plugin. You can do so
directly, as it is a public property on the MenuLinkTreeElement:

$link = $data->link;

Now, you can work with the $link variable, which is an instance of MenuLinkInterface,
and more often than not, an actual MenuLinkDefault instance that extends the
MenuLinkBase class.

So, if we inspect that interface, we can see a number of handy methods. The most common
of these will be the getters for the menu link definition we saw earlier when defining the
plugins. The getUrlObject() is also an important method, which transforms the route of
the menu link into a Url object that we already know how to use. If the menu link is created
in the UI, it could be that it has no route but only a path, in which case, this method will still
be able to construct a common Url object based on that path.

If you have your hands on a menu link that is not from a tree where you have already
handled access, you can ask the Url object to check access before actually using it:

$access = $url->access()

If the link is not routed, the access will always return true because it means that the link is
external, or, in any case, no access check can be done. We will talk more about the access
system in a separate chapter.

Defining local tasks
Let's now take a look at an example of how we can define local task links by heading back
to our Hello World module. On the /hello page, let's add two local tasks--one for the
regular /hello page, and the other for the configuration form where the salutation can be
changed. This is a good example of using local tasks (tabs), as the configuration form is
strictly related to what is on the page and is used to make changes to it.

As I mentioned, local tasks go inside a *.links.task.yml file. So, let's create one for our
module with two links in it:

hello_world.page:
 route_name: hello_world.hello
 title: 'Hello World'
 base_route: hello_world.hello
hello_world.config:
 route_name: hello_world.greeting_form
 title: 'Configuration'

Menus and Menu Links

[131]

 base_route: hello_world.hello
 weight: 100

As usual, the top-most lines are the machine name (plugin IDs) of the links and we have the
definitions under them. We have a route_name property again to specify what route these
links should go to, a title for the link title, and a base_route. The latter is the route the
local task should show up on. As you can see, both our links will show up on the /hello
page. The weight property can be used to order the tabs.

If you clear the cache and go to that page (as a user who has access to both routes), you'll be
able to see the following two tabs:

If you visit as an anonymous user, neither will show up for the reason I mentioned earlier.

Menus and Menu Links

[132]

Defining local actions
Nothing about our Hello World module calls for defining a local action link. So instead of
doing that, let's check out one that actually makes sense. If you navigate to the
admin/content screen, you'll see the + Add content button. It looks exactly the same as
the example we saw earlier on the user management page. That is a local action link for this
route. The + styling indicates that these links are primarily used to add or create new items
relevant to the current route.

This particular local action link is defined in the node module inside the
node.links.action.yml file, and it looks like this:

node.add_page:
 route_name: node.add_page
 title: 'Add content'
 appears_on:
 - system.admin_content

Again, we have the machine name (plugin ID) and the definition. I hope that route_name
and title are, by now, clear to you. A new thing here, though, is the appears_on key that
is used to indicate the routes (plural) on which this action link should show up. So, a key
feature is that one action link can exists on multiple pages.

Defining contextual links
Contextual links are a bit more complicated than the other types of links we've seen before,
but nothing is too challenging for us. So let's take a look at how we can add contextual links
to our salutation component so that users can override the message via a contextual link.

First, we will need to create the .links.contextual.yml file and define the link:

hello_world.override:
 title: 'Override'
 route_name: hello_world.greeting_form
 group: hello_world

Nothing too complicated here. Again, we have a title link and a route_name.
Additionally, we have a group key, which indicates the group name that this link will be a
part of. We will reference this later.

Menus and Menu Links

[133]

Next, we will need to alter our theme hook template file because the contextual links are
printed in a title_suffix variable that is available in all theme hooks and is used by
various modules to add miscellaneous data to templates. The Contextual module is one
such example. So, we will need to get that printed. This is what it will look like now:

<div {{ attributes }}>
 {{ title_prefix }}
 {{ salutation }}
 {% if target %}
 {{ target }}
 {% endif %}
 {{ title_suffix }}
</div>

You'll note that we included the title_prefix variable to keep things nice and consistent.
Usually, these will be empty, so no need to worry.

Finally, comes the more complex part--one that may even change in the future, but, for
now, this is how we have to proceed.

Our hello_world_salutation theme hook defines individual variables rather than a
render element. In such cases, inside a general preprocessor, the Contextual module looks at
the first defined variable to check whether there are any contextual links defined. In the case
of theme hooks, which use render elements, it checks that element instead.

This is what the contextual links definition looks like inside a render array and also what
we need to add for our use case:

 '#contextual_links' => [
 'hello_world' => [
 'route_parameters' => []
],
]

Here, we defined that the hello_world group of contextual links should be rendered here.
Also, we specified an array of route parameters, which, in our case, is empty. This is
because, typically, the contextual links are just that--contextual, meaning that they usually
work with an entity or something that has an ID, and its route requires a parameter. So,
here is where we can supply that because as we've seen, the *.links.contextual.yml
definition is static and generic.

Menus and Menu Links

[134]

The #contextual_links property is, in fact, a render element itself that
gets replaced with another render element
(contextual_links_placeholder). The latter outputs a simple text
placeholder in the HTML, which gets replaced with the right links via
JavaScript.

So, now that we know how to make use of the contextual links, let's alter our Hello World
salutation component to make use of this. This is what it looks like now:

 public function getSalutationComponent() {
 $render = [
 '#theme' => 'hello_world_salutation',
 '#salutation' => [
 '#contextual_links' => [
 'hello_world' => [
 'route_parameters' => []
],
]
]
];

 $config = $this->configFactory->get('hello_world.custom_salutation');
 $salutation = $config->get('salutation');

 if ($salutation != "") {
 $render['#salutation']['#markup'] = $salutation;
 $render['#overridden'] = TRUE;
 return $render;
 }

 $time = new \DateTime();
 $render['#target'] = $this->t('world');

 if ((int) $time->format('G') >= 06 && (int) $time->format('G') < 12) {
 $render['#salutation']['#markup'] = $this->t('Good morning');
 return $render;
 }

 if ((int) $time->format('G') >= 12 && (int) $time->format('G') < 18) {
 $render['#salutation']['#markup'] = $this->t('Good afternoon');
 return $render;
 }

Menus and Menu Links

[135]

 if ((int) $time->format('G') >= 18) {
 $render['#salutation']['#markup'] = $this->t('Good evening');
 return $render;
 }
 }

The main changes are as follows. First, we have already defined the #salutation variable
at the top and made it into a render array. As you remember, these are highly nestable. In
this render array, we added our #contextual_links render element. Second, every time
we will need to set the value for the salutation string below, we do so in a #markup element
this time, because, as we saw in the preceding chapter, we need a property that defines how
the render array gets rendered.

So now if you clear the cache and navigate to the /hello page, you should be able to hover
over the salutation and see the contextual links icon popup and contain our Override link.
You should land on the salutation configuration form when you click on the link and also
note a destination query parameter in the URL:

The destination query parameter is used by Drupal to return the user to
the page they previously were on after they submitted a form on that
page. This is a handy trick to keep in mind, as it is a very popular UX
technique.

Menus and Menu Links

[136]

Summary
In this chapter, we covered a lot of ground for working with menus and menu links. We
started by getting an overview of the architecture of the menu system in Drupal 8. I threw
many classes and hooks at you because I am a firm believer that the best way to learn is to
dig into the code.

We also saw what types of menu links there are in Drupal 8. We not only have regular links
that belong to actual menus but also all sorts of other utility link systems, such as local
tasks, local actions, and contextual links.

Then, we got our hands dirty and started with a practical example of how to load menu
links in a tree, manipulate them, and finally turn them into a render array. Right after that,
we looked at how we can define all these types of menu links Drupal 8 comes with and also
how to understand the individual menu links if you need to deal with them
programmatically.

In the next chapter, we will look at one of the most important aspects of any kind of content
management framework--the different types of data storage we can have in Drupal 8 and
how we can work with them.

6
Data Modeling and Storage

We have already gone through five chapters in this book, but we have yet to cover a topic
that has to do with one of the main purposes of a CMS--data storage. Okay, we hinted at it
in the preceding chapter and also saw an example of a configuration object in the second
one. However, we merely scratched the surface of what is possible. It's now time to go
ahead and dive into everything related to how you can store data in Drupal 8.

In this and the next chapter, we will talk about a lot of things related to storage and data
manipulation and take a look at a lot of examples in the process. The focus of this chapter
will, however, be more theoretical. There is a lot of ground to cover, as there are many APIs
and concepts that you will need to understand. However, we will still see plenty of code
examples to demonstrate in practice what we are talking about. In the next chapter, though,
to make up for it, we will almost entirely work with code and build a few functionalities.

More concretely, however, this chapter will be divided into three main logical parts (not
necessarily represented by headings).

First, we will talk about your options for data storage. We will talk about the State system
with its Key/Value store, tempstore, user data, configuration, and finally, entities--the big
one. We will leave the cache out of this, because it will be covered as a separate chapter. We
will see examples of all these options and go into the architectural details necessary to
understand how they work.

Second, we will dive deep into the Drupal 8 Entity API to understand the infrastructure
behind it--how data is stored, and more importantly, modeled (represented in the code
architecture). I am talking about the TypedData system here.

Data Modeling and Storage

[138]

Finally, we will look at how we can manipulate entities, in other words, how we can work
with them and extract data--basically, the day to day working with entities. One of the main
topics here will be, of course, querying and loading entities. Moreover, here, we will also
cover the validation aspect of working with entities.

By the end of this chapter, you should be able to understand a great deal about storage in
Drupal 8 and make decisions on which options to choose for your requirements. You'll
know the differences and the reasons for using one over another. Moreover, you'll get a
good understanding of the Entity API, which, in turn will allow you to more easily navigate
through Drupal core code and integrate with the entity system. Lastly, and probably, the
most common thing Drupal developers do, you'll be able to work with entities: perform
CRUD operations, read and write field values, and more of this good stuff.

So, let's begin.

Different types of data storage
Storing and using data are a critical part of any (web) application. Without somehow
persisting data, we wouldn't be able to build much of anything. However, different uses of
data warrant different systems for storing and manipulating it. For the purposes of this
chapter, I will use the word data to mean almost anything that has to be persisted
somewhere, for any given period of time.

If you've done development in Drupal 7, you already know a few ways of storing data--we
had entities (primarily, the Node entity type, but others could be defined as well); the
variables table, which was a relatively simple Key/Value store; and an API to interact
with the database and do whatever we fancied. This caused many problems, such as a lack
of consistency between APIs and much too heavy reliance on the database for configuration
storage.

In Drupal 8, various layered APIs have been introduced to tackle common use cases for
data storage. The strength of these new systems is mirrored in the fact that we rarely, if
ever, need to even use the mother of all storage APIs, the database API. This is because
everything has been abstracted into different layers that help us handle most of what we
need. So, creating a custom table is most likely not something you should be doing for
storing your data anymore, although it definitely was a common practice in Drupal 7.

Data Modeling and Storage

[139]

State API
The State API is a Key/Value database storage and the simplest way you can store some
data in Drupal 8. One of its main purposes is to allow developers to store information that
relates to the state of the system (hence the name). Also, because the state of the system can
be interpreted in various ways, think of this as simple information related to the current
environment (Drupal installation) that is not editorial (content), for example, a timestamp of
the last time they ran or any flags or markers the system sets to keep track of its tasks. It is
different from caching in that it is not meant to be cleared as often and only the code that set
it is responsible for updating it.

One of the main characteristics of this system is the fact that it is not for human interaction. I
mean this in the sense that it is the application itself that needs to make use of it. The option
for humans is the configuration system that we will talk about in detail in a later section.
However, in quite a few cases, the latter falls short, and we need to (and it's perfectly
acceptable) use the State system in order to store certain values input by an administrator or
content editor through a form in the UI. That is because these values are of the same nature
as those for which the State API is designed: they relate to only this environment, don't
belong in code, and work together with the system to perform certain tasks, for example, an
API key for an external service or a toggle value to enable/disable a subsystem. So, for this
reason, the State API is great. There is, however, active work going on around the
configuration API that would allow an easy separation between what is exportable to code
and what is not. However, until then, the State API gets us covered.

So now that we know about the State API, let's jump into the technicalities and see what it's
made of and how we can use it.

The State system revolves around the StateInterface, which provides all the methods
you need to interact with it. This interface is implemented by the State service, which we
can inject into your classes or use statically via the \Drupal::state() shorthand. Once we
have that, things could not be any easier, as the interface tells you exactly what we can do.

We can set a value, as follows:

\Drupal::state()->set('my_unique_key_name', 'value');

Alternatively, we can get a value:

$value = \Drupal::state()->get('my_unique_key_name');

Data Modeling and Storage

[140]

We can also set/get multiple values at once (how convenient!):

\Drupal::state()->setMultiple(['my_unique_key_one' => 'value',
'my_unique_key_two' => 'value']);
$values = \Drupal::state()->getMultiple(['my_unique_key_one',
'my_unique_key_two']);

Isn't that easy? You can also, of course, get rid of them:

\Drupal::state()->delete('my_unique_key_name');
\Drupal::state()->deleteMultiple(['my_unique_key_one',
'my_unique_key_two']);

There are a couple of things to note here. First, the key names you choose live in a single
namespace, so it's recommended that you prefix them with your module name--
my_module.my_key. That way, you avoid collision. Second, the values you store can also
be more complex than simple strings. You can store any scalar value, but also objects, as
they get serialized and deserialized automatically. Be careful, though, about which objects
you plan on storing. Never ever store objects that have container dependencies and do
make sure that any classed objects you dump in there serialize and deserialize properly.

By now, you are probably wondering where these values end up. They go into the
key_value table, namespaced under the state collection. Also, the latter is a nice segue
into a talk about the underlying system that powers the State API--the Key/Value store.

Note that the State system is only one implementation of an underlying framework of
Key/Value stores. If you look at the State service, you will note that it uses the
KeyValueFactoryInterface (which by default is implemented by the
KeyValueDatabaseFactory). This, in turn, creates a Key/Value storage instance (by
default, the DatabaseStorage), which provides the public API to interact with the store. If
you take a look at the key_value table in the database, you'll note other collections besides
state. Those are other implementations specific to various subsystems, such as the Entity
API and System schema. Guess what, you can easily write your own and customize it to
your needs. However, the reason why the State API was created was so that module
developers can use it. Also, valid uses of it cover much of the need for something such as a
Key/Value store. So, odds are that you won't have to implement your own.

Data Modeling and Storage

[141]

Tempstore
The next system we will look at is the tempstore (temporary store).

The tempstore is a Key/Value, session-like storage system for keeping temporary data
across multiple requests. Think of a multistep form or a wizard with multiple pages which
are great examples of tempstore use cases. You can even consider "work in progress", that
is, not yet permanently saved somewhere but kept in the tempstore so that a certain user
can keep working on it until it's finished. Another key feature of the tempstore is that
entries can have an expiration date at which point they get automatically cleared so that the
user rushes the work.

There are two kinds of tempstore APIs--a private and shared one. The difference between
the two is that with the first one, entries strictly belong to a single user, whereas with the
second one, they can be shared between users. For example, the process of filling in a
multistep form is the domain of a single user, so the data related to that must be private to
them. However, that form can also be open to multiple users, in which case the data can
either be shared between the users (quite uncommon) or used to trigger a locking
mechanism that blocks user B from making changes while user A is editing (much more
common). So, there are many options, but we will see some examples soon.

First, though, let's look at some of the key players.

We will start with the PrivateTempStore class, which provides the API for dealing with
the private tempstore. It is not a service, because in order to use it, we must instantiate it via
the PrivateTempStoreFactory. So, that is what we now have to inject into our classes.
The latter has a get($collection) method, which takes a collection name that we decide
upon and creates a new PrivateTempStore object for it. If you look closely, the storage it
uses is based on the KeyValueStoreExpirableInterface, which is very similar to the
KeyValueStoreInterface used by the State API. The only difference is that the former
has an expiration date, which allows the automatic removal of old entries, and, by default,
the storage used in Drupal 8 is the DatabaseStorageExpirable, which uses the
key_value_expire table to store the entries.

Up to this point, the SharedTempStore is strikingly similar to the private one. It is
instantiated using the SharedTempStoreFactory service and uses the same underlying
database storage by default. The main difference is the namespace occupied in the
key_value_expire table, which is composed by
user.shared_tempstore.collection_name as opposed to
user.private_tempstore.collection_name.

Data Modeling and Storage

[142]

Additionally, when asking the factory for the SharedTempStore, we have the option of
passing an owner to retrieve it for. Otherwise, it defaults to the current user (the logged-in
user ID or anonymous session ID). Also, of course, the way we interact with it and its
purpose more than anything, differ slightly.

So, let's take a look at how we can work with the private and the shared tempstores.

PrivateTempStore
The following is a simple example of what we talked about in the preceding section:

/** @var PrivateTempStoreFactory $factory */
$factory = \Drupal::service('user.private_tempstore');
$store = $factory->get('my_module.my_collection');
$store->set('my_key', 'my_value');
$value = $store->get('my_key');

First, we get the PrivateTempStoreFactory service and ask it for the store identified by a
collection name we choose. It's always a good idea to prefix it with your module name to
avoid collisions. If another module names their own collection my_collection, it's not
going to be pretty (even if the store is private).

Next, we use very simple setters and getters to set values similar to how we did with the
State API.

If you run this code as user 1 (the main admin user), you'll note a new entry in the
key_value_expire database table. The collection will be, as expected, that is,
user.private_tempstore.my_module.my_collection, while the name will be
1:my_key. This is the core principle of the private tempstore--each entry name is prefixed
with the ID of the user who is logged in when the entry was created. Had you been an
anonymous user, it would have been something like this-
-4W2kLm0ovYlBneHMKPBUPdEM8GEpjQcU3_-B3X6nLh0:my_key, where that long string is
the session ID of the user. The entry value will be a bit more complex than with the State
API in that this time it's always a serialized stdClass object, which contains the actual
value we set (which itself can be any scalar value or object that can be properly serialized),
the owner (the user or session ID), and the last updated timestamp. Lastly, we have the
expire column, which, by default, will be one week from the moment the entry was
created. This is a "global" timeframe set as a parameter in the user.services.yml
definition file and can be altered in your own services definition file if you want. However,
it is still global.

Data Modeling and Storage

[143]

We can also delete entries:

$store->delete('my_key');

We can also read the information I mentioned before about the entry (the last update,
owner):

$metadata = $store->getMetadata('my_key');

This returns the stdClass object that wraps the entry value, but without the actual value.

A note about anonymous users
If you run that chunk of code from the preceding section as an anonymous user, you'll note
that the entry gets created in the database with a session ID, as expected. However, upon
the next request, if you try to retrieve the value by key, you won't find it. That is because
anonymous users do not necessarily have a session started. This means a new session ID is
created for each request. So, how can we solve this?

The first time you start the process or flow in which you need to interact with the private
tempstore, check yourself whether the current user is anonymous. If they are, dump a
variable into the $_SESSION super global in order to keep the session. Otherwise, it gets
erased because there is no data. So, do something like this:

if (\Drupal::currentUser()->isAnonymous()) {
 $_SESSION['hold_session'] = true;
}

If you do this, the session gets preserved, and with the next request, the same user will have
the same session ID and will be able to access the entries that belong to them. Of course, if
you can, inject the current_user service instead of calling it by the static shorthand.

SharedTempStore
Now that we've seen how the private tempstore works, let's look at the shared store. The
first thing we need to do in order to interact with it is, as with the private one, use the
factory to create a new shared store:

/** @var SharedTempStoreFactory $factory */
$factory = \Drupal::service('user.shared_tempstore');
$store = $factory->get('my_module.my_collection');

Data Modeling and Storage

[144]

However, unlike the private tempstore, we can pass a user identifier (ID or session ID) as a
second parameter to the get() method to retrieve the shared store of a particular owner. If
we don't, it defaults to the current user (logged in or anonymous).

Then, the simplest way we can store/read an entry is like before:

$store->set('my_key', 'my_value');
$value = $store->get('my_key');

Now, if we quickly jump to the database, we can see that the value column is the same as
before, but the collection reflects that this is the shared store and the key is no longer
prefixed by the owner. This is because another user should be able to retrieve the entry if
they like. The original owner can still be determined by checking the metadata of the entry:

$metadata = $store->getMetadata('my_key');

Also, we can delete it exactly as with the private store:

$store->delete('my_key');

Okay. However, what else can we do with the shared store that we cannot do with the other
one?

First, we have two extra ways we can set an entry. We can set it if it doesn't already exist:

$store->setIfNotExists('my_key', 'my_value');

Alternatively, we can set it if it doesn't exist or it belongs to the current user (that is, the user
owns it):

$store->setIfOwner('my_key', 'my_value');

Both these methods will return a Boolean indicating whether the operation was successful
or not; essentially, these are handy to check for collisions. For example, if you have like a
big piece of configuration that multiple users can edit, you can create the entry which stores
the work in progress only if it doesn't exist, or if it exists and the current user owns it
(virtually overwriting their own previous work, which may be okay).

Then, you also have the getIfOwner() and deleteIfOwner() methods that you can use
to ensure that you only use or delete the entry if it belongs to the current user.

Data Modeling and Storage

[145]

All this fuss and for what? Why not just use the private store? This is because, in many
cases, a flow can only be worked on once at the time. So, if somebody started working on it,
you will need to know in order to prevent others from working on it, but even more than
that, you can allow certain users to "kick out" the previous user from the flow if they "went
home without finishing it". They can then continue or clear out all the changes. It all
depends on your use case.

Also, as a last point, the shared tempstore also works with the same expiration system as
the private one.

Tempstore conclusion
So, there we have two different, albeit similar, tempstores that you can use for various
cases. If you need to store session-like data available to the user across multiple requests but
which is private to them, you can use the PrivateTempStore. Alternatively, if this data
needs to be used by either multiple users at once or the opposite, preventing multiple users
from working on something at the same time, you can use the SharedTempStore.

Both of them have an easy-to-understand API with simple methods and you can be flexible
in terms of creating your own collections for whichever use case you need.

UserData
Now, I want to briefly talk about another user-specific storage option, also provided by the
User module, called UserData.

The purpose of the UserData API is to allow the storage of certain pieces of information
related to a particular user. Its concept is similar to the State API in that the type of
information stored is not configuration that should be exported. In other words, it is specific
to the current environment (but belonging to a given user rather than a system or
subsystem).

Users are content entities, who can have fields of various data types. These fields are
typically used for structured information pertaining to the user, for example, a first and a
last name. However, if you need to store something more irregular, such as user preferences
or flag that a given user has done something, the UserData is a good place to do that. This is
because the information is either not something structured or is not meant for the users
themselves to manage. So, let's see how this works.

Data Modeling and Storage

[146]

The UserData API is made up of two things--the UserDataInterface, which contains the
methods we can use to interact with it (plus developer documentation), and the UserData
service, which implements it and can be used by the client code (us):

/** @var UserDataInterface $userData */
$userData = \Drupal::service('user.data');

We are now ready to use the three methods on the interface--get(), set(), and delete().

The first three arguments of all these methods are the same:

$module: To store data in a namespace specific to our module name, thereby
preventing collisions
$uid: To tie data to a given user--it doesn't have to be the current user
$name: The name of the entry being stored

Naturally, the set() method also has the $value argument, which is the data being stored,
and this can be any scalar value or serializable object.

Together, all these arguments make for a very flexible storage system, a much improved
one compared to the Drupal 7 option. We can essentially, for one module, store multiple
entries for a given user and it doesn't stop there. Since that is possible, many of these
parameters are optional. For example, we can get all the entries for a given module at once
or all the entries for a given module and user combination at once. The same goes for
deleting them. But where does all this data go?

The user module defines the users_data database table whose columns pretty much map
to the arguments of these methods. The extra serialized column is there to indicate
whether the stored data is serialized. Also, in this table, multiple records for a given user
can coexist.

That is all there is to say about the UserData API. Use it wisely. Now it's time to turn to the
configuration API, one of the biggest subsystems in Drupal 8.

Configuration
The configuration API is one of the most important topics a Drupal 8 developer needs to
understand. There are many aspects to it that tie it into other subsystems, so it is critical to
be able to both use and understand it properly.

Data Modeling and Storage

[147]

In this subchapter, we will cover a lot about the configuration system. We start by
understanding what configuration is and what it is typically used for. Then, we will go
through the different options we have for managing configuration in Drupal 8, both as a
site builder and a developer using the Drush commands. Next, we will talk about how
configuration is stored, where it belongs, and how it is defined in the system. We will also
cover a few ways that configuration can be overridden at different levels. Finally, we look at
how we can interact with a simple configuration programmatically. So, let's begin with an
introduction.

Introduction
Configuration is the data that the proper functioning of an application relies upon. It is
those bits of information that describe how things need to behave and helps control what
code does. In other words, it configures the system to behave in a certain way with the
expectation that it could also configure it to behave in a different way. To this end,
configuration can be as simple as a toggle (turning something on or off) or as complicated
as containing hundreds of parameters that describe an entire process.

The Drupal 8 configuration system is nothing short of a revolution in the Drupal world. It is
not an improvement--it is a brand new way of thinking about managing configuration.
Previously, there was no configuration management to speak of. Everything was stored in
the database in a way that made it impossible to properly and consistently deploy the many
configuration options that Drupal is known for. Yes, there was the Features module and the
Ctools exportable, but their very existence highlighted that lack of consistency and this
meant many a headache for lots of Drupal developers.

In Drupal 8, the entire thing has been revamped into a well-defined and consistent
subsystem, upon which any little thing that needs to be configured can depend. Far be it for
me to call it perfect, it still has its shortcomings and there is work in progress on making it
better and creating tools for dealing with specific configuration flows. However, it has
made managing and deploying configuration so much easier, as we will see in this
subchapter.

What is configuration used for?
Configuration is used in Drupal 8 for storing everything that has to be synchronized
between the different environments (for example, moving from development to
production). As such, it differs from the other types of data storage we saw so far in that
they were specific to one environment.

Data Modeling and Storage

[148]

Another way of looking at configuration is by examining the role of a traditional site
builder. They typically navigate the UI and configure the site to behave in a certain way--
show this title on the home page, use this logo, show this type of content on the home page,
and so on. As we mentioned, the result of their interactions materializes into configuration
that the site builder expects would travel easily to the acceptance environment where it
could be reviewed, and finally to production.

Some configuration can be actually critical to the proper functioning of the application.
Certain code might break without a parameter having a value it can use. For example, if
there is no site-wide email address set, what email will the system use to send its automated
mails to the user? For this reason, many of these configuration parameters come with sane
defaults (upon installation). However, this also shows that configuration is a part of the
application and just as important as the actual code is.

Managing configuration
As we will see in a bit, Drupal stores configuration data in the database (for performance
reasons), but it makes it all exportable to YAML files. So, a typical flow for managing it will
have you perform changes in the UI, export the configuration, add it into Git, and deploy
the code upstream to the next environment. There, it's just a matter of importing what is in
code.

The import, export, and synchronization can be done both via Drush and through the UI at
admin/config/development/configuration.

Data Modeling and Storage

[149]

The typical flow is for the active site configuration to be synchronized with the one in the
YAML files. This means importing into the database all the configurations that are different
in the YAML files from those in the database. These YAML files are inside the configuration
sync folder, which should be committed to Git (you can configure in the settings.php
file which directory should be the sync folder) and the opposite is to export the active
configuration to the YAML files in order to commit them into code.

The UI allows only the first option (sync what's in the YAML files with the database) but it
provides you with a nice Diff interface to see what is different in YAML, as opposed to in
the database:

In the preceding screenshot, we can see that the YAML files contain a small change in the
site name configuration. Clicking on Import all will bring the database in line with the
YAML files.

The first time you install a Drupal 8 site, the configuration sync folder will be empty. It is
up to you to do a manual export of all the active configuration and put it there. You can do
so via the UI manual export or through Drush:

drush config-export

You would do this step every time you make configuration changes through the UI that you
want exported into YAML files.

Data Modeling and Storage

[150]

Then, you can synchronize either in the UI as we've seen or through Drush:

drush config-import

As a Drupal developer, you will be mostly using these two Drush commands.

In addition to the entire set of configuration items, you can also import/export individual
ones by copying and pasting. Be careful though, as some dependencies might not allow you
to do so. However, this is useful if you want to quickly see something working in another
environment, but the approach does not lend itself to a nice version-control-based flow if
you abuse it.

Different types of configuration
Drupal 8 comes with two distinct types of configuration--simple and configuration entities.
Let's see what the difference is.

Simple configuration is the type which stores basic data, typically represented by scalar
values such as integers or strings. On the other hand, configuration entities are more
complex and use the same CRUD API as the content entities.

Typically, simple configuration items are one of a kind. A module, for instance, may create
and manage a configuration item that enables or disables one of its features. Most likely,
this module needs this configuration to know what it should do about that feature.
However, even if it doesn't, it is still a singular item that relates to that piece of
functionality.

Configuration entities, on the other hand, are multiple instances of the same configuration
type. For example, a view is a configuration entity and a given site can have an unlimited
amount of views. It can even have none. We will talk more about configuration entities
when we cover entities in general.

Configuration storage
Configuration is essentially stored in two places--the database (by default, the active
configuration storage, and YAML files (the true source of the configuration).

Here is an example of a simple configuration YAML file:

my_string: 'Hello!'
my_int: 10
my_boolean: true

Data Modeling and Storage

[151]

my_array:
 my_deep_string: 'Yes, hello!'

The name of this file is given by the ID you need to use with the configuration API to read
this data.

In addition to the actual data, you can have a dependencies key under which you can list
what this configuration item depends on:

dependencies:
 module:
 - views
 theme:
 - bootstrap
 config:
 - system.site

There are three types of dependencies--modules, themes, and other configuration items.

If you remember in Chapter 2, Creating Your First Module, we created a configuration object
with the hello_world.custom_salutation ID in which we stored a simple value:

salutation: 'Whatever the user set in the form'

We did so programmatically through our form. This indicated that our code for displaying
the salutation did not depend on this configuration item existing or having a value of some
kind. Had it been mandatory for our code to work, we could have created it upon module
installation. There are two ways this can be done.

The most common way is statically. Inside the config/install folder of a module, we can
have YAML configuration files that get imported when the module is installed. However, if
the values we need to set in this configuration are unknown (they need to be retrieved
dynamically), we can do so in a hook_install() implementation (remember those from
Chapter 3, Logging and Mailing?). There, we can try to get our value and create the
configuration object containing it. Keep in mind that when it comes to installing modules,
they will not be installed if they have configuration items in their config/install folder,
which define some unmet dependencies.

As a bonus, you may also be able to provide configuration files with your module that
should only be imported if certain dependencies are met. Otherwise, they would not be
imported and the module would be installed and work just fine--in other words, optional
configuration. These go inside the config/optional folder of the module and typically
have some dependencies described in them.

Data Modeling and Storage

[152]

Schema
In order for various systems to be able to properly interact with the configuration items, the
configuration schema has been introduced. This is basically a way to define the actual
configuration items, notated in the YAML format, and resides inside the config/schema
folder of a module.

There are three main reasons why configuration needs schema definitions:

Multilingual support: As we will see later, configuration is translatable in1.
Drupal 8. However, in order to know which parts of the configuration are needed
to be, or can be, translated, the schema system has been brought in to provide this
additional layer. This way, configuration items that ship with contributed
modules can get their own translations on the localize.drupal.org website.
Moreover, the schema identifies which configuration bits can be translated, and
this allows users to provide translations for those in the UI.
Configuration entities: Configuration entities require schema definitions in order2.
for the proper identification in the persistence layer of the data types that need to
be exported with them.
Typecasting: Configuration schema ensures that the configuration API is able to3.
always typecast properly the values to their right data types.

Let's look at a configuration example provided by Drupal core to take a look at how the
schema works, namely the system.mail configuration provided by the System module.
Remember in Chapter 3, Logging and Mailing, we talked about how this configuration item
controls the mail plugin used for sending out emails? Well, by default, this is what it looks
like:

interface:
 default: 'php_mail'

It's very simple; it contains only an "array" keyed by interface and has one item,
php_mail (keyed by default). So, if we now look in the system.schema.yml file for the
schema definition, we will find the definitions for all the configuration items that come with
the System module. The top level line represents the name of the configuration item, so if
we scroll down, we will find system.mail:

system.mail:
 type: config_object
 label: 'Mail system'
 mapping:
 interface:
 type: sequence

https://localize.drupal.org/

Data Modeling and Storage

[153]

 label: 'Interfaces'
 sequence:
 type: string
 label: 'Interface'

If we look past the irony of the schema being five times bigger than the actual configuration,
we can get a pretty good understanding of what this configuration item is all about and,
more importantly, Drupal itself can too.

We can see that the system.mail configuration is of the config_object type. This is one
of the two main types of configurations, the other being config_entity. The label key is
used to indicate the human-readable name of this item, whereas the mapping key contains
the definition of its individual elements. We can see the interface having the label
"Interfaces" and the type sequence. The latter is a specific type that denotes an array in
which the keys are not important. Whenever we want the keys to be taken into account, we
will use mapping (as it's done at the top level of this schema definition) and, since we are
looking at a sequence type, the individual items inside it are also defined as a string type
with their own label.

Let's now write our own schema definition for the example configuration file we saw
before:

my_string: 'Hello!'
my_int: 10
my_boolean: true
my_array:
 my_deep_text: 'Yes, hello, is anybody there?!'

If the preceding definition belonged inside a file called my_module.settings.yml, this
would be the corresponding schema definition:

my_module.settings:
 type: config_object
 label: 'Module settings'
 mapping:
 my_string:
 type: string
 label: 'My string that can also be of type text if it was longer'
 my_boolean:
 type: boolean
 label: 'My boolean'
 my_array:
 type: mapping
 label: 'My array in which the keys are also important, hence not a
sequence'
 mapping:

Data Modeling and Storage

[154]

 my_deep_string:
 type: text
 label: 'My hello string'

As a bonus piece of information, any config_object typed configuration inherits the
following property:

langcode:
 type: string
 label: 'Language code'

This helps with the multilingual system and invites us to add a langcode property to each
configuration item.

Most of the properties we've seen so far have been type, label, mapping, and sequence.
There are two more that you should be aware of:

translatable : Very important as this indicates whether a type can be
translated. By default text and label types are already set to translatable, so
you don't need to do so yourself.
nullable : Whether the value can be left empty. If missing, it's considered
required.

Here are some types you can use to define configuration:

Scalar types: string, integer, boolean, email, float, uri, path
Lists: mapping, sequence
Complex (extending scalar types): label, path, text, date_format and more.

Make sure you check out the core.data_types.schema.yml file where all these are
defined.

Before we move on, let's make sure we create the configuration schema for our
configuration item we created programmatically in Chapter 2, Creating Your First Module,
namely the one storing the overridden salutation message. So, inside the /config/schema
folder of the Hello World module, we can have the
hello_world.custom_salutation.yml file with the following:

hello_world.custom_salutation:
 type: config_object
 label: 'Salutation settings'
 mapping:
 salutation:
 type: string

Data Modeling and Storage

[155]

 label: 'The salutation message'

That takes care of some technical debt we introduced back when we didn't know about
configuration schemas.

Overrides
We saw that configuration exists in the database but actually belongs in neatly-organized
and well-described YAML files. In order for the configuration from the YAML files to be
used, they need to be imported--either via synchronization or upon module installation for
those provided by modules. So, this means that the database still holds the active
configuration.

To make things more dynamic, the configuration API also provides an override system by
which we can, at various levels, override on the fly the active configuration. In Drupal 7,
that was done via the global $conf variable, but that was also a way to unfortunately leak
the overrides into the actual configuration pool. This is no longer the case in Drupal 8 and
we also have three different layers at which we can override configuration.

The configuration API then takes into account these overrides in a way that prevents
leaking them by accident into the active configuration. We will see examples when we talk
about how to interact with the configuration API in general.

Global overrides
In Drupal 8, we still have the global override possibility via a global variable, this time
called $config. This variable is available in the settings.php file for site-wide overrides,
but you can also use it inside your module (if you really have to!) in order to override a
specific piece of configuration:

global $config;
$config['system.maintenance']['message'] = 'Our own message for the site
maintenance mode';

In this example we changed, on the fly, the message used for the site maintenance mode.
Why one would want to do that is beside the point, but you may have some other
configuration which would benefit from being overridable like this. In any case, you notice
the array notation we use. The first key is the name of the configuration item (of the file
minus the .yml extension) and then we have the key of the individual element in the
configuration file. If this were to be nested, we'd be traversing further down.

Data Modeling and Storage

[156]

Module overrides
Although you can simply use the global $config array, that is not really the place where
modules should be tinkering. First of all, because it's a global variable and it's never a good
idea to change global variables, it should be mostly left to the settings.php. Second of all,
because there is no way of controlling priority if multiple places try to change it in the same
way. Instead, we have the module override system that we can use.

Via the module overrides, we can create a service with the config.factory.override tag
(remember what tagged services are?) and in this service handle our overrides. Let's use
this system to override the maintenance mode message. Inside our Hello World module, we
can have the following service class:

namespace Drupal\hello_world;

use Drupal\Core\Cache\CacheableMetadata;
use Drupal\Core\Config\ConfigFactoryOverrideInterface;
use Drupal\Core\Config\StorageInterface;

/**
 * Overrides configuration for the Hello World module.
 */
class HelloWorldConfigOverrides implements ConfigFactoryOverrideInterface {

 /**
 * {@inheritdoc}
 */
 public function loadOverrides($names) {
 $overrides = [];
 if (in_array('system.maintenance', $names)) {
 $overrides['system.maintenance'] = ['message' => 'Our own message for
the site maintenance mode.'];
 }

 return $overrides;
 }

 /**
 * {@inheritdoc}
 */
 public function getCacheSuffix() {
 return 'HelloWorldConfigOverrider';
 }

 /**
 * {@inheritdoc}
 */

Data Modeling and Storage

[157]

 public function createConfigObject($name, $collection =
StorageInterface::DEFAULT_COLLECTION) {
 return NULL;
 }

 /**
 * {@inheritdoc}
 */
 public function getCacheableMetadata($name) {
 return new CacheableMetadata();
 }
}

Here, we have to implement the ConfigFactoryOverrideInterface interface which
comes with four methods:

In loadOverrides() we provide our overridden configuration values.
In getCacheSuffix() we return a simple string to be used in the static cache
identifier of our overrides.
In createConfigObject() we don't actually do anything but we could create a
configuration API object that would be used during installation or
synchronization.
In getCacheableMetadata() we return any cache metadata related to our
override. We don't have any so we return an empty object.

Since this is a service, we can inject dependencies and make use of them if we want to
calculate the overrides. Depending on this calculation, it can become important to set some
proper cache metadata as well, but we will cover caching in another chapter.

Next, we register this as a tagged service:

 hello_world.config_overrider:
 class: \Drupal\hello_world\HelloWorldConfigOverrides
 tags:
 - {name: config.factory.override, priority: 5}

We set the priority to 5 and, with this, we can control the order in which modules get their
chance at overriding configuration. The higher priority will take precedence over the lower
one.

Data Modeling and Storage

[158]

And that's it. Clearing the cache will register this service and alter our configuration. If you
now put the site in maintenance mode, you will notice that the message is the one we set
here. However, if you go to the maintenance mode administration page at
admin/config/development/maintenance you will still see the original message. This is
so that administrators do not by accident save the override value into the configuration
storage.

Language overrides
Although we will talk some more about the multilingual features of Drupal 8, let's briefly
note the possibility of the language overrides.

If we enable configuration translation and add some more languages to our site, we can
translate configuration items which are translatable (as described by their schema). In doing
so, we are overriding the default configuration for a particular language, an override that
gets stored in the configuration storage and can be exported to YAML files. So, this is an
exportable type of override.

We can make use of this override programmatically, even if we are not in a specific
language context. This is what the code would look like assuming we have an override in
French for our maintenance mode message and we want to use that:

$language_manager = \Drupal::service('language_manager');
$language = $language_manager->getLanguage('fr');
$original_language = $language_manager->getConfigOverrideLanguage();
$language_manager->setConfigOverrideLanguage($language);
$config = \Drupal::config('system.maintenance');
$message = $config->get('message');
$language_manager->setConfigOverrideLanguage($original_language);

First, we load the language manager service and get the Language object for our language.
Then, we keep track of the original configuration override language from the language
manager but also set the French language as the one to be used going forward. Finally, we
load the system.maintenance configuration object and read its message in French before
setting back the original language on the language manager. This is a quick way to illustrate
an approach by which we can temporarily switch language contexts for configuration
overrides.

Data Modeling and Storage

[159]

Priority
We have three layers for configuration overrides--global, modules, and languages. This is
actually also the order of the actual priority they have. Global overrides take precedence
over everything while module overrides take precedence over language ones. This is why,
if we have overridden the system.maintenance configuration in the module, we can not
use the language override in our code. So, keep this in mind.

Interacting with simple configuration
Now that we have talked about what the Drupal 8 configuration API is, what is it used for,
how is it managed and stored, and what are some of the options for overriding it, it's time
to talk about the API itself and how we can interact with it. In this section, we will focus
only on the simple configuration as we will talk more about configuration entities when we
cover all entities.

In Chapter 2, Creating Your First Module, we already became somewhat exposed to the
configuration API in our SalutationConfigurationForm where we stored and read a
simple configuration value. Now it's time to go a bit deeper to understand the API and look
at some more examples of how we can use it.

The class that represents simple configuration is Drupal\Core\Config and it wraps
around the data found in one individual configuration item. Moreover, it does all the
necessaries for interacting with the underlying storage system in order to persist the
configuration (by default into the database). In addition, it handles the overrides we talked
about earlier automatically.

An important subclass of Config that we work with a lot is ImmutableConfig. Its purpose
is to prevent changes being made to the configuration object, and as such, it is for read-only
purposes.

The way we get to use instances of these classes is through the ConfigFactory service
which has two handy methods for getting a configuration object:

/** @var ConfigFactoryInterface $factory */
$factory = \Drupal::service('config.factory');
$read_only_config = $factory->get('hello_world.custom_salutation');
$read_and_write_config =
$factory->getEditable('hello_world.custom_salutation');

Data Modeling and Storage

[160]

The get() method returns an ImmutableConfig object which is read-only while the
getEditable() method returns a Config object which can be used also for changing the
configuration values. The way we do this is via the set() and save() methods:

$read_and_write_config->set('salutation', 'Another salutation');
$read_and_write_config->save();

Very simple. We also have the setData() method which allows us to change the entire
data of the configuration item at once. As a parameter, it expects an associative array of
values.

TIP: If you cannot inject the ConfigFactory but have to rely on the static
call, the Drupal class has a shortcut for loading config objects directly--
$config = \Drupal::config('system.maintenance');. The
config() method takes the name of the configuration as a parameter and
returns an ImmutableConfig object.

To read the data, we have a number of options. We can read one element from the config:

$value = $read_and_write_config->get('salutation');

This is what you would typically do. You can also get a single element even if it is nested:

$config = $factory->get('system.site');
$value = $config->get('page.403');

This will return the value set for the 403 page in the system.site configuration. We can
also get all the values by simply not passing any parameters to the get() method which
would return an associative array.

If you remember our discussion about the configuration overrides, by default, the get()
method will return the values as they had been overridden through the module or globally
(or as a language if the language manager has a different language set for configuration).
However, if we want, we can also retrieve the original value:

$config = $factory->get('system.maintenance');
$value = $config->getOriginal('message', FALSE);

The second parameter of getOriginal() is whether to apply overrides and by default it is
TRUE, but this way, we get the configuration value that is set in the active storage.

Finally, we can also clear configuration values or the entire objects themselves. For example,
consider the following code:

$config->clear('message')->save();

Data Modeling and Storage

[161]

It will remove the message key from the configuration object and save it without that
value. Alternatively, we can also remove the entire thing:

$config->delete();

That is pretty much it. The power of this API also stems from its simplicity.

Entities
We have finally reached the point where we talk about the most complex, robust, and
powerful system for modeling data and content in Drupal 8--the Entity API.

Entities have been around since Drupal 7, which shipped with a few types such as node,
taxonomy terms, users, comments, files, and so on. However, Drupal core only provided a
basic API for defining entities and loading them consistently. The Entity API contributed
module bridged a large gap and provided a lot of functionality to make entities much more
powerful. In Drupal 8, however, these principles (and more) are found in core as part of a
robust data modeling system.

The Entity API integrates seamlessly with the multilingual system to bring fully translatable
content and configuration entities. This means that most data you store can be translated
easily into multiple languages. In Drupal 7, this was always a herculean task that involved
over 10 contributed modules to achieve something not nearly as powerful as we have now.

Because there is so much to cover about entities, in this section we will start with just a
general overview of the entity system. But not to worry, in the next section, and all the way
to the end of this chapter, we will break it down and talk about all the important aspects.

Content versus configuration entity types
Let us start by establishing some basic terminology in order to prevent confusion down the
line:

Entities are instances of a given entity type. Thus, we can have one or more
entities of a certain type, the latter being like a blueprint for the individual
entities.
Entity types can be of two kinds--content and configuration.

Data Modeling and Storage

[162]

We talked a little bit about configuration entities in the previous section. There, we saw they
are multiple instances of a certain type of configuration, as opposed to simple configuration,
which is only one set of configuration values. Essentially, configuration entities are
exportable sets of configuration values that inherit much of the same handling API as
content entities.

Some examples of configuration entity types:

View: A set of configuration values that make up a view
ImageStyle: Defines how an image needs to be manipulated in that given style
Role: Defines a role that can be given to a user

Content entities, on the other hand, are not exportable and are the most important way we
can model and persist data in Drupal 8. These can be used for content and all sorts of other
structured data used in your business logic that needs to be persisted but not deployed to
the next environment.

Some examples of content entity types:

Comment
User
Taxonomy Term

Apart from the exportability aspect, the main difference between the content and
configuration entities is the type of fields they use. The latter uses simpler fields, the
amalgamation of which gets stored as one entity "record" in the database (and exported to
YAML), while the content entity fields are complex and structured both in code modeling
and in the persistence layer (the database).

Moreover, configuration entities also lack bundles. Bundles are yet another categorization
of entities that sits below the content entity type. That means that each content entity type
can have (but they does not have to have) one or more bundles, onto which configurable
fields can be attached. And not to throw more confusion at you but bundles are actually
configuration entities themselves as they need to be exported and can be multiple of them.

The Entity API is very flexible in terms of the types of data that you can store. Content
entity types come with a number of different field types for various forms of data, from
primitive values to more complex ones such as date or entity reference. We will see some
examples later on.

Data Modeling and Storage

[163]

Content entities can also be made revisionable. This means content entity types can be
configured to keep in store older versions of the same entity with some extra metadata
related to the change process.

In this section and going forward, I will illustrate the most common features of entities by
way of exemplifying two entity types:

Node: The most prolific content entity type that comes with Drupal core and that
is typically used as the main content modeling entity type
NodeType: The configuration entity type that defines Node bundles

In the next chapter, we will learn how to create our own. But after everything we will learn
here, it will be a breeze.

Entity type plugins
Entity types are registered with Drupal as plugins. Yes, again. The
Drupal\Core\Entity\Annotation\EntityType class is the base annotation class for
these plugins and you will mainly see two subclasses (annotations)--ContentEntityType
and ConfigEntityType. These are used to register content and configuration entity types,
respectively.

The annotations classes map to plugin classes used to represent the entity types. The base
class for these is Drupal\Core\Entity\EntityType, which is then extended by another
ContentEntityType and ConfigEntityType. These plugin classes are used to represent
the entity types in the system and are a good resource for seeing what kind of data we can
use on the annotations of these plugins. With a quick glance we can already see that the
differences between the two types are not so big.

The plugin manager for entity types is the EntityTypeManager, a critically important
service you will probably interest most with as a Drupal developer. Apart from handy
things we will see a bit later, it is responsible for managing the entity type plugins using the
regular annotation based discovery method.

The Node entity type is defined in Drupal\node\Entity\Node where you will see a huge
annotation at the top of the class. The NodeType configuration entity type, on the other
hand, is found in Drupal\node\Entity\NodeType. You can spot the difference in the
annotation they use.

Data Modeling and Storage

[164]

Identifiers
The entity type annotations start with some basic information about them, ID, label, and
things like that. For example, consider the following Node entity:

 * id = "node",
 * label = @Translation("Content"),
 * label_singular = @Translation("content item"),
 * label_plural = @Translation("content items"),
 * label_count = @PluralTranslation(
 * singular = "@count content item",
 * plural = "@count content items"
 *),

These are used in various places in the system to properly be able to reference the entity
type by machine and human readable names.

Bundles
The Node entity type happens to have bundles which is the reason for which we have a
bundle_label property as well:

* bundle_label = @Translation("Content type"),

We can see in the following that it states "I have bundles" by defining the ID of the plugin
(which maps to a configuration entity type) of its bundles:

bundle_entity_type = "node_type",

Lo and behold, that is the NodeType's ConfigEntityType plugin ID. On its plugin
annotation, we can find the reverse bundle_of property which references the Node entity
type. Needless to say, this is not mandatory for all configuration entity types but used for
the ones that act as content entity bundles. For example, the View configuration entity type
does not have this.

In addition, we also find on the Node plugin annotation the route to where the bundles are
configured:

* field_ui_base_route = "entity.node_type.edit_form",

Data Modeling and Storage

[165]

This is a route defined for the NodeType configuration entity.

As I mentioned earlier, bundles do not exist for configuration entities.

Database tables
Another important bit of information for content entities is the database table name they
will use for storage:

 * base_table = "node",
 * data_table = "node_field_data",

The node table in this case holds the primary information about the entities such as ID, uuid
or bundle while the node_field_data table holds field data that is singular and not
translatable. Otherwise, the respective fields can get their own database tables. I will explain
how field data is stored a bit further on.

Entity keys
The entity API defines a set of keys that are consistent across all entity types and by which
common entity information can be retrieved. Since not all entity types need to have the
same fields for storing that data, there is a mapping that can be done in the annotation for
these:

 * entity_keys = {
 * "id" = "nid",
 * "revision" = "vid",
 * "bundle" = "type",
 * "label" = "title",
 * "langcode" = "langcode",
 * "uuid" = "uuid",
 * "status" = "status",
 * "uid" = "uid",
 * },

The Node entity type has a relatively comprehensive example of entity keys. As you can
see, the unique identifier field for Nodes has always been nid. However, the common
identifier for entities across the system is id. So, a mapping here helps facilitate that.

Data Modeling and Storage

[166]

Links
Each entity type has a series of links the system needs to know about. Things like the
canonical URL, the edit URL, the creation URL, and so on. For the node entities we have the
following:

 * links = {
 * "canonical" = "/node/{node}",
 * "delete-form" = "/node/{node}/delete",
 * "edit-form" = "/node/{node}/edit",
 * "version-history" = "/node/{node}/revisions",
 * "revision" = "/node/{node}/revisions/{node_revision}/view",
 * }

Like the entity keys, these links are common across all entity types (depending on their
enabled capabilities). For example, all entity types have a canonical URL and the API allows
quickly finding out which one that is from the definition.

One thing to note about these paths is that they need to be defined as routes. So, you can
find them inside the node.routing.yml file (where you also find the routes used by the
NodeType configuration entity type). Alternatively, though, these routes can be defined
dynamically in order to prevent duplication. This can be done using a route provider
handler. We will talk about handlers soon but also see a concrete example in the next
chapter. In case you were wondering where the missing routes for the Node links are, check
the NodeRouteProvider which registers them.

Entity translation
Entities are translatable in Drupal 8--like most of everything else--across the board. To mark
an entity type as such, all we need is the following in the plugin annotation:

 * translatable = TRUE,

This exposes the entity type to all the multilingual goodness. However, as we will see a bit
later, the individual fields need to also be declared translatable.

Entity revisions
In Drupal 8, all content entity types are easily revisionable with only a few settings on the
plugin annotation. Since Node is such an example, we can check out its definition which
has two main options to make it so.

Data Modeling and Storage

[167]

First, we have the database table information where revisions are stored. This mirrors
exactly the original tables we saw before:

 * revision_table = "node_revision",
 * revision_data_table = "node_field_revision",

Second, we have the entity key for the revision ID we saw earlier:

 * entity_keys = {
 * ...
 * "revision" = "vid",
 * ...
 * },

The entity fields are not automatically revisioned so a flag needs to also be set on them.

Configuration export
Configuration entity types have a few extra options on their plugin definitions that relate to
the exportability of the entities. By default, a number of configuration entity fields are
persisted and exported. However, the config_export property needs be used to declare
which other fields should be included in the export. For example, the NodeType
configuration entity type defines the following:

 * config_export = {
 * "name",
 * "type",
 * "description",
 * "help",
 * "new_revision",
 * "preview_mode",
 * "display_submitted",
 * }

Keep in mind that, without this definition, the configuration schema is used as a fallback to
determine which fields to persist. If the configuration entity type doesn't have a schema
(which it should though), no extra fields will get persisted.

Additionally, configuration entity types have a prefix that is used for the namespace in the
configuration system. This is also defined in the plugin annotation:

* config_prefix = "type",

Data Modeling and Storage

[168]

Handlers
The last main group of settings on the entity type plugins are the handlers. Handlers are the
objects used by the entity API to manage various tasks related to entities. The Node entity
type is a good example to look at, because it defines quite a lot of them, giving us an
opportunity to learn:

 * handlers = {
 * "storage" = "Drupal\node\NodeStorage",
 * "storage_schema" = "Drupal\node\NodeStorageSchema",
 * "view_builder" = "Drupal\node\NodeViewBuilder",
 * "access" = "Drupal\node\NodeAccessControlHandler",
 * "views_data" = "Drupal\node\NodeViewsData",
 * "form" = {
 * "default" = "Drupal\node\NodeForm",
 * "delete" = "Drupal\node\Form\NodeDeleteForm",
 * "edit" = "Drupal\node\NodeForm"
 * },
 * "route_provider" = {
 * "html" = "Drupal\node\Entity\NodeRouteProvider",
 * },
 * "list_builder" = "Drupal\node\NodeListBuilder",
 * "translation" = "Drupal\node\NodeTranslationHandler"
 * },

As we can immediately notice, these are all simple references to class namespaces. So, when
in doubt, it's always a good idea to go and see what they do and how they work. But let's
briefly talk about all of them and see what their main responsibility is.

The storage handler is one of the most important. It does all that has to do with CRUD
operations and interacting with the underlying storage system. It is always an
implementation of EntityStorageInterface and sometimes a parent of the
ContentEntityStorageBase or ConfigEntityStorage classes. If the entity type does
not declare one, it will default to SqlContentEntityStorage (since we are using a SQL
database most of the time) or ConfigEntityStorage for configuration entities.

The storage_schema handler is not something you will deal with too much. Its purpose is
to handle the schema preparations for the storage handler. It will default to the
SqlContentEntityStorageSchema if one is not provided and it will take care of the
database tables needed for the entity type definition.

The view_builder handler is an EntityViewBuilderInterface implementation
responsible for creating a render array out of an entity in view of preparing it for display. If
one is not specified, it defaults to EntityViewBuilder.

Data Modeling and Storage

[169]

The access handler is an EntityAccessControlHandlerInterface implementation
responsible for checking the access for any of the CRUD operations on a given entity of the
respective type. If one is not provided, the default EntityAccessControlHandler is use;
it will trigger the access hooks modules can implement to have a say in the access rules of a
given entity. We will talk a lot more about access in a dedicated chapter later on.

The views_data handler is an EntityViewsDataInterface implementation responsible
for exposing the respective entity type to the Views API. This is used so that Views is able to
properly understand the entity and fields. By default, it uses the generic EntityViewsData
if one is not provided.

The form handlers are EntityFormInterface implementations used for various types of
entity manipulations such as create, edit and delete. The referenced classes are forms that
are used for managing the entities.

The route_provider handlers are EntityRouteProviderInterface implementations
responsible for dynamically providing routes necessary for the respective entity type. The
Node entity type defines one for HTML pages but others can be defined for other kinds of
HTTP formats as well.

The list_builder handler is an EntityListBuilderInterface implementation
responsible for building a listing of entities of the respective type. This listing is typically
used on the administration screen for managing the entities. This is an important one to
have as without it the admin listing won't work.

The translation handler is a ContentTranslationHandlerInterface implementation
responsible for exposing the entities of this type to the translation API.

Fields
The principle way data is modeled by entities is through fields. Entities themselves are
essentially just a collection of different types of fields which hold various types of data.

Drupal 7 developers will remember that in D7, entities had two types of fields, usually
referred to as properties and Field UI fields. The former were essentially simple properties
on the entity class and were stored in the entity table itself. The latter were fields that were
attached to bundles through the UI and had separate database tables.

Data Modeling and Storage

[170]

Things are somewhat similar in Drupal 8 but also very different. First of all, we make a big
difference between the fields that belong to content versus configuration entities. Then, as in
D7, we still make a distinction between two types of content entity fields--base fields and
configurable fields. However, this is not as big as it used to be in D7 as they both have the
same foundation.

Configuration entity fields
Configuration entities have relatively simple fields, due to their storage handling. We can
store complex configuration but there is no complex database schema to reflect that.
Instead, we have the configuration schema layer that describes configuration entities so the
Entity API can understand the types of data they store and represent. We talked about this
earlier in the chapter when we looked at the configuration system. But let's examine the
NodeType configuration entity type to better understand its fields.

The fields on configuration entities are essentially declared as class properties. So, we can
see that NodeType has fields such as $description, $help and others. As I mentioned a
bit earlier, the plugin annotation includes a reference to which of these class properties are
actually to be persisted and exported. As you can imagine, a class should be allowed to also
have some properties that are not actually field values that need to be exported.

The configuration entity class can also have some specific getter and setter methods for its
field, but can also rely on the ConfigEntityBase parent class set() and get() methods
for setting and accessing field values. Things are relatively simple to understand.

Now, let's check out the NodeType configuration schema found in node.schema.yml and
see what that is all about:

node.type.*:
 type: config_entity
 label: 'Content type'
 mapping:
 name:
 type: label
 label: 'Name'
 type:
 type: string
 label: 'Machine-readable name'

 new_revision:
 type: boolean
 label: 'Whether a new revision should be created by default'
 ...

Data Modeling and Storage

[171]

This is just a sample of the schema definition without some of the fields because we already
know how to read those. However, there are some things which are new though.

We can see the wildcard notation which indicates that this schema should apply to all
configuration items that start with that prefix. So, essentially, to all entities of a certain type.
In this case, the entity type name is type as denoted in the NodeType annotation
config_prefix property. Of course, the namespace is prefixed by the module name.

Next, we see that the type is config_entity, which as we know is the other major
complex type besides config_object used to denote simple configuration. These are
basically extensions of the mapping type with some extra information. In the case of
configuration entities, these are the definitions for the fields that automatically get
exported--uuid, langcode, status, depedencies and third_party_settings. That is
to say, these fields exist on all configuration entities of any type and are always
persisted/exported.

Lastly, we have the schema definitions for each individual fields such as name, type, and
more. So, now the system knows that the new_revision field should be treated as a
Boolean or that the name field is translatable (since it is of a type label which extends the
simple string type with the translation flag on).

So, as you can see, the field matrix of a configuration entity type is not so complex to
understand. Content entities are much more complex and we will talk about that next.

Content entity fields
As in Drupal 7, content entities in D8 have two types of fields--base fields and configurable
fields. For Drupal 7 developers, the former are essentially the old "property" fields while the
latter are the "field UI" fields. However, as we will see in a moment, they are now very
different implementations in that they are very similar to each other.

First and foremost, content entity fields in Drupal 8 are built on top of the low-level
TypedData API. The latter is a complex system for modeling data in code and it is widely
used in Drupal 8. Unfortunately, it is also one of the APIs least understood by developers.
Not to worry, in the next section I will break it down for you. Since we still don't know
anything about it, we will now talk about fields from a higher-level perspective.

Data Modeling and Storage

[172]

Base fields
Base fields are the fields most close to a given entity type, things like the title,
creation/modification date, publication status, and so on. They are defined in the entity type
class as BaseFieldDefinition implementations and are installed in the database based
on these definitions. Once installed, they are no longer configurable from a storage point of
view from the UI (except in some cases, in which certain aspects can be overridden).
Additionally, some display and form widget configuration changes can still be made (also
depending on whether the individual definitions allow this).

Let's check out the Node entity type's baseFieldDefinitions() method and see an
example of a base field definition:

 $fields['title'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Title'))
 ->setRequired(TRUE)
 ->setTranslatable(TRUE)
 ->setRevisionable(TRUE)
 ->setSetting('max_length', 255)
 ->setDisplayOptions('view', array(
 'label' => 'hidden',
 'type' => 'string',
 'weight' => -5,
))
 ->setDisplayOptions('form', array(
 'type' => 'string_textfield',
 'weight' => -5,
))
 ->setDisplayConfigurable('form', TRUE);

This is the definition of the Node title field. We can deduce it's of the type string due to
the argument passed to the create() method of the BaseFieldDefinition class. The
latter is a complex data definition class on top of the TypedData API.

Other common types of fields that can be defined are boolean, integer, float,
timestamp, datetime, entity_reference, text_long, and many others. You can find
out what field types you can use by checking the available FieldType plugins provided by
Drupal core and any other modules. These are the same types of fields that can be used by
configurable fields in the UI. In a later chapter, we will see how we can write our own
custom field type.

Data Modeling and Storage

[173]

The field definition can get a number of options that may also differ depending on the type
of field being defined. I will skip the obvious ones here and jump to the
setTranslatable() and setRevisionable() methods and ask you to remember when
we saw earlier how the Node entity type plugin annotation indicated that Nodes will be
translatable and revisionable. This is where the fields themselves are configured to that
effect. Without these settings, they'd be left out of the translation capability and revisions.

The setSetting() method is used to provide various options to the field. In this case, it's
used to indicate the maximum length for the field, which is also mirrored in the table
column in the database. Then we have the display options which configure the view
formatter and form widget the field should use. They reference plugin IDs of the type
FieldFormatter (string) and FieldWidget (string_textfield) plugins, respectively.
In a later chapter, we will see how we can define our field plugins that can be used both for
base fields and also configuration fields in the UI.

Lastly, we have the setDisplayConfigurable() method, which is used to enable/disable
configuration changes on the form widget or display through the UI. In this case, only the
form widget is exposed for changes.

Not all these options and configurations are always used or mandatory. It depends on what
type of field we are defining, how we want the field to be configured, and whether defaults
are okay for us. An important option that can be used is cardinality--whether the field can
have more than one value of the same type. This allows a field to store multiple values that
follow the same data definition on that entity field.

If we create our own entity type and want to later add or modify a base field, we can do just
that. However, for entities that do not "belong" to us, we need to implement some hooks in
order to contribute with our own changes. To provide a new base field definition to an
exiting entity type, we can implement hook_entity_base_field_info() in our module
and return an array of BaseFieldDefinition items just as we saw before in the Node
entity type. Alternatively, we can implement hook_entity_base_field_info_alter()
and alter existing base field definitions to our liking. Do keep in mind that this latter hook
might be changed in the future, although at the time of writing, not a great priority has been
set on that.

Data Modeling and Storage

[174]

Configurable fields
Configurable fields are typically created through the UI, attached to an entity type bundle,
and exported to code. The part highlighted with bold is a critical difference between these
and base fields in that base fields exist on all bundles of the entity type:

Data Modeling and Storage

[175]

They also use the TypedData API for their definitions, as well as the same field type,
widget, and formatter plugins we talked about earlier. Architecturally speaking, the main
difference between base and configurable fields is that the latter are made up of two parts--
storage configuration (FieldStorageConfig) and field configuration (FieldConfig).
These are both configuration entity types, whose entities, together, make up a configurable
field. The former defines the field settings that relate to how the field is stored. These are
options that apply to that particular field across all the bundles of an entity type it may be
attached to (such as cardinality, the field type, and so on). The latter defines options for the
field specific to a bundle it is attached to. These can, in some case, be overrides of the
storage config but also new settings (such as the field description, whether it is required,
and more).

The easiest way to create configurable fields is through the UI. Just as easily, you get them
exported into code. You could alternatively write the field storage configuration and field
configuration yourself and add it to your module's config/install folder, but you can
achieve the same if you just export them through the UI.

Moreover, you can use a couple of hooks to make alterations to existing fields. For example,
implementing hook_entity_field_storage_info_alter() you can alter field storage
configurations while with hook_entity_bundle_field_info_alter() you can alter
field configurations as they are attached to an entity type bundle.

Field storage
We earlier saw how configuration entities are persisted and exported based on the
configuration schema and plugin definition. Let's quickly talk about how the fields used on
content entities are stored in the database.

Base fields, by default, end up in the entity base table (the one defined in the plugin
annotation as base_table). This makes things more performant than having them in
individual tables. However, there are some exceptions to this.

If the entity type is translatable, a "data" table gets created where records of the same entity
base field values in different languages can be stored. This is the table the Node entity type
plugin annotation declared with the property data_table. If this property is missing, the
table name will be by default [base_table]_field_data.

Moreover, if the field cardinality of a given field is higher than 1, a new table is created for
the field with the name [entity_type_name]__[field_name] where multiple records
for the same field can be stored.

Data Modeling and Storage

[176]

If the entity and field have translation enabled and the respective field cardinality is higher
than 1, the "data" table holds the records for an entity in all languages it is translated into
while the [entity_type_name]__[field_name] table holds the all value records in all
language for a given field.

Configurable fields, on the other hand, always get a separate field data table named
[entity_type_name]__[field_name], where the multiple values for the same field and
in multiple language can be stored.

Entity types summary
The Entity API is quite complex. We have only begun our journey to understanding the
different kinds of entity types, bundles, fields, and so on. We have so far talked about the
differences between configuration and content entity types and what exactly makes them
up. To this end, we also touched upon the different types of fields they can use and how the
data in these fields is stored.

However, there is still a lot to understand about entities, especially content entities, which
will be our focus in the next sections. We are going to first look at the TypedData API to
better understand how content entity field data is modeled. As of now, that is still a black
box, am I right? Next, we'll look at how to actually work with the API to query, create, and
manipulate entities (both content and configuration). Finally, we'll talk a bit about the
validation API the content entities and fields use consistently to ensure they hold proper
data. So, let's get to it.

TypedData
In order to really understand how entity data is modeled, we need to understand the
TypedData API. Unfortunately, this API, at the time of writing, still remains quite a mystery
for many. But you're in luck because in this section we're gonna get to the bottom of it.

Why?
It helps to understand things better if we first talk about why there was the need for this
API. It all has to do with the way PHP as a language is, compared to others, and that is
loosely typed. This means that in PHP it is very difficult to use native language constructs
to rely on the type of certain data or understand more about that data, as opposed to
languages like Java or Python.

Data Modeling and Storage

[177]

The difference between the string "1" and integer 1 is a very common example. We are
often afraid of using the === sign to compare them because we never know what they
actually come back as from the database or wherever. So, we either use == (which is not
really good) or forcefully cast them to the same type and hope PHP will be able to get it
right.

In PHP 7, we have type hinting for scalar values in function parameters which is good, but
still not enough. Scalar values alone are not gonna cut it if you think of the difference
between 1495875076 and 2495877076. The first is a timestamp while the second is an
integer. Even more importantly, the first has meaning while the second one does not. At
least seemingly. Maybe I want it to have some meaning because it is the specific formatting
for the tracking IDs in my package tracking app.

Drupal was not exempt from the problems this loosely typed nature of PHP can create.
Drupal 7 developers know very well what it meant to deal with field values in this way, but
not anymore because we now have the TypedData API in Drupal 8.

What?
The TypedData API is a low-level and generic API that essentially does two things from
which a lot of power and flexibility is derived.

First, it wraps "values" of any kind of complexity. More importantly, it forms "values". This
can be a simple scalar value to a multidimensional map of related values of different type
that together are considered one value. Let's take for example a New York license plate-
-405-307. This is a simple string but we "wrap" it with TypedData to give it meaning. In
other words, we know programmatically that it is a license plate and not just a random PHP
string. But wait, that plate number can be found in other states as well (possibly, I have no
idea). So, in order to better define a plate, we need also a state code--NY. This is another
simple string wrapped with TypedData to give it meaning--a state code. Together, they can
become a slightly more complex piece of TypedData--US license plate, which has its own
meaning.

Second, as you can probably infer, it gives meaning to the data that it wraps. If we continue
our previous example, the US license plate TypedData now has plenty of meaning. So, we
can programmatically ask it what it is and all sorts of other things about it, such as what is
the state code for that plate and the API facilitates this interaction with the data.

Data Modeling and Storage

[178]

As I mentioned, from this flexibility, a lot of power can be built on top. Things like data
validation are very important in Drupal 8 and rely on TypedData. As we will see later in
this chapter, validation happens at the TypedData level using constraints on the underlying
data.

The low-level API
Now that we have a basic understanding of the principles behind TypedData and why we
need it, let's start exploring the API, starting from the smallest pieces and going up.

There are two main pillars of this API--DataType plugins and data definitions.

DataType plugins
DataType plugins are responsible for defining the available types of data that can be used in
the system. For example, the StringData plugin is used to model a simple primitive string.
Moreover, they are responsible for interacting with the data itself; things like setting and
accessing the respective values.

The DataType plugins are managed by the TypedDataManager and are annotated by the
DataType annotation class. They implement the TypedDataInterface and typically
extend the TypedData base class or one of its subclasses.

There are three main types of DataType plugins out there, depending on the interface they
implement. First, there is the TypedDataInterface I mentioned before; this is typically
used for simple primitive values such as strings or integers. Second, there is the
ListInterface which is used to form a collection of other TypedData elements. It comes
with methods specific to interacting with lists of elements. Third, there is
ComplexDataInterface which is used for more complex data formed of multiple
properties that have names and can be accessed accordingly. Going forward, we will see
examples of all these types.

The best way to understand how these plugins are used is to first talk about data definitions
as well.

Data Modeling and Storage

[179]

Data definitions
Data definitions are the objects used to store all that meaning about the underlying data we
talked about. They define the type of data they can hold (using an existing DataType
plugin) and any kind of other meaningful information about that data. So, together with the
plugins, the data definitions are one mean data modeling machine.

At the lowest level, they implement the DataDefinitionInterface and typically extend
the DataDefinition class (or one of its subclasses). Important subclasses of
DataDefinition are the ListDefinition and ComplexDefinitionBase which are used
to define more complex data types. And as you might expect, they correlate to the
ListInterface and ComplexDataInterface plugins I mentioned earlier.

Let us see an example of a simple usage of data definitions and DataType plugins by
modeling a simple string--my_value.

It all starts with the definition:

$definition = DataDefinition::create('string');

The argument we pass to the create() method is the DataType plugin ID we want to be
defining our data as. In this case, it is the StringData plugin.

We already have some options out of the box to define our string data. For example, we can
set a label:

$definition->setLabel('Defines a simple string');

We can also mark it as read only or set whatever "settings" we want onto the definition.
However, one thing we don't do is deal with the actual value. This is where the DataType
plugin comes into play. The way this happens is that we have to create a new plugin
instance, based on our definition and a value:

/** @var TypedDataInterface $data */
$data = \Drupal::typedDataManager()->create($definition, 'my_value');

We used the TypedDataManager to create a new instance of our definition with our actual
string value. What we get is a plugin that we can use to interact with our data, understand
it better, change its value, and so on:

$value = $data->getValue();
$data->setValue('another string')
$type = $data->getDataDefinition()->getDataType();
$label = $data->getDataDefinition()->getLabel();

Data Modeling and Storage

[180]

We can see what kind of data we are dealing with, its label, and other things.

Let's take a look at a slightly more complex example and model our license plate use case
we talked about earlier.

We first define the number:

$plate_number_definition = DataDefinition::create('string');
$plate_number_definition->setLabel('A license plate number.');

Then, we define the state code:

$state_code_definition = DataDefinition::create('string');
$state_code_definition->setLabel('A state code');

We are keeping these generic because nobody says we cannot reuse these elsewhere; we
might need to deal with state codes.

Next, we create our full plate definition:

$plate_definition = MapDataDefinition::create();
$plate_definition->setLabel('A US license plate');

We use the MapDataDefinition here which uses by default the Map DataType plugin.
Essentially, this is a well defined associative array of properties. So, let's add our definitions
to it:

$plate_definition->setPropertyDefinition('number',
$plate_number_definition);
$plate_definition->setPropertyDefinition('state', $state_code_definition);

This map definition gets two named property definitions--number and state. You can see
now the hierarchical aspect of the TypedData API.

Finally, we instantiate the plugin:

/** @var Map $plate */
$plate = \Drupal::typedDataManager()->create($plate_definition, ['state' =>
'NY', 'number' => '405-307']);

The value we pass to this type of data is an array whose keys should map to the property
names and values to the individual property definitions (which in this case are strings).

Data Modeling and Storage

[181]

Now, we can benefit from all the goodness:

$label = $plate->getDataDefinition()->getLabel();
$number = $plate->get('number');
$state = $plate->get('state');

The $number and $state variables are StringData plugins which can then be used to
access the individual values inside:

$state_code = $state->getValue();

Their respective definitions can be accessed the same way we did before. So, we managed in
these few lines to properly define a US license plate construct and make it intelligible by the
rest of our code. Next, we will look at even more complex examples and inspect how
content entity data is modeled using TypedData. Configuration entities, as we saw, rely on
configuration schemas to define the data types. Under the hood, the schema types
themselves reference TypedData API data type plugins themselves. So, behind the scenes,
the same low level API is used. To keep things a bit simpler, we will look at content entities
where this API is much more explicit and you will actually have to deal with it.

Content entities
Let's now examine entities and fields and see how they make use of the TypedData API for
modeling the data they store and manage. This will also help you better understand how
data is organised when you are debugging entities and their fields.

The main place data is stored and modeled are fields. As we saw, we have two types--base
fields and configurable fields. However, when it comes to TypedData, they do not differ
very much. They both use the FieldItemList DataType plugin (either directly or a
subclass). In terms of definitions, base fields use BaseFieldDefinition instances while
configurable fields use FieldConfig instances. The latter are slightly more complicated
because they are actually configuration entities themselves (to store the field configuration)
but that implement down the line the DataDefinitionInterface. So, they combine the
two tasks. Moreover, base fields can also use BaseFieldOverride definition instances
which are essentially also configuration entities and that are used for storing alterations
made through the UI to the fields defined as base fields. Just as the FieldConfig
definitions, these extend the FieldConfigBase class, because they share the same
exportable characteristics.

Data Modeling and Storage

[182]

In addition to fields, entities themselves have a TypedData plugin that can be used to wrap
entities and expose them to the API directly--the EntityAdapter. These use an
EntityDataDefinition, instance which basically includes all the individual field
definitions. Using plugin derivatives, each entity types get dynamically an EntityAdapter
plugin instance.

Let's now examine a simple base field and understand the usage of the TypedData API in
the context of fields. The BaseFieldDefinition class extends ListDataDefinition
which is responsible for defining multiple items of data in a list. Each item in the list is an
instance of DataDefinitionInterface as well, so you can see the same kind of hierarchy
as we had with our license plate example. But why is one field a list of items?

You probably know that when you create a field in the UI, you can choose how many items
this one field can hold--its cardinality. You typically choose one, but can choose many. The
same is true with all types of fields. Regardless of the cardinality you choose, the data is
modeled as a list. If the field has a cardinality of one, the list will only have one item. It is as
simple as that. So, if base field definitions are lists of definitions, what are the individual
item definitions? The answer is implementations of FieldItemDataDefinition.

In terms of DataType plugins, as I mentioned, we have the FieldItemList class which
implements the ListInterface I mentioned earlier as one of the more complex data types.
The individual items inside are subclasses of FieldItemBase (which extends the Map
DataType we encountered earlier). So, we have the same kind of data structure. But just to
make matters slightly more complicated, another plugin type comes into play here--
FieldType. These individual field items are actually instances of these plugins (which as I
said extend FieldItemBase and down the line a DataType plugin of some kind). So, for
instance, a text field will use the StringItem FieldType plugin which inherits a bunch of
functionality from the Map DataType. So, you can see how the TypedData API is at a very
low level and things can be built on top of it.

So now, if we combine what we learned and look at a base field, we see the following--a
FieldItemList data type using a BaseFieldDefinition (or BaseFieldOverride) data
definition. Inside, each item is a FieldItemBase implementation (a FieldType plugin
extending some sort of DataType plugin) using a FieldItemDataDefinition. So, not that
complicated after all. We will put this knowledge to good use in the final section of this
chapter when we see how we can interact with entities and field data. I am not throwing all
these notions at you just for the sake of it.

Data Modeling and Storage

[183]

The configurable fields work almost exactly the same except that the definition
corresponding to the FieldItemList is an instance of FieldConfig (a configuration
entity that stores the settings for this field and which is similar to the
BaseFieldOverride). However, it is also a type of list definition with the individual list
items being the same as with the base fields.

TypedData summary
So, as we've seen, the scope of understanding the TypedData API in Drupal 8 is quite broad.
We can make things very simple, like with our first example, but then hit some really
complicated territory with its use in the Entity system. The point of this section has been to
make you aware of this API, understand its reasoning, see a couple of simple examples, and
breakdown all the components that are used in the Entity API.

However, I admit, it must have been quite a difficult section to follow. All this terminology
and theory can be pretty daunting. But don't worry, if you didn't fully understand
everything, that's fine. It's there for you to reference as we go through the next section
because we will apply all that knowledge and you will see why it's useful to be aware of it.
In other words, we will now focus on interacting with entities (both content and
configuration) and in doing so make heavy use of the functionality made possible by the
TypedData API.

Interacting with the Entity API
In this final section of the chapter, we're going to cover the most common things you will be
doing with content and configuration entities. These are the main topics we discuss going
forward:

Querying and loading entities
Reading entities
Manipulating entities (update/save)
Creating entities
Rendering entities
Validating entity data

So, let's hit it.

Data Modeling and Storage

[184]

Querying and loading entities
One of the most common things you will do as a programmer is query for stuff, such as
data in the database. This is what we were doing a lot in Drupal 7 to get our data. A lot.
We'd either use the database API or simple query strings and load our data. However, in
Drupal 8 the entity API has become much more robust and offers a layer that reduces the
need to query the database directly. In a later chapter, we will see how to do that still for
when things become more complex. For now, since most of our structured data belongs in
entities, we will use the entity query system for retrieving entities.

The service we use for querying entities is the entity.query service (QueryFactory). So,
we can inject this into our class or use it statically:

$query = \Drupal::entityQuery('node')

Here, node is the entity type for which we want to query.

However, we also have the option of using the entity_type.manager service
(EntityTypeManager) and get the query factory from it:

\Drupal::entityTypeManager()->getStorage('node')->getQuery();

We request the storage handler (remember what that is from when we talked about entity
type handlers?) which then can give us the query factory for that entity type.

The reason we might want to do that is that the entity query will always return IDs of the
entities found. So, if we want to actually load them, we still need the EntityTypeManager
to do so. So, why would we want to always inject both of these services into our class? In
the preceding examples, I used static calls but, as always, you should inject the services
where you can.

Building queries
Now that we have an entity query factory on our hands, we can build a query that is made
up of conditions and all sorts of typical query elements. Here's a simple example of
querying for the last 10 published article nodes:

$query
 ->condition('type', 'article')
 ->condition('status', TRUE)
 ->range(0, 10)
 ->sort('created', 'DESC');
$ids = $query->execute();

Data Modeling and Storage

[185]

The first thing you can see is that the methods on the factory are chainable. We have some
expected methods to set conditions, range, sorting, and so on. I strongly recommend you
check out the QueryInterface class for some documentation about these methods,
especially the condition() method which is the most complex. As you can already
deduce, the first parameter is the field name and the second is the value. An optional third
parameter can also be the operator for the condition. Here is a slightly more complex
condition that would returns nodes of two different types:

->condition('type', ['article', 'page'], 'IN')

Additionally, you can also use condition groups, with OR or AND conjunctions:

$query
 ->condition('status', TRUE);
$or = $query->orConditionGroup()
 ->condition('title', 'Drupal', 'CONTAINS')
 ->condition('field_tags.entity.name', 'Drupal', 'CONTAINS');
$query->condition($or);
$ids = $query->execute();

In the preceding query, we see a few new things. First, we create a condition group of the
type OR in which we add two conditions. One of them checks whether the node title field
contains the string "Drupal". The other checks whether any of the entities referenced by the
field_tags field (in this case taxonomy terms) has the string "Drupal" in their name. So,
you can see the power we have in traversing into referenced entities. Finally, we use this
condition group as the first parameter to the condition() method of the query (instead of
field name and value).

Entity queries for the Node entity type take access restrictions into account
as they are run from the context of the current user. This means that, for
example, a query for unpublished nodes triggered on a page hit by an
anonymous user is not going to return results, but it will if triggered by an
administrator. You can disable this by adding the
->accessCheck(FALSE) instruction to the query IF you are sure the
results are not going to expose unwanted content to users. We will talk
more about node access in a later chapter.

Configuration entities work in the same way. We get the query factory for that entity type
and build a query. Under the hood, the query is of course run differently due to the flat
nature of the storage.

Data Modeling and Storage

[186]

Each entity gets one record in the database so they need to be loaded and then examined.
Moreover, the conditions can be written to also match the nested nature of configuration
entity field data. For example:

$query = \Drupal::entityTypeManager()->getStorage('view')->getQuery();
$query
 ->condition('display.*.display_plugin', 'page');
$ids = $query->execute();

This query searches for all the View configuration entities which have the display plugin of
the type "page". The condition essentially looks inside the display array for any of the
elements (hence the * wildcard). If any of these elements has a display_plugin key with
the value "page", it's a match. This is what an example view entity looks like in YAML
format:

...
base_field: nid
core: 8.x
display:
 default:
 display_options:
 ...
 display_plugin: default
 display_title: Master
 ...
 page_1:
 display_options:
 ...
 display_plugin: page
 display_title: Page

I removed a bunch of data from this entity just to keep it short. But as you can see, we have
the display array, with the default and page_1 elements and each has a
display_plugin key with a plugin ID.

Loading entities
Now that we have our entity IDs found by the query, it's time to load them. It couldn't be
simpler to do so. We just use the storage handler for that entity type (and we get that from
the entity type manager):

$nodes =
\Drupal::entityTypeManager()->getStorage('node')->loadMultiple($ids);

Data Modeling and Storage

[187]

This will return an array of EntityInterface objects (in this case NodeInterface) or if
we have only one ID to load:

$nodes = \Drupal::entityTypeManager()->getStorage('node')->load($id);

These will return a single NodeInterface object.

The Entity type storage handler also has a shortcut method that allows you to perform
simple queries and load the resulting entities in one go. For example, if we wanted to load
all article nodes:

$nodes =
\Drupal::entityTypeManager()->getStorage('node')->loadByProperties(['type'
=> 'article']);

The loadByProperties() method takes one parameter--an associative array that contains
simple field value conditions that need to match. Behind the scenes, it builds a query based
on these and loads the returning entities. Do keep in mind that you cannot have complex
queries here and access checks will be taken into account in the query being built under the
hood. So, for full control, just build the query yourself.

Reading entities
So, we have our entity loaded and we can now read its data. For content entities, this is
where the TypedData knowledge comes into play. Before we look at that, let's see quickly
how we can get the data from configuration entities. Let's inspect the Article NodeType for
this purpose:

/** @var NodeType $type */
$type =
\Drupal::entityTypeManager()->getStorage('node_type')->load('article');

The first and simplest thing we can do is inspect the individual methods on the entity type
class. For example, NodeType has a getDescription() method which is a handy helper to
get the description field:

$description = $type->getDescription();

This is always the best way to try to get the field values of configuration entities, because
you potentially get return type documentation which can come in handy with your IDE.
Alternatively, the ConfigEntityBase class has the get() method that can be used to
access any of the fields:

$description = $type->get('description');

Data Modeling and Storage

[188]

This is going to do the same thing and it is the common way any field can be accessed
across the different configuration entity types. The resulting value is the raw field value, in
this case a string. So, this is pretty simple.

Apart from the typical field data, we have the entity keys (if you remember from the entity
type plugin definitions). These are common for both configuration and content entities and
the relevant accessor methods are found on the EntityInterface. Here are the ones you
will typically see and use yourself:

$id = $type->id();
$label = $type->label();
$uuid = $type->uuid();
$bundle = $type->bundle();
$language = $type->language();

The resulting information depends on the entity type of course. For example, configuration
entities don't have bundles or some content entity types either. So, the bundle() method
will return the name of the entity type if there are no bundles. By far the most important
one is id() but you will often use label() as well as a shortcut to the primitive field value
of the field used as the label for the entity type. There are other entity keys as well that
individual entity types can declare. For example, the Node entity has a status entity key
and a corresponding method status(). This is used for the publishing state. So, for any
other entity keys, do check the respective entity type if you can use them.

Some extra methods you can use to inspect entities of any type:

isNew() checks if the entity has been persisted already or not.
getEntityTypeId() returns the machine name of the entity type of the entity.
getEntityType() returns the EntityTypeInterface plugin of the given
entity.
getTypedData() returns the EntityAdapter DataType plugin instance that
wraps the entity. It can be used for further inspection; it is most useful for content
entities.

Moreover, we can also check whether they are a content or a configuration entity:

$entity instanceof ContentEntityInterface
$entity instanceof ConfigEntityInterface

Similarly, we can also check whether they are a specific type of entity:

$entity instanceof NodeInterface

Data Modeling and Storage

[189]

This is similar to using $entity->getEntityTypeId === 'node' but is much more
explicit and clear, plus the IDE can benefit from the information in many cases.

Now, let's turn to content entities and see how we can read their field data.

Similar to configuration entity types, many content entity types can have helper methods on
their class to make accessing certain fields easier. For example, the Node entity type has the
getTitle() method that gets the first primitive value of its title field. However, let's see
how we can apply what we learned in the TypedData section and navigate through the
field values like a pro. To exemplify, we will examine a simple article node.

Content entities also have the get() method, but unlike configuration entities, it doesn't
return the raw field value. Instead, it returns an instance of FieldItemList:

/** @var NodeInterface $node */
$node = Node::load(1);
/** @var FieldItemListInterface $title */
$title = $node->get('title');

For quick prototyping, in the preceding example I used the static load() method on the
content entity class to load an entity by ID. Under the hood, this will delegate to the
relevant storage class. This is a quick alternative to using the entity manager, but you
should only rely on it wherever you cannot inject dependencies.

Here are some of the things we can learn about the title FieldItemList:

$parent = $title->getParent();

This is its parent (the DataType plugin it belongs in - in this case the EntityAdapter).

$definition = $title->getFieldDefinition();

This is the DataDefinitionInterface of the list. In this case it's a BaseFieldOverride
instance but can be a BaseFieldDefinition (for example for the nid field) or a
FieldConfig for fully configurable fields:

$item_definition = $title->getItemDefinition();

This is the DataDefinitionInterface for the individual items in the list, typically a
FieldItemDataDefinition:

$total = $title->count();
$empty = $title->isEmpty();
$exists = $title->offsetExists(1);

Data Modeling and Storage

[190]

These are some handy methods for inspecting the list. We can see how many items there are
in it, whether it's empty, and whether there are any values at a given offset. Do keep in
mind that value keys start at 0, so if the cardinality of the field is 1, the value will be at the
key 0.

To retrieve values from the list, we have a number of options. The most common thing
you'll end up doing is the following:

$value = $title->value;

This is a magic property pointing to the first primitive value in the list. However, it's very
important to note that although most fields use the property value, some fields have a
different property name. For example, entity reference fields use target_id:

$id = $field->target_id;

This returns the ID of the referenced entity. As an added bonus, if you use the magic
entity property, you get the fully loaded entity object:

$entity = $field->entity;

But enough of this magic way of doing things and let's see what other options we have:

$value = $title->getValue();

The getValue() method is present on all TypedData objects and returns the raw values
that it stores. In our case, it will return an array with one item (since we only have one item
in the list) that contains the individual item raw values. In this case, Which in this case is an
array with one element keyed value and the title string as its value. We will see in a
moment why this is keyed by value.

In some cases, we might want this to be returned and can find it useful. In other cases
though, we might just want the one field value. For this, we can ask for a given item in the
list:

$item = $title->get(0);
$item = $title->offsetGet(0);

Both of these do the same thing and return a FieldType plugin which, as we saw, extends
FieldItemBase which is nothing more than a fancy Map DataType plugin. Once we have
this, we again have a few choices:

$value = $item->getValue();

Data Modeling and Storage

[191]

This again returns an array of the raw values, in this case with one key called value and the
string title as the array element. So, just as we called getValue() on the list, but this time
returning the raw values of only one item instead of an array of raw values of multiple
items.

The reason why we have the actual title string keyed by value is because we are requesting
the raw value from the StringItem field type plugin, which in this case happens to define
the value columns as value. Others might differ (for example the entity reference field
which stores a target_id named value).

Alternatively, again, we can navigate a bit further down:

$data = $item->get('value');

We know that this field uses the name value for its property so we can use the get()
method from the Map DataType (which if you remember is subclassed by the StringItem
field type) to retrieve its own property by name. This is exactly the same as we did with the
license plate map and when we requested the number or state code. In the case of
StringItem field types, this is going to be a StringData DataType plugin.

As we did before, we can ask this final plugin for its value:

$value = $data->getValue();

Now we have the final string for the title. Of course, all the way down from the top, we
have the opportunity to inspect the definitions of each of these plugins and learn more
information about them.

Typically, on the day-to-day, you will use two methods for retrieving values from fields,
depending on the cardinality. If the field has only one value, you will end up using
something like this:

$title = $node->get('title')->value;
$id = $node->get('field_referencing_some_entity')->target_id;
$entity = $node->get('field_referencing_some_entity')->entity;

If the field can have multiple values, you will end up using something like this:

$names = $node->get('field_names')->getValue();
$tags = $node->get('field_tags')->referencedEntities();

Data Modeling and Storage

[192]

The referencedEntities() is a helper method provided by the
EntityReferenceFieldItemList (which is a subclass of FieldItemList) that loads all
the referenced entities and returns them in an array keyed by the position in the field (the
delta).

Manipulating entities
Now that we know how we can read field data programmatically, let's see how we can
change this data and persist it to the storage. So, let's look at the same Node title field and
update its value programmatically.

The most common way you can change a field value on a content entity is this:

$node->set('title', 'new title');

This works well with fields that have only one value (cardinality == 1) and behind the
scenes essentially this happens:

$node->get('title')->setValue('new title');

This one value gets transformed into a raw array of one value because we are dealing with a
list of items and the first item receives the changed value. If the field has a higher
cardinality and we pass only one value as such, we essentially remove both of them and
replace them with only one. So, if we want to make sure we are not deleting items but
instead adding to the list, we can do this:

 $values = $node->get('field_multiple')->getValue();
 $values[] = ['value' => 'extra value'];
 $node->set('field_multiple', $values);

If we want to change a specific item in the list, we can do this:

$node->get('field_multiple')->get(1)->setValue('changed value');

This will change the value of the second item in the list. You just have to make sure it is set
first before chaining:

$node->get('field_test')->offsetExists(1);

All these modifications we make to field values are, however, kept in memory (they are not
persisted). To save them to a database we have to do something extremely complicated:

$node->save();

Data Modeling and Storage

[193]

That's it. Under the hood, Drupal still uses some deprecated ways to do the saving using the
old EntityManager , which is no longer recommended but is essentially responsible for
saving the storage handler; of the entity type. So, we can achieve the same thing via the
entity type manager:

\Drupal::entityTypeManager()->getStorage('node')->save($node);

But nobody is going to look down on you if you just use the save() helper method on the
entity object. Since we are talking about saving, deleting entities can be done in the exact
same way, except by using the delete() method on the entity object. We also have this
method on the storage handler, however, it accepts an array of entities to delete, so you can
use that to delete more entities at once.

Configuration entities have it a bit easier since their fields do not deal with TypedData. This
is how we can easily change the value of a configuration entity field:

/** @var NodeType $type */
$type =
\Drupal::entityTypeManager()->getStorage('node_type')->load('article');
$type->set('name', 'News');
$type->save();

Nothing to complex going on here. We load the entity, set a property value and save it
using the same API.

Creating entities
Programmatically creating new entities is also not rocket science and, again, we use the
entity type storage handler to do so:

$values = [
 'type' => 'article',
 'title' => 'My title'
];
/** @var NodeInterface $node */
$node = \Drupal::entityTypeManager()->getStorage('node')->create($values);
$node->set('field_custom', 'some text');
$node->save();

The storage handler has the create() method, which takes one argument in the form of an
associative array of field values. The keys represent the field name and the values the value.
This is where you can set initially some simpler values, and for more complex fields you
still have the API we covered earlier.

Data Modeling and Storage

[194]

If the entity type has bundles, such as the Node example given before, the bundle needs to
be specified in the create() method. The key it corresponds to is the entity key for the
bundle. If you remember the Node entity type plugin, that is type.

That is pretty much it. Again, we need to save it in order to persist it in our storage.

Rendering content entities
Now, let's see what we can do with an entity to render it on the page. In doing so, we will
stick to the existing view modes and try not to break it up into pieces for rendering in a
custom template through our own theme hook. If you want to do that, you can. You should
have all the knowledge for that already:

Defining a theme hook with variables
Querying and loading entities
Reading the values of an entity
Creating a render array that uses the theme hook

Instead, we will rely on the entity's default building methodology that allows us to render it
according to the display mode configured in the UI, so, for example, as a teaser or as the full
display mode. As always, we will continue with the Node as an example.

The first thing we need to do is get our hands on the view builder handler of the entity type.
Remember it from the entity type plugin definition? Just like the storage handler, we can
request it from the EntityTypeManager:

/** @var NodeViewBuilder $builder */
$builder = \Drupal::entityTypeManager()->getViewBuilder('node');

Now that we have that, the simplest way of turning our entity into a render array is using
the view() method:

$build = $builder->view($node);

By default, this will use the full view mode, but we can pass a second parameter and specify
another, such as teaser or whatever we have configured. A third optional parameter is the
langcode of the translation (if we have it) we want to render in. We will talk more about
translations in the multilingual chapter.

Data Modeling and Storage

[195]

The $build variable is now a render array that uses the node theme hook defined by the
Node module. You will notice also a #pre_render theme property which specifies a
callable to be run before the rendering of this array. That is actually a reference back to the
NodeViewBuilder (the node entity type view builder) which is responsible for preparing
all the field values and all sorts of other processing we are not going to cover now. But the
node.twig.html template file preprocessed by the *_preprocess_node() preprocessors
also plays a big role in providing some extra variables to be used or rendered in the
template.

If we want, we can also build render arrays for multiple entities at once:

$build = $builder->viewMultiple($node);

This will still return a render array which contains multiple children for each entity being
rendered. The #pre_render property I mentioned earlier, however, will stay at the top
level and this time be responsible for building multiple entities.

Essentially it is that simple to get from loading an entity to turning it into a render array.
You have many different places where you can take control over the output. As I said, you
can write your own theme hook and break up the entity into variables. You can also
implement the preprocessor for its default theme functions and change some variables in
there. You can even change the theme hook used and append a suggestion to it and then
take it from there, as we saw in the chapter on theming:

$build = $builder->view($node);
$build['#theme'] = $build['#theme'] . '__my_suggestion';

Another important way we can control the output is by implementing a hook that gets fired
when the entity is being built for rendering--hook_entity_view() or
hook_ENTITY_TYPE_view(). So, let's see an example by which we want to append a
disclaimer message at the bottom of all our Node entities when they are displayed in their
full view mode. We can do something like this:

function module_name_entity_view(array &$build, EntityInterface $entity,
EntityViewDisplayInterface $display, $view_mode) {
 if ($entity->getEntityTypeId() == 'node' && $view_mode == 'full') {
 $build['disclaimer'] = [
 '#markup' => t('The content provided is for general information
purposes only.'),
 '#weight' => 100
];
 }
}

Data Modeling and Storage

[196]

The three important arguments we work with are the $build array passed by reference and
which contains the render array for the entire entity, the $entity object itself, and the
$view_mode the latter is being rendered in. So, all we have to do is add our own render bits
inside the $build array. As a bonus, we try to ensure that the message gets printed at the
bottom by using the #weight property.

Pseudo-fields
Drawing from our example on implementing hook_entity_view(), there's a neat little
technique we can use to empower our site builders further with respect to that disclaimer
message. This is by turning it into a pseudo field. By doing this, site builders will be able to
choose the bundles it should show on, as well as the position relative to the other fields, all
through the UI in the Manage Display section:

So, there are two things we need to do for this. First, we need to implement
hook_entity_extra_field_info() and define our pseudo field:

/**
 * Implements hook_entity_extra_field_info().
 */
function module_name_entity_extra_field_info() {
 $extra = [];

 foreach (NodeType::loadMultiple() as $bundle) {
 $extra['node'][$bundle->Id()]['display']['disclaimer'] = [
 'label' => t('Disclaimer'),
 'description' => t('A general disclaimer'),
 'weight' => 100,
 'visible' => TRUE,
];

Data Modeling and Storage

[197]

 }

 return $extra;
}

As you can see, we loop through all the available node types and for the node entity display
list, we add our disclaimer definition with some defaults to use. The weight and visibility
will, of course, be overridable by the user, per node bundle.

Next, we need to go back to our hook_entity_view() implementation and make some
changes. Because we know we want this applied to Node entities only, we can implement
the more specific hook instead:

/**
 * Implements hook_ENTITY_TYPE_view().
 */
function module_name_node_view(array &$build, EntityInterface $entity,
EntityViewDisplayInterface $display, $view_mode) {
 if ($display->getComponent('disclaimer')) {
 $build['disclaimer'] = [
 '#markup' => t('The content provided is for general information
purposes only.'),
];
 }
}

In this case we don't need to check for view modes or entity types, but rather use the entity
view display configuration object to check for the existence of this extra disclaimer field
(technically called a component). If found, we simply add our markup to the $build array.
Drupal will take care things like weight and visibility to match whatever the user has set
through the UI, and that's it. Clearing the cache, we should still see our disclaimer message,
but we can now control it a bit from the UI.

Content entity validation
The last thing we are going to talk about in this chapter is entity validation and how we can
make sure that field and entity data as a whole contains valid data. When I say valid, I don't
mean whether it complies with the strict TypedData definition but whether, within that, it
complies with certain restrictions (constraints) we impose on it.

Drupal 8 uses the Symfony Validator component for applying constraints and then
validating entities, fields and any other data against those constraints. I do recommend that
you check out the Symfony documentation page on this component to better understand its
principles. For now, let's quickly see how it is applied in Drupal 8.

Data Modeling and Storage

[198]

There are three main parts to a validation--a constraint plugin, a validator class and
potential violations. The first is mainly responsible for defining what kind of data it can be
applied to, the error message it should show, and which validator class is responsible for
validating it. If it omits the latter, the validator class name defaults to the name of the
constraint class with the word Validator appended to it. The validator, on the other hand,
is called by the validation service to validate the constraint and build a list of violations.
Finally, the violations are data objects which provide helpful information about what went
wrong in the validation things like the error message from the constraint, the offending
value, the path to the property that failed. To better understand things, we have to go back
to the TypedData and see some simple examples because that is the level at which the
validation happens.

So, let's look at the same example I introduced TypedData with:

$definition = DataDefinition::create('string');
$definition->addConstraint('Length', ['max' => 20]);

The data definitions have methods for applying and reading constraints. If you remember,
one of the reasons why we need this API is to be able to enrich data with meta information.
Constraints are such information. In the preceding example, we are applying a constraint
called Length (the plugin ID) with some arbitrary parameters expected by that constraint
(in this case a maximum length but also a minimum would work). Having applied this
constraint,we are essentially saying that this piece of string data is only valid if it's shorter
than 20 characters. We can use this, like so:

/** @var TypedDataInterface $data */
$data = \Drupal::typedDataManager()->create($definition, 'my value that is
too long');
$violations = $data->validate();

DataType plugins have a validate() method on them which uses the validation service to
validate their underlying data definition against any of the constraints applied to it. The
result is an instance of ConstraintViolationList iterator that contains a
ConstraintViolationInterface instance for each validation failure. In the preceding
example, we should have a violation from which we can get some information like so:

/** @var ConstraintViolationInterface $violation */
foreach ($violations as $violation) {
 $message = $violation->getMessage();
 $value = $violation->getInvalidValue();
 $path = $violation->getPropertyPath();
}

Data Modeling and Storage

[199]

The $message is the error message that comes from the failing constraint, the $value is the
actual incorrect value, and the $path is a string representation of the hierarchical path
down to the value that has failed. If you remember our license plate example or the content
entity fields, TypedData can be nested, which means you can have all sorts of values at
different levels. In our previous example, the $path is, however, going to be "" (an empty
string) because the data definition has only one level.

Let's revisit our license plate example and see how such a constraint would work there.
Imagine we wanted to add a similar constraint to the state code definition:

$state_code_definition = DataDefinition::create('string');
$state_code_definition->addConstraint('Length', array('max' => 2));
// The rest of the set up code we saw earlier.

/** @var Map $plate */
$plate = \Drupal::typedDataManager()->create($plate_definition, ['state' =>
'NYC', 'number' => '405-307']);
$violations = $plate->validate();

If you look closely, I instantiated the plate with a state code longer than two characters.
Now, if we ask our individual violations for the property path, we get state, because that
is what we called the state definition property within the bigger map definition.

Finally, let's see an example of validating constraints on entities. First of all, we can run the
validate() method on an entire entity which will then use its TypedData wrapper
(EntityAdapter) to run a validation on all the fields on the entity + any of the entity level
constraints. The latter can be added via the EntityType plugin definition. For example, the
Comment entity type has this bit:

* constraints = {
 * "CommentName" = {}
 * }

This means that the constraint plugin ID is CommentName and it takes no parameters (since
the braces are empty). We can even add constraints to entity types that do not belong to us
by implementing hook_entity_type_alter(), for example:

function my_module_entity_type_alter(array &$entity_types) {
 /** @var ContentEntityType $node */
 $node = $entity_types['node'];
 $node->addConstraint('ConstraintPluginID', ['option']);
}

Data Modeling and Storage

[200]

Going one level below and knowing that content entity fields are built on top of the
TypedData API, it follows that all those levels can have constraints. We can add the
constraints regularly to the field definitions or in the case of either fields that are not "ours"
or configurable fields, we can use hooks to add constraints. Using
hook_entity_base_field_info_alter() , we can add constraints to base fields while
with hook_entity_bundle_field_info_alter(), we can add constraints to
configurable fields (and overridden base fields). Let's see an example of how we can add
constraints to the Node ID field:

function my_module_entity_base_field_info_alter(&$fields,
EntityTypeInterface $entity_type) {
 if ($entity_type->id() === 'node') {
 /** @var BaseFieldDefinition $nid */
 $nid = $fields['nid'];
 $nid->addPropertyConstraints('value', ['Range' => ['mn' => 5, 'max' =>
10]]);
 }
}

As you can see, we are still just working with data definitions. One thing to note, however,
is that when it comes to base fields and configurable fields (which are lists of items), we also
have the addPropertyConstraints() method available. This simply makes sure that
whatever constraint you are adding is targeted towards the actual items in the list
(specifying which property), rather than the entire list as it would have happened we had
used the main addConstraint() API. Another difference with this method is that
constraints get wrapped into a ComplexDataConstraint plugin. However, you don't have
to worry too much about that, just be aware when you see it.

We can even inspect the constraints found on a data definition object. For example, this is
how we can read the constraints found on the Node ID field:

$nid = $node->get('nid');
$constraints = $nid->getConstraints();
$item_constraints = $nid->getItemDefinition()->getConstraints();

Where the getConstraints() method returns an array of constraint plugin instances.
Now let’s see, though, how we can validate entities:

$nid = $node->get('nid');
$node_violations = $node->validate();
$nid_list_violations = $nid->validate();
$nid_item_violations = $nid->get(0)->validate();

Data Modeling and Storage

[201]

The entity level validate() method returns an instance of
EntityConstraintViolationList which is a more specific version of the
ConstraintViolationList we talked about earlier. The latter is, however, returned by
the validate() method of the other cases given in the following. But for all, inside we
have a collection of ConstraintViolationInterface instances from which we can learn
some things.

The entity level validation goes through all the fields and validates them; this means that is
where we will get most violations (if that's the case). Next, the list will contain violations of
any of the items in the list while the item will contain only the violation on that individual
item in the list. The property path is something interesting to observe the following is the
result of calling getPropertyPath() on a violation found in all three of the resulting
violation lists preceding:

nid.0.value
0.value
value

As you can see, this reflects the TypedData hierarchy. When we validate the entire entity, it
gives us a property path all the way down to the value--field name -> delta (position in the
list) -> property name. Once we validate the field, we already know what field we are
validating so that is omitted. And the same goes for the individual item (we know also the
delta of the item).

A word of warning about base fields that can be overridden per bundle such as the Node
title field. As I mentioned earlier, the base definition for these fields use an instance of
BaseFieldOverride, which allows certain changes to be made to the definition via the UI.
In this respect, they are very close to configurable fields. The "problem" with this is that, if
we tried to apply a constraint like we just did with the nid to, say, the Node title field,
we wouldn't have gotten any violations when validating. This is because the validator
performs the validation on the BaseFieldOverride definition rather than the
BaseFieldDefinition.

This is no problem, though, as we can use hook_entity_bundle_field_info_alter()
and do the same thing as done before which will then apply the constraint to the overridden
definition. In doing so, we can also account for the bundle we want this applied to. This is
the same way to apply constraints to a configurable field you create in the UI.

Data Modeling and Storage

[202]

Validation summary
As we've seen, Drupal 8 applies the Symfony validation component to its very own
TypedData and plugin API both for discoverability and data validation handling. In doing
so, we get a low level API for applying constraints to any kind of data, ranging from simple
primitive data definitions all the way to complex entities and fields. We have not covered
this here, but we can also easily create our own constraints and validators if the ones
provided are not enough.

Summary
You didn't think you we are ever going to see this heading did you? This chapter has been
very long and highly theoretical. We haven't built anything fun and the only code we saw
was to exemplify most of the things we talked about. It was a difficult chapter as it covered
many complex aspects of data storage and handling. But trust me, these things are
important to know and this chapter can serve both as a starting point to dig deeper into the
code and a reference to get back to when unsure of certain aspects.

We saw what the main options for storing data in Drupal 8 are. Ranging from the State API
all the way to entities, you have a host of alternatives. After covering the more simple ways,
such as the State API, the private and shared tempstores and the UserData API, we dove a
bit more into the configuration system which is a very important one to understand. There,
we saw what kinds of configuration types we have, how to work with simple configuration,
how it's managed and stored, and so on. Finally, in what is arguably the most complex part
of the chapter, we looked at entities, both content and configuration. Just as you were
recovering from reading all about how entity types are plugins with so many options, I hit
you with the TypedData API. But right after that we put it to good use and saw how we can
interact with entities--query, load, manipulate and validate data based on TypedData.

In the next chapter, we will apply in a very practical way a lot of the knowledge we learned
in this one, especially related to content and configuration entities, but also plugin types
and so on. So, that should be much more enjoyable, as we are going to create a new module
that actually does something useful.

7
Your Own Custom Entity and

Plugin Types
I am sure that you are looking forward to applying some of the knowledge gained from the
previous chapters and do something practical and fun. As promised, in this chapter, we will
do just that. Also, apart from implementing our own entity types, we will cover some new
things as well. So, here's the game plan.

The premise is that we want to have products on our site that hold some basic product
information, such as an ID, a name, and a product number. However, these products need
to somehow get into our site. One way will be manual entry. Another, more important way
will be through an import from multiple external sources (such as a JSON endpoint). Now,
things will be kept simple. For all intents and purposes, these products aren't going to do
much, so don't expect an e-commerce solution being laid out for you. Instead, we will
practice modeling data and functionality in Drupal 8.

First, we will create a simple content entity type to represent our products. In doing so, we
will make sure that we can use the UI to create, edit, and delete these products with ease by
taking advantage of many Entity API benefits available out of the box.

Second, we will model our importing functionality. One side of the coin will be creating a
simple configuration entity type to represent the configuration needed for our various
importers. Again, we will make use of the Entity API for quick scaffolding and entity
management. The other side will be creating a custom plugin type that will actually
perform the import based on the configuration found in the entities. As such, these will be
linked from the direction of the config entities, which will choose to use one plugin or
another.

Your Own Custom Entity and Plugin Types

[204]

So, these are the highlights. In building all this, we will see much of what is needed to
define a content and configuration entity type with fields to hold data and configuration, as
well as a plugin type to encapsulate logic. When defining these things, we will go through
the manual, more tedious, route to make sure that we understand what each component
does and we are comfortable with what we are doing. Once you know all that, you'll be able
to greatly speed up these processes using the Drupal Console to automatically generate
much of the boilerplate code.

The code we write in this chapter will go inside a new module called products. Since we
have learned how to create a module from scratch, I will not cover the initial steps needed
for getting started with it.

Custom content entity type
As we saw in the preceding chapter, when looking at the Node and NodeType entity types,
entity type definitions belong inside the Entity folder of our module's namespace. In there,
we will create a class called Product, which will have an annotation at the top to tell
Drupal this is a content entity type. This is the most important part in defining a new entity
type:

namespace Drupal\products\Entity;

use Drupal\Core\Entity\ContentEntityBase;
use Drupal\Core\Entity\EntityChangedTrait;
use Drupal\Core\Entity\EntityTypeInterface;
use Drupal\Core\Field\BaseFieldDefinition;

/**
 * Defines the Product entity.
 *
 * @ContentEntityType(
 * id = "product",
 * label = @Translation("Product"),
 * handlers = {
 * "view_builder" = "Drupal\Core\Entity\EntityViewBuilder",
 * "list_builder" = "Drupal\products\ProductListBuilder",
 *
 * "form" = {
 * "default" = "Drupal\products\Form\ProductForm",
 * "add" = "Drupal\products\Form\ProductForm",
 * "edit" = "Drupal\products\Form\ProductForm",
 * "delete" = "Drupal\Core\Entity\ContentEntityDeleteForm",
 * },
 * "route_provider" = {

Your Own Custom Entity and Plugin Types

[205]

 * "html" = "Drupal\Core\Entity\Routing\AdminHtmlRouteProvider"
 * }
 * },
 * base_table = "product",
 * admin_permission = "administer site configuration",
 * entity_keys = {
 * "id" = "id",
 * "label" = "name",
 * "uuid" = "uuid",
 * },
 * links = {
 * "canonical" = "/admin/structure/product/{product}",
 * "add-form" = "/admin/structure/product/add",
 * "edit-form" = "/admin/structure/product/{product}/edit",
 * "delete-form" = "/admin/structure/product/{product}/delete",
 * "collection" = "/admin/structure/product",
 * }
 *)
 */
class Product extends ContentEntityBase implements ProductInterface {}

In the preceding code block, I omitted the actual contents of the class to first focus on the
annotation and some other aspects. We will see the rest of it shortly. However, the entire
working code can be found in the accompanying repository.

If you remember from the preceding chapter, we have the ContentEntityType annotation
with the entity type plugin definition. Our example is relatively barebones compared to
Node, for example, because I wanted to keep things simple. It has no bundles and is not
revisionable, nor translatable. Also, for some of its handlers, we fall back to Entity API
defaults.

The entity type ID and label are immediately visible, so no need to explain that; however,
we can instead skip to the handlers section.

For the view builder handler, we choose to default to the basic EntityViewBuilder
because there is nothing our products especially need for being rendered. Many times, this
will be enough, but you can also extend this class and create your own.

For the list builder, although still keeping things simple, we needed our own
implementation in order to take care of things such as the list headers. We will see this class
soon. The form handler to create and edit products is our own implementation found inside
the Form namespace of our module, and we will see it soon to get a better understanding.
We rely on Drupal 8 to help us out with the delete form, though.

Your Own Custom Entity and Plugin Types

[206]

Finally, for the route provider, we used the default AdminHtmlRouteProvider, which
takes care of all the routes necessary for an entity type to be managed in the admin UI. This
means that we no longer need to do anything for routing the links referenced in the links
section of the annotation. Speaking of links, it makes sense to place them under the
admin/structure section of our administration for our example, but you can choose
another place if you want.

The database table our products will be stored in is products, and the permission needed
for users to manage them is administer site configuration. I have purposefully
omitted creating permissions specific to this entity type because we will cover this topic in a
chapter dedicated to access.

Finally, we also have some basic entity keys to map to the respective fields.

Our Product class extends the ContentEntityBase class to inherit all the necessary stuff
from the API and implements our very own ProductInterface, which will contain all the
methods used to access relevant field values. Let's create that one real quick in the same
Entity folder:

namespace Drupal\products\Entity;

use Drupal\Core\Entity\ContentEntityInterface;
use Drupal\Core\Entity\EntityChangedInterface;

/**
 * Represents a Product entity.
 */
interface ProductInterface extends ContentEntityInterface,
EntityChangedInterface {

 /**
 * Gets the Product name.
 *
 * @return string
 */
 public function getName();

 /**
 * Sets the Product name.
 *
 * @param string $name
 *
 * @return \Drupal\products\Entity\ProductInterface
 * The called Product entity.
 */
 public function setName($name);

Your Own Custom Entity and Plugin Types

[207]

 /**
 * Gets the Product number.
 *
 * @return int
 */
 public function getProductNumber();

 /**
 * Sets the Product number.
 *
 * @param int $number
 *
 * @return \Drupal\products\Entity\ProductInterface
 * The called Product entity.
 */
 public function setProductNumber($number);

 /**
 * Gets the Product remote ID.
 *
 * @return string
 */
 public function getRemoteId();

 /**
 * Sets the Product remote ID.
 *
 * @param string $id
 *
 * @return \Drupal\products\Entity\ProductInterface
 * The called Product entity.
 */
 public function setRemoteId($id);

 /**
 * Gets the Product source.
 *
 * @return string
 */
 public function getSource();

 /**
 * Sets the Product source.
 *
 * @param string $source
 *
 * @return \Drupal\products\Entity\ProductInterface
 * The called Product entity.

Your Own Custom Entity and Plugin Types

[208]

 */
 public function setSource($source);

 /**
 * Gets the Product creation timestamp.
 *
 * @return int
 */
 public function getCreatedTime();

 /**
 * Sets the Product creation timestamp.
 *
 * @param int $timestamp
 *
 * @return \Drupal\products\Entity\ProductInterface
 * The called Product entity.
 */
 public function setCreatedTime($timestamp);
}

As you can see, we are extending the obligatory ContentEntityInterface but also the
EntityChangedInterface, which provides some handy methods to manage the last
changed date of the entities. Those method implementations will be added to our Product
class via the EntityChangedTrait:

use EntityChangedTrait;

The methods on the ProductInterface are relatively self-explanatory. We will have a
product name, number, remote ID, and source field, so it's nice to have getters and setters
for those. If you remember, the Entity API provides the get() and set() methods using
which we can consistently access and store field values across all entity types. However, I
find that using an interface with well-defined methods makes code much clearer, not to
mention that IDE autocompletion is a great time-saver. We also have a getter and setter for
the created date field, which is a typical field content entities have.

Now, we can take a look at the baseFieldDefinitions() method of our Product entity
type and see how we actually defined these fields:

public static function baseFieldDefinitions(EntityTypeInterface
$entity_type) {
 $fields = parent::baseFieldDefinitions($entity_type);

 $fields['name'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Name'))
 ->setDescription(t('The name of the Product.'))

Your Own Custom Entity and Plugin Types

[209]

 ->setSettings([
 'max_length' => 255,
 'text_processing' => 0,
])
 ->setDefaultValue('')
 ->setDisplayOptions('view', [
 'label' => 'hidden',
 'type' => 'string',
 'weight' => -4,
])
 ->setDisplayOptions('form', [
 'type' => 'string_textfield',
 'weight' => -4,
])
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

 $fields['number'] = BaseFieldDefinition::create('integer')
 ->setLabel(t('Number'))
 ->setDescription(t('The Product number.'))
 ->setSettings([
 'min' => 1,
 'max' => 10000
])
 ->setDefaultValue(NULL)
 ->setDisplayOptions('view', [
 'label' => 'above',
 'type' => 'number_unformatted',
 'weight' => -4,
])
 ->setDisplayOptions('form', [
 'type' => 'number',
 'weight' => -4,
])
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

 $fields['remote_id'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Remote ID'))
 ->setDescription(t('The remote ID of the Product.'))
 ->setSettings([
 'max_length' => 255,
 'text_processing' => 0,
])
 ->setDefaultValue('');

 $fields['source'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Source'))

Your Own Custom Entity and Plugin Types

[210]

 ->setDescription(t('The source of the Product.'))
 ->setSettings([
 'max_length' => 255,
 'text_processing' => 0,
])
 ->setDefaultValue('');

 $fields['created'] = BaseFieldDefinition::create('created')
 ->setLabel(t('Created'))
 ->setDescription(t('The time that the entity was created.'));

 $fields['changed'] = BaseFieldDefinition::create('changed')
 ->setLabel(t('Changed'))
 ->setDescription(t('The time that the entity was last edited.'));

 return $fields;
 }

First and foremost, we will need to inherit the base fields of the parent class. This includes
things such as the ID and UUID fields.

Second, we define our own fields, starting with the product name field, which is of the
string type. This string type is nothing more than a FieldType plugin I mentioned in
the preceding chapter. If you remember, this plugin extends a TypedData class itself. Apart
from the obvious label and description, it has some settings, most notably a maximum
length for the value, which is 255 characters. The view and form display options reference
FieldFormatter and FieldWidget plugins, respectively, which together with the
FieldType make up a field. Lastly, with the setDisplayConfigurable(), we state that
some of the options on this field should be configurable through the UI. For example, we
can change the label in the UI.

Then, we have the number field that is of the integer type and for this example is
restricted to a number between 1 and 10,000. This restriction setting turns into a constraint
under the hood. The rest of the options are similar to the name field.

Next, we have the remote_id string field, but it doesn't have any widget or display settings
because we don't necessarily want to display or edit this value. It is mostly for internal use
to keep track of the product ID of the remote source it came from. Similarly, the source
string field is also not displayed or configurable because we want to use it to store the
source of the product, where it has been imported from and also to keep track
programmatically.

Your Own Custom Entity and Plugin Types

[211]

Finally, the created and changed fields are special fields that store the timestamps for
when the entity is created and modified. Not much more than that is needed to do because
these fields automatically set the current timestamps as necessary as the field values.

By now, we can also see the rest of the class contents, which is mostly made up of the
methods required by the ProductInterface:

 use EntityChangedTrait;

 /**
 * {@inheritdoc}
 */
 public function getName() {
 return $this->get('name')->value;
 }

 /**
 * {@inheritdoc}
 */
 public function setName($name) {
 $this->set('name', $name);
 return $this;
 }

 /**
 * {@inheritdoc}
 */
 public function getProductNumber() {
 return $this->get('number')->value;
 }

 /**
 * {@inheritdoc}
 */
 public function setProductNumber($number) {
 $this->set('number', $number);
 return $this;
 }

 /**
 * {@inheritdoc}
 */
 public function getRemoteId() {
 return $this->get('remote_id')->value;
 }

 /**

Your Own Custom Entity and Plugin Types

[212]

 * {@inheritdoc}
 */
 public function setRemoteId($id) {
 $this->set('remote_id', $id);
 return $this;
 }

 /**
 * {@inheritdoc}
 */
 public function getSource() {
 return $this->get('source')->value;
 }

 /**
 * {@inheritdoc}
 */
 public function setSource($source) {
 $this->set('source', $source);
 return $this;
 }

 /**
 * {@inheritdoc}
 */
 public function getCreatedTime() {
 return $this->get('created')->value;
 }

 /**
 * {@inheritdoc}
 */
 public function setCreatedTime($timestamp) {
 $this->set('created', $timestamp);
 return $this;
 }

As promised, we are making use of the EntityChangedTrait to handle the changed field
and implement simple getters and setters for the values found in the fields we defined as
base fields. If you remember the TypedData section, the way we access a value (since the
cardinality is always 1 for these fields) is by running the following command:

$this->get('field_name')->value

Your Own Custom Entity and Plugin Types

[213]

Let's now move through the Entity type plugin annotation and create the handlers we've
been referencing there. Also, we can start with the list builder, which we can place at the
root of our namespace:

namespace Drupal\products;

use Drupal\Core\Entity\EntityInterface;
use Drupal\Core\Entity\EntityListBuilder;
use Drupal\Core\Link;
use Drupal\Core\;Url;

/**
 * EntityListBuilderInterface implementation responsible for the Product
entities.
 */
class ProductListBuilder extends EntityListBuilder {

 /**
 * {@inheritdoc}
 */
 public function buildHeader() {
 $header['id'] = $this->t('Product ID');
 $header['name'] = $this->t('Name');
 return $header + parent::buildHeader();
 }

 /**
 * {@inheritdoc}
 */
 public function buildRow(EntityInterface $entity) {
 /* @var $entity \Drupal\products\Entity\Product */
 $row['id'] = $entity->id();
 $row['name'] = Link::fromTextAndUrl(
 $entity->label(),
 new Url(
 'entity.product.canonical', [
 'product' => $entity->id(),
]
)
);
 return $row + parent::buildRow($entity);
 }

}

Your Own Custom Entity and Plugin Types

[214]

The purpose of this handler is to build the administration page that lists the available
entities. On this page, we will then have some info about the entities and operation links to
edit and delete and whatever else we might need. For our products, we will simply extend
from the default EntityListBuilder class, but override the buildHeader() and
builderRow() methods to add some information specific to our products. The names of
these methods are self-explanatory, but one thing to keep in mind is that keys from the
$header array we return need to match the keys from the $row array we return. Also, of
course, the arrays need to have the same number of records so that the table header matches
the individual rows. If you look inside EntityListBuilder, you note some other handy
methods you might want to override, such as the one that builds the query and the one that
loads the entities. For us, this is enough.

Our Products list builder will have, for now, only two columns--the ID and the name. For
the latter, each row will be actually a link to the Product canonical URL (the main URL for
this entity in Drupal). The construct for this route is in the
entity.[entity_type].canonical format. Other useful entity links can be built by
replacing the word canonical with the keys from the links definition of the Entity type
plugin annotation. Finally, you remember, from Chapter 2, Creating Your First Module, how
to build links with the Link class, right?

That is pretty much it for the list builder, and we can move on to the form handler. Since
creating and editing an entity share so much in terms of what we need in the form, we use
the same ProductForm for both those operations. Let's create that form class now:

namespace Drupal\products\Form;

use Drupal\Core\Entity\ContentEntityForm;
use Drupal\Core\Form\FormStateInterface;

/**
 * Form for creating/editing Product entities.
 */
class ProductForm extends ContentEntityForm {

 /**
 * {@inheritdoc}
 */
 public function buildForm(array $form, FormStateInterface $form_state) {
 /* @var $entity \Drupal\products\Entity\Product */
 $form = parent::buildForm($form, $form_state);
 return $form;
 }

 /**
 * {@inheritdoc}

Your Own Custom Entity and Plugin Types

[215]

 */
 public function save(array $form, FormStateInterface $form_state) {
 $entity = &$this->entity;

 $status = parent::save($form, $form_state);

 switch ($status) {
 case SAVED_NEW:
 drupal_set_message($this->t('Created the %label Product.', [
 '%label' => $entity->label(),
]));
 break;

 default:
 drupal_set_message($this->t('Saved the %label Product.', [
 '%label' => $entity->label(),
]));
 }
 $form_state->setRedirect('entity.product.canonical', ['product' =>
$entity->id()]);
 }

}

We extend ContentEntityForm, which is a specialized form class for content entities. It
itself extends EntityForm, which then subclasses the FormBase we’ve already encountered
in Chapter 2, Creating Your First Module. However, the former two give us a lot of
functionalities needed to manage our entities without writing much code ourselves.

First, inside the buildForm() method, we will do nothing--not a thing. We might if we
wanted to, but the parent classes are smart enough to read our Product entity and prepare
all the necessary form elements with the right widgets (FieldWidget plugins) to build our
form. Second, we skip the submit and validate handlers because there is nothing we need to
do in them for our products. The only thing we actually want to do is override the save()
method in order to write a message to the user informing them that the product has either
been created or updated. This we can deduce because the EntityInterface::save()
method returns a specific constant to denote the type of saving that happened. Lastly, we
also want to redirect to the canonical URL of the product entity. This we do with a very
handy method on the FormStateInterface by which we can specify a route (and any
necessary parameters), and it will make sure that when the form is submitted, the user will
be redirected to that route. Neat, isn't it?

Your Own Custom Entity and Plugin Types

[216]

As I mentioned, for the delete operation, we just use the ContentEntityDeleteForm,
which does all we need--it presents a confirmation form where we submit and trigger the
delete. This is a typical flow for deleting resources in Drupal. As we will see a bit later, for
configuration entities, there will be some methods we will need to write ourselves for this
same process to happen.

All our handlers are done now, and our product entity type is operational. However, in
order to be able to work with it, let's create some links in the admin menu for being able to
easily manage them. First, create the products.links.menu.yml file:

Product entity menu items
entity.product.collection:
 title: 'Product list'
 route_name: entity.product.collection
 description: 'List Product entities'
 parent: system.admin_structure
 weight: 100

This defines a menu link under the Structure link for the product list (the page built with
our list builder handler).

Next, let's create some local tasks (tabs) so that we get handy links on the product page to
edit and delete the product entity. So, inside the products.links.task.yml file:

Product entity task items
entity.product.canonical:
 route_name: entity.product.canonical
 base_route: entity.product.canonical
 title: 'View'

entity.product.edit_form:
 route_name: entity.product.edit_form
 base_route: entity.product.canonical
 title: 'Edit'

entity.product.delete_form:
 route_name: entity.product.delete_form
 base_route: entity.product.canonical
 title: Delete
 weight: 10

Your Own Custom Entity and Plugin Types

[217]

You remember this from Chapter 5, Menus and Menu Links, don't you? The base route is
always the canonical route for the entity, which essentially groups the tabs together. Then,
the routes we use for the other two tasks are the edit_form and delete_form links of the
entity type. You can refer to the links section of the Entity type plugin annotation to
understand where these come from. The reason we don't need to specify any parameters
here (since those routes do require a product ID) is because the base route has that
parameter already in the URL. So, the tasks will use that one.

Finally, we also want an action link to create a new product entity, which will be on the
product list page. So, inside the products.links.action.yml file:

entity.product.add_form:
 route_name: entity.product.add_form
 title: 'Add Product'
 appears_on:
 - entity.product.collection

Again, none of this should be new, as we covered it in detail in Chapter 5, Menus and Menu
Links.

We are finally done. If the products module was enabled on your site before writing all the
entity code, you will need to run the drush entity-updates command in order for all the
necessary tables to be created in the database. Otherwise, installing the module will do that
automatically. However, keep the first point in mind for when you add new content entity
types and fields or even change existing fields on an entity type. The underlying storage
might need to be changed to accommodate your modifications. Moreover, another thing to
keep in mind is that changing fields that already have data in them will not be okay with
Drupal and will prevent you from making those changes. So, you might need to delete
existing entities.

Now that we've done that, we can go to admin/structure/product and take a look at
our (empty) product entity list:

Your Own Custom Entity and Plugin Types

[218]

We can now create new products, edit them, and finally delete them. Remember, due to our
field configuration, the manual product creation/edit does not permit the remote_id and
source fields to be managed. For our purpose, we want those to be only programmatically
available since any manual products will be considered as not needing that data. For
example, if we want to make the source field show up as a form widget, all we have to do is
change its base field definition to this:

$fields['source'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Source'))
 ->setDescription(t('The source of the Product.'))
 ->setSettings([
 'max_length' => 255,
 'text_processing' => 0,
])
 ->setDefaultValue('')
 ->setDisplayOptions('form', [
 'type' => 'string_textfield',
 'weight' => -4,
]);

Also, we need to clear the cache. This will make the form element for the source field show
up, but the value will still not be displayed on the canonical page of the entity because we
have not set any view display options. In other words, we have not chosen a formatter.

However, in any case, our product entity is ready to store data, and all the TypedData APIs
we practiced in the preceding chapter with the Node entity type will work just as well with
this one. So, we can now turn to writing our importer logic to get some remote products
into our website.

Custom plugin type
Since pretty much the second page of this book, you've been reading about how important
plugins are and how widely they are used in Drupal 8. I have backed that claim with
references to "this or that" being a plugin in basically every chapter. However, I have not
really explained how you can create your own custom plugin type. However, since our
importer logic is a perfect candidate for plugins, I will do so here, and to exemplify the
theory, we will implement an Importer plugin type.

Your Own Custom Entity and Plugin Types

[219]

The very first thing a plugin type needs is a manager service. This is responsible for
bringing together two critical aspects of plugins (but not only)--discovery and factory
(instantiation). For these two tasks, it delegates to specialized objects. The most common
way of discovery is through annotations (AnnotatedClassDiscovery), and the most
common factory is the container-aware one--ContainerFactory. So, essentially, the
manager is the central player that finds and processes all the plugin definitions and
instantiates plugins. Also, it does so with the help of those other guys.

Many plugin types in Drupal 8, since they follow the defaults I mentioned before, use the
DefaultPluginManager, or should I say, they extend this class. It provides them with the
annotated discovery and container-aware factory. So, that is what we will do as well and
see how simple it is to create a plugin type manager.

Typically, it lives in the Plugin namespace of the module, so ours can look like this:

namespace Drupal\products\Plugin;

use Drupal\Core\Plugin\DefaultPluginManager;
use Drupal\Core\Cache\CacheBackendInterface;
use Drupal\Core\Extension\ModuleHandlerInterface;

/**
 * Provides the Importer plugin manager.
 */
class ImporterManager extends DefaultPluginManager {

 /**
 * ImporterManager constructor.
 *
 * @param \Traversable $namespaces
 * An object that implements \Traversable which contains the root paths
 * keyed by the corresponding namespace to look for plugin
implementations.
 * @param \Drupal\Core\Cache\CacheBackendInterface $cache_backend
 * Cache backend instance to use.
 * @param \Drupal\Core\Extension\ModuleHandlerInterface $module_handler
 * The module handler to invoke the alter hook with.
 */
 public function __construct(\Traversable $namespaces,
CacheBackendInterface $cache_backend, ModuleHandlerInterface
$module_handler) {
 parent::__construct('Plugin/Importer', $namespaces, $module_handler,
'Drupal\products\Plugin\ImporterInterface',
'Drupal\products\Annotation\Importer');

 $this->alterInfo('products_importer_info');

Your Own Custom Entity and Plugin Types

[220]

 $this->setCacheBackend($cache_backend, 'products_importer_plugins');
 }
}

Aside from extending the DefaultPluginManager, we will need to override the
constructor and re-call the parent constructor with some parameters specific to our plugins.
This is the most important part, and in order, these are the following (omitting the ones that
are simply passed through):

The relative namespace where plugins of this type will be found--in this case, in
the Plugin/Importer folder
The interface each plugin of this type needs to implement--in our case, the
Drupal\products\Plugin\ImporterInterface (which we have to create)
The annotation class used by our plugin type (the one whose class properties
map to the possible annotation properties found in the docblock about the plugin
class)--in our case, Drupal\products\Annotation\Importer (which we have
to create)

In addition to calling the parent constructor with these options, we will need to provide the
"alter" hook for the available definitions. This will make it possible for other modules to
implement this hook and alter the found plugin definitions. The resulting hook in our case
is hook_products_importer_info_alter.

Lastly, we also provide a specific cache key for the backend responsible for caching the
plugin definitions. This is for increased performance as you already should know by now,
creating a new plugin requires clearing the cache.

That's it with our manager. However, since this is a service, we will need to register it as
such inside the products.service.yml file:

services:
 products.importer_manager:
 class: Drupal\products\Plugin\ImporterManager
 parent: default_plugin_manager

As you noted, we inherit the dependencies (arguments) from the
default_plugin_manager service instead of duplicating them here again. If you
remember from Chapter 3, Logging and Mailing, this is a neat little trick in Drupal 8.

Now, since we referenced some classes in the manager, we will need to create them. Let's
start with the annotation class:

namespace Drupal\products\Annotation;

Your Own Custom Entity and Plugin Types

[221]

use Drupal\Component\Annotation\Plugin;

/**
 * Defines a Importer item annotation object.
 *
 * @see \Drupal\products\Plugin\ImporterManager
 *
 * @Annotation
 */
class Importer extends Plugin {

 /**
 * The plugin ID.
 *
 * @var string
 */
 public $id;

 /**
 * The label of the plugin.
 *
 * @var \Drupal\Core\Annotation\Translation
 *
 * @ingroup plugin_translatable
 */
 public $label;
}

This class needs to extend Drupal\Component\Annotation\Plugin, which is the base
class for annotations and implements AnnotationInterface.

For our purpose, we keep it simple. All we need is a plugin ID and a label. If we wanted to,
we could add more properties to this class and describe them. It's a standard practice to do
so because otherwise there is no way to know which properties a plugin annotation can
contain.

Next, let's also write the interface the plugins are required to implement:

namespace Drupal\products\Plugin;

use Drupal\Component\Plugin\PluginInspectionInterface;

/**
 * Defines an interface for Importer plugins.
 */
interface ImporterInterface extends PluginInspectionInterface {

Your Own Custom Entity and Plugin Types

[222]

 /**
 * Performs the import. Returns TRUE if the import was successful or
FALSE otherwise.
 *
 * @return bool
 */
 public function import();
}

Again, we keep it simple. For now, our importer will have only one method specific to it:
import(). However, it will have other methods specific to plugins, which can be found in
the PluginInspectionInterface we are extending. These are getPluginId() and
getPluginDefinition() and are also quite important as the system expects to be able to
get this info from the plugins.

Then, plugins of any type need to extend PluginBase because it contains a host of
mandatory implemented methods (such as the ones I mentioned before). However, it is also
a best practice for the module that introduces a plugin type to also provide a base plugin
class that plugins can extend. Its goal is to extend PluginBase and also provide all the
necessary logic needed by all the plugins of this type. For example, when we create a new
Block, we extend BlockBase, which somewhere down the line extends PluginBase.

In our case, this base (abstract) class can look something like this:

namespace Drupal\products\Plugin;

use Drupal\Component\Plugin\Exception\PluginException;
use Drupal\Component\Plugin\PluginBase;
use Drupal\Core\Entity\EntityTypeManager;
use Drupal\Core\Plugin\ContainerFactoryPluginInterface;
use Drupal\products\Entity\ImporterInterface;
use Drupal\products\Plugin\ImporterInterface as ImporterPluginInterface;
use GuzzleHttp\Client;
use Symfony\Component\DependencyInjection\ContainerInterface;

/**
 * Base class for Importer plugins.
 */
abstract class ImporterBase extends PluginBase implements
ImporterPluginInterface, ContainerFactoryPluginInterface {

 /**
 * @var \Drupal\Core\Entity\EntityTypeManager
 */
 protected $entityTypeManager;

Your Own Custom Entity and Plugin Types

[223]

 /**
 * @var \GuzzleHttp\Client
 */
 protected $httpClient;

 /**
 * {@inheritdoc}
 */
 public function __construct(array $configuration, $plugin_id,
$plugin_definition, EntityTypeManager $entityTypeManager, Client
$httpClient) {
 parent::__construct($configuration, $plugin_id, $plugin_definition);
 $this->entityTypeManager = $entityTypeManager;
 $this->httpClient = $httpClient;

 if (!isset($configuration['config'])) {
 throw new PluginException('Missing Importer configuration.');
 }

 if (!$configuration['config'] instanceof ImporterInterface) {
 throw new PluginException('Wrong Importer configuration.');
 }
 }

 /**
 * {@inheritdoc}
 */
 public static function create(ContainerInterface $container, array
$configuration, $plugin_id, $plugin_definition) {
 return new static(
 $configuration,
 $plugin_id,
 $plugin_definition,
 $container->get('entity_type.manager'),
 $container->get('http_client')
);
 }
}

We implement ImporterInterface (renamed to prevent collision) to require subclasses to
have the import() method. However, we also make the plugins container aware and has
already injected some helpful services. One is the EntityTypeManager because we expect
all importers to need it. The other is the Guzzle HTTP Client that we use in Drupal 8 to
make PSR-7 requests to external resources.

Your Own Custom Entity and Plugin Types

[224]

Adding this here is a judgment call. We can imagine more than one plugin needing external
requests, but if it turns out they don't, we should surely remove it and add it only in that
specific plugin. The opposite also holds true. If in the third plugin implementation, we
identify another common service, we can remove it from the plugins and inject it here.

Before talking about those exceptions we're throwing in the constructor, it's important to
know how the plugin manager creates a new instance of a plugin. It uses its
createInstance() method, which takes a plugin ID as a first parameter and an option
array of plugin configuration as a second parameter. The relevant factory then passes that
array of configuration as a first parameter of the plugin constructor itself. Many times, this
is empty. However, for our plugin type, we will need configuration to be passed to the
plugin in the form of a configuration Entity (which we have to create next). Without such an
entity, we want the plugins to fail because they cannot work without the instructions found
in this entity. So, in the constructor, we check whether the $configuration['config'] is
an instance of Drupal\products\Entity\ImporterInterface, which will be the
interface our configuration entity will implement.

Our plugin type is for now complete. Obviously, we don't have any plugins yet, and before
we create one, let's create the configuration entity type first.

Custom configuration entity type
Remember NodeType from the preceding chapter, and, by now, you know the essentials of
creating custom entity types. So, let's create our Importer type now. Like before, we start
with the annotation part, which is this time a ConfigEntityType:

namespace Drupal\products\Entity;

use Drupal\Core\Config\Entity\ConfigEntityBase;
use Drupal\Core\Url;

/**
 * Defines the Importer entity.
 *
 * @ConfigEntityType(
 * id = "importer",
 * label = @Translation("Importer"),
 * handlers = {
 * "list_builder" = "Drupal\products\ImporterListBuilder",
 * "form" = {
 * "add" = "Drupal\products\Form\ImporterForm",
 * "edit" = "Drupal\products\Form\ImporterForm",
 * "delete" = "Drupal\products\Form\ImporterDeleteForm"

Your Own Custom Entity and Plugin Types

[225]

 * },
 * "route_provider" = {
 * "html" = "Drupal\Core\Entity\Routing\AdminHtmlRouteProvider",
 * },
 * },
 * config_prefix = "importer",
 * admin_permission = "administer site configuration",
 * entity_keys = {
 * "id" = "id",
 * "label" = "label",
 * "uuid" = "uuid"
 * },
 * links = {
 * "add-form" = "/admin/structure/importer/add",
 * "edit-form" = "/admin/structure/importer/{importer}/edit",
 * "delete-form" = "/admin/structure/importer/{importer}/delete",
 * "collection" = "/admin/structure/importer"
 * }
 *)
 */
class Importer extends ConfigEntityBase implements ImporterInterface {}

Similar to the Product entity, we will need to create a list builder handler, as well as form
handlers. In this case, though, we also need to create a form handler for the delete
operation as we will soon see why. Finally, since we have a configuration entity, we also
specify a config_prefix to be used in the exporting. One thing you'll note is that we don't
have a canonical link because we don't really need one--our entities don't need a details
page.

Now, it's time to create the ImporterInterface that the entities need to implement. It is
named the same as the plugin interface we created earlier, but it resides in a different
namespace:

namespace Drupal\products\Entity;

use Drupal\Core\Config\Entity\ConfigEntityInterface;
use Drupal\Core\Url;

/**
 * Importer configuration entity.
 */
interface ImporterInterface extends ConfigEntityInterface {

 /**
 * Returns the Url where the import can get the data from.
 *
 * @return Url

Your Own Custom Entity and Plugin Types

[226]

 */
 public function getUrl();

 /**
 * Returns the Importer plugin ID to be used by this importer.
 *
 * @return string
 */
 public function getPluginId();

 /**
 * Whether or not to update existing products if they have already been
imported.
 *
 * @return bool
 */
 public function updateExisting();

 /**
 * Returns the source of the products.
 *
 * @return string
 */
 public function getSource();
}

In these configuration entities, we want to store, for now, a URL to the resource where the
products can be retrieved from, the ID of the Importer plugin to use, whether we want
existing products to be updated if they had already been imported, and the source of the
products. For all these fields, we create some getter methods. You'll note that getUrl()
needs to return a Url instance. Again, we create a well-defined interface for the public API
of the entity type as we did with the product entity type.

This is what the Importer class that implements this interface looks like:

 /**
 * The Importer ID.
 *
 * @var string
 */
 protected $id;

 /**
 * The Importer label.
 *
 * @var string
 */

Your Own Custom Entity and Plugin Types

[227]

 protected $label;

 /**
 * The URL from where the import file can be retrieved.
 *
 * @var string
 */
 protected $url;

 /**
 * The plugin ID of the plugin to be used for processing this import.
 *
 * @var string
 */
 protected $plugin;

 /**
 * Whether or not to update existing products if they have already been
imported.
 *
 * @var bool
 */
 protected $update_existing = TRUE;

 /**
 * The source of the products.
 *
 * @var string
 */
 protected $source;

 /**
 * {@inheritdoc}
 */
 public function getUrl() {
 return $this->url ? Url::fromUri($this->url) : NULL;
 }

 /**
 * {@inheritdoc}
 */
 public function getPluginId() {
 return $this->plugin;
 }

 /**
 * {@inheritdoc}
 */

Your Own Custom Entity and Plugin Types

[228]

 public function updateExisting() {
 return $this->update_existing;
 }

 /**
 * {@inheritdoc}
 */
 public function getSource() {
 return $this->source;
 }

If you remember from the preceding chapter, defining fields on a configuration entity type
is as simple as defining properties on the class itself. Moreover, you may recall the
config_export key on the annotation, that lists which of these properties need to be
exported and persisted. We omitted that because we will simply rely on the configuration
schema (which we will create soon). Lastly, the interface methods are implemented next,
and there is no rocket science involved in that. The getUrl(), as expected, will try to create
an instance of Url from the value.

Since we talked about the configuration schema, let's define that as well. If you remember, it
goes inside the config/schema folder of our module in a *.schema.yml file. This can be
named after the module and contain the schema definitions of all configurations of the
module or after the individual configuration entity type, so, in our case,
importer.schema.yml (to keep things neatly organized):

products.importer.*:
 type: config_entity
 label: 'Importer config'
 mapping:
 id:
 type: string
 label: 'ID'
 label:
 type: label
 label: 'Label'
 uuid:
 type: string
 url:
 type: uri
 label: Uri
 plugin:
 type: string
 label: Plugin ID
 update_existing:
 type: boolean
 label: Whether to update existing products

Your Own Custom Entity and Plugin Types

[229]

 source:
 type: string
 label: The source of the products

If you recall, the wildcard is used to apply the schema to all configuration items that match
the prefix. So, in our case, it will match all importer configuration entities. Next, we have
the config_entity schema with a mapping of the fields we defined. Apart from the
default fields each entity type comes with, we are using a uri, string, and boolean
schema type (which under the hood maps to the corresponding TypedData data type
plugins). This schema now helps the system understand our entities (for example, know
which fields need to be exported).

Now, let's go ahead and create the list builder handler that will take care of the admin entity
listing:

namespace Drupal\products;

use Drupal\Core\Config\Entity\ConfigEntityListBuilder;
use Drupal\Core\Entity\EntityInterface;

/**
 * Provides a listing of Importer entities.
 */
class ImporterListBuilder extends ConfigEntityListBuilder {

 /**
 * {@inheritdoc}
 */
 public function buildHeader() {
 $header['label'] = $this->t('Importer');
 $header['id'] = $this->t('Machine name');
 return $header + parent::buildHeader();
 }

 /**
 * {@inheritdoc}
 */
 public function buildRow(EntityInterface $entity) {
 $row['label'] = $entity->label();
 $row['id'] = $entity->id();
 return $row + parent::buildRow($entity);
 }
}

Your Own Custom Entity and Plugin Types

[230]

This time we are extending the ConfigEntityListBuilder, which provides some
potential functionalities specific to configuration entities. However, we are essentially doing
the same as with the products listing--setting up the table header and the individual row
data, nothing major. I recommend that you inspect ConfigEntityListBuilder and see
what else you can do in the subclass.

Now, we can finally take care of the form handler and start with the default create/edit
form:

namespace Drupal\products\Form;

use Drupal\Core\Entity\EntityForm;
use Drupal\Core\Form\FormStateInterface;
use Drupal\products\Entity\Importer;
use Drupal\products\Plugin\ImporterManager;
use Symfony\Component\DependencyInjection\ContainerInterface;

/**
 * Form for creating/editing Importer entities.
 */
class ImporterForm extends EntityForm {

 /**
 * @var \Drupal\products\Plugin\ImporterManager
 */
 protected $importerManager;

 /**
 * ImporterForm constructor.
 *
 * @param \Drupal\products\Plugin\ImporterManager $importerManager
 */
 public function __construct(ImporterManager $importerManager) {
 $this->importerManager = $importerManager;
 }

 /**
 * {@inheritdoc}
 */
 public static function create(ContainerInterface $container) {
 return new static(
 $container->get('products.importer_manager')
);
 }

 /**
 * {@inheritdoc}

Your Own Custom Entity and Plugin Types

[231]

 */
 public function form(array $form, FormStateInterface $form_state) {
 $form = parent::form($form, $form_state);

 /** @var Importer $importer */
 $importer = $this->entity;

 $form['label'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Name'),
 '#maxlength' => 255,
 '#default_value' => $importer->label(),
 '#description' => $this->t('Name of the Importer.'),
 '#required' => TRUE,
];

 $form['id'] = [
 '#type' => 'machine_name',
 '#default_value' => $importer->id(),
 '#machine_name' => [
 'exists' => '\Drupal\products\Entity\Importer::load',
],
 '#disabled' => !$importer->isNew(),
];

 $form['url'] = [
 '#type' => 'url',
 '#default_value' => $importer->getUrl() instanceof Url ?
$importer->getUrl()->toString() : '',
 '#title' => $this->t('Url'),
 '#description' => $this->t('The URL to the import resource'),
 '#required' => TRUE,
];

 $definitions = $this->importerManager->getDefinitions();
 $options = [];
 foreach ($definitions as $id => $definition) {
 $options[$id] = $definition['label'];
 }

 $form['plugin'] = [
 '#type' => 'select',
 '#title' => $this->t('Plugin'),
 '#default_value' => $importer->getPluginId(),
 '#options' => $options,
 '#description' => $this->t('The plugin to be used with this
importer.'),
 '#required' => TRUE,

Your Own Custom Entity and Plugin Types

[232]

];

 $form['update_existing'] = [
 '#type' => 'checkbox',
 '#title' => $this->t('Update existing'),
 '#description' => $this->t('Whether to update existing products if
already imported.'),
 '#default_value' => $importer->updateExisting(),
];

 $form['source'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Source'),
 '#description' => $this->t('The source of the products.'),
 '#default_value' => $importer->getSource(),
];

 return $form;
 }

 /**
 * {@inheritdoc}
 */
 public function save(array $form, FormStateInterface $form_state) {
 /** @var Importer $importer */
 $importer = $this->entity;
 $status = $importer->save();

 switch ($status) {
 case SAVED_NEW:
 drupal_set_message($this->t('Created the %label Importer.', [
 '%label' => $importer->label(),
]));
 break;

 default:
 drupal_set_message($this->t('Saved the %label Importer.', [
 '%label' => $importer->label(),
]));
 }
 $form_state->setRedirectUrl($importer->toUrl('collection'));
 }

}

Your Own Custom Entity and Plugin Types

[233]

We are extending directly EntityForm in this case because configuration entities don't
have a specific form class like content entities do. For this reason, we also have to
implement the form elements for all our fields inside the form() method, but first things
first.

We know we want the configuration entity to select a plugin to use, so, for this reason, we
inject the ImporterManager we created earlier. We will use it to get all the existing
definitions.

Inside the form() method, we will define all the form elements for the fields. We use a
textfield for the label and a machine_name field for the ID of the entity. The latter is a
special JavaScript-powered field that derives its value from a "source" field (which defaults
to the field label if one is not specified). It is also disabled if we are editing the form and is
using a dynamic callback to try to load an entity by the provided ID and will fail validation
if it exists. This is useful to ensure that IDs do not repeat. Next, we have a url form
element, which does some URL-specific validation and handling to ensure that a proper
URL is added. Then, we create an array of select element options of all the available
Importer plugin definitions. For this, we use the plugin manager getDefinitions() from
which we can get the IDs and labels. A plugin definition is an array that contains primarily
the data found in the annotation and some other data processed and added by the manager
(in our case, only defaults). This is performant because we don't even have to instantiate
plugins to get this information. We use those options on the select list. Finally, we have the
simple checkbox and textfield elements for the last two fields, as we want to store the
update_existing field as a Boolean and the source as a string.

The save() method is pretty much like with the Product entity form; we are simply
displaying a message and redirecting the user to the entity listing page. Since we named the
form elements exactly as the fields, we don't need to do any mapping of the form values to
the fields. That is taken care of for us.

Let's now take care of the delete form handler:

namespace Drupal\products\Form;

use Drupal\Core\Entity\EntityConfirmFormBase;
use Drupal\Core\Form\FormStateInterface;
use Drupal\Core\Url;

/**
 * Form for deleting Importer entities.
 */
class ImporterDeleteForm extends EntityConfirmFormBase {

 /**

Your Own Custom Entity and Plugin Types

[234]

 * {@inheritdoc}
 */
 public function getQuestion() {
 return $this->t('Are you sure you want to delete %name?', ['%name' =>
$this->entity->label()]);
 }

 /**
 * {@inheritdoc}
 */
 public function getCancelUrl() {
 return new Url('entity.importer.collection');
 }

 /**
 * {@inheritdoc}
 */
 public function getConfirmText() {
 return $this->t('Delete');
 }

 /**
 * {@inheritdoc}
 */
 public function submitForm(array &$form, FormStateInterface $form_state)
{
 $this->entity->delete();

 drupal_set_message($this->t('Deleted @entity importer.', ['@entity' =>
$this->entity->label()]));

 $form_state->setRedirectUrl($this->getCancelUrl());
 }
}

As I mentioned earlier, for configuration entities, we will need to implement this form
handler ourselves. However, it's not a big deal because we can extend
EntityConfirmFormBase and just implement some simple methods--in getQuestion(),
we return the string to be used as the question for the confirmation form, whereas in
getConfirmText(), the same goes for the label of the delete button; the route in
getCancelUrl() will be used to redirect it after either a cancellation or a successful delete;
and finally, in the submitForm() method, we simply delete the entity, print a success
message, and redirect it to the URL we set in the getCancelUrl().

Your Own Custom Entity and Plugin Types

[235]

That should take care of our configuration entity type. The last thing we might want to do is
create some menu links to be able to navigate to the relevant pages (same as we did for the
Product entity type). For the entity list page, we can have this in our
products.links.menu.yml file:

Importer entity menu items
entity.importer.collection:
 title: 'Importer'
 route_name: entity.importer.collection
 description: 'List Importer entities'
 parent: system.admin_structure
 weight: 99

There's nothing new here. We can also create the action link to add a new entity inside the
products.links.action.yml file:

entity.importer.add_form:
 route_name: 'entity.importer.add_form'
 title: 'Add Importer'
 appears_on:
 - entity.importer.collection

Same thing here as we did with the Products. However, we won't create local tasks because
we don't have a canonical route for the configuration entities, so we don't really need it.

Now, if we clear our cache and go to admin/structure/importer, we should see the
empty Importer entity listing:

Your Own Custom Entity and Plugin Types

[236]

The Importer plugin
Alright, since all of our setup is in place, we can now go ahead and create our first Importer
plugin. As we defined it in the manager, these need to go in the Plugin/Importer
namespace of modules. So, let's start with a simple JsonImporter that will use a remote
URL resource to import products. This is an example JSON file that will be processed by
this plugin, just for testing purposes:

{
 "products" : [
 {
 "id" : 1,
 "name": "TV",
 "number": 341
 },
 {
 "id" : 2,
 "name": "VCR",
 "number": 123
 },
 {
 "id" : 3,
 "name": "Stereo",
 "number": 234
 }
]
}

I know, VCR right? We have an ID, a name, and a product number. This is all totally made
up information about products just to illustrate the process. So, let's create our
JsonImporter:

namespace Drupal\products\Plugin\Importer;

use Drupal\products\Entity\ImporterInterface;
use Drupal\products\Entity\ProductInterface;
use Drupal\products\Plugin\ImporterBase;

/**
 * Product importer from a JSON format.
 *
 * @Importer(
 * id = "json",
 * label = @Translation("JSON Importer")
 *)
 */
class JsonImporter extends ImporterBase {

Your Own Custom Entity and Plugin Types

[237]

 /**
 * {@inheritdoc}
 */
 public function import() {
 $data = $this->getData();
 if (!$data) {
 return FALSE;
 }

 if (!isset($data->products)) {
 return FALSE;
 }

 $products = $data->products;
 foreach ($products as $product) {
 $this->persistProduct($product);
 }
 return TRUE;
 }

 /**
 * Loads the product data from the remote URL.
 *
 * @return \stdClass
 */
 private function getData() {
 /** @var ImporterInterface $config */
 $config = $this->configuration['config'];
 $request = $this->httpClient->get($config->getUrl()->toString());
 $string = $request->getBody()->getContents();
 return json_decode($string);
 }

 /**
 * Saves a Product entity from the remote data.
 *
 * @param \stdClass $data
 */
 private function persistProduct($data) {
 /** @var ImporterInterface $config */
 $config = $this->configuration['config'];

 $existing =
$this->entityTypeManager->getStorage('product')->loadByProperties(['remote_
id' => $data->id, 'source' => $config->getSource()]);
 if (!$existing) {
 $values = [
 'remote_id' => $data->id,

Your Own Custom Entity and Plugin Types

[238]

 'source' => $config->getSource()
];
 /** @var ProductInterface $product */
 $product =
$this->entityTypeManager->getStorage('product')->create($values);
 $product->setName($data->name);
 $product->setProductNumber($data->number);
 $product->save();
 return;
 }

 if (!$config->updateExisting()) {
 return;
 }

 /** @var ProductInterface $product */
 $product = reset($existing);
 $product->setName($data->name);
 $product->setProductNumber($data->number);
 $product->save();
 }
}

You can immediately spot the Plugin annotation where we specify an ID and a label. We
don't have any other data there we need. Next, by extending ImporterBase, we inherit the
dependent services and ensure that the required interface is implemented. Speaking of
which, we basically just implement the import() method. So, let's break down what we are
doing:

Inside the getData() method, we retrieve the product information from the1.
remote resource. We do so by getting the URL from the Importer configuration
entity and using Guzzle to make a request to that URL. We expect that to be
JSON, so we just decode it as such. Of course, error handling is virtually
nonexistent in this example, and that is not good.

Your Own Custom Entity and Plugin Types

[239]

We loop through the resulting product data and call the persistProduct()2.
method on it. In there, we first check whether we already have the product entity.
We do so using the simple loadByProperties() method on the product entity
storage and try to find products that have the specific source and remote ID. If
one doesn't exist, we create it. This should all be familiar from the preceding
chapter when we looked at manipulating entities. If the product aready exists, we
first check whether according to configuration, we can update it and only do so if
that allows us to. The loadByProperties() method always returns an array of
entities, but since we only expect to have a single product with the same remote
ID and source combination, we simply reset() this array to get to that one
entity. Then, we just set the name and product number on the entity.

As you can see, instead of using the Entity API/TypedData set() method to update the
entity field values, we use our own interface methods. I find that this is much cleaner, more
modern, and an IDE-friendly way because everything is very explicit.

One thing you might notice is the error handling in this import process or more precisely, a
lack thereof. This is because I kept things simple for the purpose of focusing on the current
topic. Normally, you would want to maybe throw and catch some exceptions and definitely
log some messages (both error and success). You know how to do the latter from Chapter
3, Logging and Mailing.

That is pretty much it. We can now create our first Importer entity and make it use this
Importer plugin (after clearing the cache of course):

https://cdp.packtpub.com/drupal_8_module_development/wp-admin/post.php?post=50&action=edit

Your Own Custom Entity and Plugin Types

[240]

The URL in the preceding screenshot is just some local URL where an example JSON file is
found, and we can see the only plugin available to choose, as well as the other entity fields
we created form elements for. By saving this new entity, we can make use of it
programmatically (assuming that the products.json file referenced in the URL exists):

/** @var Importer $config */
$config =
\Drupal::entityTypeManager()->getStorage('importer')->load('my_json_product
_importer');
$plugin =
\Drupal::service('products.importer_manager')->createInstance($config->getP
luginId(), ['config' => $config]);
$plugin->import();

This is it. We first load the importer entity by ID. Then, we use the ImporterManager
service to create a new instance of a plugin using the createInstance() method. Only
one parameter is required for it--the ID of the plugin--but as I said earlier, we want to pass
the configuration entity to it because it depends on it. So we do just that. Then, we call the
import() method on the plugin. After running this code, the product entity listing will
show some shiny new products.

Let's, however, improve things a bit. Since the configuration entities and plugins are so
tightly connected, let's use the plugin manager to do this entire thing rather than having to
first load an entity and request the plugin from it. So, have a method on the plugin manager
where we can pass the configuration entity ID, and it returns an instance of the relevant
plugin; something like this:

 /**
 * Creates an instance of ImporterInterface plugin based on the ID of a
 * configuration entity.
 *
 * @param $id
 * Configuration entity ID
 *
 * @return null|ImporterPluginInterface
 */
 public function createInstanceFromConfig($id) {
 $config = $this->entityTypeManager->getStorage('importer')->load($id);
 if (!$config instanceof ImporterInterface) {
 return NULL;
 }

 return $this->createInstance($config->getPluginId(), ['config' =>
$config]);
 }

Your Own Custom Entity and Plugin Types

[241]

The preceding code block uses two extra use statements at the top:

use Drupal\products\Entity\ImporterInterface;
use Drupal\products\Plugin\ImporterInterface as ImporterPluginInterface;

Here, we essentially do the same thing as before, but we return NULL if there is no
configuration entity found. You can choose to throw an exception if you want instead.
However, as you may have noticed correctly, we also need to inject the
EntityTypeManager into this class, so our constructor changes as well to take it as a last
parameter and set it as a class property. Finally, we will need to alter the service definition
for the plugin manager to add the EntityTypeManager as a dependency:

products.importer_manager:
 class: Drupal\products\Plugin\ImporterManager
 parent: default_plugin_manager
 arguments: ['@entity_type.manager']

As you can see, we keep the parent inheritance key so that all the parent arguments are
taken in. On top, however, we add our own regular arguments key, that will add them
after the ones that come from the parent. So, we will need to ensure that the
EntityTypeManager is the last constructor parameter.

Now, we have simplified things for the client code:

$plugin =
\Drupal::service('products.importer_manager')->createInstanceFromConfig('my
_json_product_importer');
$plugin->import();

All we have to interact with is the plugin manager, and we can directly run the import. This
is in some ways better because our configuration entities are not something we designed for
being used by anyone else. They are simple configuration storage used only by our
Importer plugins.

Content entity bundles
We have written a neat little piece of functionality. There are still improvements that we
can, and will make but those are for later chapters when we cover other topics that we will
need to learn about. Now, however, let's take a step back to our content entity type and
extend our products a bit by enabling bundles. We want to have more than one type of
product that can be imported, bundled, which will be an option to choose when creating an
Importer configuration. However, first, let's make the Product entity type "bundlelable".

Your Own Custom Entity and Plugin Types

[242]

We start by adjusting our Product entity plugin annotation:

/**
 * Defines the Product entity.
 *
 * @ContentEntityType(
 * ...
 * label = @Translation("Product"),
 * bundle_label = @Translation("Product type"),
 * handlers = {
 * ...
 * entity_keys = {
 * ...
 * "bundle" = "type",
 * },
 * ...
 * bundle_entity_type = "product_type",
 * field_ui_base_route = "entity.product_type.edit_form"
 *)
 */

We add a bundle_label for our bundle, an entity key for it that will map to the type field,
the bundle_entity_type that will act as a bundle for the products, and a
field_ui_base_route. This latter option is something we could have added before but
was not necessary. Now, we can (and should) add it because we need a route where we can
configure our Product entities from the point of view of managing UI fields and the
bundles. We'll see these a bit later on.

Moreover, we also need to change something about the links. First, we will need to alter the
add-form link:

"add-form" = "/admin/structure/product/add/{product_type}",

This will now take a product type in the URL to know which bundle we are creating. If you
remember from the preceding chapter when we were creating entities programmatically,
the bundle is a required value from the beginning if the entity type has bundles.

Then, we add a new link, as follows:

"add-page" = "/admin/structure/product/add",

This will go to the initial add-form path, but will list options of available bundles to select
for creating a new Product. Clicking on one of those will take us to the add-form link.

Your Own Custom Entity and Plugin Types

[243]

Since we made these changes, we will also need to make a quick alteration to the product
entity action link to use the add-page instead of add-form route:

entity.product.add_page:
 route_name: entity.product.add_page
 title: 'Add Product'
 appears_on:
 - entity.product.collection

This is required because on the product entity list page (collection URL) we don't have a
product type in context, so we cannot build a path to add-form, nor would it be logical to
do so as we don't know what type of product the user wants to create. As a quick bonus, if
there is only one bundle, Drupal will redirect them to the add-form link of that particular
bundle.

The good thing is that since we specified an entity key for the bundle, we don't have to
define the field that will reference the bundle configuration entity. It will be done for us by
the parent ContentEntityType::baseFieldDefinitions(). So, what is left to do is to
create the ProductType configuration entity type that will serve as product bundles. We
already know more or less how this works. Inside our Entity namespace we start our class
like so:

namespace Drupal\products\Entity;

use Drupal\Core\Config\Entity\ConfigEntityBundleBase;

/**
 * Product type configuration entity type.
 *
 * @ConfigEntityType(
 * id = "product_type",
 * label = @Translation("Product type"),
 * handlers = {
 * "list_builder" = "Drupal\products\ProductTypeListBuilder",
 * "form" = {
 * "add" = "Drupal\products\Form\ProductTypeForm",
 * "edit" = "Drupal\products\Form\ProductTypeForm",
 * "delete" = "Drupal\products\Form\ProductTypeDeleteForm"
 * },
 * "route_provider" = {
 * "html" = "Drupal\Core\Entity\Routing\AdminHtmlRouteProvider",
 * },
 * },
 * config_prefix = "product_type",
 * admin_permission = "administer site configuration",
 * bundle_of = "product",

Your Own Custom Entity and Plugin Types

[244]

 * entity_keys = {
 * "id" = "id",
 * "label" = "label",
 * "uuid" = "uuid"
 * },
 * links = {
 * "canonical" = "/admin/structure/product_type/{product_type}",
 * "add-form" = "/admin/structure/product_type/add",
 * "edit-form" = "/admin/structure/product_type/{product_type}/edit",
 * "delete-form" =
"/admin/structure/product_type/{product_type}/delete",
 * "collection" = "/admin/structure/product_type"
 * }
 *)
 */
class ProductType extends ConfigEntityBundleBase implements
ProductTypeInterface {

 /**
 * The Product type ID.
 *
 * @var string
 */
 protected $id;

 /**
 * The Product type label.
 *
 * @var string
 */
 protected $label;
}

Much of this is exactly the same as when we created the Importer configuration entity type.
The only difference is that we have the bundle_of key in the annotation, which denotes the
content entity type this serves as a bundle for. Also, we don't really need any other fields.
Because of that, the ProductTypeInterface can look as simple as this:

namespace Drupal\products\Entity;

use Drupal\Core\Config\Entity\ConfigEntityInterface;

/**
 * Product bundle interface.
 */
interface ProductTypeInterface extends ConfigEntityInterface {}

Your Own Custom Entity and Plugin Types

[245]

Let's quickly take a look at the individual handlers, which will seem very familiar by now
as well. The list builder looks almost the same as for the Importer:

namespace Drupal\products;

use Drupal\Core\Config\Entity\ConfigEntityListBuilder;
use Drupal\Core\Entity\EntityInterface;

/**
 * List builder for ProductType entities.
 */
class ProductTypeListBuilder extends ConfigEntityListBuilder {

 /**
 * {@inheritdoc}
 */
 public function buildHeader() {
 $header['label'] = $this->t('Product type');
 $header['id'] = $this->t('Machine name');
 return $header + parent::buildHeader();
 }

 /**
 * {@inheritdoc}
 */
 public function buildRow(EntityInterface $entity) {
 $row['label'] = $entity->label();
 $row['id'] = $entity->id();
 return $row + parent::buildRow($entity);
 }
}

The create/edit form handler also looks very similar, albeit much simpler due to not having
many fields on the configuration entity type:

namespace Drupal\products\Form;

use Drupal\Core\Entity\EntityForm;
use Drupal\Core\Form\FormStateInterface;
use Drupal\products\Entity\ProductTypeInterface;

/**
 * Form handler for creating/editing ProductType entities
 */
class ProductTypeForm extends EntityForm {

 /**
 * {@inheritdoc}

Your Own Custom Entity and Plugin Types

[246]

 */
 public function form(array $form, FormStateInterface $form_state) {
 $form = parent::form($form, $form_state);

 /** @var ProductTypeInterface $product_type */
 $product_type = $this->entity;
 $form['label'] = [
 '#type' => 'textfield',
 '#title' => $this->t('Label'),
 '#maxlength' => 255,
 '#default_value' => $product_type->label(),
 '#description' => $this->t('Label for the Product type.'),
 '#required' => TRUE,
];

 $form['id'] = [
 '#type' => 'machine_name',
 '#default_value' => $product_type->id(),
 '#machine_name' => [
 'exists' => '\Drupal\products\Entity\ProductType::load',
],
 '#disabled' => !$product_type->isNew(),
];

 return $form;
 }

 /**
 * {@inheritdoc}
 */
 public function save(array $form, FormStateInterface $form_state) {
 $product_type = $this->entity;
 $status = $product_type->save();

 switch ($status) {
 case SAVED_NEW:
 drupal_set_message($this->t('Created the %label Product type.', [
 '%label' => $product_type->label(),
]));
 break;

 default:
 drupal_set_message($this->t('Saved the %label Product type.', [
 '%label' => $product_type->label(),
]));
 }
 $form_state->setRedirectUrl($product_type->toUrl('collection'));
 }

Your Own Custom Entity and Plugin Types

[247]

}

Speaking of fields, we mustn't forget about the configuration schema:

products.product_type.*:
 type: config_entity
 label: 'Product type config'
 mapping:
 id:
 type: string
 label: 'ID'
 label:
 type: label
 label: 'Label'
 uuid:
 type: string

Lastly, we should remember the form handler for deleting product types:

namespace Drupal\products\Form;

use Drupal\Core\Entity\EntityConfirmFormBase;
use Drupal\Core\Form\FormStateInterface;
use Drupal\Core\Url;

/**
 * Form handler for deleting ProductType entities.
 */
class ProductTypeDeleteForm extends EntityConfirmFormBase {

 /**
 * {@inheritdoc}
 */
 public function getQuestion() {
 return $this->t('Are you sure you want to delete %name?', ['%name' =>
$this->entity->label()]);
 }

 /**
 * {@inheritdoc}
 */
 public function getCancelUrl() {
 return new Url('entity.product_type.collection');
 }

 /**
 * {@inheritdoc}
 */

Your Own Custom Entity and Plugin Types

[248]

 public function getConfirmText() {
 return $this->t('Delete');
 }

 /**
 * {@inheritdoc}
 */
 public function submitForm(array &$form, FormStateInterface $form_state)
{
 $this->entity->delete();

 drupal_set_message($this->t('Deleted @entity product type.', ['@entity'
=> $this->entity->label()]));

 $form_state->setRedirectUrl($this->getCancelUrl());
 }

}

You should already be familiar with what we're doing here.

Now, we are done. We can clear the caches and run the drush entity-updates
command because Drupal needs to create the type field on the product entities. Once that
is done, we can go the UI and see our changes.

We now have a Product type entity listing where we can create Product bundles. Moreover,
we also have some extra operations since this entity type is used as a bundle--we can
manage fields and displays (both for viewing and for the forms) for each individual bundle:

Your Own Custom Entity and Plugin Types

[249]

Managing fields and displays would have been possible before creating the bundle, had we
provided the field_ui_base_route to the Product entity type and created a menu link
for it.

Now we can add fields to our individual bundles and can distinguish between our product
types--for example, we can have a bundle for goods and one for services. We can well
imagine that the two types might require a different set of fields and/or they are being
pulled from different external resources. So, let's just update our importing logic to allow
the selection of a bundle because now it is actually mandatory to specify one when we
attempt to create a Product.

We start by adding a new field to the Importer entity type, first, for the interface change:

 /**
 * Returns the Product type that needs to be created.
 *
 * @return string
 */
 public function getBundle();

Then, we will take a look at the implementation in the class:

 /**
 * The product bundle.
 *
 * @var string
 */
 protected $bundle;
...
 /**
 * {@inheritdoc}
 */
 public function getBundle() {
 return $this->bundle;
 }

Next, we must include the new field in the configuration schema:

...
bundle:
 type: string
 label: The product bundle

Your Own Custom Entity and Plugin Types

[250]

The last thing we will need to do on the Importer entity type is add the form element for
choosing a bundle:

$form['bundle'] = [
 '#type' => 'entity_autocomplete',
 '#target_type' => 'product_type',
 '#title' => $this->t('Product type'),
 '#default_value' => $importer->getBundle() ?
$this->entityTypeManager->getStorage('product_type')->load($importer->getBu
ndle()) : NULL,
 '#description' => $this->t('The type of products that need to be
created.'),
];

Here, we use an entity_autocomplete form element that gives us the possibility to use
an autocomplete text field to look up an existing entity and select one of the found ones.
The ID of the selected entity will then be submitted in the form as the value. This field
definition requires choosing a #target_type, which is the entity type we want to
autocomplete. One thing to note is that even if the submitted value is only the ID (in our
case, a string as expected and which is what we also want to store), the #default_value
requires the full entity object itself (or an array of entity objects). This is because the field
shows more information about the referenced entity than just the ID.

In order to load the referenced entity for the default value, we will need to inject the
EntityTypeManger. You should already know how to do this injection, so I'm not gonna
show it here again. We simply tack on the dependency to the ImporterManager, which is
already being injected.

That should be it for the Importer entity type alterations. The one last thing we need to do is
handle the bundle inside the JsonImporter plugin we wrote. However, this is as simple as
adding the type value when creating the product entity:

if (!$existing) {
 $values = [
 'remote_id' => $data->id,
 'source' => $config->getSource(),
 'type' => $config->getBundle(),
];
 /** @var ProductInterface $product */
 $product =
$this->entityTypeManager->getStorage('product')->create($values);
...

Your Own Custom Entity and Plugin Types

[251]

Here we are. Running the import code will now create products of the bundle specified in
the Importer configuration.

Drush command
So our logic is in place, but we will need to create a handy way we can trigger the imports.
One option is to create an administration form where we go and press a button. However, a
more typical example is a command that can be added to the crontab and that can be run at
specific intervals automatically. So that's what we are going to do now, and we will do so
using Drush.

The Drush command we are going to write will take an optional parameter for the ID of the
importer configuration entity we want to process. This will allow the use of the command
for more than one just importer. Alternatively, passing no options will process each
importer (in case this is something we want to do later on). One thing to note is that we
won't focus on performance in this example. This means the command will work just fine
for smaller sets of data (as big as one request can process) but will be probably better to use
a queue and/or batch processing for larger sets. Also, we will have a chapter dedicated for
these subsystems later on, but, for now, let's get on with our example.

Before we actually write our new Drush command, let's make some alterations to our logic
as they will make sense in the context of what we want to do. First, let's add a getter method
to the Importer plugins to retrieve the corresponding configuration entities. We start with
the interface like so:

 /**
 * Returns the Importer configuration entity.
 *
 * @return \Drupal\products\Entity\ImporterInterface
 */
 public function getConfig();

Then, on the ImporterBase class, we can add the implementation (it will be the same for
all individual plugin instances):

 /**
 * {@inheritdoc}
 */
 public function getConfig() {
 return $this->configuration['config'];
 }

Your Own Custom Entity and Plugin Types

[252]

As you can see, it's not rocket science.

Second, let's add a createInstanceFromAllConfigs() method to the
ImporterManager that will return an array of plugin instances for each existing Importer
configuration entities:

 /**
 * Creates an array of ImporterInterface from all the existing Importer
 * configuration entities.
 *
 * @return ImporterPluginInterface[]
 */
 public function createInstanceFromAllConfigs() {
 $configs =
$this->entityTypeManager->getStorage('importer')->loadMultiple();
 if (!$configs) {
 return [];
 }
 $plugins = [];
 /** @var ImporterInterface $config */
 foreach ($configs as $config) {
 $plugin = $this->createInstanceFromConfig($config->id());
 if (!$plugin) {
 continue;
 }

 $plugins[] = $plugin;
 }

 return $plugins;
 }

Here, we use the loadMultiple() method on the entity storage handler, which if we use
without any arguments will load all existing entities, and if we have any, we use our
existing createInstanceFromConfig() method to instantiate the plugins based on each
configuration entity. That's it; we can now go ahead and create our Drush command.

Your Own Custom Entity and Plugin Types

[253]

Drush commands are still being written using procedural code and are defined inside the
my_module.drush.inc file of our module, so in our case, it will be products.drush.inc.
The definition of a Drush command is made up of two parts--the implementation of
hook_drush_command() and of a callback for each defined commands. Both of these go
inside the same *.drush.inc file. So let's define our command:

/**
 * Implements hook_drush_command().
 */
function products_drush_command() {
 $items = [];

 $items['products-import-run'] = [
 'description' => 'Run the product importers',
 'options' => [
 'importer' => 'The Importer configuration entity to run.',
],
 'aliases' => ['pir'],
 'callback' => 'products_products_import_run'
];

 return $items;
}

This hook returns an array of command definitions, keyed by the actual command name.
Also, a command can have certain definition options. In our case, we have a description, a
list of options, a list of aliases for the command name, and a callback function to be run. If
we omit the callback, the function name defaults to
drush_[command_name_with_underscores_instead_of_dashes]. In our case, it
would have been drush_products_import_run. The aliases are an array of typically
shorter command names by which we can refer to this command.

We also have a named option to this command, which as you may have guessed, is
optional. When running the command, it will be used like this:

drush command --option-name=option_value

However, the command should run just as well with the option omitted from the call. This
is unlike "arguments" that a Drush command can also have and are mandatory. In our case,
we don't need any arguments, though.

Your Own Custom Entity and Plugin Types

[254]

Let's now write the callback function that will be called when this command runs:

/**
 * Callback for the products-import-run Drush command.
 */
function products_products_import_run() {
 $importer = drush_get_option('importer', NULL);
 /** @var \Drupal\products\Plugin\ImporterManager $manager */
 $manager = \Drupal::service('products.importer_manager');
 if (!is_null($importer)) {
 $plugin = $manager->createInstanceFromConfig($importer);
 if (is_null($plugin)) {
 drush_log(t('The specified importer does not exist'), 'error');
 return;
 }

 _products_products_import_run_plugin($plugin);
 return;
 }

 $plugins = $manager->createInstanceFromAllConfigs();
 if (!$plugins) {
 drush_log(t('There are no importers to run'), 'error');
 return;
 }

 foreach ($plugins as $plugin) {
 _products_products_import_run_plugin($plugin);
 }
}

The way we retrieve the value of an option within a Drush command is using
drush_get_option(), whose second parameter sets a default value in case one is not
found in the command. So what we did in the preceding code then is get the option (the
Importer ID), and if one is found, we do what we did before--get a plugin instance based on
that ID and run the import using the _products_products_import_run_plugin()
function:

/**
 * Runs an individual Importer plugin.
 *
 * @see products_products_import_run().
 *
 * @param \Drupal\products\Plugin\ImporterInterface $plugin
 */
function
_products_products_import_run_plugin(\Drupal\products\Plugin\ImporterInterf

Your Own Custom Entity and Plugin Types

[255]

ace $plugin) {
 $result = $plugin->import();
 $message_values = ['@importer' => $plugin->getConfig()->label()];
 $message = $result ? t('The "@importer" importer has been run.',
$message_values) : t('There was a problem running the "@importer"
importer.', $message_values);
 $message_status = $result ? 'success' : 'error';
 drush_log($message, $message_status);
}

We are also setting a success or error message depending on the results we are getting from
the importer. In this message, we use the actual Importer entity label rather than the ID,
which is nicer.

Instead of the regular drupal_set_message() that we normally use to print out messages
to the user, in this case--since we are in the Drush command-line environment--we use the
special Drush function for logging messages--drush_log().

One other thing to note is that the name of this function starts with an underscore. This is to
denote that it is private and not supposed to be used by anyone else, except our command
callback. It's of course not enforceable, but rather a standard naming convention to denote
this (used also in other programming languages).

Going back to our command callback, we use our new
createInstanceFromAllConfigs() method to get our hands on all the available
Importers to run. Then, we simply defer back to our helpful function that runs the import
and prints the relevant message. That's pretty much it.

Going to our terminal, we first have to clear the Drush cache in order to pick this command
up using the following command:

drush cc drush

Then, we can run either of these command variations for processing all the available
importers:

drush products-import-run
drush pir

Alternatively, we can run a specific importer:

drush products-import-run --importer=my_json_product_importer
drush pir --importer=my_json_product_importer

Your Own Custom Entity and Plugin Types

[256]

Better yet, we can now add these commands to our crontab and have them run at specific
intervals, once a day, for example.

Summary
In this chapter, we got to implement some fun stuff. We created our very own content and
configuration entity types as well as a custom plugin type to handle our logic.

What we built was a Product entity type that holds some product-like data in various types
of fields. We even created a bundle configuration entity type so that we can have multiple
types of products with the possibility of different fields per bundle, a great data model.

We wanted to be able to import products from all sorts of external resources. For this
reason, we created the Importer plugin type that is responsible for doing the actual imports-
-a great functional model. However, these only work based on a set of configurations,
which we represented via a configuration entity type. These can then be created in the UI
and exported into YAML files like any other configuration.

Finally, to use the importers, we created a Drush command, that can process either a single
Importer or all the existing ones. This can be used inside a crontab for automatic imports.

There are still some shortcomings to the way we constructed the importing functionality,
though. For example, we added the URL field on the Importer configuration entity as if all
imports need to happen from an external resource. What if we want an import to be from a
CSV file? The URL field would be superfluous, and we'd need a file upload field on the
configuration entity. This very much points to the difference between generic Importer
configuration values and the plugin-specific ones. In future chapters, we'll come back to our
module and make some adjustments in this respect.

In the next chapter, we will look at the Database API and how we can directly interact with
the underlying storage engine.

8
The Database API

In the previous two chapters, we discussed and our options as Drupal 8 module developers
for modeling and storing data in Drupal 8. We also saw some examples of how to use
things such as the State, Configuration, and Entity APIs, going to greater lengths with the
latter by using it to build something useful. One of the key takeaways from these chapters is
that--compared to Drupal 7, at least--the need for custom database tables and/or direct
queries against these and the database has become minimal.

The Entity system is much more flexible and robust, the combination of configuration and
content entities providing much of the needs for storing data. Moreover, the Entity query
and loading mechanisms have also made finding them easy.Odds are, this is enough for
most of your cases.

Furthermore, storage subsystems such as the State API (key value) and UserData have also
removed much of the need for creating custom tables to store that kind of "one-off" data.
Also, the configuration API provides a unified way to model exportable data, leaving no
need for something else.

However, apart from these features, Drupal also has a strong database API that actually
powers them under the hood. This API is made available to us in case we need it. For
example, we can create our own database tables and then run queries against them however
we want, all through a secure layer that can work on top of multiple types of databases.

Creating custom database tables is not something you will do very often, maybe never, but
in this chapter, you will still learn how the API works in order to do so. There are
contributed modules out there that have legitimate uses for them, and who knows you
might also use them. So, it is still important to understand. However, even more pertinent is
the API for running queries (particularly select queries), because you may need to run these,
even against entities. There are times in which the Entity Query does not provide all you
need, so looking up entities based on complex queries can, in fact, be more common. Hence,
we will cover how to do that in this chapter, as well.

The Database API

[258]

More concretely, in this chapter, we will start by creating a couple of database tables so that
we can see how the Schema API works in Drupal 8. For D7 developers, this will look
strikingly familiar. Then, we will see the various ways we can perform queries against these
tables by using the database abstraction layer. We can make two different types of select
queries, and we will practice both. For the others (INSERT, UPDATE, and DELETE), there is a
standard way of doing it. Next, we will take a look at how queries can be altered and how
we can tag them for targeting. Finally, we will look at the database update hooks, which
were one of the principle ways configuration was being deployed in previous versions of
Drupal. In reality, the purpose of these hooks is to make database updates once the tables
have already been created.

The Schema API
The purpose of the Schema API is to allow the definition of database table structures in PHP
and to have Drupal interact with the database engine and turn these definitions into a
reality. Apart from the fact that we don't ever have to see things such as CREATE TABLE, we
ensure that our table structures can be applied to multiple types of databases. If you
remember, in Chapter 1, Developing for Drupal 8, it was mentioned that Drupal can work
with MySQL, PostgreSQL, SQLite, and others, if they support PDO, so the Schema API
ensures this cross-compatibility.

The central component of the Schema API is hook_schema(). This is used to provide the
initial table definitions of a given module. Implementations of this hook belong in the
*.install file of the module and are fired when the module is first installed. If alterations
need to be made to the existing database tables, there are a number of methods that can be
used inside update hooks to make these changes.

In this section, we will create a new module called sports in which we want to define two
tables--players and teams. The records in the former can reference records in the latter, as
each player can be part of only one team at a time. This is a simple example, and one which
could, and should, be implemented using entities. However, for the purpose of
demonstrating the database API, we will stick with the manual setup.

So, in our sports.install file, we can implement hook_schema() as follows:

/**
 * Implements hook_schema().
 */
function sports_schema() {
 $schema = [];

 $schema['teams'] = [

The Database API

[259]

 'description' => 'The table that holds team data.',
 'fields' => [
 'id' => [
 'description' => 'The primary identifier.',
 'type' => 'serial',
 'unsigned' => TRUE,
 'not null' => TRUE,
],
 'name' => [
 'description' => 'The team name.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => TRUE,
],
 'description' => [
 'description' => 'The team description.',
 'type' => 'text',
 'size' => 'normal',
],
],
 'primary key' => ['id'],
];

 $schema['players'] = [
 'description' => 'The table that holds player data.',
 'fields' => [
 'id' => [
 'description' => 'The primary identifier.',
 'type' => 'serial',
 'unsigned' => TRUE,
 'not null' => TRUE,
],
 'team_id' => [
 'description' => 'The ID of the team it belongs to.',
 'type' => 'int',
 'unsigned' => TRUE,
],
 'name' => [
 'description' => 'The player name.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => TRUE,
],
 'data' => [
 'description' => 'Arbitrary data about the player.',
 'type' => 'blob',
 'size' => 'big',
],

The Database API

[260]

],
 'primary key' => ['id'],
];

 return $schema;
}

Implementations of this hook need to return an associative array keyed by the table name
whose values are an array that defines the respective table. The table definition consists of
various types of information, particularly the individual column definitions (fields), and
also things such as which fields represent the primary key, foreign keys (strictly for
documentation purposes), unique keys, and indexes. For a full reference of all the available
options, check out the Drupal.org (https:/ /www. drupal. org/) documentation pages for the
Schema API.

In our preceding example, we defined the two tables we mentioned and defined their fields
inside the fields array. The primary key indicates which of the tables will be used for
that purpose, opting for the standard id field for both. Speaking of which, the latter is a
field of the type serial, which means that it is an integer that has an auto-increment option
to it. For number fields such as integer, float, and numeric, the unsigned option means that
numbers cannot go below 0. Also, the not null is pretty easy to understand--it prevents
the column from ever being empty.

For the team and player name, we opted for a simple varchar field that takes a maximum
of 255 characters (a pretty standard table column definition), and these, too, cannot be null.
The description field, on the other hand, is of the text type with the normal size (as
opposed to tiny, small, medium, or big). In here, we want to store strings that are longer
than 255 characters. At the time of writing this book, there is no full documentation for the
available data types (and their options) for Drupal 8; however, the D7 version (https:/ /
www.drupal.org/docs/ 7/ api/ schema- api/ data- types) is a good indicator and will pretty
much work exactly the same.

Lastly, for the player, we also have a team_id, which is a simple integer field, and a data
column, in which we want to store some arbitrary serialized data. This is a blob type,
which can also be big or normal.

https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types
https://www.drupal.org/docs/7/api/schema-api/data-types

The Database API

[261]

That is pretty much all for our schema definitions. Installing the sports module will create
these tables for us automatically, according to these definitions. Also, just as important,
uninstalling the module will delete these tables, so we don't need to do any kind of
handling. However, if our module is already enabled and we have added this
implementation afterward, it won't get fired. Instead, we will need to implement an update
hook and use the drupal_install_schema() function, which will trigger it, as follows:

drupal_install_schema('sports');

We will see more about update hooks soon.

Running queries
Now that we have some tables to work with, let's take a look at how we can run queries
against them. If you are following along, for testing purposes, feel free to add some dummy
data into the tables via the database management tool of your choice. We will look at
INSERT statements soon, but before that, we will need to talk about the more common types
of queries you'll run--SELECT.

Queries using the Drupal 8 database abstraction layer are run using a central database
connection service--database. Statically, this can be accessed via a shortcut:

$database = \Drupal::database();

This service is a special one compared to the ones we saw before, because it is actually
created using a factory:

 database:
 class: Drupal\Core\Database\Connection
 factory: Drupal\Core\Database\Database::getConnection
 arguments: [default]

This is a definition by which the responsibility for the instantiation is delegated to the
factory mentioned, instead of the container as we've seen before. So, the resulting class does
not necessarily need to match the one specified for the class key. However, in this case, the
Drupal\Core\Database\Connection is an abstract base class that the resulting service
extends. Again, in this case, the arguments are responsible for specifying the type of
connection that it has to create. The site-default type is used (MySQL, usually), which
means that the resulting service will be an instance of
Drupal\Core\Database\Driver\mysql\Connection.

The Database API

[262]

From this connection service, we can then request the relevant object with which we can
build queries. So, let's see how these work.

Select queries
There are two ways we can run select queries in Drupal 8, and they both work similarly to
the way they did in Drupal 7. We have the D8 equivalents of db_query() and
db_query_range() and the equivalent of db_select(). This will look familiar to D7
developers. In Drupal 8, these procedural functions still exist, but, in a deprecated state.
This only means that instead of using the old functions, we should use the connection
service I mention next.

The first type of select queries are typically more performant because we construct them by
writing the SQL statements ourselves (with placeholders, of course), whereas the
db_select() type of query is an OOP query builder that still needs to transform a chained
object construct into an SQL statement. However, don't let this performance be a real
deciding factor, because as you can imagine, the impact is minimal. Also, the query builder
is the more proper way of running queries, because they are alterable (can be
deconstructed).

Also, the first type of select query is typically used for simpler queries, but if you are an
SQL guru, it can actually be faster and easier to write a complex query using that method.
Moreover, they rely on developers, ensuring that the SQL statement is compatible with the
underlying database. So, it is up to you which of the two types you choose, considering all
of these factors.

Let's first take a look at how we can run a basic query against our tables using the
db_query()-like method. We'll then see how the same query can be run using the other
way:

$database = \Drupal::database();
$result = $database->query("SELECT * FROM {players} WHERE id = :id", [':id'
=> 1]);

The Database API

[263]

This is a simple SQL statement, albeit a bit funky if you have not done any D7 development.
We passed the query to the first parameter of the query() method of the connection object
as a string whereas we would pass an array of placeholder values for the second parameter.
These are found throughout the SQL string proceeded by a colon (:id) and are later
replaced with the value that maps to the same key in the placeholder values array. Another
thing to note is that the table name in the query is surrounded by curly braces. This is
because in reality, table names can be prefixed when the site is installed, and our code
should not concern itself with that prefix. Drupal will prepend it automatically.

Now, let's take a look at how we can run the same query using the query builder:

$result = $database->select('players', 'p')
 ->fields('p')
 ->condition('id', 1)
 ->execute();

This time, we will use the select() method on the connection object to get our hands on a
SelectInterface instance with which we can build our query. We need to pass the table
we want to query to it, as well as an alias for that table. This is particularly important when
performing joins. Then, we use the fields() method to specify which of the table columns
we want to retrieve. The first parameter is the table alias, whereas the second (optional) is
an array of column names. Ll columns will be included (*). Next, we have a single
condition being applied to the query for the column id and value 1. The third optional
parameter is the operator that defaults to =. Lastly, we execute the query and get the same
result as with the preceding example.

You will immediately note, if you remember, that the structure of this query builder is very
similar to the Entity Query, and the components are also chainable to a certain extent, as we
will see.

Handling the result
Both of the preceding queries return a StatementInterface, which is traversable. So, to
access its data, we can do this:

foreach ($result as $record) {
 $id = $record->id;
 $team_id = $record->team_id;
 $name = $record->name;
 $data = $record->data;
}

The Database API

[264]

Each item in the loop is a stdClass, and their property names are the actual names of the
columns returned, while their values are the column values.

Alternatively, the StatementInterface also has some fetcher methods that can prepare
the results for us in different ways. These mostly come from the parent \PDOStatement
class, which is native PHP. The simplest is fetchAll():

$records = $result->fetchAll();

This returns an array of stdClass objects as we saw before, so it does all the looping to
extract the records for us. If we want this array keyed by the value of a field in the record,
we can perform the following:

$records = $result->fetchAllAssoc('id');

This will use the value in the id field to key the array.

If we're expecting single records, we can also use the fetch() method, which returns only
one such object (the next one in the result set); fetchObject() does the same thing.

More complex select queries
Let's create a more complex query now, to join our team table and retrieve the team
information in the same record as the player:

$result = $database->query("SELECT * FROM {players} p JOIN {teams} t ON
t.id = p.team_id WHERE p.id = :id", [':id' => 1]);

This will return the same record as before, but inclusive of the values from the matching
team record. Note that since we have a join, we had to use table aliases here as well. There is
one problem with this query, though--since both tables have the name column, we cannot
use the * to include all of the fields, as they will get overridden. Instead, we need to include
them manually:

$result = $database->query("SELECT p.id, p.name as player_name, t.name as
team_name, t.description as team_description, p.data FROM {players} p JOIN
{teams} t ON t.id = p.team_id WHERE p.id = :id", [':id' => 1]);

The Database API

[265]

As you can see, we specified the fields from both tables we wanted to include, and we
indicated different names as aliases where there was a name conflict. Now, let's write the
same query using the query builder:

$query = $database->select('players', 'p');
$query->join('teams', 't');
$query->addField('p', 'name', 'player_name');
$query->addField('t', 'name', 'team_name');
$query->addField('t', 'description', 'team_description');
$result = $query
 ->fields('p', ['id', 'data'])
 ->condition('p.id', 1)
 ->execute();

$records = $result->fetchAll();

First of all, not all methods on the query builder are chainable. The join() method (and the
other types of join methods, such as innerJoin(), leftJoin(), and rightJoin()) and
the addField() method are prominent examples. The latter is a way we can add fields to
the query by specifying an alias (we cannot do it via the fields() method). Moreover, the
condition() field is also prefixed with the table alias it needs to be in (which was not
necessary before, when we didn't use a join).

For all the other methods useful for building queries, go to SelectInterface and
ConditionInterface. They are typically well documented in there.

Range queries
Since limiting queries to a certain range depends on the underlying database engine, we
also have the queryRange() method on our database connection service, which we can use
to write queries that include ranges:

 $result = $database->queryRange("SELECT * FROM {players}", 0, 10);

In this example, we query for all the players and limit the result set to the first ten records
(from 0 to 10). So, with this method, the placeholder value array is the fourth parameter
after $from and $count.

The Database API

[266]

Alternatively, using the SELECT query builder, we have a method on the
SelectInterface whereby we can specify a range. So, in that format, the preceding query
would look like this:

$result = $database->select('players', 'p')
 ->fields('p')
 ->range(0, 10)
 ->execute();

As you can see, we have the range() method, which takes those arguments and limits the
query.

A note on running select queries on Entity tables: if you can do so using
the Entity Query, use that. If not, feel free to use the database API.
However, stick to using the query to figure out the IDs of the entities you
need, but then use the entity storage handler to load those entities
properly. This is unlike the many times in Drupal 7 where we simply used
field values from such queries directly. In Drupal 8, that is highly
discouraged.

Pagers
Now that we saw how to make SELECT queries of all kinds, let's take a look at how we can
use Drupal's built-in pagination capabilities and how pagers work in Drupal 8. We will
illustrate these by running some queries and rendering the results inside a table. Refer to
Chapter 4, Theming, if you don't remember the theming aspects of outputting a table.

Our playground will be inside a new controller method
(SportsController::players()) that maps to the route with the /players path. Refer
to Chapter 2, Creating Your First Module, for a refresher on how to create routes if you don't
remember.

The first thing we'll do is create a simple query that loads all the players and outputs them
inside a table. We'll stick to only showing the player names for simplicity:

/**
 * Renders a table of players.
 */
public function players() {
 $query = $this->database->select('players', 'p')
 ->fields('p');
 $result = $query->execute()->fetchAll();
 $header = [$this->t('Name')];

The Database API

[267]

 $rows = [];

 foreach ($result as $row) {
 $rows[] = [
 $row->name
];
 }

 $build = [];
 $build[] = [
 '#theme' => 'table',
 '#header' => $header,
 '#rows' => $rows,
];

 return $build;
}

All of this should already be familiar to you. We are running the query and preparing the
data for a table, using the table theme hook to render it. You'll note that we are creating a
$build array so that we can include more things in the final output. This will be our
baseline to explore pagers.

Pagers work by storing some information regarding a query in the global state, namely the
total number of items to be paged, the limit of items per page, and an identifier for the
respective pager (so we can potentially have multiple pagers at once). All of this
information is set using the following code:

pager_default_initialize($total, $limit, $element = 0);

Moreover, the current page is determined by the query parameter in the URL, named page.

Once the pager is initialized, we have a pager render element we can use to easily render a
themed pager that uses this information and builds all the necessary links to move across
the pages. As query builders, we then have to read the current page and use that inside our
query.

However, there is a much simpler way to work with pagers, and that is using select
extenders. These are decorator classes for the SELECT query class we've seen before, and they
allow us to decorate it with an extra functionality, such as pagers or sorting; they
encapsulate the necessary functionality for handling pagers in the query. So, let's see it in
action.

The Database API

[268]

Here is how our player query would look using the PagerSelectExtender:

$limit = 5; // The number of items per page.
$query = $this->database->select('players', 'p')
 ->fields('p')
 ->extend('\Drupal\Core\Database\Query\PagerSelectExtender')
 ->limit($limit);
$result = $query->execute()->fetchAll();

As you can see, we have an extend() method on the SELECT query builder, which allows
us to pass the name of the class that will decorate the resulting SELECT query class. This
also provides us with a new method called limit(),through which we specify the number
of records to load per page. Under the hood, it uses the range() method we saw earlier.
Moreover, when running the query, it initializes the pager for us using
pager_default_initialize(), and even determines the current page all on its own.

The Decorator Pattern is an object-oriented programming design pattern
that allows us to statically or dynamically add behavior to an existing
object without altering how it, or other objects of the same class, behaves
inside. A decorator essentially wraps an existing object to provide an extra
functionality from the outside.

So, all we need to do now is render the following pager (below the table):

$build[] = [
 '#type' => 'pager'
];

Positively rocket science, right? Not really. If we refresh the page, we should now see only
five players in the table, and also a pager below it.

The Pager render element (https:/ /api. drupal. org/ api/drupal/
core%21lib%21Drupal%21Core%21Render%21Element%21Pager. php/ class/ Pager/ 8. 2.x) has
some interesting properties to customize it further. We can append query elements to the
resulting links, or even specify another route for the links if we want to. We can, of course,
control the label of the pager links, and even the number of links being output. Check out
the documentation of this element for more information.

Moreover, for full customization, we also have the option of preprocessing these variables
by implementing our own preprocessor for the pager hook (such as
template_preprocess_page) and/or overriding the pager.twig.html template file.
How to do the things that we covered in Chapter 4, Theming.

https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Render%21Element%21Pager.php/class/Pager/8.2.x

The Database API

[269]

Insert queries
In order to get data into our custom database tables, we have an INSERT query builder that
we can use. For this, and, the other types of queries, it is highly discouraged to use the
db_query() approach because Drupal cannot ensure that it works across the different
types of database engines. Instead, we can use the insert() method on the connection
service and build our query using the Insert object that gets returned. So, let's see how we
can add a record to our players table:

$database->insert('players');
$fields = ['name' => 'Diego M', 'data' => serialize(['known for' => 'Hand
of God'])];
$id = $database->insert('players')
 ->fields($fields)
 ->execute();

The main thing about an insert query is the fields() method. It expects an array of
key/value pairs, where the keys are the column names and the values are the data that
needs to be added to the respective columns. Alternatively, the first argument can be an
array of the column names and the second an array of the values in the same order as the
column names from the first array.

We can also run an INSERT query with multiple sets of values (records):

$values = [
 ['name' => 'Novak D.', 'data' => serialize(['sport' => 'tennis'])],
 ['name' => 'Micheal P.', 'data' => serialize(['sport' => 'swimming'])]
];
$fields = ['name', 'data'];
$query = $database->insert('players')
 ->fields($fields);
foreach ($values as $value) {
 $query->values($value);
}
$result = $query->execute();

In the preceding example, the fields() method receives only an array of column names
that need to be inserted, and we use subsequent values() method calls to add the
individual values.

The Database API

[270]

The execute() method typically returns the ID (primary key) of the last record to be
inserted. This is handy, especially if you insert only one record however, for multiple
inserts, it can also be misleading. So, do experiment for yourself with different use cases.

Update queries
Now that we've seen INSERT queries, let's take a look at how we can update existing
records. Say we wanted to update one of our player records; we will do so as follows:

$result = $database->update('players')
 ->fields(['data' => serialize(['sport' => 'swimming', 'feature' => 'This
guy can swim'])])
 ->condition('name', 'Micheal P.')
 ->execute();

UPDATE queries are like INSERT ones, except that they take a condition() to figure out
which records to update (all that match the condition). Leaving this out will update all
records, naturally. Using the fields() method, we will simply specify which columns are
getting updated, and with what. If we leave out a column, it will stay untouched. Lastly, the
result of this query is the total number of records affected.

Delete queries
Lastly, we can also get rid of our records using the DELETE query:

$result = $database->delete('players')
 ->condition('name', 'Micheal P.')
 ->execute();

All the records that match the condition will get removed. Be careful with this because as
with update queries, leaving out a condition will basically truncate your table, and the
query will return the number of records affected, that is, deleted.

Although you can make SELECT queries against entity and field tables to
find the IDs of the entities you want to load, you should never perform
INSERT, UPDATE, or DELETE queries against these tables. You run a very
high risk of corrupting your data.

The Database API

[271]

Transactions
The Drupal database API also provides a way to represent and handle database
transactions (for the database types which support them). Transactions are ways in which
database operations can be wrapped and grouped together in view of committing them, all
or none. For example, if you have multiple records that are related, it's possible you will
want only some of them written if one fails its INSERT operation for some reason. This
could leave you with a corrupt or incomplete data that could throw your application into a
spin.

Performing multiple database-changing operations after a transaction has been opened only
finalizes (commits) those changes to the database when that transaction closes. If something
goes wrong, it can also be rolled back, which will prevent the data from being committed.

In Drupal 8, a transaction is represented by a Transaction object (a specific subclass for
each database type). As soon as the object is destroyed (is no longer in scope), the
operations get committed to the database. However, if we get an indication that something
went wrong in our operations (usually via catching an exception), we can roll back the
transaction, which will stop those operations from being committed. Moreover, transactions
can be nested, so Drupal keeps track of transactions that have been opened within the scope
of other transactions.

Let's see an example of how to use transactions:

$transaction = $database->startTransaction();
try {
 $database->update('players')
 ->fields(['data' => serialize(['sport' => 'tennis', 'feature' => 'This
guy can play tennis'])])
 ->condition('name', 'Novak D.')
 ->execute();
}
catch (\Exception $e) {
 $transaction->rollback();
 watchdog_exception('my_type', $e);
}

The Database API

[272]

The first thing we did was start a transaction using our connection service. Then, we
wrapped our operation in a try/catch block to catch any exceptions that might be thrown in
performing them. If one does get thrown, we roll back the transaction, because we don’t
want to commit anything to the database, as we don't know what failed and what shape our
data is in. Finally, we used the watchdog_exception() helper to log the exception to the
database log. Do note that logging this before the rollback would prevent the exception
from being written to the database as well.

If there is no exception, the operation gets committed as soon as the $transaction
variable gets removed and is no longer in scope (usually at the end of the function). It is also
interesting to note that if within this transaction we call another function in which we
perform database operations, those operations will be part of this same transaction by
default. So, they also get rolled back, if we roll back or get committed if we don't. This is
why the database watchdog log will not be saved if called before the rollback.

Query alters
Lots of things in Drupal are alterable using various hooks; queries are no different. This
means that if a module writes a query such as we've seen before, other modules can alter it
by implementing hook_query_alter(). So let's consider an example of how this may
work.

Let's assume the following query, which simply returns all player records:

$result = $database->select('players', 'p')
 ->fields('p')
 ->execute();

Imagine that another module wants to alter this query and limit the results to find only the
players in a specific team. There is one problem. Our query has no markers that can indicate
to another module that this is the one that needs to be altered. As you can imagine, there are
a bunch of queries run in any given request, so identifying queries becomes impossible. In
such a situation, enter query tags.

The preceding query would not be alterable because it's not recognizable, and therefore,
hook_query_alter() is not even fired on it. In order to make it alterable, we will need to
add a query tag and make it identifiable. There is a simple method on the query builder for
doing just that--addTag():

$result = $database->select('players', 'p')
 ->fields('p')
 ->addTag('player_query')
 ->execute();

The Database API

[273]

Query tags are simple strings that can be read from inside a hook_query_alter()
implementation. So, we could alter the query like this:

/**
 * Implements hook_query_alter().
 */
function
hello_world_query_alter(Drupal\Core\Database\Query\AlterableInterface
$query) {
 if (!$query->hasTag('player_query')) {
 return;
 }

 // Alter query
}

The only parameter of this hook is the query object onto which we can apply our changes. It
also has methods for reading the tags, such as hasTag(), hasAnyTag(), or hasAllTags().
In the preceding example, we took a defensive approach and simply exited if the query was
not about our player_query tagged query. I'll come back to this later on.

Now, let's see how we can alter this query to achieve what we set out to do:

$query->join('teams', 't', 't.id = p.team_id');
$query->addField('t', 'name', 'team_name');
$query->condition('t.name', 'My Team');

As you can see in the preceding example, we are doing a similar thing to what we did
before when we built our joined query. We join the team table, add its name field (as a
bonus), and set a condition to only return the players in a certain team. Easy peasy.

Let's now return for a second to my remark about the defensive approach we took with this
hook implementation. I personally prefer to keep methods short and return early, rather
than have a bunch of unintelligible nested conditions. This is typically easy to do in an
object-oriented setting. However, with procedural code, it becomes a bit more tedious, as
you need many private functions that are tricky to name, and even more so with hook
implementations into which you might need to add more than one block of code. For
example, in our hook_query_alter() implementation, we might need to add an
alteration for another query later on. Also, since we return early, we need to add another
condition for checking for two tags, and then some more conditions and if statements, and
even more conditions (rant over). From a PHP point of view, in this case, you'd delegate the
actual logic to another function based on the tag of the query, either using a simple switch
block or if conditionals. This way, if a new tag comes, a new function can be created for it
specifically and called from the switch block. However, we can do one better in this case.

The Database API

[274]

There are a few hooks, particularly alter ones, which have a general targeting but also a
more specific one. In this example, we also have a hook_query_TAG_alter() hook, which
is specific to a given tag. So, instead of us delegating to other functions, we could
implement the hook for this and any of our other, future queries we need altered in this
module:

/**
 * Implements hook_query_TAG_alter().
 */
function
hello_world_query_player_query_alter(Drupal\Core\Database\Query\AlterableIn
terface $query) {
 // Sure to alter only the "player_query" tagged queries.
}

So, essentially, the tag itself becomes part of the query name, and we don't need any extra
functions.

Update hooks
At the beginning of this chapter, we defined two tables using hook_schema(), which got
installed together with the module. To reiterate, if the module had already been installed,
we could have triggered the schema installation using the drupal_install_schema()
function. However, what if we needed to add another column later on, say to the teams
table? Our module is installed, and so is the schema; so, we cannot exactly uninstall it on
production just for triggering the schema creation again, not to mention losing the data.
Luckily, there is a system in place for this, in the name of update hooks--hook_update_N()-
-where N represents the schema version. These are sequentially named hook
implementations that go inside the module *.install file and which are triggered when
running the updates, either via going to /update.php or by using the drush updatedb
command.

The main purpose of these update hooks is making schema alterations to existing database
tables. However, partly due to the weak configuration management system in earlier
versions of Drupal, they have evolved--through developer creativity--into a mechanism for
updating various types of configuration or performing tasks (even content related) upon a
deployment to the next environment. Helping out with this is the $sandbox argument
passed to the hook implementations, which can be used for batching these operations (to
prevent an execution timeout). We will not cover this aspect here, but will instead talk
about the standalone Batch API in a future chapter, lessons from which you'll be able to
apply here as well. Instead, we will see how to implement such a hook to perform schema
updates.

The Database API

[275]

As mentioned, these hook implementations go into the *.install file. Let's see an
example:

/**
 * Update hook for performing an update task.
 */
function my_module_update_8001(&$sandbox) {
 // Do stuff
}

The DocBlock of this hook implementation needs to contain a description of what it does. It
is used when running the updates (either via the UI or using Drush).

The name of the function is one of its most important aspects. It starts with the module
name, followed by update, and finally, by the module's schema version (the next one if we
want this update hook to actually run); but what is a module's schema version?

When installed, Drupal sets each module a schema version--8000. In Drupal 7, it was 7000,
and in 6, it was 6000. You get the difference between the major versions of Drupal. When an
update hook runs, Drupal sets that module's schema version to the number found in the
update hook. So, in the preceding example, it will be 8001. This is to keep track of all the
update hooks and to not run them more than once. By convention, but not necessity, the
second from left digit in the schema version represents the major version number of the
module itself. For example, for an 8.x-1.x version, it would be 8101.

Let's now see how we can alter our teams database table with an update hook and add a
column to store a location string field. The first thing we want to do is update our
hook_schema() implementation and add this information there as well. This won't do
anything in our case; however, due to the way update hooks work, we need to do it. What I
mean by this is that if a module is first installed and it has update hooks in it already, those
update hooks do not run, but the module's schema version gets set as the number of the last
update hook found in it. So, if we do not add our new column inside the hook_schema(),
installing this module on another site (or even on the current one after an uninstall) will not
get our new column in. So, we need to account for both situations.

In the field definition of our teams table schema, we can add the following column
definition:

'location' => [
 'description' => 'The team location.',
 'type' => 'varchar',
 'length' => 255,
],

The Database API

[276]

It's as simple as that. Next, we can implement an update hook and add this field to the
table:

/**
 * Adds a the "location" field to the teams table.
 */
function sports_update_8001(&$sandbox) {
 $field = [
 'description' => 'The team location.',
 'type' => 'varchar',
 'length' => 255,
];
 $schema = $database = \Drupal::database()->schema();
 $schema->addField('teams', 'location', $field);
}

Here, we used the same field definition, loaded the database connection service, and used
its schema object to add that field to the table. The code itself is pretty self-explanatory, but
it's also worth mentioning that this is an example in which we cannot inject the service, and
we have to use it statically. So, don't feel bad for situations like this.

Next, we can use Drush to run the updates:

Sure enough, the teams table now has a new column. If you try to run the updates again,
you'll note that there are none to be run because Drupal has set the schema version of the
sports module to 8001. So, the next one in line to be run has to have 8002 at the end (or,
something greater than 8001 and lower than 9000, in any case).

The Database API

[277]

In the preceding example, we added a new field to an existing table. However, we might
need to create a new table entirely, or even delete one. The schema object on the database
connection service has the relevant methods to do so. The following are a few examples, but
I recommend that you check out the base Drupal\Core\Database\Schema class for the
available methods:

$schema->createTable('new_table', $table_definition);
$schema->addField('teams', 'location', $field);
$schema->dropTable('table_name');
$schema->dropField('table_name', 'field_to_delete');
$schema->changeField('table_name', 'field_name_to_change',
'new_field_name', $new_field_definition);

There are a few cautionary aspects you need to consider when using update hooks. For
example, you cannot be sure of the state of the environment before the hooks actually run,
so ensure that you account for this. I recommend you check out the documentation
(https://api.drupal. org/ api/ drupal/
core%21lib%21Drupal%21Core%21Extension%21module. api. php/function/ hook_ update_ N/
8.2.x) about hook_update_N() and carefully read the section about the function body.

Summary
In this chapter, we looked at the basics of interacting with the database API. Although it's
something that has taken a significant step back in importance in day-to-day Drupal
module development, it's important to understand and be able work with.

We started the chapter by creating our very own database tables to hold player and team
information in a relational way. We’ve done so using an API that transforms definitions into
actual tables without us having to even understand much of MySQL. The SQL terminology
and basic operations are, however, something that every developer should be familiar with,
notwithstanding their actual day to day application in Drupal.

https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Extension%21module.api.php/function/hook_update_N/8.2.x

The Database API

[278]

Then, we looked at some examples of how we can run SELECT, INSERT, UPDATE, and
DELETE queries using both the more SQL-oriented way of writing statements and the query
builder approach, which uses an OO representation of the queries. We've also seen how
these queries can be wrapped into transactions (where supported) so that we can commit
data changes while minimizing the potential for incomplete or corrupt data. Finally, we've
seen how these queries can be altered using query tags, allowing for yet another small
extension point that other modules can contribute through. Regardless of how we build our
queries, however, a key takeaway is that using this API is crucial for a secure interaction
with the database. Moreover, it accounts for cross-compatibility with the different database
types Drupal can work with.

Lastly, we looked at update hooks and how they can be used to perform changes to our
database tables. More than that, they can be employed to perform some other tasks that
might need to be coded and then deployed to the next environment to be run once.
However, due to the Drupal 8 configuration API, the need for this has gone down
significantly.

In the next chapter, we will look at custom Drupal 8 entity fields and see how we can define
our own; yes, we'll be playing with some more plugins.

9
Custom Fields

In Chapter 6, Data Modeling and Storage, and Chapter 7, Your Own Custom Entities and
Plugin Types, we talked quite extensively about content entities and how they use fields to
store the actual data that they are supposed to represent. Then, we saw how these fields,
apart from interacting with the storage layer for persisting it, extend TypedData API classes
in order to organize this data better at the code level. For example, we saw that the
BaseFieldDefinition instances used on entities are actually data definitions (and so are
the FieldConfig ones). Moreover, we also saw the Datatype plugins at play there, namely
the FieldItemList with their individual items, which down the line extend a basic
DataType plugin (Map in most cases). Also, if you remember, when we were talking about
these items, I mentioned how they are actually instances of yet another plugin--FieldType.
So, essentially, they are a plugin type whose plugins extend plugins of another type. I
recommend that you revisit that section if you are fuzzy on the matter.

Most of these concepts are buried inside the Entity API and are only seen and understood
by developers. However, the FieldType plugins (together with their corresponding
FieldWidget and FieldFormatter plugins) break out and are one of the principle things
site builders and content editors actually work with in the UI. They allow users to input
structured data and save it to the database. If you recall, I had mentioned them a few times
in Chapters 6 and 7, and I promised you a chapter in which we will see how we can create
field types that a site builder can then add to an entity type and use for inputting data. Well,
this is that chapter, but first, let's do a quick recap on what we know about them.

Field type plugins extend the lower-level TypedData API to create a unique way of not only
representing data (within the context of entities), but also storing it to the database (and
other stuff as well). They are primarily known as the type of fields site builders can add to
an entity type bundle, for example, a plain text field or a select list with multiple options.
Nothing can be more common than that in a CMS.

Custom Fields

[280]

However, they are also used as entity base field types. If you remember our product entity
type's name field definition, we actually did use these plugin types:

$fields['name'] = BaseFieldDefinition::create('string')
 ->setLabel(t('Name'))
 ->setDescription(t('The name of the Product.'))
 ->setSettings([
 'max_length' => 255,
 'text_processing' => 0,
])
 ->setDefaultValue('')
 ->setDisplayOptions('view', [
 'label' => 'hidden',
 'type' => 'string',
 'weight' => -4,
])
 ->setDisplayOptions('form', [
 'type' => 'string_textfield',
 'weight' => -4,
])
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

The create() method of the definition class accepts a FieldType plugin ID. Also, the type
of the view display option provided a bit below in the code is a FieldFormatter plugin
ID, whereas the type of the form display option provided even lower in the code is a
FieldWidget plugin ID.

So, although Drupal has its fair share of complexities, when it comes to fields, things are
quite consistent. However, in order to figure out the similarities between base fields and
configurable ones, we had to dig a little into the code. The former are not as hip as the ones
that you can click together in the UI and which everybody knows are FieldType plugins
with corresponding widget and formatter plugins.

A crucial lesson from this introduction that I insist you retain--when defining your custom
entities, think about the type of fields you need. If there are bundles that need to have
different sets of fields, configurable fields are your choice. Otherwise, base fields are
perhaps more appropriate. They sit tightly with your Entity type class, appear on all
bundles (if that's something you need), and encourage you to explore the Drupal code base
and understand the existing field types, widgets, and formatters better (as well as relevant
settings they come with).

Custom Fields

[281]

Also, when you define base fields, think the same way as you would if adding them
through the UI--which field type do I want (find a FieldType plugin), how do I want users
to interact with it (find a FieldWidget plugin), and how do I want its values to be shown
(find a FieldFormatter plugin). Then, inspect the relevant classes to determine the right
settings that will go with them.

In this chapter, we will take a look at how we can create our own custom field type with its
own default widget and formatter. To provide a bit of continuity, I am going to ask you to
think back to the more complex example employed when talking about the TypedData API-
-the license plate. We will create a field type designed specifically to store license plates in
the following format--CODE NUMBER (just as we saw with the example New York plate).
Why?

At the moment, there is no field type that can represent this accurately. Of course, we have
the simple text field, but that implies having to add both pieces of data that make up a
license plate into the same field, stripping them off its meaning. When we were discussing
the TypedData API, we saw that one of its core principles is the ability to apply meaning to
a piece of data so as to understand that $license_plate (for example) is actually a license
plate from which we can ask its code and its number (as well as some general description if
we want to). Similar to this (or actually building on top of this), fields are also about storing
this data. So, apart from understanding it in code, we also need to persist it in the same
way. That is, placing the individual pieces of data in separate meaningful table columns as
to also persist that meaning.

An example from Drupal core that does the same thing is the Text (formatted) field.
Apart from its string value, this field also stores a format for each value, which is used upon
rendering. Without that format, the string value loses its meaning, and Drupal is no longer
able to reliably render it in the way it was intended upon creation. So, you can now see that
fields take the idea of meaning from TypedData and also apply it to storage as needed. So,
in this chapter, you will learn how these three types of plugins work, by creating your own
license plate type field. Let's get started.

Field type
The primary plugin type for creating a field is, as we discussed, the FieldType. It is
responsible for defining the field structure, how it is stored in the database, and various
other settings. Moreover, it also defines a default widget and formatter plugin that will be
autoselected when we create the field in the UI. You see, a single field type can work with
more than one widget and formatter. If more exist, the site builder can choose one when
creating the field and adding it to an entity type bundle.

Custom Fields

[282]

Otherwise, it will be the default; each field needs one because without a widget, users can't
add data, and without a formatter, they can't see it. Also, as you'd expect, widgets and
formatters can also work with more than one field type.

The field we will create in this section is for the license plate data, which, as we saw, needs
two individual pieces of information--a code (such as the state code) and the number.
License plates around the world are more complex than this, but I chose this example to
keep things simple.

Our new FieldType plugin needs to go inside the Plugin/Field/FieldType namespace
of a new module we will create called license_plate. Although not mandatory, the class
name should end with the word Item. It's a pretty standard thing done in Drupal core, and
we will follow suit. So, let's take a look at our LicensePlateItem plugin implementation
and then talk about its code:

namespace Drupal\license_plate\Plugin\Field\FieldType;

use Drupal\Component\Utility\Random;
use Drupal\Core\Field\FieldDefinitionInterface;
use Drupal\Core\Field\FieldItemBase;
use Drupal\Core\Field\FieldStorageDefinitionInterface;
use Drupal\Core\Form\FormStateInterface;
use Drupal\Core\TypedData\DataDefinition;

/**
 * Plugin implementation of the 'license_plate_type' field type.
 *
 * @FieldType(
 * id = "license_plate",
 * label = @Translation("License plate"),
 * description = @Translation("Field for creating license plates"),
 * default_widget = "default_license_plate_widget",
 * default_formatter = "default_license_plate_formatter"
 *)
 */
class LicensePlateItem extends FieldItemBase {}

I omitted the class contents, as we will be adding the methods one by one and discussing
them individually. However, first, we have the plugin annotation, which is very important.
We have the typical plugin metadata such as the ID, label, and description and also will
indicate the plugin IDs for the widget and formatter that will be used by default with this
field type. Make a note of those, because we will create them soon.

Custom Fields

[283]

Speaking from experience, often, when creating a field type, you'll extend the class of an
already existing field type plugin, such as a text field or an entity reference. This is because
Drupal core already comes with a great set of available types, and, usually, all you need is
either to make some tweaks to an existing one or maybe combine them or add an extra
functionality.

This makes things easier, and you don't have to copy and paste code or come up with it
again yourself. Naturally, though, at some point, you'll be extending from FieldItemBase
because that is the base class all field types need to extend from.

In our example, however, we will extend straight from the FieldItemBase abstract class
because we want our field to stand on its own. Also, it's not super practical to extend from
any existing ones in this case. That is not to say, though, that it doesn't have commonalities
with other field types, such as TextItem, for example.

Let's now take a look at the first method:

/**
 * {@inheritdoc}
 */
public static function defaultStorageSettings() {
 return [
 'number_max_length' => 255,
 'code_max_length' => 5,
] + parent::defaultStorageSettings();
}

The first thing we do in our class is override the defaultStorageSettings() method.
The parent class method returns an empty array; however, it's still a good idea to include
whatever it returns to our own array. If the parent method changes and returns something
later on, we are a bit more robust.

The purpose of this method is two-fold--specify what storage settings this field has and set
some defaults for them. Also, note that it is a static method, which means that we are not
inside the plugin instance. However, what are storage settings, you may ask?

Storage settings are the configuration that applies to the field everywhere it's used. As you
may know, a field can be added to multiple bundles of an entity type. In Drupal 7, you
could reuse a field even across entity types, but this is no longer possible, so fields are now
reusable only on the bundles of a single entity type. You'll need to create another field of
that type if you need it on some other content entity type. So, the storage settings are those
that apply to this field across each bundle it is attached to.

Custom Fields

[284]

They usually deal with things related to the schema--how the database table columns are
constructed for this field but they also deal with a lot of other things. Also, even more
important to know is that once there is data in the field tables, they cannot be changed. It
makes sense, as you cannot easily change database tables when there is data in them. This
restriction is something we enforce, as we will see in a bit.

In our example, we only have two storage settings--number_max_length and
code_max_length. These will be used when defining the schema for the two-table
columns, where the license plate data will be stored (as the maximum length that can be
stored in those table fields). By default, we will go with the ever-so-used 255 maximum
length on the number column and 5 for the code column, but these are just defaults. The
user will be able to change them when creating the field or when editing, as long as there is
no data yet.

Next, we can write our storage settings form, which allows users to provide the actual
settings when creating a field:

/**
 * {@inheritdoc}
 */
public function storageSettingsForm(array &$form, FormStateInterface
$form_state, $has_data) {
 $elements = [];

 $elements['number_max_length'] = [
 '#type' => 'number',
 '#title' => t('Plate number maximum length'),
 '#default_value' => $this->getSetting('number_max_length'),
 '#required' => TRUE,
 '#description' => t('Maximum length for the plate number in
characters.'),
 '#min' => 1,
 '#disabled' => $has_data,
];

 $elements['code_max_length'] = [
 '#type' => 'number',
 '#title' => t('Plate code maximum length'),
 '#default_value' => $this->getSetting('code_max_length'),
 '#required' => TRUE,
 '#description' => t('Maximum length for the plate code in
characters.'),
 '#min' => 1,
 '#disabled' => $has_data,
];

Custom Fields

[285]

 return $elements + parent::storageSettingsForm($form, $form_state,
$has_data);
}

The preceding method is called by the main field configuration form, and we need to return
an array of form elements from it that can be used to set values to the storage settings we
defined earlier. We have access to the main $form and $form_state of the form where this
is embedded, as well as a handy Boolean $has_data, which tells us whether there is
already any data in this field. We use this to disable the elements we don't want to be
changed if there is data in the field (in our case, both).

So, basically, our form consists of two number form elements (both required), whose values
default to the lengths we specified earlier. The number form element also comes with #min
and #max properties, which we can use to restrict the number to a range. Also, we
obviously want our minimum lengths to be a positive number, that is, above 1. This method
is relatively straightforward to understand if you get the basics of the Form API, which you
should by now.

Finally, for our storage handling, we will need to implement the schema method and define
our table columns:

/**
 * {@inheritdoc}
 */
public static function schema(FieldStorageDefinitionInterface
$field_definition) {
 $schema = [
 'columns' => [
 'number' => [
 'type' => 'varchar',
 'length' => (int)
$field_definition->getSetting('number_max_length'),
],
 'code' => [
 'type' => 'varchar',
 'length' => (int) $field_definition->getSetting('code_max_length'),
],
],
];

 return $schema;
}

Custom Fields

[286]

This is another static method, but one that receives the current fields's
FieldStorageDefinitionInterface instance. From there, we can access the settings the
user has saved when creating the field, and based on those, we define our schema. If you've
been paying attention in the preceding chapter, when we discussed hook_schema(), this
should already be very clear to you. What we need to return is an array of column
definitions keyed by their name. So, we define two columns of the varchar type with the
maximum lengths the user has configured--no rocket science involved. Of course, we could
have had more storage settings and had this schema definition even more configurable if
we'd wanted to.

With these three methods, our storage handling is complete; however, our field type is not
quite. We still have a couple more things to take care of.

Apart from storage, as we discussed, fields also deal with data representation at the code
level with TypedData structures. So, our field type needs to define its individual properties
for which we create storage. For this, we have two main methods--first, to actually define
the properties, and then, to set some potential constraints on them:

/**
 * {@inheritdoc}
 */
public static function propertyDefinitions(FieldStorageDefinitionInterface
$field_definition) {
 $properties['number'] = DataDefinition::create('string')
 ->setLabel(t('Plate number'));

 $properties['code'] = DataDefinition::create('string')
 ->setLabel(t('Plate code'));

 return $properties;
}

The preceding code will look very familiar to the one in Chapter 6, Data Modeling and
Storage, when we talked about TypedData. Again, this is a static method, which needs to
return the DataDefinitionInterface instance for the individual properties. We choose
to call them number and code, respectively, and set some sensible labels--nothing too
complicated.

Custom Fields

[287]

The preceding code is actually enough to define the properties, but if you remember, our
storage has some maximum lengths in places-meaning that the table columns are only so
long. So, if the data that gets into our field is longer, the database engine will throw a fit in a
not so graceful way. In other words, it will throw a big exception, and we can't have that.
So, there are two things we can do to prevent that--put the same maximum length on the
form widget to prevent users from inputting more than they should and add a constraint on
our data definitions. The second one is more important because it ensures that the data is
valid in any case, whereas the first one only deals with forms. However, since Drupal 8 is so
much more API oriented, if we create an entity programmatically and set its field values,
we bypass forms completely. However, not to worry; we will also take care of the form, so
our users can have a nicer experience and are aware of the maximum size of the values they
need to input.

So, let's add the following constraints:

/**
 * {@inheritdoc}
 */
public function getConstraints() {
 $constraints = parent::getConstraints();
 $constraint_manager =
\Drupal::typedDataManager()->getValidationConstraintManager();
 $number_max_length = $this->getSetting('number_max_length');
 $code_max_length = $this->getSetting('code_max_length');
 $constraints[] = $constraint_manager->create('ComplexData', [
 'number' => [
 'Length' => [
 'max' => $number_max_length,
 'maxMessage' => t('%name: may not be longer than @max characters.',
[
 '%name' => $this->getFieldDefinition()->getLabel() . ' (number)',
 '@max' => $number_max_length
]),
],
],
 'code' => [
 'Length' => [
 'max' => $code_max_length,
 'maxMessage' => t('%name: may not be longer than @max characters.',
[
 '%name' => $this->getFieldDefinition()->getLabel() . ' (code)',
 '@max' => $code_max_length
]),
],
],
]);

Custom Fields

[288]

 return $constraints;
}

Since our field class actually implements the TypedDataInterface, it also has to
implement the getConstraints() method (which the TypedData parent already starts
up). However, we can override it and provide our own constraints based on our field
values.

We are taking a slightly different approach here of adding constraints than what we've seen
in Chapter 6, Data Modeling and Storage. Instead of adding them straight to the data
definitions, we will create them manually using the validation constraint manager (which is
the plugin manager of the Constraint plugin type we saw in Chapter 6, Data Modeling
and Storage). This is because fields use a specific ComplexDataConstraint plugin, which
can combine the constraints of multiple properties (data definitions). Do note that even if
we had only one property in this field, we'd still be using this constraint plugin.

There aren't many type of classes in Drupal 8 in which you cannot inject
dependencies, but FieldType plugins are one of them. So, for this reason,
we have to request the services we need statically in this case. This is
because these plugins are actually built on top of the Map TypedData
plugin, and their manager doesn't use a container-aware factory for
instantiation but instead delegates it to the TypedDataManger service,
which, as we saw, is not container aware either.

The data needed to create this constraint plugin is a multidimensional array keyed by the
property name, which contains constraint definitions (as we saw in Chapter 6, Data
Modeling and Storage) for each of them. So, we have a Length constraint for both properties,
whose options denote a maximum length and a corresponding message if exceeded. If we
wanted, we could have had a minimum length in the same way also--min and minMessage.
As for the actual length, we will use the values chosen by the user when creating the field
(the storage maximum). Now, regardless of the form widget, our field will not validate
unless the maximum lengths are respected.

It's time to finish this class with the following last two methods:

/**
 * {@inheritdoc}
 */
public static function generateSampleValue(FieldDefinitionInterface
$field_definition) {
 $random = new Random();
 $values['number'] = $random->word(mt_rand(1,
$field_definition->getSetting('number_max_length')));
 $values['code'] = $random->word(mt_rand(1,

Custom Fields

[289]

$field_definition->getSetting('code_max_length')));
 return $values;
}

/**
 * {@inheritdoc}
 */
public function isEmpty() {
 // We consider the field empty if either of the properties is left empty.
 $number = $this->get('number')->getValue();
 $code = $this->get('code')->getValue();
 return $number === NULL || $number === '' || $code === NULL || $code ===
'';
}

With generateSampleValue(), we create some random words that fit within our field--
that's it. This can be used when profiling or site building for populating the field with
values. Arguably, this is not going to be your top priority, but it is good to know.

Finally, we have the isEmpty() method, which is used to determine whether the field has
values or not. It may seem pretty obvious, but it's an important method, especially for us,
and you can probably deduce from the implementation why. When creating the field in the
UI, the user can specify whether it's required or not. However, typically, that applies (or
should apply) to the entire set of values within the field. Also, if the field is not required,
and the user only inputs a license plate code without a number, what kind of useful value is
that to save? So, we want to make sure that both of them have something before even
considering this field as having a value (not being empty), and that is what we are checking
in this method.

Now that we are finished with the actual plugin class, there is one last thing that we need to
take care of, something that we tend to forget, myself included--configuration schema. Our
new field is a configurable field whose settings are stored--guess where?--in configuration.
Also, as you remember, all configuration needs to be defined by a schema. Drupal already
takes care of those storage settings that come from the parent. However, we need to include
ours. So, let's create the typical license_plate.schema.yml (inside config/schema),
where we will put the definitions for the field type and any others that we will need in this
module.

Custom Fields

[290]

Then, we can have the following code inside it:

field.storage_settings.license_plate_type:
 type: mapping
 label: 'License plate storage settings'
 mapping:
 number_max_length:
 type: integer
 label: 'Max length for the number'
 code_max_length:
 type: integer
 label: 'Max length for the code'

The actual definition will already be familiar, so the only thing that is interesting to explain
is its actual naming. The pattern is
field.storage_settings.[field_type_plugin_id]. Drupal will dynamically read
the schema and apply it to the settings of the actual FieldStorageConfig entity being
exported.

That's it for our FieldType plugin. When creating a new field of this type, we have the two
storage settings we can configure (which will be disabled when editing if there is actual
field data already in the database):

Custom Fields

[291]

Unless we work only programmatically or via an API to manage the entities that use this
field, it won't really be useful, as there are no widgets or formatters it can work with. So, we
will need to create those as well.

Field widget
Our new license plate field type could be added to an entity type, but there would be no
way users can use it. For this, we will need at least a widget. A given field type can work,
however, with multiple widgets. So, let's create that default license plate widget plugin we
referenced in the annotation of the field type, which belongs in the
Plugin/Field/FieldWidget namespace of our module:

namespace Drupal\license_plate\Plugin\Field\FieldWidget;

use Drupal\Core\Field\FieldItemListInterface;
use Drupal\Core\Field\WidgetBase;
use Drupal\Core\Form\FormStateInterface;

/**
 * Plugin implementation of the 'default_license_plate_widget' widget.
 *
 * @FieldWidget(
 * id = "default_license_plate_widget",
 * label = @Translation("Default license plate widget"),
 * field_types = {
 * "license_plate"
 * }
 *)
 */
class DefaultLicensePlateWidget extends WidgetBase {}

Again, we started by examining the annotation and class parents for just a bit. We will
notice nothing particularly complicated, except maybe the field_types key, which
specifies the FieldType plugin IDs this widget can work with. Just as a field type can have
more than one widget, a widget can work with more than one field type. Also, it's
important that we specify it here, otherwise we site builders won't be able to use this widget
with our field type.

We extended WidgetBase, which implements the obligatory WidgetInterface and
provides some common defaults for all its subclasses.

Custom Fields

[292]

The first thing we can do inside the class is handle our settings. First, we will define what
settings this widget has and set the default values for these settings:

/**
 * {@inheritdoc}
 */
public static function defaultSettings() {
 return [
 'number_size' => 60,
 'code_size' => 5,
 'fieldset_state' => 'open',
 'placeholder' => [
 'number' => '',
 'code' => '',
],
] + parent::defaultSettings();
}

Here, we have some settings specific to how the form widget would be configured for our
field. We will use the first two settings mentioned in the preceding code to limit the size of
the form element. It will not actually prevent users from filling in longer values, but will be
a good indication for them as to how long the values should be. Then, we have the
fieldset_state setting, which we will use to indicate whether the form fieldset we use to
group the two license place textfields is by default open or closed. We will see that in a
minute. Lastly, each of these textfields can have a placeholder value (potentially). So, we
have that setting as well. Do note that these are all settings we make up and that make sense
for our field. You can add your own if you want.

Next, we have the form used to configure these settings (as part of the widget
configuration):

/**
 * {@inheritdoc}
 */
public function settingsForm(array $form, FormStateInterface $form_state) {
 $elements = [];

 $elements['number_size'] = [
 '#type' => 'number',
 '#title' => t('Size of plate number textfield'),
 '#default_value' => $this->getSetting('number_size'),
 '#required' => TRUE,
 '#min' => 1,
 '#max' => $this->getFieldSetting('number_max_length'),
];

Custom Fields

[293]

 $elements['code_size'] = [
 '#type' => 'number',
 '#title' => t('Size of plate code textfield'),
 '#default_value' => $this->getSetting('code_size'),
 '#required' => TRUE,
 '#min' => 1,
 '#max' => $this->getFieldSetting('code_max_length'),
];

 $elements['fieldset_state'] = [
 '#type' => 'select',
 '#title' => t('Fieldset default state'),
 '#options' => [
 'open' => t('Open'),
 'closed' => t('Closed')
],
 '#default_value' => $this->getSetting('fieldset_state'),
 '#description' => t('The default state of the fieldset which contains
the two plate fields: open or closed')
];

 $elements['placeholder'] = [
 '#type' => 'details',
 '#title' => t('Placeholder'),
 '#description' => t('Text that will be shown inside the field until a
value is entered. This hint is usually a sample value or a brief
description of the expected format.'),
];

 $placeholder_settings = $this->getSetting('placeholder');
 $elements['placeholder']['number'] = [
 '#type' => 'textfield',
 '#title' => t('Number field'),
 '#default_value' => $placeholder_settings['number'],
];
 $elements['placeholder']['code'] = [
 '#type' => 'textfield',
 '#title' => t('Code field'),
 '#default_value' => $placeholder_settings['code'],
];

 return $elements;
}

Custom Fields

[294]

We have to return the elements for our widget settings, which will then be added to a
bigger form (passed as an argument). There is nothing special about the first three form
elements. We have two number fields and a select list to control the first three settings we
saw in our defaults. For the first two settings, we want the numbers to be positive and max
out at the same maximum length we have set in the storage. We don't want the widget
exceeding that length. However, if we want, we can shorten the size of the element.

The textfields for the two placeholder values are wrapped inside a details form element.
The latter is a fieldset that can be open or closed and can contain other form elements. We
will use the same to wrap the actual textfields with which users will input license plate
data.

The preceding form will look like this when users configure the widget:

Lastly, we have the summary of the settings the widget, which will be displayed in the
"Manage form display" page for our field:

/**
 * {@inheritdoc}
 */
public function settingsSummary() {
 $summary = [];

 $summary[] = t('License plate size: @number (for number) and @code (for
code)', ['@number' => $this->getSetting('number_size'), '@code' =>
$this->getSetting('code_size')]);

Custom Fields

[295]

 $placeholder_settings = $this->getSetting('placeholder');
 if (!empty($placeholder_settings['number']) &&
!empty($placeholder_settings['code'])) {
 $placeholder = $placeholder_settings['number'] . ' ' .
$placeholder_settings['code'];
 $summary[] = t('Placeholder: @placeholder', ['@placeholder' =>
$placeholder]);
 }
 $summary[] = t('Fieldset state: @state', ['@state' =>
$this->getSetting('fieldset_state')]);

 return $summary;
}

This method needs to return an array of strings that will make up the settings summary.
That is what we will do now--reading all of our settings values and listing them out in a
human-friendly way. The end result will look something like this:

Next, we will have to implement the core of the field widget plugins--the actual form used
for inputting the field data:

/**
 * {@inheritdoc}
 */
public function formElement(FieldItemListInterface $items, $delta, array
$element, array &$form, FormStateInterface $form_state) {
 $element['details'] = [
 '#type' => 'details',
 '#title' => $element['#title'],
 '#open' => $this->getSetting('fieldset_state') == 'open' ? TRUE :
FALSE,
 '#description' => $element['#description'],
] + $element;

 $placeholder_settings = $this->getSetting('placeholder');
 $element['details']['code'] = [
 '#type' => 'textfield',
 '#title' => t('Plate code'),
 '#default_value' => isset($items[$delta]->code) ? $items[$delta]->code
: NULL,
 '#size' => $this->getSetting('code_size'),
 '#placeholder' => $placeholder_settings['code'],
 '#maxlength' => $this->getFieldSetting('code_max_length'),

Custom Fields

[296]

 '#description' => '',
 '#required' => $element['#required'],
];

 $element['details']['number'] = [
 '#type' => 'textfield',
 '#title' => t('Plate number'),
 '#default_value' => isset($items[$delta]->number) ?
$items[$delta]->number : NULL,
 '#size' => $this->getSetting('number_size'),
 '#placeholder' => $placeholder_settings['number'],
 '#maxlength' => $this->getFieldSetting('number_max_length'),
 '#description' => '',
 '#required' => $element['#required'],
];

 return $element;
}

This is a bit more complicated at first glance, but we'll break it down, and you'll see that it
actually makes sense with what you've been learning in the previous chapters.

The first argument passed to this method is the entire list of values for this field. Remember
that each field can have multiple values, hence the usage of the FieldItemListInterface
instance to hold them. So, from there, we can get the values of any of the items in the list.
The second argument is the actual delta of the item in the list, which we can use to pinpoint
the one for which the form is being built (in order to retrieve the default value). Then, we
have an $element array, which we should actually return, but which contains some pieces
of data already prepared for us based on the field configuration. For example, when
creating a field, if we set it to be required, then this $element already contains the form
property #required => TRUE. Likewise, it contains the weight of the field (compared to
the others on the entity type), the #title property, and many others. I recommend that
you debug that array and see what's in it. Also, you can look inside
WidgetBase::formMultipleElments() and WidgetBase::formSingleElement() and
see how this array is prepared. Lastly, we get the form definition and form state
information of the larger form our field element gets embedded in.

So, what we are doing inside the method is getting a bit creative with the data that we have.
One value fields would typically just extend the $element array, and then the method
would simply return that. However, we have two values we want to wrap inside a nice
collapsible fieldset, so we create a details element for that.

Custom Fields

[297]

It is on this element that we copy over the field title and description the user has specified
when creating the field, which is prepared for us in the $element array. This is because
those relate to the entire field, not just one of the values. Moreover, we also set the default
#open state to whatever was stored in the widget settings. Lastly, to all this, we add the rest
of the values found in the $elements array because we want to inherit them as well.

Note that I could have left the #title and #description to be also
inherited, but overtly added it to make it more visible for you.

Next, within our details element, we can add the two textfields for the license plate code
and number. For both of these, we use the widget settings to set the element size and
placeholder value, as well as a maximum length value equal to the field item storage. This is
what will prevent users from providing values that are longer than what the database
columns can handle. The default value for the two form elements will be set to the actual
field values of these properties, retrieved from the list of items using the current delta key.
Finally, we set the #required property to whatever the user has configured for this field.
This property would be useless on the parent details element, so we have to move it
down to the actual text fields, and that's pretty much it.

The last method we can implement, and in our case, have to, is one that prepares the field
values a bit when submitting:

/**
 * {@inheritdoc}
 */
public function massageFormValues(array $values, array $form,
FormStateInterface $form_state) {
 foreach ($values as &$value) {
 $value['number'] = $value['details']['number'];
 $value['code'] = $value['details']['code'];
 unset($value['details']);
 }

 return $values;
}

Custom Fields

[298]

Here's what happens. From our property definitions, our field expects two properties--
number and code. However, submitting this form will present only one property called
"details" because that is what we arbitrarily named our fieldset form element, which
contains the properties inside. Also, since we made this choice, we will need to now
massage the submitted values a bit to match the expected properties. In other words, we
have to bring the number and code properties to the top level of the $values array and
unset the details element, as it's no longer needed upon submission. So, now, the field
receives the array in the following format:

$values = [
 'number' => 'My number',
 'code' => 'My code'
];

If you remember, this is incidentally also what we would pass to the set() method of the
field if we wanted to set this value on the field. Take a look at the following example:

$node->set('field_license_plate', ['code' => 'NY', 'number' => '63676']);

With that, our widget is done; well, not quite. We again forgot about the configuration
schema. Let's not do that again. In the same file as we did the field storage schema, we can
add the definition for the widget settings:

field.widget.settings.default_license_plate_widget:
 type: mapping
 label: 'Default license plate widget settings'
 mapping:
 number_size:
 type: integer
 label: 'Number size'
 code_size:
 type: integer
 label: 'Code size'
 fieldset_state:
 type: string
 label: 'The state of the fieldset which contains the two fields:
open/closed'
 placeholder:
 type: mapping
 label: 'The placeholders for the two fields'
 mapping:
 number:
 type: string
 label: 'The placeholder for the number field'
 code:
 type: string
 label: 'The placeholder for the code field'

Custom Fields

[299]

It works just like before--a dynamic schema name that starts with
field.widget.settings. and has the actual plugin ID at the end, and inside, we have a
property mapping as we've seen before. With this, we are really done.

Field formatter
Alright, so our field now also has a widget that users can input data with. We can already
use this field if we want, but when viewing the nodes, we have no way of displaying the
field data, unless we do some custom preprocessing and retrieve it manually as we’ve seen
earlier in the book. So, let's instead create the default field formatter because even if we
don't need one, it's still a good practice to have one in place to make the field whole.

Before actually coding it, let's establish what we want our formatter to look and behave like.
By default, we want the license plate data to be rendered like this:

 {{ code }} <span class="license-
plate--number">{{ number }}

So, each component is wrapped inside its own span tag, and some handy classes are
applied to them. Alternatively, we may want to concatenate the two values together into
one single span tag:

{{ code }} {{ number }}

This could be a setting on the formatter, allowing the user to choose the preferred output.
So, let's do it then.

Field formatters go inside the Plugin/Field/FieldFormatter namespace of our module,
so let's go ahead and create our own:

namespace Drupal\license_plate\Plugin\Field\FieldFormatter;

use Drupal\Component\Utility\Html;
use Drupal\Core\Field\FieldItemInterface;
use Drupal\Core\Field\FieldItemListInterface;
use Drupal\Core\Field\FormatterBase;
use Drupal\Core\Form\FormStateInterface;

/**
 * Plugin implementation of the 'default_license_plate_formatter'
formatter.
 *
 * @FieldFormatter(
 * id = "default_license_plate_formatter",

Custom Fields

[300]

 * label = @Translation("Default license plate formatter"),
 * field_types = {
 * "license_plate"
 * }
 *)
 */
class DefaultLicensePlateFormatter extends FormatterBase {}

Again, we start by inspecting the annotation, which looks very unsurprising. It looks almost
like the one for our widget earlier, as formatters can also be used on multiple field types.

The class extends FormatterBase, which itself implements the obligatory
FormatterInterface. By now, you recognize the pattern used with plugins--they all have
to implement an interface and typically extend a base class, which provides some helpful
functionalities common to all plugins of those types. Fields are no different.

The first thing we do inside this formatter class is, again, deal with its own settings (if we
need any)- and as it happens, we have a configurable setting for our formatter, so let's
define it and provide a default value:

/**
 * {@inheritdoc}
 */
public static function defaultSettings() {
 return [
 'concatenated' => 1,
] + parent::defaultSettings();
}

This is just like with the previous plugins. The concatenated setting will be used to
determine the output of this field according to the two options we talked about earlier.

Next, predictably, we will need the form to manage this setting:

/**
 * {@inheritdoc}
 */
public function settingsForm(array $form, FormStateInterface $form_state) {
 return [
 'concatenated' => [
 '#type' => 'checkbox',
 '#title' => t('Concatenated'),
 '#description' => t('Whether to concatenate the code and number into
a single string separated by a space. Otherwise the two are broken up into
separate span tags.'),
 '#default_value' => $this->getSetting('concatenated'),
]

Custom Fields

[301]

] + parent::settingsForm($form, $form_state);
}

Again, nothing special; we have a checkbox, which we use to manage a Boolean value
(represented by 1 or 0). Lastly, just like with the widget, we have a summary display for
formatters as well that we can define:

 /**
 * {@inheritdoc}
 */
 public function settingsSummary() {
 $summary = [];
 $summary[] = t('Concatenated: @value', ['@value' => (bool)
$this->getSetting('concatenated') ? 'Yes' : 'No']);
 return $summary;
 }

Here, we just print in a human-readable name of whatever has been configured, and this
will be displayed when managing the field display in the UI and will look just like it did
with the widget. Consistency is nice.

Now, we've reached the most critical aspect of any field formatter--the actual display:

/**
 * {@inheritdoc}
 */
public function viewElements(FieldItemListInterface $items, $langcode) {
 $elements = [];

 foreach ($items as $delta => $item) {
 $elements[$delta] = $this->viewValue($item);
 }

 return $elements;
}

/**
 * Generate the output appropriate for one field item.
 *
 * @param \Drupal\Core\Field\FieldItemInterface $item
 * One field item.
 *
 * @return array
 */
protected function viewValue(FieldItemInterface $item) {
 $code = $item->get('code')->getValue();
 $number = $item->get('number')->getValue();
 return [

Custom Fields

[302]

 '#theme' => 'license_plate',
 '#code' => $code,
 '#number' => $number,
 '#concatenated' => $this->getSetting('concatenated')
];
}

The method used for this is viewElements(), but for each element in the list, we simply
delegate the processing to a helper method, because as you remember, the field is itself a list
of value items (depending on the field cardinality), even if there is only one value in the
field. These are keyed by a delta, which we also use to key the array of $elements that we
return from the method.

For each individual item in the list, we then retrieve the value of the license plate code and
number using the TypedData accessors we've seen earlier. Remember that at this point we
are working with a FieldItemInterface whose get() method returns the DataType
plugin that represents the actual value, which, in our case, is StringData, because that is
what our field property definitions were:

 $properties['number'] = DataDefinition::create('string')
 ->setLabel(t('Plate number'));

Also, the actual value inside these plugins are the string representations the user actually
provided. We use these values together with the setting on whether to concatenate and pass
them to a custom theme function (we have yet to define this). The important thing to keep
in mind is that what we need to return, for each item, is a render array. This can be
anything; consider the following example:

return [
 '#markup' => $code . ' ' . $number,
];

However, that doesn't look nice, nor is configurable or overridable. So, we opt for a clean
new theme function that takes those three arguments:

/**
 * Implements hook_theme().
 */
function license_plate_theme($existing, $type, $theme, $path) {
 return [
 'license_plate' => [
 'variables' => ['code' => NULL, 'number' => NULL, 'concatenated' =>
TRUE],
],
];
}

Custom Fields

[303]

We default the value for concatenated to TRUE because that is what we set the default
value to be inside defaultSettings(). So, we have to be consistent. The template file that
goes with this, license-plate.html.twig, is also very simple:

{% if concatenated %}
 {{ code }} {{ number }}
{% else %}
 {{ code }} <span class="license-
plate--number">{{ number }}
{% endif %}

Depending on our setting, we output the markup differently. Other modules and themes
now have a host of options to alter this output:

They can create a new formatter plugin altogether
They can override the template inside a theme
They can alter the template to be used by this theme hook

That's it for the formatter plugin itself, but this time we're not forgetting about the
configuration schema. Although we have a measly little Boolean value to define, it still
needs to be done:

field.formatter.settings.default_license_plate_formatter:
 type: mapping
 label: 'Default license plate formatter settings'
 mapping:
 concatenated:
 type: boolean
 label: 'Whether to concatenate the two fields into one single span
tag'

This works the same way as the other ones but with a different prefix--
field.formatter.settings.

With that, we have our field formatter in the bag. The only thing left is for site builders to
create fields of this type and start using it.

However, I still think we can do one better. Since we are working with license plates that
deal with certain known formats, what if we make our field configurable to provide a list of
license plate codes that can be used when inputting the data? This will have the added
benefit of us learning something new about fields--field settings.

Custom Fields

[304]

Field settings
When we created our field type, we specified some storage settings, and we saw that these
are typically linked to underlying storage and cannot be changed once the field has data in
it. This is because databases have a hard time making table column changes when there is
data present in them. However, apart from storage settings, we also have something called
field settings, which are specific to the field instance on a certain entity bundle. Even more,
they can (or should) be changeable even after the field has been created and has data in it.
An example of such a field setting, which is available from Drupal core on all field types, is
the "required" option that marks a field as required or not. So, let's see how we can add our
own field settings to configure what we said we want to do.

Back in our LicensePlateItem plugin class, we start by adding the default field settings:

/**
 * {@inheritdoc}
 */
public static function defaultFieldSettings() {
 return [
 'codes' => '',
] + parent::defaultFieldSettings();
}

This is the same pattern we've been seeing by which we specify what are the settings and
what are their relevant defaults. Then, as expected, we need the form, where users can
specify the setting values for each field instance:

 /**
 * {@inheritdoc}
 */
 public function fieldSettingsForm(array $form, FormStateInterface
$form_state) {
 $element = [];

 $element['codes'] = [
 '#title' => $this->t('License plate codes'),
 '#type' => 'textarea',
 '#default_value' => $this->getSetting('codes'),
 '#description' => t('If you want the field to be have a select list
with license plate codes instead of a textfield, please provide the
available codes. Each code on a new line.')
];

 return $element;
 }

Custom Fields

[305]

So what we provide here is a textarea form element by which the administrator can add
multiple license plate codes, one per each line. In our widget, we will use these and turn
them into a select list. However, before we do that, we need to provide the configuration
schema for this new setting:

field.field_settings.license_plate_type:
 type: mapping
 label: 'License plate field settings'
 mapping:
 codes:
 type: string
 label: 'Codes'

With this in place, we can turn to our field widget and make the necessary changes.

Inside the formElement() method, let's replace the block where we defined the code form
element with this:

$this->addCodeField($element, $items, $delta, $placeholder_settings);

Since the logic for determining that element depends on configuration, it's a bit more
complicated, so it's best to refactor to its own method. Now, let's take a look at it:

/**
 * Adds the license plate code field to the form element.
 *
 * @param $element
 * @param \Drupal\Core\Field\FieldItemListInterface $items
 * @param $delta
 * @param $placeholder_settings
 */
protected function addCodeField(&$element, FieldItemListInterface $items,
$delta, $placeholder_settings) {
 $element['details']['code'] = [
 '#title' => t('Plate code'),
 '#default_value' => isset($items[$delta]->code) ? $items[$delta]->code
: NULL,
 '#description' => '',
 '#required' => $element['#required'],
];

 $codes = $this->getFieldSetting('codes');
 if (!$codes) {
 $element['details']['code'] += [
 '#type' => 'textfield',
 '#placeholder' => $placeholder_settings['code'],
 '#maxlength' => $this->getFieldSetting('code_max_length'),

Custom Fields

[306]

 '#size' => $this->getSetting('code_size'),
];
 return;
 }

 $codes = explode("\r\n", $codes);
 $element['details']['code'] += [
 '#type' => 'select',
 '#options' => array_combine($codes, $codes),
];
}

We start by defining the code form element defaults, such as title, default, and value. Then,
we get the field settings for the codes setting we just created. Note that
getFieldSetting() and getFieldSettings() delegate to the actual field type and
return both storage and field settings combined. So, we don't need to use separate methods.
However, an implication is that you should probably stick to different setting names for the
two categories.

Then, if we don't have any codes configured in this particular field instance, we build up
our textfield form element as we did before. Otherwise, we break them up into an array and
use them into a select list form element. Also, note that in this latter case, we no longer need
to put any length limits because of the validation inherent to select lists. Values not present
in the original options list will be considered invalid.

That's pretty much it. The field can now be configured to either default to the open textfield
for adding a license plate code or to a select list of predefined ones. Also, the same field can
be used in these two ways on two different bundles, which is neat.

Using as a base field
In the beginning of this chapter, I stressed the importance of understanding the makeup of a
field (type, widget, and formatter) for being able to easily define base fields on custom
entity types. This understanding allows you to navigate through Drupal core code and
discover their settings and use them on base fields. So, let's cement this understanding by
seeing how our new field could be defined as a base field on a custom entity type.

Here is an example where we actually use all the available settings we defined for each of
the three plugins. Note that any settings that are left out default to the values we specified
in the relevant defaults method, as follows:

$fields['plate'] = BaseFieldDefinition::create('license_plate')
 ->setLabel(t('License plate'))

Custom Fields

[307]

 ->setDescription(t('Please provide your license plate number.'))
 ->setSettings([
 'number_max_length' => 255,
 'code_max_length' => 5,
 'codes' => implode("\r\n", ['NY', 'FL', 'IL']),
])
 ->setDisplayOptions('view', [
 'label' => 'above',
 'type' => 'default_license_plate_formatter',
 'weight' => 5,
 'settings' => [
 'concatenated' => 0,
]
])
 ->setDisplayOptions('form', [
 'type' => 'default_license_plate_widget',
 'weight' => 5,
 'settings' => [
 'number_size' => 60,
 'code_size' => 5,
 'fieldset_state' => 'open',
 'placeholder' => [
 'number' => '',
 'code' => '',
],
]
])
 ->setDisplayConfigurable('form', TRUE)
 ->setDisplayConfigurable('view', TRUE);

This is very similar to what we've been seeing. For the create() method, we use the
FieldType plugin ID ,and inside the setSettings(), we pass both storage and field
settings. They will then be used appropriately. Note that since the codes setting is stored as
a string with codes separated by line breaks, we will need to add it accordingly.

Similarly, for the view and form display options, we use the formatter and widget plugin
IDs, respectively, and inside a settings array, we pass any of the settings we have
defined. Lastly, the setDisplayConfigurable() indicates that all these settings for the
formatter and widget are also configurable through the UI. Doing so will turn the
BaseFieldDefinition into a BaseFieldOverride, as it needs to store the configured
overrides.

This should be a recap for you, as we covered all these concepts in earlier chapters.

Custom Fields

[308]

Summary
In this chapter, we covered how to create custom fields that site builders (and developers)
can add to entity types. This has implied defining three plugin types--FieldType,
FieldWidget, and FieldFormatter, each with its own responsibility. The first defined
the actual field and its storage and individual data properties, using the TypedData API.
The second defined the form through which users can input field data when creating or
editing entities that use the field. The third defined how the values inside this field can be
displayed when viewing the entity.

We also saw that each of these plugins can have arbitrary sets of configurable settings that
can be used to make the field dynamic--both in how the widget works and in how the
values are displayed. Moreover, these settings are parts of exported field configuration, so
we saw how we can define their respective configuration schemas.

Lastly, we also saw how--aside from creating our new field through the UI--developers can
add it to an entity type as a base field, making it available on all bundles of that entity type.

In the next chapter, we will talk about access control, a very important topic, as we need to
ensure that our data and functionality is only exposed to the users we want, when we want.

10
Access Control

We've already talked about quite a few topics in the previous chapters, but we have been
purposefully omitting an important aspect in many of them--access control. Much of what
we covered deals in some way or another with access, but we have kept it out of our
discussions to keep things more to the point. However, access control is an immensely
important topic for Drupal development because it has implications in almost everything
we do. So, for this purpose, we have a chapter dedicated to it in which we will cover the
most important things you need to know in order to keep your application secure.

When I say secure I don't mean writing code in a secure way to avoid your site getting
hacked. For that, we have an appendix at the end of the book to give you some pointers.
Instead, I mean handling access control programmatically to ensure that your pages and
any other resources are only accessible to the right users.

In this chapter, aside from introducing new concepts that stand on their own, we'll be
revisiting some of the previous topics and seeing how we can apply access control in that
context. We will start by talking about how Drupal sees access restrictions at a high level,
but then dive deep into more specific and complex examples. Also, as usual, we will see
code in order to better understand what we talk about.

However, what exactly are we going to learn in this chapter?

First, we will introduce the Drupal access system of roles and permissions and see how we
can create them in our code. Even more important for us as module developers, we will see
how we can check whether users have permissions programmatically. This is still while
keeping things general.

Access Control

[310]

Next, we will dive into more exciting things by looking at route permissions. We have an
enormous flexibility here and will explore a number of approaches we can use to restrict
access to custom and existing routes--ranging from simply permission-based access control
to dynamic service-oriented access handlers.

After covering routes, we will look at entities and how access control works with them. In
doing so, we will work a bit on the Product entity we created in Chapter 7, Your Own
Custom Entity and Plugin Types. Moreover, we will also talk about the Node Access Grants
system, which is a powerful way to control access specific to the Node entity type.

Finally, we will also look at Block plugins and see how we can control access and ensure
that they are rendered on the page. Blocks can have certain contextual rules that determine
whether they are displayed on a certain page in the region they have been added to. So, we
will talk about that a bit as well.

The purpose of this chapter is to bring together all aspects related to access control that you
need to get started as a Drupal 8 module developer. However, you can expect even more
than that, and for this reason, it can also serve as a resource for coming back and reading up
on certain approaches to access control you may want to use in your own project, rather
than having them scattered across the book.

Introduction to the Drupal access system
If you've been doing some site building in Drupal 8 or have experience with previous
versions of Drupal, you may already know a thing or two about roles and permissions. If
not, no need to worry, as we will talk a bit about how these work.

Essentially, one of the things that makes Drupal special is the flexible access system it has
out of the box, based on user roles and permissions. Roles are attributes that can be given to
a user. The latter can have multiple roles assigned, but always has at least the default
"Authenticated User" role. Permissions are the individual access indicators that can be
assigned to roles. By the transitive property, users have all the permissions assigned to the
roles they have been assigned. So, the end result is a matrix of permissions by role, and
that's actually how it is visualized in the UI at admin/people/permissions:

Access Control

[311]

Drupal core, by default, comes with three roles--ANONYMOUS USER,
AUTHENTICATED USER, and ADMINISTRATOR. Also, by default, there are a large
number of permissions already defined by Drupal core (and contributed) modules, ready to
be assigned to various roles.

The anonymous user role is pretty self-explanatory and can be used as a bucket for the
permissions all anonymous users should have - that is, users who are not authenticated.
Similarly, the authenticated user role is automatically assigned to all users upon logging in
(and cannot be removed). So, it can be used as a bucket of permissions that all authenticated
users should have.

The super admin user (the one with the ID = 1) actually has all the permissions on the site
without having to explicitly assign roles or permissions. Most of the time, it bypasses most
of the access control in any given subsystem.

Roles and permissions under the hood
Roles are configuration entities (user_role) represented by the Role entity type class. So,
they can be created through the UI and exported as configuration to be available on all the
environments. As such, there is not much you need to do in your code to define a role, but
simply create them as needed in the UI and export them to configuration. As you
remember, if you want your role to be provided by your module, add the exported YAML
file to the config/install folder (and remove the UUID). Refer to Chapter 6, Data
Modeling and Storage, for more information.

Access Control

[312]

Permissions, on the other hand, are a custom construct. They used to be defined by
implementing hook_permissions(), but are created using a YAML file (very similar to
how we define menu links) in Drupal 8. However, they are not plugins, but a custom
construct created by the core User module. The PermissionHandler service is responsible
for reading all the YAML files and figuring out all the existing permissions on the site. This
is not something you need to worry about, as you won't be interacting with this service.
You'll be mostly interested in defining new permissions and checking whether a user has
them, or setting those permissions in various access contexts.

Defining permissions
The way to create permissions in a custom module is by creating a *.permissions.yml
file and adding the definitions in there. Consider the following example:

administer my feature:
 title: 'Administer my feature'
 restrict access: true

In this example, administer my feature is the machine name of the permission and
actually the most important part. This is what you will use in your code to reference it.
Then, we have a title that shows up on the permissions management page we saw earlier.
Finally, we have a restrict access key by which we can specify whether we need a
warning to be output on the permissions management page regarding the security
implications, as follows--Warning: Give to trusted roles only; this permission has security
implications. This is to indicate that our permission is more sensitive, and administrators
should pay attention to who they assign it to. This option, can however, be left out (as you
will in most cases actually).

You may have noted the static nature of this way of defining permissions. In other words,
we hardcoded the permission name and only have one permission. In most cases, this will
be fine. However, there can be times where you will need multiple permissions defined
dynamically based on some other factors in your application. For this, we can use a
permission callback.

Access Control

[313]

For example, the Node module defines individual permissions to manage each of its
bundles, and this makes sense. Some roles should have access to some bundles while other
roles should have access to other bundles. However, there is no way it can know which
bundles it will have at any given point. So, it uses a permission callback:

permission_callbacks:
 - \Drupal\node\NodePermissions::nodeTypePermissions

This is found in the node.permissions.yml file just like the statically defined ones, but it
delegates the responsibility of getting the permissions to the nodeTypePermissions
method of the NodePermissions class. This is the same notation we use to define
Controllers in the route. As a matter of fact, the same class resolver is used to instantiate it.

Checking the user credentials
You can easily check whether a given user should access a certain resource as long as you
have that user account at hand. Here, you can encounter two scenarios:

You want to interrogate the current user
You want to interrogate a given user, not necessarily the current one

As we saw in Chapter 2, Creating Your First Module, the current user is represented by a
service, which implements the AccountProxyInterface interface. This service can be
accessed by the current_user key or statically with this shorthand:

/** @var AccountProxyInterface $accountProxy */
$accountProxy = \Drupal::currentUser();

From this account proxy, we can request the AccountInterface, which represents the
actual logged-in user account (the UserSession object). It holds a reference to the User
entity, with a few of its "account" related data, but that is pretty much it. If we need to
access its entity fields, we need to load the entity as we normally do:

/** @var UserInterface $user */
$user =
\Drupal::entityTypeManager()->getStorage('user')->load($accountProxy->id())
;

Access Control

[314]

The resulting UserInterface, by the way, also implements the same AccountInterface,
so these common methods can be used on both objects. So, the User entity type is
essentially the storage facility for the AccountInterface that represents an user who is
browsing the pages. However, for the moment, the User entity is not so relevant, so we will
get back to the account, which we can retrieve from the proxy, like so:

/** @var AccountInterface $account */
$account = $accountProxy->getAccount();

The methods on this interface allow us to interrogate the account (either the current user
account or the one represented by a given User entity) as to its credentials. Also, many of
them are also present in the AccountProxy, meaning that you can ask it directly for these.

Two very general but often helpful methods are the following:

$account->isAnonymous();
$account->isAuthenticated();

These check whether the account is anonymous or not, without taking any roles or
permissions into account. Sometimes, your access control is solely based on this distinction.

We can also get a list of roles the account has, as follows:

$account->getRoles();

Even more important, check whether the user has a given permission:

$account->hasPermission($permission)

Where $permission is a string (the machine name of the permission as we saw it defined
earlier). This method is very helpful because it checks all the roles the user has for the
specified permission.

So, you can use these methods anywhere in your code when you need to check whether a
user should be accessing certain parts of your functionality.

Route access
Now that we saw how the access system works in Drupal 8 at a basic level, and how we can
define permissions and check user credentials, it's time to talk about routes.

Access Control

[315]

As we've seen from the very first time we wrote code in this book, routes are the entry
points into your application. Also, as a developer, it is one of the main things you'll be
dealing with, and controlling who exactly can access these routes falls under the purview of
the access system.

There are a number of ways we can ensure that routes are only accessible to the right users,
so let's see what these are.

The simplest way is by checking for a permission. We've actually done that in Chapter 2,
Creating Your First module, when we defined our hello_world.hello route:

hello_world.hello:
 path: '/hello'
 defaults:
 _controller:
'\Drupal\hello_world\Controller\HelloWorldController::helloWorld'
 _title: 'Our first route'
 requirements:
 _permission: 'access content'

The requirements key in a route definition contains all the data that the request trying to
reach this route must have. This can contain mostly access-like information, and also things
such as the request format.

The requirement in the preceding example is _permission (all these options typically start
with an underscore).It is used to specify that the user accessing this route needs to have that
permission, similar to how we checked whether a user has it earlier:

$account->hasPermission($permission).

The access content permission is something defined by Drupal core and is basically the
one you'd use when the restrictions are very lax, meaning that all users should be able to
access the resource because, by default, this permission is also present on the Anonymous
user role.

Speaking of lax restrictions, there is one option that is even more open, fully open:

_access: "TRUE"

This essentially opens up the route to basically everybody under any circumstance--not
something you'll probably use often, but it's very handy in some cases.

Access Control

[316]

Returning to permissions, we can also include multiple permissions in this requirement. For
example, to check whether a user has either of two permissions, we separate them by a
comma:

_permission: "my custom permission,administer site configuration"

For checking whether the user has all the given permissions, we separate them by a plus (+)
sign:

_permission: "my custom permission+my other permission"

So, we can already see quite some flexibility. The administer site configuration is
another staple permission from Drupal core, which we can use to ensure that the user is an
administrator; it is typically a sensitive permission given only to these users.

Next, we also have a requirement by which we can check whether the user has a given role.
In a similar manner, we can include multiple roles to check, depending on whether we want
to do AND or OR checking:

_role: "administrator"
_role: "editor,administrator"
_role: "editor+administrator"

This approach is not as flexible as using permissions and is a little "hardcody". By this I
mean that you are hardcoding an access rule based on site configuration (as roles are
configuration entities). So, if that configuration is removed, you may have broken code.
Permissions, on the other hand, are also code, as they are defined in a module (or Drupal
core). However, the option is there if you need it.

The next type of requirement we should be covering here is _entity_access. However,
understanding this requires us to first know a bit about entity level access, so we will skip it
now; we'll definitely come back to it later in the chapter. Instead, we will talk about the
mother of all route access approaches--the custom one.

Route access requirements can also be stacked, which means that we can
add more than one access requirement to a route and the access will be
given if all of them grant access. If one denies it, access is denied to the
route. This is done by simply adding multiple requirements to the route.

Access Control

[317]

Custom route access
The previous ways of controlling routes are powerful and relatively flexible, but static. We
are hardcoding the rules into a file and expect the incoming user to abide by them.
However, what if things are more complicated than that, and we need a more dynamic
approach? Trust me, things get complicated, fast. We can use the _custom_access option
of the route requirements.

In this subsection, we will see how these work and how we can create our custom access
checkers. Just something simple to demonstrate the process. Then, we will see a more
advanced implementation that will have us work a bit with routes programmatically.

There are two ways custom access checkers can be created and used with a route, and they
both involve creating a class. Also, the way this class is used makes the distinction--we can
either reference it directly (statically) or make it into a service and reference it like so. We
will see an example of both later in this chapter.

To demonstrate, let's say that we want to make sure that our Hello World route is only
accessible to users who don't have a specific role--editor. Doesn't make much sense, but
it's a simple example we can run with.

Static approach
The static approach involves creating a method on our Controller (or somewhere else),
usually called access(), and reference it from the route definition. So, inside our controller
we can have this:

/**
 * Handles the access checking.
 *
 * @param AccountInterface $account
 *
 * @return AccessResultInterface
 */
public function access(AccountInterface $account) {
 return in_array('editor', $account->getRoles()) ?
AccessResult::forbidden() : AccessResult::allowed();
}

Access Control

[318]

This method receives the current user's AccountInterface, which we can use to
determine the roles. Moreover, if we type hint some extra parameters, Drupal will pass
them to the method as well:

\Symfony\Component\Routing\Route $route

\Drupal\Core\Routing\RouteMatch $route_match

We've already discussed the CurrentRouteMatch service in Chapter 2, Creating Your First
Module, and we saw that we can use it to find out things about the route that has just been
accessed. In reality, that service simply uses RouteMatch objects underneath. So, in case
our access rules for this route depend on something that relates to the route, this argument
can be very important. Soon, I will demonstrate why that is in further detail.

Similarly, we can also type hint the actual Route object that contains data about the route.
This plays to the same point I made in the preceding paragraph, and we can also use it in
our logic, but alas, for our use case, these won't be necessary, so we will stick with the
AccountInterface.

What we are returning in this method is very important, as it needs to be an instance of
AccessResultInterface. This is the standard interface the access system in Drupal 8
works with. The following are the three main implementations of this interface you will
often encounter:

AccessResultAllowed

AccessResultNeutral

AccessResultForbidden

The gateway to these objects, however, is typically the AccessResult abstract base class
(which all the preceding mentioned implementations extend as well) and its static methods.
As you saw in the preceding example, we used the allowed() and forbidden() methods
to instantiate these objects. Of course, there is also the corresponding neutral() method
we can use to indicate that we don't have a say in the matter. Typically, this is used when
there are multiple actors involved in deciding access to a certain resource, and one such
actor encounters a resource for which they don't need to control access.

Some other built-in capabilities of the AccessResult base class are related to cacheability,
but it also has convenience methods to achieve a bit more complex access logic. For
example, the following methods can prove handy:

allowedIf($condition)

forbiddenIf($condition)

Access Control

[319]

You simply pass a Boolean to these methods, and they return the right access object--so, a
Boolean-to-AccessResultInterface converter, if you will. Do keep in mind that these
methods return an AccessResultNeutral object in case the condition evaluates to FALSE.
So, you cannot use these methods if you need to map a Boolean to an explicitly allowed or
explicitly denied result.

Additionally, we have methods like the following:

allowedIfHasPermission()

allowedIfHasPermissions()

This will check whether a given account has one or more permissions and returns the right
access object depending on the case.

Finally, we also have the orIf() and andIf() methods, with which we can build more
complex access structures that combine multiple AccessResultInterface results.

Closing the parenthesis on the AccessResultInterface, let's reference this method in our
route in order to actually make use of it. This is what the route definition looks like now:

hello_world.hello:
 path: '/hello'
 defaults:
 _controller:
'\Drupal\hello_world\Controller\HelloWorldController::helloWorld'
 _title: 'Our first route'
 requirements:
 _custom_access:
'\Drupal\hello_world\Controller\HelloWorldController::access'

Instead of the _permission requirement, we use _custom_access with a reference to our
Controller method--easy peasy. While clearing the cache, our new access checker will kick
in to kick out those pesky editor users.

This static approach, as you can imagine, is slightly more powerful than using permission
or roles-based access checking, because it allows you to write PHP logic in order to
determine the access. However, it falls short in a number of respects, and this is where the
service-based approach can be used.

Access Control

[320]

Service approach
The service approach involves creating a tagged service and referencing that in the route
definition as a requirement. There are a number of advantages to this method compared to
the one we've just seen:

Allows you to encapsulate complex access logic in its own class
Allows you to inject dependencies and make use of them in calculating the access
Allows you to reuse the access checker on multiple routes

So, let's take a look at how we can implement this for our Hello World route. We will
replace the preceding approach, but keep the goal of denying access to editors. However, to
increase a bit, complexity, editors will be allowed if the Hello World salutation has not been
overridden via the configuration form. If you recall, in Chapter 2, Creating Your First
Module, we created a form where the salutation message can be overridden and stored in a
configuration object.

First, let's create our class. Typically, access-related classes go inside the Access folder of
the module namespace--it's not necessarily so, but it makes sense to put them there. Then,
we can have something like this:

namespace Drupal\hello_world\Access;

use Drupal\Core\Access\AccessResult;
use Drupal\Core\Config\ConfigFactoryInterface;
use Drupal\Core\Routing\Access\AccessInterface;
use Drupal\Core\Session\AccountInterface;

/**
 * Access handler for the Hello World route.
 */
class HelloWorldAccess implements AccessInterface {

 /**
 * @var \Drupal\Core\Config\ConfigFactoryInterface
 */
 protected $configFactory;

 /**
 * HelloWorldAccess constructor.
 *
 * @param \Drupal\Core\Config\ConfigFactoryInterface $configFactory
 */
 public function __construct(ConfigFactoryInterface $configFactory) {
 $this->configFactory = $configFactory;

Access Control

[321]

 }

 /**
 * Handles the access checking.
 *
 * @param AccountInterface $account
 *
 * @return AccessResult
 */
 public function access(AccountInterface $account) {
 $salutation =
$this->configFactory->get('hello_world.custom_salutation')->get('salutation
');
 return in_array('editor', $account->getRoles()) && $salutation != "" ?
AccessResult::forbidden() : AccessResult::allowed();
 }
}

Right off the bat, I would like to mention that the AccessInterface we're implementing is
at this point a bit up in the air. If you look inside, you'll see that it has no methods. This is
because of the dynamic argument resolving we talked about earlier, by which we can get
the route and route match if we type hint them. There was an ongoing discussion at the
time of writing this book on marking it deprecated and maybe eventually removing it
completely (or finding another solution). So, it's something worth paying attention to in the
long run.

Also, since there is no interface, the access() method naming is not enforced. However,
we will need it because that is the name being looked for by the access system when using
the service. As before, we get the user making the request from which we can get the roles.
Moreover, we injected the configuration factory and checked whether the salutation text
had been overridden. Only if that is the case, will editors be denied access. It's nothing too
complicated for us at this point.

Now, let's take a look at how we define this as a service to be used by our route as an access
checker:

 hello_world.access_checker:
 class: \Drupal\hello_world\Access\HelloWorldAccess
 arguments: ['@config.factory']
 tags:
 - { name: access_check, applies_to: _hello_world_access_check }

Access Control

[322]

As you can see, tagged services are very important in Drupal 8 and are a great example of
an extension point with which we can contribute our own code to an existing set of
functionality. In this example, apart from tagging it for access checking, we also see another
option to this tag--applies_to. The corresponding string is what we can now use in our
route definition to target this particular access checker. So instead of the following line:

_custom_access:
'\Drupal\hello_world\Controller\HelloWorldController::access'

We have this one:

_hello_world_access_check: 'TRUE'

The TRUE value we set doesn't make much of a difference. If we wanted, we could add a
string value that could actually be used by the access checker internally. However, we'll use
a different approach for that later. So, for now, the standard thing to do is just use TRUE.

After clearing the cache, our new access checker will kick in, and that is pretty much it.

Programmatically checking access on routes
If we defined routes and users go to those routes, Drupal will check access for us
automatically (according to the requirements set forth in the route definition). However, we
may often need to check access to a given route programmatically, for example, to know
whether we should show a link to it to the current user. Drupal is of the opinion that if a
user doesn't have access to a route, they should never see a link to it anywhere. So, we
should follow suit in our custom code.

In Chapter 2, Creating Your First Module, we saw how to work with the Url objects to create
links, and we can use these very Url objects to check access on a given route; consider the
following example:

$url = Url::fromRoute('hello_world.hello');
if ($url->access()) {
 // Do something.
}

The access() method on the Url object works only with routed URLs, those which have
been determined to have a route behind them. It will obviously not work with things such
as external URLs, so, in these cases, it will always return TRUE. Also, we can pass an
AccountInterface to this method in case we want to check whether a specific user has
access to that route. Without an argument, it defaults to the current user.

Access Control

[323]

Under the hood, the Url class uses the AccessManager service statically to check the access
of the route. This is done statically, so if you want, you can inject the service yourself
(access_manager) and check the route access:

$access = $accessManager()->checkNamedRoute('hello_world.hello', [],
$account)

The empty array we pass as a second argument is an array of parameters that the route
needs. You remember how route parameters work from Chapter 2, Creating Your First
Module, right?

I mentioned earlier that it's very important to use the account, route, and route match that
are being passed to the access checker as dynamic arguments if you need them for
calculating the access logic, as opposed to injecting the current user or current route match
services and using those. Maybe, now, you can start to understand why. Let me break it
down.

One of my earlier points was that an advantage of the service-based access checking
approach is that it allows us to use the same service on multiple routes. This means that we
can have highly dynamic access rules by which we can check route options within the
access checker and calculate access based on those, and this is quite powerful.

However, if you inject the current route match service and make use of that, your access
rules will work only when that route is being requested in the browser, so, basically, when
the user is trying to go to that path. This is because the current route just happens to be the
same as the route the access checker is using (the injected one). However, if you
programmatically check access on that route from another page (as we just saw), the current
route match will be of that other page instead of the one you actually want to check access
to.

You'll see this happen even if you don't manually check access on routes with menu links. If
a given route is used in a menu link and printed on a page, Drupal will do the access
checking automatically to ensure that users have access to that link. Moreover, if you
remember from Chapter 5, Menu and Menu Links, you will note that if you want to render
menu links programmatically, one of the things you'll typically do is run the menu tree
through a set of manipulators. An important manipulator is that which checks whether the
current user has access to that route.

In these cases, you have the same problem. So, do remember to type hint your access
checker with the route and/or route match objects and do not inject them. Of course, do not
inject the current user service either (unless you have a very specific reason for doing so).

Access Control

[324]

Bonus - dynamic route options for access control
We've seen how to create a service-based access checker that we can use on our routes.
Using this technique, I want to demonstrate the flexibility of using the service on multiple
routes. Imagine that we have multiple routes, which display some user information.
However, these routes are specific to a user type, and hence accessible only for that user
type. In this example, a user type will be defined based on the value of a simple text field on
the user entity, and we want to specify in the route definition for which user type it should
be accessible to. The code we write for this demonstration will go inside a new user_types
module.

An alternative approach to checking the access inside a route for this example is to simply
verify inside the Controller that the current user should access it. If not, throwing an
AccessDeniedHttpException inside a Controller method will turn the request into a 403
(access denied). However, this is almost always the wrong approach because the route can
no longer be verified for access, and we'll end up with links on our site that potentially lead
to 403 pages, and we don't want that. So, for this reason, if the page has access rules, they
belong in the access system and not in the Controller.

We'll go into this example with the assumption that the user entity has a field called
field_user_type already on it; that we have users of three types--board_member,
manager, and employee; and that we have the following four route definitions:

user_types.board_members:
 path: '/board-member'
 defaults:
 _controller:
'\Drupal\user_types\Controller\UserTypesController::boardMember'
 _title: 'Board member'
user_types.manager:
 path: '/manager'
 defaults:
 _controller:
'\Drupal\user_types\Controller\UserTypesController::manager'
 _title: 'Manager'
user_types.employee:
 path: '/employee'
 defaults:
 _controller:
'\Drupal\user_types\Controller\UserTypesController::employee'
 _title: 'Employee'
user_types.leadership:
 path: '/leadership'
 defaults:
 _controller:

Access Control

[325]

'\Drupal\user_types\Controller\UserTypesController::leadership'
 _title: 'Leadership'

The preceding routes don't have any access requirements yet, as it is our job to create those
now. However, you can already understand what kind of users should be able to access
these routes. The user_types.board_members route is for board members,
user_types.manager is for managers, user_types.employee is for both employees and
managers (since both are actual employees), and user_types.leadership is for the board
members and managers. So, a bit of mix and match to highlight the need for flexibility in
our access checker.

Obviously, we don't want to write a service for each combination of user types to handle the
access here. Also, using the static approach is not suitable either because we need to inject a
dependency, and we also don't want to duplicate the logic using different callables.

So, let's define our service definition for this access checker:

user_types.access_checker:
 class: \Drupal\user_types\Access\UserTypesAccess
 arguments: ['@entity_type.manager']
 tags:
 - { name: access_check, applies_to: _user_types_access_check }

We inject the entity type manager service so that we can load the user entity corresponding
to the user whose access is being checked. As you remember, the AccountInterface is not
enough to read field data from that user.

Now, we can update our route requirements (for all four routes) to make use of this access
checker:

 requirements:
 _user_types_access_check: 'TRUE'

Earlier we saw the static access checker being referenced using the
_custom_access requirement. This is the same as the one we are creating
now, but provided by Drupal core and which maps to the
CustomAccessCheck service (instead of our custom one we are now
writing). This in turn delegates the responsibility to the class method set in
the definition.

Access Control

[326]

Now, it's time to make the distinction between our four routes in terms of the types of users
that should have access to them, and we can use route options for this. Options are a set of
arbitrary pieces of data that we can put on a route definition and retrieve later
programmatically. If you remember, in Chapter 2, Creating Your First Module, parameter
converters are such an example that can be defined as an option in the route.

Let's take a look at just one of the routes as an example in full, and you'll extrapolate what
the other routes will have to look like:

hello_world.employee:
 path: '/employee'
 defaults:
 _controller:
'\Drupal\hello_world\Controller\UserTypesController::employee'
 _title: 'Employee'
 requirements:
 _user_types_access_check: 'TRUE'
 options:
 _user_types:
 - manager
 - employee

Route options are placed under the options key and are conventionally named with an
underscore at the beginning (however, this is not mandatory). In a standard YAML
notation, we have a sequence of string values underneath our _user_types option, which
will be turned into a PHP array when read into the Route object.

Now, we can create our access checker service and make use of all this for controlling
access:

namespace Drupal\user_types\Access;

use Drupal\Core\Access\AccessResult;
use Drupal\Core\Entity\EntityTypeManager;
use Drupal\Core\Routing\Access\AccessInterface;
use Drupal\Core\Session\AccountInterface;
use Symfony\Component\Routing\Route;

/**
 * Access handler for the User Types routes.
 */
class UserTypesAccess implements AccessInterface {

 /**
 * @var \Drupal\Core\Entity\EntityTypeManager
 */
 protected $entityTypeManager;

Access Control

[327]

 /**
 * UserTypesAccess constructor.
 *
 * @param \Drupal\Core\Entity\EntityTypeManager $entityTypeManager
 */
 public function __construct(EntityTypeManager $entityTypeManager) {
 $this->entityTypeManager = $entityTypeManager;
 }

 /**
 * Handles the access checking.
 *
 * @param AccountInterface $account
 * @param \Symfony\Component\Routing\Route $route
 *
 * @return \Drupal\Core\Access\AccessResult
 */
 public function access(AccountInterface $account, Route $route) {
 $user_types = $route->getOption('_user_types');
 if (!$user_types) {
 return AccessResult::forbidden();
 }
 if ($account->isAnonymous()) {
 return AccessResult::forbidden();
 }
 $user =
$this->entityTypeManager->getStorage('user')->load($account->id());
 $type = $user->get('field_user_type')->value;
 return in_array($type, $user_types) ? AccessResult::allowed() :
AccessResult::forbidden();
 }
}

As per the service definition, we inject the entity type manager as a dependency. This is
something we could not have done using the static approach. Then, in our access()
method, we also type hint the route on which this service is used for evaluating access.
Now comes the fun part.

We inspect the route and try to retrieve our option by name. Just as a fail safe, we deny
access if the option is missing. This should never be the case, as we only use this access
checker on routes that do have the option, but you never know. Additionally, we also deny
access if the user is anonymous. Anonymous users are sure to not have any user type field
value.

Access Control

[328]

Then, we load the user entity of the current account and simply check that field value and
return access according to whether it is within the allowed ones for the route. I recommend
that you inspect the Route class and see what other handy data you can make use of.

This is it. Now, we have a flexible access checking service that we can use on any number of
routes that need this user type access control.

A key takeaway from this bonus technique is that you can build incredibly flexible
architectures using options on routes. In this example, we used them for access, but you can
also use them for other functionalities that tie to, and can be controlled from, the route.

CSRF protection on routes
Drupal comes equipped with various tools for handling CSRF protection.

Cross Site Request Forgery (CSRF) is an attack that forces an end user to execute unwanted
actions on a web application in which they're currently authenticated.

-(OWASP)

One such tool is for handling the addition of a CSRF token to a route built using the Drupal
API automatically. Let's take a look at an example.

Imagine that you have a route that is used as some sort of a callback. Hitting this route
triggers a process (typically for logged-in users), so you need to make sure that users only
end up on this route from the place they should come (part of the flow that needs to trigger
that process). Tokens can be used for this, and Drupal 8 has this covered.

There are two things we need to do--add a requirement to the route for CSRF protection
and then build that link using the regular Drupal API we saw in Chapter 2, Creating your
First Module. Here's the requirement:

_csrf_token: 'TRUE'

Also, note that this can go together with other access-based requirements such as the ones
we've been talking about in this section.

Adding the CSRF token requirement now makes the route inaccessible, if simply accessed
by navigating to the path in the browser. To make it accessible, we will need to print a link
to it somewhere using the Drupal API:

$url = Url::fromRoute('my_module.my_route');
$link = [

Access Control

[329]

 '#type' => 'link',
 '#url' => $url,
 '#title' => 'Protected callback'
];

What is mentioned in the preceding paragraph is one way, but we can also use the
LinkGenerator service or the Link class, as we've seen in Chapter 2, Creating Your First
Module. They will all render the link with a token appended to the URL as a query
parameter. Drupal will then evaluate that token as part of the access control and make sure
that it is valid. As a matter of fact, the link building actually plays no role. It is the URL
generator that handles it. So, getting the string URL will contain the token:

$path = $url->toString();

Under the hood, to manage the creation and validation of the tokens, Drupal uses the
CsrfTokenGenerator service, which we can also use if we need to. For example, after
getting our hands on the service (csrf_token), we can create a token:

$token = $generator->get('my_value');

Here, my_value is an optional string that the generator can use to make the token unique. It
also uses the current user session and the private site key. Keep in mind that if the user is
anonymous and no session has been started, the token will be unique on each request. So, if
that's a problem, make sure that you start the session manually as we did in Chapter 6,
Data Modeling and Storage.

We can then validate this token as follows:

$valid = $generator->validate($token, 'my_value');

Here, $generator is the same service we used for creating it.

Using the token generator manually can be handy, but as we saw, it is very easy to just put
a requirement on the route, and let Drupal do the rest. Moreover, CSRF protection is
embedded in the Form API, so we don't have to do absolutely anything when it comes to
forms for additional protection.

Altering routes
We've seen so far how to create access rules on our own routes. However, it would not be
Drupal if it wasn't also easy to alter existing routes and change their access rules to
whatever we want. This is yet another small extension point with which our custom
modules can contribute to an existing functionality.

Access Control

[330]

Altering route access is done by altering the routes themselves. Of course, access is not the
only reason why routes may be altered, as you can change just about anything else on the
definition. So, with this occasion, we will see how you can alter routes for any purpose you
might need.

Routes can be altered by subscribing to an event, just as we've seen in Chapter 2, Creating
Your First Module, when we subscribed to the kernel.request event. This event is
dispatched at the moment all the routes are being built and before they get cached. So, the
alteration will not happen dynamically (upon someone accessing the route), but only when
they all get rebuilt. So, let's take a look at how we can subscribe to that event.

Unlike most other subscribers, the EventSubscriberInterface class for routes typically
goes in the Routing namespace of the module so that's where we'll put it. Moreover, the
event we're listening to is RoutingEvents::ALTER. However, the routing system provides
us with a base subscriber class we can extend and which contains all this boilerplate code,
leaving us to do only the alterations themselves.

And these alterations can look like this:

namespace Drupal\hello_world\Routing;

use Drupal\Core\Routing\RouteSubscriberBase;
use Symfony\Component\Routing\RouteCollection;

/**
 * Subscribes to route events for the Hello World module.
 */
class HelloWorldRouteSubscriber extends RouteSubscriberBase {

 /**
 * {@inheritdoc}
 */
 protected function alterRoutes(RouteCollection $collection) {
 $route = $collection->get('user.register');
 if (!$route) {
 return;
 }

 // Example 1:
 // We deny access to the Register page in all cases. With this
requirement,
 // it doesn't matter anymore what other access requirements exist or if
they
 // evaluate positively.
 $route->setRequirement('_access', 'FALSE');

Access Control

[331]

 // Example 2:
 // We check for the presence of a specific access requirement and if it
exists,
 // we clear all the access requirements on the route and set our own.
 if ($route->hasRequirement('_access_user_register')) {
 $route->setRequirements([]);
 $route->setRequirement('_user_types_access_check', 'TRUE');
 }
 }
}

We extended RouteSubscriberBase, which subscribes to the event and provides us with
the alterRoutes() method and a collection of all the routes on the site. I encourage you to
look into the RouteCollection class, as it's a very handy one to know when working with
routes. One important feature is that we can retrieve routes based on their name, which we
did in the preceding example.

Then, we will work with Route objects like we did a bit earlier. We can see two examples,
all with comments I will not repeat here. The second example does not make any sense in a
real-world scenario, as we cannot have logged-in users register for new accounts anyway.
However, it serves to illustrate how we can add our own access checker to an existing route.

Similar to how we manipulate access requirements, we can change a lot of other things:
options, parameters, controller, and even the actual route path. For this, I encourage you to
familiarize yourself with the Route class methods and see what you can set on the new
route. Couple this information with the documentation (https:/ /www. drupal. org/docs/ 8/
api/routing-system/ structure- of- routes) on all the things you can add to routes
for a better understanding.

The only thing left for this to work is to register the subscriber as a tagged service, just like
we did in Chapter 2, Creating Your First Module:

 hello_world.route_subscriber:
 class: Drupal\hello_world\Routing\HelloWorldRouteSubscriber
 tags:
 - { name: event_subscriber }

Now, we are done with altering our routes.

https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes
https://www.drupal.org/docs/8/api/routing-system/structure-of-routes

Access Control

[332]

Entity access
Now that we've covered how access control works on routes, let's dive into the entity access
system and see how we can ensure that only the right users interact with our entities. To
demonstrate these, we will work with the Product entity type we created in Chapter 7,
Your Own Custom Entity and Plugin Types.

When we created the Product entity type, the annotation we wrote had an
admin_permission property, where we referenced the general permission to be used for
any interaction with the entities of this type. Since we didn't reference and implement an
access control handler, this is the only access checking done on products. In many cases, this
is enough. After all, entity types can be created for the sole purpose of structuring some
data that nobody even needs to interact with in the UI. However, many other cases require
more granular access control on operating with the entities, especially the content-oriented
ones, such as Node.

There are four operations for which we can control access when it comes to entities--view,
create, update, and delete. The first one is clearly the most common one, but we always
need to account for the rest as well. Let's first define permissions for all these operations:

view product entities:
 title: 'View Product entities'
edit product entities:
 title: 'Edit Product entities'
delete product entities:
 title: 'Delete Product entities'
add product entities:
 title: 'Create new Product entities'

These are four simple permissions that map to the operations that can be performed on
Product entities.

Now, let's go ahead and create an access control handler for our Product entity type. You
remember what these handlers are from Chapter 6, Data Modeling and Storage, don't you?

First, we will reference the class we will build on the product annotation:

"access" = "Drupal\products\Access\ProductAccessControlHandler",

I choose to put this handler in the Access namespace of the module, but feel free to put it
where you want.

Access Control

[333]

Second, we will need the actual class:

namespace Drupal\products\Access;

use Drupal\Core\Entity\EntityAccessControlHandler;
use Drupal\Core\Entity\EntityInterface;
use Drupal\Core\Session\AccountInterface;
use Drupal\Core\Access\AccessResult;
use Drupal\products\Entity\ProductInterface;

/**
 * Access controller for the Product entity type.
 */
class ProductAccessControlHandler extends EntityAccessControlHandler {

 /**
 * {@inheritdoc}
 */
 protected function checkAccess(EntityInterface $entity, $operation,
AccountInterface $account) {
 /** @var ProductInterface $entity */
 switch ($operation) {
 case 'view':
 return AccessResult::allowedIfHasPermission($account, 'view product
entities');

 case 'update':
 return AccessResult::allowedIfHasPermission($account, 'edit product
entities');

 case 'delete':
 return AccessResult::allowedIfHasPermission($account, 'delete
product entities');
 }

 return AccessResult::neutral();
 }

 /**
 * {@inheritdoc}
 */
 protected function checkCreateAccess(AccountInterface $account, array
$context, $entity_bundle = NULL) {
 return AccessResult::allowedIfHasPermission($account, 'add product
entities');
 }
}

Access Control

[334]

As I mentioned in Chapter 6, Data Modeling and Storage, entity access control handlers need
to extend the EntityAccessControlHandler base class. If one is not specifically
provided, that is actually the handler the entity type defaults to. Also, there are two
methods we will need to implement here (override):

checkAccess(), which is used to control access on the view and update and
delete operations
checkCreateAccess(), which is used to control access on the create operation

The reason why these are separate is because for the create operation we don't have an
entity we can inspect in the process.

Our access rules for the Product entity type are very simple. For each operation, we allow
access if the user has the relevant permission; otherwise, access is neutral. However, what
happens in this case?

It's worth looking into the EntityAccessControlHandler base class and understanding
what is going on. The main access entry points are the access() and createAccess()
methods. We should never override these because the logic happening in there is quite
standardized and is expected behavior by everyone. Instead, our rules go inside the two
methods we saw in our own handler subclass.

The access() and createAccess() methods invoke entity access hooks (we'll talk about
those in a minute). If those do not come back with an access denied message, they call their
respective access methods we are overriding in our own subclass, and the results of these
are combined with the ones from the access hooks inside an orIf() access result.
Remember earlier when we talked about the AccessResult base class and its handy
orIf() and andIf() methods?

It's important to note how access is determined with all these factors. If at least one of the
hook implementations grants access and none deny it, the user will have access, unless we
deny access in our access handler. Neutral access plays no role in this equation, except if all
hook implementations and the access handler return neutral access (so no specific access
being granted), then the access will be denied.

In our example, we defined permissions, and the handler simply checks for these. Already,
this is pretty flexible because administrators can now assign these permissions to roles and
control using which users can perform any of these operations. However, there is nothing
stopping us from adding more logic to these methods. For example, we can even inspect the
entities (and/or the user account) and determine access based on some values. Moreover,
we can inject services into the access handler and make use of them in these calculations.

Access Control

[335]

Injecting services into Entity handlers
One of the powers of using the access handler is that we can make it aware of the service
container and inject whatever services we might need to determine access. However, it's not
immediately clear how you can do this, so we'll break it down here.

The first thing we will need is to have our access handler implement the
EntityHandlerInterface. Note that this applies in the same way to the other types of
handlers, not just access related. This interface has one method, which will receive the
container and the entity type definition--createInstance().

Knowing this, the rest is very similar to how we injected services into Controllers and
Forms using the create() method, which only takes the container as argument, or into
plugins, which also takes some plugin information:

 /**
 * @var \Drupal\Core\Entity\EntityTypeManager
 */
 protected $entityTypeManager;

 /**
 * ProductAccessControlHandler constructor.
 *
 * @param EntityTypeInterface $entity_type
 * @param \Drupal\Core\Entity\EntityTypeManager $entityTypeManager
 */
 public function __construct(EntityTypeInterface $entity_type,
EntityTypeManager $entityTypeManager) {
 parent::__construct($entity_type);
 $this->entityTypeManager = $entityTypeManager;
 }

 /**
 * {@inheritdoc}
 */
 public static function createInstance(ContainerInterface $container,
EntityTypeInterface $entity_type) {
 return new static(
 $entity_type,
 $container->get('entity_type.manager')
);
 }

With this, we have injected the entity type manager into the access handler, and if we want,
we can use it. Of course, if we don't need it, we should not inject it in the first place.

Access Control

[336]

Entity access hooks
As I mentioned, the entity access handler invokes access hooks that modules that don't own
the entity type can implement in order to have their say in the access to an entity. There are
two sets of access hooks to speak of. The first set covers create operations, as follows:

hook_entity_create_access()

hook_[entity_type]_create_access()

The second set covers view, update, and delete operations:

hook_entity_access()

hook_[entity_type]_access()

For each set, we have two hooks invoked at the same time that go from generic to entity
type specific. For example, when trying to view a node, the second hook that is invoked is
hook_node_access().

The entity access hook implementations, as you remember from our earlier discussion, also
have to return an AccessResultInterface. This is because the result is used inside the
orIf() combination with the access result of the access handler.

So, let's take a look at how we can implement these access hooks, especially their signatures.
Hence, we begin with the first set:

/**
 * Implements hook_entity_create_access().
 */
function
my_module_entity_create_access(\Drupal\Core\Session\AccountInterface
$account, array $context, $entity_bundle) {
 // Perform access check and return an AccessResultInterface instance.
}

This is the generic entity create access hook. To make it specific to an entity type, we replace
the word entity from the function name with the actual ID of the entity type. The
parameters, however, remain the same--the user account being checked for access, a context
(an array containing the entity type ID and the langcode of the entity being created), and the
bundle of the entity being created.

Access Control

[337]

The second set looks like this:

function my_module_entity_access(\Drupal\Core\Entity\EntityInterface
$entity, $operation, \Drupal\Core\Session\AccountInterface $account) {
 // Perform access check and return an AccessResultInterface instance.
}

Again, to make it specific to an entity type, we can just replace the word entity with the ID
of the entity type we want. Once again, the parameters remain, in essence, consistent--the
entity being accessed (type hinted with the relevant entity interface if implementing the
more specific hook), the operation being attempted (one of three strings--view, update, and
delete), and the user account being checked for access.

That's pretty much it. These hooks are invoked dynamically whenever access is being
checked on an entity for the given operation. Let's talk about some examples of this.

First, the entity routes that come out of the box are checking access against these operations,
so no need to worry there. So, if we navigate to the canonical, form, or delete URL, access
will be checked.

Secondly, if we programmatically load an entity and render it as we saw in Chapter 6 ,
Data Modeling and Storage, using the view builder handler, the entity access with the view
operation gets invoked. However, if we load the entity and simply retrieve some data from
it and print it within our own template, we bypass access control. So, if we are doing this,
we will need to make sure that we always check access manually:

$access = $entity->access('view', $account);

This will return a Boolean, unless you specify a third argument as TRUE, which will return
an AccessResultInterface object; your call, depending on the circumstances.

Thirdly, if we load an entity programmatically that we use inside a form builder and want
to render the form, we again bypass access check. So, we should perform it manually again
using the update operation instead.

When it comes to programmatically dealing with URLs and menu links to pages that have
CRUD connotations with regards to entities, we will need to perform access checking
ourselves, but we will discuss entity access in routes in a minute; first, a word of caution.

Access Control

[338]

Earlier, I stated a note about extracting entity data and simply rendering field values. The
same problem occurs when running entity queries--the results will contain entities that the
current user may not have access to. So, we must be aware of this and handle it
appropriately. This problem becomes even more prominent with Views, which makes
custom database queries and will include potentially inaccessible entities in the result set.
Compounded by the possibility of rendering field values with Views, this can cause quite
unexpected behavior. So, keep in mind that for cases like this, the entity access hooks and
access control handler do not fire. The Node module, however, has a complex grant system
that takes care of all this, but, unfortunately, this is available only for node entities. We will
talk about these soon as well.

Field access
We've seen so far how the entity level access works. However, a very similar system also
exists for the fields inside entities. If you look inside the EntityAccessControlHandler,
you'll note that there is a fieldAccess() method. This is called whenever access needs to
be checked on a given field. For example, the FieldItemList::access() method does
just that and delegates to the entity handler. Inside that, a call is made to
checkFieldAccess(), which is what we can implement in our access handler subclass to
customize access rules if we need to.

In a similar way, we have multiple operations that access can be checked for, but view will
be your most common one. For example, when manually rendering an entity using the
entity builder handler, as we've seen before, each field is being checked for access to the
view operation. The same goes, this time, when an entity form is being built for the entity to
edit it. Each field that is being rendered in the form gets checked for access first using the
edit operation.

Again, we also have access hooks other modules can implement to have a say in whether or
not fields should be accessible:

hook_entity_field_access()

hook_entity_field_access_alter()

In this case, we don't have an entity type or a field type-specific hook that we can
implement. However, we have an alter hook that we can use to alter the access rules
proposed by other modules.

Access Control

[339]

Similar to the entity-level access handler, the field level one takes its input from multiple
sources--subclass and hook implementations. However, the order and combination of these
are different. First, the access handler subclass is called (via the checkFieldAccess()
method). Then, all the hook_entity_field_access() hooks are invoked to provide their
input. Both of these in turn are then alterable by implementing
hook_entity_field_access_alter(). Finally, the resulting access rules are combined
into an orIf() and returned. So, the same principles are available as we saw at the entity
level, but in a different order.

Entity access in routes
Now that we understand how entity level access control works, let's return to routes for a
moment. If you remember, I mentioned the _entity_access route requirement and how
we would talk about it once we had covered entity access.

The _entity_access route requirement is nothing more than a service-based access
checker, much like the one we wrote ourselves. However, it is created by the entity system
in order to control access to routes based on dynamic entity parameters in those routes.
Let's see a quick example of a route definition that can use the _entity_access
requirement:

products.view_product:
 path: '/our-products/{product}'
 defaults:
 _controller:
'\Drupal\products\Controller\ProductsController::showProduct'
 requirements:
 _entity_access: 'product.view'
 options:
 parameters:
 product:
 type: 'entity:product'

This route has a dynamic parameter called Product. In the options, we map this parameter
to the Product entity type, so that our Controller method (showProduct()) already
receives the loaded product entity instead of just the ID. An added benefit of this is that if
the product is not found, a 404 is thrown for us. Since this route is clearly dependent on that
particular product, we also want to make sure that it can be accessible only if the user has
access to view that product.

Access Control

[340]

One way we can ensure access is to add a permission requirement that matches the one for
viewing the Product entities. However, this is not a good idea for two reasons:

If we change the permission used by the Product entity, we have to change it in
this definition as well
Even more importantly, if the entity access logic depends on something more,
such as dynamic data from the user or entity, this won't work anymore

An alternative way to counter these problems is to implement an access checker service and
check for the access on the entity inside that service:

$access = $entity->access('view', $account);

However, there's a lot of boilerplate setup involved for just this line of code. We’d have to
do so for all entity types and operations.

Instead we use the built-in _entity_access access checker as in the example route
definition. Instead of TRUE (what we've been using for our access checker), this one actually
expects a value it will make use of, and that is a string with two parts separated by a period
(.). The first part is the entity type, whereas the second is the operation. Under the hood,
EntityAccessCheck will look in the route parameters and check for the found entity's
access using the provided operation. Easy peasy.

Node access grants
Earlier I warned about the entity access controls we've been talking about not being taken
into account during queries (either written by us or Views). This is something to pay
attention to. For example, if you make a listing of entities, you will need to ensure that users
have access to these entities before printing the results out. The problem here occurs when
using the built-in paging capabilities of either the entity query or database API. That's
because the pager information will reflect all the query results. So, if you don't print the
inaccessible entities, there will be a mismatch between the pager information and visible
results.

If you remember, in Chapter 6, Data Modeling and Storage, I mentioned that when it comes
to nodes, the entity query takes access into account. If you want to avoid that, you should
use the accessCheck(FALSE) method on the query builder. Let's elaborate a bit on this.

Access Control

[341]

First, this method is available on all entity types, not just nodes. However, it is really useful
only for those which have defined a status field to denote that entities can be either
published or unpublished (or/off, enabled/disabled however you prefer). The query will
simply add a condition to that field and only return the ones with the status that equals 1.
Also, passing FALSE to this method simply removes that condition.

Second, the Node entity type has a much more powerful built-in access system called access
grants. These have been there from previous versions of Drupal, and this is why we have it
available in D8 as well. Unfortunately, it is not there for other entity types. However, if you
really need it, you could technically write it yourself now that you know how the entity
access system works in general, and can look into how the node access grants are built. But
what is this system about?

The node access grants system is a granular way by which we can control access to any of
the operations on a node. This is done using a combination of realms and grants. When a
node is saved, we have the opportunity to create access records for that node that contain the
following information:

realm (string): A category for our access records. Typically, this is used to denote
specific functionality under which the access control happens.
gid (grant ID) (int): The ID of the grant by which we can verify the user trying to
access the node. Typically, this will map to either a role or a custom-defined
"group" that users belong to. For example, a manager user type (from the earlier
example) can map to the grant ID 1. You'll understand this in a moment.
grant_view, grant_update, grant_delete (int): Boolean indicating whether this access
record is for this operation.
langcode (string): The language of the node this access record should apply to.

Then, we can return grant records for a given user when they try to access the node. For a
given user, we can return multiple grants as part of multiple realms.

The node access records get stored inside the node_access table, and it's a good idea to
keep checking that table while you are developing and preparing your access records. By
default, if there are no modules that provide access records, there will be only one row in
that table referencing the Node ID "0" and the realm all. This means that basically the node
access grants system is not used, and all nodes are accessible for viewing in all realms. That
is to say, default access rules apply. Once a module creates records, as we will see, this row
is deleted.

Access Control

[342]

To better understand how this system works, let's see a practical code example. For this,
we'll get back to our User Types module and create some node access restrictions based on
these user types. We'll start with an easy example and then expand on it to make it more
complex (and more useful).

To begin with, we want to make sure that Article nodes are only viewable by users of all
three types (so there are still some restrictions, as users need to have a type). Page nodes, on
the other hand, are restricted to managers and board members. So let's get it done.

All the work we do now takes place inside the .module file of the module. First, let's create
a rudimentary mapping function to which we can provide a user type string (as we've seen
before) and which returns a corresponding grant ID. We will then use this consistently to
get the grant ID of a given user type:

/**
 * Returns the access grant ID for a given user type.
 *
 * @param $type
 *
 * @return int
 */
function user_types_grant_mapping($type) {
 $map = [
 'employee' => 1,
 'manager' => 2,
 'board_member' => 3
];

 if (!isset($map[$type])) {
 throw new InvalidArgumentException('Wrong user type provided');
 }

 return $map[$type];
}

It's nothing too complicated. We have our three user types that map to simple integers.
Also, we throw an exception if a wrong user type is passed--now comes the fun part.

Working with node access grants restrictions involves the implementation of two hooks--
one for creating the access records of the nodes, and the other to provide the grants of the
current user. Let's first implement hook_node_access_records():

/**
 * Implements hook_node_access_records().
 */
function user_types_node_access_records(\Drupal\node\NodeInterface $node) {

Access Control

[343]

 $bundles = ['article', 'page'];
 if (!in_array($node->bundle(), $bundles)) {
 return [];
 }

 $map = [
 'article' => [
 'employee',
 'manager',
 'board_member',
],
 'page' => [
 'manager',
 'board_member'
]
];

 $user_types = $map[$node->bundle()];
 $grants = [];

 foreach ($user_types as $user_type) {
 $grants[] = [
 'realm' => 'user_type',
 'gid' => user_types_grant_mapping($user_type),
 'grant_view' => 1,
 'grant_update' => 0,
 'grant_delete' => 0,
];
 }

 return $grants;
}

This hook is invoked whenever a node is being saved, and it needs to return an array of
access records for that node. As expected, the parameter is the node entity.

The first thing we do is simply return an empty array if the node is not one of the ones we
are interested in. If we return no access records, this node will be given one single record for
the realm all with the grant ID of 1 for the view operation. This means that it is accessible
in accordance to the default node access rules.

Then, we will create a simple map of the user types we want viewing our node bundles.
Also, for each user type that corresponds to the current bundle, we create an access record
for the user_type realm with the grant ID that maps to that user type, and with permission
to view this node.

Access Control

[344]

There are two ways we can trigger this hook and persist the access records. We can edit and
save a node, which will create the records for that node, or we can rebuild the permissions
that will do so for all the nodes on the site. The link to do so can be found on the status
report page:

It's a good idea to rebuild the permissions while developing to make sure that your changes
get applied to all the nodes. Once we do this, our nodes now become inaccessible to
basically anyone (except the super user with the ID of 1). That's because we now need to
specify the grants a given user should have by implementing hook_node_grants():

/**
 * Implements hook_node_grants().
 */
function user_types_node_grants(\Drupal\Core\Session\AccountInterface
$account, $op) {
 if ($account->isAnonymous()) {
 return [];
 }

 if ($op !== 'view') {
 return [];
 }

 $user =
\Drupal::entityTypeManager()->getStorage('user')->load($account->id());
 $user_type = $user->get('field_user_type')->value;
 if (!$user_type) {
 return [];
 }

 try {

Access Control

[345]

 $gid = user_types_grant_mapping($user_type);
 }
 catch (InvalidArgumentException $e) {
 return [];
 }

 return ['user_type' => [$gid]];
}

This hook is invoked by the node access system every time access is being checked on a
given node (for a given operation). Moreover, it is also invoked when running entity
queries against the node entity type and the access check has not been disabled. Finally, it is
also invoked in database API queries when the node_access tag is used. Remember the
query alters based on tags that we talked about in Chapter 8, The Database API?

As an argument, it receives the user account for which access needs to be checked--the
grants that it has within the node access grants system of the given operation. So, what we
do here is start by returning an empty array (no grants) if the user is anonymous or the
operation they are attempting to do is not view--you have not been granted access. The
same thing happens if the user entity does not have any value in the field_user_type
field. If they do, however, we get the corresponding grant ID and return an array of access
grants keyed by the realm. For each realm, we can include more than one grant ID. In this
case, though, it is only once since the user can only be of one type. We can also return
multiple realms if needed, and, of course, other modules may do so as well, the results
being centralized and used in the access logic.

With this in place, all our page nodes are now available for viewing only to board member
and manager users, whereas articles are available for viewing to employees as well. If users
don't have any type, they don't have access. The great thing is that these restrictions are
now being taken into account also when running queries. So, we can automatically exclude
from query results the nodes to which users don't have access. This works with Views as
well.

Let's now enhance this solution with the following changes:

Unpublished article nodes are only available to managers and board members
Managers also have access to update and delete articles and pages

Access Control

[346]

The first one is easy. After we define our internal map inside
user_types_node_access_records(), we can unset the employee from the array in
case the node is unpublished:

if (!$node->isPublished()) {
 unset($map['article'][0]);
}

This was a very simple example, but one meant to draw your attention to an important but
often forgotten point. If you create access records for a node, you will need to account for
the node status yourself. This means that if you grant access to someone to view a node,
they will have access to view that node, regardless of the status (publishing state). Also,
more often than not, this is not something you want. So, just make sure that you consider
this point when implementing access grants.

Now, let's see how we can alter our logic to allow managers to update and delete nodes
(both articles and pages). This is how user_types_node_access_records() looks like
now:

$bundles = ['article', 'page'];
if (!in_array($node->bundle(), $bundles)) {
 return [];
}

$view_map = [
 'article' => [
 'employee',
 'manager',
 'board_member',
],
 'page' => [
 'manager',
 'board_member'
]
];

if (!$node->isPublished()) {
 unset($view_map['article'][0]);
}

$manage_map = [
 'article' => [
 'manager',
],
 'page' => [
 'manager',
]

Access Control

[347]

];

$user_types = $view_map[$node->bundle()];
$manage_user_types = $manage_map[$node->bundle()];
$grants = [];

foreach ($user_types as $user_type) {
 $grants[] = [
 'realm' => 'user_type',
 'gid' => user_types_grant_mapping($user_type),
 'grant_view' => 1,
 'grant_update' => in_array($user_type, $manage_user_types) ? 1 : 0,
 'grant_delete' => in_array($user_type, $manage_user_types) ? 1 : 0,
];
}

return $grants;

What we are doing different is, first, we rename the $map variable to $view_map in order to
reflect the actual grant associations. Then, we create a $manage_map to hold the user types
that can edit and delete the nodes. Based on this map, we can then set the grant_update
and grant_delete values to 1 for the user types that are allowed. Otherwise, they stay as
they were.

All we need to do now is go back to the hook_node_grants() implementation and
remove the following:

if ($op !== 'view') {
 return [];
}

We are now interested in all operations, so users should be provided all the possible grants.
After rebuilding the permissions, manager user types will be able to update and delete
articles and pages, while the other user types won't have these permissions. This does have
many implications for queries because those use the view operation.

Access Control

[348]

Before closing the topic on the node access grants, you should also know that there is an
alter hook available that can be used to modify the access records created by other modules-
-hook_node_access_records_alter(). This is invoked after all the modules provide
their records for a given node, and you can use it to alter whatever they provided before
being stored.

The access grants system, as mentioned, is limited to the node entity type. It has been there
from previous versions of Drupal, and it didn't quite make it to become standard across the
entity system. There is talk, however, of doing this, but it's quite incipient.

To better understand how it works under the hood in case you want to write your own such
system, I encourage you to explore the NodeAccessControlHandler. You'll note that its
checkAccess() method delegates to the NodeGrantDatabaseStorage service
responsible for invoking the grant hooks we've seen before. Moreover, you can also check
out the node_query_node_access_alter implementation of
hook_query_QUERY_TAG_alter() in which the Node module uses the same grant service
to alter the query in order to take into account the access records. It's not the easiest system
to dissect, especially if you are a beginner, but well worth going through and to learn more.

Block access
Another major area where you will deal with access is when trying to control access to a
custom block. If you remember in Chapter 2, Creating Your First Module, we created the
HelloWorldSalutationBlock plugin so that our salutation can also be rendered using a
block. Now, that block can be placed in a region and even configured to show up only on
certain pages, for certain user roles, or even on node pages restricted by bundle. This is all
done in the UI:

Access Control

[349]

However, this is oftentimes not enough, and you will want to have a block placed in a
region and control yourself under what circumstances it should show up--enter block
access.

Inside the BlockBase plugin base class, there is the blockAccess() method, which
always returns positively. This is because, by default, all blocks will be rendered--once they
are placed in a region. Unless, of course, they are configured to only show in certain cases,
in which case a system of visibility based on the available contexts kicks in to control that.
However, if we override this method in our block plugin class, we can control whether or
not the block is shown. So, we can leave the visibility options empty when placing the block
in a region and then handle everything we want regarding its visibility inside the
blockAccess() method. Neat, isn't it?

Also, as expected, the method has one parameter, namely the account being checked, and
needs to return an AccessResultInterface. Since we can inject services into our block
plugin (by implementing the ContainerFactoryPluginInterface as we saw in Chapter
2, Creating Your First Module), we can use what we want to check whether the given user
should see the block. If we deny access, the block is simply not rendered.

Access Control

[350]

That is pretty much all there is to the block access control.

Summary
In this chapter, we talked about many access-related topics and techniques. In doing so, we
covered what you need to know when starting Drupal 8 module development. Of course, as
you progress, you'll dive deeper into the code and learn more subtle aspects and advanced
concepts that you can employ in your modules. However, what we covered should set you
well on your way. So, what exactly did we talk about?

We started by introducing the high-level Drupal 8 access system that is made up of the
matrix between roles and permissions. In doing so, we've seen how we can define
permissions in code and also how we can check whether a user has those permissions. Of
course, we looked at other ways we can check a user's credentials and saw how we can use
the AccountInterface for this.

Then, we moved on to routes and saw all the various ways we can ensure access control
there. In doing so, we covered simple checks such as permissions and roles, but also went
into more advanced examples of using custom access checkers. We saw that these can be
both static and service based to make access checking fully dynamic. To demonstrate these
concepts, we also looked at a case study of using route options to basically configure the
access checker used on a group of similar routes.

Another major topic we covered was access on entities. We saw how we can create our own
access control handler and check access for all the operations specific to entities. The access
hooks invoked by the base access handler also go hand in hand with this, which allow other
modules to have a say in the access to a given entity. Moreover, we also saw how we can
use entity access checks on routes which have entity parameters.

Finally, we briefly covered the block access by which we can control the visibility of blocks
based on whatever rules we want, including user credentials.

Apply these lessons in your code, and do not take access issues lightly. If there is one thing
you should know a great deal about from the beginning, it is access. So, this chapter also
serves as a reference point for when you are doing development; feel free to come back to it
as many times as you need.

In the next chapter, we will look at caching and how to ensure that our application is
performant.

11
Caching

Application performance has always been one of the pain points when performing
development with Drupal, and there are many reasons for this. For example, PHP is not the
fastest language out there. Many beginner Drupal developers fell pray to the multitude of
modules available and go a bit overboard with enabling more than needed. Indeed, the
Drupal architecture is simply not the most performant. In its defense though,it is a very
complex architecture that does a lot out of the box will have some speed trade-offs.

One critical component in this game, however, is caching. For those of you not familiar with
this term, caching is the application strategy of storing copies of processed code (or
anything that results from it) in view of delivering it faster to the user when requested
subsequent times. For example, when you go to a website, you browser is most likely going
to cache (store) certain assets locally on your computer so that when you visit the site the
next time, it can show them to you faster.

Although caching has been steadily improving with recent versions of Drupal, it was still
lacking significantly. Particularly when it comes to serving registered users. Drupal 8,
however, is a completely different ball game. The system has been totally revamped and
has all aspects of the Drupal architecture. Unfortunately, though, this has put yet another
big new thing on the plate of things Drupal 7 developers need to learn. Because it's a
complex system, we simply cannot (and should not) get around it. But you're in luck,
because in this chapter we will break it all down and see what we're dealing with. So when
you are doing module development in Drupal 8, your code will be more performant, your
site will run faster, and ultimately your users will be happier.

Caching

[352]

So, what exactly are we going to talk about in this chapter?

First, we are going to cover some introductory notions about the caching system in Drupal 8
and look at the main types of caching available. Here, we will also see how, during
development, we can disable caching to increase our productivity.

Next, we are going to talk about cacheability metadata. This is one of the most important
things you'll need to know as a Drupal 8 module developer when it comes to caching. It has
to do with declaring render arrays (and other objects) in a way in which Drupal can cache
them properly (and invalidate the caches accordingly). We will talk about things such as
cache tags, contexts, and max-age, but also see how to apply them to render arrays, block
plugins, and access results.

After that, we will look at how we can tackle highly dynamic components (render arrays),
which cannot or should not be cached. Drupal 8 has a powerful auto-placeholdering system
that uses lazy builders to postpone rendering until a later stage, which can greatly improve
both cacheability and perceived performance.

Lastly, we are going to look at how we can interact with the Cache API ourselves in order to
create, read, and invalidate our own cache entries. Sometimes we need to perform
expensive calculations or show external data on our site, which can benefit from being
cached.

So let's get to it.

Introduction
The first thing I would like to mention before getting into the meat of the Cache API is that
this subsystem is one of the best documented ones (at the time of writing). You can check
out the main entry page (https:/ /www. drupal. org/ docs/ 8/api/ cache- api/ cache- api),
and I recommend keeping it close by when carrying out Drupal 8 development.

The Cache system in Drupal 8 provides the API needed to handle the creation, storage, and
invalidation of cached data. From a storage perspective, it is extensible, allowing us to write
our own custom cache backends (CacheBackendInterface). By default, however, cache
data gets stored in the database and hence the default backend is DatabaseBackend. Going
forward, we will focus only on this implementation, since it is the most commonly used
one, especially when starting a new project. Quite often though, once the site becomes more
complex, alternative caching backends can be employed for better performance--such as
Memecache or Redis.

https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://www.drupal.org/docs/8/api/cache-api/cache-api

Caching

[353]

The simplest type of cache in Drupal 8 is the so called Internal Page Cache, whose
functionality resides inside the Page Cache core module. The goal of this cache layer is to
serve anonymous users with responses that are cached in their entirety. The primary
assumption is that certain pages can be cached once and served to all anonymous users just
the same--an approach similar to what we had in Drupal 7. Unlike the previous version
though, this one is much smarter when it comes to (not) serving stale content as it makes
use of the so called cache tags to invalidate the cached pages when something on that page
changes. We will talk about cache tags in more detail soon.

This module is enabled by default when installing Drupal 8 and can be configured more or
less the same as in Drupal 7 by going to admin/config/development/performance:

Although serving anonymous users in not-so-complex websites was not that bad in Drupal
7, when it came to authenticated users it was quite the opposite. The contributed Authcache
module was the best solution for dynamic and granular caching, but it was extremely
difficult to use and implement. Some of its core tenets, however, have been used in the
development of the Dynamic Page Cache module in Drupal 8, which makes things much
simpler (and robust).

Caching

[354]

This core module also comes enabled by default and provides all the necessaries for caching
pages for all kinds of users, that is, pages that can depend on certain cache contexts. In a
nutshell, the approach of this module is to cache together the bits of the page, which can be
served for all users and handle the dynamic content that depends on a context separately. It
can do so because of the standardization of those bits into render arrays and other
components which can provide cacheability metadata. The latter is collected and used to
cache and invalidate the final result. We will talk about cache contexts and all this metadata
in this chapter and get a better understanding of it.

Before continuing, I recommend you look back to the Developer settings of Chapter 1,
Developing for Drupal 8, where I recommended you to use the developer settings when
doing development. One of the reasons is caching, primarily the dynamic page cache,
which you can disable inside the settings.php file:

$settings['cache']['bins']['dynamic_page_cache'] = 'cache.backend.null';

It is very difficult to do actual development with caching enabled, but at the same time, it's
important to often enable it and make sure your code still runs correctly. It is very easy to
forget about certain bits of code which depend on a context or should be invalidated upon
an action, and sometimes you will only spot these if you test with caching enabled.

That being said, let's talk about cacheability metadata and how this works with render
arrays.

Cacheability metadata
Cacheability metadata is used to describe the thing which is rendered with respect to its
dynamism. Most of the time, as Drupal 8 module developers, we will be using this metadata
when working with render arrays. We will see a bit later where else these come into play,
but for now, let's see what the actual properties are and what they are used for in the
context of render arrays.

When creating render arrays, there are a few things we need to think about when it comes
to caching. We always need to think about these things.

Caching

[355]

Cache tags
The first thing we need to think about is what our render array depends on. Are we
rendering some entity data? Are we using some configuration values? Or anything that
might be changed elsewhere impacting what we have to render? If the answer is yes, we
need to use cache tags. If we don't use them, our render array gets cached as it is, and if the
underlying data changes, we end up showing our users stale content or data.

To look at this an other way, imagine a simple Article node. This content can be shown on
its main detail page, in a listing of article teasers or even a listing of article titles (and many
other places potentially). And since there is no way of knowing where it will be used, it is
the responsibility of the render array that displays this content to mark this node entity as a
dependency using cache tags. This way, when the node gets updated, all the render arrays
that depend on it get invalidated as well.

Cache tags are simple strings and we can declare many cache tags for a single render array.
They do have a special form in the following pattern--thing:identifier, or in some
cases, just simply thing (if there is only one single element of that "thing"). For example,
the cache tag for a given node would be in the format node:1,where the identifier is the
actual node ID. Or for a configuration object it would be
config:hello_world.custom_salutation.

I hinted before how, for example, some node content can be present in a list and therefore,
using the cache tags, we can ensure that the render array for that node gets updated when
the node does. Since render arrays are highly granular, this can present a small extra
problem as the list itself can be a render array that may not even know which nodes it
renders. Or even more, it does not know when new nodes are created and should be
included in it. To solve this issue, we have a special "list" cache tag we can use when
rendering entities. For example, the node_list cache tag can be used for node entities,
while the product_list cache tag can be used for the product entities. These are
automatically understood by the Drupal caching system, so all we have to do is use them
appropriately.

To make life easier, however, all entities and configuration objects can be "interrogated" to
provide their respective cache tags. For example:

$tags = $node->getCacheTags();

Where $tags will be an array containing one tag--node:[nid].

Caching

[356]

The same applies to configuration objects and this is handy because it prevents typos and
errors. This is due to the generic CacheableDependencyInterface they implement and
which defines the methods for retrieving the cache metadata properties. In fact, any value
that needs to be a cache dependency can and should implement this interface. As you'll
find, there are a quite a few classes in Drupal core that do so.

You will also encounter RefinableCacheableDependencyInterface,
which is used in cases in which the cacheability of the underlying object
can change at runtime. For example, an entity translation is added, which
means that a new cache context needs to be added for that language.

We can also figure out the "list" cache tag specific to a given entity type. For example,
instead of hardcoding the product_list tag, we can use the getListCacheTags()
method and ask for the EntityTypeInterface for it.

If your render array depends on something custom, you can use custom cache tags, but it
will be your responsibility to also invalidate them when the underlying data is changed. We
will see how this is done when we interact with the Cache API directly. It's always good to
consistently use the CacheableDependencyInterface for any custom value objects.

Cache contexts
Once we thought about the dependencies of the render array, the second most important
thing to consider is what it differs by. In other words, is there any reason why this render
array should be shown one way sometimes but another way some other time?

Let's take a simple example of a render array that prints out the name of the current user.
Nothing could be less complicated. Ignoring the cache tags for now, we immediately realize
that we cannot show the same username to all users, right? So, the user Danny should see
"Hi Danny" while user John should see "Hi John". We are talking about the same render
array but one that differs by context. In other words, a variation of this render array needs
to get cached separately for each encountered context. This is where we use the
aforementioned cache contexts.

Similar to cache tags, cache contexts are simple strings, and a render array can be defined
with more than just one. For example, the user context will cache a variation of a given
render array for each user.

Caching

[357]

Moreover, they are hierarchical in nature in the sense that some contexts can include others.
For example, let's continue with our previous example. Let's assume that users with editor
role should see the greeting message but the ones with the contributor role should see a
different, more complicated one. In this case, the cache context would be on the roles the
user has. But since it already depends on the actual user due to the need to show its
username, it doesn't make sense to even bother with the roles context, because the former
encompasses the latter. Moreover, Drupal is smart enough to remove the superfluous one
when combining the cache contexts from all the render arrays that make up a page. But if
our render array differs, for example, only on the user roles and not necessarily the user
itself, we should use the specific context--user.roles. As you may notice, the hierarchical
nature is reflected in the dot (.) separation of the contexts.

There are a number of cache contexts already defined by Drupal core. Although you
probably won't have to, at least in the beginning, other contexts can also be defined. I
recommend you check out the documentation page (https:/ /www. drupal. org/ docs/ 8/
api/cache-api/cache- contexts) for the available cache contexts that come out of the box.

Max-age
The last main thing we need to think about when creating render arrays is how long they
should be stored in the cache barring no changes in the underlying data that might
invalidate them. This is something that you will probably rarely set and by default it will be
cached permanently. More often, however, you will set this cache property to "0" in order to
denote that this render array should never be cached. This is when you are rendering
something highly dynamic that doesn't make sense to be cached at all.

Using the cache metadata
Now that we have looked at the three main cache properties, we need to consider creating
render arrays, so let's revisit some of our previous work and apply this in practice as
needed.

Quite often you'll see the CacheableMetadata object being used and
passed around in Drupal 8 core code. This is simply used to represent
cache metadata and also provides some handy methods to apply that
metadata to a render array, statically instantiate itself from one, or from a
CacheableDependencyInterface object, as well as merge itself with
another CacheableMetadata object.

https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts
https://www.drupal.org/docs/8/api/cache-api/cache-contexts

Caching

[358]

The render array we will look at is inside the
HelloWorldSalutation::getSalutationComponent() service and is used to render
the salutation message. We are building it quite dynamically, but a simplified version looks
like this (omitting some things):

$render = [
 '#theme' => 'hello_world_salutation',
 '#salutation' => [
 '#markup' => $salutation
]
];

$salutation is either the message from the configuration object or generated based on the
time of day.

Right off the bat, I will mention that this is one of those cases in which we cannot really
cache the render array due to its highly dynamic nature. This is caused by the dependency
of the time of day. Sure, we could set a maximum age of a few seconds or an hour, but is it
even worth it? And we also run the risk of showing the wrong salutation.

So in this case, what we can do is add a maximum age of zero:

$render = [
 '#theme' => 'hello_world_salutation',
 '#salutation' => [
 '#markup' => $salutation
],
 '#cache' => [
 'max-age' => 0
]
];

The cache metadata goes under a #cache render array property as in the preceding
example.

Specifying the max-age basically tells Drupal not to ever cache this render array. Something
important to know about this is that this declaration will bubble up to the top level render
array that makes the Controller response, preventing the entire thing from being cached. So,
do not make the decision to prevent caching lightly. In our example, this is basically the
entire Controller response and it is actually a very simple calculation, so we are good. Later
in the chapter, we will talk about the ways this can be mitigated.

Caching

[359]

There is still a problem with us setting the max-age to zero in this
example. Although it will work with dynamic page caching (the max-age
will bubble up), the internal page cache serving anonymous users does not
get this information. So, anonymous users will see the same thing every
time. Possibly in future Drupal 8 releases, this will be fixed. We won't
account for this issue yet because it's a great example of a bug that
becomes apparent using automated tests, and we will see that in the final
chapter of the book--as well as the solution of course.

Let's, for a minute, assume that our salutation component is simply rendering the message
stored in the configuration object and does not show time specific content. If you remember:

$config = $this->configFactory->get('hello_world.custom_salutation');
$salutation = $config->get('salutation');

In this case, we could cache the render array, but as we discussed earlier, we'd need to think
about the dependencies as well as the potential variations it can have. It is already pretty
obvious what the dependencies are--the configuration object. So, we would do the
following:

$render = [
 '#theme' => 'hello_world_salutation',
 '#salutation' => [
 '#markup' => $salutation
],
 '#cache' => [
 'tags' => $config->getCacheTags()
]
];

Basically, we are requesting this particular configuration object's cache tags and setting
those onto the render array. If we had more sets of cache tags to set from multiple objects,
we would have to merge them. There is a tool we can use to ensure we do it right. For
example:

$tags = Cache::mergeTags($config_one->getCacheTags(),
$config_two->getCacheTags());

This will merge two arrays of cache tags, pure and simple. The
Drupal\Core\Cache\Cache class also has helper static methods for merging cache
contexts and max-ages (among other things, I encourage you to check this out as you
progress).

Caching

[360]

Thankfully, our render array is simple and does not vary, and we hence we don't need
cache contexts. If, however, we had appended the current username to the salutation, we
would have had to add the user context to the render array as follows:

 '#cache' => [
 'tags' => $config->getCacheTags(),
 'contexts' => ['user']
]

This would have cached the render array differently for each user who visits the page and
would serve them accordingly at subsequent visits.

Caching in block plugins
The render array we saw earlier was used as part of a Controller response. The latter is also
known as the main content as it is the primary output of the page. On a normal Drupal
installation, which uses the block module, this is included inside the Main page content
block. We also said that setting a max-age of zero will bubble up to the top level render
array causing the entire page to not be cached. This is true so far as the Controller response
is concerned. Other blocks are still cached independently according to their own metadata.

In this book, you have already learned how we can create custom blocks, and we saw that
they are also built using render arrays. Since this is the case, cache metadata can also be
applied to those arrays for caching them properly. However, since we are extending from
the BlockBase class when creating block plugins, we are essentially implementing the
CacheableDependencyInterface due to BlockPluginInterface extending it.

So instead of setting the metadata on the render array, we should, whenever possible, use
the methods on that interface by overriding the default parent implementations. For
example:

/**
* {@inheritdoc}
*/
public function getCacheContexts() {
 return Cache::mergeContexts(parent::getCacheContexts(), ['user']);
}

We should always merge our own values with the ones from the parent.

Caching

[361]

In some cases, though, especially when declaring cache tags, it makes more sense to set
them inside the render array of the build() method. That is because you may have already
done some work to get your hand on the dependent objects, and it doesn't make sense to
repeat that inside another method. That is totally fine.

Caching access results
Another important place where access metadata needs to be considered is
AccessResultInterface. If you remember from the previous chapter, objects
implementing this interface are used consistently to represent access to a certain resource.
On top of that, they can also contain cacheability metadata. This is because access may
depend on certain data that can change with an impact on the access result itself. Since
Drupal tries to cache access as well, we need to inform it of these dependencies.

A good example to see this in action is our HelloWorldAccess service where we
dynamically check access to our hello_world.hello route. So instead of simply returning
the AccessResultInterface, we add cacheable dependencies to it before doing so:

$access = in_array('editor', $account->getRoles()) && $salutation != "" ?
AccessResult::forbidden() : AccessResult::allowed();
$access->addCacheableDependency($salutation);
$access->addCacheableDependency($account);
return $access;

The addCacheableDependency() method usually takes
CacheableDependencyInterface objects to read their cache metadata. If something else
is passed, the access result is deemed un-cacheable. So in our preceding example, since the
access depends on both the salutation configuration object and the user account, we add
them both as cache dependencies.

Placeholders and lazy building
Now that we've seen a bit how the cacheability metadata can be used in the more common
scenarios, let's shift gears and talk about those page components, which have highly
dynamic data.

When we set the maximum age of our Hello World salutation to zero seconds (don’t cache),
I mentioned that there are ways this can be improved in order to help performance. This
takes the form of postponing the rendering of the respective bit to the very last moment
with the help of placeholders. But first, a bit of background.

Caching

[362]

Each of the cache properties we talked about can have values that make caching the render
array pointless. We've already talked about the maximum age being set to zero, but you can
also argue very low expiration times to have the same effect. Additionally, certain cache
tags can be invalidated too frequently, again making the render arrays that depend on what
they represent pointless to cache. Finally, certain cache contexts can provide many
variations that significantly limit the effectiveness of the cache to the point it may even be
counterproductive (high storage cost).

Cache tags are something very specific to the application we are building, so there are no
general assumptions that can be made as to which have a high invalidation rate. However,
there are two cache contexts that by default are considered to have much too high
cardinality for being effective--session and user. Yes, we talked about the user context
earlier as a good example but in reality--by default--adding this context to a render array
has pretty much the same effect as setting the max-age to zero--it will not be cached. The
same goes for the session context because there can be so many sessions and users on the
site, you probably won't want to have cache records for each individual one.

Since these are not rules that have to necessarily apply to all applications, Drupal configures
these values as service parameters, making them changeable if needed. Inside the
core.services.yml file (which lists most of the core services), we can find some
parameter definitions as well, including this one:

 renderer.config:
 auto_placeholder_conditions:
 max-age: 0
 contexts: ['session', 'user']
 tags: []

As you can see, the max-age value of zero and the previously mentioned cache contexts are
included, but no tags. We can also change these values. So, for example, if in our application
we know that we won't have too many users and it does, in fact, make sense to cache by
user context, or we know of certain cache tags with high invalidation frequency, it makes
sense to do so. There are two ways we can do it--either we use our site-wide services.yml
file and copy these declarations (while making the appropriate changes) or we can use the
services file of a given module in the same way. Both ways have the effect of overriding the
default parameters set by Drupal core.

Now that we are clear on why certain things are not cacheable, let's see how this can be
addressed using auto-placeholdering.

Caching

[363]

Auto-placeholdering is the process by which Drupal identifies the render arrays that cannot
or should not be cached, due to reasons we mentioned before, and replaces them with a
placeholder. The latter is then replaced at the very last possible moment while allowing the
rest of the page components to be cached. This is also called lazy building.

Drupal identifies the bits which need to be lazy built by the cache metadata that fits the
conditions we saw before and the presence of the #lazy_builder property (mapping to a
callback) on the render array. The former does not necessarily have to be on the render
array containing the #lazy_builderproperty, it can also be on the resulting one from the
callback.

Lazy builders
Lazy builders are nothing more than callbacks on a render array that Drupal can use to
build the render array at a later stage. The callbacks can be static (a reference to a class and
method) or dynamic (a reference to a service and method). Using the latter approach is
more flexible as we can inject dependencies from the container as we do regularly with
services. Moreover, the callback can take parameters, which means it can build the render
array already, having at least part of the needed data.

The best way to understand this is to see an example. Since we decided that our salutation
component should have a cache lifetime of zero seconds, it's a good opportunity to build it
using a lazy builder.

The first thing we need to do is replace our helloWorld Controller method in which we
directly call the salutation service with this:

return [
 '#lazy_builder' => ['hello_world.lazy_builder:renderSalutation', []],
 '#create_placeholder' => TRUE,
];

Back in Chapter 4, Theming, when I said a render array needs to have at least one of the
four properties (#type, #theme, #markup, or #plain_text), I lied. We can also use a lazy
builder like this to defer the building of the render array to a later stage.

Caching

[364]

The #lazy_builder needs to be an array whose first item is the callback and the second is
an array of parameters to pass to it. In our case, we don't need any of the latter. We could
pass the salutation service, but instead, we will inject it into the new
hello_world.lazy_builder service we will create in a minute. The callback reference is
in the format of service_name:method (one colon used for separation) or for static calls
class_name::method (two colons). We also explicitly declare #create_placeholder to
make it clear that this render array should be replaced with a placeholder. Lastly, as I
mentioned earlier, the cache metadata can be applied to this render array or it can also be in
the resulting one from the lazy builder. So, we'll opt for the latter approach in this case.

Let's now define our service:

hello_world.lazy_builder:
 class: Drupal\hello_world\HelloWorldLazyBuilder
 arguments: ['@hello_world.salutation']

Nothing out of the ordinary here, but we are injecting the HelloWorldSalutation service
as a dependency so that we can ask it for our salutation component. The actual service class
looks like this:

namespace Drupal\hello_world;

/**
 * Lazy builder for the Hello World salutation.
 */
class HelloWorldLazyBuilder {

 /**
 * @var \Drupal\hello_world\HelloWorldSalutation
 */
 protected $salutation;

 /**
 * HelloWorldLazyBuilder constructor.
 *
 * @param \Drupal\hello_world\HelloWorldSalutation $salutation
 */
 public function __construct(HelloWorldSalutation $salutation) {
 $this->salutation = $salutation;
 }

 /**
 * Renders the Hello World salutation message.
 */
 public function renderSalutation() {
 return $this->salutation->getSalutationComponent();

Caching

[365]

 }
}

All very simple. The renderSalutation() method is required as we referenced it from
our lazy builder. That is all we have to do. But, what exactly happens with this?

When Drupal renders our Controller, it finds the lazy builder and registers it with a
placeholder which is then used instead of the actual final render array. Then, at a much
later stage in the page building process, the lazy builder is invoked and the actual output is
rendered to replace the placeholder. There are a couple of advantages and implications with
this. First, it allows Drupal to bypass this highly dynamic bit of output and cache the rest of
the components in the dynamic page cache. This is to prevent the lack of cacheability from
infecting the entire page. Second, there are two different strategies (so far) with which
placeholders can be processed. By default, in using the so-called Single Flush method, the
placeholder replacement is postponed until the last minute, but the response is not sent
back to the browser before this is done. So, the dynamic page cache does improve things
(caches what it can), but the response still depends on the placeholder processing finishing.
Depending on how long that takes, the page load, in general, can suffer. This is the
traditional way of building responses and is the default in Drupal 8. However, when using
the BigPipe (https:/ /www. facebook. com/ notes/ facebook- engineering/ bigpipe-
pipelining-web-pages- for- high- performance/ 389414033919) approach, the response is
sent back to the browser before the placeholders are replaced. And as the latter finishes as
well, the replacements are streamed to the browser. This greatly improves the perceived
performance of the site as users can already see most parts of the page before the slower bits
appear.

The BigPipe technique was invented by Facebook as a way to deal with highly dynamic
pages and was gradually brought into Drupal 8 as an experimental core module. With
version 8.3, it is expected to be a stable module and ready for use in production sites.

Using the Cache API
So far in this chapter, we mostly preoccupied ourselves with render arrays and how we can
expose them to the Cache API for better performance. It's now time to talk a bit about how
cache entries are stored by default in Drupal and how we can interact with them ourselves
in our code.

As mentioned earlier, a central interface for the cache system is the
CacheBackendInterface, which is the interface any caching system needs to implement.
It basically provides the methods for creating, reading, and invalidating cache entries.

https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919

Caching

[366]

As we might expect, when we want to interact with the Cache API, we use a service to
retrieve an instance of the CacheBackendInterface. However, the service name we use
depends on the cache bin we want to work with. Cache bins are repositories that group
together cache entries based on their type. So, the aforementioned implementation wraps a
single cache bin, and each bin has a machine name, so the service name will be in the
following format--cache.[bin]. This means that for each cache bin, we have a separate
service.

The static shorthand for getting this service looks like this:

$cache = \Drupal::cache();

This will return the default bin represented by a CacheBackendInterface
implementation. If we want to request a specific bin, we pass the name as an argument:

$cache = \Drupal::cache('render');

This will return the render cache bin.

And of course, if we need to inject a cache bin wrapper somewhere, we simply use the
service machine name in the format I mentioned before.

Even though we have a separate service for each cache bin, they all basically do the same
thing, and that is use the CacheFactory to instantiate the right type of cache backend for
that bin. Individual cache backends can be registered and set as default either globally or
for specific bins.

As I mentioned at the beginning of the chapter, the default cache backend in Drupal--the
one this factory will instantiate for all the bins--is the DatabaseBackend. Each bin is
represented by a database table. This is similar in concept to what we had in Drupal 7.

Now that we know how to load the cache backend service, lets see how we can use it to
read and cache things. When it comes to this, your number one reference is the
CacheBackendInterface, which documents all the methods. However, since it does not
reinforce return values, the examples we will see next are done with the database cache
backend. They might differ from other cache backend implementations.

The first method we'll talk about is get(), which takes the ID of the cache entry we want to
retrieve ($cid) and an optional $allow_invalidparameter. The first one is clear enough,
but the second one is used in case we want to retrieve the entry even if it has expired or has
been invalidated. This can be useful in those cases in which stale data is preferred over the
recalculation costs of multiple concurrent requests.

$data = $cache->get('my_cache_entry_cid');

Caching

[367]

The resulting $data variable is a PHP standard class, which contains the data key (the data
that has been cached) and all sorts of metadata about the cache entry-- expiration, creation
timestamp, tags, valid status, and so on.

Of course, there is also a getMultiple() method, which you can use to retrieve multiple
entries at once. More fun, though, is the set()method, which allows us to store something
in the cache. There are four parameters to this method:

$cid : The cache ID that can be used to retrieve the entry.
$data : A serializable data structure like an array or object (or simple scalar
value).
$expire : The UNIX timestamp after which this entry is considered invalid, or
CacheBackendInterface::CACHE_PERMANENT to indicate that this entry is
never invalid unless specifically invalidated. The latter is the default.
$tags : An array of cache tags that will be used to invalidate this entry if it
depends on something else (cache metadata, basically).

So to use it, we would do something like this:

$cache->set('my_cache_entry_cid', 'my_value');

With this statement, we are creating a simple non-serialized cache entry into our chosen bin
and which does not expire unless specifically invalidated (or deleted). Subsequent calls with
the same cache ID will simply override the entry. If the cache value is an array or object, it
will get serialized.

When it comes to deleting, there are two easy methods--delete() and
deleteMultiple(), which take the $cid (or array of cache IDs, respectively) as arguments
and remove the entries from the bin completely. If we want to delete all the items in the bin,
we can use the deleteAll() method.

Instead of deleting, quite often it's a good idea to invalidate the entries. We’ll still be able to
retrieve the data using the $allow_invalid parameter and can use the entry while the
new one is being recalculated. This can be done almost exactly as deleting but using the
following methods instead--invalidate(), invalidateMultiple(), and
invalidateAll().

Okay, but what about those cache tags we can store with the entry? We already kind of
know their purpose and that is to tag cache entries across multiple bins with certain data
markers that can make them easy to invalidate when the data changes. Just like with render
arrays. So, how can we do this?

Caching

[368]

Lets assume that we store the following cache entry as follows:

$cache->set('my_cache_entry_cid', 'my_value',
CacheBackendInterface::CACHE_PERMANENT, ['node:10']);

We essentially make it dependent on changes to the Node with the ID of 10. This means that
when that node changes, our entry (together with all other entries in all other bins that
depend on it) becomes invalid. Simple as that.

But we can also have our own tags that make it depend on something custom of ours like a
data value (which, as we discussed earlier in the chapter, should implement the
CacheableDependencyInterface) or a process of some kind. In that case, we would also
have to take care of invalidating all the cache entries that have our tag. The simplest way we
can do this is statically, using the Cache class we've encountered earlier when merging
metadata together:

Cache::invalidateTags(['my_custom_tag']);

This will invalidate all cache entries that are tagged with any of the tags passed in the array.
Under the hood, this method uses a static call to the cache invalidator service, so whenever
possible, it's best to actually inject that service--cache_tags.invalidator.

Creating our own cache bin
Usually, the existing cache bins, particularly the default one, will be enough to store our
own cache entries. However, there are times in which we need to create multiple entries for
the same functionality, in which case it would help to have a special bin for that. So, let's see
how that can be created.

It's quite easy because all we have to do is define a service:

 cache.my_bin:
 class: Drupal\Core\Cache\CacheBackendInterface
 tags:
 - { name: cache.bin }
 factory: cache_factory:get
 arguments: [my_bin]

Caching

[369]

The class used in this service definition is actually an interface. This is because we are using
a factory to instantiate the service rather than the container directly. This means we don't
know what class will be instantiated. In this case, the factory in question is the service with
the name cache_factory and its get() method. In Chapter 3, Logging and Mailing, we
saw an example in which something like this happened when we talked about logger
channels.

The cache.bin tag is used so that Drupal can understand the function of this service,
namely, that it is a cache bin. The responsibility of making sure this bin gets its storage
belongs to the actual backend. So in our example, the DatabaseBackend creates and
removes the cache table as needed.

Lastly, the static argument is the name of the bin that gets passed to the factory and which
is used to create the cache backend for this particular bin. That is pretty much it. If we clear
the cache, we can already see in the database a new cache table for our bin.

Summary
In this chapter, we covered the main aspects related to caching in Drupal 8, any module
developer needs to be familiar with. We introduced some key concepts and talked about the
two main types of caching--Internal Page Cache (used for anonymous users) and Dynamic
Page Cache (used for any kind of user).

We dug deeper into cacheability metadata, which is probably the most important and
common thing we need to understand. It's imperative to use this properly so that all the
render arrays we build are cached and invalidated correctly. We've also seen how block
plugins have specific methods we can use to define their cacheability metadata and how
access results should also receive cacheability dependencies as needed. Stemming from this,
we also explored lazy builders and the auto-placeholdering strategies that allow us to handle
highly dynamic components while maintaining good cacheability overall.

Lastly, we looked into using the Cache API ourselves in order to store, read, and invalidate
our own cache entries. We even saw how to create our own custom cache bin.

Caching is a very important aspect of Drupal 8 module development. In previous versions,
it didn't even come close and we were able to get away quite often with not even paying
attention to it. Now, we have a powerful system in place to make rendering more
performant, and we should make use of it.

In the next chapter, we are going to talk about JavaScript and how we can use it in a Drupal
context, as well as the powerful Ajax API.

12
JavaScript and the Ajax API

So far in this book, we've only talked about topics that can be considered to relate to backend
development. This means heavy PHP, working with the APIs and the database, and so on.
This is because this book is oriented toward module developers rather than themers. Also,
the author of this book is admittedly not a JavaScript, or any kind of frontend, developer.

Nevertheless, in this chapter we'll switch gears and talk a bit about frontend development,
namely, how to work with JavaScript in a Drupal 8 application. This is because there are
many things developers can and should be doing in their modules that require frontend
technologies. There are a few approaches and techniques specific to Drupal when it comes
to adding and using JavaScript files and we will talk about those here. Moreover, we will
also prove how powerful Drupal 8 is in allowing us to do quite a bit of "JavaScript" work
without actually writing a single line of JavaScript code.

So, there are a few things we will cover in this chapter.

First, we will talk about the approach of writing JavaScript in Drupal. You already learned
in Chapter 4, Theming, how you can create libraries and attach them to render arrays,
elements, or pages. Basically, using libraries, we can get our JavaScript files loaded when
we need. I recommend you check out the section Assets and libraries from Chapter 4,
Theming, if you don't remember exactly how libraries work. Because in this chapter, we will
continue from there and talk a bit about what actually goes inside those JavaScript files.

A good resource to keep handy is the documentation page (https:/ /www.
drupal. org/ node/ 172169) that lists the coding standards for JavaScript in
Drupal 8 that we should abide by.

https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169
https://www.drupal.org/node/172169

JavaScript and the Ajax API

[371]

We won't actually write a lot of JavaScript code in the first part--enough to get you started
though. In the second part, we will not write any at all. Instead, we will talk about the
robust Ajax API that comes with Drupal and which allows us to build some very dynamic
functionalities that rely on JavaScript. To demonstrate how things work, we will revisit our
Importer functionality started in Chapter 7, Your Own Custom Entity and Plugin Types, and
improve it using Ajax.

Finally, we will also talk about the States system of the Form API, which allows us to make
our form elements dynamic and dependent on others in a declarative way. Again, we won't
even have to know any JavaScript to do what is actually quite complex client-side behavior.

JavaScript in Drupal
Drupal 8 relies on a number of JavaScript libraries and plugins to perform some of its
frontend tasks. For example, the use of Backbone.js is another example of advancement from
previous versions of Drupal when it comes to adopting established libraries rather than
reinventing new ones. Of course, as we already saw, the ubiquitous jQuery library continues
to be used in Drupal 8 as well. But of course, there's others.

Another thing I have already mentioned but which is helpful to bring up again is the fact
that Drupal no longer loads things such as jQuery or its Ajax framework on all pages
needlessly. For example, many pages serving anonymous users which do not require
jQuery won't even load it. This can greatly improve performance. But it also means that
when we define our libraries to include our own JavaScript files, we must always declare
these as dependencies (if we need them). For example, jQuery is something you'll often
depend on.

Drupal behaviors
One of the most important things you need to know when writing JavaScript files in Drupal
is the concept of behaviors. But in order to understand that, let's get a bit of context.

When writing JavaScript code using jQuery, it's often standard to wrap our code inside a
ready() method statement as follows:

$(document).ready(function () {
 // Essentially the entirety of your javscript code.
});

JavaScript and the Ajax API

[372]

This ensures that your code runs only after the entire DOM has been loaded by the browser.
Moreover, the use of jQuery for this helps a great deal with cross-browser compatibility and
also allows us to place this code wherever we want on the page (header or footer).

In Drupal, however, we have a different solution which is better in the context of writing
JavaScript, that works with Drupal as well (not just with the DOM). That comes in the form
of Drupal behaviors. In a nutshell, behaviors are methods we declare which get called when
the DOM loads fully, that is, when the document is ready. However, on top of that, they
also get called by the Ajax framework when new data is loaded onto the page. Even when
using BigPipe and placeholder, replacements are streamed.

Any Drupal site has a global Drupal object, which is used for many things we won't go into
right now. However, the Drupal.behaviours object is where we declare behaviors, and
typically any JavaScript code that we want to run should go inside a behavior. So, let's see
an example, as it will be much easier to understand.

What we want is to show a little dynamic JavaScript clock next to the Hello World
salutation, if the message is not coming from the configuration but is dependent on the time
of day. While writing the code for our functionality, we'll talk about Drupal behaviors and
how they are used.

Our library
In order to get our JavaScript file loaded, it needs to be in a library and attached to
something. As you learned in Chapter 4, Theming, the libraries file has the name
hello_world.libraries.yml and is located in the root folder of our module:

hello_world_clock:
 version: 1.x
 js:
 js/hello_world_clock.js: {}
 dependencies:
 - core/jquery
 - core/drupal
 - core/jquery.once

We only have a single JavaScript file that is needed for our purpose, located in the js
directory of our module. But we do have some dependencies. First, we want jQuery loaded
because we will use it. Second, we want to have the general Drupal JavaScript library,
which handles a bunch of things, including behaviors. The last dependency we will talk
about soon and it will make a bit more sense then.

JavaScript and the Ajax API

[373]

Without these dependencies declared, in some cases (especially for anonymous users),
Drupal would not have them loaded on the page and our JavaScript functionality will not
work.

Now, let's attach this library to our salutation component found inside the
HelloWorldSalutation service:

Right after these two lines:

$time = new \DateTime();
$render['#target'] = $this->t('world');

We can add the following:

$render['#attached'] = [
 'library' => [
 'hello_world/hello_world_clock'
]
];

This is nothing new for us but the point is we are only attaching the library if the
component is showing the dynamic salutation message that depends on the time of day. If
this message has been overridden, we don't even want to load these libraries, and that is
pretty much it. We can dive in and create our hello_world_clock.js file.

The JavaScript
The first thing we need to do inside the JavaScript file is to wrap the entire code we write in
the file into an immediately invoked function expression (IIFE). In doing this, we protect the
scope of what we write from the global one and even use global variables with more
commonly associated variable names inside our own scope. This is how this looks:

(function (Drupal, $) {

 "use strict";

 // Our code here.

}) (Drupal, jQuery);

The most important thing here is that inside this function we can now use the dollar sign ($)
as a reference to the global jQuery object without interfering with other libraries that might
use the same variable name. Also, we added the use strict declaration to ensure we
write semantically correct code (and it's also part of the JavaScript coding standards for
Drupal 8).

JavaScript and the Ajax API

[374]

Let's now add the meat of our functionality and explain how it works:

 Drupal.behaviors.helloWorldClock = {
 attach: function (context, settings) {
 function ticker() {
 var date = new Date();
 $(context).find('.clock').html(date.toLocaleTimeString());
 }

 var clock = '<div>The time is </div>';

 $(context).find('.salutation').append(clock);

 setInterval(function() {
 ticker();
 }, 1000);
 }
 };

First of all, we are defining a new behavior, which is an object on the Drupal.behaviours
object and needs to have a unique name. You can look at a single behavior as one piece of
functionality. We only need one function on this object called attach, which receives two
parameters--context (the page or part of the page that is being loaded) and settings (the
variable containing data passed from PHP).

This function gets invoked by Drupal whenever behaviors need to be attached--
Drupal.attachBehaviors(). This happens when the page gets loaded for the first time
(in which case context is the entire DOM) or after an Ajax request (in which case context
contains only the newly loaded parts of the page). Therefore, using the context instead of
the entire document for looking up elements is best practice because it's more performant
(especially after an Ajax request) and prevents other side effects.

Inside the attach function, we have our logic for creating a clock. First, we define a simple
function that looks for the element with the class .clockand puts the current time into it.
You'll notice that we used context to look for the element. Next, we create this element
ourselves and append it to our salutation message element. Lastly, we set an interval every
second to keep calling our ticker() function, essentially updating the time every second,
giving the illusion of a clock. This is all pretty standard.

Be aware that the strings we are printing to the user via JavaScript are not
run through the translation system and that is not good practice (even if
the site is not multilingual). In a later chapter, we will see how we need to
handle it instead.

JavaScript and the Ajax API

[375]

Clearing the cache and navigating to our /hello page, we can already see the new clock
appearing (if we don't have the salutation message overridden). So we're done, right? Well,
not really.

If we open up the browser's developer tools, namely the console, and try to attach the
behaviors again:

Drupal.attachBehaviors();

We notice that our clock element gets appended again (it has been duplicated). Well, that's
not right because if we have an Ajax request we run the risk of having this happen. This is
where jQuery.once comes in.

The jQuery.once library is a plugin for jQuery, which allows us to track and make sure we
are performing something only once. It's actually very simple to use. All we have to do is
replace this line:

$(context).find('.salutation').append(clock);

With this:

$(context).find('.salutation').once('helloWorldClock').append(clock);

So basically, before doing the actual thing, we call the .once() method with an ID to use
for tracking. This will ensure that whatever comes next in the chain is only applied to the
elements onto which it has not been already applied. And now you also see why we wanted
our library to depend on core/jquery.once one.

And with this, our clock is ready.

Drupal settings
Another powerful thing we can do (and something we often need to do) is pass values from
our PHP code to the JavaScript layer. In custom PHP applications, this can get messy, but
Drupal has a robust API that transforms PHP arrays into JavaScript objects. These can be
found inside the settings object passed to the behavior's attach() function.

JavaScript and the Ajax API

[376]

Again, the easiest way to understand this is through an example. So let's say we want to
print an extra message after the salutation if we are in the afternoon. Of course, we can use
JavaScript to determine that as well, but so far it has been the responsibility of our PHP
code, so let's keep it that way. So then we need a way to tell our JavaScript that it is
afternoon, and we can do this by setting a flag if that is this case, as follows:

if ((int) $time->format('G') >= 12 && (int) $time->format('G') < 18) {
 $render['#salutation']['#markup'] = $this->t('Good afternoon');
$render['#attached']['drupalSettings']['hello_world']['hello_world_clock'][
'afternoon'] = TRUE;
 return $render;
}

New here is the second line from within the if conditional, namely, the one where we attach
something to the render array. In this case, though, it's not a library but drupalSettings in a
big multidimensional array. The best practice is to namespace our settings hierarchically like
so--our module name -> the functionality the settings it belongs to -> the setting name. In
JavaScript, this array will be transformed into an object.

To get the drupalSettings to work, we need to make sure the
core/drupalSettings library is loaded. In our case, this is because the
core/drupalone lists it as a dependency.

Now that we pass this flag (which could be much more complex if needed), we can make
use of it in JavaScript:

var clock = '<div>The time is </div>';
if (settings.hello_world != undefined &&
settings.hello_world.hello_world_clock.afternoon != undefined) {
 clock += 'Are you having a nice day?';
}

That is pretty much it. We managed to easily pass values from PHP into JavaScript can and
use them in client-side logic.

JavaScript and the Ajax API

[377]

Ajax API
Now that you are on your way and ready to write whatever JavaScript you need for your
application, and you are able to integrate this with the Drupal backend APIs, let's take a
look at the Ajax framework. There's a lot we can do on the client side without having to
write a single line of JavaScript code.

The Drupal Ajax API is a robust system that allows us to define client-side interactions via
PHP. The most common time we use Ajax is when we interact with forms--triggering
certain actions that change the DOM without having to reload the page. We will
demonstrate how all this works by expanding a bit more on the importer functionality we
built in Chapter 7, Your Own Custom Entity and Plugin Types. Before, though, let's take a
quick look at the simpler use case of Ajax in Drupal 8.

Ajax links
The simplest way to interact with Drupal's Ajax API is to add the class use-ajax to any
link. This will cause the link to make an Ajax request to the path of the link rather than
moving the browser to it. A similar thing can be done with the submit button of a form
using the class use-ajax-submit. This makes the form submit via Ajax to the path defined
in the form's action.

The most important thing, however, is what we do on the other end of the process. Clicking
a link which triggers an Ajax request won't do anything if we don't handle that request
accordingly. What we have to do is return an AjaxResponse object with some jQuery
commands that instruct the browser on the changes it needs to make to the DOM. So, let's see
an example.

Remember in Chapter 2, Creating Your First Module, we created our first block that simply
rendered the salutation message from the service? It did't use the theme hook we created in
Chapter 4, Theming, but simply delegated to the getSalutation() method of the
HelloWorldSalutation service. Let's say we want to add a link after the message we can
click on, and which hides the block entirely. There are few easy steps we need to do to
achieve this.

First, we need to alter the build() method of the block to get something like this:

/**
* {@inheritdoc}
*/
public function build() {
$build = [];

https://cdp.packtpub.com/drupal_8_module_development/wp-admin/post.php?post=95&action=edit

JavaScript and the Ajax API

[378]

$build[] = [
 '#theme' => 'container',
 '#children' => [
 '#markup' => $this->salutation->getSalutation(),
]
];

$url = Url::fromRoute('hello_world.hide_block');
$url->setOption('attributes', ['class' => 'use-ajax']);
$build[] = [
 '#type' => 'link',
 '#url' => $url,
 '#title' => $this->t('Remove'),
];

return $build;
}

The first thing we do is wrap our original simple #markup-based array into a Drupal core
container theme hook, just so it wraps it with some divs and we don't have to create our
own theme hook. After all, we are doing proof-of-concept work here. Next, below the
message, we print a link to a new route we have to define. And on that link we add the
use-ajax class, as we talked about. You'll notice that we can add attributes (refer back to
Chapter 4, Theming, for more info on those) straight onto the Url object, and they will be
added to the rendered link element.

Second, we need to define this new route. Nothing could be simpler:

hello_world.hide_block:
 path: '/hide-block'
 defaults:
 _controller:
'\Drupal\hello_world\Controller\HelloWorldController::hideBlock'
 requirements:
 _permission: 'access content'

We map it to a new method on the same Controller class we've been using and allow all
users access to it.

Third (and last), we need to define the Controller method:

/**
 * Route callback for hiding the Salutation block.
 * Only works for Ajax calls.
 *
 * @param \Symfony\Component\HttpFoundation\Request $request
 *

JavaScript and the Ajax API

[379]

 * @return \Drupal\Core\Ajax\AjaxResponse
 */
public function hideBlock(Request $request) {
 if (!$request->isXmlHttpRequest()) {
 throw new NotFoundHttpException();
 }

 $response = new AjaxResponse();
 $command = new RemoveCommand('.block-hello-world');
 $response->addCommand($command);
 return $response;
}

The first thing you'll notice is the $request parameter to this method, and you may be
wondering where it's coming from. Drupal passes the current request object to any
Controller method which simply type hints a parameter with that name and interface. So,
we don't have to inject it into our Controller. The reason we need it is so we can check if the
request to this route is made via Ajax. Because if not, we don't want to handle it, that is, we
throw a NotFoundHttException, which results in a regular Drupal 404.

Then comes the fun stuff relating to the Ajax API, namely, the building of an
AjaxResponse full of commands back to the browser. In our example, there is only one
command which instructs it to run the jQuery remove() method on the elements that
match the selector that is passed to it. In our case, this is the class of the block wrapper. And
with this our functionality is in place. We can clear our cache and the block should now
print a link that removes the block via Ajax.

You may be thinking--why do we need a trip back to the server for a job that can be done on
the client-side alone? And the answer is--we actually don't. However, it serves as a good
example of how the Ajax responses work. And I encourage you to check the documentation
page (https://api. drupal. org/ api/ drupal/ core!core. api.php/ group/ ajax/ 8. 3.x)for
the Ajax API, where you can find a list of all the available commands. For example, we
could have used the ReplaceCommand to replace the block with something else that comes
back from the server, or the HtmlCommand to insert some data into an element on the page,
or even an AlertCommandto trigger a JavaScript alert with some data coming from the
server. The cool thing is that the response can process multiple commands so we are not
restricted to only using one.

https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x

JavaScript and the Ajax API

[380]

Ajax in forms
The most common use of Ajax in Drupal is through the Form API, where we can create
dynamic interactions between the server and client with ease. To demonstrate how this
works, we will go through an example. This will be a rework of the Importer configuration
entity form we created in Chapter 7, Your Own Custom Entity and Plugin Types.

If you remember, we said that tying certain configuration values to the generic entity does
not make sense, as importer plugins might be different. The first Importer we wrote loads a
JSON file from a remote URL. So, it stands to reason that the configuration value for the
URL is tied to the plugin and not the configuration entity (even if the latter actually stores
it). Because if we want to create a CSV importer, for example, we don't need the URL. So,
let's refactor our work to make this happen.

Here is an outline of the steps we need to do for this refactoring:

Importer plugins need to provide their own configuration form elements
The Importer configuration form needs to read these elements depending on
which plugin is selected (this is where the Ajax API comes into play)
We need to alter the storage and configuration schema of the values that are
specific to plugins

Let's start by giving the plugin ImporterInterface and new method:

 /**
 * Returns the form array for configuring this plugin.
 *
 * @param \Drupal\products\Entity\ImporterInterface $importer
 *
 * @return array
 */
 public function
getConfigurationForm(\Drupal\products\Entity\ImporterInterface $importer);

This is responsible for getting the form elements needed for this plugin. As an argument, it
receives the Importer configuration entity, which can be inspected for default values.

JavaScript and the Ajax API

[381]

Next, on the ImporterInterface of the configuration entity, we need to remove the
getUrl() method (since that is specific to the JsonImporter plugin) and replace it with a
generic method for retrieving all the configuration values pertaining to the plugin selected
for the entity:

/**
 * Returns the configuration specific to the chosen plugin.
 *
 * @return array
 */
public function getPluginConfiguration();

And of course, in the Importer entity class, we reflect this change as well:

/**
 * The configuration specific to the plugin.
 *
 * @var array
 */
protected $plugin_configuration;

And the actual getter method with respect to the interface:

/**
 * {@inheritdoc}
 */
public function getPluginConfiguration() {
 return $this->plugin_configuration;
}

So far so good, nothing complicated going on. We are replacing the plugin specific
configuration values with a generic one in which values specific to the selected plugin will
be stored.

Now, let's turn to the ImporterForm and make all the adjustments there. But before we do
that, let's move the form element for the url field into the JsonImporter, where we have
to implement the new getConfigurationForm() method:

/**
 * {@inheritdoc}
 */
public function
getConfigurationForm(\Drupal\products\Entity\ImporterInterface $importer) {
 $form = [];
 $config = $importer->getPluginConfiguration();
 $form['url'] = [
 '#type' => 'url',

JavaScript and the Ajax API

[382]

 '#default_value' => isset($config['url']) ? $config['url'] : '',
 '#title' => $this->t('Url'),
 '#description' => $this->t('The URL to the import resource'),
 '#required' => TRUE,
];
 return $form;
}

You'll notice some differences in getting the default value. Instead of calling the now
removed getUrl() method on the configuration entity, we use the new
getPluginConfiguration() method and check inside the resulting array. Also, since we
use the $this->t() method to ensure the translation of the strings, we should use the
StringTranslationTrait as well (inside the class as it is a Trait):

use StringTranslationTrait;

Let's not forget that we are actually using the URL in the import, so we need to make some
adjustments to the getData() method as well:

/**
 * Loads the product data from the remote URL.
 *
 * @return \stdClass
 */
private function getData() {
 /** @var ImporterInterface $importer_config */
 $importer_config = $this->configuration['config'];
 $config = $importer_config->getPluginConfiguration();
 $url = isset($config['url']) ? $config['url'] : NULL;
 if (!$url) {
 return NULL;
 }
 $request = $this->httpClient->get($url);
 $string = $request->getBody();
 return json_decode($string);
}

With this, we can adjust our ImporterForm (where we no longer have the form element for
the URL field).

There are two main things we need to do:

Expose the plugin selection element to Ajax, that is, trigger an Ajax request when
the user makes a selection
Add the extra elements to the form depending on the chosen plugin

JavaScript and the Ajax API

[383]

This is what the new plugin element looks like:

$form['plugin'] = [
 '#type' => 'select',
 '#title' => $this->t('Plugin'),
 '#default_value' => $importer->getPluginId(),
 '#options' => $options,
 '#description' => $this->t('The plugin to be used with this importer.'),
 '#required' => TRUE,
 '#empty_option' => $this->t('Please select a plugin'),
 '#ajax' => array(
 'callback' => [$this, 'pluginConfigAjaxCallback'],
 'wrapper' => 'plugin-configuration-wrapper'
),
];

There are two noticeable changes--we've added an #empty_option key (to be used as the
option shown if the user has not made any choice) and the #ajax key (which we will
discuss in a bit more detail).

What we did is pretty simple--we declared a callback method to be triggered when a user
makes a change to this form element, and we declared the HTML ID of the element which
should be replaced with the result of the Ajax callback. And in the latter case (which is a
simple method on the same class), all we have to do is this:

/**
 * Ajax callback for the plugin configuration form elements.
 *
 * @param $form
 * @param \Drupal\Core\Form\FormStateInterface $form_state
 *
 * @return array
 */
public function pluginConfigAjaxCallback($form, FormStateInterface
$form_state) {
 return $form['plugin_configuration'];
}

We return a form element (which we still have to define). An important lesson here is that
Ajax responses in forms can return content as well (in the form of render arrays or even
strings), which will be used to replace the HTML found by the ID specified in the wrapper
key of the Ajax declaration. Alternatively, an AjaxResponse full of commands can also be
returned to do more complex things, as we saw in the previous section.

JavaScript and the Ajax API

[384]

Before we look at this new plugin_configuration form element, let's look at some of the
other options that can be used inside the #ajax array:

method: This indicates the jQuery method to use when interacting with the
wrapper element (if specified). The default is replaceWith(), but you can also
use append(), html(), and others.
event: This shows which event should be used to trigger the Ajax call. By
default, the form element in question decides that. For example, when selecting
an option in a select element or when typing something into a textfield.
progress: This defines the indicator to be used while the Ajax request is taking
place.
url: A URL to trigger the Ajax request in case the callback was not specified.
Typically, using the latter is more powerful as the entire $form and
$form_state are passed as parameters and can be used in processing.

I recommend you check out the documentation page (https:/ /api. drupal. org/ api/
drupal/core!core. api. php/ group/ ajax/ 8.3.x) for the Ajax API for more information
about these options and the other ones that are available.

With that out of the way, we can go back to our form definition and add our missing parts,
right after the plugin element:

$form['plugin_configuration'] = [
 '#type' => 'hidden',
 '#prefix' => '<div id="plugin-configuration-wrapper">',
 '#suffix' => '</div>',
];

$plugin_id = NULL;
if ($importer->getPluginId()) {
 $plugin_id = $importer->getPluginId();
}
if ($form_state->getValue('plugin') && $plugin_id !==
$form_state->getValue('plugin')) {
 $plugin_id = $form_state->getValue('plugin');
}

if ($plugin_id) {
 /** @var \Drupal\products\Plugin\ImporterInterface $plugin */
 $plugin = $this->importerManager->createInstance($plugin_id, ['config' =>
$importer]);
 $form['plugin_configuration']['#type'] = 'details';
 $form['plugin_configuration']['#tree'] = TRUE;
 $form['plugin_configuration']['#open'] = TRUE;

https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x
https://api.drupal.org/api/drupal/core!core.api.php/group/ajax/8.3.x

JavaScript and the Ajax API

[385]

 $form['plugin_configuration']['#title'] = $this->t('Plugin configuration
for @plugin', ['@plugin' =>
$plugin->getPluginDefinition()['label']]);
 $form['plugin_configuration']['plugin'] =
$plugin->getConfigurationForm($importer);
}

First, we define the plugin_configuration form element as a hidden type. This means it
will not be visible to users when the page loads for the first time. However, we do use the
#prefix and #suffix options (common practice with the Drupal Form API) to wrap this
element with a DIV that has the ID we indicated as the wrapper of our Ajax declaration. So,
the goal is to have this element replaced each time an Ajax request is made, that is, each
time a plugin is selected.

Next, we try to get the ID of the chosen plugin. First, we load it from the configuration
entity in case we are looking at an edit form. However, we also check in the form state to
see if one has been selected (and is different than the one in the entity). And if you are
wondering how we can have the plugin in the form state, the answer is that after an Ajax
call is made (triggered by the user selecting a plugin), the form gets rebuilt. Now, we can
see what's in the form state and retrieve the plugin ID that was chosen.

Even more than that, if we get our hands on a plugin ID, we can completely change the
plugin_configuration element, which in turn then gets returned by the Ajax callback to
be used to replace our wrapper. So to sum up:

Page loads for the first time (on a new form). The element is hidden.
User selects a plugin. Ajax request is triggered, which rebuilds the form.
As the form is rebuilt, we check for the selected plugin and alter the
plugin_configuration element to reflect the selected plugin.
The Ajax response replaces the old element with the new potentially changed
one.

The new plugin_configuration element becomes a details one (a collapsible container
for multiple elements), open by default and which has one key called plugin, onto which
we add all the elements coming from the plugin. Moreover, we use the #tree property to
indicate that when the form is submitted, the values of the elements are sent and stored in a
tree that reflects the form element (a multidimensional array, basically). Otherwise, the
form state values that are submitted get flattened and we lose their connection to the
plugin_configuration element (which is also the Importer configuration entity field
name we want to store the data under).

JavaScript and the Ajax API

[386]

We are almost there. We can already go create an Importer entity, and when to use the
JSON Importer, the new fieldset containing the URL field should show up below. But we
still have one problem. If we save the form, the URL value will be stored inside an array
keyed by plugin, inside the plugin_configuration field. So, we need to clean things up
a bit, and we can do so inside the save() method.

Right before saving the entity, we can do this:

$importer->set('plugin_configuration',
$importer->getPluginConfiguration()['plugin']);

So, we basically move the values one array up, removing the superfluous plugin level in
the array (which was only needed to neatly organise the form tree).

With this, we are done. Well, not really, as we still need to handle the configuration schema
aspect. Yes, remember those from Chapter 6, Data Modeling and Storage, and Chapter 7 ,
Your Own Custom Entity and Plugin Types? We are now going to see how we can work with
our own dynamic configuration schema, similar to how we did with the ones needed for
the field plugins in Chapter 9, Custom Fields. But why do we need a dynamic configuration
schema?

Before this refactoring, we knew the exact the fields on the Importer configuration entity
and we could declare the schema for each easily (as we did). However, now plugins can
come with their own individual fields, so we need to make sure they can provide their own
schema definitions for the respective data. So how can we do this?

First, inside our importer.schema.yml file, we need to remove the url field schema
definition as it no longer exists. We replace it, however, with one for the new field we
created, namely the plugin_configuration array of values that came from the plugin:

plugin_configuration:
 type: products.importer.plugin.[%parent.plugin]

Here is where things become interesting. We don't know what fields there will be inside, so
we instead reference another type (our own). Moreover, the name of the type is dynamic.
We have a prefix (products.importer.plugin.) followed by a variable name given by
the value of the plugin field of the parent (the main configuration entity). So basically, if a
given configuration entity uses the json plugin, the type of schema definition will be
products.importer.plugin.json. So now, it's the responsibility of whoever creates new
plugins to also provide their own schema definitions for their own fields (like we did in
Chapter 9, Custom Fields, when we defined field plugins).

JavaScript and the Ajax API

[387]

But before that can happen, we need to define this new type we created:

products.importer.plugin.*:
 type: mapping
 label: 'Plugin configuration'

So essentially, our new type extends from mapping and has a simple label. Of course it
applies to all that start with that name (hence the wildcard we encountered before).

Now, we can add the schema definition for our single json Importer plugin:

products.importer.plugin.json:
 type: mapping
 label: Plugin configuration for the Json importer plugin
 mapping:
 url:
 type: uri
 label: Uri

As you can see, we now have our first instance of the products.importer.plugin type,
which contains the url field which is inside the plugin_configuration field of the
configuration entity--reflecting a simple array hierarchy.

But the point of this dynamic declaration is that other modules that define new plugins can
now also define their own instances of the products.importer.plugin.* schema
definitions to map their own fields. It is no longer the responsibility of the configuration
entity (schema) to "guess" what field types are being used on each plugin.

With this, our refactoring is complete. Drupal is well aware of the type of data the
configuration entity is saving, even if it is in part relating to external input (the selected
plugin). So that means we can create (if we want) another importer plugin which uses a
CSV file for the product data. But we'll see how to do that in a later chapter when we talk
about file handling.

States (Form) system
The last thing we are going to look at in this chapter is the States system of the Form API
(not to be confused with the State API we covered in Chapter 6, Data Modeling and Storage).
This allows us to define our form elements to behave somewhat dynamically based on the
user interaction with the form. It doesn't use Ajax but relies on JavaScript to handle the
manipulations. This is another great example of client-side behavior where we don't have to
write a single line of JavaScript. So, let's see what this is.

JavaScript and the Ajax API

[388]

The #states are simple properties we can add onto form elements, which have the role of
changing them depending on the state of other elements. The best way to understand this is
through some examples. Imagine these two form elements:

$form['kids'] = [
 '#type' => 'checkbox',
 '#title' => $this->t('Do you have kids?'),
];

$form['kid_number'] = [
 '#type' => 'textfield',
 '#title' => $this->t('How many kids do you have?'),
];

In the first we ask the user if they have kids (using a simple checkbox) while in the latter we
ask them how many kids they have. But why should the user actually see the second
element if they don't have kids? This is where the #states property comes into play, and
its role is to manipulate an element depending on the state of another. So instead, we can
have this:

$form['kid_number'] = [
 '#type' => 'textfield',
 '#title' => $this->t('How many kids do you have?'),
 '#states' => [
 'visible' => [
 'input[name="kids"]' => ['checked' => TRUE],
],
],
];

Now, the element for specifying the number of kids is only going to be visible if the state of
the kid element is checked.

The #states property is an array whose key is the actual state that needs to be applied to
the current element if the conditions inside are met. And the conditions can vary, but they
all depend on a CSS selector (in our case input[name="kids"] matching another
element).

Our example can also be written with this reverse logic:

'#states' => array(
 'invisible' => array(
 'input[name="kids"]' => array('checked' => FALSE),
),
),

JavaScript and the Ajax API

[389]

Apart from visible and invisible, the following states can be also applied to form
elements--enabled, disabled, required, optional, checked, unchecked, expanded
and collapsed. As for the conditions that can "trigger" these states, we can have the
following (apart from checked)--empty, filled, unchecked, expanded, collapsed and
value.

So, for example, we can even control the state of an element depending on the value the user
selected on another. Combining these possibilities can greatly improve our forms when it
comes to user experience, decluttering, and even building logical form trees.

Summary
In this chapter, we took on the client-side and talked about JavaScript and client-side
capabilities in Drupal 8. We started with the approach we need to take when writing
JavaScript in a Drupal context. You learned about behaviors, why they are important, and
how to use them. We also saw how we can pass around data from the server (Drupal) to the
client-side and make use of it in JavaScript.

Funnily enough, we then we switched to a no-JavaScript allowed policy for the rest of the
chapter. We did this to prove how powerful the Drupal Ajax API is, in who we can perform
complex server-to-client interactions even if we are not frontend developers that can write
JavaScript code. And to demonstrate the API, we first looked at how simple links can be
turned into Ajax requests. We followed that up with an important refactor to our earlier
products importer functionality that relied on Ajax to make the Importer configuration
entity form dynamic (dependent on the selected plugin). Let's not forget another nugget of
information--dynamic configuration schema--which allows us to decouple the configuration
entity data definitions from that of their selected plugins.

Finally, we finished by looking at the States system of the Form API, which allows us to
declaratively code client-side manipulations onto our form elements, essentially making
them dependent on the user's interaction with the form.

In the next chapter, we are going to talk about internationalization and translations to make
sure our applications can be used anywhere around the globe.

13
Internationalization and

Languages
Even though there have been great advancements across the board, Drupal 8 has a couple
of almost revolutionary developments compared to its predecessor. Notable among these
are the configuration API and the caching system, which are both light-years ahead of what
was capable in Drupal 7. Another one is the multilingual initiative that sought to make
Drupal fully multilingual out of the box--rather than having to use 20 contributed modules
to achieve results that don't even come close. This also includes the internationalization
(i18n: https://www. w3. org/ standards/ webdesign/ i18n) aspect that allows sites to be
translated in any of the installed languages.

In this chapter, we are going to talk about internationalization and multilingual features in
Drupal 8 from the point of view of a module developer. Many of the built-in capabilities of
this system are oriented toward site builders--enabling languages, translating content and
configuration entities as well as the Drupal interface (for administrators and visitors alike).
Our focus will be what we as module developers need to do programmatically to ensure
that site builders and editors can use the aforementioned features. To that end, this chapter
will be more of a reference guide with various tips, techniques, and even rules we need to
follow when writing our code. Notwithstanding, we will also talk a bit about how we can
work with languages programmatically.

First, however, we will start with an introduction to the multilingual ecosystem that comes
out of the box and the modules responsible for various parts of it.

https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n
https://www.w3.org/standards/webdesign/i18n

Internationalization and Languages

[391]

Introduction
The multilingual and internationalization system is based on four Drupal core modules.
Let's quickly go through them and see what they do:

Language
Content Translation
Configuration Translation
Interface Translation

Language
The Language module is responsible for dealing with the available languages on the site. Site
builders can choose to install one or more languages from a wide selection. They can even
create their own custom language if necessary. The installed languages can then be added
to things such as entities and menu links in order to control their visibility, depending on
the current language. Apart from the installed ones, Drupal 8 comes with two extra special
languages as well--Not Specified and Not Applicable.

The modules also handles the contextual language selection based on various criteria, as
well as provides a language switcher to change the current language of the site.

Internationalization and Languages

[392]

Content Translation
The Content Translation module is responsible for the functionality that allows users to
translate content. Content entities are the principle vehicle for content, and with this
module, the data inside can be translated (and granularly configured for it at a field level).
In other words, users can control which fields and which entity type bundles should be
translatable.

Configuration Translation
The Configuration Translation module is responsible for providing the interface via which
users can translate configuration values. These can be from simple configuration objects or
configuration entities. We've already seen how we can ensure that our configuration values
can be translated in previous chapters, so we won't dive into that again here.

Internationalization and Languages

[393]

I recommend you reference the section on configuration schemas from Chapter 6, Data
Modeling and Storage.

Interface Translation
The Interface Translation module is responsible for providing an interface that allows users
to translate any string or text output on the website, in all the languages that are installed.
Moreover, it provides a connection to the localize.drupal.org platform, from which it can
download translations for many languages of the more common interface strings that come
with Drupal.

https://cdp.packtpub.com/drupal_8_module_development/wp-admin/post.php?post=165&action=edit#post_90
https://localize.drupal.org/

Internationalization and Languages

[394]

These four modules are not alone in the multilingual system but rely on a cross-application
standard of ensuring that all the written code works well with it. In other words, the entire
Drupal codebase is intertwined with the multilingual system at various levels, and is
written in such a way that anything that should be translatable or localizable can be. This
means that all the code we write needs to respect the same standard.

Internationalization
The idea behind internationalization is to ensure that everything that gets output on the site
can be translated into the enabled languages through a common mechanism--in this case,
using the Interface Translation module. This refers to content, visible configuration values,
and the strings and texts that come out of modules and themes. But there are many different
ways this can happen, so let's see how in each of these cases we would ensure that our
information can be translated.

A principle rule when writing Drupal modules or themes is to always use English as the
code language. This is to ensure consistency and keep open the possibility that other
developers will work on the same codebase, which may not speak a particular language.
This is also the case for text used to be displayed in the UI. It should not be the
responsibility of the code to output the translated text, but rather to always keep it
consistent, that is, in English.

Of course, this is dependent on it being done right, in order to allow it to be translated via
interface translation. There are multiple ways this can be ensured, depending on the
circumstances.

The most common scenario we need to be aware of is when we have to print out to the user,
in a PHP, string of text. Drupal 7 developers should already be familiar with the t()
function through which these strings are run. This function still exists and should be used
whenever we are not inside a class context:

return t('The quick brown fox');

However, when we are inside a class, we should check if any of the parents are using the
StringTranslationTrait. If not, we should use it in our class and then we'll be able to
do this instead:

return $this->t('The quick brown fox');

Internationalization and Languages

[395]

Even better still, we should inject the TranslationManager service into our class because
the preceding mentioned trait makes use of it.

None of the examples given before should be new to us, as we've been using these
throughout the code we've been writing in this book. But what actually happens behind the
scenes?

The t() and StringTranslationTrait::t() functions both create and return an
instance of TranslatableMarkup (essentially delegating to its constructor), which upon
rendering (being cast to a string), will return the formatted and translated string. The
responsibility of the actual translation is delegated to the TranslationManager service.
This process has two parts. Static analyzers pick up on these text strings and add them to
the database in the list of strings that need to be localized. These can then be translated by
users via the user interface. Second, at runtime, the strings get formatted and the translated
version is shown, depending on the current language context. Because of the first part, we
should never do something like this:

return $this->t($my_text);

The reason is that static analyzers can no longer pick up on the strings that need to be
translated. Moreover, if the text is coming from user input, it can lead to XSS attacks if not
properly sanitized before.

That being said, we can still have dynamic, that is, formatted, text output using this
method, and we've seen this in action as well:

$count = 5;
return $this->t('The quick brown fox jumped @count times', ['@count' =>
$count]);

In this case, we have a dynamic variable (which can be part of user input), which will be
used to replace the placeholder @count from the text. Drupal takes care of sanitizing the
variable before outputting the string to the user. Alternatively, we can also use the % prefix
to define a placeholder we want Drupal to wrap with <em class="placeholder">. The
cool thing is that, when performing translations, users can shift the placeholder in the
sentence to accommodate language specificity.

One of the intended consequences of the static analyzer picking out and storing the strings
that need to be translated is that, by default, each individual string is only translated once.
This is good in many cases but also poses some problems when the same English string has
different meanings (which map to different translations in other languages). To counter this
issue, we can specify a context to the string that needs to be translated so that we can
identify which meaning we actually want to translate. This is where the third parameter of
the t() function (and method) we saw in the previous paragraphs comes into play.

Internationalization and Languages

[396]

For example, let's consider the word Book, which is translated by default in its meaning as a
noun. But we may have a submit button on a form that has the value Book, which clearly
has a different meaning as a call to action. So in the latter case, we could do it like this:

t('Book', [], ['context' => 'The verb "to book"']);

Now in the interface translation, we will have both versions available.

Another helpful tip is that we can also account for plurals in the string translations. The
StringTranslationTrait::formatPlural() helps with this by creating a
PluralTranslatableMarkup object similar to the TranslatableMarkup, but with some
extra parameters to account for differences when it comes to plurals. This comes in very
handy in our preceding example with the brown fox jumping a number of times, because if
the fox jumps only once, the resulting string would not be grammatically correct anymore.
So instead, we can do the following:

$count = 5;
return $this->formatPlural($count, 'The quick brown fox jumped 1 time',
'The quick brown fox jumped @count times')];

The first parameter is the actual count (the differentiator between singular and plural). The
second and third parameters are the singular and plural versions respectively. You'll also
notice that since we specified the count already, we don't have to specify it again in the
arguments array. It's important to note that the placeholder name inside the string needs to
be @count if we want the renderer to understand its purpose.

Internationalization and Languages

[397]

The string translation techniques we discussed so far also work in other places--not just in
PHP code. For example, in JavaScript we would do something like this:

Drupal.t('The quick brown fox jumped @count times', {'@count': 5});
Drupal.formatPlural(5, 'The quick brown fox jumped 1 time', 'The quick
brown fox jumped @count times');

So, based on this knowledge, I encourage you to go back and fix our incorrect use of the
string output in JavaScript in the previous chapter.

In Twig, we'd have something like this (for simple translations):

{{ 'Hello World.'|trans }}
{{ 'Hello World.'|t }}

Both of the above lines do the same thing. To handle plurals (and placeholders), we can use
the {% trans %} block:

{% set count = 5 %}
{% trans %}
 The quick brown fox jumped 1 time.
{% plural count %}
 The quick brown fox jumped {{ count }} times.
{% endtrans %}

Finally, the string context is also possible like so:

{% trans with {'context': 'The verb "to book"'} %}
 Book
{% endtrans %}

In annotations, we have the @Translation() wrapper, as we've seen already a few times
when creating plugins or defining entity types.

Finally, in YAML files, some of the strings are translatable by default (so we don't have to
do anything):

Module names and descriptions in .info.yml files
The _title (together with the optional _title_context) key values under the
defaults section of .routing.yml files
The title (together with the optional title_context) key values in
.links.action.yml, .links.task.yml and .links.contextual.yml files

Internationalization and Languages

[398]

Dates are also potentially problematic when it comes to localization, as different locales
show dates differently. Luckily, Drupal provides the DateFormatter service, which
handles this for us. For example:

\Drupal::service('date.formatter')->format(time(), 'medium');

The first parameter of this formatter is the UNIX timestamp of the date we want to format.
The second parameter indicates the format to use (either one of the existing formats or
custom). Drupal comes with a few predefined date formats, but site builders can define
others as well as, which can be used here. However, if the format is custom, the third
parameter is a a PHP date format string suitable for input to date(). The fourth parameter
is a time zone identifier we want to format the date in, and the final parameter can be used
to specify the language to localize to directly (regardless of the current language of the site).

Content entities and the Translation API
So far in this chapter, we've mostly talked about how to ensure that our modules output
only text that can also be translated. The Drupal best practice is to always use these
techniques regardless of whether the site is multilingual or not. You never know if you'll
ever need to add a new language.

In this section, we are going to talk a bit about how we can interact with the language
system programmatically and work with entity translations.

A potentially important thing you'll often want to do is check the current language of the
site. Depending on the language negotiation in place, this can either be determined by the
browser language, a domain, a URL prefix, or others. The LanguageManager is the service
we use to figure this out. We can inject it using the language_manager key or use it via the
static shorthand:

$manager = \Drupal::languageManager();

To get the current language, we do this:

$language = $manager->getCurrentLanguage();

Where $language is an instance of the Language class which holds some information
about the given language (such as the language code and name). The language code is
probably the most important as it is used everywhere to indicate what language a given
thing is.

Internationalization and Languages

[399]

There are other useful methods with this service that you can use. For example, we can get a
list of all the installed languages with getLanguages() or the site default language with
getDefaultLanguage(). I encourage you to check out the LanguageManager for all the
available API methods.

When it comes to content entities, there is an API we can use to interact with the data inside
them in different languages. So, for example, we have figured out the current language with
the preceding method, so we can now get some field values in that language. The way this
works is that we ask for a copy of the node entity in the respective language:

$translation = $node->getTranslation($language->getId());

$translation is now almost the same as $node, but with the default language set to the
one we requested. From there, we can access field values normally. However, not all nodes
have to have a translation, so it's better to first check if one exists:

if ($node->hasTranslation($language->getId())) {
 $translation = $node->getTranslation($language->getId());
}

Since we can configure entity translatability at the field level (allowing only the fields that
make sense to be translated), we can also check which of these fields can have translated
values:

$fields = $node->getTranslatableFields();

Finally, we can also check which languages there are translations for:

$languages = $node->getTranslationLanguages();

Since it's up to the editors to add translations to an entity, we cannot guarantee in code that
one exists.

Summary
In this short chapter, we talked about the Drupal 8 multilingual and internationalization
system from a module developer perspective. We started with an introduction to the four
main modules responsible for languages and translating content, and configuration entities
as well as interface text.

Internationalization and Languages

[400]

Then, we focused on the rules and techniques we need to respect in order to ensure that our
output text can be translated. We saw how we can do this in PHP code, Twig, and YAML
files, and even in JavaScript. Finally, we looked a bit at the language manager and
Translation API to see how we can work with content entities that have been translated.

The main takeaway from this chapter should be that languages are important in Drupal 8
even if our site is only in one language. So, in developing modules, especially if we want to
contribute them back to the community, we need to ensure that our functionality can be
translated as needed.

In the next chapter, we are going to talk about data processing using batches and queues, as
well as the cron system that comes with Drupal.

14
Batches, Queues, and Cron

If in the previous chapter we kept things a bit more theoretical with me throwing "rules" at
you, but in this chapter I am going to make up for it, and we are going to have some fun.
This means we are going to write some code that demonstrates concepts related to data
processing, especially larger amounts of it. And in doing so, we are going to cover a few
topics.

First, we are going to look back at the hook_update_N() hook we saw in Chapter 8, The
Database API, when we talked about the Database API. More specifically, we are going to
see how the &$sandbox parameter can be used in order to handle updates that need to
process some data, which may take a bit longer and should be split across multiple
requests. Next up, we are going to look at standalone batches (which basically use the same
system) to process data in batches across multiple requests. And what better example to
illustrate this technique than with our Chapter 7, Your Own Custom Entity and Plugin Types
Importer that needs to process an undefined number of products?

We will take a look at a related subsystem that allows us to queue things for later processing
(either in batches, during cron, or in simple requests). Since we are talking about cron, we
will also go a bit into detail and see how this system works in Drupal. Finally, we will finish
this chapter by taking a look at the Lock API in Drupal 8, that allows us to ensure multiple
requests don't run certain processes at the same time.

By the end of this chapter, you will be a lean, mean, data processing machine. So, let's get to
it.

Batches, Queues, and Cron

[402]

Batch powered update hooks
The first thing we are going to look at is update hooks, revisiting of our previous Sports
module created in Chapter 8 , The Database API. We will focus on the &$sandbox parameter
we didn't use then. The goal is to run an update on each of our records in the players table
and mark them as retired. The point is to illustrate how we can process each of these records
one at the time in individual requests to prevent a PHP timeout, in case we have many
records.

So to get us going, here is all the code, and we'll see right after what everything means:

/**
 * Update all the players to mark them as retired.
 */
function sports_update_8002(&$sandbox) {
 $database = \Drupal::database();

 if (empty($sandbox)) {
 $results = $database->query("SELECT id FROM
{players}")->fetchAllAssoc('id');
 $sandbox['progress'] = 0;
 $sandbox['ids'] = array_keys($results);
 $sandbox['max'] = count($results);
 }

 $id = $sandbox['ids'] ? array_shift($sandbox['ids']) : NULL;

 $player = $database->query("SELECT * FROM {players} WHERE id = :id",
[':id' => $id])->fetch();
 $data = $player->data ? unserialize($player->data) : [];
 $data['retired'] = TRUE;
 $database->update('players')
 ->fields(['data' => serialize($data)])
 ->condition('id', $id)
 ->execute();
 $sandbox['progress']++;
 $sandbox['#finished'] = $sandbox['progress'] / $sandbox['max'];
}

If you remember, the function name contains the new schema version for the module,
which will be set once this is run. Refer back to Chapter 8, The Database API, for more
information.

Batches, Queues, and Cron

[403]

When this hook is fired, the $sandbox argument (passed by reference) is empty. Its goal is
to act as temporary storage between the requests needed to process everything inside the
function. We can use it to store arbitrary data, but we should be mindful of the size as it has
to fit inside a LONGBLOB table column.

The first thing we are doing is getting our hands on the database service to make queries to
our players table. But more importantly, we are checking if the $sandbox variable is
empty, which indicates that this is the start of the process. If it is, we add some data to it
specific to our process. In this case, we want to store the progress (this is quite common), the
IDs of the players that need to be updated, and the total number of records (also quite
common). To do this, we make a simple query.

Once the sandbox is set, we can get the first ID in the list while also removing it so that
iteratively we have less records to process. Based on that ID, we load the relevant player,
add our data to it, and update it back in the database. Once that is done, we increment the
progress by one (as we processed one record). Finally, the #finished key in the sandbox is
what Drupal looks at to determine whether the process is finished. It expects an integer
between zero and one, the latter signifying that we are done. If anything below one is
found, the function gets called again and the $sandbox array will contain the data as we
left it (incremented progress and one less ID to process). In which case, the main body of the
function runs again, processing the next record, and so on, until the progress divided by the
maximum number of records is equal to one. If we have 100 records, when the progress
reaches 100, the following is true:

100 / 100 == 1.

Then, Drupal knows to finish the process and not call the function again.

This process is also called batching in Drupal terms and is very useful because Drupal will
make as many requests as needed to finish it. We can control the workload each request
needs to make in one request. The preceding example might be a bit overkill in the sense
that a request is perfectly capable of processing more than one player. We are actually
losing time because like this, Drupal needs to bootstrap itself again and again for each
request. So, it's up to us to find that sweet spot. In our previous example, what we could
have done was break up the array of IDs into chunks of maybe five, and allowed a request
to process five records instead of one. That would surely increase the speed, but I encourage
you to go ahead and try that on your own now that you understand the principles behind
using $sandbox for batching.

Batches, Queues, and Cron

[404]

Batch operations
Now that we have a basic understanding of Drupal's capabilities to do multi-request
processing, let's switch gears and look at the Batch API.

In order to demonstrate how this works, we are going to rebuild the way our product
JsonImporter plugin processes the product data it retrieves. Currently, we simply load all
the products into an array of objects and loop through each, saving them to the database. So
if there are 100,000 products in the JSON response, we might get into trouble with this
approach. To be fair, if the remote provider has so many products, it usually provides a
paginated way of requesting them by passing an offset and a limit. This keeps the payloads
smaller (which is good for both communicating servers) and makes it easier on the
processing. On our side, we can treat it as we would treat a database. But for now, we'll go
with the assumption that the number of returned products is large, but not too large as to
pose problems with the communication or with the ability of PHP to store them in memory.

Moreover, while illustrating the Batch API, we will also perform an operation we "forgot" in
Chapter 7, Your Own Custom Entity and Plugin Types. During the import, we also want to
delete any products, which have been previously carried over but which are no longer in
the JSON. It is a kind of synchronization between the two data sources, if you will. So, let's
get to it.

Creating the batch
Inside the JsonImporter::import() method, once we get our hands on the $products
array, let's replace the loop with the following:

$batch = [
 'title' => $this->t('Importing products'),
 'operations' => [
 [[$this, 'clearMissing'], [$products]],
 [[$this, 'importProducts'], [$products]],
],
 'finished' => [$this, 'importProductsFinished'],
];
batch_set($batch);

Batches, Queues, and Cron

[405]

Creating a batch involves a number of steps, the first one being the creation of a batch
definition, which is nothing more than an array with some data. The title option sets the
title to be used on the progress page. Similarly, we also have the optional init_message,
progress_message and error_message, which have some sensible defaults, so we won't
set them here. For more information as to what exactly you can do with them, and what
other options you have, make sure you check out the documentation of the batch_set()
function.

The most important part of the batch definition is the operations array in which we list
the operations that need to take place in the batch. These are defined as any kind of valid
PHP callback and an array of arguments to pass to these callbacks. If the latter resides in a
file that is has not been loaded, the file options can also be set to specify the file path to
include. Each operation runs on its own PHP request; in the sequence, they are defined.
Moreover, each operation can also run across multiple requests, similar to how we wrote
our update hook earlier.

Our first operation will be responsible for removing from Drupal the products which no
longer exist in the JSON response, while the latter will do the import. Both of these receive
only one parameter--the array of products.

The finished key is another callback that gets fired at the end of the batch processing, after
all the operations are done.

Finally, we call the global batch_set() method, which statically sets the batch definition
and marks it as ready to be run. There is just one more step to trigger the batch, and that is a
call to batch_process(). But the reason we have not used it is because if the import runs
as part of a form submission, the Form API triggers it automatically. So it won't work if we
trigger it here as well. The reason why the Form API does it for us is because most of the
time we want batches to run only as a result of an action being taken. Usually, this is done
via forms. However, the other major possibility is to trigger the batch via a Drush command
(which we can actually do). In this case, we need to use the
drush_backend_batch_process() function instead.

So, what we will do is first is check that we are in a command-line environment (aka Drush)
and trigger it only in that case:

if (PHP_SAPI == 'cli') {
 drush_backend_batch_process();
}

Batches, Queues, and Cron

[406]

Otherwise, we leave it up to the Form API. In doing this, we can trigger the import both
from a Form submit handler and via Drush, and we can have plugins that don't necessarily
use batches.

Batch operations
Now that we have our batch definition in place, we are missing those three callback
methods we are referencing in it. So, let's see the first one:

/**
 * Batch operation to remove the products which are no longer in the list
of
 * products coming from the JSON file.
 *
 * @param $products
 * @param $context
 */
public function clearMissing($products, &$context) {
 if (!isset($context['results']['cleared'])) {
 $context['results']['cleared'] = [];
 }
 if (!$products) {
 return;
 }

 $ids = [];
 foreach ($products as $product) {
 $ids[] = $product->id;
 }

 $ids = $this->entityTypeManager->getStorage('product')->getQuery()
 ->condition('remote_id', $ids, 'NOT IN')
 ->execute();
 if (!$ids) {
 $context['results']['cleared'] = [];
 return;
 }

 $entities =
$this->entityTypeManager->getStorage('product')->loadMultiple($ids);

 /** @var ProductInterface $entity */
 foreach ($entities as $entity) {
 $context['results']['cleared'][] = $entity->getName();
 }
 $context['message'] = $this->t('Removing @count products', ['@count' =>

Batches, Queues, and Cron

[407]

count($entities)]);
 $this->entityTypeManager->getStorage('product')->delete($entities);
}

This is the first operation in the batch process. As an argument, it receives all the variables
we defined in the batch definition (in our case, the products array). But it also gets a
$context array variable passed by a reference, which we can use similar to how we used
$sandbox in the update hook (with some extra capabilities).

The task at hand is pretty simple. We prepare a list of IDs of all the products in the JSON,
and based on those, we query our product entities for the those which are NOT IN that list.
If any are found, we delete them. You'll notice already that in this operation we are not
relying on the actual multi-request capabilities of Drupal's Batch API because we expect the
workload to be minimal. After all, how many products could be missing at any given time
and would need to be deleted? We'll assume not many for our use case.

But while we are doing all this, we are interacting somewhat with the batch processing.
You'll notice that the $context array has a results key. This is used to store information
related to the outcome of each operation in the batch. We are not supposed to use it for
managing progress but instead to keep track of what was done so that at the end we can
present the user with some useful information as to what has happened. So in our example,
we create an array keyed by cleared (to namespace the data for this particular operation),
in which we put in the names of each product that has been deleted.

Moreover, we also have a message key that we use to print a message as the action is
happening. This gets printed out in "real time" to indicate to the user what is currently
being processed. If the batch is run via the UI through a form, it very well might be that you
won't see all the messages due to the speed of the processing. However, if triggered by
Drush (as it will be in our case), each of these messages will be printed to the terminal
screen.

With this, our first operation is done. It's time to look at the second, more complex one:

/**
 * Batch operation to import the products from the JSON file.
 *
 * @param $products
 * @param $context
 */
public function importProducts($products, &$context) {
 if (!isset($context['results']['imported'])) {
 $context['results']['imported'] = [];
 }

 if (!$products) {

Batches, Queues, and Cron

[408]

 return;
 }

 $sandbox = &$context['sandbox'];
 if (!$sandbox) {
 $sandbox['progress'] = 0;
 $sandbox['max'] = count($products);
 $sandbox['products'] = $products;
 }

 $slice = array_splice($sandbox['products'], 0, 3);
 foreach ($slice as $product) {
 $context['message'] = $this->t('Importing product @name', ['@name' =>
$product->name]);
 $this->persistProduct($product);
 $context['results']['imported'][] = $product->name;
 $sandbox['progress']++;
 }

 $context['finished'] = $sandbox['progress'] / $sandbox['max'];
}

The arguments it receives are exactly the same as with our previous operation since we
defined them in the same way.

Here, again is we ensure we have some products and start up our results array, this time
to keep track of the imported records. But we also work with the sandbox key of the
$context array this time in order to use the multirequest processing capabilities. The
approach is similar to what we did in the update hook--we keep a progress count, store the
maximum number of products, and then we calculate the $context['finished'] key
based on the division between the two. However, in this case, we opt to process three
products at a time instead of one, as we did with our player records. Again, as with our
previous operation, we are using the message key to inform the user as to what is going on
and the results key to compile a list of products that have been imported.

Before moving on, let's talk a bit about the way we are importing the products. Had the
JSON resource been able to return paginated results, we would have had to change our
approach. First, we could not have deleted the missing products in the same way. Instead,
we would have had to keep track of the IDs of the products that would have been imported
only after deleting the other ones. So the order of two operations would have been reversed.

Batches, Queues, and Cron

[409]

Second, the retrieval of the products would have been done from inside the
importProducts operation using an offset and a limit stored in the sandbox. So, each
Drupal batch request would have made a new request to the JSON resource. Of course, we
would have had to keep track of all the processed products so that we would know which
ones were able to be deleted.

Finally, let's take a look at the callback used when the batch processing finishes:

/**
 * Callback for when the batch processing completes.
 *
 * @param $success
 * @param $results
 * @param $operations
 */
public function importProductsFinished($success, $results, $operations) {
 if (!$success) {
 drupal_set_message($this->t('There was a problem with the batch'),
'error');
 return;
 }

 $cleared = count($results['cleared']);
 if ($cleared == 0) {
 drupal_set_message($this->t('No products had to be deleted.'));
 }
 else {
 drupal_set_message($this->formatPlural($cleared, '1 product had to be
deleted.', '@count products had to be deleted.'));
 }

 $imported = count($results['imported']);
 if ($imported == 0) {
 drupal_set_message($this->t('No products found to be imported.'));
 }
 else {
 drupal_set_message($this->formatPlural($imported, '1 product
imported.', '@count products imported.'));
 }
}

Batches, Queues, and Cron

[410]

This callback receives three parameters--a boolean indicating whether the processing was
successful or not, the results array we used inside our $context to keep track of what has
been done, and the array of operations. What we are doing is actually pretty simple. We
first print a generic message if the batch has failed. In this case, we also return early.
Otherwise, we print relevant messages to the operations we have done, using the $results
array. Note the use of the t() and formatPlural() methods you learned about in the
previous chapter.

Or reworked JSON Importer now uses batching to make the process more stable in case the
number of records it needs to process gets too big. Before we can try it out, we need to do
one last step, and that is to use the DependencySerializationTrait inside the
ImporterBase plugin class:

use DependencySerializationTrait;

The reason is that when the batch runs, Drupal stores some information about the object
that runs it. In order to do so, it needs to serialize it. However, since it has dependencies
such as the EntityTypeManager, Drupal needs a way to handle these in the serialization
process. The preceding trait helps with that. Moreover, we can use it in the base class so that
all plugin classes can use batching easily without having to worry about this step.

But now if we run the Drush command we wrote in Chapter 7, Your Own Custom Entity and
Plugin Types, to trigger our importer, we get an output like this:

We notice the messages set when importing each record, as well as the messages we set at
the end of the process, which provides kind of a summary of what went down.

Batches, Queues, and Cron

[411]

When calling batch_process(), we can also pass in a URL to redirect to
when the processing has finished. However, a better way is to return a
RedirectResponse inside the finished callback. And it goes without
saying that if we trigger the batch from Drush there will be no actual
redirect. However, it will work just fine in a form context.

Cron
In the previous section, we created an awesome multirequest batch processing of our JSON
product import. In the next section, we'll jump into the Queue API and see how we can plan
the processing of multiple items at a later stage. However, before we dive into that, let's talk
a bit about how the Drupal 8 cron works and what we can do with it. This is because our
discussion about the Queue API is closely related to it.

First of all, Drupal doesn't actually have a fully fledged cron system. That is because it's an
application and not a server capable of scheduling tasks that run at specified times of the
day at intervals. However, what it has is a cron-like system, which can come very close,
especially on busy websites. Often, it is affectionately referred to as the poor man's cron.
Why? Since Drupal cannot by itself do anything without any sort of impetus, it relies on
visitors coming to the website to trigger the cron tasks. So, even if we can configure the
frequency of Drupal's cron, we are relying on visitors coming to the website and triggering
it inadvertently. Drupal then keeps track of when the cron ran and ensures that the next
time it runs is only after the configured amount of time has lapsed. So in essence, if the cron
is set to run every hour but the next visitor only comes in three hours, it will only run then:

Batches, Queues, and Cron

[412]

The Drupal cron is very useful for maintenance tasks and relatively small jobs that don't
take too many resources away from the site visitors. It can be triggered manually from the
UI, from an outside script, or even with Drush, by using the following command:

drush cron

There are many Drupal core and contributed modules that rely on this system to perform
various tasks, and we as module developers can do the same by implementing
hook_cron(). The latter gets fired every time the cron runs, so basically Drupal's cron is a
collection of function calls to various modules. For this reason, we must avoid overloading
the request with heavy processing, otherwise the request might crash. But as we will see in
the next section, we can do something to control this if we have such jobs to run.

First though, let's look at an example implementation and see how it works. What we want
to accomplish is that whenever cron runs, we delete all the records in the teams table (we
created in Chapter 8 , The Database API) that are no longer referenced by any player.
Essentially, if the teams don't have any players, they need to go. So, we could do something
simple like this:

/**
 * Implements hook_cron().
 */
function sports_cron() {
 $database = \Drupal::database();
 $result = $database->query("SELECT id FROM {teams} WHERE id NOT IN
(SELECT team_id FROM {players} WHERE team_id IS NOT
NULL)")->fetchAllAssoc('id');
 if (!$result) {
 return;
 }

 $ids = array_keys($result);
 $database->delete('teams')
 ->condition('id', $ids, 'IN')
 ->execute();
}

We are implementing hook_cron(), and inside, we basically figure out which teams have
no players and delete them. You'll notice the query to do the former is actually a more
complex one, as we are using a subquery, but it is still not rocket science. Feel free to check
Chapter 8, The Database API, for a refresher on the Drupal 8 database API.

Batches, Queues, and Cron

[413]

This function will then be fired every time our Drupal cron runs, and we could argue that
doing this task is not such a big strain on our resources. However, in the next chapter, we
will see how we can handle cases like those. Moreover, we'll see why that approach might
even be better than this one, regardless of resource intensiveness.

Queues
It's finally time to talk a bit about the Queue API, how it works, and what it's main
components are; the theory, basically. We will do this before diving into code examples that
we all thoroughly enjoy.

Introduction to the Queue API
The main purpose of the Queue API is to provide a way for us to add items to a queue in
order to have them processed at a later time. In charge of processing these items are the
queue worker plugins, which can be enlisted either automatically by the Drupal cron,
manually (programmatically) by us, or by Drush. We will look at an example of all three.

The central player in this API is the implementation of the QueueInterface, which is the
actual queue into which we put items. There are two types of queues Drupal can handle--
reliable and unreliable. The first preserves the order in which the items are processed (first
in, first out) and guarantees that each item gets processed at least once. In this chapter, we
will focus only on this type of queue. But there is also the possibility of working with
unreliable queues which give their best effort when maintaining the item order and do not
guarantee that all items get processed.

By default, when we working with queues in Drupal 8, we use a reliable queue that is based
on a database table to store the items. This is represented by the DatabaseQueue
implementation. The Batch API in fact uses a type of queue that extends from the default
one Drupal comes with. Okay, but what does a queue do?

A queue has three main roles:

It create items (adds stuff to a list that needs processing at some point).
It claims items (puts a hold on them while a worker does the processing).
It deletes items (removes the items from the queue once they have finished
processing). Alternatively, it can also release them if another worker needs to
process them or something went wrong and it should be retrieved later on.

Batches, Queues, and Cron

[414]

We will soon see a practical example of how this works. But first, let's look at how a queue
comes about.

The QueueInterface implementation is created with the help of the QueueFactory
service, keyed as queue. The factory delegates to another factory service specific to the type
of queue being created. By default this is the QueueDatabaseFactory service (keyed
queue.database), which expectedly returns an instance of the DatabaseQueue class. The
table used by the latter is simply called queue.

Finally, the crux of the Queue API for us module developers is the system of QueueWorker
plugins, which are responsible for processing a single item in the queue. These can be
written in two ways. The simplest approach is to have them triggered by cron. In this case,
the plugin ID needs to match the name of the queue it needs to process items for. This way,
we don't have to worry about claiming, releasing, or deleting items. The cron system does it
for us. However, a more flexible approach is the one in which we actually do that. We don't
rely on cron, but process the items ourselves whenever we want. Moreover, both types of
queue workers can be enlisted via Drush using a command that triggers the processing of a
queue with a given name.

Cron based queue
In the previous section, we wrote the sports_cron() implementation, which at each run
looks for teams that no longer have players and deletes them from the database. However,
if we run the Drupal cron every hour, we keep running that query even if we are pretty
certain that teams don't loose all their players so often. Moreover, we also go by the simple
assumption (a functionality we have not written so far) that there is some code responsible
for removing a player from a team. This would actually be the ideal place to check if that
team has lost all its players. The idea, then, is to check if the team has been left empty and
add it to a queue to be deleted later (whenever the cron runs).

We won't go into the code specific to player and team management, but instead focus on the
part which adds the team that needs to be deleted to the queue.

The first thing we need to do is get our hands on the QueueFactory service:

/** @var QueueFactory $queue_factory */
$queue_factory = \Drupal::service('queue');

Batches, Queues, and Cron

[415]

Then, we need to create an instance of the default QueueInterface (database) with the
name of our future worker plugin ID:

/** @var QueueInterface $queue */
$queue = $queue_factory->get('team_cleaner');

This is obviously the static approach of loading services, and you should be injecting it
instead. But if you cannot, there is also the following shorthand which can achieve the same
thing in one line:

$queue = \Drupal::queue('team_cleaner');

$queue is an instance of DatabaseQueue with the name team_cleaner.

The next thing we need to do is add items to it (assuming that we've identified a team
without players):

$item = new \stdClass();
$item->id = $team_id;
$queue->createItem($item);

It's standard practice to create a PHP object to wrap the data for the queue item. Inside, we
can put anything we want that can serialize properly, and that's all. We can now turn to our
TeamCleaner worker plugin, that naturally goes in the Plugin/QueueWorker namespace
of our module:

namespace Drupal\sports\Plugin\QueueWorker;

use Drupal\Core\Database\Connection;
use Drupal\Core\Plugin\ContainerFactoryPluginInterface;
use Drupal\Core\Queue\QueueWorkerBase;
use Symfony\Component\DependencyInjection\ContainerInterface;

/**
 * A worker plugin that removes a team from the database. Normally used to
clear
 * teams that have run out of players.
 *
 * @QueueWorker(
 * id = "team_cleaner",
 * title = @Translation("Team Cleaner"),
 * cron = {"time" = 10}
 *)
 */
class TeamCleaner extends QueueWorkerBase implements
ContainerFactoryPluginInterface {

Batches, Queues, and Cron

[416]

 /**
 * @var \Drupal\Core\Database\Connection
 */
 protected $database;

 /**
 * Constructs a TeamCleaner worker.
 *
 * @param array $configuration
 * @param string $plugin_id
 * @param mixed $plugin_definition
 * @param \Drupal\Core\Database\Connection $database
 */
 public function __construct(array $configuration, $plugin_id,
$plugin_definition, Connection $database) {
 parent::__construct($configuration, $plugin_id, $plugin_definition);
 $this->database = $database;
 }

 /**
 * {@inheritdoc}
 */
 public static function create(ContainerInterface $container, array
$configuration, $plugin_id, $plugin_definition) {
 return new static(
 $configuration,
 $plugin_id,
 $plugin_definition,
 $container->get('database')
);
 }

 /**
 * {@inheritdoc}
 */
 public function processItem($data) {
 $id = isset($data->id) && $data->id ? $data->id : NULL;
 if (!$id) {
 throw new \Exception('Missing team ID');
 return;
 }

 $this->database->delete('teams')
 ->condition('id', $id)
 ->execute();
 }
}

Batches, Queues, and Cron

[417]

As we're already used to it, our plugin extends the base plugin class of its type to inherit
any potential base functionality. In our case, this is limited to the implementation of the
QueueWorkerInterface, which has one method whose name easily describe its
responsibility--processItem($data). Also not new to us is the implementation of
ContainerFactoryPluginInterface, which allows us to inject the database service
into our plugin that, in turn, we use to delete the queued team.

All the action in fact happens in the processItem() method, where we simply look into
the $data object and delete the team with the specified ID. We also throw a simple
exception if something goes wrong. We'll talk about exceptions in queue processing shortly.

Somewhat more interesting for the Queue API, however, is the plugin annotation. Apart
from the standard expected plugin definition, we also encounter the following:

cron = {"time" = 10}

This simply indicates that this plugin should be used by the cron system. In other words,
when the Drupal cron runs, it loads all the worker plugin definitions, and whichever has
this information get processed. And the key here is the time information which we have set
to 10 seconds. This essentially means that when the cron runs, we are saying--go ahead and
process as many queue items as you can within 10 seconds. Once that time limit is up, stop and
continue with the rest of the cron tasks. This is actually very powerful because we allocated an
amount of time from the PHP request and dedicated it to our queue. This means that we
don't have to guess how many items to allocate for a request (as we did with the batching).
However, it also means that the rest of the time left needs to be enough for everything else.
So, we need to adjust this carefully. As for the queue items that don't fit into those 10
seconds, they will simply be processed at the next cron run.

This approach is better than our previous one, in which we ourselves implemented
hook_cron() because we don't want to always keep checking teams for players, but can
instead create queue items and defer the deletion until a later time, as needed.

Very similarly, we could refactor our JSON product importer. When calling the import()
method, the products would get queued, and then a separate worker plugin would handle
the product data creation/update whenever cron runs. This of course depends on whether
we are okay with splitting the import functionality into two classes, which is not a big deal.
We are actually fine with the way things are at the moment, so to illustrate the
programmatic processing of the queue, we will use another example.

Batches, Queues, and Cron

[418]

Processing a queue programmatically
Now that we have our queue worker that deletes teams (for all it knows, the teams don't
even have to be without any players), we can explore how we can process this queue
ourselves if we don't want the cron option. If we wanted it to be processed using a Drush
command, we would not have to write that ourselves. Drush comes with one, and it would
work like this:

drush queue-run team_cleaner

However, we may want to create an admin interface, a form of some kind, which allows the
user to trigger the queue processing. In that case, we could do something like this:

$queue = \Drupal::queue('team_cleaner');
/** @var QueueWorkerInterface $queue_worker */
$queue_worker =
\Drupal::service('plugin.manager.queue_worker')->createInstance('team_clean
er');

while($item = $queue->claimItem()) {
 try {
 $queue_worker->processItem($item->data);
 $queue->deleteItem($item);
 }
 catch (SuspendQueueException $e) {
 $queue->releaseItem($item);
 break;
 }
 catch (\Exception $e) {
 // Log the exception.
 }
}

In this example, we get our QueueInterface object just like we did before. But then, we
also create an instance of our own QueueWorker plugin. Next, we use the claimItem()
method inside a while loop, which returns an object that contains the data to be passed to
the queue worker. Additionally, it blocks the item from being usable by another worker for
a period of (lease) time (by default an hour).

Batches, Queues, and Cron

[419]

Then, we try to use the worker to process the item, and if no exception is thrown, we delete
the item. It's done! However, if we catch a SuspendQueueException, it means we expect
the entire queue to be problematic. This exception type is thrown when there is the
expectation that all other items are also likely to fail, in which case we release the item and
break out of the loop. Releasing the item means that other workers are now free to process it
using the claimItem() method. Or even better, our own worker can try it later on. Finally,
we also catch any other exceptions, in which case we simply log the error but do not release
the item to prevent an infinite loop. For the moment, that particular item cannot be
processed, so we need to skip to the next one; it needs to stay blocked until our loop
finishes. The latter can only happen when $queue->claimItem() doesn't return anything
anymore.

And that is pretty much the logic behind processing a queue ourselves--we claim an item,
throw it to a worker, and delete it. If something goes wrong, we work with exceptions to
determine if the queue can be continued or if it should be skipped altogether.

Lock API
Whenever we process data on a regular basis, especially if it takes a while to complete, we
might run into a situation in which parallel requests want to trigger that process again--
while the first is still running. Most of the time, this is not a good thing, as it can lead to
conflicts and/or data corruption. A good example from Drupal core in which this can
happen is the cron. If we start it, the process can end up taking a few good seconds.
Remember, it needs to pull together the hook_cron() implementations and run them all.
So while that is happening, if we trigger another cron run, it will give us a nice message
asking us to chill because the cron is already running. It does this with the help of the Lock
API.

The Lock API is a low-level Drupal solution for ensuring that processes don't trample each
other. Since in this chapter we are talking about things such as batch operations, queues,
and other kinds of potentially time-consuming processes, let's look at the Lock API to see
how we can leverage it for our custom code. But first, let's get an understanding of how this
locking works.

Batches, Queues, and Cron

[420]

The concept is very simple. Before starting a process, we acquire a lock based on a given
name. This means we check if, by any chance, this process has not already been started. If
we get the green light (we acquired the lock), we go ahead and start the process. The API at
this point locks down this process so that other requests cannot acquire it again until the
initial one has released it. This normally happens when the process is finished, and other
requests may then start it up again. Before that, though, we get a red light that tells us we
cannot start it, to maintain the analogy of traffic lights. Speaking of which, the main Lock
API implementation in Drupal, namely the one using the database, takes this analogy to
heart as it names the table where the locks are being stored semaphore.

The API is actually pretty simple. We have a Lock service, which is an implementation of
LockBackendInterface. By default, Drupal 8 comes with two--the
DatabaseLockBackend and PersistentDatabaseLockBackend. Usually, the former is
used. The difference between the two is that the latter can be used to keep a lock across
multiple requests. The former in fact releases all the locks at the end of the request. We'll be
using this one to demonstrate how the API works, as that is what Drupal core uses mostly,
as well.

If you remember from Chapter 7,Your Own Custom Entity and Plugin Types, we created a
Drush command that would run all of our Product importers. Of course, we so far have
only created one plugin. But what we want to do is ensure that if this Drush command is
executed multiple times at more or less the same time (before the actual import finishes), we
don't run the imports simultaneously. It's probably not the most realistic example, as Drush
commands have to be actually run by someone so there is good control over their timing.
However, the same approach, as we will see, can be applied to processes triggered by
unpredictable requests.

We defined the _products_products_import_run_plugin() helper function that runs
the import for a specific plugin. We can wrap this trigger with a lock block. First, though, we
need to load the service, and we can get to it using the lock key or the static shorthand:

$lock = \Drupal::lock();

This will yield the database powered locking backend.

Batches, Queues, and Cron

[421]

So instead of just running the import() method on the plugin, we can first have this:

if (!$lock->acquire($plugin->getPluginId())) {
 drush_log(t('The plugin %plugin is already running.', ['%plugin' =>
$plugin->getPluginDefinition()['label']]));
 return;
}

We try to acquire the lock by passing an arbitrary name (in this case, our plugin ID). We are
sticking to one plugin at the time here, so multiple plugins should in fact be able to run at
the same time. If the acquire() method returns FALSE, it means we have a red light, a
lock has already been acquired. In this case, we print a message to that effect and get out of
there. However, if not, it means we have a green light and we can proceed with the rest of
our code as it was. The acquire() method has locked it down, and other requests can no
longer acquire it until we release it. Speaking of which, there is one thing we need to add at
the end (after the import):

$lock->release($plugin->getPluginId());

We need to release the lock so other requests can run it again if they like. That is pretty much
it. If we run our Drush command twice, more or less simultaneously, we will have
something like this in the terminal:

As you can see, only one call to the Drush command actually went through. As expected.

But we can also do it a bit differently. Let's say that we want to wait with the second request
until the first one is finished, and then still run it. After all, we don't want to miss out on any
updates. We can do this using the wait() method of LockBackendInterface. The rework
is minor:

if (!$lock->acquire($plugin->getPluginId())) {
 drush_log(t('The plugin %plugin is already running. Waiting for it to
finish.', ['%plugin' => $plugin->getPluginDefinition()['label']]));
 if ($lock->wait($plugin->getPluginId())) {
 drush_log(t('The wait is killing me. Giving up.'));
 return;
 }
}

Batches, Queues, and Cron

[422]

So basically, if we don't acquire a lock, we print a message that we are waiting for the go
ahead. Then, we use the wait() method, which puts the request to sleep for a maximum of
30 seconds. Within that timeframe, it will continuously check every 25 milliseconds (until it
reaches 500 milliseconds, when it starts checking every 500 milliseconds) if the lock has
become available. If it has, it breaks out of the loop and returns FALSE (meaning that we
can go ahead, as the lock has become available). Otherwise, if the 30 seconds have passed, it
returns TRUE, which means that we still need to wait. At this point we give up. Guess
what, the second parameter of the wait() method is the number of maximum seconds to
wait, so we can control that as well. I recommend you check out the code to better
understand what it does.

Like this, we can run our two Drush commands in parallel and ensure that the second one
requested only runs after the first finishes. If it takes longer than 30 seconds, we give up,
because probably something went wrong. Then, we have the Lock API.

Summary
In this chapter, we looked at some of the ways we as module developers can set up simple
and complex data processing tasks that can run at any time we want.

We started by looking into using the multirequest capabilities of the update hooks. This was
a continuation from Chapter 8, The Database API, where we introduced them for the first
time, and we have now seen how we can expand on their capabilities. Then, we turned to
the more complex Batch API that uses similar, albeit more complex, techniques. This system
allowed us to construct a series of operations that leveraged Drupal's multirequest
capabilities. Our playground was the JSON products Importer, which now can handle large
amounts of data without the concern of PHP memory timeouts. Next, we looked at how
Drupal's cron system works and why it is there, and even saw an example of how as
module developers we can hook into it and process our own tasks whenever it runs. But
then, we took things to the next level with the introduction of the Queue API, which
allowed us to add items to a queue so that they can get processed at a later stage. This
processing, as we saw, can be triggered by cron or we can take matters into our own hands
and handle them one by one. Not to mention the Drush option that can also make things
easy. Finally, we looked at the Lock API, which allows us to get control over the triggering
of certain processes that take longer to complete. All this is done in order to prevent them
being run multiple times simultaneously, causing errors or data corruption.

In the next chapter we are going to talk about Views and how we can programmatically
interact with these as module developers.

15
Views

Views has always been a staple module for any Drupal site. It was so popular and needed
that it ended up being incorporated into Drupal 8 core. So now, each new Drupal site ships
with Views out of the box, fully integrated with the rest of the system and powering a great
number of core features.

Essentially, Views is a tool for creating and displaying lists of data. This data can be almost
anything, but we mostly use Drupal entities as they are now so robust. It provides the
architecture to build and manipulate complex queries through the UI as well as many
different ways of outputting the resulting data. From a module developer's point of View
(yes, pun intended), much of this power has been broken down into multiple layers of
building blocks, abstracted as plugins. Moreover, in keeping with tradition, there are also a
multitude of hooks that are fired at different stages, with which we can programmatically
contribute to or influence Views.

In this chapter, we will look at the Views ecosystem from a module developer's perspective.
As such, we won't be spending that much time with its site-building capabilities as one can
easily argue an entire book could be dedicated just to that. Instead, we will focus on what
we as module developers can do to empower site builders to have even more capabilities at
their finger-tips, as well as manipulating Views to behave the way our functionality needs
them to.

So, what will we actually do in this chapter? We will first start with integrating our Product
entity type with Views. The entity system and Views can work very closely together, and all
we need to do is point them to one another. Then, we will switch gears and expose our own
custom player and team data (from Chapter 8 , The Database API) to Views so our site
builders can build Views that list this information, complete with filters, sorts, arguments,
and the whole shebang. From there, we will look at how we can also alter data that has been
exposed to Views by other modules, like entity data such as Nodes.

Views

[424]

Next, you will learn how to create your own ViewsField, ViewsFilter, and
ViewsArgument plugins to account for those occasional requirements for which the
existing ones are a bit lacking. Finally, we will talk a little bit about theming Views and the
main components that play a role in this, just to get you going in the right direction, and
applying the lessons from Chapter 4, Theming.

By the end of this chapter, you will get a pretty good understanding of how to leverage
Views on top of your own data, as well as modifying or contributing to how other modules
leverage it. You should also get a pretty good understanding of the Views plugin
ecosystem, even if quite a bit of work will have to be done on your own, studying the
available plugins of all types.

So, let's get to it.

Entities in Views
Even in Drupal 7, Views had a pretty good integration with the entity system. But seeing as
there was no robust entity API to speak of, this integration was not so organic. It required
more contributed modules and some custom code to make an entity type work with Views.

In Drupal 8, however, the two are very closely linked and it's a breeze exposing new
content entities to Views. If you've followed along with Chapter 7 ,Your Own Custom Entity
and Plugin Types, and have the Product entity type set up, you'll notice that if you try to
create a View, you will have no option to make it based on products. That is because in the
entity type definition, we did not specify it should be exposed to Views. That's all there is to
it, actually. We just have to reference a new handler:

"views_data" = "Drupal\views\EntityViewsData"

That is it. Clearing the cache, we are now able to create Views with products that can show
any of the fields, can filter and sort by them, and can even render them using View modes.
All of these work consistently with the other entity types (at least fundamentally, as we will
see in a moment).

Views

[425]

You'll notice that we referenced the EntityViewsData data handler which ensures basic
logic for entities of all types. If we want to, we can extend this class and add some of our
own specificities to the data that is being exposed to Views (or alter the existing ones). This
is done inside the getViewsData() method, and we will see an example later on. But if
you already want to see an example, check out the NodeViewsData handler for the Node
entity type, as it has quite a lot of extra stuff in there. Much of it probably won't make a lot
of sense quite yet, so let's slowly get into how Views works by exposing our own custom
data to it.

Exposing custom data to Views
To get a better understanding of how Views works, we are going to look at an example of
totally custom data and how we can expose it to Views. Based on that, we will begin
understanding the role of various plugins and can begin to create our own. Additionally,
we'll be able to expand on our Product entity type data to enrich its Views interaction.

To exemplify all of this, we are going to revisit our sports module in which we declared the
players and teams tables of data and which we will now be exposing to Views. The goal
is to allow site builders to create dynamic listings of this data as they see fit. The lessons
learned from this example can be applied to other data sources as well, even things such as
remote APIs (with some extra work).

Views data
Whenever we want to expose data to Views, we need to define this data in a way Views can
understand it. That is actually what EntityViewsData::getViewsData() does for
content entities. However, since we are dealing with something custom, we can do so by
implementing hook_views_data(). A lot can go into it, but we'll start things simple.

Let's implement this hook and simply describe our first table (that of the players) and only
one field, namely, the player ID, to start with.

Views

[426]

In Views lingo, the term field does not have to relate necessarily to entity
fields or anything like that, but rather to an individual piece of data from a
data source (real or not). A typical example to consider is a column in a
table, but it can also be something like a property from a remote API
resource. Moreover, the same term is used to describe the responsibility of
that piece of data of being somehow output. Other such responsibilities it
can have are filter, sort, relationship, and more. Each of these
responsibilities are handled by a specific type of Views plugin (also known
as a handler in older versions of Views).

So, the basic implementation can look like this:

/**
 * Implements hook_views_data().
 */
function sports_views_data() {
 $data = [];

 // Players table
 $data['players'] = [];
 $data['players']['table']['group'] = t('Sports');
 $data['players']['table']['base'] = array(
 'field' => 'id',
 'title' => t('Players'),
 'help' => t('Holds player data.'),
);

 // Player fields
 $data['players']['id'] = array(
 'title' => t('ID'),
 'help' => t('The unique player ID.'),
 'field' => array(
 'id' => 'numeric',
),
);

 return $data;
}

This hook needs to return a multi-dimensional associative array that describes various
things, the most important being the table and its fields. The table doesn't have to be an
actual database table, but can also mean something similar to an external resource. Of
course, Views already knows how to query the database table, which makes things easy for
us. Otherwise, we'd have to create also the logic for querying that external resource (by
implementing a ViewsQuery plugin).

Views

[427]

So, we start by defining the players table, which goes into the Sports group. This label
can be found in the Views admin as the prefix to the fields we want to add. Next, we define
our first base table called players (mapping to the actual database table with the same
name). The base table is the one used for basing a View on when creating it. In other words,
whatever you select in the following screentext:

The base table definition contains some information such as the field, which refers to the
column that contains the unique identifier for the records. The title and help, both
mandatory, are used in the UI. Moreover, it can also contain query_id, which references
the plugin ID of a ViewsQuery plugin responsible for returning the data from the source in
an intelligible way. Since in our case we are using the database (hence SQL), omitting this
property will make it default to the views_query plugin (the Sql class if you want to check
it out).

Views fields
But in order to actually use this table, we need to define one or more fields that can output
some of its data. So, we start with a simple one, the player IDs. Anything that comes under
the $data['table_name'] array (that is not keyed by table, as we've seen) is responsible
for defining Views fields. The keys are their machine names. title and help are there
again and are used in the UI when we try to add the respective fields:

Views

[428]

The most important part of this definition, however, is the field key which basically says
for this piece of data, we want a Views field that uses the ViewsField plugin with the ID
numeric (NumericField). So, we don't actually have to write our own plugin because
Views already has a good one for us and it will treat our IDs according to the type of data
they are. Of course, when defining Views fields (or any other types of data responsibilities,
that is, plugins or handlers), we can have more options than just the ID of the plugin to use.

You can check out all the existing Views plugins defined by the module
itself (which are quite a lot and fit many many use cases) by looking at the
Drupal\views\Plugin\views namespace. There are many plugin types
that handle different responsibilities, but it's good to know where you can
look because more often than not, one will already exist for your needs.

With this, we are done. Clearing the cache, we can now go into the Views UI and create our
first View that shows player data. To it, we can add the ID field, which will then naturally
just show a list of IDs. Not more, as we haven't defined anything else. So, let's go ahead and
expose the player name in the same way:

$data['players']['name'] = array(
 'title' => t('Name'),
 'help' => t('The name of the player.'),
 'field' => array(
 'id' => 'standard',
),
);

This time, we are using the standard plugin, which is the simplest one we can use. It
essentially just outputs the data as it is found in the data source (with the proper
sanitization in place). In the case of our player names, that is enough. Now, we can add this
new field to the View as well.

If you remember, the other column on our players table is one that can store arbitrary data
in a serialized way. Obviously, this cannot be used for filtering or sorting, but we can still
output some of that data as a field. There are two ways we can go about doing this,
depending on our data and what we want accomplished. First, we can use the exiting
Serialized plugin, which allows us to display the serialized data or even a given key
from the resulting array (depending on the field configuration). But for more complex
situations (especially when the data is arbitrary), we can write our own field plugin.

Views

[429]

Let's start by creating a simple data field that can output a printed version of our serialized
data since we cannot rely on the actual data being stored:

$data['players']['data'] = array(
 'title' => t('Data'),
 'help' => t('The player data.'),
 'field' => array(
 'id' => 'serialized',
),
);

In the field configuration, we then have these options to choose from:

With this, you should already get a picture of how to define fields for output in Views. Let's
now see how we can bring our teams into the loop and show some data about the teams the
players belong to.

Views relationships
The fact that the data about the teams our players belong to is stored in a different table
means that at a database level a join will have to be created to pull them together. In Views
lingo this is a relationship in the sense that one table relates to another and the way
these are declared is directional from a field to another from the joined table. So, let's see
how we can define the team_id field from the players table to join with the teams table
on its id field:

$data['players']['team_id'] = array(
 'title' => t('Team ID'),
 'help' => t('The unique team ID of the player.'),
 'field' => array(
 'id' => 'numeric',
),
 'relationship' => array(

Views

[430]

 'base' => 'teams',
 'base field' => 'id',
 'id' => 'standard',
 'label' => t('Player team'),
),
);

First of all, we define it to Views as a field. Then, because we also might want to display the
team ID, we can define it as a field as well using the numeric plugin, the same way we
defined the ID of the player records themselves. But here comes another responsibility of this
field in the form of a relationship , and the latter requires four pieces of information:

base: The name of the table we are joining
base field: The name of the field on the table we are joining, which will be
used to join
id: The ViewsRelationship plugin ID to use for the relationship
label: How this relationship will be labeled in the UI

Usually the standard relationship plugin will suffice, but we can always create one
ourselves if we need to. It's doubtful you will ever need to, though.

This definition now allows us to add a relationship to the teams table in Views. However,
even if the database engine joins the two tables, we haven't achieved anything as we also
want to output some fields from the new table. So for that, we first have to define the table
itself, as we did for the players:

// Teams table
$data['teams'] = [];
$data['teams']['table']['group'] = t('Sports');

Note that it is not mandatory to define it as a base table if we don't want to create Views
that are basing themselves on this table. In our case, it can be secondary to player
information. Then, just as we did before, we can define a couple of team fields:

// Teams fields
$data['teams']['name'] = array(
 'title' => t('Name'),
 'help' => t('The name of the team.'),
 'field' => array(
 'id' => 'standard',
),
);

$data['teams']['description'] = array(
 'title' => t('Description'),

Views

[431]

 'help' => t('The description of the team.'),
 'field' => array(
 'id' => 'standard',
),
);

There is nothing new here, just the basic data output for our two columns. But now, with
our relationship added to the View, we can include the name and description of the teams
our players belong to. Neat.

Views sorts and filters
Let's go ahead and enrich the responsibilities of the team name field by making our list of
players filterable and sortable by it; for example, to only show the players of a given team or
sort the players alphabetically by the team name. It could not be easier. We just have to add
these to the field definition (like we added the relationship to the players team_id
field):

'sort' => array(
 'id' => 'standard',
),
'filter' => array(
 'id' => 'string',
),

So basically, we are using the Standard sort plugin for sorting (which basically defaults to
whatever MySQL can do). As for the filter, we are using the StringFilter plugin, which
is quite configurable from the Views UI. It even allows us various filtering possibilities like
partial matching. With this, we can now sort and filter by the team name.

Views arguments
The last type of responsibility a View field can have is to be used as an argument (or a
contextual filter for Drupal veterans). In other words, configuring the View to be filterable
by a parameter that is dynamically passed to it. Let's face it, most of the time if we want to
filter by a team, we won't rely on the actual string name as that can change. Instead, we tie
everything to the record (by its ID). So that means we'll add the argument key to the
team_id field of the players table (which also means that the query won't require a join so
it will be more performant):

'argument' => array(
 'id' => 'numeric',
),

Views

[432]

In this case, we use the NumericArgument plugin, which does pretty much all we need for
our data type--it filters by what is expected to be a numerical data type. We are finished
with that as well. We can now dynamically filter our players view by the ID of the teams
they belong to.

Altering Views data
We saw how we can expose to Views our own data that is totally custom. However, we can
also alter existing data definitions provided by Drupal core or other modules by
implementing hook_views_data_alter(). The $data parameter passed by the reference
will contain everything that has been defined and can be changed as needed.

Moreover, we can also use this implementation to create some new Views fields or filters on
other tables that do not "belong" to us. This is actually more common than exposing totally
custom tables or other kinds of resources. For example, we may want to create a new Views
field that shows something related to the Node in the results. So, let's look at an example.

Do you remember in Chapter 6 , Data Modeling and Storage, we saw how to create a pseudo
field, which outputs a disclaimer message at the bottom of each Node? If our View is
configured to render Node entities, that will work. However, if it's using fields, it cannot do
that. So, let's see how we can expose this message also as a Views field.

First, we need to implement hook_views_data_alter() and define a new field on the
Node entity type data table:

/**
 * Implements hook_views_data_alter().
 */
function module_name_views_data_alter(&$data) {
 $data['node_field_data']['disclaimer'] = [
 'title' => t('Disclaimer'),
 'help' => t('Shows a disclaimer message'),
 'field' => [
 'id' => 'custom',
],
];
}

Views

[433]

In this case, we are adding our new Views field onto the Node data table
(node_field_data). But then, we have a choice as to what plugin to use to render our
message. We can of course create one ourselves (as we will do in the next section). This is
actually very simple, especially since it doesn't even need to use any of the information
from the resulting Nodes. However, if that's the case, we might as well use the existing
Custom plugin, which has two main advantages. For one, we don't have to write any more
code. Second, it allows the site builder to specify (and modify as needed) the disclaimer
message through the UI. Because basically, this plugin exposes a configuration form which
we can add the text we want displayed for each row:

Of course, there are some drawbacks to this approach as well. If we wanted to ensure
consistency between the message here and the one we used in the pseudo field, we would
probably want to write our own plugin and get the message from this unique place. The
same applies if we wanted the message to be strictly in code, especially if we needed some
sort of data from the Node in the View results. So, the choice depends on the actual use
case, but it's good to look into the existing Views plugins and see what already exists before
creating our own.

Views

[434]

Custom Views field
Now that we have seen how data is exposed to Views, we can start understanding the
NodeViewsData handler I mentioned earlier (even if not quite everything) a bit better. But
this also provides a good segue back to our Product entity type's views_data handler,
where we can now see what the responsibility of getViewsData() is. It needs to return the
definition for all the tables and fields, as well as what they can do. Luckily for us, the base
class already provides everything we need to turn our product data into Views fields,
filters, sorts, arguments, and potentially relationships, all out of the box.

But let's say we want to add some more Views fields that make sense to us in the context of
our product-related functionality. For example, each product has a source field that is
populated by the Importer entity from it's own source field. This is just to keep track of
where they come from. So we may want to create a Views field that simply renders the
name of the Importer that has imported the product.

You'll be quick to ask,"But hey, that is not a column on the products table! What gives?" As
we will see, we can define Views fields that render whatever data we want (that can relate
to the record or not). Of course, this also means that the resulting data cannot be used inside
a sort or filter because MySQL doesn't have access to it when building the query. So we are
a bit less flexible.

In this section, you will learn two things. First, we'll see how to create our own views_data
handler for our Product Entity type. By now, you should be quite familiar with this process.
More importantly though, we'll use this handler to create a new Views field for our product
that renders something no existing ViewsField plugin can offer--the name of the related
Importer entity. That means our own custom plugin. How exciting!

There are two quick steps to create our own views_data handler. First, we need the class:

namespace Drupal\products\Entity;

use Drupal\views\EntityViewsData;

/**
 * Provides Views data for Product entities.
 */
class ProductViewsData extends EntityViewsData {

 /**
 * {@inheritdoc}
 */
 public function getViewsData() {
 $data = parent::getViewsData();

Views

[435]

 // Add stuff.
 return $data;
 }
}

As you can see, we are extending the base EntityViewsData class we had been
referencing in the Product entity type annotation before. Inside, we are overriding the
getViewsData() method to add our own definitions (which will go where you can see the
comment).

Second, we need to change the handler reference to this new class in the entity type
annotation:

"views_data" = "Drupal\products\Entity\ProductViewsData",

That's it. We can now define our own custom fields, and we can start with the definition:

$data['product']['importer'] = [
 'title' => t('Importer'),
 'help' => t('Information about the Product importer.'),
 'field' => array(
 'id' => 'product_importer',
),
];

Simple stuff, like we did with the players. Except in this case, we are adding it to the
product table and we are using a ViewsField plugin which doesn't exist. Yet. So, let's
create it.

As you may have noticed if you checked some of the existing ones, Views plugins go in the
Plugin\views\[plugin_type] namespace of the modules, where [plugin_type] in
this case is field, as we are creating a ViewsField plugin. So, we can start with the plugin
class scaffolding:

namespace Drupal\products\Plugin\views\field;

use Drupal\views\Plugin\views\field\FieldPluginBase;
use Drupal\views\ResultRow;

/**
 * Field plugin that renders data about the Importer that imported the
Product.
 *
 * @ViewsField("product_importer")
 */
class ProductImporter extends FieldPluginBase {

Views

[436]

 /**
 * {@inheritdoc}
 */
 public function render(ResultRow $values) {
 // Render something more meaningful.
 return '';
 }
}

Just like any other field plugin, we are extending the FieldPluginBase class, which
provides all the common defaults and base functionalities the fields need. Of course, you
notice the admittedly small annotation, which simply contains the plugin ID. Our main job
is to work in the render()method and output something, preferably using the $values
object, that contains all the data in the respective row.

Inside the ResultRow object, we can find the values from the Views row
which can contain multiple fields. In case it's a View that lists entities, we
also have an _entity key, which references the entity object itself.

Clearing the cache, we will now be able to add the new Product Importer field to a View for
products. But if we do, we will notice an error. Views is trying to add to the query the
product_importer field we defined, and which doesn't actually exist. That isn't right! This
happens because even though Views can be made to work with any data source, it still has
a preference for the SQL database, so we can encounter these issues every once in a while.
Not to worry though, as we can simply tell our plugin not to include the field in any query--
it will show totally custom data. We do so by overriding the query() method:

/**
 * {@inheritdoc}
 */
public function query() {
 // Leave empty to avoid a query on this field.
}

That's it. Now, our field is going to render an empty string--''. Let's change it to look for
the related Importer entity and show its label. But in order to do that, we'll need the
EntityTypeManager service to use for querying. Let's inject it:

/**
 * @var \Drupal\Core\Entity\EntityTypeManager
 */
protected $entityTypeManager;

/**
 * Constructs a ProductImporter object.

Views

[437]

 *
 * @param array $configuration
 * A configuration array containing information about the plugin
instance.
 * @param string $plugin_id
 * The plugin_id for the plugin instance.
 * @param mixed $plugin_definition
 * The plugin implementation definition.
 * @param \Drupal\Core\Entity\EntityTypeManager $entityTypeManager
 */
public function __construct(array $configuration, $plugin_id,
$plugin_definition, EntityTypeManager $entityTypeManager) {
 parent::__construct($configuration, $plugin_id, $plugin_definition);
 $this->entityTypeManager = $entityTypeManager;
}

/**
 * {@inheritdoc}
 */
public static function create(ContainerInterface $container, array
$configuration, $plugin_id, $plugin_definition) {
 return new static(
 $configuration,
 $plugin_id,
 $plugin_definition,
 $container->get('entity_type.manager')
);
}

Since we are operating inside a plugin, we need to make sure we are implementing the
ContainerFactoryPluginInterface in order to make use of the create() method. But
luckily, a parent class does so already, namely
Drupal\views\Plugin\views\PluginBase, so we're good. We can now proceed with
the render() method:

public function render(ResultRow $values) {
 /** @var \Drupal\products\Entity\ProductInterface $product */
 $product = $values->_entity;
 $source = $product->getSource();
 $importers =
$this->entityTypeManager->getStorage('importer')->loadByProperties(['source
' => $source]);
 if (!$importers) {
 return NULL;
 }

 // We'll assume one importer per source.

Views

[438]

 /** @var \Drupal\products\Entity\ImporterInterface $importer */
 $importer = reset($importers);
 return $this->sanitizeValue($importer->label());
}

Here, we simply get the Product entity of the current row and the query for the Importer
configuration entities that have the source referenced on the product. We assume there is
only one (even if we did not do a proper job ensuring this is the case) and simply return its
label. We also pass it through the helper sanitizeValue() method, which takes care of
ensuring the output is safe against XSS attacks and such. So now our products View can
show, for each product, the name of the Importer that brought them into world.

If we take a step back and try to understand what is going on, a word of
caution becomes evident. Views perform one big query that returns a list
of product entities and some data. But then, when that data is output, we
perform a query for the Importer entity corresponding to each product in
the result set (and we load those entities). So if we have 100 products
returned, that means 100 more queries. Try to keep this in mind when
creating custom fields to ensure you are not getting a huge performance
hit, which might often not even be worth it.

Field configuration
We got our field working, but let's say we want to make it a bit more dynamic. It's called
Product Importer, and we are showing the title of the Importer entity. But let's make it
configurable so that we can choose which title to show--that of the entity or that of the
actual Importer plugin--in the UI.

There's a few simple steps for making the field plugin configurable. These work similarly to
other Views plugin types. They are also quite similar in concept to what we did in Chapter
9 , Custom Fields, when we made the entity fields configurable.

First, we need to define some default options by overriding a method:

/**
 * {@inheritdoc}
 */
protected function defineOptions() {
 $options = parent::defineOptions();
 $options['importer'] = array('default' => 'entity');

 return $options;
}

Views

[439]

As you can see, we are adding to the options defined by the parent class (which are quite a
few) our own importer one. And we set its default to the string entity. Our choice.

Second, we need to define the form element for our new option, and we can do this with
another method override:

/**
 * {@inheritdoc}
 */
public function buildOptionsForm(&$form, FormStateInterface $form_state) {

 $form['importer'] = array(
 '#type' => 'select',
 '#title' => $this->t('Importer'),
 '#description' => $this->t('Which importer label to use?'),
 '#options' => [
 'entity' => $this->t('Entity'),
 'plugin' => $this->t('Plugin')
],
 '#default_value' => $this->options['importer'],
);

 parent::buildOptionsForm($form, $form_state);
}

Nothing special here, we are simply defining a selected list form element on the main
options form. We can see that the $options class property contains all the plugin options
where we can check for the default value of our importer one. Finally, we of course add
onto the form all the other elements from the parent definition.

Next, inside the render() method, once we get our hands on the Importer entity we can
make a change to this effect:

// If we want to show the entity label.
if ($this->options['importer'] == 'entity') {
 return $this->sanitizeValue($importer->label());
}

// Otherwise we show the plugin label.
$definition =
$this->importerManager->getDefinition($importer->getPluginId());
return $this->sanitizeValue($definition['label']);

Pretty simple. We either show the entity label or that of the plugin. But of course--and we
skipped this--the Importer plugin manager also needs to be injected into the class. I'll let
you handle that on your own.

Views

[440]

Finally, one last thing we need to do is define the configuration schema. Since our View
(which is a configuration entity) is now being saved with an extra option, we need to define
the schema for the latter. We can do this inside a new products.schema.yml file (in the
config/schema folder of our module):

views.field.product_importer:
 type: views_field
 label: 'Product Importer'
 mapping:
 importer:
 type: string
 label: 'Which importer label to use: entity or plugin'

This should be already familiar to you, including the dynamic nature of defining
configuration schemas. We pretty much did the same in Chapter 9 , Custom Fields, for the
options on our field type, widget, and formatter plugins. This time, though, the type is
views_field, from which we basically inherit a bunch of definitions and to which we add
our own (the importer string). That's it. If we configure our new Views field, we should
see this new option:

Views

[441]

Custom Views filter
In a previous section we exposed our players and teams tables to Views, as well as made
the team name a possible string filter to limit the resulting players by team. But this was not
the best way we could have accomplished this because site builders may not necessarily
know all the teams that are in the database nor their exact names. So we can create our own
ViewsFilter to turn it into a selection of teams the user can choose from. Kind of like a
taxonomy term filter. So let's see how it's done.

First, we need to alter our data definition for the team name field to change the plugin ID
that will be used for the filtering (inside hook_views_data()):

'filter' => array(
 'id' => 'team_filter',
),

Now we just have to create that plugin. And naturally, it goes in the
Plugin/views/filter namespace of our module:

namespace Drupal\sports\Plugin\views\filter;

use Drupal\Core\Database\Connection;
use Drupal\views\Plugin\views\filter\InOperator;
use Drupal\views\ViewExecutable;
use Drupal\views\Plugin\views\display\DisplayPluginBase;
use Symfony\Component\DependencyInjection\ContainerInterface;

/**
 * Filter class which filters by the available teams.
 *
 * @ViewsFilter("team_filter")
 */
class TeamFilter extends InOperator {

 /**
 * @var \Drupal\Core\Database\Connection
 */
 protected $database;

 /**
 * Constructs a Bundle object.
 *
 * @param array $configuration
 * A configuration array containing information about the plugin
instance.
 * @param string $plugin_id

Views

[442]

 * The plugin_id for the plugin instance.
 * @param mixed $plugin_definition
 * The plugin implementation definition.
 */
 public function __construct(array $configuration, $plugin_id,
$plugin_definition, Connection $database) {
 parent::__construct($configuration, $plugin_id, $plugin_definition);
 $this->database = $database;
 }

 /**
 * {@inheritdoc}
 */
 public static function create(ContainerInterface $container, array
$configuration, $plugin_id, $plugin_definition) {
 return new static(
 $configuration,
 $plugin_id,
 $plugin_definition,
 $container->get('database')
);
 }

 /**
 * {@inheritdoc}
 */
 public function init(ViewExecutable $view, DisplayPluginBase $display,
array &$options = NULL) {
 parent::init($view, $display, $options);
 $this->valueTitle = t('Teams');
 $this->definition['options callback'] = [$this, 'getTeams'];
 }

 /**
 * Generates the list of teams that can be used in the filter.
 */
 public function getTeams() {
 $result = $this->database->query("SELECT name FROM
{teams}")->fetchAllAssoc('name');
 if (!$result) {
 return [];
 }

 $teams = array_keys($result);
 return array_combine($teams, $teams);
 }
}

Views

[443]

First and foremost, we see the annotation is in place to make this a plugin. Similar to the
Views fields. Then, we use dependency injection to get our hands on the database
connection service. Nothing new so far. However, you will notice that we extend from the
InOperator class, which provides the base functionality for a Views filter that allows an IN
type of filter. For example ... WHERE name IN(name1, name2). So, we extend from
there to inherit much of this logic that applies to Views.

Then, we override the init() method (which initializes the plugin) in order to set the
available values that site builders can choose from (the team names) and a title for the
resulting form element. But we do so by specifying an options callback that will be
used to retrieve the options at the right moment. This callback is a method on our class
called getTeams() , which returns an array of all the team names. This array needs to be
keyed by the value to use in the query filter. That is pretty much it. We don't need to worry
about the options form or anything like that. The base class does it all for us.

Now, site builders can add this filter and choose a team (or more) to filter by, in an inclusive
way. For example, to show the players that belong to a respective team:

Instead of using the options callback,we could have also directly
overridden the getValueOptions() method of the parent (which in fact
calls the options callback itself). The only caution here is that to prevent
performance leaks, the values should be stored in the local
valueOptionsclass property. So, they can be read multiple times.

Views

[444]

Even if it's not that obvious, one last thing we need to do is define the configuration schema
for our filter. You may be wondering why we are not creating any custom options. The
answer is that when the user adds the filter and chooses a team to filter by, Drupal doesn't
know what data type that value is. So, we need to tell it that it's a string. Inside our
sports.schema.yml file, we can have this:

views.filter.team_filter:
 type: views_filter
 label: 'The teams to filter by'
 mapping:
 value:
 type: sequence
 label: 'Teams'
 sequence:
 type: string
 label: 'Team'

Similar to the Views field, we have a dynamic schema definition for the filter, of the type
views_filter. In the mapping, we override the valuefield (which has already been
defined by the views_filter data type). In our case, this is a sequence (an array with
unimportant keys) whose individual values are strings.

Another way we can achieve the same (or similar) is like this:

views.filter_value.team_filter:
 type: sequence
 label: 'Teams'
 sequence:
 type: string
 label: 'Team'

This is because in the definition of the value key found in the views_filter schema, the
type is set to views.filter_value.[%parent.plugin_id]. This means that we can
simply define the views.filter_value.team_filter data type ourselves for it to use. If
you remember, this is very similar to what we did ourselves in Chapter 12 , JavaScript and
Ajax API. So, we can just define that missing bit as our sequence, rather than overriding the
entire thing to change one small bit.

Views

[445]

The existing Views filter classes provide a great deal of capability for either using them
directly for custom data or extending to complement our own specificities. So, I recommend
you check out all the existent filter plugins. However, the main concept of a filter is the
alteration of the query being run by Views, which can be done inside the query() method
of the plugin class. There, we can add extra conditions to the query based on what we need.
You can check out this method on the FilterPluginBase class, which simply adds a
condition (using the addWhere() method in the query object) based on the configured
value and operator.

Custom Views argument
When we first exposed the player and team data to Views, we used an argument plugin so
that we could have a contextual filter on the team ID a player belongs to. To do this, we
used the existing numeric plugin on the actual team_id field of the players table. But
what if we wanted an argument that works on more levels? For example, we don't exactly
know what kind of data we'll receive, but we want to be able to handle nicely both a
numeric one (team ID) and a textual one (team name). All in one argument. To achieve this,
we can create a simple ViewsArgument plugin to handle this for us.

First thing, like always, is to define this field. We don't want to mess with the team_id field
onto which we added the earlier argument as that can still be used. Instead, we'll create a
new field, this time on the teams table, which we will simple call team:

$data['teams']['team'] = array(
 'title' => t('Team'),
 'help' => t('The team (either an ID or a team name).'),
 'argument' => array(
 'id' => 'team',
),
);

This time, though, we don't create a field for it as we don't need this displaying anything.
Rather, we stick only to the argument responsibility, which will be handled by our new
team plugin. You may also note that the team column doesn't actually exist in the database
table.

Views

[446]

So, let's see the plugin:

namespace Drupal\sports\Plugin\views\argument;

use Drupal\views\Plugin\views\argument\ArgumentPluginBase;

/**
 * Argument for filtering by a team.
 *
 * @ViewsArgument("team")
 */
class Team extends ArgumentPluginBase {

 /**
 * {@inheritdoc}
 */
 public function query($group_by = FALSE) {
 $this->ensureMyTable();
 $field = is_numeric($this->argument) ? 'id' : 'name';
 $this->query->addWhere(0, "$this->tableAlias.$field", $this->argument);
 }
}

As usual, we are extending from the base plugin class of its type and adding the proper
annotation. Inside, we only deal with the query() method, which we override. Arguments
are very similar to filters in the sense that they aim to restrict the result set via the query.
The main difference is the actual value used to filter, which in this case is dynamic and can
be found on the $argument property of the (parent) class, and what we do is simply add a
query condition to the right field on the teams table (since that is the base table), depending
on the type of data we are dealing with. But before we do that, we call the
ensureMyTable() method, which simply ensures that the table our plugin needs is
included in the query by Views.

That's it. We can now add our newly created argument to the View, and regardless of what
we passed as contextual filter (ID or name), it will filter accordingly. Of course, we can also
have options like most other Views plugin types, but I'll let you explore those on your own.
There are also a lot more we can override from the parent class in order to integrate with
Views. But that's a bit more advanced and it's unlikely you'll need to deal with for a good
while. I definitely recommend exploring the code behind it.

Views

[447]

Views theming
Frontend developers had many pain points in Drupal 7 and many of them were also related
to theming Views output. Luckily, Drupal 8 has made things much easier to handle. We
will look at a bit of that here in order to nudge you in the right direction when applying
what you learned in Chapter 4, Theming.

Views is very complex and is made up of many pluggable layers. A View has a display (such
as a Page or Block), which can render its content using a given style (such as an
Unformatted list or Table). Styles can decide whether to control the rendering of a given
result item (row) themselves or delegate this to a row plugin (such as Fields or Entity). Most,
in fact, do the latter. The two most common scenarios for using row plugins is either using
the EntityRow one which renders the resulting entities using a specified view mode or the
Fields plugin, which uses individual ViewField plugins to render each field that is added
to the View.

If we wanted to theme a View, there are all these points we can look at. Want the View to
output a slideshow? Maybe create a new style plugin. Want to do something crazy with
each entity in the result set? Maybe create a new row plugin, or even just create a new field
plugin (as we did) to render one piece of data in any way you want. These techniques are
more oriented towards module developers taking control over Views. But we also have the
theming aspects we can play with.

Again from the top, style plugins are nothing more than glorified wrappers over a theme
hook. For example, the Unformatted list plugin uses the views_view_unformatted theme
hook, which means a few things--it can be overridden by a theme (or even module) and it
can be preprocessed by a theme or module. Take a look at the default
template_preprocess_views_view_unformatted() preprocessor and views-view-
unformatted.html.twig template file for more information. Don't forget about the theme
hook suggestions, as Views defines quite a lot of them. All you need to do is enable theme
(Twig) debugging, and you'll see for each View layer which template is being used.

The style theme, however, only gets us to the wrapper around all the results. To go a bit
deeper we need to know what kind of row plugin it uses. If entities are being rendered, it's
the same thing as controlling how entities are built. See Chapter 6, Data Modeling and
Storage, for a refresher on that. If the row plugin uses field plugins, we have some options.
First of all, this is also a wrapper over a theme hook, namely views_view_fields, which
renders together all the field plugins added to the View.

Views

[448]

So, we can override that using the already known theming methods. But we can also
override the default theme hook for each field plugin itself, namely views_view_field,
responsible for wrapping the output of the plugin. This takes us to the field plugins
themselves and whatever they end up rendering which can differ from one plugin to
another. So, make sure you check that.

Views hooks
Views also comes with a lot of hooks. We've already see an important one that allowed us
to expose our own data to Views. But there are many more, and you should check out the
views.api.php file for more information.

Quite a few exist for altering plugin information for all sorts of plugin types. But there are
also some important ones that deal with Views execution at runtime. The most notable of
these is hook_views_query_alter(), which allows us to make alterations to the final
query that is going to be run. There is also hook_views_post_render() and
hook_views_pre_render(), which allow us to make alterations to the View results. For
example, to change the order of the items or something like that.

I recommend you check out their respective documents and make yourself aware what you
can do with these hooks. At times they can be helpful, even if with Drupal 8 most of the
action happens in plugins and you can easily now write your own to handle your specific
requirements. This is why we won't be going into great detail about these.

Summary
In this chapter, we looked at Views from all sorts of module developer-oriented angles. We
saw how we can expose our product entity type to Views. That was a breeze. But then, we
also saw how our custom player and team data from Chapter 8, The Database API, can also
be exposed to Views. Even if we did have to write some code for that, much of it was quite
boilerplate as we were able to leverage the existing Views plugin ecosystem for almost
everything we wanted. However, since these are all plugins, we also saw how we can create
our own field, filter, and argument plugins to handle those exceptional cases in which what
exists may not be enough.

Views

[449]

Closely tied to this, we also talked a bit about altering the way other modules expose their
data to Views. The most notable example here was the ability to easily add more fields (and
plugins) to entity based Views in order to enrich them with custom functionalities.

Finally, we talked a bit about how we can approach the theming aspect of Views. We saw
the different layers that make one up, starting from the display all the way down to the field.
We closed the chapter with a shout-out to the existing hooks the Views module invokes at
various times, and via which we can also make changes to its normal operation.

In the next chapter, we are going to see how we can work with files and images in Drupal 8.

16
Working with Files and Images

Drupal comes with many capabilities for handling and manipulating files and images and
has been adding to its toolset more and more with recent versions. Of course, this is not to
say that media management has not been always a pain point for Drupal developers. In
Drupal 7, a complicated suite of contributed modules was needed to achieve a basic level of
functionality, something that users of "competitors" like WordPress enjoy out of the box. In
Drupal 8, there is more emphasis placed on media management, however much of the work
is still in the contributed sphere. But due to the new way Drupal development will work,
it's expected that much of this effort will find its way into the core system with future
versions.

In this chapter, we will look at how we can work with files and images in Drupal,
supported by the core features. We are not going to go into topics such as media
management but rather focus on the module developer tools that can be used for working
with files. We will see some examples along the way. So, what are we going to discuss?

First, we are going to get an understanding of the Drupal filesystems. Developers from
previous versions of Drupal should already be familiar with these in theory, and we will see
how these work in Drupal 8. Related to this, we're going to talk about stream wrappers and
how Drupal handles native PHP file operations. We will even create our own custom
stream wrapper a bit later in the chapter.

Working with Files and Images

[451]

Then, we will talk a bit about the different ways to handle files in Drupal, namely managed
(tracked) and unmanaged files. In exemplifying the work with managed files, we will add an
image field to our Product entity type and have images imported from a fictional remote
environment. We will also create a brand new CSV-based importer by which the product
data is imported from a CSV file we process. In this process, we will mention the Entity
CRUD hooks, a very important extension point in Drupal 8, and see how we can use those
in our example context.

We will end the chapter by seeing how we can work with various APIs that deal specifically
with images; especially for manipulating them via image toolkits and working with image
styles. So let's get to it.

The filesystem
Drupal defines four main types of file storage for any given site--the public, the private, the
temporary and the translation filesystems. When installing Drupal, the folders that map to
these filesystems are created automatically. In case that fails--most likely due to permission
issues--we have to create them ourselves and give them the right permissions. Drupal takes
care of the rest (for example, adds relevant .htaccess files for security reasons). Make sure
you check out the documentation on Drupal.org for how to successfully install Drupal 8 if
you are unsure how this works.

Public files are available to the world at large for viewing or downloading. This is where
things such as image content, logos, and anything that can be downloaded are stored. Your
public file directory must exist somewhere under Drupal's root, and it must be readable and
writeable by whatever user your web server is running under. Public files have no access
restrictions. Anyone, at anytime, can navigate directly to a public file and view or download
it. This also means that accessing these files does not require Drupal to bootstrap.

We can configure the path to the public filesystem in our settings.php file:

$settings['file_public_path'] = 'sites/default/files';

Private files are not available to the world for general download. Therefore the private files'
directory must not be accessible via the web. However, it still has to be writeable by the web
server user. Isolating private files this way allows developers to control who can and can't
access them. For instance, we could write a module that only allows users who have a
specific role to access PDFs in the private filesystem.

https://www.drupal.org/

Working with Files and Images

[452]

We can configure the path to the private filesystem in our settings.php file:

$settings['file_private_path'] = 'sites/default/private';

Temporary file storage is typically only used by Drupal for internal operations. When files
are first saved by Drupal, they are initially written into the temporary filesystem so they can
be checked for security issues. After they have been deemed safe, they are written to their
final location.

We can configure the path to the temporary filesystem through the UI:

On the same configuration screen, we can also specify the default file download method for
the site. By default, this is set to the public filesystem.

Working with Files and Images

[453]

Finally, the translation file storage is used by Drupal for storing the .po files, which contain
string translation values that can be imported into the system in bulk. As with the
temporary file storage, we can configure the location of translation files through the UI.

Stream wrappers
If you've been writing PHP for a long time, you may have needed to work with local or
remote files at some point. The following PHP code is a common way to read a file into a
variable that you can do something with:

$contents = '';
$handle = fopen("/local/path/to/file/image.jpg", "rb");
while (!feof($handle)) {
 $contents .= fread($handle, 8192);
}
fclose($handle);

This is pretty straightforward. We get a handle to a local file using fopen() and read 8KB
chunks of the file using fread() until feof() indicates that we've reached the end of the
file. At that point, we use fclose() to close the handle. The contents of the file are now in
the variable $contents.

In addition to local files, we can also access remote ones through fopen() in the same exact
way but by specifying the actual remote path instead of the local one we saw before
(starting with http(s)://).

Data that we can access this way is streamable, meaning we can open it, close it, or seek to
an arbitrary place in it.

Stream wrappers are an abstraction layer on top of these streams that tell PHP how to handle
specific types of data. When using a stream wrapper, we refer to the file just like a
traditional URL--scheme://target. As a matter of fact, the preceding example uses one of
PHP's built-in stream wrappers: the file:// wrapper, for accessing files on local storage. It
is actually the default scheme when none is specified, so that is why we got away with
omitting it and just adding the file path. Had the file been on a remote location, we would
have used something like http://example.com/file/path/image.jpg. That is another
PHP built-in stream wrapper--http:// (for the HTTP protocol).

Working with Files and Images

[454]

If that's not enough, PHP also allows us to define our own wrappers for schemes that PHP
does not handle out of the box; the Drupal File API was built to take advantage of this. This
is where we link back to the different types of file storage we talked about earlier, as they all
have their own stream wrappers defined by Drupal.

The public filesystem uses the rather known public:// stream wrapper, the private one
uses private://, the temporary one temporary://,and the translation one
translations://. These map to the local file paths that we defined in the settings.php
(or UI). Later in the chapter, we will see how we can define our own stream wrapper and
what some of the things that go into it are. First, though, let's talk a bit about the different
ways we can manage files in Drupal 8.

Managed versus unmanaged files
The Drupal File API allows us to handle files in two different ways. Files essentially boil
down to two categories: they are either managed or unmanaged. The difference between the
two lies in the way the files are used.

Managed files work hand in hand with the Entity system and are in fact tied to File entities.
So whenever we create a managed file, an entity gets created for it as well, which we can use
in all sorts of ways. And the table where these records are stored is called file_managed.
Moreover, a key aspect of managed files is the fact that their usage is tracked. This means
that if we attach them to another entity, reference them, or even manually indicate that we
use them, this usage is tracked in a secondary table called file_usage. This way, we can
see where each file is used and how many times, and Drupal even provides a way to delete
"orphaned" files after a specific time in case they are no longer needed.

A notable example of using managed files is the simple Image field type that we can add to
an entity type. Using these fields, we can upload a file and attach it to the respective entity.
This attachment is nothing more than a special (tracked) entity reference between the two
entities.

By understanding how managed files are used, it's not difficult to anticipate what unmanaged
files are. The latter are the files we upload to make use of for various reasons but which--of
course--do not need to be attached to any entity or have their usage tracked.

Working with Files and Images

[455]

Using the File and Image fields
In order to demonstrate how to work with managed files, we will go back to our Product
entity importer and bring in some images for each product. However, in order to store
them, we need to create a field on the Product entity. This will be an image field.

Instead of creating this field through the UI and attaching it to a bundle, let's do it the
programmatic way and make it a base field (available on all bundles). We won't need to do
anything complex, for now we are only interested in a basic field that we can use to store
the images we bring in from the remote API. It can look something like this:

$fields['image'] = BaseFieldDefinition::create('image')
 ->setLabel(t('Image'))
 ->setDescription(t('The product image.'))
 ->setDisplayOptions('form', array(
 'type' => 'image_image',
 'weight' => 5,
));

If you remember from Chapter 6, Data Modeling and Storage and Chapter 7, Your Own
Custom Entity and Plugin Types, how this works is we are creating a base field definition
which, in this case, is of the type image. This is the FieldType plugin ID of the ImageItem
field. So that is where we need to look and see what kind of field and storage options we
may have. For example, we can have a file extension limitation (which by default contains
png, gif, jpg, and jpeg) and things like alt and title attributes, as well as image
dimension configuration. Do check out ImageItem to get an idea of the possible storage
and field settings. But alas, we are fine with the defaults in this case, so we don't even have
any field settings.

Another interesting thing to notice is that ImageItem extends the FileItem field type,
which is a standalone FieldType plugin that we can use. However, it is more generic and
lends itself for use with any kind of file upload situation. Since we are dealing with images,
we might as well take advantage of the specific field type.

For the moment, we do not configure our image field to have any kind of display. We'll
look into that a bit later. However, we do specify the widget it should use on the entity
form, namely the FieldWidget plugin with the ID of image_image. This maps to the
default ImageWidget class. But again, we are fine with the setting defaults, so we don't
specify anything extra.

Working with Files and Images

[456]

With this our field definition is done; all we need to do is create the interface methods for
easily accessing and setting the images:

/**
 * Gets the Product image.
 *
 * @return \Drupal\file\FileInterface
 */
public function getImage();

/**
 * Sets the Product image.
 *
 * @param int $image
 *
 * @return \Drupal\products\Entity\ProductInterface
 * The called Product entity.
 */
public function setImage($image);

The getter method is supposed to return a FileInterface object (which is the actual File
entity) while the setter is supposed to receive the ID (fid) of the image to save. As for the
implementations, it should not be anything new to us:

/**
 * {@inheritdoc}
 */
public function getImage() {
 return $this->get('image')->entity;
}

/**
 * {@inheritdoc}
 */
public function setImage($image) {
 $this->set('image', $image);
 return $this;
}

With this, we are ready to proceed with the import of images from the remote API.

Working with Files and Images

[457]

Working with managed files
In this section, we will look at two examples of working with managed files. First, we will
see how we can import product images from our fictional remote JSON-based API. Second,
we will see how to create a custom form element that allows us to upload a file, and use it
in a brand new CSV based importer.

Attaching managed files to entities
Now that we have our product image field in place and we can store images, let's revisit our
JSON response that contains the product data and assume it looks something like this now:

{
 "products" : [
 {
 "id" : 1,
 "name": "TV",
 "number": 341,
 "image": "tv.jpg"
 },
 {
 "id" : 2,
 "name": "VCR",
 "number": 123,
 "image": "vcr.jpg"
 }
]
}

What's new is the addition of the image key for each product, which simply references a
filename for the image that goes with the respective product. The actual location of the
images is at some other path we need to include in the code.

Going back to our JsonImporter::persistProduct() method, let's delegate the
handling of the image import to a helper method called handleProductImage(). We need
to call this method both if we are creating a new Product entity and if we are updating an
existing one (right before saving):

$this->handleProductImage($data, $product);

Working with Files and Images

[458]

And this is what the actual method looks like:

/**
 * Imports the image of the product and adds it to the Product entity.
 *
 * @param $data
 * @param ProductInterface $product
 */
private function handleProductImage($data, ProductInterface $product) {
 $name = $data->image;
 // This needs to be hardcoded for the moment.
 $image_path = '';
 $image = file_get_contents($image_path . '/' . $name);
 if (!$image) {
 // Perhaps log something.
 return;
 }

 /** @var \Drupal\file\FileInterface $file */
 $file = file_save_data($image, 'public://product_images/' . $name,
FILE_EXISTS_REPLACE);
 if (!$file) {
 // Something went wrong, perhaps log it.
 return;
 }

 $product->setImage($file->id());
}

First, we get the name of the image. Then we construct the path to where the product
images are stored. In the preceding example it's left blank, but if the example were to work,
we'd have to add a real path there. I leave that up to you for now. If you want to test it out,
create a local folder with some images and reference that.

Using the native file_get_contents() function, we load the data of the image from the
remote environment into a string. We then pass this string to the file_save_data()
function which saves a new managed file to the public filesystem. This function takes three
parameters--the data to be saved, the URI of the destination, and a flag indicating what to
do if a file with the same name already exists. You'll notice that we used the Drupal
public:// stream wrapper to build the URI and we already know which folder this maps
to.

Working with Files and Images

[459]

As for the third parameter, we chose to replace the file in case one already exists. The
alternative would have been to either use FILE_EXISTS_RENAME or FILE_EXISTS_ERROR.
The first would have created a new file whose name would have gotten a number
appended until the name became unique. The second would simply not do anything and
return FALSE.

If all goes well, this function returns a File entity (that implements FileInterface)
whose ID we can use in the Product image setter method. With that in place, we can
synchronise also the individual product images. Moreover, in our database, a record is
created in the file_usage table to indicate that this file is being used on the respective
Product entity. If we delete the Product entity or remove the image from its field, the File
entity looses this usage. If it's no longer used anywhere else, it will be deleted at the next
cron run. Whether this happens actually depends on the filesystem configuration:

We can set a period for which files can stay orphaned for before they get deleted, or even
prevent any files from being removed.

Helpful functions for dealing with managed files
Apart from the staple file_save_data() function, we have a few other ones that can
come in handy if we are dealing with managed files. Here's a few of them.

If we want to copy a file from one place to another while making sure a new database
record is created, we can use file_copy(). It takes three parameters:

The FileInterface entity that needs to be copied
The destination URI where it should go
The flag indicating what to do in case a file with the same name exists

The parameters are the same as for file_save_data().

Apart from the actual copying, this function also invokes hook_file_copy() which allows
modules to respond to files being copied.

Working with Files and Images

[460]

Very similarly to file_copy(), we also have file_move() that takes the same set of
parameters but instead performs a file move. The database entry of the File entity gets
updated to reflect the new file path. And hook_file_move() is invoked to allow modules
to respond to this action.

Not strictly related to managed files but rather useful in all cases, we also have a
file_prepare_directory() function which we can use to ensure the file destination is
correct. It takes two arguments--the directory (a string representation of the path or stream
URI) and a flag indicating what to do about the folder:

FILE_CREATE_DIRECTORY : Will create the directory if it doesn't already exist
FILE_MODIFY_PERMISSION : Will make the directory writable if it is found to be
read-only

This function returns TRUE if the folder is good to go as a destination or FALSE if
something went wrong or the folder doesn't exist.

Managed file uploads
Next, we are going to look at how we can work with managed files using a custom form
element. And to demonstrate this, we are finally going to create another Product importer
plugin. This time, instead of a remote JSON resource, we will allow users to upload a CSV
file that contains product data and imports that into Product entities. This is what the
example CSV data looks like:

id,name,number
1,Car,45345
2,Motorbike,54534

It basically has the same kind of data as the JSON resource we've been looking at so far, but
without the image reference. So let's get going with our new plugin class.

Here is our starting point:

namespace Drupal\products\Plugin\Importer;

use Drupal\Core\Entity\EntityTypeManager;
use Drupal\Core\StreamWrapper\StreamWrapperManagerInterface;
use Drupal\Core\StringTranslation\StringTranslationTrait;
use Drupal\products\Entity\ImporterInterface;
use Drupal\products\Entity\ProductInterface;
use Drupal\products\Plugin\ImporterBase;
use GuzzleHttp\Client;

Working with Files and Images

[461]

use Symfony\Component\DependencyInjection\ContainerInterface;

/**
 * Product importer from a JSON format.
 *
 * @Importer(
 * id = "csv",
 * label = @Translation("CSV Importer")
 *)
 */
class CsvImporter extends ImporterBase {

 use StringTranslationTrait;

 /**
 * {@inheritdoc}
 */
 public function import() {
 $products = $this->getData();
 if (!$products) {
 return FALSE;
 }

 foreach ($products as $product) {
 $this->persistProduct($product);
 }

 return TRUE;
 }
}

The used files at the top also include the ones we will use as we flesh out the class, so one by
one they will start making sense. In terms of our starting point, we extend from the
ImporterBase class and implement the obligatory import() method. Like before, we
delegate to getData() to retrieve the product information, but in this case we simply loop
over the resulting records and use the persistProduct() method to save the Product
entities. So no batch operations. Apart from no longer saving images, this latter method
looks exactly like the one from the JsonImporter, so I won't be copying it over again. But,
it makes for a good homework assignment to try to move it to the base class and abstract
away the dynamic portions.

Working with Files and Images

[462]

Managed file form element
The other obligatory method we need to implement is getConfigurationForm(), by
which we define the form elements needed to configure this particular plugin. Here, we will
create the file field allowing users to upload the CSV file:

/**
 * {@inheritdoc}
 */
public function
getConfigurationForm(\Drupal\products\Entity\ImporterInterface $importer) {
 $form = [];
 $config = $importer->getPluginConfiguration();
 $form['file'] = [
 '#type' => 'managed_file',
 '#default_value' => isset($config['file']) ? $config['file'] : '',
 '#title' => $this->t('File'),
 '#description' => $this->t('The CSV file containing the product
records.'),
 '#required' => TRUE,
];

 return $form;
}

The form element type is called managed_file (implemented by the ManagedFile form
element class). The rest of the definition is straightforward. However, there are a couple of
problems.

First, by default, using this form element, files are uploaded to the temporary:// file
system of Drupal. Since we don't want that, we need to specify an upload location:

'#upload_location' => 'public://'

The root of our public files folder will suffice for this example as we assume the file does
not contain any sensitive information. If so, we could upload it to the private:// one and
control who gets access. We’ll talk about how that works later in the chapter.

Working with Files and Images

[463]

Second, by default, using this form element, the allowed file extensions for upload are
limited to jpg jpeg gif png txt doc xls pdf ppt pps odt ods odp. So if we want
to allow CSV files, we need to specify the extension in a list of allowed upload extensions.
And we do this by overriding the default upload validators:

'#upload_validators' => [
 'file_validate_extensions' => ['csv'],
],

This is an array of validator callbacks we want Drupal to run when the file is uploaded.
And allowing only CSV files is enough for our purposes. But another handy validator we
could use is file_validate_size(). Moreover, we can implement
hook_file_validate() ourselves and perform any custom validation to the files being
uploaded. So, that's also something to keep in mind.

With this our plugin configuration form is in place; it looks something like this:

However, there is still something we need to do in order for the uploaded file to be managed
properly. When using this form element, the file gets correctly uploaded and a record is
added to the file_managed table. So we get our File entity. However, its status is not
permanent because it doesn't have any usages. There are no records for it in the
file_usage table. How could there be? So what we need to do is handle that ourselves and
basically tell Drupal that the file uploaded in this form is used by the respective Importer
configuration entity. And to do this, we need to know when the file is saved onto the entity,
changed, and deleted.

Working with Files and Images

[464]

With this we can also learn about something very important we skipped in Chapter 6 ,Data
Modeling and Storage and Chapter 7, Your Own Custom Entity and Plugin Types--Entity
CRUD hooks. But right before we jump into that, let's not forget about the configuration
schema of this new configuration item--the file key of the plugin configuration:

products.importer.plugin.csv:
 type: mapping
 label: Plugin configuration for the CSV importer plugin
 mapping:
 file:
 type: sequence
 label: File IDs
 sequence:
 type: integer
 label: CSV File ID

We are doing the same as we did for the url key of the JSON importer but in this case we
need to account for the fact that file is actually an array. So we define it as a sequence
whose individual items are integers. Feel free to check Chapter 6, Data Modeling and Storage,
for more information on configuration schemas whenever you need a reminder.

Entity CRUD hooks
Whenever entities are created, updated, or deleted, a set of hooks are fired that allow us to
act on this information. We can use these hooks simply to perform some actions whenever
this happens or even make changes to the entity being saved. So, let's see what we have.

A very useful one is hook_entity_presave(), which gets fired during the saving process
of an entity (both content and configuration). This applies to both when the entity is first
created, as well as when it is being updated. Moreover, it allows us to inspect the original
entity and detect changes made to it. And finally, since the entity has not yet been persisted,
it allows us to make changes to it ourselves. So very powerful stuff.

Since Drupal 8 is very flexible, we also have the hook_ENTITY_TYPE_presave() version
which allows us to specifically target any entity type we want. We've already discussed the
benefit of using more specific hooks to keep our code more organised as well as a little bit
more performant. And this applies to all the entity CRUD hooks we are going to talk about
next.

Working with Files and Images

[465]

Then we have hook_entity_insert() and hook_entity_update() , which gets fired
after an entity is created for the first time and after an entity is updated, respectively. We
cannot make changes to the entity itself as it has already been saved, but they can come in
handy at other times. The latter also gives us access to the original entity if we want to
compare any changes. And similarly, we have hook_entity_delete(), which gets fired
when an entity is deleted.

Finally, we also have hook_entity_load() which allows us to perform actions whenever
an entity is loaded. For example, we can tack on additional information if we want. So keep
in mind these hooks as they are going to be a very important tool in your module developer
arsenal.

Managed file usage service
Now that we have an idea of the available entity CRUD hooks, we can implement three of
them to handle our managed file problem. Because if you remember, managed files are
actually represented by the File entity type, so the Entity CRUD hooks get fired for these
as well.

To mark a file as being used by something, we can use the DatabaseFileUsageBackend
service (file.usage), which is an implementation of the FileUsageInterface. This has
a few handy methods that allow us to add a usage or delete it. That is actually what we are
going to do next.

What we want to do first is add a file usage whenever a new Importer entity gets created
(and a file uploaded with it):

/**
 * Implements hook_ENTITY_TYPE_insert() for the Importer config entity
type.
 */
function products_importer_insert(EntityInterface $entity) {
 if ($entity->getPluginId() != 'csv') {
 return;
 }

 // Mark the current File as being used.
 $fid = _products_importer_get_fid_from_entity($entity);
 $file = Drupal::entityTypeManager()->getStorage('file')->load($fid);
 \Drupal::service('file.usage')->add($file, 'products', 'config:importer',
$entity->id());
}

Working with Files and Images

[466]

We are implementing the specific version of hook_entity_insert() for our own entity
type, and the first thing we are checking is if we are looking at one using the CSV plugin.
We're not interested in an Importers that don't have a CSV file upload. If so, we get the File
entity ID from the importer using a private helper function:

/**
 * Given an Importer entity using the CSV plugin, return the File ID of the
CSV
 * file.
 *
 * @param EntityInterface $entity
 *
 * @return int
 */
function _products_importer_get_fid_from_entity(EntityInterface $entity) {
 $fids = $entity->getPluginConfiguration()['file'];
 $fid = reset($fids);
 return $fid;
}

You'll notice that the file key in our plugin configuration array is also an array of File IDs,
even if we only uploaded one single file. That is just something we need to account for here
(we did so in our configuration schema earlier on).

Then, we load the File entity based on this ID and use the file.usage service to add a
usage to it. The first parameter of the add() method is the File entity itself, the second is the
module name that marks this usage, the third is the type of thing the file is used by, while
the fourth is the ID of this thing. The latter two depend on the use case; we choose to go
with our own config:importer to make it clear that we are talking about a configuration
entity of the type importer. Of course, we used the ID of the entity.

With this, a new record will get created in the file_usage table whenever we save such an
Importer entity for the first time. Now let's handle the case in which we delete this entity--
we don't want this file usage lingering around, do we?

/**
 * Implements hook_ENTITY_TYPE_delete() for the Importer config entity
type.
 */
function products_importer_delete(EntityInterface $entity) {
 if ($entity->getPluginId() != 'csv') {
 return;
 }

 $fid = _products_importer_get_fid_from_entity($entity);
 $file = Drupal::entityTypeManager()->getStorage('file')->load($fid);

Working with Files and Images

[467]

 \Drupal::service('file.usage')->delete($file, 'products',
'config:importer', $entity->id());
}

Most of what we are doing in this specific version of hook_entity_delete() is the same
as before. However, we are using the delete() method of the file.usage service but
passing the same arguments. These $type and $id parameters are actually optional so we
can "un-use" multiple files at once. Moreover, we have an optional fifth parameter (the
count) whereby we can specifically choose to remove more than one usage from this file. By
default, this is one, and that makes sense for us.

Finally, we also want to account for the cases in which the user edits the importer entity and
changes the CSV file. We want to make sure the old one is no longer marked as used for this
Importer. And we can do this with hook_entity_update():

/**
 * Implements hook_ENTITY_TYPE_update() for the Importer config entity
type.
 */
function products_importer_update(EntityInterface $entity) {
 if ($entity->getPluginId() != 'csv') {
 return;
 }

 /** @var \Drupal\products\Entity\ImporterInterface $original */
 $original = $entity->original;
 $original_fid = _products_importer_get_fid_from_entity($original);
 if ($original_fid !== _products_importer_get_fid_from_entity($entity)) {
 $original_file =
Drupal::entityTypeManager()->getStorage('file')->load($original_fid);
 \Drupal::service('file.usage')->delete($original_file, 'products',
'config:importer', $entity->id());
 }
}

More correctly, we are using the specific variant of this hook which only gets fired for
Importer entities. Just like we've been doing so far. And as I mentioned, we can access the
original entity (before the changes have been made to it) like so:

$original = $entity->original;

And if the File ID that was on the original entity is not the same as the one we are currently
saving with it (meaning the file was changed), we can delete the usage of that old File ID.

Working with Files and Images

[468]

Remember, when we delete the usage of a file and its usage count reaches zero, the file is
marked as temporary. This does not mean it gets moved to the temporary:// file system
but that it will be deleted at the next cron run (if this is configured to happen).

Processing the CSV file
Now that our plugin configuration works--and uploaded files are properly managed and
marked as used--its time to implement the getData()method by which we process the
CSV file of the importer entity. The result needs to be an array of product information as
expected by the import() method we saw earlier. So we can have something like this:

/**
 * Loads the product data from the remote URL.
 *
 * @return array
 */
private function getData() {
 /** @var ImporterInterface $importer_config */
 $importer_config = $this->configuration['config'];
 $config = $importer_config->getPluginConfiguration();
 $fids = isset($config['file']) ? $config['file'] : [];
 if (!$fids) {
 return NULL;
 }

 $fid = reset($fids);
 /** @var \Drupal\file\FileInterface $file */
 $file = $this->entityTypeManager->getStorage('file')->load($fid);
 $wrapper = $this->streamWrapperManager->getViaUri($file->getFileUri());
 if (!$wrapper) {
 return NULL;
 }

 $url = $wrapper->getExternalUrl();
 $spl = new \SplFileObject($url, 'r');
 $data = [];
 while (!$spl->eof()) {
 $data[] = $spl->fgetcsv();
 }

 $products = [];
 $header = [];
 foreach ($data as $key => $row) {
 if ($key == 0) {
 $header = $row;
 continue;

Working with Files and Images

[469]

 }

 if ($row[0] == "") {
 continue;
 }

 $product = new \stdClass();
 foreach ($header as $header_key => $label) {
 $product->{$label} = $row[$header_key];
 }
 $products[] = $product;
 }

 return $products;
}

First, quite expectedly, we check for the existence of the File ID in the Importer entity and
load the corresponding File entity based on that. To do this we use the entity manager we
injected in the plugin base class. But then comes something new.

Once we have the File entity, we can ask it its URI, which will return something like this--
public://products.csv. This is what is stored in the database. But in order to turn that
into something useful, we need to use the stream wrapper that defines this file system. And
to get that, we use the StreamWrapperManager service (stream_wrapper_manager)
which has a handy method of returning the stream wrapper instance responsible for a given
URI--getViaUri(). And once we have our StreamWrapperInterface, we can use its
getExternalUrl() method to get the web accessible URL for the resource. This can be a
local file path or even something external. We will come back to stream wrappers a bit later in
this chapter and it will make more sense. But for the moment, it's enough to understand
that we are translating a URI in the format scheme://target into a useful path which we
can use to create a new PHP native SplFileObject instance, that in turn we can use to
process the CSV file easily.

When creating the SplFileObject, we used the external URL of the file;
this worked just fine and we were able to also demonstrate how we can
get our hands on the external URL if we ever need to. But as we will see in
the next chapter, it will also work directly with the stream URI, and we
will switch to this approach instead.

Working with Files and Images

[470]

With three lines of code we are basically done getting all the rows from the CSV into the
$data array. However, we also want to make this data look a bit more like what the JSON
resource looked like--a map where the keys are the field names and the values are the
respective product data. And we also want this map to contain PHP standard objects
instead of arrays. So we loop through the data, establish the CSV header values, and use
those as the keys in each row of a new $products array of objects. Our end result will look
exactly like the product information coming from the decoded JSON response.

And with this we are done. Well, not quite. We still need to inject the
StreamWrapperManager service into our plugin. And to do that, we need to make sure we
are injecting also all the things that the parent class needs and passing them along:

/**
 * {@inheritdoc}
 */
public function __construct(array $configuration, $plugin_id,
$plugin_definition, EntityTypeManager $entityTypeManager, Client
$httpClient, StreamWrapperManagerInterface $streamWrapperManager) {
 parent::__construct($configuration, $plugin_id, $plugin_definition,
$entityTypeManager, $httpClient);
 $this->streamWrapperManager = $streamWrapperManager;
}

/**
 * {@inheritdoc}
 */
public static function create(ContainerInterface $container, array
$configuration, $plugin_id, $plugin_definition) {
 return new static(
 $configuration,
 $plugin_id,
 $plugin_definition,
 $container->get('entity_type.manager'),
 $container->get('http_client'),
 $container->get('stream_wrapper_manager')
);
}

Nothing we don't yet know how to do. However, there is one thing I'd like to point out
here. In Chapter 7, Your Own Custom Entity and Plugin Types, I mentioned how at the time I
believed the Guzzle HTTP Client is a service that would be useful to all Importer plugins.
Well, I was clearly wrong, as the CSV-based one we just created now doesn't need it. So
there is no reason why it should be injected into it. What we need to do here is remove this
dependency from the base plugin class and only use it in the JSON importer. However, I
leave this up to you as homework.

Working with Files and Images

[471]

Our CSV Importer plugin is now complete. If we did everything correctly, we can now
create a new Importer entity that uses it, upload a correct CSV file, and import some
Product entities via our Drush command. How neat.

Our own stream wrapper
At the beginning of this chapter, we briefly talked about stream wrappers and what they
are used for. We saw that Drupal comes with four mainstream wrappers that map to the
various types of file storage it needs. Now its time to see how we can create our own. And
the main reason why we would want to implement one is to expose resources at a specific
location to PHPs native file system functions.

In this example, we will create a very simple stream wrapper that can basically only read
the data from the resource. Just to keep things simple. And the data resource will be the
product images hosted remotely (the ones we are importing via the JSON Importer). So
there will be some rework there, as well, to use the new stream wrapper instead of the
absolute URLs. Moreover, we will also learn how to use the site-wide settings service by
which we can have environment specific configurations set in the settings.php file and
then read by our code.

The native way of registering a stream wrapper in PHP is by using the
stream_wrapper_register() function. However, in Drupal 8 we have an abstraction
layer on top of that in the form of services. So a stream wrapper is a simple tagged service,
albeit with many potential methods. So let's see its definition which we add to the
products.services.yml file:

products.images_stream_wrapper:
 class: Drupal\products\StreamWrapper\ProductsStreamWrapper
 tags:
 - { name: stream_wrapper, scheme: products }

Nothing too complicated. The service is tagged with stream_wrapper and we use the
scheme key to indicate--you guessed it--the scheme of the wrapper. So the URIs will be in
this format:

products://target

Working with Files and Images

[472]

One important thing to note about stream wrapper services is that we cannot pass
dependencies to them. The reason is that they are not instantiated the normal way (by the
container) but arbitrarily by PHP whenever some of its methods need to be called. So if we
need to use some services, we'll have to use the static way of loading them.

The stream wrapper service class needs to implement StreamWrapperInterface which
comes with a lot of methods. There are many possible file system interactions that PHP can
do and these methods need to account for all. However, we will only be focusing on a few
specific ones that have to do with reading data. After all, our resources are remote and we
don't even have a clue how to make changes to them over there. So for the rest of the
methods, we will be returning FALSE to indicate that the operation cannot be performed.

Let's see this big class then:

namespace Drupal\products\StreamWrapper;

use Drupal\Component\Utility\UrlHelper;
use Drupal\Core\StreamWrapper\StreamWrapperInterface;
use Drupal\Core\StringTranslation\StringTranslationTrait;

/**
 * Stream wrapper for the remote product image paths used by the JSON
Importer.
 */
class ProductsStreamWrapper implements StreamWrapperInterface {

 use StringTranslationTrait;

 /**
 * The Stream URI
 *
 * @var string
 */
 protected $uri;

 /**
 * @var \Drupal\Core\Site\Settings
 */
 protected $settings;

 /**
 * Resource handle
 *
 * @var resource
 */
 protected $handle;

Working with Files and Images

[473]

 /**
 * ProductsStreamWrapper constructor.
 */
 public function __construct() {
 // Dependency injection does not work with stream wrappers.
 $this->settings = \Drupal::service('settings');
 }

 /**
 * {@inheritdoc}
 */
 public function getName() {
 return $this->t('Product images stream wrapper');
 }

 /**
 * {@inheritdoc}
 */
 public function getDescription() {
 return $this->t('Stream wrapper for the remote location where product
images can be found by the JSON Importer.');
 }

 /**
 * {@inheritdoc}
 */
 public static function getType() {
 return StreamWrapperInterface::HIDDEN;
 }

 /**
 * {@inheritdoc}
 */
 public function setUri($uri) {
 $this->uri = $uri;
 }

 /**
 * {@inheritdoc}
 */
 public function getUri() {
 return $this->uri;
 }

 /**
 * Helper method that returns the local writable target of the resource
within the stream.
 *

Working with Files and Images

[474]

 * @param null $uri
 *
 * @return string
 */
 public function getTarget($uri = NULL) {
 if (!isset($uri)) {
 $uri = $this->uri;
 }

 list($scheme, $target) = explode('://', $uri, 2);
 return trim($target, '\/');
 }

 /**
 * {@inheritdoc}
 */
 public function getExternalUrl() {
 $path = str_replace('\\', '/', $this->getTarget());
 return $this->settings->get('product_images_path') . '/' .
UrlHelper::encodePath($path);
 }

 /**
 * {@inheritdoc}
 */
 public function realpath() {
 return $this->getTarget();
 }

 /**
 * {@inheritdoc}
 */
 public function stream_open($path, $mode, $options, &$opened_path) {
 $allowed_modes = array('r', 'rb');
 if (!in_array($mode, $allowed_modes)) {
 return FALSE;
 }
 $this->uri = $path;
 $url = $this->getExternalUrl();
 $this->handle = ($options && STREAM_REPORT_ERRORS) ? fopen($url, $mode)
: @fopen($url, $mode);
 return (bool) $this->handle;
 }

 /**
 * {@inheritdoc}
 */
 public function dir_closedir() {

Working with Files and Images

[475]

 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function dir_opendir($path, $options) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function dir_readdir() {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function dir_rewinddir() {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function mkdir($path, $mode, $options) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function rename($path_from, $path_to) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function rmdir($path, $options) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */

Working with Files and Images

[476]

 public function stream_cast($cast_as) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_close() {
 return fclose($this->handle);
 }

 /**
 * {@inheritdoc}
 */
 public function stream_eof() {
 return feof($this->handle);
 }

 /**
 * {@inheritdoc}
 */
 public function stream_flush() {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_lock($operation) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_metadata($path, $option, $value) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_read($count) {
 return fread($this->handle, $count);
 }

 /**
 * {@inheritdoc}

Working with Files and Images

[477]

 */
 public function stream_seek($offset, $whence = SEEK_SET) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_set_option($option, $arg1, $arg2) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_stat() {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_tell() {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_truncate($new_size) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function stream_write($data) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function unlink($path) {
 return FALSE;
 }

 /**

Working with Files and Images

[478]

 * {@inheritdoc}
 */
 public function url_stat($path, $flags) {
 return FALSE;
 }

 /**
 * {@inheritdoc}
 */
 public function dirname($uri = NULL) {
 return FALSE;
 }
}

The first thing to look at is the constructor in which we statically load the Settings service
and store it as a class property. And speaking of which, we also define a $uri property to
hold the actual URI this wrapper wraps and a $handle property to hold a generic PHP
resource handle.

The getName() and getDescription() are pretty straightforward methods used for
identifying the stream wrapper, while the getType() method returns the type of stream.
We'll go with the hidden type because we don't want it visible in the UI. It's strictly for
programmatic use so we can read our product images. Do check out the available types and
their meanings by looking at the StreamWrapperInterface constants.

Then we have a getter and setter for the $uri property by which the Drupal
StreamWrapperManager can create an instance of our wrapper based on a given URI. The
getTarget() method is actually not in the interface but is a helper to extract a clean target
from the URI (the target being the second part of the URI that comes after scheme://). And
we use this method in the getExternalUrl(), which is quite an important method
responsible for returning an absolute URL to the resource in question. But here we also use
our Settings service to get the product_images_path key. If you remember in the
beginning of the chapter, we saw that the path to the public file system is defined in the
settings.php file like so:

$settings['file_public_path'] = 'sites/default/files';

That $settings variable is the data array that is wrapped by the Settings service. So we
want to do the same for defining our own remote path to the product images:

$settings['product_images_path'] =
'http://path/to/the/remote/product/images';

Working with Files and Images

[479]

This way we are not committing to Git the actual remote URL and we can also change it
later if we want. And this is the URL we are reading inside the getExternalUrl()
method.

The other pillar of our read-only stream wrapper is the ability to open a file handle to the
resource and allow us to read the data from it. And the stream_open() method does this
as it gets called when we run either file_get_contents() or fopen() on our URI. Using
the $mode parameter, we ensure that the operation is read-only and return FALSE
otherwise--we do not support write or other flags.

Any mode can have b appended to it to indicate that the file should be
opened in binary mode. So where r indicates read-only, rb indicates read-
only in binary mode.

The third argument is a bitmask of options defined by PHP. The one we're
dealing with here is STREAM_REPORT_ERRORS, which indicates whether or not PHP errors
should be suppressed (for instance if a file is not found). The second is STREAM_USE_PATH,
which indicates whether PHP's include path should be checked if a file is not found. This is
not relevant to us, so we ignore it. If a file is found on the include path, then the fourth
argument ($opened_url) should be set with the file's real path.

What we do then is translate the URI into the absolute URL of the external resource so that
we can open a file handle on it. And in doing so we make use of the
STREAM_REPORT_ERRORS option to either prepend the @ to the fopen() function or not
(doing so suppresses errors). Finally, we store the reference to the resource handle and
return a boolean based on it to indicate whether the operation succeeded or not.

Finally, we also implement the stream_read(), stream_eof() and stream_close()
methods so that we can actually also stream the resources if we want to. As for the rest of
the methods, as already mentioned we return FALSE.

All we have to do now is clear the cache and make use of our stream. As long as we have a
valid URL declared in the settings.php file, our stream should work fine. And here are
the kinds of things we could do with a URI like this:

$uri = 'products//tv.jpg';

To get the entire file content into a string, we can do this:

$contents = file_get_contents($uri);

Working with Files and Images

[480]

Or we can use the example from the beginning of the chapter and stream the file bit by bit:

$handle = fopen($uri, 'r');
$contents = '';
while (!feof($handle)) {
 $contents .= fread($handle, 8192);
}
fclose($handle);

All these file operations such as opening, reading, checking the end of a file, and closing is
possible due to our stream_*() method implementations from the wrapper.

And finally, maybe now it's also a bit clearer what we did when writing the CSV Importer
and using the StreamWrapperManager to identify the stream wrapper responsible for a
given URI, and based on that, the external URL of the URI. There is also a shorter version of
doing this, useful especially in a context in which we cannot inject the stream wrapper
manager service:

$url = file_create_url($uri);

Internally, this will do it for us and give us the URL as returned by the getExternalUrl()
of the responsible StreamWrapperInterface implementation.

To end the section on stream wrapper, let's do some clean-up work by refactoring a bit our
JsonImporter::handleProductImage() method. Our logic there involved hardcoding
the URL to the remote API which is really not a good idea. Instead, now that we have our
stream wrapper, we can go ahead and use it. We can replace this:

// This needs to be hardcoded for the moment.
$image_path = '';
$image = file_get_contents($image_path . '/' . $name);

With this:

$image = file_get_contents('products://' . $name);

It's that simple. And now we can control the remote URL from outside the Git repository
and if it changes, we don't even have to alter our code. Granted, solely for this purpose
implementing a stream wrapper seems a bit excessive. After all, you can simply inject the
Settings service and use the URL in the Importer plugin itself allowing for the same kind
of flexibility. But we used the opportunity to learn about stream wrappers and how to
create our own and even managed to find a small use case in the process.

Working with Files and Images

[481]

Working with unmanaged files
Working with unmanaged files is actually pretty similar to doing so with managed files,
except that they are not tracked in the database using the File entity type. There is a set of
helper functions similar to what we've seen for managed files that do the same things--but
they have the word unmanaged in them. Let's see some examples.

To save a new file, we do almost like we did before:

$image = file_get_contents('products://tv.jpg');
$path = file_unmanaged_save_data($image, 'public://tv.jpg',
FILE_EXISTS_REPLACE);

We load the file data from wherever and use the file_unmanaged_save_data() the same
way as we did file_save_data(). The difference is that the file is going to be saved but
no database record is created. So the only way to use it is to rely on the path it is saved at
and either try to access it from the browser or use it for whatever purpose we need. The
file_unmanaged_save_data() returns the URI of where the file is now saved or FALSE
if there was a problem with the operation. So if all went well with the preceding example,
$path would now be--public://tv.jpg.

And just like with the managed files, we also have a few other helpful functions such as
file_unmanaged_move(), file_unmanaged_copy()and file_unmanaged_delete().

Private file system
The private file system is used whenever we want to control access to the files being
downloaded. Using the default public storage, users can get to the files simply by pointing
to them in the browser, thereby bypassing Drupal completely. However, .htaccess rules
prevent users from directly accessing any files in the private storage making it necessary to
create a route that delivers the requested file. It goes without saying that the latter is a hell
of a lot less performant as Drupal needs to be loaded for each file. So it's important to only
use it really when files should be restricted based on certain criteria.

Drupal already comes with a route and Controller ready to download private files but we
can create one as well if we really need to. For example, the image module does so in order
to control the creation and download of image styles--ImageStyleDownloadController.

Working with Files and Images

[482]

The route definition for the default Drupal path looks like this:

system.files:
 path: '/system/files/{scheme}'
 defaults:
 _controller: 'Drupal\system\FileDownloadController::download'
 scheme: private
 requirements:
 _access: 'TRUE'

This is a bit of an odd route definition. We have a {scheme} parameter but which will be
the actual file path requested for download. The URI scheme itself defaults to private as
illustrated by the signature of FileDownloadController::download(). Moreover,
access is allowed at all times as Drupal delegates this check to other modules --as we will
see in a minute.

If we look in the FileDownloadController::download() Controller, we can see that it
isn't actually much that it is doing itself. However, we also note that in the first line it looks
for the query parameter called file in order to get the URI of the requested file:

$target = $request->query->get('file');

But based on the route definition, we don't even have this parameter. This is where Path
Processors come into play, more specific implementations of
InboundPathProcessorInterface. These are tagged services that get invoked by the
routing system when building up the routes by the requested path. And essentially, they
allow the alteration of a given path as it comes in. For Drupal 7 veterans these can be
likened to implementations of hook_url_inbound_alter().

The core System module implements its own path processor for the purpose of handling the
download of private files:

path_processor.files:
 class: Drupal\system\PathProcessor\PathProcessorFiles
 tags:
 - { name: path_processor_inbound, priority: 200 }

It's a simple tagged service definition whose class needs to implement the correct interface
that has one method. In the case of PathProcessorFiles, it looks like this:

/**
 * {@inheritdoc}
 */
public function processInbound($path, Request $request) {
 if (strpos($path, '/system/files/') === 0 &&
!$request->query->has('file')) {

Working with Files and Images

[483]

 $file_path = preg_replace('|^\/system\/files\/|', '', $path);
 $request->query->set('file', $file_path);
 return '/system/files';
 }
 return $path;
}

The goal of this method is to return a path which can be the same as the one requested or
changed for whatever reason. And what Drupal does here is checks if the path is the one
defined earlier (starts with /system/files/) and extracts the requested file path that
comes as the first argument after that. It takes that and adds it to the current request
parameter keyed by file. Finally, it returns a cleaner path called simply /system/files.
So this is why the FileDownloadController::download() method looks there for the
file path.

Turning back to the Controller, we see that it essentially checks for the file and if it is not
found, throws a 404 (NotFoundHttpException). Otherwise, it invokes
hook_file_download() that allows all modules to control the access to the file. And these
can do so in two ways--either by returning -1 which denies access or by returning an array
of headers to control the download for that specific file. By default, files in the private file
system cannot be downloaded unless a specific module allows this to happen.

A quick note on invoking hooks. You remember from Chapter 2, Creating
Your First Module, how we used the ModuleHandler service to invoke
alter hooks. Well, we can use the same service to invoke regular hooks as
well by using the invokeAll() method. This will return the merged
result of all module implementations of that hook. In previous versions of
Drupal, this was the main extension point available for modules.
However, with the introduction of plugins and the Event Dispatcher,
Drupal has removed this technique from the limelight.

So what does this mean? If we have a file in the private file system, we need to implement
hook_file_download() and control access to it. Let's see an example of how this might
work by assuming we have a folder called /pdfs whose files we want to make accessible to
users which have the administer site configuration permission:

/**
 * Implements hook_file_download().
 */
function module_name_file_download($uri) {
 $file_system = \Drupal::service('file_system');
 $dir = $file_system->dirname($uri);
 if ($dir !== 'private://pdfs') {
 return NULL;

Working with Files and Images

[484]

 }

 if (!\Drupal::currentUser()->hasPermission('administer site
configuration')) {
 return -1;
 }

 return [
 'Content-type' => 'application/pdf',
];
}

This hook receives as an argument the URI of the file being requested. And based on that,
we try to get the folder name it belongs to. To do this, we use the file_system service
which contains some helper methods for interacting with the file system. I encourage you to
check it out, and the FileSystemInterface, for more information on what you can do
with it.

If the file is not in the private file system inside the /pdfs folder, we simply return NULL to
signify that we don't control the access to this file. Other modules may do so (and if none
do, access is denied). If it is our file, we check for the permission we want and return -1 if
the user doesn't have it. This will deny access. Finally, if access is allowed, we return an
array of headers we want to use in the file delivery. In our case, we simply use the PDF-
specific headers that facilitate the display of the PDF file in the browser. If we wanted to
trigger a file download, we could do something like this instead:

$name = $file_system->basename($uri);
return [
 'Content-Disposition' => "attachment;filename='$name'"
];

We use the file system service to determine the file name being requested and adjust our
headers accordingly to treat it like an attachment that has to be downloaded.

And that is all there is to it. If we wanted more control (or a different path to download the
files) we can implement our own route and follow the same approach. Without, of course,
the need to invoke a hook but simply handling the download inside the controller method.
For example, this is what FileDownloadController::download() does to handle the
actual response:

return new BinaryFileResponse($uri, 200, $headers, $scheme !== 'private');

This type of response is used when we want to deliver files to the browser and it comes
straight from Symfony.

Working with Files and Images

[485]

Images
In this section, we are going a bit deeper into the world of images in Drupal 8 while keeping
the focus on module developers.

Image toolkits
The Drupal 8 Image toolkits provide an abstraction layer over the most common operations
used for manipulating images. By default, Drupal uses the GD image management library
that is included with PHP. However, it also offers the ability to switch to a different library
if needed by using the ImageToolkit plugins.

For instance, a contributed module could implement the ImageMagick library for
developers who needed support for additional image types such as TIFF, which GD does
not support. However, only one library can be used at a time as it needs to be configured
site-wide.

Programmatically manipulating images using a toolkit involves instantiating an
ImageInterface object that wraps an image file. This interface (implemented by the
Image class) contains all the needed methods for applying the common manipulations to
images, as well as saving the resulting image to the file system. And to get our hands on
such an object, we use the ImageFactory service:

$factory = \Drupal::service('image.factory');

Working with Files and Images

[486]

The role of this factory is to create instances of Image using a given toolkit. And it works
like this:

$image = $factory->get($uri);

The second parameter to this method is the ImageToolkit plugin ID we want the Image
object to work with. By default, it uses the default toolkit configured for the entire
application.

And now we can use the manipulation methods on the ImageInterface to change the file:

$image->scale(50, 50);
$image->save('public://thumbnail.jpg');

In the preceding example, we scale the image to 50x50 and save it to a new path. Omitting
the destination in the save() method would mean overwriting the original file with the
changed version. If you need to perform such manipulations manually, I encourage you to
explore the ImageInterface for all the available options.

Image styles
Even though as we've seen we can handle image manipulations programmatically
ourselves, typically, this is done as part of Image Styles which can be created and configured
via the UI. These work similarly as they did in Drupal 7 and involve the application of
several possible Image Effects in order to create image variations used in different places.
Drupal 8 comes with the same three default image styles as did Drupal 7:

Working with Files and Images

[487]

The image styles themselves are configuration entities which store configuration specific to
the ImageEffect plugins they work with. Once they are created in the UI, we can make use of
them in various ways. The most typical way is to use the image style in the display
configuration of an entity field or even in Views when rendering an image field.

If you remember in the beginning of the chapter we created the image field on the Product
entity but we did not configure a display. So for the moment, the imported images do not
show up on the main product page. But we can add some display configuration to our base
field definition so that images are shown with a specific image style:

->setDisplayOptions('view', array(
 'type' => 'image',
 'weight' => 10,
 'settings' => [
 'image_style' => 'large'
]
))

In this example, we are using the default image field formatter plugin which can be
configured to use an image style. So under the settings key, we reference the large
image style configuration entity that actually comes with Drupal core. Omitting this would
simply just render the original image. Make sure you check back Chapter 7, Your Own
Custom Entity and Plugin Types and Chapter 9, Custom Fields if you are a bit fuzzy on the
base field definitions.

Rendering images
In Chapter 4, Theming, we talked about theme hooks and how we use them in render arrays
to build output. And we also saw a few examples of theme hooks that come with Drupal
core and which can be used for common things (such as links or tables). But images are also
something we’ll often end up rendering and there are two ways we can do so (both using
theme hooks defined by Drupal core).

Working with Files and Images

[488]

First, we can use the image theme hook to simply render an original image. And it’s pretty
simple to use it:

return [
 '#theme' => 'image',
 '#uri' => 'public://image.jpg',
];

And this will render the image as is. We can also pass some more options like the alt, title,
width or height which will be applied to the image tag as attributes, as well as an array of
any other kinds of attributes we may want. Check out template_preprocess_image()
for more information on how this works.

Alternatively, the Image module defines the image_style theme hook which we can use to
render the image using a given image style:

return [
 '#theme' => 'image_style',
 '#uri' => 'public://image.jpg',
 '#style_name' => 'large',
];

This theme hook works pretty much the same way except that it has an extra parameter for
the ID of the ImageStyle entity we want to use. And the rest of the parameters we find on
the image theme hook can also be found here. In fact, image_style delegates to the image
theme hook under the hood.

Finally, we may also find ourselves in a situation in which we need to get our hands on the
URL of an image using a given image style. We need to work with the ImageStyle
configuration entity for this:

$style =
\Drupal::entityTypeManager()->getStorage('image_style')->load('thumbnail');
$url = $style->buildUrl('public://image.jpg');

Once we load the image style we want, we simply call its buildUrl() method to which we
pass the URI of the file for which we want the URL. The first time this URL is accessed, the
image variation gets created and stored to disk. Future requests will load it directly from
there for improved performance.

Working with Files and Images

[489]

Summary
We are closing this chapter after covering a lot of different topics that have to do with
working with files in Drupal 8.

We started with a couple of introductory sections in which we introduced some general
concepts such as the various file systems (storages) that Drupal 8 uses, as well the how
stream wrappers come into play for working with them. We also introduced the different
ways to work with files--managed vs unmanaged.

Next, we dove into working with managed files and created an image field on our Product
entity type so that we could import images into it. The other example of working with
managed files had us create a new Product importer based on a CSV file of data and we also
saw how to upload, read and process such a file, as well as manually track its usage. As a
parenthesis, we introduced a very powerful feature of Drupal 8 that allows us to hook into
the entity CRUD operations and perform actions whenever these are fired. This is a majorly
important technique module developers typically use in Drupal.

We then switched gears and implemented our own stream wrapper to serve our imaginary
remote API that stored the product images. Moreover, we talked about working with
unmanaged files and some of the functions we can use for this--things similar to managed files
except the function names are different and there are no File entities or usage tracking to
them.

We continued with the private file system and a talk about what this serves and how we
can work with it to control access to our own files. As opposed to allowing users to bypass
Drupal and download files from the public file system.

Finally, we finished the chapter with a look at the APIs surrounding images and how we
can use toolkits to process images, both manually and as part of image styles. And even
more useful, we saw how we can render images in all sorts of ways in Drupal 8 and get our
hands on image style URLs.

In the next and final chapter, we will look at automated testing and how we can ensure that
our code works and that we don't introduce regressions along the way.

17
Automated Testing

Automated testing is a process by which we rely on special software to continuously run
pre-defined tests that verify the integrity of our application. To this end, automated tests are
a collection of steps that cover the functionality of an application and compare triggered
outcomes to the expected ones.

Manual testing and review is a great way to ensure that a piece of written functionality
works as expected. The main problem encountered by most adopters of this strategy and
those who use it exclusively is a regression. Once a piece of functionality is tested, the only
way they can guarantee regressions (or bugs) were not introduced by another piece of
functionality is by retesting it. Also, as the application grows, it becomes impossible to
handle. This is where automated tests come in.

Automated testing uses special software that has an API which allows us to automate the
steps involved with testing the functionality. This means that we can rely on machines to
run these tests as many times as we want, and the only thing stopping us from having a
fully-working application is the lack of proper test coverage with well-defined tests.

There is much different software available for performing such tests and they are usually
geared towards specific types of automated testing. For example, Behat is a powerful PHP-
based open source behavior testing framework that allows the scripting of tests that mirror
quite closely what a manual tester would do--interact with the application through the
browser and test its behavior. There are other testing frameworks that go much lower down
in the level of their testing target. For example, the PHP industry standard tool, PHPUnit, is
widely used for performing unit tests. This type of testing focuses on the actual code at the
lowest possible level; it tests that class methods work properly by verifying their output
after providing them with different inputs. A strong argument in favor of this kind of
testing is that it encourages better code architecture which can be (partly) measured by the
ease with which unit testing can be written for it.

Automated Testing

[491]

We also have functional or integration tests which fall somewhere in between the two
examples given before. These go higher than the code level and enlist application
subsystems in order to test more comprehensive sets of functionality, without necessarily
considering browser behavior and user interaction.

It is not difficult to agree that a well-tested application features a combination of the
different testing methodologies. For example, testing the individual architectural units of an
application does not guarantee that the entire subsystem works, just as testing only the
subsystem does not guarantee that its individual components will work properly under all
circumstances. Also, the same is true for certain subsystems that depend on user
interaction--these require test coverage as well.

In this chapter, we will see how automated testing works in Drupal 8. More specifically, we
will go through and explain all testing methodologies available for us as module developers
and exemplify them with two tests each. By the end of this chapter, you'll be ready to write
your own tests and be familiar enough with the code to further explore the available testing
capabilities.

Testing methodologies in Drupal 8
Like many other development aspects, automated testing has been greatly improved in
Drupal 8. In the previous version, the testing framework was a custom one built specifically
for testing Drupal applications--Simpletest. Its main testing capability focused on functional
testing with a strong emphasis on user interaction with a pseudo-browser. However, it was
quite strong and allowed a wide-range of functionality to be tested.

Drupal 8 development started with Simpletest as well, lots of older tests still using this
framework. However, with the adoption of PHPUnit, Drupal is moving away from it and is
in the process of deprecating it. To replace it, there is a host of different types of tests--all
run by PHPUnit--that can cover more testing methodologies. So let's see what these are.

Drupal 8 comes with the following types of testing:

Simpletest: Existing for legacy reasons but no longer used to create new tests.
This will most likely be removed in Drupal 9.
Unit: Low-level class testing with minimal dependencies (usually mocked).
Kernel: Functional testing with the kernel bootstrapped, access to the database
and only a few loaded modules.

Automated Testing

[492]

Functional: Functional testing with a bootstrapped Drupal instance, a few
installed modules and using a Mink-based browser emulator (Goutte driver).
Functional JavaScript: Functional testing like the previous, using the Phantom.js
driver (http:/ /phantomjs. org/) for Mink that allows for testing JavaScript
powered functionality

Apart from Simpletest, all of these test suites are built on top of PHPUnit and are
consequently run by it. Based on the namespace the test classes reside in, as well as the
directory placement, Drupal can discover these tests and know what type they are.

In this chapter, we will see examples of all of them (except Simpletest) as we go about
testing some of the functionality we've been writing in this book.

PHPUnit
Apart from the old and more or less deprecated Simpletest, Drupal 8 uses PHPUnit as the
testing framework for all types of tests. In this section, we will see how we can work with it
to run tests.

On your development environment (or wherever you want to run the
tests), make sure you have the composer dependencies installed with the -
-dev flag. This will include PHPUnit. Keep in mind not to ever do this on
your production environment as you can compromise the security of your
application.

Although Drupal has a UI interface for running tests, PHPUnit is not well integrated with
this. So, it's recommended that we should run them using the command line instead.
However, it's actually very easy to do so. To run the entire test suite (of a certain type), we
have to navigate to the Drupal core folder:

cd core

Run the following command:

../vendor/bin/phpunit --testsuite=unit

http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/

Automated Testing

[493]

This command goes back a folder through the vendor directory and uses the installed
phpunit executable. As an option, in the preceding example, we have specified that we
only want to run unit tests. Omitting that we would run all types of tests, however, for most
others, there will be some configuration needed as we will see in the respective sections.

If we wanted to run a specific test, we can pass it as an argument to the phpunit command
(the path to the file):

../vendor/bin/phpunit tests/Drupal/Tests/Core/Routing/UrlGeneratorTest.php

In this example, we run a Drupal core test that tests the UrlGenerator class.

Alternatively, we can run multiple tests that belong to the same group (we will see how tests
are added to a group soon):

../vendor/bin/phpunit --group Routing

This runs all the tests from the Routing group which actually contains the
UrlGeneratorTest we saw earlier. We can run tests from multiple groups if we separate
them by a comma.

Also, to check what are the available groups, we can run the following command:

../vendor/bin/phpunit --list-groups

This will list all the groups that have been registered with PHPUnit.

Finally, we can also run a specific method found inside a test by using the --filter
argument:

../vendor/bin/phpunit --filter=testAliasGenerationUsingInterfaceConstants

This is one of the test methods from the same UrlGeneratorTest, we saw before and is
the only one that would run.

Registering tests
There are certain commonalities between the various test suite types regarding what we
need to do in order for Drupal (and PHPUnit) to be able to discover and run them.

Automated Testing

[494]

First, we have the directory placement where the test classes should go in. The pattern is
this--tests/src/[suite_type] where [suite_type] is a name of the test suite type this
test should be. Also, it can be one of the following:

Unit
Kernel
Functional
FunctionalJavascript

So, for example, unit tests would go inside the tests/src/Unit folder of our module.

Second, the test classes need to respect a namespace structure as well:

namespace Drupal\Tests\[module_name]\[suite_type]

This is also pretty straightforward to understand.

Third, there is a certain metadata that we need to have in the test class PHPDoc. Every class
must have a summary line describing what the test class is for. Only classes that use the
@coversDefaultClass attribute can omit the summary line. Moreover, all test classes
must have the @group PHPDoc annotation indicating the group they are part of. This is
how PHPUnit can run tests that belong to certain groups only.

So now that we know how to register and run tests, let's look at unit tests and see how we
can write our own.

Unit tests
As briefly mentioned in the beginning, unit tests are used for testing single units that make
up the code architecture. In practice, this means testing individual classes, especially the
methods they contain and what they should be doing. Since the testing happens at such low
level, they are by far the fastest tests that can be run.

The logic behind unit tests is quite simple--after providing input, the test asserts that the
method output is correct. Typically, the more input -> output scenarios it covers, the more
stable the tested code is. For example, tests should also cover unexpected scenarios as well
as exercise all the code contained in the tested methods (such as forks created by if/else
statements).

Automated Testing

[495]

The programming pattern of dependency injection--objects should receive as dependency
other objects they might need--becomes critical when it comes to unit testing. The reason is
that if class methods work with the global scope or instantiate other objects, we can no
longer test them cleanly. Instead, if they require dependencies, we can mock them and pass
these within the context of the executed tests. We will see some examples shortly. But before
we do that, let's create a simple class which can be easily tested using a unit test.

A typical example is a simple calculator class. It will take two numbers as arguments to its
constructor and have four methods for performing basic arithmetic on those numbers. We'll
put this into our Hello World module:

namespace Drupal\hello_world;

/**
 * Class used to demonstrate a simple Unit test.
 */
class Calculator {

 private $a;
 private $b;

 public function __construct($a, $b) {
 $this->a = $a;
 $this->b = $b;
 }

 public function add() {
 return $this->a + $this->b;
 }

 public function subtract() {
 return $this->a - $this->b;
 }

 public function multiply() {
 return $this->a * $this->b;
 }

 public function divide() {
 return $this->a / $this->b;
 }
}

Automated Testing

[496]

Nothing so complicated here. You could argue that a calculator class should not get any
dependencies but instead pass the numbers to the actual arithmetic methods. However, this
will work just as fine for our example and is a bit less repetitive.

Now, let's create the first unit test to make sure that this class behaves as we expect it. In the
previous section, we saw which directory these need to go in. So, in our case, it will be
/tests/src/Unit. Also, the test class looks like this:

namespace Drupal\Tests\hello_world\Unit;

use Drupal\hello_world\Calculator;
use Drupal\Tests\UnitTestCase;

/**
 * Tests the Calculator class methods.
 *
 * @group hello_world
 */
class CalculatorTest extends UnitTestCase {

 /**
 * Tests the Calculator::add() method.
 */
 public function testAdd() {
 $calculator = new Calculator(10, 5);
 $this->assertEquals(15, $calculator->add());
 }

 /**
 * Tests the Calculator::subtract() method.
 */
 public function testSubtract() {
 $calculator = new Calculator(10, 5);
 $this->assertEquals(5, $calculator->subtract());
 }

 /**
 * Tests the Calculator::multiply() method.
 */
 public function testMultiply() {
 $calculator = new Calculator(10, 5);
 $this->assertEquals(50, $calculator->multiply());
 }

 /**
 * Tests the Calculator::divide() method.
 */

Automated Testing

[497]

 public function testDivide() {
 $calculator = new Calculator(10, 5);
 $this->assertEquals(2, $calculator->divide());
 }

}

First of all, you notice the namespace corresponds to the pattern what we saw in the
previous chapter. Second of all, the PHPDoc contains the required information--a summary
and the @group tag. Third of all, the class name ends with the word Test. Finally, the class
extends UnitTestCase, which is the base class we need to extend for all unit tests.

All types of test class names in Drupal 8 need to end with the word Test
and extend the relevant base class that provides specific code for that type
of test.

Then, we have the actual methods that test various aspects of the Calculator class and
which always have to start with the word test. This is what tells PHPUnit that they need
to be run. These methods are the actual standalone tests themselves, meaning that the
CalculatorTest class has four tests. Moreover, each of these tests runs independently of
the other.

Since the Calculator arithmetic is very simple, it's not difficult to understand what we are
doing to test it. For each method, we are instantiating a new instance with some numbers,
and then we assert that the result from the arithmetic operation equals to what we expect.
The base class provides a multitude of different assertion methods that we can use in our
tests. Since there are so many of them, we are not going to cover them all here. We will see
more as we write more tests but I strongly recommend, you check the base classes of the
various types of test suites for methods that start with the word assert. A great way is also
to use an IDE that autocompletes as you type the method name. It can be very handy.

With this, we can already run the test and see if it passes. Normally, it should because that
we can do math in our heads and we know it's correct:

../vendor/bin/phpunit

../modules/custom/hello_world/tests/src/Unit/CalculatorTest.php

The result should be green:

OK (4 tests, 4 assertions)

Automated Testing

[498]

However, earlier I mentioned that a good test also accounts for unexpected situations and
negative responses. However, we have not done so very well in our example. If we look at
testAdd(), we can see that the assertion is correct with those two numbers. But what if we
later go to the Calculator::add() method and change it to this by accident:

return 15;

The test will still pass but will it actually be a true positive? Not really because if we pass
different numbers, the calculation won't match anymore. So, we should test these methods
with more than just one set of numbers to actually prove that the math behind the
Calculator class is valid.

So instead, we can do something like this:

$calculator = new Calculator(10, 5);
$this->assertEquals(15, $calculator->add());
$calculator = new Calculator(10, 6);
$this->assertEquals(16, $calculator->add());

Like this, we are sure that the addition operation works correctly. One trade-off in this is
that we have a bit of repetitive code, especially if we have to do this for all the other
operations as well.

Generally, when writing tests, repetition is a bit more accepted than when writing the actual
code. Many times there is nothing you can do about it, a code will seem very repetitive.
However, in our case, we can actually do something by using the setUp() method that is
called by PHPUnit before each test method runs. Its purpose is to perform various
preparation tasks that are common for all the tests in the class. However, don't take this to
mean that it runs only once and then is used by all. In fact, it runs before each individual
test method.

So, what we can do is something like this:

/**
 * @var Calculator
 */
protected $calculatorOne;

/**
 * @var Calculator
 */
protected $calculatorTwo;

/**
 * {@inheritdoc}
 */

Automated Testing

[499]

public function setUp() {
 parent::setUp();
 $this->calculatorOne = new Calculator(10, 5);
 $this->calculatorTwo = new Calculator(10, 2);
}

We create two class properties and inside the setUp() method, we assign them to our
calculator objects. A very important thing to keep in mind is to always call the parent call of
this method because it does very important things for the environment setup. Especially, as
we move to Kernel and Functional tests.

Now, the testAdd() method can look like this:

public function testAdd() {
 $this->assertEquals(15, $this->calculatorOne->add());
 $this->assertEquals(12, $this->calculatorTwo->add());
}

Much cleaner and less repetitive. Based on this, you can extrapolate and apply the same
changes to the other methods yourself.

Mocked dependencies
Seldom, some tested classes are so simple as our calculator class and most of the times they
will have dependencies which in turn also have dependencies. So, unit testing becomes a bit
more complicated. In fact, the ease with which unit tests are written has become a litmus
test for the quality of the code being tested--the less complicated the unit test, the better the
code.

As our second example of writing unit tests, let's go into the "real world" and test one of the
classes we wrote in this book, namely the UserTypesAccess class. If you remember from
Chapter 10, Access control, we created this service to be used on routes as an access checker.
Although we can write functional tests that verify that it works well as a part of the access
system, we can also write a unit test to check the actual code in the access() method. So
let's get started.

Automated Testing

[500]

The first thing we need to do is to create the class (respecting the directory placement as
well as the class namespace):

namespace Drupal\Tests\user_types\Unit;

use Drupal\Core\Session\UserSession;
use Drupal\Tests\UnitTestCase;
use Drupal\user_types\Access\UserTypesAccess;
use Symfony\Component\Routing\Route;

/**
 * Tests the UserTypesAccess class methods.
 *
 * @group user_types
 */
class UserTypesAccessTest extends UnitTestCase {}

So far things look like our previous example--we have the PHPDoc information and we are
extending the UnitTestCase class. So let's write a test for the access() method of the
UserTypesAccess class. However, if you remember, this method takes two arguments (a
user account and a route object) and also uses the entity type manager which is injected in
the class. So that is where the bulk of our complication lies. What we need to test is the
return value of the method depending on these arguments. Basically, whether it will allow
or deny access if the user account has certain values found on the route.

In unit testing, dependencies are usually mocked. This means PHPUnit will create empty
look-alike objects that behave as we describe them too and we can use these as the
dependencies. The way to create a simple mock object is this:

$user = $this->getMock('Drupal\user\Entity\User');

The $user object will now be a mock of the Drupal 8 User entity class. It, of course, won't
do anything but it can be used as a dependency. But to actually make it useful, we need to
prescribe some behavior to it based on what the tested code does with it. For example, if it
calls its id() method, we need to prescribe this behavior. We can do this with expectations:

$user->expects($this->any())
 ->method('id')
 ->will($this->returnValue(1));

Automated Testing

[501]

This tells the mock object that for every call to the id() method on it, it should return the
value 1. The expects() method takes in a matcher, which can be even more restrictive. For
example, instead of $this->any(), we can use $this->once() which means that the
mock object can have its id() method called only once. Check out the base class for the
other available options, as well as what you can pass to the will() method--although
$this->returnValue() is going to be the most common one. Finally, if the id() method
takes an argument, we can also have the ->with() method to which we pass the value of
the expected argument in the matcher.

A more complex way of creating a mock is by using the mock builder:

$user = $this->getMockBuilder('Drupal\user\Entity\User')
 ->getMock();

This will get the same mock object but allow for some more options in its construction. I
recommend checking out the PHPUnit documentation for more information as this is as
deep as we are going to go in this book on mocking objects.

Now that we understand a bit about mocking, we can proceed with writing our test. To do
this, we need to think about the end goal and work our way back to all the method calls we
need to mock. Just as a reminder, this is the code that we need to test:

public function access(AccountInterface $account, Route $route) {
 $user_types = $route->getOption('_user_types');
 if (!$user_types) {
 return AccessResult::forbidden();
 }
 if ($account->isAnonymous()) {
 return AccessResult::forbidden();
 }
 $user =
$this->entityTypeManager->getStorage('user')->load($account->id());
 $type = $user->get('field_user_type')->value;
 return in_array($type, $user_types) ? AccessResult::allowed() :
AccessResult::forbidden();
}

So, at the first glance, we need to mock EntityTypeManager. The method arguments we
will instantiate manually with some dummy data inside. However, mocking
EntityTypeManager is going to be quite complicated. A call to its getStorage() method
needs to return a UserStorage object. This needs to also be mocked because a call on its
load() method needs to return a User entity object. Finally, we also need to mock that
because a call to its get() method is also expected to return a value object.

Automated Testing

[502]

As I mentioned, we will proceed by going back from our end goal. So we can start with
instantiating the types of AccountInterface objects we want to pass, as well as the route
objects:

/**
 * Tests the UserTypesAccess::access() method.
 */
public function testAccess() {
 // User accounts
 $anonymous = new UserSession(['uid' => 0]);
 $registered = new UserSession(['uid' => 2]);

 // Route definitions.
 $manager_route = new Route('/test_manager', [], [], ['_user_types' =>
['manager']]);
 $board_route = new Route('/test_board', [], [], ['_user_types' =>
['board']]);
 $none_route = new Route('/test_board');
}

Basically, we want to test what happens for both types of users--anonymous and registered.
When instantiating the UserSession objects (which implement AccountInterface) we
pass in some data to be stored with it. In our case, we need the user uid because it will be
requested by the tested code when checking if the user is anonymous or not.

Then, we create three routes--one where managers should have access, one where board
members should have access, and one where no one should have access (as indicated by the
_user_types option on the route). Do check back in Chapter 10, Access Control, if you
don't remember what this functionality is about.

Once this is done, it follows to instantiate our UserTypesAccess class, in view of calling its
access() method with various combinations of our account and route objects:

$access = new UserTypesAccess($entity_type_manager);

However, we don't yet have an entity type manager, so we need to mock it. Here is all the
code we need to mock the entity type manager to work for our tested code (this goes before
the code we wrote so far in this test):

// User entity mock.
$type = new \stdClass();
$type->value = 'manager';
$user = $this->getMockBuilder('Drupal\user\Entity\User')
 ->disableOriginalConstructor()
 ->getMock();
$user->expects($this->any())

Automated Testing

[503]

 ->method('get')
 ->will($this->returnValue($type));

// User storage mock
$user_storage = $this->getMockBuilder('Drupal\user\UserStorage')
 ->disableOriginalConstructor()
 ->getMock();
$user_storage->expects($this->any())
 ->method('load')
 ->will($this->returnValue($user));

// Entity type manager mock.
$entity_type_manager =
$this->getMockBuilder('Drupal\Core\Entity\EntityTypeManager')
 ->disableOriginalConstructor()
 ->getMock();
$entity_type_manager->expects($this->any())
 ->method('getStorage')
 ->will($this->returnValue($user_storage));

First of all, you will notice that the entity type manager is only mocked at the very end. We
first need to start the call chain which ends with a User entity object field value. So, the first
block mocks the User entity object which expects any number of calls to its get() method
to which it will always return a stdClass() object with the property value that equals to
the manager string. This way we are mocking the entity field system accessor.

While using the mock builder for creating our mocks, we can use the
disableOriginalConstructor() method to prevent PHPUnit from
calling the constructor of the original class. This is important to prevent
the need for all sorts of other dependencies which don't actually impact
the tested code.

Now that we have the User entity mock, we can use it as the return value of the
UserStorage object mock's load() method. This, in turn, is the return value of the entity
type manager mock's getStorage() method. So, all of the code we wrote means that we
have mocked the following chain:

$this->entityTypeManager->getStorage('user')->load($account->id());

It doesn't really matter what we pass to the load() method, as we will always have that
one user entity which has the manager user type.

Automated Testing

[504]

Now that everything is mocked, we can use the $access object we created earlier and
make assertions based on calls to its access() method:

// Access denied due to lack of route option.
$this->assertInstanceOf('Drupal\Core\Access\AccessResultForbidden',
$access->access($registered, $none_route));

// Access denied due to user being anonymous on any of the routes
$this->assertInstanceOf('Drupal\Core\Access\AccessResultForbidden',
$access->access($anonymous, $manager_route));
$this->assertInstanceOf('Drupal\Core\Access\AccessResultForbidden',
$access->access($anonymous, $board_route));

// Access denied due to user not having proper field value
$this->assertInstanceOf('Drupal\Core\Access\AccessResultForbidden',
$access->access($registered, $board_route));

// Access allowed due to user having the proper field value.
$this->assertInstanceOf('Drupal\Core\Access\AccessResultAllowed',
$access->access($registered, $manager_route));

The return value is always an object that implements an interface-- either
AccessResultAllowed or AccessResultForbidden, so that is what we need to assert.
We are checking four different use cases:

Access denied, if there is no route option
Access denied, for anonymous user on any of the routes
Access denied, for registered user with wrong user type
Access allowed, for registered user with proper user type

So with this we can run the test and should hopefully get a green result:

../vendor/bin/phpunit

../modules/custom/user_types/tests/src/Unit/UserTypesAccessTest.php

This is the basics of writing unit tests. There are a lot more types of assertions and you'll end
up mocking quite a lot of dependencies in Drupal 8. But don't be put off by the slow pace
encountered at first as things will become faster as you get more experience.

Automated Testing

[505]

Kernel tests
Kernel tests are the immediate higher level of testing methodology we can have in Drupal 8
and are actually integration tests which focus on testing various components. They are
faster than regular Functional tests as they don't do a full Drupal install, but use an in-
memory pseudo installation that is much faster to bootstrap. For this reason they also don't
handle any browser interactions and don't install any modules automatically.

Apart from the code itself, Kernel tests also work with the database and allow us to load the
modules that we need for running the test. However, unlike the Functional tests we will see
next, Kernel tests also require us to manually trigger the installation of any database
schemas we need. But we will see how we can do this in the two examples we cover in this
section.

Before we can work with Kernel tests though, we need to make sure we have a connection
to the database and PHPUnit is aware of this. Inside the core folder of our Drupal
installation we find a phpunit.xml.dist file which we need to duplicate and rename to
phpunit.xml. This is the PHPUnit configuration file. Normally this file should already be
ignored by Git so no need to worry about committing it to the repository.

In this file, we find an environment variable called SIMPLETEST_DB where we can specify
the connection to the database, using the format exemplified in the preceding commented
code:

mysql://username:password@localhost/databasename#table_prefix

Once that is in, PHPUnit will be able to connect to the database in order to install Drupal for
Kernel tests as well as Functional and FunctionalJavascript tests.

As a rule of thumb, you should always opt for Kernel tests over Functional
tests whenever browser interactions are not involved and Kernel tests are
enough to do the job. This is because a suite full of tests can end up taking
a long time to run so you should make it as performant as possible.

Automated Testing

[506]

TeamCleaner test
Now that we have that covered, it's time to write our first Kernel test. And a nice simple
example can be to test the TeamCleaner QueueWorker plugin we created in Chapter 14,
Batches ,Queues and Cron. If you are wondering why this cannot be tested using the ultra-fast
unit testing methodology, the answer is that its one method doesn't return anything.
Instead, it alters database values which we need to access in order to check it happened
correctly.

The test class goes naturally in the tests/src/Kernel folder of our module and can start
off like this:

namespace Drupal\Tests\sports\Kernel;

use Drupal\KernelTests\KernelTestBase;
use Drupal\sports\Plugin\QueueWorker\TeamCleaner;

/**
 * Test the TeamCleaner QueueWorker plugin.
 *
 * @group sports
 */
class TeamCleanerTest extends KernelTestBase {}

The namespace conforms to the ones we've seen so far, and we have the correct PHPDoc
annotations to register the test. Moreover, this time, we are extending from
KernelTestBase. Do pay attention to the actual version of this class because the one that
comes from the old Simpletest framework is also called like KernelTestBase. So make
sure you extend the correct one as seen in the preceding use statement.

The first thing we need to do is specify which modules we want loaded when running this
test. For our case this is the sports module so we can add a class property that contains
this name:

/**
 * Modules to enable.
 *
 * @var array
 */
protected static $modules = ['sports'];

Automated Testing

[507]

Specifying a list of modules here does not actually install them but simply loads and adds
them to the service container. So yes, we have access to the module and code as well as the
container. But that also means that schemas defined by these modules are not actually
created so we need to do that manually. And we can do it in the setUp() method or in the
actual test method itself. We'll opt for the latter because in this case we only have test
method in the class. And the whole thing can look like this:

/**
 * Tests the TeamCleaner::processItem() method.
 */
public function testProcessItem() {
 $this->installSchema('sports', 'teams');
 $database = $this->container->get('database');
 $fields = ['name' => 'Team name'];
 $id = $database->insert('teams')
 ->fields($fields)
 ->execute();

 $records = $database->query("SELECT id FROM {teams} WHERE id = :id",
[':id' => $id])->fetchAll();
 $this->assertNotEmpty($records);

 $worker = new TeamCleaner([], NULL, NULL, $database);
 $data = new \stdClass();
 $data->id = $id;
 $worker->processItem($data);
 $records = $database->query("SELECT id FROM {teams} WHERE id = :id",
[':id' => $id])->fetchAll();
 $this->assertEmpty($records);
}

Since the TeamCleaner plugin removes teams, it's enough to only install that table. We can
do that using the parent installSchema() method to which we pass the module name
and table we want installed. We don't actually deal with players so we should avoid doing
unnecessary work like the creation of the players table.

Then, very similar to how we do it in real code, we get the database service from the
container and add a record to the teams table. This will be the test record which we delete
so we remember its $id. But before we test this, we want to make absolutely sure that our
record got saved. So we query for it and assert that the result is not empty. The
assertNotEmpty() method is another helpful assertion that we can use when dealing with
arrays.

Automated Testing

[508]

Now that we are certain the record is in the database, we can "process" it using our plugin.
So we instantiate a TeamCleaner object, passing all its required dependencies --most
importantly the database service. Then we create a simple object that mimics what the
processItem() method expects and call the later while passing the former to it. At this
point, if our plugin did its job correctly, the team record should be deleted from the
database. So we can query for it and this time assert the opposite of what we did before--
that the query comes back empty.

And with this our test is finished. As always, we should actually run it and make sure it
passes:

../vendor/bin/phpunit

../modules/custom/sports/tests/src/Kernel/TeamCleanerTest.php

And that is a very simple example of using Kernel tests for testing a component,
particularly one that integrates with the database. We could have used a Functional test as
well but would have been an overkill--would run slower and we made no use of the
benefits that it offers over Kernel testing, namely browser integration.

CsvImporter test
After this simple example, let's write another test that illustrates a more complex scenario.
And we will write one that tests the CsvImporter plugin we created in the previous
chapter.

There is quite a lot of functionality that goes into this plugin and working with it--we have
the actual importing, the plugin and configuration entity creation, the user interface for
doing so and so on. And it's a very good example of functionality that can benefit from a
multi-methodology test coverage. And in this respect, we start with testing its underlying
purpose, that of the product import, for which we don't need browser interactions. This
means that we can use a Kernel test.

Similar to how we wrote the previous test, we can start with the class like so (this time in
the products module):

namespace Drupal\Tests\products\Kernel;

use Drupal\KernelTests\KernelTestBase;

/**
 * Tests the CSV Product Importer
 *
 * @group products

Automated Testing

[509]

 */
class CsvImporterTest extends KernelTestBase {}

Nothing new so far.

Next, we need to specify the modules we need loaded. And here we have a bigger list:

 /**
 * Modules to enable.
 *
 * @var array
 */
 protected static $modules = ['system', 'csv_importer_test', 'products',
'image', 'file', 'user'];

Only the products module may seem obvious to you at this point, but all the rest are also
needed. The system, image, file and user are all somehow needed for dealing with the
file upload and storage process that is needed for the CsvImporter plugin.

It's not always so easy to figure out which modules are needed and it will
involve a bit of a trial and error, at least in the beginning. A typical
scenario is to run the test and notice failures due to missing functionality.
Tracking this functionality to a module and specifying this module in the
list is how you usually end up with a complete module list — especially
when the test is complex and needs a wide range of subsystems with
dependencies.

But you may be wondering what's with the csv_importer_test module there. Often
times you may need to create modules used only for the tests--most of the time because
they contain some configuration you want to use in your testing. In our case, we did so to
demonstrate where these modules would go and to add a products.csv test file that we
can use in our tests.

Tests modules go inside the tests/modules folder of the module that contains the tests
that use them. So in our case we have the csv_importer_test with its info.yml file:

name: CSV Importer Test
description: Used for testing the CSV Importer
core: 8.x
type: module

Automated Testing

[510]

And the mentioned CSV file we will use is right next to it:

id,name,number
1,Car,45345
2,Motorbike,54534

Now that we covered that, we can write the test method:

/**
 * Tests the import of the CSV based plugin.
 */
public function testImport() {
 $this->installEntitySchema('product');
 $this->installEntitySchema('file');
 $this->installSchema('file', 'file_usage');
 $manager = $this->container->get('entity_type.manager');
 $products = $manager->getStorage('product')->loadMultiple();
 $this->assertEmpty($products);

 $csv_path = drupal_get_path('module', 'csv_importer_test') .
'/products.csv';
 $csv_contents = file_get_contents($csv_path);
 $file = file_save_data($csv_contents, 'public://simpletest-products.csv',
FILE_EXISTS_REPLACE);
 $config = $manager->getStorage('importer')->create([
 'id' => 'csv',
 'label' => 'CSV',
 'plugin' => 'csv',
 'plugin_configuration' => [
 'file' => [$file->id()]
],
 'source' => 'Testing',
 'bundle' => 'goods',
 'update_existing' => true
]);
 $config->save();

 $plugin =
$this->container->get('products.importer_manager')->createInstanceFromConfi
g('csv');
 $plugin->import();
 $products = $manager->getStorage('product')->loadMultiple();
 $this->assertCount(2, $products);

 $products = $manager->getStorage('product')->loadByProperties(['number'
=> 45345]);
 $this->assertNotEmpty($products);
 $this->assertCount(1, $products);

Automated Testing

[511]

}

The initial set-up here is a bit more complicated, partly because of Kernel tests not installing
module schemas. Using the parent installEntitySchema() method we can install all the
necessary tables for the Product and File content entities. However, since we are working
with managed files, we also need to install the file_usage table manually. It is not
technically an entity table. Again, there is no shame in arriving at these steps using trial and
error.

Now that we have the basics set up, we do a sanity check and ensure that we don't have any
product entities in the database. There is no reason why we should have any, but it doesn't
hurt to ensure it. This guarantees a valid test since our goal will be to later assert the
existence of products.

Then we create a managed File entity by using the products.csv file from the
csv_importer_test module. The drupal_get_path() function is a very common way
of retrieving the relative path to a module or a theme, regardless of where it is actually
located. And we save the contents of this file into the public:// file system of the testing
environment. Keep in mind, though, that after the test runs successfully, this file gets
removed as Drupal cleans up after itself.

Next, we need to create an Importer configuration entity that uses the CSV based plugin to
run the import. And instead of doing it through the UI, we do it programmatically. Using
the storage manager we create the entity as we learned in Chapter 6, Data Modeling and
Storage. Once we have that, we use the Importer plugin manager to create an instance based
on this configuration entity (to which we gave the ID csv). And finally, we run the import
of the products.

Now for the assertions, we do a double check. Since our test CSV contains two rows, we
load all the Product entities again and assert that we have a total of two. No more, no less.
And here we see another useful assertion method for working with arrays:
assertCount(). But then we get a bit more specific and try to load a Product which has a
field value (the number) equal to an expected number from the test CSV file. And assert that
it is in fact found as well.

We could even do some more assertions. For example, we can check that all the Product
field values have been set appropriately. I'll let you explore ways in which you can do this--
either by querying based on these values or asserting equality between field values and
their expected ones. But it's important to not go overboard as it will impact speed and in
some cases add insufficient value to the test coverage to compensate for it. The trick is to
find the right balance.

Automated Testing

[512]

Finally, with our test in place, we can actually run it:

../vendor/bin/phpunit

../modules/custom/products/tests/src/Kernel/CsvImporterTest.php

But this time, we get an error that looks something like this:

RuntimeException:
SplFileObject::__construct(http://localhost/vfs://root/sites/simpletest/255
55814/files/simpletest-products.csv): failed to open stream: HTTP request
failed! HTTP/1.0 404 Not Found

This is caused by the fact that in CsvImporter we try to instantiate a new
\SplFileObject using the full URL of the file we get from the respective stream wrapper:

$url = $wrapper->getExternalUrl();
$spl = new \SplFileObject($url, 'r');

And although this worked when we wrote our functionality, and still does in the browser,
in the test environment it doesn't. And that is because in the testing environment the file
system is a virtual one (vfs) and uses a different base URL. However, the SplFileObject
class can also be instantiated using the URI of the file. So all we have to do is change our
code to this:

$spl = new \SplFileObject($file->getFileUri(), 'r');

And the test should now pass. And of course, the code will work the same way in the
browser as well.

Functional tests
In the previous section, we looked at Kernel tests and said that they are basically integration
tests which focus on components rather than interactions with the browser. In this section,
we'll go one level up and talk about the fully-fledged Functional tests, otherwise called
browser tests (from the name of the base class we need to extend).

Functional tests in Drupal 8 use a simulated browser (using the popular Mink emulator)
that allows users to click links, navigate to pages, work with forms and make assertions
regarding HTML elements on the page. What they don't allow us is to test JavaScript based
interactions (see next section for those).

Automated Testing

[513]

In Drupal 7, Functional tests were the most common type of tests used, most classes
extending from Simpletest's WebTestBase class. But in Drupal 8 we have the
BrowserTestBase class which is integrated with PHPUnit like the ones we've seen before.
And the base class contains loads of methods both for asserting things and shortcuts to
performing Drupal (and web) related tasks--creating users, entities, navigating to pages,
filling in and submitting forms, logging in, and so on. And just like before, each test (class
method), runs in isolation so things like content and users cannot be shared across multiple
tests but would have to be recreated (perhaps using the setUp() method as we've already
seen).

Browser tests perform a full Drupal installation with a minimal number of modules (using
the Testing installation profile). This means that we can specify to install other modules as
well, and the schema for these also gets installed. Moreover, it's also important to
understand that the resulting installation has got nothing in common with our current
development site. Any configuration we need, we have to create. There are no users, no
content and no files. So it is a brand new, parallel installation, that runs for the duration of
one single test and gets cleaned up as it finishes.

Configuration for functional tests
Before writing our functional tests we need to turn back to our phpunit.xml file and
change some environment variables. Apart from the SIMPLETEST_DB variable we adjusted
earlier, we also have the SIMPLETEST_BASE_URL and BROWSERTEST_OUTPUT_DIRECTORY.
The first is used to know where can the application be accessed in the browser. The latter is
the directory where output data can be saved by PHPUnit and needs to be an absolute local
path (for example a folder in the local files folder):

/var/www/sites/default/files/browser-output

Moreover, make sure the user running the test has permissions to write into the
sites/simpletest folder as that is where the virtual file system is created for each test.
The easiest way to do it is to change the folder ownership to the web server user that runs
the process. In case of Apache, this is usually www-data.

Automated Testing

[514]

Hello World page test
The first Functional test we will write is for the Hello World page we created and the
functionality behind it. We will test if the page shows the correct Hello World message, also
depending on the value found in the configuration. So let's create the class for it, naturally
in the hello_world module, inside the tests/src/Functional folder:

namespace Drupal\Tests\hello_world\Functional;

use Drupal\Tests\BrowserTestBase;

/**
 * Basic testing of the main Hello World page.
 *
 * @group hello_world
 */
class HelloWorldPageTest extends BrowserTestBase {}

You can really see the consistency with the other types of tests. But in this case, as
mentioned, we extend from BrowserTestBase.

Also, like before, we can configure a number of modules we want installed:

/**
 * Modules to enable.
 *
 * @var array
 */
protected static $modules = ['hello_world', 'user'];

The User module we will need for the second test we run which will go in the same class as
this one. But let's proceed with the first, easier test:

/**
 * Tests the main Hello World page.
 */
public function testPage() {
 $expected = $this->assertDefaultSalutation();
 $config = $this->config('hello_world.custom_salutation');
 $config->set('salutation', 'Testing salutation');
 $config->save();

 $this->drupalGet('/hello');
 $this->assertSession()->pageTextNotContains($expected);
 $expected = 'Testing salutation';
 $this->assertSession()->pageTextContains($expected);
}

Automated Testing

[515]

If you remember, our /hello page shows a greeting depending on the time of day, unless
an administrator has overridden that message through a configuration form. So we start
this test by asserting that with a fresh install that has no override, we see the time based
greeting. And for that we create a separate assertion message since it's a bit wordy and we
will reuse it:

/**
 * Helper function to assert that the default salutation is present on the
page.
 *
 * Returns the message so we can reuse it in multiple places.
 */
private function assertDefaultSalutation() {
 $this->drupalGet('/hello');
 $this->assertSession()->pageTextContains('Our first route');
 $time = new \DateTime();
 $expected = '';
 if ((int) $time->format('G') >= 06 && (int) $time->format('G') < 12) {
 $expected = 'Good morning';
 }

 if ((int) $time->format('G') >= 12 && (int) $time->format('G') < 18) {
 $expected = 'Good afternoon';
 }

 if ((int) $time->format('G') >= 18) {
 $expected = 'Good evening';
 }
 $expected .= ' world';
 $this->assertSession()->pageTextContains($expected);
 return $expected;
}

The very first thing we do here is use the drupalGet() method to navigate to a path on the
site. Do check out the method signature for all the options you can pass to it. And the first
assertion we make is that the page contains the text Our first route (which is the page title).
The parent assertSession() method returns an instance of WebAssert which contains all
sorts of methods for asserting the presence of elements on the current page in the Mink
session. One such method is the generic pageTextContains() with which we simply
check that the given text can be found anywhere on the page.

Automated Testing

[516]

Although in quite a lot of cases asserting the presence of a text string is enough, you may
want to ensure that it is actually the right one (to avoid false positives). For example, in our
case, we could check that it is really the page title which is rendered inside an <h1> tag. We
can do it like so:

$this->assertSession()->elementTextContains('css', 'h1', 'Our first
route');

The elementTextContains() method can be used to find an element on the page based
on a locator (CSS selector or xpath) and assert that it contains the specified text. In our
example we use the CSS selector locator and we try to find the <h1> element.

If all that is okay, we proceed to asserting that the actual salutation message is present on
the page. Unfortunately we have to duplicate quite some code because it is dependent on
the time of day. A good homework for you would be to extract this logic to a service that
determines the message and use this service both here and in the actual code. And since we
need this message later, we also return it.

Going back to our actual test method, we can proceed knowing that the message is showing
correctly on the page. And the next thing we want to test is that if there is a
hello_world.custom_salutation configuration object with a salutation value, that is
what is shown. So we programmatically create it. Next, we again navigate to the same path
(we essentially reload the page) and check that the old message is not shown anymore and
that the new one is instead.

So if we actually run this test:

../vendor/bin/phpunit

../modules/custom/hello_world/tests/src/Functional/HelloWorldPageTest.php

…darn. We get an error:

Behat\Mink\Exception\ResponseTextException: The text "Good evening world"
appears in the text of this page, but it should not.

It's as if we didn't even override the salutation message. But we did.

The problem is caching. Keep in mind, we are navigating these pages as anonymous users
and caching is enabled on the site like in normal scenarios. When we were writing Chapter
11, Caching and talked about caching, we had a note about this particular problem--the
max-age property only bubbles up to the page level for the dynamic page cache (logged-in
users) and not for anonymous users.

Automated Testing

[517]

This is a great example of automated testing shedding light on mistakes
we introduce while developing and that we don't notice. We most likely
wrote our functionality while having caching disabled and/or always
visiting the page as a logged-in user. So it's an easy mistake to make.
Luckily, automated testing comes to the rescue.

The solution to this problem can be found using an all-out cache kill switch. This means that
we need to alter a bit our logic to tell Drupal to never cache the pages where our salutation
component is shown. This is the price we have to pay for the highly dynamic nature of our
functionality and it's always a good exercise to evaluate if it is worth it.

The kill switch is actually easy to use. It's a service that we need to inject into our
HelloWorldSalutation service:

/**
 * @var \Drupal\Core\PageCache\ResponsePolicy\KillSwitch
 */
protected $killSwitch;

/**
 * HelloWorldSalutation constructor.
 *
 * @param \Drupal\Core\Config\ConfigFactoryInterface $config_factory
 * @param \Symfony\Component\EventDispatcher\EventDispatcherInterface
$eventDispatcher
 * @param \Drupal\Core\PageCache\ResponsePolicy\KillSwitch $killSwitch
 */
public function __construct(ConfigFactoryInterface $config_factory,
EventDispatcherInterface $eventDispatcher, KillSwitch $killSwitch) {
 $this->configFactory = $config_factory;
 $this->eventDispatcher = $eventDispatcher;
 $this->killSwitch = $killSwitch;
}

Making sure we also have the appropriate use statement at the top:

use Drupal\Core\PageCache\ResponsePolicy\KillSwitch;

And at the beginning of both the getSalutation() and getSalutationComponent()
methods we simply have to add this line:

$this->killSwitch->trigger();

Automated Testing

[518]

This will tell Drupal's internal page cache to never cache this page. But before we go
running the test again, we mustn't forget to add the page_cache_kill_switch service as
a dependency to the HelloWorldSalutation service inside
hello_world.services.yml. And now if we run this test, we should get a green result.

Hello World form test
The second Functional test we will write should test the salutation override form itself. In
the previous one, we interacted with the configuration API directly to make changes to the
configuration value. Now we will see if the form to do so actually works. But since we can
reuse quite a lot from the previous test, and they are very closely related, we can add it to
the same class:

/**
 * Tests that the configuration form for overriding the message works.
 */
public function testForm() {
 $expected = $this->assertDefaultSalutation();
 $this->drupalGet('/admin/config/salutation-configuration');
 $this->assertSession()->statusCodeEquals(403);
 $account = $this->drupalCreateUser(['administer site configuration']);
 $this->drupalLogin($account);
 $this->drupalGet('/admin/config/salutation-configuration');
 $this->assertSession()->statusCodeEquals(200);
 $this->assertSession()->pageTextContains('Salutation configuration');
 $this->assertSession()->elementExists('css', '#edit-salutation');

 $edit = [
 'salutation' => 'My custom salutation',
];

 $this->drupalPostForm(NULL, $edit, 'op');
 $this->assertSession()->pageTextContains('The configuration options have
been saved');
 $this->drupalGet('/hello');
 $this->assertSession()->pageTextNotContains($expected);
 $this->assertSession()->pageTextContains('My custom salutation');
}

We start this test, in the same way, asserting that the hour dependent message is shown.
This also proves that each test runs in its own independent environment and changes to the
configuration in one test has no impact on the other. They all start with a blank slate.

Automated Testing

[519]

Then we navigate to the configuration form page and assert that we do not have access. For
this we use the statusCodeEquals() assertion method to check the response code. This is
good because we need to be logged in with a user that has a certain permission.

The access restrictions on the configuration form allow any user which
have a certain permission. For this reason, our test should focus on that
permission rather than something else that may indirectly include this
permission. For example, it should not assume that a user with the
administrator role has that permission.

So we create a new user account using the handy drupalCreateUser() method whose
first parameter is an array of permissions the user should have. We can then use the
resulting User entity with the drupalLogin() method to log in. Under the hood, this
navigates to the user login page, submits the form and then asserts that everything went
well. Now we can go back to the configuration form page and should have access--
something that we also assert. In addition, we assert that we have the page title and that we
have the salutation text field HTML element on the page. We do so using the
elementExists() method, using the CSS selector locator as we had done in the previous
test. Again, check out WebAssert for all sorts of assertion methods that help you identify
things on the page.

Now it's time to submit the form and override the salutation message. And we do this with
drupalPostForm() whose most important parameter is an array of values to fill in the
form elements, keyed by the name parameter of the individual form HTML element. In our
case, we only have one. Do check out the documentation of this method for more
information on all the things you can do with it. Once the form is submitted, the page will
reload and we can assert the presence of the confirmation message. And finally, we can go
back to the /hello path and assert that the old message is no longer showing but the new
overridden one does so instead.

Running the test class again should now include this new test as well and everything
should be green. And noticeably much slower as two full Drupal installations are done. In
the next section, we'll bring JavaScript into the picture so that we can also test the more
dynamic browser integrations. But already you can notice that due to performance hits,
Kernel tests are much faster to run if you don't need to interact with a browser.

Functional JavaScript tests
The last type of tests we can write in Drupal 8 is the JavaScript-powered Functional tests.
FunctionalJavascript tests are useful when we want to test more dynamic client-side
functionality such as JavaScript behaviors or Ajax interactions.

Automated Testing

[520]

They are an extension of the regular Functional tests but which use the Phantom.js driver
instead of Goutte for Mink in emulating the browser. This also means that in order to run
these tests we need to install Phantom.js.

Installing Phantom.js is very simple. We have to go to the website (http:/ /phantomjs. org/
download.html) and download the package somewhere onto our system. Since we are using
a Linux system so we can pull the archive into our home folder (the following link may
change for you depending on the version):

wget
https://bitbucket.org/ariya/phantomjs/downloads/phantomjs-2.1.1-linux-x86_6
4.tar.bz2

Then we can untar the archive:

tar xjf phantomjs-2.1.1-linux-x86_64.tar.bz2

This will unpack the archive into the current folder. And that is it.

To run Phantom.js, we need to run the executable with the following command (from
within the Drupal core folder):

~/path/to/the/phantomjs/executable --ssl-protocol=any --ignore-ssl-
errors=true ../vendor/jcalderonzumba/gastonjs/src/Client/main.js 8510 1024
768

This will start Phantom.js in the current terminal window where we can see the output as
tests are running. So to run tests, we need to open another terminal window. Alternatively,
we can start it and have it run in the background by appending the following to the
preceding command:

2>&1 >> /dev/null &

Now we can also run the tests in the current window as Phantom.js runs in the background.

Now that we have Phantom.js running, we can write some tests.

Time test
If you remember from Chapter 12, JavaScript and Ajax API, we added to our Hello World
salutation component a little time widget that displays the current hour in real time, if the
salutation is not overridden. This component is powered by JavaScript, and more
importantly, appended to the page using JavaScript.

http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html

Automated Testing

[521]

Moreover, in the previous section, we wrote a Functional test for the Hello World page in
which we asserted the presence of the salutation message. However, the actual time widget
would never show up there because the Mink driver used in these types of tests do not
support JavaScript. So if we want to test that, we need to write a FunctionalJavascript test.

As expected, these types of tests follow the same patterns for the directory placement and
namespaces. So our first test class can start like this:

namespace Drupal\Tests\hello_world\FunctionalJavascript;

use Drupal\FunctionalJavascriptTests\JavascriptTestBase;

/**
 * Testing the simple Javascript timer on the Hello World page.
 *
 * @group hello_world
 */
class TimeTest extends JavascriptTestBase {}

By now most of the above code should be clear. However, the base class we extend this time
is the JavascriptTestBase class which itself is a child of BrowserTestBase.
Interestingly, it doesn't actually add much to the mix apart from configuring the test to use
Phantom.js and adding a few JavaScript specific helper methods. This is to demonstrate that
most of the difference between Functional and FunctionalJavascript tests is given by the
actual Mink driver.

One extremely handy addition, though, is the ability to take screenshots. Many times when
testing frontend interactions, things don't go as we thought and we don't understand why.
The parent createScreenshot() method allows us to save a full page screenshot at any
given moment that we can investigate for debugging purposes. All we have to do is pass in
the name of the file we want to be saved. So do check that out.

Moving on with our test, let's add the modules we want to be enabled:

/**
 * Modules to enable.
 *
 * @var array
 */
protected static $modules = ['hello_world'];

Automated Testing

[522]

As expected, the Hello World module is enough. And the very simple test method can
look like this:

/**
 * Tests the time component.
 */
public function testTime() {
 $this->drupalGet('/hello');
 $this->assertSession()->pageTextContains('The time is');

 $config = $this->config('hello_world.custom_salutation');
 $config->set('salutation', 'Testing salutation');
 $config->save();

 $this->drupalGet('/hello');
 $this->assertSession()->pageTextNotContains('The time is');
}

We are using the exact same assertion techniques as before, but because JavaScript is
enabled, the time widget text should show up now. And like before, we also test that if the
salutation method is overridden, the time widget does not show up.

CsvImporter test
When learning about Kernel tests, we wrote a test for the CsvImporter that focused on the
importing functionality given an existing Importer configuration entity (which we created
programmatically). However, another important angle of this functionality is the process of
creating this configuration entity as we are relying on Ajax to dynamically inject form
elements related to the selected Importer plugin. So let's write a test for that as well.

Just as before, the test class can start with something like this:

namespace Drupal\Tests\products\FunctionalJavascript;

use Drupal\file\Entity\File;
use Drupal\FunctionalJavascriptTests\JavascriptTestBase;
use Drupal\products\Entity\Importer;
use Drupal\products\Entity\ProductType;

/**
 * Testing the creation/edit of Importer configuration entities using the
CSV importer
 *
 * @group products
 */

Automated Testing

[523]

class ImporterFormTest extends JavascriptTestBase {}

The use statements will be used in the code we write so they will make sense in a minute.

And like always, let's enable some modules:

/**
 * Modules to enable.
 *
 * @var array
 */
protected static $modules = ['image', 'file'];

You may be wondering why, for example, the products module is not in that list. At the
time of writing, it did not work, as a dependency related error was being thrown when
enabling it (missing plugin defined by the image module). So instead, we can also enable
modules directly in our test or setUp() methods. And that is exactly what we will do.

Even though we only write one test method, for now, there is quite a bit of preparation for it
which we might want to reuse elsewhere and which also looks cleaner to be separated from
the actual test method. So we can add it to the setUp() method instead:

/**
 * {@inheritdoc}
 */
public function setUp() {
 parent::setUp();
 $this->container->get('module_installer')->install(['products',
'csv_importer_test']);
 $csv_path = drupal_get_path('module', 'csv_importer_test') .
'/products.csv';
 $csv_contents = file_get_contents($csv_path);
 $this->file = file_save_data($csv_contents, 'public://simpletest-
products.csv', FILE_EXISTS_REPLACE);
 $this->admin = $this->drupalCreateUser(['administer site
configuration']);
 $this->bundle = ProductType::create(['id' => 'goods', 'label' =>
'Goods']);
 $this->bundle->save();
}

As expected, the first thing we do is install the products and csv_importer_test
modules. We use the ModuleInstaller service for that. Then, we do the same thing as we
did in the previous test--load the test CSV file from the csv_importer_test module and
"upload" it to Drupal creating a new managed File entity.

Automated Testing

[524]

Then, we create an administrator user account which has the permission needed for
creating Importer configuration entities, as well as a bundle for the Product entity so that
we can actually create products. We didn't need to worry about the bundle in the previous
test because we created the Importer configuration programmatically. But now, through the
UI, a bundle needs to exist in order to select it.

The resulting File entity, admin user account and ProductType configuration entity we
store on class properties so we should also define those:

/**
 * @var \Drupal\file\FileInterface
 */
protected $file;

/**
 * @var \Drupal\Core\Session\AccountInterface
 */
protected $admin;

/**
 * @var \Drupal\products\Entity\ProductType
 */
protected $bundle;

And with this we are ready to write our empty test method and start filling it up step by
step:

/**
 * Tests the importer form.
 */
public function testForm() {}

We can start with the basics:

$this->drupalGet('/admin/structure/importer/add');
$assert = $this->assertSession();
$assert->statusCodeEquals(403);

We navigate to the form for creating Importer configuration entities and assert that the user
does not have access. This is because by default we are browsing as anonymous users. Next,
we need to login and try this again:

$this->drupalLogin($this->admin);
$this->drupalGet('/admin/structure/importer/add');
$assert->pageTextContains('Add importer');
$assert->elementExists('css', '#edit-label');
$assert->elementExists('css', '#edit-plugin');

Automated Testing

[525]

$assert->elementExists('css', '#edit-update-existing');
$assert->elementExists('css', '#edit-source');
$assert->elementExists('css', '#edit-bundle');
$assert->elementNotExists('css',
'input[name="files[plugin_configuration_plugin_file]"]');

We use the same drupalLogin() method and navigate back to the form. This time we
assert that we have the title as well as various HTML elements--the form elements used for
creating the entity. Moreover, we also assert that we do not have the element for uploading
the CSV file because that should only show up if we select we want to use the CSV Importer
plugin.

It follows we do just that:

$page = $this->getSession()->getPage();
$page->selectFieldOption('plugin', 'csv');
$this->assertSession()->assertWaitOnAjaxRequest();
$assert->elementExists('css',
'input[name="files[plugin_configuration_plugin_file]"]');

Using the getSession() method we get the current Mink session, from which we can get
the object representing the actual page we are looking at. This is a DocumentElement object
which can be traversed, inspected and manipulated in all sorts of ways and I recommend
you check out the TraversableElement class for all the available methods.

One such method is selectFieldOption() by which we can specify the locator of an
HTML select element (ID, name or label) and a value, and it will trigger the selection. As
you know, this is supposed to make an Ajax request bringing in our new form elements.
And using the assertWaitOnAjaxRequest() on the JSWebAssert object we can wait
until that is complete. Finally, we can now assert that the file upload field is present on the
page.

Next, we proceed with filling in the form:

$page->fillField('label', 'Test CSV Importer');
$page->fillField('id', 'test_csv_importer');
$page->checkField('update_existing');
$page->fillField('source', 'testing');
$page->fillField('bundle', $this->bundle->id());
$wrapper =
$this->container->get('stream_wrapper_manager')->getViaUri($this->file->get
FileUri());
$page->attachFileToField('files[plugin_configuration_plugin_file]',
$wrapper->realpath());
$this->assertSession()->assertWaitOnAjaxRequest();
$page->pressButton('Save');

Automated Testing

[526]

$assert->pageTextContains('Created the Test CSV Importer Importer.');

The generic fillField() is useful for things like text fields while the checkField() is
expectedly useful for checkboxes. The locator for both is again either the ID, the name or the
label of the element. The more complicated field is the file upload field which again uses
Ajax. With the help of the stream wrapper of the file that we uploaded and more
specifically its realpath() method, we attach the file to the field using the
attachFileToField() ;method. This triggers an Ajax request which again we wait for to
complete. Lastly, we use the pressButton() method to click on the submit button and
then assert that we have a confirmation message printed out (the form has been saved and
the page refreshed).

Now the check that the operation actually went through properly:

$config = Importer::load('test_csv_importer');
$this->assertInstanceOf('Drupal\products\Entity\ImporterInterface',
$config);

$fids = $config->getPluginConfiguration()['file'];
$fid = reset($fids);
$file = File::load($fid);
$this->assertInstanceOf('Drupal\file\FileInterface', $file);

We load the configuration entity using the ID we gave it and then assert that the resulting
object is an instance of the correct interface. This checks we actually did save the entity.
Next, we load the File entity based on the ID found in the Importer configuration entity and
assert that it itself also implements the correct interface. This proves that the file actually got
saved and the configuration is correct.

Instead of checking the rest of the field values programmatically, in the same way, we opt
for navigating to the edit form of the Importer entity and asserting that the values are pre-
filled correctly:

$this->drupalGet('admin/structure/importer/test_csv_importer/edit');
$assert->pageTextContains('Edit Test CSV Importer');
$assert->fieldValueEquals('label', 'Test CSV Importer');
$assert->fieldValueEquals('plugin', 'csv');
$assert->checkboxChecked('update_existing');
$assert->fieldValueEquals('source', 'testing');
$page->hasLink('products.csv');
$bundle_field = $this->bundle->label() . ' (' . $this->bundle->id() . ')';
$assert->fieldValueEquals('bundle', $bundle_field);

Automated Testing

[527]

The fieldValueEquals() and checkboxChecked() methods are handy for checking
field values. Moreover, we also use the hasLink()method to check if there is a link with
that name on the page. This is actually to prove the uploaded file is shown correctly:

And finally, since the bundle field is a reference field and not a simple text field, we need to
construct the value the testing framework actually sees there and which is in this pattern--
Label (ID).

And with this our test is complete and we can run it in its entirety:

../vendor/bin/phpunit

../modules/custom/products/tests/src/Kernel/CsvImporterTest.php

Summary
In this chapter, we talked a bit about automated testing in Drupal 8. We started with an
introduction about why it's useful and actually important to write automated tests, and
then briefly covered also a few of the more popular types of software development testing
methodologies.

Drupal 8 comes with advantages in this field over its predecessor by integrating with the
PHPUnit framework for all the different types of testing it does. And there is a capability for
quite a lot of methodologies as we've seen exemplified. We have unit tests--the lowest level
form of testing that focuses on single architectural units and which are by far the fastest
running tests of them all. Then we have Kernel tests which are integration tests focusing on
lower level components and their interactions. Next, we have Functional tests, which are
higher level tests that focus on interactions with the browser. And finally, we have the
FunctionalJavascript tests which extend on the latter and bring in Phantom.js to allow for
the testing of functionalities that depend on JavaScript.

Automated Testing

[528]

We've also seen that all these different types of tests are integrated with PHPUnit so we can
run them all using this tool. This means that all the different types of tests follow the same
"rules" for registering them with Drupal, namely the directory placement, the namespacing,
and the PHPDoc information. Moreover, there is an ongoing process of moving a lot of
legacy tests written in the Drupal-specific Simpletest framework to the new system. So it is
expected that Simpletest will be shortly deprecated.

The world of automated testing is huge and there can be no single chapter in a book that
can cover all the different ways something can be tested. For this reason, especially for
beginners, the journey towards good test coverage is full of trial and error when reading
Drupal and PHPUnit code and documentation, and even has the occasional frustration. But
out of this, we get stable code that works always and that is protected from regressions.

Drupal 8 Security
Writing secure code is an important aspect of any web application. Preventing ever-so-
creative hacking techniques can be really daunting, and this is partly the reason why we as
developers sometimes choose a well-established framework with solid and up-to-date
security measures baked right in.

Drupal is a CMS that takes security very seriously. The community has a dedicated security
team that is always on the lookout for vulnerabilities and advises core contributors and
module developers on ways to fix potential vectors of attack. It is also responsible for the
fast mitigation of any such issue and disseminating the correct information to the affected
parties.

When it comes to out-of-the-box installation, Drupal 8 has come a long way in addressing
many security concerns present in previous versions, to the point where much of what
Drupal 7 developers had to worry about can now be taken for granted. For this reason, in
this annex, we will talk about some of the most prominent security features that Drupal 8
comes with out-of-the-box and that are directly related to our work as module developers.
Moreover, we will take a look at some tips for ensuring that the modules we write respect
the security standards Drupal prides itself on.

Cross-Site Scripting (XSS)
Drupal 7 was not inherently vulnerable to XSS attacks, but made it easy for novice
developers to open such vulnerabilities. The PHP-based templating system, in particular,
made it easy for developers to forget to properly sanitize user input and any other kind of
data before outputting it. Moreover, it allowed novice developers to perform all kinds of
business logic directly in the template. Apart from not keeping a separation of concerns
(business logic vs presentation), this also meant that third-party themes were much more
difficult to validate and could easily include security holes.

Drupal 8 Security

[530]

Most of these concerns have been addressed in Drupal 8, in principle with the adoption of
Twig as the templating system. There are two main consequences of this adoption. The first
one addresses the need for separating presentation from business logic. In other words,
themers and developers can no longer directly access Drupal's APIs nor can they run SQL
queries from templates. To expose any such functionality, Twig extensions and filters can be
used, but they require the logic to be encapsulated inside a module.

The second consequence is in the form of Twig auto-escaping. This means that any string
not specifically marked as safe will be escaped by Twig using the native PHP
htmlspecialchars() function. This provides a level of safety that previously had to be
actively sought manually by themers and developers using functions such as
check_plain().

Sanitization methods in Drupal 8
Twig auto-escapes any string that is outputted using the normal notation, as follows:

{{ variable_name }}

However, there are cases in which the variable has already been marked safe, and Twig
does not escape it anymore. This is usually in the case of MarkupInterface objects--such
as FilteredMarkup or FormattableMarkup--we saw in Chapter 12, JavaScript and the
Ajax API, when we discussed translations (extended by TranslatableMarkup). In these
cases, Twig assumes that the strings they wrap have already been sanitized and that they
can be outputted as they are. Of course, it is then up to us, as module developers, to ensure
that we don't use any such objects with strings that contain an unsanitized user input.

Let's look at a popular example of such an object we use all the time, and then we will talk
about the different ways we can sanitize our user input.

If you remember, in Chapter 12, JavaScript and the Ajax API, we talked about the t()
function (and the StringTranslationTrait method) that returns a
TranslatableMarkup object used for translating strings. Printing such an object inside
Twig will prevent auto-escaping because Twig already considers it safe. Moreover, if you
remember, this applies to the main string only, as any placeholders we use do get escaped:

$object = t('This does not get escaped but this does: @safe', ['@safe' =>
'This can be unsafe as it will be escaped'])

Drupal 8 Security

[531]

Even if there were no security implications, we should not be passing user input or
variables to TranslatableMarkup, as that hinders the actual purpose of these objects--to
translate the string. However, for other MarkupInterface objects, there are a few ways we
can treat user input or strings of a dubious origin in order to prepare them for Twig:

Drupal\Component\Utility\Html::escape(): This is the strictest
sanitization function used to print plain text. It uses PHP's
htmlspecialchars() to convert special characters to HTML entities.
Drupal\Component\Utility\Xss::filter(): This filters HTML to prevent
XSS attacks. It also allows a few basic HTML elements.
Drupal\Component\Utility\Xss::filterAdmin(): This is a very permissive
XSS filter that allows through most HTML elements apart from things like
<script> or <style>. It should be used only for known and safe sources of
input.
Drupal\Component\Utility\UrlHelper::filterBadProtocol(): This
strips dangerous protocols from URLs. It should be used before printing the
HTML attribute value when the URLs are obtained from user input or unsafe
sources.

So, depending on the case, using one of the preceding sanitization methods will prevent
XSS attacks when dealing with markup that Twig doesn't escape.

Double escaping
Since Twig already does much of the work for us, it's also important not to go overboard
with escaping. Veteran Drupal 7 developers may have a tendency to escape things like there
is no tomorrow, but this can have unintended consequences. For example, imagine the
following scenario:

return [
 '#theme' => 'my_custom_theme',
 '#title' => 'The cow\'s got milk.',
];

Since Twig is auto-escaping, the following string will be printed:

The cow's got milk.

Drupal 8 Security

[532]

So, there is no visible change as the string was safe. However, imagine that we were
overzealous with our sanitization and did this:

return [
 '#theme' => 'my_custom_theme',
 '#title' => Html::escape('The cow\'s got milk.'),
];

Then, we would get the following title:

The cow's got milk.

That is because the first time it is escaped, Drupal turns the apostrophe into an HTML entity
('). However, the browser renders it correctly so we don't actually see it. The second
escaping turns the individual characters from that HTML entity into their respective HTML
entities. In this case, the & character gets turned into &. So, the entire string is no longer
properly readable by the browser.

I now draw your attention for a moment to Chapter 4, Theming,. In that chapter, we saw
that the #markup and #plain_text properties already serve to sanitize the user input
passed through them. The first uses the Xss::filterAdmin() method, whereas the latter
uses the Html::escape() method. So, keep in mind that if you use those as part of your
render arrays, you may not need further sanitization.

SQL Injection
SQL Injection still remains a very popular vector attack on unsuspecting vulnerable
applications that incorrectly make use of database drivers. Luckily, using the Drupal 8
database abstraction layer, we go a long way toward ensuring protection against such
vulnerabilities. All we have to do is use it correctly.

When it comes to Entity queries, there isn't much we can do wrong. However, when using
the Database API directly as we did in Chapter 8, The Database API, we have to pay
attention.

Most of the time, vulnerabilities have to do with improper placeholder management. For
example, we should never do things like this:

$database->query('SELECT column FROM {table} t WHERE t.name = ' .
$variable);

Drupal 8 Security

[533]

This is regardless of what $variable is--direct user input or otherwise. Because by using
that direct concatenation, malicious users may inject their own instructions and complete
the statement in a different way than intended. Instead, we should use code like we did in
Chapter 8, The Database API:

$database->query("SELECT column FROM {table} t WHERE t.name = :name",
[':name' => $variable]);

In other words, use placeholders which will then be sanitized by the API to ensure that no
characters are allowed to form malicious statements.

Drupal 8 comes with an additional security improvement when it comes to SQL injection
vulnerabilities--single statement executions. Up until recently, the PHP PDO driver (which
Drupal extended since Drupal 7) did not have a flag in place to inform MySQL to execute
only a single statement at a time. Theoretically, vulnerabilities caused by appending
multiple statements were possible (with one painful example of an attack that marked the
Drupal community forever--SA-CORE-2014-005). However, this has been changed, and
Drupal now sends this flag via PDO to the database engine to prevent multiple statements
from being executed at once. So, we get this extra bit of protection.

Cross-Site Request Forgery (CSRF)
CSRF attacks are another popular way applications can be overtaken, by forcing a user with
elevated privileges to execute unwanted actions on their own site. Usually, this happens
when certain URLs on the application trigger a process simply by being accessed through
the browser (and being authenticated)--for example, deleting a resource.

The most important thing to consider in this respect is to never have such actions
happening simply by accessing a URL. To help with this, we have the powerful Form API,
which already had token-based CSRF protection embedded from previous versions of
Drupal. So basically you can create forms whose submit handlers perform the potentially
damaging actions (as we learned in Chapter 2, Creating Your First Module) or even add a
second layer using a confirmation form (as we saw in Chapter 6, Data Modeling and Storage,
and Chapter 7, Your Own Custom Entity and Plugin Types, when talking about entities). The
latter is actually recommended for when the action is irreversible or has greater
implications.

Drupal 8 Security

[534]

Although the Form API should account for most use cases, we may also encounter the need
to declare a callback URL that directly handles the process. And, to protect ourselves from
CSRF attacks, we can use the CSRF token system as we saw in Chapter 10, Access Control,
when we talked about the various types of access control. I recommend that you check out
that chapter for more information on this topic.

Summary
Drupal 8 has come a long way with locking down its APIs to attack vulnerabilities. Of
course, this does not mean it's perfect nor that a bad developer cannot create security holes.
For this reason, it's extremely important to pay attention to the security implications of all
the code you write, follow the standards (including the OWASP checklist), and be aware of
what contributed modules you use (to at least be covered by the Drupal security team).
Moreover, it's also very important to keep up to date with security announcements from the
Drupal security team, as new vulnerabilities may be discovered and updates required to
remedy them. These are more time-sensitive in some cases than others, but it's always good
to stay up to date as quickly as possible (by following the communication from the Drupal
security team). Luckily, though, historically speaking, Drupal has not had many security
crises--at least not compared to other open source frameworks out there. So, from a security
standpoint, it has a good reputation. However, do not take this to mean that you as a
module developer are unburdened by the heavy responsibility for keeping your application
safe.

In this chapter, we discussed three transitional vulnerabilities web applications usually face,
how Drupal 8 stands against these, and what we as module developers can--and should--do
to protect ourselves from them--XSS, SQL Injection, and CSRF. Of course, there are many
more things that we can do from an application and server maintenance point of view.
However, these fall outside the scope of what this book focuses on. I strongly encourage
you, though, to read all the available documentation on security in Drupal 8 and keep
yourself informed.

Index

A
access results
 caching 361
access system
 about 310, 311
 permissions 311
 roles 311
Acquia
 URL 21
Ajax API
 about 377
 in forms 380, 381, 384, 386
 links 377
 reference 379, 384
 States (Form) system 387, 388, 389
Annotations
 about 20
 reference link 20
anonymous users 143
assets 106
attributes 113, 114
automated testing
 about 490
 methodologies, in Drupal 8 491

B
base field
 using as 306
batch powered update hooks 402, 403
batch
 creating 404, 405
 operations 404, 406, 410
BigPipe
 reference 365
block
 about 51

 accessing 348, 349
 configuration 54, 56
 plugin, creating 52, 54
business logic
 versus presentation logic 95, 96

C
cache 352, 354
Cache API
 cache bin, creating 368, 369
 reference 352
 using 365, 366, 367, 368
cache contexts
 about 356
 reference 357
cache metadata
 using 357, 358, 359
cache tags 355, 356
cacheability metadata 354
caching
 in block plugins 360
change records database
 reference link 23
coding standards
 reference link 23
Comma-Separated Version (CSV) 9
configuration API
 about 146, 147
 managing 148
 using 147
configuration storage
 about 150, 151
 overrides 155
 schema 152, 155
 schema definitions 152
Configuration Translation module 392
configuration

[536]

 configuration entities 150
 simple configuration 150
 storage 150
 types 150
content entities
 and Translation API 398, 399
content entity bundles 241, 242, 243, 244, 248,

249, 250
content entity fields
 about 171
 base fields 172, 173
 configurable fields 174, 175
 fields storage 175
Content Management Framework (CMF) 8
Content Management System (CMS) 7
Content Translation module 392
contextual links
 defining 132, 133, 135
Controller
 redirecting from 59
 services, injecting 39
cron 411, 412
Cross-Site Request Forgery (CSRF) 533
Cross-Site Scripting (XSS)
 about 529
 double escaping 531, 532
 sanitization methods 530
CSS (Cascading Style Sheets) 11
CsvImporter test 508, 511, 512, 522, 526, 527
custom configuration entity type 224, 229, 230,

233

custom content entity type
 about 204, 206, 208, 210, 214, 216, 217, 218
 content entity bundles 241
 custom configuration entity type 224, 229, 233,

235

 custom plugin type 218, 220
 Importer plugin 236
custom data
 exposing, to Views 425
custom logger
 about 72
 channel 71, 72
custom mail plugins
 about 82

 mail plugin 83
 mail plugin, using 85, 86
custom plugin type 218, 219, 224
custom route access
 about 317
 service approach 320, 322
 static approach 317, 318, 319
Custom Views argument 445, 446
Custom Views field
 about 434
 field configuration 438, 439, 440
Custom Views filter 441, 443, 444

D
D7 version
 reference 260
data storage
 types 138
dependency injection (DI)
 about 36
 reference link 14
Drupal 8, technologies
 about 9
 CSS 11
 databases 10
 HTML 11
 JavaScript 11
 MySQL 10
 PHP 10
 web server 11
Drupal 8
 access system 310
 developing for 8
 installing 9
 reference link 9
 sanitization methods 530
 services 38
 subsystems 15
 testing methodologies 491
Drupal architecture
 about 11
 core 11, 12
 dependency injection container 14
 events 12, 13
 hooks 12, 13

[537]

 modules 11, 12
 plugins 12, 13
 response, delivering to request 14, 15
 services 14
 themes 11, 12
Drupal behaviors
 about 371
 code, wrapping in file 373, 374
 library 372, 373
Drupal Console
 about 24
 URL 24
Drupal Form API
 reference 44
Drupal shell (Drush)
 about 24
 reference link 23
Drupal VM
 URL 21
Drupal.org
 reference 110, 260
Drupal
 developing, tools used 21
 for developers 8
 reference 108
Drush command 251, 252, 253, 255

E
emails
 altering 81, 82
 sending 78, 80, 81
entity access
 about 332, 333, 334
 entity access hooks 336, 337
 field access 338
 in routes 339, 340
 node access grants 340, 341, 342, 345, 347
 services, injecting into Entity handlers 335
Entity API
 content entities, rendering 194
 content entity validation, summary 202
 content entries, rendering 195
 content entry validation 197, 201
 entities, creating 193
 entities, loading 184, 186

 entities, manipulating 192
 entities, querying 184
 entities, reading 187, 189, 191
 interacting with 183
 pseudo-fields 196
 queries, building 184
entity type plugin
 about 163
 bundles 164
 database tables 165
 fields 169
 identifiers 164
 links 166
 summary 176
entity
 about 161
 configuration export 167
 content, versus configuration entity type 161
 handlers 168
 in Views 424
 keys 165
 revisions 166
 translation 166
Event Dispatcher
 and redirects 59
EventDispatcher component
 reference link 13
events
 dispatching 64, 66

F
field formatter 299, 303
field settings 304, 305
field type 281, 282, 283, 284, 286, 287, 290
field widget 291, 292, 294, 297, 298
fields
 configuration entity fields 170, 171
 content entity fields 171
File fields
 using 455, 456
filesystem 451, 452
form
 about 41, 43, 46
 altering 46
 custom submit handlers 48

[538]

 rendering 49
functional JavaScript tests
 about 519, 520
 CsvImporter test 522, 524, 527
 time test 521, 522
functional tests
 about 512, 518
 configuration 513
 Hello World form test 518, 519
 Hello World page test 514, 516

G
Git repository
 reference link 22

H
Hello World form test 518, 519
Hello World module
 theming 114, 115, 116, 118
Hello World page test 514, 516, 517
hook_mail()
 implementing 77, 78
HTML (Hypertext Markup Language) 11
HTTPKernel component
 reference 104

I
Image fields
 using 455, 456
images
 about 485
 rendering 487, 488
 styles 486, 487
 toolkits 485, 486
Importer plugin 236, 239, 240, 241
Interface Translation module 393
internationalization (il8n)
 about 394, 395, 396, 397, 398
 reference 390

J
JavaScript, in Drupal
 behaviors 371
 settings 375, 376

JavaScript
 in Drupal 371
 reference 370

K
kernel tests
 about 505
 CsvImporter test 508
 TeamCleaner test 506

L
language module 391
lazy building 361, 363, 364
libraries
 about 107
 attaching 109
link
 about 57, 111
 URLs 57
 ways 58
 working with 57
lists 110
local actions
 defining 132
local tasks
 defining 130
Lock API 419, 420, 422
logging
 about 69
 conclusion 75, 76
 custom logger 72
 custom logger channel 71, 72
 for hello world 73, 74, 75
 in Drupal 8 70, 71

M
Mail API
 about 76
 custom mail plugins 82
 emails, altering 81, 82
 emails, sending 78, 80, 81
 hook_mail(), implementing 77, 78
managed file uploads
 about 460
 CSV file, processing 468, 470

[539]

 entity CRUD hooks 464
 managed file form element 462, 463
 managed file usage service 465, 467, 468
managed files
 attaching, to entities 457, 458
 dealing with, functions 459, 460
 managed file uploads 460
 versus unmanaged files 454
 working with 457
max-age 357
menu links
 about 121
 defining 128, 129
 multiple types 122
 tree manipulators 124
 working with 128, 129, 130
menu trail 125
menu
 about 121
 links 121
 rendering 125, 126, 127
MenuLink trees 124
menus system 120
module
 controller 31
 creating 27, 28
 hook implementation 29, 31
 route 31
 services 35

O
object-oriented programming (OOP) 10
overrides, configuration
 global overrides 155
 language overrides 158
 module overrides 156
 priority 159

P
pagers
 about 266, 268
 reference 268
permissions
 defining 312, 313
Phantom.js

 reference 492
PHP 10
PHP Data Objects (PDO) 10
PHPUnit 492, 493
placeholders 361, 363
plugins 13
private file system 481, 482, 484
PrivateTempStore
 about 142
 anonymous users 143

Q
queries
 altering 272, 273
 delete queries 270
 executing 261
 insert queries 269
 pagers 266
 select queries 262
 transactions 271
 update queries 270
Queue API
 about 413
 cron based queue 414, 417
 processing automatically 418, 419
 roles 413

R
render arrays
 about 101
 pipeline 104, 105
 structure 102
route access
 about 314, 315, 316
 altering 329, 330
 checking programmatically 322, 323
 CSRF protection 328
 custom route access 317
 dynamic route options, for access control 324,

326

 reference 331
route variables
 about 32
 controller 34
 namespaces 33

[540]

route
 about 31
 definition 32
 variables 32
routing
 reference link 16

S
sanitization methods
 Drupal 8 530
Schema API 258, 261
select queries
 complex select queries 264
 executing 262, 263
 limiting, to certain range 265
 result, handling 263, 264
services
 about 35, 36
 dependencies 50, 51
 form 41, 44
 HelloWorldSalutation service 36
 injecting, into Controller 39
 tagged services 38
 using, in Drupal 8 38
SharedTempStore 143
simple configuration
 interacting with 159, 161
SMACSS
 reference 107
SQL Injection 532, 533
State API 139, 140
stream wrappers 453, 454, 471, 472, 478, 479,

480

structure, render arrays
 #markup 103
 #theme 103
 #type 102
 about 102
subscriber
 redirecting from 60, 61, 63
subsystem, Drupal 8
 about 21
 base fields 17
 caching 21
 configurable fields 17

 configuration 19
 entities 16, 17
 fields 17
 forms 18, 19
 menus 17, 18
 plugins 19, 20
 routing 15, 16
 theme system 20
 views 18
Symfony HTTP Foundation component
 reference 104

T
tables 112
TeamCleaner test 506, 507
tempstore
 about 141, 145
 PrivateTempStore 142
 SharedTempStore 143
testing
 functional 492
 functional JavaScript 492
 kernel 491
 simpletest 491
 unit 491
tests
 registering 493, 494
theme hooks
 about 96, 97, 98, 99, 110
 links 111
 lists 110
 suggestions 99, 100
 tables 112
time test 520, 521, 522
Token API
 about 87, 88
 working 87
token
 about 86
 conclusion 92
 defining 90, 91, 92
 using 88, 89
tools, for Drupal development
 about 21, 22
 API site 22, 23

 coding standards 22, 23
 composer 22
 developer module 23
 developer settings 24
 Drupal Console 24
 Drupal shell (Drush) 23
 Drush 24
 version control 22
Translation API
 and content entities 398, 399
Twig
 about 96
 reference 115
 templating system, reference link 20
TypedData
 about 176, 177
 content entities 181
 data definitions 179, 180, 181
 DataType plugins 178
 need for 176
 summary 183
types, menu links
 contextual links 123
 local actions 123
 local tasks 122

U
unit tests

 about 494, 495, 496, 498
 mocked dependencies 499, 500, 501, 502, 504
unmanaged files
 working with 481
update hooks
 about 274, 275, 277
 reference 277
user credentials
 checking 313, 314
UserData 145

V
Views
 about 423
 arguments 431
 custom data, exposing to 425
 data, altering 432, 433
 data, defining 425, 426
 entities 424
 fields 427, 429
 hooks 448
 relationships 429
 sorts and filters 431
 theming 447, 448

W
web server 11

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Developing for Drupal 8
	Introducing Drupal (for developers)
	Developing for Drupal 8
	Technologies that drive Drupal
	PHP
	Databases and MySQL
	The web server
	HTML, CSS, and JavaScript

	Drupal architecture
	Drupal core, modules, and themes
	Hooks, plugins, and events
	Services and the dependency injection container
	From request to response

	Drupal's major subsystems
	Routing
	Entities
	Fields
	Menus
	Views
	Forms
	Configuration
	Plugins
	The theme system
	Caching
	Other subsystems

	Tools for developing in Drupal
	Version control
	Composer
	The API site and coding standards
	The developer (Devel) module
	Drush (the Drupal shell)
	Drupal Console
	Developer settings

	Summary

	Chapter 2: Creating Your First Module
	Creating a module
	Your first hook implementation
	Route and controller
	The route
	Route variables

	Namespaces
	The Controller

	Services
	What is a service?
	The HelloWorldSalutation service
	Tagged services

	Using services in Drupal 8
	Injecting the service into our Controller
	The form
	Altering forms
	Custom submit handlers
	Rendering forms

	Service dependencies

	Blocks
	Our first block plugin
	Block configuration

	Working with links
	The URL
	The link
	Which way to link?

	Event Dispatcher and redirects
	Redirecting from a Controller
	Redirecting from a subscriber
	Dispatching events

	Summary

	Chapter 3: Logging and Mailing
	Logging
	The Drupal 8 logging theory
	Our own logger channel
	Our own logger
	Logging for Hello World
	Logging summary

	Mail API
	The theory of the Mail API
	Implementing hook_mail()
	Sending emails
	Altering someone else's emails
	Custom mail plugins
	The mail plugin
	Using mail plugins

	Tokens
	The Token API
	Using tokens
	Defining new tokens
	Token summary

	Summary

	Chapter 4: Theming
	Business logic versus presentation logic
	Twig
	Theme hooks
	Theme hook suggestions
	Render arrays
	The structure of a render array
	#type
	#theme
	#markup

	The render pipeline

	Assets and libraries
	Libraries
	Attaching libraries

	Common theme hooks
	Lists
	Links
	Tables

	Attributes
	Theming our Hello World module
	Summary

	Chapter 5: Menus and Menu Links
	The menu system
	Menus
	Menu links
	Multiple types of menu links
	Local tasks
	Local actions
	Contextual links

	MenuLink trees
	Menu link tree manipulators
	Menu active trail

	Rendering menus
	Working with menu links
	Defining menu links
	Working with menu links

	Defining local tasks
	Defining local actions
	Defining contextual links
	Summary

	Chapter 6: Data Modeling and Storage
	Different types of data storage
	State API
	Tempstore
	PrivateTempStore
	A note about anonymous users

	SharedTempStore
	Tempstore conclusion

	UserData
	Configuration
	Introduction
	What is configuration used for?
	Managing configuration

	Different types of configuration
	Configuration storage
	Schema
	Overrides
	Global overrides
	Module overrides
	Language overrides
	Priority

	Interacting with simple configuration

	Entities
	Content versus configuration entity types
	Entity type plugins
	Identifiers
	Bundles
	Database tables
	Entity keys
	Links
	Entity translation
	Entity revisions
	Configuration export
	Handlers

	Fields
	Configuration entity fields
	Content entity fields
	Base fields
	Configurable fields
	Field storage

	Entity types summary

	TypedData
	Why?
	What?
	The low-level API
	DataType plugins
	Data definitions

	Content entities
	TypedData summary

	Interacting with the Entity API
	Querying and loading entities
	Building queries

	Loading entities
	Reading entities
	Manipulating entities
	Creating entities
	Rendering content entities
	Pseudo-fields
	Content entity validation
	Validation summary

	Summary

	Chapter 7: Your Own Custom Entity and Plugin Types
	Custom content entity type
	Custom plugin type
	Custom configuration entity type
	The Importer plugin
	Content entity bundles

	Drush command
	Summary

	Chapter 8: The Database API
	The Schema API
	Running queries
	Select queries
	Handling the result
	More complex select queries
	Range queries

	Pagers
	Insert queries
	Update queries
	Delete queries
	Transactions
	Query alters
	Update hooks

	Summary

	Chapter 9: Custom Fields
	Field type
	Field widget
	Field formatter
	Field settings
	Using as a base field
	Summary

	Chapter 10: Access Control
	Introduction to the Drupal access system
	Roles and permissions under the hood

	Defining permissions
	Checking the user credentials
	Route access
	Custom route access
	Static approach
	Service approach

	Programmatically checking access on routes
	Bonus - dynamic route options for access control
	CSRF protection on routes
	Altering routes

	Entity access
	Injecting services into Entity handlers
	Entity access hooks
	Field access
	Entity access in routes
	Node access grants

	Block access
	Summary

	Chapter 11: Caching
	Introduction
	Cacheability metadata
	Cache tags
	Cache contexts
	Max-age
	Using the cache metadata
	Caching in block plugins
	Caching access results

	Placeholders and lazy building
	Lazy builders

	Using the Cache API
	Creating our own cache bin

	Summary

	Chapter 12: JavaScript and the Ajax API
	JavaScript in Drupal
	Drupal behaviors
	Our library
	The JavaScript

	Drupal settings

	Ajax API
	Ajax links
	Ajax in forms
	States (Form) system

	Summary

	Chapter 13: Internationalization and Languages
	Introduction
	Language
	Content Translation
	Configuration Translation
	Interface Translation

	Internationalization
	Content entities and the Translation API
	Summary

	Chapter 14: Batches, Queues, and Cron
	Batch powered update hooks
	Batch operations
	Creating the batch
	Batch operations

	Cron
	Queues
	Introduction to the Queue API
	Cron based queue
	Processing a queue programmatically
	Lock API

	Summary

	Chapter 15: Views
	Entities in Views
	Exposing custom data to Views
	Views data
	Views fields
	Views relationships
	Views sorts and filters
	Views arguments
	Altering Views data

	Custom Views field
	Field configuration

	Custom Views filter
	Custom Views argument
	Views theming
	Views hooks
	Summary

	Chapter 16: Working with Files and Images
	The filesystem
	Stream wrappers
	Managed versus unmanaged files
	Using the File and Image fields
	Working with managed files
	Attaching managed files to entities
	Helpful functions for dealing with managed files
	Managed file uploads
	Managed file form element
	Entity CRUD hooks
	Managed file usage service
	Processing the CSV file

	Our own stream wrapper
	Working with unmanaged files
	Private file system
	Images
	Image toolkits
	Image styles
	Rendering images

	Summary

	Chapter 17: Automated Testing
	Testing methodologies in Drupal 8
	PHPUnit
	Registering tests
	Unit tests
	Mocked dependencies

	Kernel tests
	TeamCleaner test
	CsvImporter test

	Functional tests
	Configuration for functional tests
	Hello World page test
	Hello World form test

	Functional JavaScript tests
	Time test
	CsvImporter test

	Summary

	Appendix: Drupal 8 Security
	Cross-Site Scripting (XSS)
	Sanitization methods in Drupal 8
	Double escaping

	SQL Injection
	Cross-Site Request Forgery (CSRF)
	Summary

	Index

