

Drupal 8 Theming with Twig

Master Drupal 8's new Twig templating engine to create
fun and fast websites with simple steps to help you
move from concept to completion

Chaz Chumley

BIRMINGHAM - MUMBAI

Drupal 8 Theming with Twig

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1170316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-873-7

www.packtpub.com

www.packtpub.com

Credits

Author
Chaz Chumley

Reviewer
Vincent Lark

Acquisition Editor
Larissa Pinto

Content Development Editor
Onkar Wani

Technical Editor
Pramod Kumavat

Copy Editor
Dipti Mankame

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Ever since Chaz can remember, he has been picking up a crayon, a pencil, a pen, or
a computer, whether to draw a picture, write a poem, share an article, or develop
the next great website. Looking back at these qualities, it's the reason why he chose
to use those passions to give back to the open source community. His journey has
opened doors to great experiences as a consultant, instructor, trainer, author, web
developer, technical architect, Drupalist, and most importantly, a father. However,
he could be none of these without first being a student and learning from life, love,
and a passion for education, community development, and of course, science
and technology.

The sum of these things has allowed Chaz to share his experiences as an active
member of the Drupal community, having participated in developing Lynda.com
Drupal training videos, authoring multiple Drupal books for Packt Publishing, and
giving back his knowledge by contributing numerous articles and presentations at
NYCCamp, BadCamp, and DrupalCon, and bringing top-notch Drupal expertise
to his clients' work.

However, his greatest journey is still in front of him as he continues to learn new
creative ways to architect open source websites, write about the next best things,
and laugh with his colleagues along the way.

Acknowledgments

When I first started this journey of writing a Drupal 8 book, I thought to myself,
"what could be so hard about that. Well, let me tell you?" Trying to catch up with
every Alpha, Beta, and Release candidate was like chasing that third grade crush
around the schoolyard. You were always able to catch her but then she would
run again.

Speaking of crushes, I still have one on my beautiful wife. Without her even harder
work, dedication, and support, this book would have not been possible. The long
hours and lost time cannot be made up, but her smile always fills my heart. She is
my friend, colleague in life, love, and spirit. Rebecca has allowed me to grow as
an author and pursue the dream of putting my knowledge to pen and paper, even
though she will tell you that I have been doing this for a while now ever since I
wrote her the first poem. Well honey, I hope you enjoy this latest poem because
it's finally published.

I also want to thank my two beautiful children, who while writing this book, have
grown up a little bit more. My son Brendan makes me proud every day to be his
father and friend. He is a young man in his own mind but always my little buddy,
quickly on his way to becoming an Eagle Scout. The other one is my daughter Kayla
who is getting ready to go off to college to pursue Graphic Design and just may write
a book of her own some day. I definitely look forward to seeing you grow into the
beautiful woman you will be.

I would like to thank Colin Panetta and Last Call Media for letting me use the great
Drupal 8 chalkboard for the book cover.

I thank the Drupal community without whose support, I wouldn't be working with
such an awesome content management framework.

I have to thank my colleagues. There are too many to name but without the
absolutely great friends at Forum One I would have lost my mind writing this
book: rock star developers, awe-inspiring designers, breathtaking UX, and amazing
marketing. Not only is it the best place I have ever worked, we are always hiring!

About the Reviewer

Vincent Lark is a French Full Stack developer with a strong web development
background. After working on frontend and backend software in multiple
companies, he's still very interested in every technical part of a product,
especially on emergent technologies.

When not coding for work, he also likes developing games as hobby in local
game jams.

Vincent previously reviewed other books for Packt Publishing, including
Learning JavaScript Data Structures and Algorithms and WebGL Hotshot.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface xi
Chapter 1: Setting Up Our Development Environment 1

Installing an AMP (Apache, MySQL, PHP) stack 2
Introducing MAMP 2
Downloading MAMP 3
Installing MAMP 3

A quick tour of MAMP PRO 4
General settings for MAMP PRO 5
Host settings 6

Installing Drupal 8 7
Downloading Drupal 8 8

Creating our document root 8
Creating our host entry 8

Creating a new database for Drupal 10
Using phpMyAdmin 11

Completing Drupal 8 installation 13
Choosing a language 13
Choosing a profile 14
Verifying requirements 14
Database configuration 16
Configuring the site 18
Site maintenance account 19
Regional settings 19
Update notifications 19

Reviewing the new admin interface 20
Exploring the admin menu 20
Previewing the interface 21
Exploring Drupal 8 folder structure 26

The core folder 26
The modules folder 28

Table of Contents

[ii]

The sites folder 29
The themes folder 30

Using the project files 31
Downloading and extracting the exercise files 31
Database backup 31

Export settings 32
Database restore 33
Using Google Chrome to inspect elements 33

Summary 35
Chapter 2: Theme Administration 37

What is a theme? 38
Exploring the Appearance interface 38
Drupal's core themes 39

Bartik 39
Seven 39
Stark 39
Classy 39

Theme states 40
Installed themes 40
Uninstalled themes 40
Default theme 41

Installing and uninstalling themes 41
Step one – installing a theme 41
Step two – uninstalling a theme 42

Theme settings 43
Toggling the display of page elements 43
Logo image settings 44
Shortcut icon settings 45

Theme-specific settings 46
Using prebuilt themes 48

Installing a new theme 49
Installing from a URL 49
Uploading a module or theme archive to install 51

Manually installing a theme 54
Cleaning up our themes folder 56
Managing content with blocks 56

Exploring the Block layout 56
Blocks and regions 57
Demonstrating block regions 58
Placing blocks into regions 59
Configuring a block 60

Managing the title 61

Table of Contents

[iii]

Managing visibility settings 61
Content types restriction 62
Page restriction 62
Role restriction 63

Creating a custom block 63
Managing custom blocks 66

Exploring the custom block library 66
Exploring block types 67
Managing fields 68
Managing display 70

Summary 72
Chapter 3: Dissecting a Theme 73

Setting up a local development environment 74
Managing sites/default folder permissions 74
Configuring settings.local.php 74

Disabling CSS and JS aggregation 75
Disabling render and page cache 75
Disabling test modules and themes 76

Default themes versus custom themes 76
Folder structure and naming conventions 76
Managing configuration in Drupal 8 77
Reviewing the new info.yml file 77

Metadata 78
Libraries 78

Defining a library 79
Attaching a library 81

Regions 82
The role of templates in Drupal 83

How templates work 83
Where to find templates 85

Creating our first basic theme 87
Step One – creating a new folder 88
Step two – create an info file 88
Step three – copy core templates 88
Step four – include a screenshot 88
Step five – installing our theme 89
Step six – Welcome to Twig 89

Introducing Twig 90
Enabling Twig debug 90
Twig fundamentals 91

Commenting variables 91
Setting variables 92

Table of Contents

[iv]

Printing variables 92
Dumping variables 93
Filters 94
Control structures 96

Template variables 98
The role of the theme file in Drupal 99

Preprocessors and hooks 99
Overriding variables 100

Summary 101
Chapter 4: Getting Started – Creating Themes 103

Starter themes 104
Creating a Bootstrap starter 105

Understanding grids and columns 106
Setting up a theme folder 107
Adding a screenshot 107
Configuring our theme 107
Installing our theme 108
Working with libraries 109

Adding assets 109
Creating a library reference 110
Including our library 111

Creating a Jumbotron 112
Step one – managing block content 113
Step two – hiding the page title 114

Rethinking our layout 115
Adding regions 115
Managing the block content 117

Using Twig templates 118
Creating a homepage template 118
Creating region templates 120
Working with the Theme layer 121
Using Devel to print variables 122

Printing variables from a function 124
Subthemes 126

Adding the theme folder 127
Including a screenshot 127
Configuring our theme 127
Installing our theme 127

Touring Classy 128
Overriding a library 129

Summary 131

Table of Contents

[v]

Chapter 5: Prepping Our Project 133
Walking through the design mockup 134

Homepage layout 134
Defining homepage regions and user interaction 137

Basic page layout 138
Defining interior regions 139

Landing page layout 140
Blog detail layout 141
Contact page 142
Search results 144

Restoring our database snapshot 145
Creating a custom theme 146

Setting up theme folders 146
Adding a screenshot 147
Creating our configuration file 147
Installing our theme 148
Setting up our regions 149
Setting up our assets 150
Adding additional assets 152
Handling default files 154

Summary 155
Chapter 6: Theming Our Homepage 157

Creating our HTML wrapper 158
Introducing web fonts 159

Creating our homepage 160
Using page templates 160
Working with static content 161

Implementing our Header Top region 162
Creating our Social Icons block 162
Installing Font Awesome library 163
Refactoring Header Top region 164

Implementing our Header region 165
Adding a logo 166
Enabling Site branding 167
Printing our Header region 168
Creating Block templates 168
Implementing our search form block 170
Placing our search form block 170
Creating a search form block template 171
Adding custom JavaScript 172
Creating an input element template 173

Table of Contents

[vi]

Working with menus 174
Creating a menu template 175
Creating System Menu block template 175
Creating a sticky header 176

Implementing our Headline Region 177
Creating our Headline View and Block 177
Adding our Headlines Block 181
Printing our Headline region 181
Configuring FlexSlider library 182
Attaching a library using Twig 183
Enable FlexSlider 183
Implementing Parallax 184
Adding a scroll effect 185
Enabling the scroll script 185
Attaching ScrollTo library using Twig 186

Implementing our Before Content region 186
Creating our Services block 186
Creating our Features block 187
Refactoring Before Content region 188

Implementing the footer 189
Creating our custom blocks 189
Refactoring our main footer 191

Footer first 191
Footer second 191
Footer third 192
Footer bottom left 193
Footer bottom right 193

Summary 194
Chapter 7: Theming Our Interior Page 195

Reviewing the About Us mockup 196
Creating our interior page template 198
Adding our Global Header 198
Implementing our page title 200

Working with static HTML 200
Adding new regions 201
Reassigning the Page title block 202
Printing the Title Bar region 202
Creating a block template 203

Implementing our main page structure 203
Creating a Node template 206

Table of Contents

[vii]

Implementing our Team members section 207
Prepping our Team Member View 207
Creating our Team Member View 209
Managing our Team Members listing block 214
Formatting Views with CSS 215
Adding CSS classes to Views 216
Using Twig variables to rewrite field content 216
Rearranging View fields 220
Adding a View header 221
Refactoring the After Content region 222

Adding our global footer 223
Fixing JavaScript errors 224
Summary 226

Chapter 8: Theming Our Blog Listing Page 227
Reviewing the Blog Listing mockup 228
Creating our blog listing 229

Adding a new display mode 230
Managing the display 231

Enabling fields 232
Field label visibility 233
Formatting fields 233

Creating a Post Listing view 234
Using Content Display modes with views 235

Managing our Post Listing block 236
Implementing our Node template 237

Adding CSS classes to Twig 238
Working with content variables 238
Using the without filter 239
Creating our post image slider 240
Working with field templates 240
Adding the Owl Carousel library 242
Using Twig filters for dates 243
Printing title and teaser 245
Creating our post metadata 246
Field templates and taxonomy 247
Handling comments in Drupal 8 248

Creating a theme file 248
Printing our comment count 250
Adding a read more link 250

Creating a Categories block 251
Managing our Categories block 252

Table of Contents

[viii]

Implementing responsive sidebars 253
Theming a Block template 255
Drupal Views and Twig templates 256
Managing popular versus recent content 257

Creating our recent posts block 257
Creating our popular posts block 258
Sorting views by comment count 259
Attaching a view to the footer 259
Managing our popular posts block 260
Using Twig and Bootstrap tabs 261

Recent Posts Twig template 261
Popular Posts Twig template 262

Using Views-view templates 262
Creating a Post Teaser Twig template 265

Adding the About Us block 266
Implementing the About Us template 267

Summary 269
Chapter 9: Theming Our Blog Detail Page 271

Reviewing the Blog detail mockup 272
Previewing our Blog detail page 273
Creating a Post Full template 274

Altering fields 275
Working with comments 276

Introducing Comment types 277
Reviewing Default Comment type fields and display 277
Enabling Post Type Comments field 280
Creating a Field Comments template 282
Theming the Comment thread 284
Enabling user photos for Comment threads 285
Cleaning up the User Picture field 286

Creating the Field User Picture template 287
Date and time formats 288

Implementing social sharing capabilities 289
The Add This buttons 290

Creating a library entry 291
Attaching the library to our Blog detail page 291
Displaying buttons 292

Summary 293

Table of Contents

[ix]

Chapter 10: Theming Our Contact Page 295
Reviewing the contact page mockup 296
Introducing contact forms 297

Editing a contact form 298
Managing form fields 299
Managing form display 300

Contact page layout 301
Adding a Callout block 301

Creating the Callout block template 303
Integrating Google Maps into our contact page 304

Configure Google Maps 304
Creating our Google Maps block 306
Creating the Callout Map template 307

Summary 308
Chapter 11: Theming Our Search Results 309

Reviewing the Search Results mockup 309
Looking at default Search results 310
Introducing core search 312

Indexing content 312
Editing search pages 313

Disabling search pages 315
Working with Search Results templates 315

Modifying the item list template 315
Cleaning up each result 317

Search alternatives 318
Search API 318

Installing the Search API 318
Adding a server 319
Adding an index 321

Configuring bundles 322
Adding fields to our index 322

Creating a Search Results View 323
Using the Search index view mode 324
Adding filter criteria 326
Placing our exposed search form 327
Adding our placeholder attribute 327

Using our search form 328
Displaying the number of search results 329
Adding a No Results message 330

Summary 332

Table of Contents

[x]

Chapter 12: Tips, Tricks, and Where to Go from Here 333
Working with Local Tasks 334

Theming local tasks 335
Working with Status messages 336

Adding the Highlighted region 336
Theming our Status message block 337

Reusing Twig templates 338
Using extends to share layouts 339
Working with Twig blocks 339

Where do we go from here? 341
Summary 342

Index 343

[xi]

Preface
Starting from the bottom, Drupal 8 Theming with Twig will walk you through setting
up and configuring a new Drupal 8 website. Navigate across the admin interface,
learn how to work with core themes, and create new custom block layouts. Take a
real-world project and create a Twig theme that adopts best practices to implement
CSS frameworks and JavaScript libraries. See just how quick and easy it is to create
beautiful and responsive Drupal 8 websites along with avoiding some of the common
mistakes many frontend developers run into.

If you consider yourself a frontend developer, you will be right at home. However,
since no PHP knowledge will be necessary, anyone who can create HTML websites
with basic HTML5 and CSS3 skills will learn how to create a great Drupal 8 theme.

What this book covers
Chapter 1, Setting up Our Development Environment, will begin with walking you
through setting up a development workflow. You will learn how to use an AMP
(Apache, MySQL, PHP) stack to configure a local web server. We will introduce the
process of installing Drupal 8 and walk through the admin interface in preparation
for working with the new Twig templating engine.

Chapter 2, Theme Administration, provides a glance at the Appearance page, where
you will learn how to install, uninstall, and configure various themes and settings.
We will take a look at the new Block layout system as we explore how to add fields
to blocks, reuse blocks, and assign chunks of content to various regions. Learn how
Drupal 8 has reconfigured files and folders, where themes are now placed, and how
to find core themes.

Preface

[xii]

Chapter 3, Dissecting a Theme, begins with discussing the importance of a proper
development environment and the steps involved to ensure that you're ready for
Drupal 8. This will help you learn the differences and similarities between core and
custom themes and how configuration has changed. Break down the metadata that
makes up a theme, libraries, and regions. You will learn the role of templates and
how the theme layer interacts with the Twig templating engine.

Chapter 4, Getting Started – Creating Themes, starts with creating a starter theme that
allows us to work with assets while learning common techniques to integrate various
CSS frameworks. You can learn how to rethink layout strategies as we dive into the
theme layer and work with Twig. Then, we will wrap up with creating a subtheme
that extends the new Classy base theme.

Chapter 5, Prepping Our Project, covers reviewing a real-world project that we will be
building and how to break down how design and functionality should come together
in Drupal 8. We will create the new theme structure, define metadata, add regions,
and implement several CSS and JavaScript libraries.

Chapter 6, Theming Our Homepage, begins with working with the site branding block
to add a logo. We will create a basic HTML wrapper and homepage template using
Twig as we convert our homepage mockup into a fully functioning Drupal 8 front
page. You will learn how to convert static markup into Twig variables as we theme
global components, such as the Search block, menus, and custom blocks. Use the new
libraries.yml file to work with assets, such as Twitter Bootstrap and Flex Slider
and then attach them to specific templates using the new {{ attach_library() }}
function.

Chapter 7, Theming Our Interior Page, will show you how to review mockups and
identify what regions, blocks, content types, and views will need to be developed
to recreate functionality. You will learn how to reuse Drupal 8 regions, work with
the new Page title block, and how Twig plays an important part in rewriting
Views output.

Chapter 8, Theming Our Blog Listing Page, starts with the best practice approaches
to managing content types. From adding new display modes to enabling and
formatting fields, learn how to use content display modes with Views to display
data in lieu of using fields directly. You can work with Node templates to add
CSS classes directly to our markup, work with content variables, and learn how
to suppress fields. You will use Twig filters to format dates and manage individual
field templates while creating a listing page.

Preface

[xiii]

Chapter 9, Theming Our Blog Detail Page, teaches us how to reuse Twig templates and
display different content simply by using file name suggestions to target-specific
display modes. You will work with the new comment types to add commenting
functionality to pages as fields, learn how to alter comment display using field
templates to theme comment threads, and add social sharing functionality to pages
using custom blocks and JavaScript libraries that we can attach directly to a block.

Chapter 10, Theming Our Contact Page, introduces contact forms in Drupal 8 that we
can use to create fieldable forms that users can interact with. You will learn how to
integrate Google Maps into custom blocks that take advantage of library assets and
vendor JavaScript.

Chapter 11, Theming Our Search Results, covers core search functionality, how to
index database content, and work with search results templates. Core search can
sometimes be limited, so we will take a more advanced look at the Search API
module to create a better search experience. You will learn how to add individual
fields to search and use display modes to output content while creating a Search
view that allows us to expose filters to the users to find exactly what they are
looking for.

Chapter 12, Tips, Tricks, and Where to Go from Here, introduces how to theme common
admin sections of Drupal 8. You will learn how to modify the markup for local
tasks and status messages. Reuse Twig templates using extends to share layouts
while working with pages and blocks. Finally, we will leave you with some great
contributed modules to take a look at and introduce you to the Drupal community.

What you need for this book
To follow along with this book, you need an installation of Drupal 8, preferably
in a local development environment located on a Windows, Mac, or Linux-based
computer. Documentation regarding setting up a local development environment can
be found at https://www.drupal.org/setting-up-development-environment.
Specific system requirements are listed at https://www.drupal.org/requirements.
An introduction to MAMP for Windows and Mac is also covered in Chapter 1, Setting
Up Our Development Environment.

To follow along with each lesson, you will need a text editor or IDE. To see a list of
software to consider when developing in Drupal 8 you can refer to https://www.
drupal.org/node/147789.

https://www.drupal.org/setting-up-development-environment
https://www.drupal.org/requirements
https://www.drupal.org/node/147789
https://www.drupal.org/node/147789

Preface

[xiv]

Who this book is for
Drupal 8 Theming with Twig is intended for frontend developers, designers, and
anyone who is generally interested in learning all the new features of Drupal 8
theming. Discover what has changed from Drupal 7 to Drupal 8 and immerse
yourself in the new Twig PHP templating engine. Familiarity with HTML5, CSS3,
JavaScript, and the Drupal Admin interface would be helpful. Prior experience of
setting up and configuring a standalone development environment is required as
we will be working with PHP and MySQL.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows
"Rename page.html.twig as page--front.html.twig.":

A block of code is set as follows:

name: Tweet
type: theme
description: 'A Twitter Bootstrap starter theme'
core: 8.x
base theme: false

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on the Continue button, which will take us to the license information."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xv]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase. You can contact the author at
http://www.forumone.com/books/drupal-8-theming-with-twig if you are
facing a problem with any aspect of this book.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.forumone.com/books/drupal-8-theming-with-twig
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xvi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Setting Up Our Development
Environment

Regardless of you being a seasoned web developer or someone who is just about
to start learning Drupal, there are few things that everybody needs to have in place
before we can get started:

• First, is to make sure that we have an Application stack that will meet Drupal
8's system requirements. MAMP provides us with a standalone web server
that is generally referred to as an AMP (Apache, MySQL, PHP) stack and
is available for both OS X and Windows. We will look at installing and
configuring this local web server in preparation to install Drupal 8.

• Second, is to set up a Drupal 8 instance and learn the process of installing
Drupal instances into our AMP stack. There are a few changes on how the
configuration and installation processes work in Drupal 8, so we will take
a closer look to ensure that we all begin development from the same
starting point.

• Third, we will be reviewing the Admin interface, including the new
responsive Admin menu and any configuration changes that have been made
as we navigate to familiar sections of our site. We will also look at how to
extend our website using contributed modules, review changes to the files
and folder structure that make up Drupal 8, and discuss best practices to
manage your files.

• Finally, we will review the exercise files that we will be using throughout
the series, including how to download and extract files, how to use
phpMyAdmin—a database administration tool to back up and restore
database snapshots—and how to inspect elements within our HTML
structure using Google Chrome.

Setting Up Our Development Environment

[2]

Let's get started by installing our web environment that we will be using as we take
an exciting look at Drupal 8 theming with Twig.

Installing an AMP (Apache, MySQL, PHP)
stack
To install and run Drupal 8, our server environment must meet and pass certain
requirements. These requirements include a web server (Apache, NGINX,
or Microsoft IIS) that can process server-side languages such as PHP, which
Drupal 8 is built on.

Our server should also contain a database that can manage the data and content
that Drupal 8's content management system will store and process. The preferred
database is MySQL. However, Drupal 8 can also support PostgreSQL along with
Microsoft SQL Server and Oracle with an additional module support.

Finally, Drupal 8 requires PHP 5.5.9 or later, with the CURL extension.

However, because this book is not meant to be a "How-to" on installing and
configuring Apache, MySQL, or PHP, we will take all the guesswork and trial
by fire out of the equation and instead turn to MAMP.

Introducing MAMP
MAMP can be found at https://www.mamp.info/en and is a tool that allows
us to create Drupal sites locally without the need or knowledge of installing and
configuring Apache, MySQL, or PHP on a specific platform.

The application stack will consist of the following:

• Apache: The world's most popular web server
• MySQL: The world's most popular database server
• PHP: Various versions of PHP
• phpMyAdmin: A tool to manage MySQL databases via your browser

https://www.mamp.info/en

Chapter 1

[3]

Downloading MAMP
Let's begin with the steps involved in quickly downloading, installing, and
configuring our very own AMP stack along with an initial instance of Drupal that we
will be using throughout the rest of this book. Begin by opening up our web browser
and navigating to https://www.mamp.info/en/downloads and selecting either
Mac OS X or Windows and then clicking on the Download button, as shown in
the following image:

MAMP will allow us to install a local web server on either Mac or Windows and
provides us with all the tools we will need to develop most open source websites
and applications including Drupal 8.

Installing MAMP
Once the download has completed, we will need to locate the .dmg (Mac users) or
.exe (Windows users) installation file and double-click on it to begin the installation
process. Once the executable is opened, we will be presented with a splash screen
that will guide us through the process of installing and configuring MAMP.

Clicking on the Continue button located on the Introduction pane, will take us to the
Read Me information. MAMP will notify us that two folders will be created: one for
MAMP and the other for MAMP PRO. It is important to not move or rename these
two folders.

https://www.mamp.info/en/downloads

Setting Up Our Development Environment

[4]

Click on the Continue button, which will take us to the license information. Simply
accept the terms of the license agreement by clicking on Continue and then on Agree
when prompted.

We can finally click on the Install button to complete the installation process.
Depending on the operating system, we may need to enter our credentials for
MAMP to be able to continue and configure our local web server. Once the install
has completed, we can click on the Close button.

A quick tour of MAMP PRO
Let's begin by opening up MAMP and taking a quick tour of the various settings
and how we can go about using our local web server to install and configure a new
Drupal 8 instance.

When we first open up MAMP, we will be prompted to launch either MAMP or
MAMP PRO, as shown in the following image:

While MAMP is the free version of the local web server, it is strongly recommended
that we use MAMP PRO for configuration and easy setup of a website. We can
continue by clicking on Launch MAMP PRO, which will prompt us one more time
to accept the Initialization of the remaining components that MAMP PRO needs
before we can begin using it. Now, click on OK to continue.

Chapter 1

[5]

We can use MAMP PRO free for 14 days and at the end of that period, we can decide
whether to purchase a license or continue using the free version. Click on OK to
continue.

General settings for MAMP PRO
If this is the first time you're using MAMP PRO, then there is some quick
housekeeping we will want to take care of, beginning with the general settings.
MAMP PRO tries to make sure that it does not interfere with any other possible
web servers we may be running by setting the default ports of Apache to 8888 and
MySQL to 8889. Although this is nice, the recommendation is to click on the Set
ports to 80, 443 & 3306 button that will make sure that MAMP PRO is running on
more standardized ports for web development.

If we want to make sure that Apache or MySQL are active at all time, we will also
check Start Apache and MySQL on system startup and uncheck Stop Apache
and MySQL when quitting MAMP PRO. Once we have made these changes, we
can click on the Save button. Our changes should now be applied as shown in the
following image and MAMP PRO will now prompt us to Start servers now.

Setting Up Our Development Environment

[6]

Host settings
The next tab we will look at is the Hosts tab, which is where we will create and
configure basic websites. By default, MAMP PRO creates a localhost entry for us,
which is common when developing a web application.

We will be using the Hosts tab to create an additional website when we install
Drupal 8, so let's take a moment to locate some of the common settings we will
need to know. Take a look at the following image; we can see that localhost is the
Server name of our default website, uses the default PHP version of 5.6.10, and
has a Document root pointing to the htdocs folder of our MAMP installation.

Another nice ability of MAMP PRO is to be able to click on the arrow icon located
to the right of the Server name and have our default web browser open up to the
localhost page, as shown in the following image:

Chapter 1

[7]

It is important to point out that the Server name always equates to the name of the
URL in our browser that displays our website.

MAMP PRO is quite a robust and powerful local web server and while there are
many more configuration options and settings that we could spend time looking
through, most of our time will be spent on working from the Hosts tab creating
new websites or configure existing sites.

So far, MAMP PRO has configured everything for us, but how to create a new
website and, in more general, install a Drupal 8 instance? Let's look at it in the
following section.

Installing Drupal 8
In order to install Drupal 8 within our local MAMP PRO server, we will need to
perform a series of steps:

1. We will need to grab a copy of the latest Drupal 8 release and extract the files
to a location on our computer that will be the document root of our website.

2. We will have to create a new host entry with the server name that we will
want to use for our URL and point our host entry to the proper document
root containing our Drupal 8 instance.

3. We will have to create a MySQL database that we can point Drupal to during
the installation process.

We will walk through each of these steps in detail to ensure that we all have a copy
of Drupal 8 installed properly that we will build upon as we work through each
lesson.

Setting Up Our Development Environment

[8]

Downloading Drupal 8
Drupal.org is the authority on everything about Drupal. We will often find
ourselves navigating to Drupal.org to learn more about the community, look for
documentation, post questions within the support forum, or review contributed
modules or themes that can help us extend Drupal's functionality. Drupal.org is
also the place where we can locate and download the latest release of Drupal 8.

We can begin by navigating to https://www.drupal.org/node/2627402 and locate
the latest release of Drupal 8. Click on the compressed version of Drupal 8 that we
prefer, which will begin downloading the files to our computer. Once we have a
copy of Drupal 8 on our computer, we will want to extract the contents to a location
where we can easily work with Drupal and its folders and files.

Creating our document root
A document root is the main folder that our host entry will point to. In the case of
Drupal, this will be the extracted root folder of Drupal itself. Generally, it is a best
practice to maintain some sort of folder structure that is easy to manage and that
can contain multiple websites.

For the sake of demonstration, we will create a Sites folder and then copy the
compressed Drupal files to our new folder and extract the contents, as shown in
the following image:

Creating our host entry
A host entry represents our website, which, in this case, is our Drupal 8 instance.
Hosts always contain a server name that equates to the URL we will use to navigate
to Drupal within our browser.

https://www.drupal.org/node/2627402

Chapter 1

[9]

Begin by opening MAMP PRO and clicking on the Hosts tab. To add a new host
entry, we can click on the plus icon at the bottom of the Server Name column,
as shown in the following image:

By default, this will add a new host entry that will require us to configure with three
very important pieces of information:

• We will have to change the Server name from the default to drupal8.
• Then, we will want to verify that the required version of PHP is being used;

in our case, the default of 5.6.10 will work just fine.
• Finally, we will need to click on the folder icon within the Document root

section and choose our Drupal 8 folder that we placed within our sites
folder earlier from the Please select a Document Root folder dialog.

Setting Up Our Development Environment

[10]

The General settings for our new host entry should look as shown in the
following image:

We can now apply our changes by clicking on the Save button and then clicking on
the Yes button when prompted to have MAMP PRO restart the servers.

Creating a new database for Drupal
Drupal 8 requires a database available to install any tables that make up the
content management system. These tables will hold configuration data, users and
permissions, content, and any extendable functionality that makes Drupal 8 so
powerful.

Chapter 1

[11]

Lucky for us, MAMP PRO installs a MySQL database server that we can take
advantage of to create a new database that Drupal 8 can point to. This same database
server we will also be working with to back up and restore our database content as
we progress through each lesson.

Using phpMyAdmin
MAMP PRO also installs a free software tool written in PHP for the sole purpose
of managing MySQL databases. phpMyAdmin allows us to perform a multitude of
tasks from browsing tables, views, fields, and indexes to exporting and importing
database backups and much more.

If we switch back over to MAMP PRO, we can locate the MySQL tab and click on the
phpMyAdmin link located in the Administer MySQL with region, as shown in the
following image:

Setting Up Our Development Environment

[12]

We should now be presented with phpMyAdmin within our browser. Currently,
we are interested in creating a new database. We will revisit phpMyAdmin a little
later to learn how to back up and restore our database. The following are the steps
to create a database:

1. Begin by clicking on the New link in the left sidebar, as shown in the
following image:

2. Next, we will want to enter a name of drupal8 within the Create database
field, as shown in the following image, and then click on the Create button.

Chapter 1

[13]

We have now created our first MySQL database, which we will use when
configuring Drupal 8 in the next step.

Completing Drupal 8 installation
Now that we have all of our basic requirements completed, we can open up our
favorite web browser and navigate to http://drupal8/core/install.php to
begin the installation process.

Since this may be the first time installing Drupal 8, one thing we will notice is that
the install screen looks a little different. The install screen has been given a makeover,
but the steps are similar to that of Drupal 7, starting with choosing a language.

Choosing a language
The installation process will prompt us to choose a language that we want Drupal
8 to be installed in. This language will control how the Admin area appears, and in
many cases, the default of English is acceptable. We will need to click on the Save
and continue button to proceed to the next step, as shown in the following image:

http://drupal8/core/install.php

Setting Up Our Development Environment

[14]

Choosing a profile
Our next step is to choose an installation profile. We can think of this as Drupal's
way of preconfiguring items for us that will make our job easier when developing.
By default, we can leave the Standard profile selected, but if we choose to configure
Drupal ourselves, we can always choose Minimal. Click on the Save and continue
button to proceed to the next step, as shown in the following image:

Verifying requirements
The next screen allows us to review any requirements that Drupal needs or
recommends for optimal performance. From here, we can see web server
information, PHP version, memory limits, and more:

Chapter 1

[15]

The requirements review can also alert us to any configuration settings that will
allow Drupal to perform better. In our example, we forgot to enable OPcode caching,
which allows PHP to compile down to bytecode. Without going into the details of
caching, we can easily enable this feature in MAMP PRO.

Setting Up Our Development Environment

[16]

Begin by opening up the MAMP PRO console and clicking on the PHP tab. Next,
we will want to select OPcache from the Cache module to speed up PHP execution
dropdown, as shown in the following image:

Click on the Save button and then allow MAMP PRO to restart servers if prompted.
Now, we can refresh our Drupal install in the browser, and we will be taken to the
next step in the installation process.

Database configuration
Database configuration can sometimes be a tricky part of installing Drupal for the
first time. This is generally due to selecting the incorrect database type, wrong
database name, or password, or by not specifying the correct host or port number.

Chapter 1

[17]

The settings we will want to use are as follows:

• Database type: Leave the default of MySQL selected.
• Database name: This is the name of the database that was created upon

import. In our case, it should be drupal8.
• Database username: root.
• Database password: root.

With these settings, we can click on the Save and continue button to proceed.

If this is successful, we can see the Installing Drupal screen and watch as Drupal
installs the various modules and configurations. This process may take a few
minutes. If this process fails in any way, please go back and review the previous
steps to make sure that they match what we have used.

Setting Up Our Development Environment

[18]

Configuring the site
Before we can wrap up our Drupal 8 installation, we need to configure our site
by inputting various settings for site information, site maintenance account,
regional settings, and update notifications. Let's proceed now by entering our
Site Information.

The site information consists of the following:

• Site name: To be consistent, let's call our site drupal8. We may give our new
site any name that we like. As usual, we can change the site name later from
the Drupal admin.

• Site e-mail address: Enter an e-mail address that we will want to use for
automated e-mails such as registration information. It is the best practice to
use an e-mail that ends in our site's domain to prevent e-mails from being
flagged as spam.

Chapter 1

[19]

Next, we will want to set up the site maintenance account. This is the primary
account used to manage Drupal to perform such tasks as updating the core instance,
module updates, and any development that needs user 1 permissions.

Site maintenance account
The site maintenance account information consists of the following:

• Username: Because we are developing a demo site, it makes sense to
generally use admin for the username. Feel free to choose whatever is
easy to remember, but don't forget it.

• Password: Security sticklers will ask to create something strong and
unique, and Drupal displays a visual interface to let us know how strong
our password is. For the sake of demonstration, we will use admin as our
password so that your username and password match and are easy to
remember.

• E-mail address: Generally, using the same e-mail that is used for the site
e-mail address makes for consistency but is not required as we can choose
any e-mail that we don't mind receiving security and module update notices.

Regional settings
Regional settings consist of default country and default time zone. These are often
neglected and left with their defaults. The defaults are not recommended, as they are
important in the development and design of Drupal 8 websites, specifically, when it
comes to dates and how they are used to capture data and display dates back to the
end user.

For our specific installation, choose the country and time zone for our region.

Update notifications
At last, we have come to our final set of configurations. Update notifications should
always be left-checked unless we have no reason to receive security updates to
Drupal core or module updates. By default, they should be checked. Click on Save
and continue to finalize the configuration and installation of Drupal 8.

Drupal installation is now complete, and we should see the home page of our new
website. Say "hello" to Drupal 8.

Setting Up Our Development Environment

[20]

Reviewing the new admin interface
Our local instance of Drupal 8 is similar to Drupal 7 when first viewing the site.
You will note the default Bartik theme with the friendly Drupal drop logo and
a tabbed main menu. It is here though where the similarities stop. Drupal 8 has
been reworked from the ground up, including a brand new responsive layout
and admin menu.

Exploring the admin menu
One of the nice new features of Drupal 8 is the rebuilt admin menu. Everything has
been moved under the Manage menu item. The admin menu itself is responsive and
will change from text and icon to icon only, as soon as the browser is resized to tablet
screen size.

The admin menu can also be pinned to the left side of the window by clicking on the
arrow icon to the right of the Help menu item.

Chapter 1

[21]

The flexibility of the new admin menu enables the admin user to manage Drupal 8
websites from the browser or a tablet or a smartphone very easily.

Previewing the interface
Taking a closer look at the menu items contained in our admin menu, we begin to
see some differences in how things are named and may wonder where to find once
familiar settings and configurations. Let's quickly walk through these menu items
now so that it is easier to find things as we progress later on in future chapters:

• Content: This section displays any user-generated content, comments, and
files with the ability to filter by Published status, Type, Title, and Language.
The display for content is also now a view and can be customized with
additional fields and filters as needed.

Setting Up Our Development Environment

[22]

• Structure: This section is to manage Block layout, Comment types, Contact
forms, Content types, Display modes, Menus, Taxonomy, and Views. We
will explore some of the changes and new functionality contained within this
section later on in the book.

• Appearance: This section is to enable, disable, and configure default themes
as well as administrative themes.

Chapter 1

[23]

• Extend: Formerly known as Modules, this section is for listing, updating,
and uninstalling core, custom, and contributed modules. New is the ability
to search for modules using a filter. Various contributed modules have been
moved into core, including Views and CKEditor.

Setting Up Our Development Environment

[24]

• Configuration: This section is designed to configure both core and
contributed modules. Each area is grouped into functional sections and
allows us to manage site information to file system to performance tuning.

• People: This section allows us to manage users, permissions, and roles.
The display for users is now a View as well and can be customized to add
additional fields and filters as needed.

Chapter 1

[25]

• Reports: This section is designed to view available updates, recent log
messages, field lists, status reports, top "access denied" errors, top "page
not found" errors, top search phrases, and View plugins.

Setting Up Our Development Environment

[26]

• Help: This section is designed to obtain helpful information on functionality
necessary to know in administering a Drupal 8 website. This includes a
Getting Started section and help topics on items, such as Block, Views,
User, and more.

Exploring Drupal 8 folder structure
There are several changes to Drupal 8 with regard to how files and folders are
structured. Let's walk through the core, modules, sites, and themes folders and
discuss some best practices for how each of these folders should be managed when
creating a Drupal 8 website.

The core folder
One of the first things to point out is that the files and folder structure of Drupal 8
have changed from its predecessor Drupal 7. The first change is that everything that
Drupal 8 needs to run is contained within the new core folder. No longer is there
any confusion of having the modules and themes folders contained within a sites
folder and having to ask "did I place my files in the correct location?".

Chapter 1

[27]

The core folder consists of miscellaneous files needed by Drupal to bootstrap the
content management system as well as the following folders:

• assets: Various external libraries used by core (jquery, modernizr, backbone,
and others)

• config: It contains misc configuration for installation and database schema
• includes: It contains files and folders related to the functionality of Drupal

Setting Up Our Development Environment

[28]

• lib: Drupal core classes
• misc: Various JavaScript files and images used by core
• modules: Drupal core modules and Twig templates
• profiles: Installation profiles
• scripts: Various CLI scripts
• tests: Drupal core tests
• themes: Drupal core themes

The modules folder
While a lot of functionality, which was generally contained in a contributed module,
has been moved into the core instance of Drupal 8, you will still find yourself
needing to extend Drupal. Previously, you would locate a contributed module,
download it, and then extract its contents into your sites/all/modules folder
so that Drupal could then use it.

Contributed and custom modules are now placed into the modules folder, which is
no longer contained inside your sites folder.

Chapter 1

[29]

Best practices are to create a few subdirectories inside the modules folder for
contributed modules—the modules built by third parties that we will use to extend
your project, such as contrib, and custom, for the modules that we create on a per
project basis. We will also occasionally find ourselves with a features folder if we
plan to use the Features module to break out functionality that needs to be managed
in code for purposes of migrating it easily to development, staging, and production
instances of our website.

The sites folder
We are all familiar with the sites folder in Drupal 7. However, in Drupal 8, the
sites folder only contains our Drupal instance configuration and files.

Setting Up Our Development Environment

[30]

The themes folder
Finally, we have the themes folder. So, why don't we see the default themes that
Drupal generally ships with inside this folder? That is because Drupal's default
themes now are contained within the core folder. Finally, we will actually use the
themes folder to place our custom or contributed themes inside it for use by Drupal.

We will be exploring the themes folder in more detail in later chapters as we begin
creating custom themes.

Chapter 1

[31]

Using the project files
As we work through each chapter of the book, we will be using exercise files that
contain examples of how each page will be themed is laid out. This will include
database snapshots, HTML, CSS, and images for our Home, About, Portfolio, Blog,
and Contact pages. Before we begin using these files, we need to know where to
download them from and the best location to extract them to for future use.

Downloading and extracting the exercise files
We can find the exercise files at https://www.packtpub.com/support. Click on the
download link and save the compressed file to the desktop. Once the download is
finished, we will need to extract the contents. Let's take a quick look at what
we have:

• Several chapter folders containing files that we will use for whatever task we
are working on in that chapter

• A Mockup folder that contains the finished HTML version of our theme
• A database snapshot contained within various chapter folders that we will

use to restore on top of our current Drupal instance to ensure that we always
have the same configuration at specific points along the way

Since we will be working with database snapshots at various points, we will want
to look at how we can manage these files using the MySQL database tool named
phpMyAdmin.

Database backup
It is important to know how to backup our database when working in Drupal 8 as
most of our content and configurations are contained within a database. Make sure
that phpMyAdmin is open in the browser.

https://www.packtpub.com/support

Setting Up Our Development Environment

[32]

Next, we will want to make sure that any database exports are saved as a file versus
just plain SQL script. Because this is a global setting, we will need to make sure that
we have not selected any specific database. We can make sure that we are affecting
global settings by clicking on the house icon in the left-hand sidebar underneath the
phpMyAdmin logo. Next, we can navigate to Settings and then Export, as shown in
the following image:

Next, click on the Save as file option and the Apply button.

Export settings
One little gotcha when using phpMyAdmin is making sure that when we create
our database export, we ensure that the SQL also drops any tables before trying to
recreate them when we do the import later.

We can create our database export by following these steps:

1. Select the drupal8 database from the left sidebar.
2. Click on the Export tab.

Chapter 1

[33]

3. Select Custom - display all possible options as our export method.
4. Select SQL as our format.
5. Choose Add DROP TABLE / VIEW / PROCEDURE / FUNCTION / EVENT

/ TRIGGER statement from Object creation options.
6. Click on the Go button.

At this point, we have a new file named drupal8.sql, which contains a backup of
our database. Next, we will use this file we just created to restore our database.

Database restore
Restoring a database is simpler than backing our database up. Except this time,
we will be using an existing database snapshot that either we have taken or that we
were provided to overwrite our current database files with. Let's begin by following
these steps:

1. Click on the Import tab.
2. Click on the Choose File button and locate the drupal8.sql file we created

earlier.
3. Click on the Go button to begin the restoration process.

The process of restoring the file can sometimes take a minute to complete, so please
be patient while the file is being restored.

While phpMyAdmin allows us to manage database operations, we can choose to use
other database tools or even the command line, which is a lot faster to export and
import databases.

Now that we have a good understanding of how to back up and restore our
database, it's time to take a quick look at how we will be using Google Chrome to
review our HTML and CSS structure within Drupal 8 and our theme Mockup.

Using Google Chrome to inspect elements
While there are many different browsers to view web content on, Google Chrome
is definitely a favorite browser when theming in Drupal. It is not only standards
compliant ensuring that most HTML and CSS work properly but Chrome also allows
us to inspect the HTML and CSS and preview changes "live" within the browser
using the Developer Tools option.

Setting Up Our Development Environment

[34]

Begin by browsing to our local Drupal 8 instance in Google Chrome and then
selecting Developer Tools from the View | Developer | Developer Tools menu.
The Developer Tools will open up in the bottom of your browser, as shown in the
following image:

There are several tools available for our use, but the one we will use the most is
inspecting Elements on the page, which allows us to view the HTML structure and
any CSS being applied to that element from the Elements and Styles panels. We can
navigate through the HTML structure, or if we prefer to isolate an element on the
page, we can place our cursor on that element and right-click to open up a context
menu where we can select Inspect. Doing so will target that element in the Elements
pane for us.

As we dive deeper into theming, we will use this set of tools to help preview changes
as well as isolate any issue we may be experiencing as our HTML structure changes
based on what Drupal 8 outputs.

Chapter 1

[35]

Summary
We collected a lot of information to start our series on Drupal 8 themes. Let's review
exactly what we covered so far:

• We successfully configured an AMP (Apache MySQL, PHP) stack by
downloading and installing MAMP PRO.

• We set up our first Drupal 8 instance by downloading the latest version
from Drupal.org, importing the Drupal instance into our AMP stack, and
completing the Drupal 8 install by choosing our language, profile, database
settings, and site information.

• We also had our first look at Drupal 8 and some of the new responsive
functionality that it provides. We familiarized ourselves with the admin
menu and the new admin interface, which included the Content, Structure,
Appearance, Extend, Configuration, People, Reports, and Help sections.
Having a better knowledge of Drupal 8 and its folder structure has given us
insight into how to apply best practices to manage our theme and its assets.

• By using the project files, we learned how to manage database snapshots
through importing and exporting SQL files inside phpMyAdmin.

• Finally, we learned how to use Google Chrome to inspect our HTML
and CSS to have a better understanding of our theme and its markup.

In the next chapter, we will take a closer look at "theme administration" and answer
the question: what is a theme? We will explore the "appearance interface" and
discuss how Drupal's default themes function. Finally, we will follow up with
looking closer at how to use prebuilt themes and managing content with blocks
and custom block layouts.

[37]

Theme Administration
Before we can get started with creating or managing themes in Drupal 8, we need
to have a better understanding of exactly what a theme is. From there we will have
the basis for how we work with themes in Drupal and the various configuration and
components that are considered to be part of the theming ecosystem.

Let's get started by exploring what we will be covering along the way:

• First, we will explore the Appearance interface and the core default themes.
We will learn how themes are administered, how to install and uninstall
themes, how they are configured, and the different settings a theme can have.

• Second, we will take a closer look at a prebuilt theme, where to find themes
that we can use, and how we can easily install themes using the Drupal 8
admin.

• Third, we will take a closer look at the themes folder structure and how to
manually install a theme in preparation to create a custom theme.

• Fourth, we will take a look at the new Block layout and how we can
manage chunks of content and assign content to regions. This will include
configuring a block and controlling the visibility of blocks based on certain
settings.

• Finally, we will take a look at the new Custom Block library and explore how
to add fields to blocks, something not previously available to us in Drupal 7.

We have a lot to cover, so let's get started by discussing, what is a theme?

Theme Administration

[38]

What is a theme?
In simple terms, a theme is the presentational layer to content. Regardless of
you working in Drupal or another content management system (CMS) without
a theme, all you have is content that looks very similar to a Word document.

A theme generally consists of HTML markup, CSS, JavaScript, and media
(images, video, and audio). It is this combination of technologies that allow the
graphic designer to build something visually rich that can then be applied on top of
the logic a web developer is building in Drupal. Sometimes, a web developer may
be the person who implements the theme, but in most cases, you will hear the term
themer or interface engineer, which describes the person who actually fills that role.

This book helps you learn that role. So, as long as you have a good knowledge of
HTML, CSS, and JavaScript, you are well on your way to filling a much-needed
role in the Drupal community.

We will begin by exploring the Appearance interface in Drupal 8.

Exploring the Appearance interface
The Appearance interface in Drupal 8 can be located by clicking on the Manage
menu item from the administrative toolbar and then by choosing the Appearance
link. We can also directly navigate to the Appearance interface by entering the
address of /admin/appearance in our browser.

Chapter 2

[39]

The Appearance interface allows us to work with themes in Drupal, that is, anything
from installing, uninstalling, and configuring the default theme for our website. We
will be exploring the various functions within this section starting with taking a look
at the default themes that Drupal 8 ships with.

Drupal's core themes
By default, Drupal 8 ships with three themes. As part of the standard installation
profile, Drupal will install and configure Bartik, Seven, and Stark themes. Each
of these themes serves a specific function in the workflow. Let's look at them in
more detail.

Bartik
Bartik is considered the default theme in Drupal and is familiar to most as it has
been part of the Drupal ecosystem for quite a while now. We can think of Bartik
as the frontend theme or what we see when we first install Drupal. The Bartik
theme is what you will visually see when you are not navigating within the
Drupal administrative screens.

Seven
Seven is the default admin theme, and it provides a clean separation between the
frontend and backend of Drupal. This is great as it will always allow us to navigate
through the administrative areas if our default theme generates any errors that may
cause a blank white screen while theming.

Stark
Stark is an intentionally plain theme with no styling at all to help demonstrate the
default HTML and CSS that Drupal will output and is great for learning how to
build a custom theme.

Classy
Wait, this is the fourth theme! Actually, Classy is a base theme that both Bartik and
Seven use that provides both with clean well-documented markup and CSS classes.
Classy is hidden from the Appearance admin screen by default, and we will learn
more about Classy as a base theme and how to use it within our own themes later
in Chapter 4, Getting Started – Creating Themes.

Theme Administration

[40]

Theme states
One of the advantages of Drupal is the ability to have multiple themes available to
use at any time, and as we discussed earlier, Drupal provides us with three themes
to start with. However, it is important to differentiate between installed, uninstalled,
and default. We can consider these as the theme's states.

Installed themes
Installed themes are always located in the Installed themes section of the
Appearance admin and are available for Drupal to use for either the frontend or
backend of the CMS. However, there can only be one theme set as the default at any
given time. We can see a list of installed themes, as shown in the following image:

Uninstalled themes
Uninstalled theme(s) are themes that Drupal is aware of within the core themes
folder or the custom themes folder but have not been placed into an installed state.
One or multiple themes can be present at any time within the Uninstalled theme
section, as shown in the following image:

Chapter 2

[41]

Default theme
Finally, we will often hear the term default theme being used, so it's important
to remember that the default theme is always the current theme being displayed
to users when viewing our website as an anonymous or logged out user or when
logged in but not within an Administrative section of Drupal. Anytime a theme is
set as default, it will always be considered installed as well.

Installing and uninstalling themes
The act of installing or uninstalling a theme is a common practice when
administering a Drupal website. Let's try installing Stark and making it
our default theme in place of Bartik.

Step one – installing a theme
Currently, the only uninstalled theme is Stark, and we can easily move this into the
installed state by following these two steps:

1. Click on the Install and set as default link.
2. Scroll back to the top of Appearance admin.

Theme Administration

[42]

3. If we now look at the Installed themes section, we should see that we now
have three themes installed: Stark, Bartik, and Seven. We can also tell that
Stark is now our default theme by looking to the right of the themes name,
which will be marked as (default theme) as shown in the following image:

We can also see what the Stark theme looks like by clicking on the Back to site link
in the Admin menu, which will take us back to the frontend of our website. We
are now presented with an unstyled page, which is to help demonstrate the clean
markup of Drupal.

Step two – uninstalling a theme
It is just as easy to uninstall a theme, and one nice feature of Drupal 8 is that it
ensures that we have at least one installed theme set as default. Otherwise, we
won't even have the option of uninstalling the theme.

Let's navigate back to the Appearance admin located at /admin/appearance and
uninstall the Stark theme by following these two steps:

1. Locate the Bartik theme and click on Set as default.
2. Locate the Stark theme and click on Uninstall.

We saw how simple it is to install and uninstall themes within Drupal 8. Another
common task we will find ourselves completing within the Appearance admin is
adjusting the settings of a theme.

Chapter 2

[43]

Theme settings
Under the Settings tab of the Appearance admin, the options to control the default
display settings for your entire site are located, across all themes or individually.
These settings range from toggling the display of certain page elements, updating
the default logo supplied by the theme, to providing a shortcut icon or favicon
that is displayed in the address bar of most browsers.

Let's explore these in more detail by clicking on the Settings tab and previewing the
interface, as shown in the following image:

Toggling the display of page elements
Having control over certain page elements of a theme can come in handy when we
want to hide or show specific items. Most of the items listed pertain to user settings,
such as user pictures in posts or comments, user verification status in comments, and
the Shortcut icon from displaying.

Theme Administration

[44]

Simply checking or unchecking an item will toggle that item on or off. Also, keep in
mind that toggling the Shortcut icon will disable the ability to add a shortcut icon as
the visibility of that section is also toggled on and off.

Gone are Logo, Site name, Site slogan, Main menu, and Secondary menu from the
theme settings. These were present in Drupal 7 but have now been moved into
Blocks and block configuration. We will be addressing each of these moved settings
in a few moments.

Logo image settings
Another nice option within the Appearance settings admin is the ability to manage
the themes logo. By default, Drupal displays the infamous Drop logo, but we have
the power to replace that logo with our own.

Let's begin by following these five steps:

1. Locate the LOGO IMAGE SETTINGS section.
2. Uncheck Use the default logo supplied by the theme.
3. Click on the Choose file button under the Upload logo image field.
4. Locate the exercise files and select logo.png from the mockup/assets/img

folder. Click on the Open button.
5. Click on the Save configuration button.
6. Our new logo has now been placed into the sites/default/files folder of

our Drupal installation, as shown in the following image:

Chapter 2

[45]

With the path to our custom logo now pointing to our new logo, we can preview
it by clicking on the Back to site link in the Admin menu, which will take us to the
frontend of our website, as shown in the following image:

One thing to note is that there is no simple way to delete logo images we upload
using the Logo image settings, so Drupal will append a sequential number to the
end of the file versus overriding it if it has the same name. In the case where we ever
need to delete a logo image, we would have to navigate to the sites/default/
files directory and manually delete the file.

Shortcut icon settings
If you are wondering what a shortcut icon is, don't worry. The shortcut icon is also
known as a favicon. It is the small image located in the browser window next to the
URL address or if you are using Google Chrome, next to the page title of the website
you are visiting.

Often this step is overlooked when creating or working with themes in Drupal, but
the steps involved in adding a shortcut icon is exactly like adding a logo. Start by
navigating to /admin/appearance/settings and follow these five steps:

1. Locate the SHORTCUT ICON SETTINGS section.
2. Uncheck Use the default icon supplied by the theme.
3. Click on the Choose file button under the Upload icon image field.
4. Locate the exercise files and select favicon.ico from the mockup/assets/

img folder; click on the Open button.
5. Click on the Save configuration button.

Theme Administration

[46]

Our new favicon has now been placed into the sites/default/files folder of our
Drupal installation, as shown in the following image:

We can now preview our shortcut icon by clicking on the Back to site link in the
Admin menu and navigating to the homepage, as shown in the following image:

So far, we have been working with Global settings. However, individual theme
settings can be applied as well. In fact, if we navigate back to the Appearance settings
admin located at /admin/appearance/settings, we will see that Bartik and Seven
can each have their own settings.

Theme-specific settings
Drupal 8 allows for the configuration of theme-specific settings. These can vary
based on the theme and the amount of extensibility that a theme provides. For
example, if we click on the Bartik theme, we will notice that it provides us with an
ability to change the COLOR SCHEME through a series of presets, as shown in the
following image:

Chapter 2

[47]

Feel free to experiment by selecting various color sets and then previewing what
those selections would look like if applied. Outside the core themes shipped with
Drupal 8, we can apply prebuilt themes to provide various features.

Theme Administration

[48]

Using prebuilt themes
Additional themes for Drupal 8 may be limited at first, but we can find prebuilt
themes at several places. Some of these themes have to be purchased, whereas others
are free to use. We will take a look at Drupal.org to find some prebuilt themes and
how to install them using the Drupal admin, how to manually install a theme, and
finally how to uninstall a theme once we're done using it.

Begin by opening up a new tab in our browser and navigating to https://drupal.
org/project/project_theme.

The Download & Extend section of Drupal.org allows us to filter results based on
various options. We can find Drupal 8-specific themes by performing the following
steps:

1. Select 8.x from the Core compatibility dropdown.
2. Click on the Search button.
3. With a selection of themes compatible with Drupal 8 to choose from, one

result looks promising and that is the Bootstrap 3 theme, as shown in the
following image:

https://drupal.org/project/project_theme
https://drupal.org/project/project_theme

Chapter 2

[49]

Installing a new theme
At this point, we should have two tabs opened in our browser. One opened to
the Bootstrap 3 theme and the other tab opened to the Appearance admin of our
Drupal instance.

From the Appearance admin, we can install a new theme by clicking on the Install
new theme button, which will take us to the Install new theme interface, as shown
in the following image:

We will first take a look at using the Install from a URL option to install the
Bootstrap 3 theme.

Installing from a URL
To install a theme from a URL, we only need to know the URL path to the archived
theme file. This can be obtained from the Theme project page where the theme
was found.

Theme Administration

[50]

Follow these four steps:

1. Right-click on the tar.gz link located under the Download column of the
8.x version of the theme.

2. Select Copy Link Address from the context menu.
3. Paste the link into the Install from a URL textbox on the Install new theme

admin screen.
4. Click on the Install button.
5. We should now be presented with the Update manager screen notifying

us that the Installation was completed successfully, as shown in the
following image:

6. Click on the Install newly added themes link to take us back to the
Appearance admin.

Chapter 2

[51]

7. If we look at the Uninstalled themes section, we will see the Bootstrap 3
theme where we can click on the Install and set as default link.

8. To verify that our theme is installed, navigate to the frontend of our site by
clicking on the Back to site link in the Admin menu. We should now see our
new theme being displayed, as shown in the following image:

Congratulations, we have installed our first prebuilt theme. As we can see, the
process of installing a theme from a URL is quite simple. In fact, the process of
installing a new theme from a file is not that different, as we will see.

Uploading a module or theme archive to install
If we navigate to /admin/theme/install, we will be back on the Install new theme
screen. The Upload a module or theme archive to install option requires that we
have a copy of the archived theme downloaded.

Theme Administration

[52]

If we navigate back to the Drupal.org Theme project page and look a little further
down our search results, we will see another popular theme based on the ZURB
Foundation framework, as shown in the following image:

We will be downloading the current Drupal 8 Development release of the theme
by clicking on either the tar.gz or zip links. This will initiate a file download to
our specified downloads folder. We will use this downloaded file to perform the
following steps from the Install new theme admin:

1. Click on the Choose file button from the Upload a module or theme archive
to install input.

2. Locate the downloaded file and select it.

Chapter 2

[53]

3. Click on the Open button.
4. Click on the Install button.
5. Click on the Install newly added themes link from the Drupal 8 Update

manager.
6. If we look at the Uninstalled themes section, we will see the ZURB

Foundation theme where we can click on the Install and set as default link.
7. Navigate back to the frontend by clicking on the Back to site link and verify

that our new theme is being displayed, as shown in the following image:

We have now mastered using the Drupal Admin to install themes from both a URL
and an archive. However, the preferred method to install a theme is by manually
installing it. The benefit to choose this method is that we have full control over the
themes folder, and if we are doing any type of custom theming, we will need to be
familiar with this process anyway.

Theme Administration

[54]

Manually installing a theme
In order to manually install a theme, we will need a copy of the archive downloaded
to our local machine. Start by navigating to the Drupal Theme project page and
locate the Drupal 8 theme named Neato. Neato is based on the Neat grid system
and is part of the Bourbon Sass framework.

Click on the tar.gz or zip file next to the 8.x version of the theme to initiate the
download. Next, we need to locate the tar or zipped file on our machine and extract
the contents of the file. We should now have a theme folder named neato.

In order for Drupal 8 to recognize a new theme, all we need to do is copy the theme
into the themes directory inside our Drupal 8 installation, as shown in the following
image:

Chapter 2

[55]

Our themes folder should now contain three themes. Two of the themes are installed
through the Drupal admin and the third is manually placed. As long as a Drupal 8
theme is configured properly, simply placing it into the themes folder will allow
it to be found by the Drupal admin. However, some themes may come with an
INSTALL.txt or README.txt file that provides additional installation instructions.

Navigate back to the Appearance admin located at /admin/appearance, and we
should see our Neato theme within the Uninstalled themes section. We can now
click on the Install and set as default link to activate our new theme.

With our new theme enabled, we can now view it by navigating back to our
homepage, as shown in the following image:

By now, we should be getting used to working with prebuilt themes. However, the
more themes we play around with, the more our themes folder can become bloated.
It is much easier to manage themes if we have a clean directory structure.

Theme Administration

[56]

Cleaning up our themes folder
To have a much more manageable theme folder, let's take a few moments to do
some housecleaning. First, let's set the Bartik theme back as our default. Once that
is complete, we can uninstall Bootstrap 3, ZURB Foundation, and Neato themes.
Finally, once the three themes are uninstalled, we can remove them from our themes
folder as we will not be using them anymore.

Managing content with blocks
Themes are much more than just layout with their respective HTML, CSS, and
JavaScript. Without content, we would not have much to display. In Drupal 8, a lot
of content has been moved into blocks that are then assigned to various regions.

Think of blocks as small sections of content. These blocks can contain a menu, a
search form, a listing of content, plain HTML, and more. Drupal 8 uses this content
within the Block layout system that makes up a good part of a website.

If you are familiar with blocks in Drupal 7, you will be happily surprised to find
that blocks have matured and are now fieldable, similar to content types. This new
implementation of blocks also allows the same block to be reused and displayed
using different view modes. As we explore the Block layout, we will learn how to
place blocks, configure them, and create custom blocks.

Exploring the Block layout
Begin by navigating to /admin/structure/block or by clicking on Structure
and then Block layout from the Admin menu. The Block layout page provides an
interface in order to manage block content and place them into regions, as shown
in the following image:

Chapter 2

[57]

Blocks and regions
A block can be thought of as a chunk of content as small as a single line of HTML
markup or as complicated as a listing of content types. Blocks can be categorized
based on their functionality with the most common types of blocks categorized:

• Core: Blocks contained within the core installation consisting of items such as
page title, primary admin actions, and tabs.

• System: Blocks that provide system functionality consisting of breadcrumbs,
main-page content, messages, site branding, and a few others.

• Forms: Blocks that contain embedded forms such as the search form and
user login.

• Menus: Blocks that contain menus and menu items, such as Administration,
Footer, Main navigation, and Tools.

• Lists (Views): Blocks consisting of Views generated for block content.
Generally, these types of blocks will be created during configuration
or site building.

• Custom: Blocks are created from the Custom block library consisting of
fieldable blocks with one or more display modes.

Theme Administration

[58]

If blocks consist of content, regions are the containers that hold blocks and make up a
themes layout.

Drupal 8 provides the following regions:

• Header
• Primary menu
• Secondary menu
• Highlighted
• Help
• Content
• Sidebar first
• Sidebar second
• Footer
• Breadcrumb

Also, each theme can define its own regions. An example of this is the Bartik theme,
which implements additional regions for the footer. We will look at how to add
custom regions later in Chapter 3, Dissecting a Theme.

Demonstrating block regions
To view defined regions within a theme, we can click on the Demonstrate block
regions link located on the Block layout page. Clicking on this link will take us to
the homepage with the regions highlighted, as shown in the following image:

Chapter 2

[59]

To return to the Block layout page, we click on the Exit block region demonstration
link located at the top of the page.

Placing blocks into regions
If we scroll down the Block layout page and locate the Sidebar second region, we
can see that it is currently empty. Empty regions will not output anything until we
have placed a block within it. To place a block, we can follow these steps:

1. Click on the Place block button next to the Sidebar second region.
2. Locate the Powered by Drupal block and click on the Place block button.
3. Leave the default settings within the Configure block dialog.
4. Click on the Save block button.
5. We now have a new Powered by Drupal block placed within the Sidebar

second region, as shown in the following image:

Let's verify that the Powered by Drupal block is displaying properly by navigating
to our homepage. Since the Sidebar second region now contains a block, we will
see the content appear in the right-hand column of the page, as shown in the
following image:

So far, we have placed a block successfully within a region, but we can also configure
a block based on the type of block it is.

Theme Administration

[60]

Configuring a block
Although we can navigate back and forth between the specific page a block is located
on and the Block layout screen, it is much easier to use the context menu provided by
the block. If we hover over a block, we will see a Configure block link as, shown in
the following image:

Clicking on this link takes us directly to the Configure block screen for the block, as
shown in the following image:

Chapter 2

[61]

All blocks contain three common areas of configuration: Title, Visibility, and
Region. Keep in mind that additional configuration options may be available based
on the type of block. We will only be covering the basic configuration options.

Managing the title
Block content, whether system generated or custom, can have its display title
changed or even suppressed. In the case of our Powered by Drupal block,
we can change the title by simply inputting a different value in the Title field:

1. Locate the Title field.
2. Change the value to Powered by Drupal 8.
3. Click on the Save block button.
4. We return to the homepage, and we can see that our block title has changed,

as shown in the following image:

Let's try suppressing the block title all together by clicking on the Configure block
context link and following these steps:

1. Uncheck the Display title checkbox.
2. Click on the Save block button.

We should now only see the content of our block being displayed as the title is gone.

Managing visibility settings
Sometimes, we may want to control the visibility of a particular block of content
based on various contexts. If we navigate back to the Configure block screen and
scroll down to the Visibility section, we will see three different contexts to restrict
visibility based on Content types, Pages, and Roles.

Theme Administration

[62]

Content types restriction
Content types' visibility allows us to determine whether a block is displayed based
on the content type of the node or page that the block is placed on. For example, if
we have a block listing of recent articles that we only want to display in the sidebar
on an Article Detail node, we could specify Article for the Content types restriction.
This restriction would ensure that the same block did not accidentally show on a
Basic page node.

Page restriction
Page restriction allows us to whitelist or blacklist blocks of content based on the path
to a specific page or set of pages. The path to the page needs to be entered one line at
a time and can utilize a wildcard "*" character to specify all children pages. Once we
have entered the path, we can choose to negate the condition by either selecting Show
for the listed pages or Hide for the listed pages.

Page restriction visibility is probably the most common visibility setting used for
blocks. Especially with Drupal 8 introducing the ability to reuse blocks, being able to
control what page a block displays on is important to make sure that a block is not
duplicated.

Chapter 2

[63]

Role restriction
The last way to restrict block content is by role. A role is defined by the site
administrator and generally consists of an administrator, editor, contributor, an
authenticated user, and an anonymous user. Visibility to block content can be
restricted by selecting the specific role, as shown in the following image:

Role-specific visibility can be useful to display admin-only content or membership
content to authenticated users without the anonymous user seeing it.

Creating a custom block
So far, we have worked with system-generated blocks. However, with the
introduction of fieldable blocks in Drupal 8, we now have the ability to create custom
blocks. Custom blocks are quite powerful and will be used to display content in
ways not possible previously without a contributed module.

We can create a custom block by navigating back to the Block layout admin located
at /admin/structure/block and following these steps:

1. Locate the Sidebar second region.
2. Click on the Place block button.
3. Click on the Add custom block button.

Theme Administration

[64]

We are now presented with the Add custom block screen that will allow us to create
a default custom block that includes a Block description and a Body field, as shown
in the following image:

We can continue filling out our custom block by entering the following values:

• Block description: Our custom block
• Body: This is some basic content

Chapter 2

[65]

Click on the Save button to proceed to the Configure block screen as follows:

We can complete the creation of our custom block by leaving the defaults and
clicking on the Save block button.

We have now created our first custom block, and if we scroll to the bottom of the
Block layout admin, we will see our block displayed in the Disabled section, as
shown in the following image:

At this point, we can place our custom block within any region by using another
method of placing blocks, the Region dropdown. The Region dropdown is visible
within each region and allows a block to quickly move another region by selecting
the specified region from the dropdown.

Theme Administration

[66]

Let's move our custom block into the Sidebar second region by following
these steps:

1. Select Sidebar second from the Region dropdown.
2. Click on the Save blocks button to save our changes.

If we navigate to the homepage, we will see our new custom block displayed in the
right sidebar directly under our other block.

Managing custom blocks
If we want to edit the block content of a custom block, we will not find it by selecting
the Configure block button in its context menu or by clicking on the Configure
button next to the block from the Block layout page. Custom blocks can only be
configured from the custom block library located at /admin/structure/block/
block-content or by clicking on the Custom block library tab from the Block
layout admin.

Exploring the custom block library
The Custom block library tab displays any custom blocks that have been created. It
is from here that we can Edit any custom block:

Chapter 2

[67]

Clicking on the Edit button will bring up the Edit custom block page where any
content, including the Block description, Body, or additional fields, can be changed.

The Custom block library consists of both the Blocks tab, which displays all custom
blocks, and the Types tab, which displays the various block types that have been
created. A block type is similar to a content type and contains a lot of the same traits
as a content type. Let's take a closer look at the custom block type.

Exploring block types
Selecting the Types tab from the Custom block library exposes that we currently
have a single block type named Basic block.

A Basic block contains a title and a body field, similar to that of the Page content
type. However, we now have the ability to manage both the View mode of a block
as well as to manage the fields a block can have. This new functionality allows us
to extend the normal block way further than before. Let's take a look at how we can
manage the fields of a basic block by adding a new field.

Theme Administration

[68]

Managing fields
The minute we click on the Manage fields button, we are seeing something quite
familiar to us, the Fields UI. The Fields UI allows us to manage existing fields
as well as add new fields, as shown in the following image:

The Fields UI consists of the following:

• LABEL: This is a descriptive name of our field that will be used as a label
when inputting content into this field.

• MACHINE NAME: The machine name is a lower case field name used by
Drupal to distinguish this field from others.

• FIELD TYPE: This allows us to choose from various field types, such as date,
file, text, and more.

We can add an additional field to our basic block type now by following these steps:

1. Click on the Add field button.
2. Select Image from the Add a new field dropdown.
3. Enter a Label of Featured Image.
4. Click on the Save and continue button.

Chapter 2

[69]

5. Leave the default settings on the field settings page.
6. Click on the Save field settings button.
7. Leave the default settings on the Edit page.
8. Click on the Save settings button.
9. We have successfully added a new field to the Basic block type that all future

custom blocks can use to add a Featured Image to, as shown in the following
image:

We could continue to add additional fields as needed, but we will stop at this point
and focus on how to manage the display of custom blocks and their respective
View modes.

Theme Administration

[70]

Managing display
The Custom block library not only allows us to manage fields using the Fields UI,
but we can also manage the display of the fields. Continuing with Our custom block,
we will click on the Manage display tab. Managing the display of a block is exactly
like managing the display of a content type.

From the Manage display page, we can manage several display options ranging
from showing or hiding the label to configuring the format of a field. The format
options will vary based on the field type it is referring to. Feel free to play around
with the various settings and preview the changes.

The final thing to point out is the custom display settings or view modes that a block
can have. If we expand the CUSTOM DISPLAY SETTINGS field, we will only see
one View mode which is called Full. Drupal 8 allows us to create additional View
modes for use with custom blocks the same way we create content types.

Chapter 2

[71]

If we navigate to /admin/structure/display-modes/view or using the Admin
menu, click on Structure, Display Modes, and finally View modes. We will see
all the options available to create additional View modes for Content as well as
Custom blocks.

The View modes page contains several prebuilt displays based on Content, User,
Taxonomy term, Comment, and Custom Block. If we scroll down to the Custom
block section, we will see Full display. We can Edit or Delete this display or add
additional displays by clicking on the Add new Custom Block view mode link. New
view modes are simply containers to hold the display of our fields when we specify
one to be used back on the Manage display page.

Theme Administration

[72]

Summary
We have covered a lot of information surrounding the administration of themes in
Drupal 8. So, let's recap exactly what we have covered so far:

• We answered the question, "What is a theme?"
• We took an in-depth look at the Appearance interface and how we can use it

to install, uninstall, and configure settings, including toggling the display of
certain page elements.

• We learned how to work with the logo image settings and shortcut icon
settings that can be configured for themes.

• We worked with prebuilt themes and learned where to find them, how to
install them using the Drupal admin, and manually using a theme archive.

• Finally, we took a detailed look at blocks and regions, including how to
configure blocks and control their appearance using the new custom blocks
layout to add additional fields and view modes.

In the next chapter, we will begin dissecting a theme. This includes taking a look
at the file and folder structure of a theme, configuration management, and what
makes up a core theme versus a custom theme. We will also explore the new info.
yml configuration, the role of assets in Drupal, and how templates function with an
introduction to Twig. Finally, we will follow up with looking closer at the theme file
and how it can control variables within our templates.

[73]

Dissecting a Theme
Drupal 8 provides us, as developers and designers, with a unique opportunity
to change the appearance of the output content. We have the ability to manage
the configuration from the admin user interface as well as work with the actual
templates and variables that output the HTML, CSS, and JavaScript. To get a better
understanding, we will take a look at dissecting a theme, as we cover the following:

• Having a proper development environment is important when working
with themes, so we will take a look at the steps involved in configuring
our local environment.

• Next, we will compare the similarities and differences between core default
themes and custom themes while looking at how configuration has changed
in Drupal 8 with the introduction of the info.yml file.

• Being able to breakdown how the metadata of the info.yml works in
conjunction with general information, libraries, and regions will ensure
that we have a better understanding of Drupal's theme configuration.

• The role of templates, where to find core templates, and the process of
overriding templates plays a major role in theming, so we will introduce
ourselves to the Twig templating system.

• Finally, we will look at the role the theme file plays in manipulating template
variables and how we can use it to our advantage when working with
the content.

Dissecting a Theme

[74]

Setting up a local development
environment
Everything we will be creating with Drupal revolves around having a proper local
development environment, and with the move from Drupal 7 to Drupal 8, there has
been a more aligned workflow between local development, staging, and production
environments. This is evident with the introduction of the additional files and
services that are now included within our sites folder, all aimed at allowing
us to have more control during development.

For example, while creating a theme, we will often find ourselves having to clear
Drupal's cache to see any changes that we applied. This includes render cache,
page cache, and Twig cache. Having to go constantly through the process of
clearing cache not only takes up time but also becomes an unnecessary step.

Let's discuss the setup and configuration of our local environment to use a local
settings file that will allow us to disable CSS/JS aggregation, disable render and
page cache, and enable Twig debugging.

Managing sites/default folder permissions
The first step in configuring our local development environment requires making
changes to various files that will live within our sites/default folder or need to be
placed within it. By default, Drupal protects the sites/default folder and any files
within it from being written to. We will need to modify the permissions to make sure
that the owner of the folder has read, write, and execute permissions while everyone
else has only read and execute.

These steps assume that we are familiar with managing permissions, but for
further reference, we can take a look at http://www.wikihow.com/Change-File-
Properties.

Once we have made the required permission changes, we can proceed to creating
and configuring our local settings file.

Configuring settings.local.php
We are all familiar with Drupal's settings.php file. However, in Drupal 8, we can
now have different configurations per environment by creating a settings.local.
php file that the default settings.php file can reference.

http://www.wikihow.com/Change-File-Properties
http://www.wikihow.com/Change-File-Properties

Chapter 3

[75]

We can follow these simple steps to create and enable the new file:

1. First, we will need to copy and rename example.settings.local.php
located in the sites folder to settings.local.php within the sites/
default folder.

2. Next, we need to open settings.php located in our sites/default folder
and uncomment the following lines:
if (file_exists(__DIR__ . '/settings.local.php')) {
 include __DIR__ . '/settings.local.php';
}

3. Save the changes to our settings.php file.

Uncommenting the lines allows settings.php to include our new settings.
local.php file within our default settings while allowing us to manage different
environment configurations.

Disabling CSS and JS aggregation
As part of the performance settings, Drupal will aggregate both CSS and JS to
optimize bandwidth. During development, we are not concerned with bandwidth as
we are developing locally. Using a settings.local.php file, CSS and JS aggregation
are disabled for us. However, if for some reason we want to re-enable aggregation,
we would simply change the TRUE values to FALSE as follows:

/**
 * Disable CSS and JS aggregation.
 */
$config['system.performance']['css']['preprocess'] = TRUE;
$config['system.performance']['js']['preprocess'] = TRUE;

Disabling render and page cache
Another configuration option we can address while having the settings.local.
php file open is render and page cache. This setting allows us to avoid having
to clear Drupal's cache constantly when we make a file change.

Locate and uncomment the following lines:

$settings['cache']['bins']['render'] = 'cache.backend.null';
$settings['cache']['bins']['dynamic_page_cache'] = 'cache.backend.
null';

Dissecting a Theme

[76]

Disabling test modules and themes
One last configuration we will want to make to our settings.local.php file has
to do with test modules and themes. By default, our local settings file enables the
display of various modules and themes meant for testing purposes only. We can
disable them by changing the following TRUE value to FALSE:

$settings['extension_discovery_scan_tests'] = FALSE;

With all of these changes made, we will want to make sure that we save our
settings.local.php file. Now, each time we refresh our browser, we will get
a new copy of all files without the need to clear Drupal's cache to see any changes.

In some instances, we may need to rebuild Drupal's cache before the above settings
will work. If that is the case, we can navigate to /core/rebuild.php, which will fix
any issues.

Now that we have our local development environment configured its time we took
a closer look at default versus custom themes.

Default themes versus custom themes
We have a couple of options when it comes to what themes we want to use in Drupal
8; that is default themes, such as Bartik and Seven that ship with Drupal, or custom
themes that a designer creates and which then get converted into themes. Both
of these are similar in structure and configuration, which we will look closer at
in a minute, but the main separation begins with the folder structure.

Folder structure and naming conventions
In Drupal 8, the folder structure is changed to make it more logical. Everything that
ships with Drupal now resides in a core folder including the default themes, which
are now contained within the core/themes folder. However, any themes that we
download or develop ourselves now reside within the themes folder.

The folder structure comprises the following:

• Default themes: These themes reside in the core/themes directory and
include Bartik, classy, seven, stable, and stark.

• Custom themes: These themes reside in the themes directory at the root
level of our Drupal installation and will contain any contributed themes
or custom themes.

Chapter 3

[77]

Before we can begin creating our own custom themes, we need to have a better
understanding of how themes are configured and exactly how they let Drupal
know where to display content and how the content should look.

Managing configuration in Drupal 8
Theme configuration in Drupal 8 has now adopted YAML. YAML is a human-friendly
data serialization standard used by many programming languages, including Symfony,
which Drupal 8 is now built on. With this adoption, the syntax to create an info file has
now changed as well. One important concept when creating or editing any *.yml file
is that proper indentation is required. Failure to properly indent configuration can lead
to errors or to the configuration not loading at all. We can dive deeper into the specifics
of YAML and find out more detailed information at the Symfony website (http://
symfony.com/doc/current/components/yaml/yaml_format.html).

Reviewing the new info.yml file
The Info.yml file is required when creating any theme. It helps notify Drupal that
a theme exists and provides information to the Appearance interface that a theme is
available to install. We will be working with *.info.yml files when creating our first
theme, so let's take a look at the makeup of a basic example.info.yml file:

name: Example
description: 'An Example theme.'
type: theme
package: Custom
base theme: classy
core: 8.x

libraries:
 - example/global-styling

regions:
 header: Header
 primary_menu: 'Primary menu'
 secondary_menu: 'Secondary menu'
 page_top: 'Page top'
 page_bottom: 'Page bottom'
 highlighted: Highlighted
 breadcrumb: Breadcrumb
 content: Content
 sidebar_first: 'Sidebar first'
 sidebar_second: 'Sidebar second'
 footer: 'Footer'

http://symfony.com/doc/current/components/yaml/yaml_format.html
http://symfony.com/doc/current/components/yaml/yaml_format.html

Dissecting a Theme

[78]

At first glance, the example.info.yml file is logical in structure and syntax. Starting
from the top and moving our way down, the file is broken down by different sections
of metadata containing general information, libraries, and regions. This information
is described using a key: value format. We should begin with understanding how
basic metadata works.

Metadata
The metadata contained within any themes *.info.yml file helps to describe what
type of document it is. In our case, it begins to describe a theme, including the name,
description, and the version of Drupal the theme works with. Some metadata
is required for the theme to function properly, so let's explore the keys in more
detail as follows:

• name (required): This is the name of our theme.
• type (required): This is the type of extension (theme, module, or profile).
• base theme (required): This is the theme that the current theme is inheriting.

In most cases, it is recommended we reference either classy or stable as our
base theme. If we choose not to reference a based theme, then we will need
to set the value to false (base theme: false).

• description (required): This is the description of our theme.
• package (optional): This is used to group similar files when creating modules.
• version (optional): This is created by packaging script.
• core (required): This specifies the version of Drupal that a theme is

compatible with.

One of the most common mistakes when first creating a *.info.yml file is forgetting
to change the core value to 8.x. Failure to set this value will result in the theme not
being displayed within the Appearance interface in the admin.

The next section of a *.info.yml file allows us to manage assets (CSS or JS) using
the new concept of libraries.

Libraries
Drupal 8 introduced a new, high-level principle of managing assets using a libraries
configuration file that can be loaded globally or on a per page basis. This concept
helps to improve frontend performance as well as ensure that any dependencies that
a particular asset needs is loaded properly. One advantage of this is that jQuery no
longer loads on every page as it did in the previous versions of Drupal.

Chapter 3

[79]

The concept of a *.libraries.yml configuration file also means that the style sheets
and scripts properties that we may have been familiar with in Drupal 7 no longer
exist. Instead, the process to manage assets includes saving any CSS or JS files to our
theme's css or js folder and then defining a library file that references the files we
want to use in our theme.

Defining a library
When defining a *.libraries.yml file for a theme, each library will reference
the location of individual CSS or JS files and be organized using the SMACSS
(https://smacss.com/) style categorization.

• Base: This defines CSS reset/normalize plus HTML element styling
• Layout: This defines the macro arrangement of a web page, including any

grid system
• Component: This defines the discrete, reusable UI elements
• State: This defines the styles that deal with client-side changes to components
• Theme: This is purely visual styling for a component

In most cases, a simple library reference will follow the theme categorization. For
example, if we wanted to create an example.libraries.yml file that included assets
for CSS and JS, we would create a library that pointed to our assets, as shown here:

libraryname:
 css:
 theme:
 css/style.css: {}
 css/print.css: { media: print }
 js:
 js/scripts.js

We would then reference the library within our example.info.yml configuration
simply by adding the following:

libraries:
 - example/libraryname

This would result in Drupal adding to every page both CSS and JS files contained
in our library. Where this becomes powerful is in the management of assets, as we
would only ever need to make modifications to our example.libraries.yml file
if we ever needed to add or remove assets.

https://smacss.com/

Dissecting a Theme

[80]

Overriding libraries
Libraries can also be overridden to modify assets declared by other libraries, possibly
added by a base theme, by a module, or even the Drupal core. The ability to override
libraries includes removing as well as replacing assets altogether. The same way we
reference a library from our *.info.yml file, we can override libraries by adding
the following:

libraries-override:

 # Replace an entire library.
 core/drupal.vertical-tabs: example/vertical-tabs

 # Replace an asset with another.
 core/drupal.vertical-tabs:
 css:
 component:
 misc/vertical-tabs.css: css/vertical-tabs.css

 # Remove an asset.
 core/drupal.vertical-tabs:
 css:
 component:
 misc/vertical-tabs.css: false

 # Remove an entire library.
 core/modernizr: false

In this case, the libraries-override configuration achieves something different for
each line. Whether it is replacing an entire library or removing an asset, we now have
the flexibility to control assets like never before.

Extending libraries
Libraries can also be extended to allow overriding CSS added by another library
without modifying the original files. This can be done by adding the following
to our *.info.yml configuration as follows:

libraries-extend:
 core/drupal.vertical-tabs:
 - example/tabs

In this case, the libraries-extend configuration is extending Drupal's own
core.libraries.yml file and extending the drupal.vertical-tabs library
with additional styling.

Chapter 3

[81]

While we now have a general understanding of how libraries are defined,
overridden, and extended, we have only dealt with libraries globally loaded into our
Drupal instance using our configuration file. However, there are two more methods
to include assets within a page directly, without the need to add it to every page.

Attaching a library
In many cases, we may be developing some CSS or JS functionality that is specific
to an individual page. When we are presented with this requirement, we have the
ability to attach a library to a page using two different methods.

Using Twig to attach a library
While we will be learning all about Twig a little later in the chapter, we need to
pause for a moment to reference a Twig function named {{ attach_library() }}.
This function allows us to add to any Twig template a library that may include CSS
or JS that will load on that page only.

For example, if we wanted to add the Slick Carousel (http://kenwheeler.github.
io/slick/) to our page, we may define the library within our example.libraries.
yml file as follows:

Slick
slick:
 version: VERSION
 css:
 theme:
 vendor/slick/slick.css: {}
 js:
 vendor/slick/slick.min.js: {}
 dependencies:
 - core/jquery

We could then turn around and add the following to our Twig template:

{{ attach_library('example/slick') }}

This provides us with some nice functionality to define individual libraries for
various user functions and also to have those assets used wherever we choose
to attach them.

http://kenwheeler.github.io/slick/
http://kenwheeler.github.io/slick/

Dissecting a Theme

[82]

Using the preprocess functions to attach a library
Another method to attach a library to an individual page depends on creating
a *.theme file, which allows us to use preprocess functions to manipulate page
variables. We will learn a lot more about creating a *.theme file a little later in
the chapter, but it's important to note that we could attach the same Slick Carousel
to our homepage without globally calling it by using a preprocess function,
as shown in the following example:

function example_preprocess_page(&$variables) {
 if ($variables['is_front']) {
 $variables['#attached']['library'][] = 'example/slick';
 }
}

Here, we are checking to see whether we are on the homepage of our website
and attaching our Slick library using the #attached library array. Again, this
may seem a little bit advanced at this point but does merit mentioning.

The last section we will want to cover when working with any *.info.yml file
is about regions that can be defined for the layout of our theme.

Regions
Regions play a critical part in theming, as Drupal needs to know exactly where
content can be displayed. This has an impact on what regions are visible to the Block
layout for both system blocks and custom blocks that we may want to use. If we do
not specify any regions within our *.info.yml file, then Drupal will provide us with
regions by default.

If we decide to add additional regions to our theme, we must also add the defaults or
else we will not have access to them. Let's take a look at how this is implemented:

regions:
 header: Header
 primary_menu: 'Primary menu'
 secondary_menu: 'Secondary menu'
 page_top: 'Page top'
 page_bottom: 'Page bottom'
 highlighted: Highlighted
 breadcrumb: Breadcrumb
 content: Content
 sidebar_first: 'Sidebar first'
 sidebar_second: 'Sidebar second'
 footer: 'Footer'

Chapter 3

[83]

The value for each key is what is displayed in the Block layout within the Drupal
UI and can be named whatever we want to name it. We can add additional regions
based on our theme as needed. We will look at this in more detail in Chapter 4,
Getting Started – Creating Themes.

Now that we have covered the basics of theme configuration, it's time for us to
set up a local development environment that will enable us to work with files and
templates without worrying about having to clear the Drupal cache or guess what
Twig templates are being used.

The role of templates in Drupal
We may have heard the term "template" before when talking to someone about
theming and Drupal. But what exactly is a template? We can think of a template
as a text file no different from any HTML document that provides a method for
separating the presentation layer from the business logic. In traditional PHP
websites, we have the ability to mix PHP with HTML and CSS, which makes
managing web pages both difficult and dangerous. Drupal provides us with the
ability to use templating engines to enforce the separation of the two, so we can
begin to focus more on the HTML and CSS and worry less about the PHP.

How templates work
In general, templates can contain HTML markup and PHP variables that output
content contained within a Drupal database. Templates can be as small as a few lines
of HTML that hold the presentational layer for a block that is displayed in a region
on the page, or the actual page itself, with containers defined for header, content,
and so on.

Dissecting a Theme

[84]

To get a better idea of what this looks like, let's take a look at the following image:

If we break down the image into logical sections of a website, we can begin to get an
idea of what constitutes a template. A template can be any of the following:

• HTML wrapper: This contains the top-level HTML markup, including title,
metadata, style sheets, and scripts, and it is commonly referred to as html.
html.twig.

• Page wrapper: This contains the content generally found between the
body tags of an HTML document, and it is commonly referred to as
page.html.twig.

Chapter 3

[85]

• Header: This is also known as a region, generally containing the header
content of our web page. This can be part of the page.html.twig template
or may reside in a region specified within our configuration file. This is
commonly referred to as region.html.twig.

• Content: This is also considered a region, generally containing our main
content. This can consist of multiple subcontent regions, such as nodes and
comments. Nodes and comments each have their own respective templates
referred to as node.html.twig and comment.html.twig.

• Sidebar: This is also considered a region. This can contain blocks of content.
Blocks are either created by the end user or by Drupal itself. The content
within these blocks generally resides within block.html.twig.

• Footer: This is another region containing HTML content as well as blocks
of content.

Drupal and the theme engine it uses to convert the markup and variables into HTML
interpret each individual template or series of templates. We have full control over
what is output using the new Twig templating engine.

Once we begin theming, we will start to see a pattern of how templates are used, and
as we gain more experience, we will find ourselves using less and less templates.
However, to begin with, we will build examples of each to help clarify their
functionality within Drupal.

Where to find templates
The nice thing about Drupal is that, by default, the core system provides us with
all the templates we need to use. So, knowing where to find the core templates
is important because it will allow us to copy them into our own theme folder to
override with our own markup.

Dissecting a Theme

[86]

Let's begin by opening up our Drupal instance in MAC Finder or Windows Explorer
and browsing to the core/modules folder. Contained within this folder are the core
modules that make up Drupal, along with their respective templates. Most of the
core templates will be located in the core/modules/system/templates folder,
as shown in the following image:

If we browse the contents of the templates folder, we will see some of the most
common templates we will be using including the following:

• html.html.twig: HTML wrapper
• page.html.twig: Page wrapper
• region.html.twig: Region wrapper

Three more template folders that we need to be aware of are:

• core/modules/node/templates: This contains the templates for nodes
• core/modules/comment/templates: This contains the comment templates
• core/modules/block/templates: This contains the templates for blocks

We will find ourselves frequently overriding templates, so we need to make sure that
we know where to find any Twig template that we will be theming.

Chapter 3

[87]

Most of us have done some PHP development or are at least familiar enough with it
to work with the variables that Drupal outputs. So, as we look at the templates, we
should be noticing that the files don't end with a file extension of .php but instead
end with a file extension of .twig. In fact, if we were to look at the html.html.twig
template located in the core/modules/system/templates folder, we won't even
find PHP syntax inside it:

<!DOCTYPE html>
<html{{ html_attributes }}>
 <head>
 <head-placeholder token="{{ placeholder_token|raw }}">
 <title>{{ head_title|safe_join(' | ') }}</title>
 <css-placeholder token="{{ placeholder_token|raw }}">
 <js-placeholder token="{{ placeholder_token|raw }}">
 </head>
 <body{{ attributes }}>

 {{ 'Skip to main content'|t }}

 {{ page_top }}
 {{ page }}
 {{ page_bottom }}
 <js-bottom-placeholder token="{{ placeholder_token|raw }}">
 </body>
</html>

Instead, we will see general HTML markup along with the Twig syntax that will
output content within its place. We will take a closer look at Twig in a moment. First,
we will try our hand at creating a basic theme.

Creating our first basic theme
Now that we have reviewed the basics of how a theme is constructed, there is no
better time than the present to create our first basic theme. We will begin by creating
a theme named twig that we will use to work with exploring how Twig and the
Theme system works in Drupal 8.

In order to make sure that we all are working from the same baseline, let's open up
the Chapter03/start folder located in the exercise files and select the drupal8.
sql database file. We will use this database snapshot to restore our current database
instance. Refer to Chapter 1, Setting Up Our Development Environment for instructions
on how to perform a database restore.

Now that we all have the same baseline Drupal instance, we can navigate to our
Drupal 8 folder using MAC Finder or Windows Explorer and follow these next six
steps to create a theme.

Dissecting a Theme

[88]

Step One – creating a new folder
Create a new folder under our themes folder and call it twig, as shown in the
following image:

Step two – create an info file
Create a new *.info.yml file named twig.info.yml and add the following
configuration information to the file:

name: Twig
type: theme
description: 'A Twig theme for demonstrating TWIG syntax'
core: 8.x
base theme: false

Step three – copy core templates
Copy the html.html.twig and page.html.twig templates from the core/modules/
system/templates folder and paste it into our themes/twig folder. Open up page.
html.twig in our editor and replace the HTML structure below the comments with
the following code:

<h1>Welcome to Twig</h1>
{{ page.content }}

Step four – include a screenshot
Not always a required step but one that will definitely help is including a screenshot
that displays or represents our theme within the Appearance admin. In general, we
would generate a screenshot based on the finished theme, but because we are just
starting out, we can copy an existing one from our exercise files.

Begin by navigating to the Chapter03/end folder and copy the screenshot.png file
to our newly created themes/twig folder.

Chapter 3

[89]

Step five – installing our theme
Next, we will need to install our new theme by navigating to /admin/appearance
and locating our new theme named Twig under the Uninstalled themes section.
Click on the Install and set as default link to install our new theme, as shown in
the following image:

Step six – Welcome to Twig
We have successfully created our first theme. Although there is not much to it, we
can preview what our website looks like by browsing back to the home page of our
Drupal instance. We should see our new theme displaying a message of Welcome to
Twig, as shown in the following image:

With our new theme in place, we can begin taking a deeper look into Twig and all of
the great features that Drupal 8 introduces to us with this new templating engine.

Dissecting a Theme

[90]

Introducing Twig
Twig (http://twig.sensiolabs.org) is the new template engine introduced to
Drupal 8 and is a companion to Symfony, the new PHP framework that Drupal 8 is
built on. Twig provides us with a fast and secure way to separate content from PHP
logic in a manner that makes it easier for non-developers to work with templates.
To help us get a better feel in order to work with Twig, let's first dive into the steps
involved in enabling Twig debugging.

Enabling Twig debug
When Twig debugging is turned on within Drupal, we are able to trace which
template is being used, where a template is located, and a list of suggested file names
to override a template. This functionality is very advantageous and actually quite
simple to set up by following these steps:

1. Open the development.services.yml file located in the sites folder.
2. Add the following lines to the bottom of the file:

parameters:
 twig.config:
 debug : true
 auto_reload: true
 cache: false

3. Save the file.
4. Clear Drupal's cache.

If we navigate back to the homepage and inspect the markup using Google Chrome's
Developer Tools, we can now see Twig debug outputting information, as shown in
the following image:

http://twig.sensiolabs.org

Chapter 3

[91]

There are a couple of items we should make note of when Twig debugging
is enabled:

• FILE NAME SUGGESTIONS: This displays suggestions to name Twig
HTML templates and displays in the order of precedence in which Drupal
folders would look for templates.

• OUTPUT: This displays the location of the template currently being
displayed, which, in our case, is themes/twig/page.html.twig.

Remember that we will only see the debug output when we have the Twig
debugging enabled as part of our local development environment. It is best to
remember to disable debugging before moving a Drupal site to production. So now
that we have an understanding of what Twig debug provides us with, let's begin
writing some of our own Twig syntax, beginning with comments.

Twig fundamentals
A Twig template outputs PHP with a template-oriented syntax using opening and
closing curly brackets {{ ... }}. This syntax interprets the variable between the
brackets and outputs HTML in its place. The following are three kinds of delimiters
in Twig that trigger an evaluation to take place:

• The first is Twig commenting, which uses the comment tag {# ... #} to
provide comments inline or around a section of HTML.

• Next is the print tag {{ ... }}, which is used to print the result of an
expression or variable. The print tag can be used by itself or within a
section of HTML.

• The third tag is to execute a statement such as conditional logic, looping
structures, or the assignment of values to variables and is expressed by
using {% ... %}.

Each of the three delimiters will be used when we do any type of theming projects
within Drupal 8. We will find that they are just as simple as using any regular HTML
element, and we will quickly be writing these tags.

Commenting variables
We are familiar with HTML commenting such as <!-- This is a comment -->,
which allows us to add descriptive text to our markup. We saw an example of this in
the Twig debug output once we enabled it. Twig provides us with the ability to add
comments as well using the {# comment #} syntax.

Dissecting a Theme

[92]

If we open page.html.twig within our editor, we can add a Twig comment by
adding the following:

{# This is a comment in Twig #}
<h1>Welcome to Twig!</h1>

Once we save our template, refresh the browser and inspect the heading. We
will note that we don't actually see the comment being displayed. Unlike HTML
comments, Twig comments are meant to be hidden from browser output and are
meant only for the developer.

Setting variables
Twig can also assign values to variables using a technique named Assignment.
Assignment uses the set tag to place a value into a variable, which can then
be used later within a template to output the value.

Open page.html.twig and add the following above our heading:

{# Setting a variable #}
{% set name = 'Drupal' %}

{# This is a comment in Twig #}
<h1>Welcome to Twig!</h1>

If we save our template and refresh the browser, we will not see any changes to our
HTML as we are only setting a variable but not using it anywhere in our document.
So how do we then use a variable?

Printing variables
Twig allows us to print variables by simply referencing them within our document
using the {{ variable }} syntax to trigger the interpreter to replace the variable
name with the value stored in it. We can try this by replacing the word Twig in our
heading with the name variable.

Open page.html.twig and add the following:

{# Setting a variable #}
{% set name = 'Drupal' %}

{# This is a comment in Twig #}
<h1>Welcome to {{ name }}</h1>

Chapter 3

[93]

If we save our template and refresh the browser, we will see that our heading now
says Welcome to Drupal. The name variable we set has output the word Drupal in
its place. This is the same technique that we will be using to output variables in our
Twig templates to display content from Drupal. In fact, if we sneak a peek at our
html.html.twig template, we will see a variety of twig variables being used
to output content.

Dumping variables
While theming in Drupal, we will be working with both simple and complex
variables consisting of PHP arrays that contain multiple values. Knowing that there
can be multiple values, it is sometimes useful to dump the contents of the variable
to know exactly what we are working with. The {{ dump() }} function allows us
to view information about a template variable and is only available to us when Twig
debugging is turned on. Let's take our name variable for instance and dump the
contents to see what it contains.

Open page.html.twig and add the following to the bottom of the template:
{# Dumping variables #}
{{ dump(name) }}

If we save our template and refresh the browser, we will now see the name variable
being dumped to the page displaying some additional info about our variable.

Using the dump() function, we can introspect more than one variable at a time by
passing multiple arguments. Let's try this by adding an additional Drupal variable
named is_front, as shown in the following code sample:

{# Dumping variables #}
<pre>{{ dump(name, is_front) }}</pre>

If we save our template and refresh the browser, we will now see the is_front
variable being dumped to the page as well as displaying some more information,
as shown in the following image:

Dissecting a Theme

[94]

By now, we should be comfortable working with a Twig template and variables.
However, we can do much more with Twig than just print variables though.
We can also apply filters to variables to achieve different functionality.

Filters
Filters provide us with a way to modify variables. The filters are generally separated
by a pipe character (|) and may accept arguments depending on the filter's purpose.
Twig provides us with currently 30+ filters that we can apply to variables. Let's try
out filters now by applying an uppercase filter on our name variable.

Open page.html.twig and add the following:

{# Apply filter to name variable #}
<p>{{ name|upper }} Rocks.</p>

If we save our template and refresh the browser, we will now see that the name
variable is converted to uppercase inside our paragraph tag, as shown in the
following image:

Chapter 3

[95]

We can also use filters to wrap sections of HTML and variables, which apply the
filter to more than one item at a time. An example of this would be if we wanted
to uppercase a whole paragraph versus just the name variable.

Open page.html.twig and add the following:

{% filter upper %}
<p>{{ name }} is the best cms around.</p>
{% endfilter %}

If we save our template and refresh the browser, we will now see that the entire
paragraph including the name variable is converted to uppercase, as shown in the
following image:

This is just an example of one of the many filters that can be applied to variables
within Twig. For a detailed list of filters, we can refer to http://twig.sensiolabs.
org/doc/filters/index.html.

http://twig.sensiolabs.org/doc/filters/index.html
http://twig.sensiolabs.org/doc/filters/index.html

Dissecting a Theme

[96]

Control structures
There will be situations while theming with Twig where we will need to check
whether a variable is True or False or need to loop through a variable to output
multiple values contained in an array.

Control structures in Twig allow us to account for these types of functions using {%
… %} blocks to test for expressions and traverse through variables that contain arrays.
Each control structure contains an opening and closing tag similar to PHP logic. Let's
take a look at a couple of the most commonly used control structures starting with
the if tag used to test an expression.

Open page.html.twig and add the following:

{# Conditional logic #}
{% set offline = false %}

{% if offline == true %}
 <p>Website is in maintenance mode.</p>
{% endif %}

If we save our template and refresh the browser, we will not see anything actually
displaying yet. The reason is that the offline variable is currently set to false and
we are checking to see whether it is true.

Open page.html.twig and edit the offline variable changing its value to true:

{# Conditional logic #}
{% set offline = true %}

{% if offline == true %}
 <p>Website is in maintenance mode.</p>
{% endif %}

Chapter 3

[97]

Now resave our template and view the page in the browser. This time, we will see
our paragraph displayed, as shown in the following image:

By now, we are starting to see how control structures within Twig can come in
handy to hide or show certain markup within our template based on the value of
a variable. This will come in handy when we have certain Drupal regions that we
want to display when a block is placed into a region.

The other commonly used control structure in Twig is looping. The for tag is used
to loop over each item in a sequence. For our example, let's try looping based on a
number of items and outputting the count.

Open page.html.twig and add the following:

{# Looping #}
{% for i in 0 ..10 %}
 {{ i }}
{% endfor %}

Dissecting a Theme

[98]

If we save our template and view the page in the browser, we will be presented with
the count within our loop displaying on the page starting at 0 and going to 10, as
shown in the following image:

This is a simple loop, and it only really demonstrates the use of the for tag. Once we
start creating additional Twig templates, we can loop through more complex Drupal
variables. More extensive documentation regarding the for tag can be found at
http://twig.sensiolabs.org/doc/tags/for.html.

Template variables
Drupal 8 uses variables to output data within Twig templates. We know that
variables generally consist of anything from a simple string to a complex object
containing an array of values. If we look at the html.html.twig template, we will
see documentation that outlines the variables available to us along with the name
of the variable and a description of what the variable contains:

Variables:
 logged_in: A flag indicating if user is logged in.
 root_path: The root path of the current page (e.g., node, admin,
user).
 node_type: The content type for the current node, if the page is a
node.
 head_title: List of text elements that make up the head_title
variable.
 May contain or more of the following:
 - title: The title of the page.
 - name: The name of the site.
 - slogan: The slogan of the site.
 - page_top: Initial rendered markup. This should be printed before
'page'.
 - page: The rendered page markup.

http://twig.sensiolabs.org/doc/tags/for.html

Chapter 3

[99]

 - page_bottom: Closing rendered markup. This variable should be
printed after 'page'.
 - db_offline: A flag indicating if the database is offline.
 - placeholder_token: The token for generating head, css, js and js-
bottom placeholders.

Each of the variables that our template has access to can be output using Twig
syntax. For example, the head_title variable outputs the title of our page within
the <title> element. Drupal also uses {{ attributes }} to print out additional
information to our page, for example, the <body> element to output CSS classes
needed by modules or themes.

Each template we will work with uses variables to output database content. What if
we want to add additional variables to Drupal? This is where the role of the theme
file comes into use.

The role of the theme file in Drupal
Themes can be simple to compose, sometimes containing a single configuration file,
a couple of Twig templates, and a few assets. However, there will be times when
we need to intercept and override variables and data that Drupal outputs before
them reaching our Twig templates. Drupal's API (https://api.drupal.org/api/
drupal/8) allows us to create a *.theme file where we can add theme functions that
can hook into the API using different types of function calls.

• Preprocess: This is a set of function calls specific to different templates that
allow us to manipulate variables before they are output to the page.

• Hooks: This is a set of function calls to hook into the Drupal API that allows
us to alter variables and override default implementations.

Preprocessors and hooks
The main role of preprocessor functions is to prepare variables to be used within our
Twig templates using template_preprocess functions. These functions reference
the theme and template we want to intercept. We would write an example of
intercepting the html.html.twig template variables used within our Twig theme
as follows:

twig_preprocess_html(&$variables) {

}

https://api.drupal.org/api/drupal/8
https://api.drupal.org/api/drupal/8

Dissecting a Theme

[100]

With this simple function call, we can hook into the theme preprocessing to intercept
the $variables argument and manipulate it as needed before our template receives
the variables. In order for us to use this function, we need to do the following steps:

1. Create a twig.theme file within the themes/twig folder. The twig.theme
file will contain all the PHP functions we will write to work with
Drupal's API.

2. Add the following within our twig.theme file and then save the file as:
<?php

/**
 * Implements hook_preprocess_html().
 */
function twig_preprocess_html(&$variables) {
 // add to classes
 $variables['attributes']['class'][] = 'twig';
}

Whenever we add a file or template for the first time, we will need to clear the
Drupal cache.

Overriding variables
Now that we have created our twig.theme file and have the outline of our first
preprocess hook, let's take a look at how to override a variable. Previously, we saw
that Drupal was adding classes to our body tag using the $attributes variable.
But what if we want to add additional classes specific to our theme?

Open twig.theme and edit the preprocess function to include the following:

/**
 * Implements hook_preprocess_html().
 */
function twig_preprocess_html(&$variables) {
 // add to classes
 $variables['attributes']['class'][] = 'twig';
}

Chapter 3

[101]

Now if we save our twig.theme file and refresh the browser, we will see that our
class is added, as shown in the following image.

While we have only touched the surface of the functionality that we can use when
theming, we are purposely not going into depth regarding all the API calls that we
have access to with Drupal 8. If you are interested in taking a deeper look, you can
find the reference at https://api.drupal.org/api/drupal/8.

One last thing to note is that we can reference the completed exercise files for
Chapter 3, Dissecting a Theme, if we need to compare any of the work we just
completed or perform a database restore.

Summary
From core themes to custom themes, we covered a lot of information. Remember that
it's ok to go back and review any section to ensure that everything is understood.
As we continue working through creating themes, our skills will only increase, and
hopefully, we will all become theming experts when we're all done.

• We reviewed the new info.yml file and how Drupal recognizes metadata,
stylesheets, scripts, regions, and settings.

• We looked at the role of assets in Drupal and what has changed since
Drupal 7 with the addition of new JavaScript libraries and CSS best practices.

• Templates play a large part in theming, and we covered the basics of how
they function including setting up our first theme and local development
environment.

• We answered what Twig is and how much it empowers themers to build
templates without having to worry about the laborious knowledge of PHP.

• Finally, we took a brief look at the *.theme file and how simple it is to
override Drupal variables for use within our templates.

In the next chapter, we will dive even deeper into theming by creating a subtheme
using Classy. We will also look at how easy it is to create a responsive starter theme
following best practice methods to add CSS and JavaScript frameworks, such as
Twitter Bootstrap. This will be followed up with a more detailed look at the *.theme
file while using the Devel module to output variables within our Twig templates.

https://api.drupal.org/api/drupal/8

[103]

Getting Started – Creating
Themes

Drupal developers and interface engineers do not always create custom themes
from scratch. Sometimes, we are asked to create starter themes that we begin any
project from or subthemes that extend the functionality of a base theme. Having
the knowledge of how to handle each of these situations is important, and in this
chapter, we will be learning it as we cover the following:

• First, we will create a starter theme that will walk us through managing
folder and file structures, configuring a *.info.yml file, and allow us to
work with a *.libraries.yml file to manage both CSS and JS assets. Our
starter theme will involve multiple techniques that are common to any
theme, including integrating a CSS framework such as Twitter Bootstrap.

• Next, we will rethink over layout strategies when creating a starter theme
and discuss best practices to separate layout from presentation. This will
include diving deeper into the Theme layer and how we can use contributed
modules such as Devel to work with variables.

• Finally, we will create a subtheme that extends the base theme Classy.
Having the ability to take advantage of a base theme's Twig templates and
assets will allow us to focus on techniques to override CSS without changing
the actual base themes files.

While we work through each section, we have the ability to refer back to the
Chapter04 exercise files folder. Each folder contains a start folder and an end folder
with files that we can use to compare our work when needed. This also includes
database snapshots that allow us to start from the same point when working through
various lessons. Information on how to restore database snapshots is covered in
Chapter 1, Setting Up Our Development Environment.

Getting Started – Creating Themes

[104]

Starter themes
Whenever we begin developing in Drupal, it is preferable to have a collection of
commonly used functions and libraries that we can reuse. Being able to have a
consistent starting point when creating multiple themes means that we don't have
to rethink much from design to design. This concept of a starter theme makes this
possible, and we will walk through the steps involved in creating one.

Before we begin, take a moment to browse the Chapter04/start folder and use the
drupal8.sql file to restore our current Drupal instance. This file will add additional
content and configuration needed while creating a starter theme. Once
the restore is complete, our homepage should look like the following image:

This is a pretty bland-looking homepage with no real styling or layout. So, one thing
to keep in mind when first creating a starter theme is how do we want our content
to look? Do we want our starter theme to include another CSS framework or do we
want to create our own from scratch?

Chapter 4

[105]

Since this is our first starter theme, we should not be worried about recreating
the wheel but instead should leverage an existing CSS framework such as Twitter
Bootstrap.

Creating a Bootstrap starter
Having an example or mockup that we can refer to when creating a starter theme is
always helpful. So, to get the most out of our Twitter Bootstrap starter, let's browse
http://getbootstrap.com/examples/jumbotron/ where we will see an example
of a homepage layout:

As we take a look at the mockup, we can see that the layout consists of two rows
of content with the first row containing a large callout known as a Jumbotron. The
second row contains three featured blocks of content. The remaining typography and
components are taking advantage of the Twitter Bootstrap CSS framework to display
the content.

One advantage of integrating the Twitter Bootstrap framework into our starter theme
is that our markup will be responsive in nature. It means that as the browser window
is resized, the content will scale down accordingly. At smaller resolutions, the three
columns will stack on top of one another enabling the user to view the content easier
on smaller devices.

http://getbootstrap.com/examples/jumbotron/

Getting Started – Creating Themes

[106]

We will be recreating this homepage for our starter theme, so let's take a moment
and familiarize ourselves with some basic Bootstrap layout terminology before
creating our theme.

Understanding grids and columns
Bootstrap uses a 12-column grid system to structure content using rows and
columns. Page layout begins with a parent container that wraps all children elements
and allows us to maintain a specific page width. Each row and column then have
CSS classes identifying how the content should appear. So, for example, if we
wanted to have a row with two equal width columns, we would build our page
using the following markup:

<div class="container">
 <div class="row">
 <div class="col-md-6"></div>
 <div class="col-md-6"></div>
 </div>
</div>

The two columns within a row must combine to a value of 12 because Bootstrap uses
a 12-column grid system. Using this simple math, we can have various size columns
and multiple columns as long as their total is 12. We should also make a note of the
column classes, as we have great flexibility in targeting different breakpoints:

• Extra small (col-xs-x)
• Small (col-sm-x)
• Medium (col-md-x)
• Large (col-lg-x)

Each breakpoint references the various devices from smartphones all the way up to
television-sized monitors. We can use multiple classes class="col-sm-6 col-md-4"
to manipulate our layout, which gives us a 2-column row on small devices and a
3-column row on medium devices when certain breakpoints are reached.

To get a more detailed comprehension of the remaining Twitter Bootstrap
documentation, we can browse http://getbootstrap.com/getting-started/
any time. For now, it's time we begin creating our starter theme.

http://getbootstrap.com/getting-started/

Chapter 4

[107]

Setting up a theme folder
The initial step in our process of creating a starter theme is simple. We need to
open up MAC finder or Windows Explorer and navigate to the themes folder and
create a folder for our theme. We will name our theme tweet, as shown in the
following image:

Adding a screenshot
Every theme deserves a screenshot, and in Drupal 8, all we need to do is simply have
a file named screenshot.png, and the Appearance screen will use it to display an
image above our theme.

Go ahead, copy screenshot.png from the Chapter04/start/themes/tweet folder,
and place it within the themes/tweet folder.

Configuring our theme
Next, we will need to create our themes configuration file, which will allow our theme
to be discoverable. We will only worry about general configuration information to start
and then add library and region information in the next couple of steps.

Begin by creating a new file in our themes/tweet folder named tweet.info.yml
and add the following metadata to our file:

name: Tweet
type: theme
description: 'A Twitter Bootstrap starter theme'
core: 8.x
base theme: false

Note that we are setting the base theme configuration to false. Setting this value to
false lets Drupal know that our theme will not rely on any other theme files. This
allows us to have full control over our theme's assets and Twig templates.

We will save our changes here and clear the Drupal cache. Now we can take a look to
check whether our theme is available to be installed.

Getting Started – Creating Themes

[108]

Installing our theme
Navigate to /admin/appearance within our browser, and we should see our new
theme located in the Uninstalled themes section. Go ahead and install the theme by
clicking on the Install and set as default link.

If we navigate to the homepage, we should see an unstyled homepage:

Chapter 4

[109]

This clean palette is perfect when we are creating a starter theme as it allows us to
begin theming without worrying about overriding any existing markup that a base
theme may include.

Working with libraries
While Drupal 8 ships with some improvements to its default CSS and JavaScript
libraries, we will generally find ourselves wishing to add additional third-party
libraries that can enhance the function and feel of our website. In our case, we have
decided to add Twitter Bootstrap (http://getbootstrap.com), which provides us
with a responsive CSS framework and JavaScript library that utilizes a component-
based approach to theming.

The process really involves three steps. First is downloading or installing the assets
that make up the framework or library. Second is creating a *.libraries.yml file
and adding library entries that point to our assets. Finally, we will need to add a
library reference to our *.info.yml file.

Adding assets
We can easily add the Twitter Bootstrap framework assets by following these steps:

1. Navigate to http://getbootstrap.com/getting-started/#download.
2. Click on the Download Bootstrap button.
3. Extract the zip file.
4. Copy the contents of the bootstrap folder to our themes/tweet folder.

http://getbootstrap.com
http://getbootstrap.com/getting-started/#download

Getting Started – Creating Themes

[110]

5. Once we are done, our themes/tweet folder content should look like the
following image:

Now that we have the Twitter Bootstrap assets added to our theme, we need to
create a *.libraries.yml file that we can use to reference our assets.

Creating a library reference
Anytime we want to add CSS or JS files to our theme, we will need to either create or
modify an existing *.libraries.yml file that allows us to organize our assets. Each
library entry can include one to multiple pointers to the file and location within our
theme structure. Remember that the filename of our *.libraries.yml file should
follow the same naming convention as our theme.

We can begin by following these steps:

1. Create a new file named tweet.libraries.yml.
2. Add a library entry named bootstrap.
3. Add a version that reflects the current version of Bootstrap that we are using.
4. Add the CSS entry for bootstrap.min.css and bootstrap-theme.min.css.
5. Add the JS entry for bootstrap.min.js.

Chapter 4

[111]

6. Add a dependency to jQuery located in Drupal's core:
bootstrap:
 version: 3.3.6
 css:
 theme:
 css/bootstrap.min.css: {}
 css/bootstrap-theme.min.css: {}
 js:
 js/bootstrap.min.js
 dependencies:
 - core/jquery

7. Save tweet.libraries.yml.

We have added a more complex library entry than we did in Chapter 3, Dissecting a
Theme. However, in the previous library entry, we have added both CSS and JS files
as well as introduced dependencies.

Dependencies allow any JS file that relies on a specific JS library to make sure that
the file can include the library as a dependency, which makes sure that the library
is loaded before our JS file. In the case of Twitter Bootstrap, it relies on jQuery and
since Drupal 8 has it as part of its core.libraries.yml file, we can reference it by
pointing to that library and its entry.

Including our library
Just because we have added a library to our theme, it does not mean that it will
automatically be added to our website. In order for us to add Bootstrap to our
theme, we need to include it in our tweet.info.yml configuration file.

We can add Bootstrap by following these steps:

1. Open tweet.info.yml.
2. Add a libraries reference to bootstrap to the bottom of our configuration

as follows:
libraries:
 - tweet/bootstrap

3. Save tweet.info.yml.

Getting Started – Creating Themes

[112]

Make sure to clear Drupal's cache to allow our changes to be added to the Theme
registry. Finally, navigate to our home page and refresh the browser so that we can
preview our changes.

If we inspect HTML using Chrome's developer tools, we should see that the Twitter
Bootstrap library is being included along with the rest of our files. Both the CSS and
JS files are loaded into the proper flow of our document.

Creating a Jumbotron
Many times, a designer will create a section of content that they want to call the
users' attention to. This is sometimes known as a Call to Action or a Hero. Bootstrap
calls this visual treatment a Jumbotron and makes up the first part of our homepage
mockup that we will be creating.

In order for us to implement the Jumbotron, we need to think about how our current
homepage is laid out. We have a custom block called Jumbotron placed within the
Content region. This means that potentially every page will have this block. Also,
every page contains a page title block as well, and based on the mockup, we don't
want that to display on our homepage. So, we need to address these two tasks while
modifying our page to accommodate the Jumbotron.

Chapter 4

[113]

First, we will take advantage of Drupal's new default WYSIWYG to directly edit the
source HTML. This will allow us to add HTML markup directly into our custom
block without worrying about creating a Twig template for it.

Second, we will need to hide the title block on the homepage using page restrictions
on the Block layout admin.

Step one – managing block content
We can manage a block content in multiple ways, but the easiest is by using the
contextual links that Drupal provides. If we navigate to the homepage and locate the
first block that displays "Hello, world!," we can hover over it to see the contextual
links icon:

The contextual links menu will allow us to quickly get to the markup of the block by
following these steps:

1. Click on the Edit link.
2. Locate the Body field.
3. Click on the Source button within the WYSIWYG bar.
4. Add the following markup including the jumbotron and container

elements around the current markup:
<div class="jumbotron">
 <div class="container">
 existing markup...
 </div>
 </div>

5. Click on the Save button.

Getting Started – Creating Themes

[114]

This will accomplish part one of our steps. We should now see that our markup and
content have been replaced and are now being styled according to the mockup:

Step two – hiding the page title
The page title in Drupal 8 is now contained within a block. This allows us to easily
place the page title wherever needed based on our design. It also allows us to
manage it using the same visibility rules available in any block.

In our mockup, we need to suppress the page title from displaying on the homepage.
We can accomplish this by using the contextual menu on the page title block to
configure it, as follows:

1. Click on the Configure block contextual link.
2. Click on the Pages vertical tab on the Configure block screen.
3. Select the Hide for the listed pages.
4. Enter into the Pages text field the path /home.
5. Click on the Save block button.

The page title block is no longer displayed, and our Jumbotron looks pretty close
to the mockup. While this was a pretty simple technique of adding HTML and
Bootstrap classes directly to our content, this actually promotes some bad practices.
Stop and think for a minute about what we just did.

We mixed layout and presentation markup together within a single field and stored
that in the database. First, this is not very flexible. Second, we have no way to reuse
the markup without continuing to add it to fields directly on a per need basis. The
reason we approached the Jumbotron markup this way was to prove a point. There
are always multiple ways to theme something, but often, we will need to rethink
our layout.

Chapter 4

[115]

Rethinking our layout
Often, we will find ourselves having to rethink over the layout we are trying to
accomplish while first creating a starter theme. In fact, creating a starter theme
can actually be challenging at first with a lot of trial and error. Implementing our
Jumbotron is quite a perfect example of trying to fit a square peg in a round hole.
While Drupal will allow us to accomplish layouts in half a dozen different ways,
we always want to follow the best practices.

After taking a look at the Jumbotron example again, we can actually break it down
into more manageable and reusable components. To begin with, the Jumbotron
example is to represent a homepage layout with one row for the Jumbotron and
another row containing three blocks of content that float next to each other equally.
When we started similarly with our Jumbotron block, we actually had all our blocks
placed into our content region.

Adding regions
Regions are key to any layout in Drupal, and the common rule is that anytime we
look at a design or mockup, if we see multiple rows of content, we should equate
each row to a Drupal region. In our case, we have identified a couple of different
regions, but currently our starter theme has no defined regions at all. Therefore,
it is using the default regions provided by Drupal.

What we really need is to add a Jumbotron region and the featured content region.
These two regions will allow us to assign blocks of content to them apart from the
main content region where we currently have them assigned.

One thing to note when adding regions to a theme is that we can't simply add
regions to our configuration without also adding the default regions that Drupal
provides. Failure to add the default regions will result in us only having the defined
regions available to add content to, which is not ideal for a starter theme.

Let's begin by opening tweet.info.yml and adding the following regions to the
bottom of our file:

regions:
 header: Header
 primary_menu: 'Primary menu'
 secondary_menu: 'Secondary menu'
 page_top: 'Page top'
 page_bottom: 'Page bottom'
 highlighted: Highlighted
 breadcrumb: Breadcrumb

Getting Started – Creating Themes

[116]

 content: Content
 sidebar_first: 'Left sidebar'
 sidebar_second: 'Right second'
 footer: Footer
 jumbotron: Jumbotron
 featured: Featured

Make sure to save the configuration file, clear the Drupal cache, and visit the Block
layout page to view our changes, as follows:

Chapter 4

[117]

Managing the block content
When we are on the Block layout screen, we will want to move our blocks into their
respective regions. We can then take advantage of the different regions to address
applying styling that will globally benefit our starter theme.

Begin by following these steps to move our four blocks into place:

1. Locate the Hero block within the Content region.
2. Select Jumbotron from the Region dropdown.
3. Locate the Custom Block One block within the Content region.
4. Select Featured from the Region dropdown.
5. Locate the Custom Block Two block within the Content region.
6. Select Featured from the Region dropdown.
7. Locate the Custom Block Three block within the Content region.
8. Select Featured from the Region dropdown.
9. Click on Save blocks button.
10. Our four blocks should now be placed within the regions, as shown in the

following image:

If we were to navigate back to our homepage, we will no longer see any content
being displayed. Once we have added two new regions and placed our blocks within
those regions, the core Twig templates that Drupal is using to output our content
have no idea that these regions exist.

Getting Started – Creating Themes

[118]

Using Twig templates
The easiest way to work with Twig templates is to allow Drupal and the Twig debug
settings we enabled earlier to do the entire work for us. So what do I mean? Begin by
navigating to the homepage and inspecting the markup using Chrome's developer
tools. Locate the section of markup where we see the div element with a class of
layout-container, as shown in the following image:

Twig debugging allows us to view all the information we need to identify which
Twig template we can use for our homepage. If we look at the information provided,
we can identify the following:

• Drupal is currently using page.html.twig
• The template is located at core/modules/system/templates/page.html.

twig

• Drupal suggests that we can use page--front.html.twig to display the
same content

With these three pieces of information, we can locate, copy, and modify any Twig
template we may need in order to modify the layout and markup of the content
coming from Drupal.

Creating a homepage template
One rule that comes in handy while creating any Twig template is to be as specific
as possible. There is generally multiple FILE NAME SUGGESTIONS that Drupal
recommends and the more granular we are in choosing to name that template the
less we will have to worry about overriding the content we didn't mean to overwrite.

Let's create our homepage template by following these steps:

1. Navigate to the core/modules/system/templates folder.
2. Copy page.html.twig.

Chapter 4

[119]

3. Place the copy of page.html.twig into themes/tweet folder.
4. Rename page.html.twig to page--front.html.twig.

Clear Drupal's cache, browse the homepage, and use Chrome's developer tools
to verify that we are using the page--front.html.twig template in the themes/
tweet folder:

Since we have now created a page--front-html.twig template, any markup we
add or modify within this template will only affect the homepage. Any interior pages
that are added to our website will default to using page.html.twig.

The Jumbotron mockup only needs to display the header, primary menu, footer,
Jumbotron, and featured regions. We can modify our page--front.html.twig
template by replacing the current markup with the following code:

<div class="layout-container">
 <header role="banner">
 {{ page.header }}
 </header>

 {{ page.primary_menu }}
 {{ page.highlighted }}
 {{ page.jumbotron }}
 {{ page.featured }}

 <footer role="contentinfo">
 {{ page.footer }}
 </footer>
</div>

Now save the template and refresh the homepage in the browser. We should now
see the regions we have defined being displayed along with any blocks that are
assigned to them. Speaking of blocks, our Jumbotron block contains markup
within the body field when it should really be moved to a region template.

Getting Started – Creating Themes

[120]

Creating region templates
Just like we were able to create a page-specific Twig template, we can also create
region-specific Twig templates. If we inspect the Jumbotron region using Chrome's
developer tools, we will see from the FILE NAME SUGGESTIONS that we can
create a new Twig template named region--jumbotron.html.twig.

Create the region template by following these steps:

1. Navigate to the core/modules/system/templates folder.
2. Copy region.html.twig.
3. Place the copy of region.html.twig into themes/tweet folder.
4. Rename region.html.twig to region--jumbotron.html.twig.

Clear Drupal's cache, browse the homepage, and use Chrome's developer tools
to verify that we are using the region--jumbotron.html.twig template.

Next, we will want to replace the markup within region--jumbotron.html.twig
with the following markup:

{% if content %}
 <div class="jumbotron">
 <div class="container">
 {{ content }}
 </div>
 </div>
{% endif %}

Now save the template and refresh the homepage in the browser. If we inspect the
Jumbotron region, we will see that our new markup has been added. All we have left
to do is to edit the block and remove the layout markup that we added to the content
previously.

Locate the Jumbotron block on the homepage, hover over it to reveal the context
menu, and follow these steps:

1. Click on the Edit link.
2. Locate the Body field.
3. Click on the Source button within the WYSIWYG bar.

Chapter 4

[121]

4. Replace the current markup with the following markup:
<h1>Hello, world!</h1>
<p>This is a template for a simple marketing or informational
website. It includes a large callout called a jumbotron and three
supporting pieces of content. Use it as a starting point to create
something more unique.</p>
<p>Learn
more »</p>

5. Click on the Save button.

We have now completed our Jumbotron region of the homepage by separating
layout markup from presentational markup. This approach is now reusable and
makes a great location in our starter theme to add Hero content. Let's replicate this
process by adding a Twig template for our featured region as well, as follows:

1. Begin by creating a new file Twig template named region--featured.
html.twig within our themes/tweet folder.

2. Replace the current markup with the following code:
{% if content %}
 <div class="container">
 {{ content }}
 </div>
{% endif %}

3. Now save the template and refresh the homepage in the browser. Our
featured region now has the container class. In addition, the featured region
is constraining the content to the same width as our Jumbotron region.

In order for us to complete the featured region, we need to know which blocks are
within it and add CSS classes to them. Time to look toward the Drupal 8 Theme layer
for help.

Working with the Theme layer
Drupal 8 has an extensive API that includes the Theme layer, which gives us the
ability to alter and preprocess variables before they are output by Drupal. The API
is so extensive that we won't even scratch the surface of the functionality we can
use. More detailed information can be found at https://api.drupal.org/api/
drupal/8.

https://api.drupal.org/api/drupal/8
https://api.drupal.org/api/drupal/8

Getting Started – Creating Themes

[122]

One such function we will be working with is template_preprocess_block, which
prepares values passed to each block before them being output by block.html.
twig. Before we can begin using preprocess functions, we will need to create a
*.theme file.

Begin by creating a new file named tweet.theme within our themes/tweet folder.
Once our theme file has been created, we can add the following preprocess function:

<?php

function tweet_preprocess_block(&$variables){

}

Within our function, we will look for specific blocks based on their IDs and then
apply a CSS class to them that allows the blocks to be displayed in three columns.
One thing to note is that this is by no means the only way to accomplish this
requirement, but to avoid getting too far into the Drupal API we will opt for
a simple solution.

While working with the Theme layer, we need some way to print out the
$variables array that is passed by reference to most functions. Although PHP
provides us with the var_dump() function, this can be a tedious task of reading
through all the information that is printed to the screen, especially since it is not
formatted.

Using Devel to print variables
The Drupal community has provided us with a better mechanism of working with
variables using a third-party contributed module named Devel. The Devel module
can be found at https://drupal.org/project/devel and is a set of helper
functions to work with variables as well as a list of other functionality that we will
not be using at this time.

Because this is our first time installing a contributed module for use with Drupal 8,
we can follow these steps to download and install the module:

1. Navigate to the Devel project page https://drupal.org/project/devel.
2. Click on the TAR or ZIP download link for the latest Drupal 8.x version.
3. Create a folder named contrib within the modules folder of our Drupal 8

instance.

https://drupal.org/project/devel
https://drupal.org/project/devel

Chapter 4

[123]

4. Extract the contents of the devel module to the contrib folder, as follows:

The contrib folder will hold any contributed modules that we install, including the
Devel module. Now we need to install and configure the Devel module by following
these steps:

1. Navigate to /admin/modules within the browser.
2. Locate the Devel module under the DEVELOPMENT section.
3. Click on checkbox next to Devel to install it.
4. Locate the Devel Kint module.
5. Click on checkbox next to Devel Kint to install it.
6. Click on the Install button at the bottom of the Extend page.

Now that we have Devel and Devel Kint installed, we can move on to using it to
display $variables within our preprocess function to help identify information
we will need to complete our function.

Getting Started – Creating Themes

[124]

Printing variables from a function
If we open back up our tweet.theme file, we currently have an empty preprocess
function. This function accepts a parameter that is passed by reference that holds any
$variables available to be used by blocks. We can use the Devel module to now
output $variables to our page by adding the following line of code to our function:

<?php

function tweet_preprocess_block(&$variables){
 dpm($variables);
}

The dpm() function will take whatever values that are passed to it and output the
contents in a print friendly format. To see this in action, let's save our file, clear
Drupal's cache, and browse to our homepage. If Devel is working properly, we
should see six different sections of our site displaying a collapsed information box
that contains the contents of the $variables array. Each instance represents the
values for each block currently assigned to regions. This is due to the fact that our
preprocess function runs once for each block, as follows:

Chapter 4

[125]

We are interested in the three custom blocks that appear in our featured region.
Assuming the blocks load in the order that the regions are printed, we should be able
to expand the fourth information box to see more information. In particular, we are
interested in the block attributes that contain the ID of each block, as follows:

The longer we look at the information being output, the more it makes sense how
to traverse through the array to access information we can use. For instance, to grab
the ID of each block, we could access it by writing $variables['attributes']
['id'] within our preprocess function. Now all we need to do is add some logic
to our function that looks for the ID within a list of block IDs and add a CSS class to
the block if found. We can accomplish this by adding the following to our preprocess
function:

function tweet_preprocess_block(&$variables){

 // Add layout class to Featured Blocks
 $featured = array('block-tweet-customblockone','block-tweet-
customblocktwo','block-tweet-customblockthree');

 $id = $variables['attributes']['id'];

 // If block id matches list - add class
 if(in_array($id, $featured)){
 $variables['attributes']['class'][] = 'col-md-4';
 }
}

Getting Started – Creating Themes

[126]

Remember to remove the dpm() function we added previously. Next, we can clear
Drupal's cache and then browse our homepage where we will see our three custom
blocks aligned to our grid:

We have definitely mastered using the Twitter Bootstrap framework with our starter
theme to recreate the mockup Jumbotron example. By modifying Twig templates,
using theme suggestions, working with new regions, and diving deeper into the
Theme layer, we were able to have Drupal output HTML markup exactly how we
needed it.

While starter themes are very flexible, they do require a little more work than simply
using an existing base theme. We can take a quick look at what this means by creating
a subtheme next.

Subthemes
One point of interest in Drupal 8 is that there is a new base theme named Classy,
which both Bartik and Seven reference. This means that Bartik and Seven in reality
are subthemes. So why not learn from the best, in this case, Morten Birch Heide-
Jørgensen, otherwise known as "Div Killer." Morten has come through, as his
nickname suggests, and created one hell of a base theme.

To become a little more intimate with this new base theme, we will create a subtheme
of our own called Sassy. Since the steps involved to create and install a subtheme are
similar to a starter theme, we will progress a little faster through this first part.

Chapter 4

[127]

Adding the theme folder
Begin by navigating to our themes folder and create a new folder inside named sassy.

Including a screenshot
Go ahead and copy screenshot.png from the Chapter04/start/themes/sassy
folder and place it within the themes/sassy folder.

Configuring our theme
Begin by creating a new file in our themes/sassy folder named sassy.info.yml
and add the following metadata to our file:

name: Sassy
type: theme
description: 'A Classy sub theme but a little more Sassy'
core: 8.x
base theme: classy

Note that we are setting the base theme configuration to classy this time. Setting
this value to classy lets Drupal know that our subtheme will inherit all the
configuration and files from the base theme.

We will save our changes at this time and clear the Drupal cache. Now we can take a
look to see if our theme is available to install.

Installing our theme
Navigate to /admin/appearance within our browser and we should see our new
theme located in the Uninstalled themes section. Go ahead and install the theme
by clicking on the Install and set as default link:

Getting Started – Creating Themes

[128]

This time when we navigate to our homepage, we will see that our markup has
changed, we are now inheriting the markup and libraries from Classy. We can verify
this by using Chrome's developer tools to inspect the page. Looking at the FILE
NAME SUGGESTIONS of any region, we will note that the Twig templates are
coming from core/themes/classy/templates/*, as follows:

Touring Classy
We can take a closer look at Classy by navigating to the core/themes/classy
folder of our Drupal instance. At first glance, the theme structure of Classy is quite
organized. It is well-structured with folders for CSS, images, and a multitude of Twig
templates. Each template has been organized based on its functionality as follows:

Chapter 4

[129]

Everything so far screams best practices and is one of the major benefits of creating
a subtheme that uses Classy as a base theme. However, we can still add our own
regions, libraries, and Twig templates as we would for any other theme. However, in
some cases, we may find ourselves also needing to override libraries with our own
CSS or JS without modifying any assets directly located in the base theme.

Overriding a library
So when we talk about overriding a library, we have options to replace the entire
library, replace an asset with another asset, or remove an asset or entire library
simply by using libraries-override within our theme's *.info.yml file.

Take the status message block as an example. Anytime we edit a block, a node,
or anything in Drupal that has an edit form, once we click the save button, we
will see a status message letting us know the outcome of our action.

In this case, the default styling for the status message is coming from the base theme
Classy. In fact, if we look at the classy.libraries.yml file located in the core/
themes/classy folder, we can see an entry pointing to css/components/messages.
css:

messages:
 version: VERSION
 css:
 component:
 css/components/messages.css: { weight: -10 }

What if our subtheme calls for different styling? If we want to override messages.
css with our own version of the file, we can do so using libraries-override.

All we need to override this file is a *.libraries.yml file for our subtheme,
a library entry pointing to our own messages.css file, and a reference within
our *.info.yml file telling Drupal what we want to override.

Let's override Classy's messages styling by following these steps:

1. Copy the css folder from the Chapter04/start/themes/sassy folder and
place it within the themes/sassy folder.

2. Create a new sassy.libraries.yml file within the themes/sassy folder.

Getting Started – Creating Themes

[130]

3. Add the following library entry to sassy.libraries.yml:
 messages:
 version: VERSION
 css:
 theme:
 css/messages.css: {}

4. Save sassy.libraries.yml.
5. Open sassy.info.yml and add the following configuration:

 libraries-override:
 classy/messages: sassy/messages

6. Save sassy.info.yml.

Now we can clear Drupal's cache and then browse our homepage where we can edit
the homepage by following these steps:

1. Click on the Edit tab to open the Welcome to Drupal 8 Edit form.
2. Click on the Save and keep published button.

Once back on the homepage, we should see that the status message is now picking
up our messages.css rules and is now overriding the messages.css that was
originally coming from the Classy base theme.

It is hoped that by now, we can see how libraries-override will come in handy
whenever we want to replace assets injected from base themes, modules, or even
Drupal core. For more information and examples, such as libraries-override,
feel free to review the documentation at https://www.drupal.org/theme-
guide/8/assets.

As we progress to creating custom themes, we will find we often need to add the JS
functionality. Although we will not be covering it in this chapter, we will take a look
at working with JS libraries in great detail in Chapter 6, Theming Our Homepage.

https://www.drupal.org/theme-guide/8/assets
https://www.drupal.org/theme-guide/8/assets

Chapter 4

[131]

Summary
The starter theme or subthemes are all just different variations on the same techniques.
The level of effort to create each type of theme may vary, but as we saw there was a lot
of repetition, and by now, we have already created a couple different themes. So, let's
look back to what we covered in this chapter:

• We began with a discussion around starter themes and learned what steps
were involved in integrating a CSS framework such as Twitter Bootstrap.

• We worked extensively with libraries and best practices for creating a
homepage from a mockup. This included how to rethink layouts and
how to avoid the pitfalls that we may come across when theming blocks
and regions.

• Working with the Theme layer came in handy when needing to understand
what was available to us when working with preprocess functions. From
using contributed modules such as Devel to print variables to creating
Twig templates, we learned how to separate layout from presentation.

• Finally, we took a quick look at subthemes and discussed the benefits
of using them while still being able to override any assets they include
without modifying the original assets.

In the next chapter, we will prepare ourselves for a large web-based project that
will involve setting up our themes structure, using essential modules, and walking
through the completed website that contains a home page, interior page, blog
section, contact page, and search results.

[133]

Prepping Our Project
One of the most important things that will help you learn how to become better
frontend developers is taking a look at a design mockup and dissecting how you
would implement it within Drupal. This would mean asking ourselves questions
along the way, such as how the homepage is put together, how a user interacts with a
webpage, and how we are going to implement a specific functionality. In this chapter,
we will do exactly that as we begin with a fully working HTML mockup that we can
review within the browser and then convert it into a Drupal 8 theme, piece by piece.
To give us a better idea of what we will be covering, let's review the following:

• We will start by reviewing our completely designed mockup with a
Homepage, Interior page, Landing page, Blog posts, a Contact Us page with
a Google map and web form, and other user interactions that we will need
to build.

• Once we have a better understanding of what we are building, we will take
a backup of the database and restore it onto our Drupal 8 instance. This will
allow us to have a baseline starting point from which to build a theme.

• Finally, we will finish up with creating our new theme structure, including
defining the metadata, creating our regions, and implementing one of several
CSS and JavaScript libraries.

While we work through each section, we have the ability to refer to the Chapter05
exercise files folder. Each folder contains a start and end folder with files that we can
use to compare our work when needed. This also includes database snapshots that will
allow us to all start from the same point when working through various lessons.

Before we get started, let's open up the Mockup folder located in our exercise files
and the index.html page using Google Chrome web browser. The Mockup contains
a fully functioning HTML website that we have been tasked with developing for
our client. We will be reviewing this mockup throughout the remaining chapters
to compare against our final Drupal 8 theme, so let's get started.

Prepping Our Project

[134]

Walking through the design mockup
Whether we are working for a digital agency or simply freelancing, in most cases,
we will already have purchased a theme or designed one from scratch that has been
built in pure HTML, CSS, and JavaScript. Having a theme already available to us
makes our job as a frontend developer much easier in identifying what needs to be
built. As we begin to review each page of our design, we will be taking notes about
specific functionality that we will later revisit when creating our new theme. We will
clearly point out such items as regions, page layouts, blocks of content, and how we
would best implement CSS and JavaScript.

Homepage layout
If we haven't already done so, let's open up the homepage of our mockup, as shown
in the following image, and navigate as any other user visiting our site would.

Chapter 5

[135]

At first glance, our mockup seems to contain some very standard components,
such as a header with a logo, menu, full page slider, and some social network icons.
However, there are several hidden characteristics that we may have missed unless
we click around our homepage.

The first item to point out is the search icon in the main menu. Clicking on this icon
reveals a hidden search input that allows the user to search content, as shown in the
following image:

We know that Drupal 8 provides the user with the ability to search database
content as well as providing us with a search block that will need to account
for in our theme.

The second item is a Parallax function where the background image moves at a
slower rate than the text overlaid on it as we scroll. If we happened to click on the
arrow icon at the bottom of the page instead of scrolling, we also discover that we
are automatically taken to another section of the homepage. One thing to note is that
the scrolling effect is smooth and not sudden. This Parallax method, as well as the
smooth scroll effect, will require us to implement some custom JavaScript or libraries
that assist in providing this type of user interaction.

Our third item is the fixed header containing the logo, main menu, and search
element. When a user begins to scroll down the page, the header becomes fixed to the
top of the viewport. This feature allows the end user to navigate anywhere within the
website without having to scroll back to the top of any long-form content pages.

Prepping Our Project

[136]

As we continue further down the homepage layout, we come to another section of
content, as shown in the following image:

This section of content should be of no concern as it contains some simple markup
with headings and blocks of text, but we will need to make a note of the icons being
used. We will look at implementing these icons using Font-Awesome, a CSS toolkit
that allows for iconic fonts.

Finally, our homepage consists of a footer and subfooter with three small blocks
of content containing various text blocks and a form element, as shown in the
following image:

Chapter 5

[137]

One thing to note is that our header and footer areas will be consistent throughout
the mockup. Keeping this in mind, we will take a look at how to implement this in
our theme without having to repeat the content from page to page.

Defining homepage regions and user interaction
One last exercise we need to consider based on our homepage is what visible regions
we have that can contain content. Starting from the top of our homepage and ending
at the bottom of our document, we should be able to identify the following regions:

• Top Header with social network icons
• Header with logo, menu, and hidden search element
• Headline section with static background and vertically sliding text
• Before Content section to display the content before the main content
• Content section with various blocks of content
• Footer with three separate blocks of text and form elements
• Sub footer with the left and right sections containing content

We will need to define these regions within our theme, along with any others we
discover as we review the internal pages of our mockup.

Finally, let's review the notes we took that pertain to user experience and
functionality that may be new to us and that we will need to implement when
building our homepage. Such items are:

• Search icon that when clicked shows and hides the search block to user
• Parallax background effect
• Slider text on the top of a fixed background image
• Smooth scrolling when the user clicks on the navigation link in slider
• Font icons

With our review of the complete homepage, it's now time to move on to the interior
pages and investigate what else our mockup has in store for us.

Prepping Our Project

[138]

Basic page layout
Let's begin reviewing the About Us section of our mockup by clicking on the
corresponding menu item in the header. As we begin to review our first interior
page, we will note that our basic page layout includes a page title that spans across
the width of our page, as shown in the following image:

This basic page differs from our homepage and is our first clue that we will need
to consider one or more alternative page layouts for our interior pages.

After scrolling a little further down our page, we also find a section of content
displaying team members that consists of a heading, subheading, and four blocks
of identical content, highlighting each team member.

Chapter 5

[139]

If we hover our mouse over each of the team member images, we will note a visual
effect where the image fades from gray to full color. We will need to keep this in
mind while identifying the fields that make up this piece of content and how we
may need to manipulate the HTML markup to achieve this technique.

Our basic page is a simple one-column layout, which does not introduce any new
layouts we may need to define as of yet, and which should not be too challenging to
develop. It is also typical of most of the pages that a frontend developer or themer
will face while creating themes.

Defining interior regions
Starting from the top of our interior page and ending at the bottom, we should be
able to identify the following new regions:

• A title bar with a page title
• The After Content section to display content blocks below main content

We will need to define these regions within our theme along with any others we
discover as we continue to review pages of our mockup.

Prepping Our Project

[140]

Landing page layout
One of the more complex page layouts in our mockup is that of the Blog section.
If we navigate to the Blog landing page by clicking on the Blog menu item in
our header, we will be presented with a very rich looking page, as shown in
the following screenshot:

Landing pages often display a listing of content with related or highlighted
information to accompany it. Our blog page is no different, and it consists of a teaser
of content previewing each blog post and repeating down the page. We are also
presented with a two-column layout with the content region to the left and a sidebar
to the right. This page gives us our second layout to consider when creating our
Twig templates.

Some other regions of content are the Categories listing and tabbed block of
Popular and Recent blog posts that reside in the right sidebar. This content is just an
extension of the blog post itself with a listing of taxonomy terms and a teaser. Drupal
8 will be able to handle vocabulary terms, View modes, and Views listing of content,
all without having to worry about any contributed modules.

Chapter 5

[141]

Blog detail layout
Because landing pages only generally provide us with a listing of content, let's
quickly review the blog content in more detail beginning with browsing an
individual blog post. We can accomplish this by clicking on the Post Two blog
post title, which should bring us to the Post content type detail page.

It looks like the two-column page layout is being continued from our landing page
to our detail page. This will make it very easy for us to develop a Twig template
that both our teaser and full content views can use. We also have repeating sidebar
content on our detail page as well. This is a great indication of blocks of content that
we will need to make sure is reusable, another great feature of Drupal 8 since blocks
can now be reused.

Before we move on to the View of our contact page, we need to keep in mind two
different features of the Blog detail page. The first is a slider present when a post
has multiple images, which is indicated by the two blue navigational dots.

Upon closer inspection, we can view each image by clicking on either of the two
dots. We will need to make another mental note when it comes to this image field
and consider how we can determine if there are multiple images and how to apply
the slideshow effect to them.

Prepping Our Project

[142]

The other item of interest is towards the bottom of our Blog post, and it consists of
a commenting feature, as shown in the following image:

This new commenting region allows users not only to leave feedback about a post,
but also the ability to share a post using social networks, as is apparent with the
Share this post heading being displayed above the comment region. We will look
at how to theme comments in Drupal 8 in more detail later in Chapter 8, Theming Our
Blog Listing Page.

Contact page
Our second to last navigational page to review is the Contact Us page. Traditional
contact pages consist of general business hours, e-mail addresses, and other methods
to contact the user of the website. However, if we navigate to the contact page
by clicking on the Contact Us link in the menu, we will be presented with the
following image:

Chapter 5

[143]

The Contact Us page shows a full-width one-column layout with a gorgeous Google
Map highlighting the location of our office with a map marker. The map is fully
functional, and it allows the end user to navigate wherever they would like in the
world. The Google Maps API allows us to add this type of user interaction very
easily to a page with very little JavaScript. Drupal 8 makes this even easier with their
new way to handle JavaScript libraries. We will keep this in mind when developing
this Twig template.

Adding a little more personalization to our contact page, this web form allows any
user to contact us.

Prepping Our Project

[144]

Being fully responsive, our web form will function on all mobile devices and is a
great example of customization versus just a typical e-mail address being displayed.
We have various examples of form elements within our mockup that will be
developed while creating our Drupal 8 theme.

However, what would a website be without giving our end user an ability to search
for content?

Search results
The final page of our mockup ties back into our search block in the header of our
website, allowing us to display the content of our website based on a user query.
Drupal 8 provides us with this mechanism to index content and allows us to then
display the search results. We can find a mockup of the search results page located in
the exercise files Mockup folder titled search.html, as shown in the following image:

One thing we will find though is that the search results are very limited without
extending the functionality with other third-party search services such as Apache
Solr, which provides for a much more robust search experience. Still, we will take
a look at how to customize the search results page for a cleaner look and feel.

So enough review of our mockup, let's get busy creating a Drupal 8 theme based
on the design we just previewed. This would be the time where we put on some
good music and do the tedious work of installing Drupal 8, configuring content
types, creating blocks and views, and populating our site with content so we have
something to actually theme. However, let's skip all that tedious work and just start
with a database snapshot.

Chapter 5

[145]

Restoring our database snapshot
Before we get started, let's open up the Chapter05/start folder located in our
exercise files and restore the database snapshot by dropping the tables in our current
Drupal 8 instance and importing the drupal8.sql file. Information on how to restore
database snapshots was covered in Chapter 1, Setting Up Our Development Environment.

After restoring our database snapshot, we can browse our Drupal 8 instance by
navigating to the homepage in our browser. We should see the typical Bartik theme
being displayed with four pages containing content to match our mockup, including
Home, About Us, Blog, and Contact Us.

At this point, we will need to log in to Drupal using the User login link, which
has replaced the Drupal 7 login block. Once at the Log in screen, we enter admin's
username and admin's password.

While we are using a very simple username/password combination to develop, I
would advise you to use something stronger and more secure before moving any
Drupal instance to a production web server. For more security features in Drupal
8, check out this article: https://dev.acquia.com/blog/drupal-8/10-ways-
drupal-8-will-be-more-secure/2015/08/27/6621.

All of the content we need to recreate our mockup exists in the database, and as we
begin to theme each section of our site, we will simply reference that content. If there
is anything new or different with how content was created or configured, we will
stop to briefly discuss it. For now, we will dive right into discussing the benefits of
creating a custom theme and then proceed to setting up our theme folders.

https://dev.acquia.com/blog/drupal-8/10-ways-drupal-8-will-be-more-secure/2015/08/27/6621
https://dev.acquia.com/blog/drupal-8/10-ways-drupal-8-will-be-more-secure/2015/08/27/6621

Prepping Our Project

[146]

Creating a custom theme
Previously, we looked at creating both a starter theme and a subtheme and, while
each has its own benefit, we will often want to have the flexibility to develop on the
fly. This means that we do not have to worry about managing a set of files already
developed. This may sound contradictory to everything we have heard earlier,
but taking an agile approach to theming allows for designers to create rich designs
outside the boundaries of Drupal. With the introduction of Twig templates, we
pretty much broke the mold on having to architect the layout of Drupal in a specific
way. So, gone are the days of telling a designer that we can't implement their ideas.

As we create our custom theme, we will have the freedom to use whatever frontend
tools are in the wild combined with the ability to implement both CSS and JS
Frameworks using libraries, templates, and custom CSS/JS.

Setting up theme folders
By now, setting up a theme should be second nature. We practiced this numerous
times in Chapter 4, Getting Started – Creating Themes. But, in case we need a refresher,
we can refer to that chapter for any outstanding questions.

We can begin by navigating to the themes folder and create a new folder named
octo. This new folder will contain all of the files we will be using to develop
our theme:

Next, we will create five additional subfolders within our main themes folder that
will contain our CSS, Images, JavaScript, Twig templates, and any third-party
vendor libraries such as Twitter Bootstrap. To ensure that we are all able to follow
along without any naming conflicts, please make sure to name the five subfolders
as follows:

Chapter 5

[147]

We will be referencing these subfolders throughout the development of our theme
with each folder containing the following files:

• css: This contains custom style sheets.
• img: This contains images used by the style sheets.
• js: This contains custom JavaScript.
• templates: This contains Twig templates.
• vendor: This contains JavaScript libraries.

Adding a screenshot
Go ahead and copy screenshot.png from the Chapter05/start/themes/octo
folder and place it within the themes/octo folder. Drupal will use this screenshot
within the Appearance page to help visually identify our theme.

Creating our configuration file
Any new theme must contain an *.info.yml file to define metadata, style sheets,
libraries, and regions so that Drupal 8 recognizes that there is a new theme available
to be installed. Let's begin by opening up our favorite text editor and creating a new
file named octo.info.yml.

Our new configuration file will contain the following required metadata to start with:

name: Octo
type: theme
description: 'A responsive Drupal 8 theme.'
core: 8.x
base theme: false

Make sure to save our changes and clear Drupal's cache. This will ensure that the
theme registry picks up our changes.

Prepping Our Project

[148]

Installing our theme
Navigate to /admin/appearance and locate our new theme on the Appearance
page. If we look within the Uninstalled themes section, we will see the Octo
theme available to install, as shown in the following screenshot:

To install our theme, click on the Install and set as default link. With our new theme
now installed, we can browse the homepage by clicking on the Back to site link in
the admin menu. We will see that the original Bartik theme styling has been replaced
with the non-styled look of our Octo theme, as shown in the following screenshot:

Chapter 5

[149]

Setting up our regions
Currently, our theme is using the default Drupal 8 regions as we have not specified
any within our configuration file. This would be fine if the content in our Mockup
worked nicely with those regions, but as we discovered earlier, there are definitely
some regions outside of the default that will need to be defined.

For example, Drupal 8 provides only a single Footer region, and we will clearly need
more than one region in our footer to accomplish the three blocks of content, as well
as the two additional blocks of content that fall below our footer.

Let's edit our octo.info.yml file and define the specific regions we will need
to place blocks of content needed by our homepage and interior pages. Begin
by adding a new block of metadata to define regions with the following:

regions:
 header_top: 'Header Top'
 header: 'Header'
 primary_menu: 'Primary menu'
 secondary_menu: 'Secondary menu'
 page_top: 'Page top'
 page_bottom: 'Page bottom'
 highlighted: Highlighted
 headline: 'Headline'
 breadcrumb: Breadcrumb
 before_content: 'Before Content'
 content: Content
 sidebar_first: 'Sidebar first'
 sidebar_second: 'Sidebar second'
 after_content: 'After Content'
 footer_first: 'Footer first'
 footer_second: 'Footer second'
 footer_third: 'Footer third'
 footer_bottom_left: 'Footer Bottom Left'
 footer_bottom_right: 'Footer Bottom Right'

Prepping Our Project

[150]

Make sure to save any changes to our octo.info.yml file and then clear
Drupal's cache. Finally, we will want to confirm that our newly defined regions
are available to be used by navigating to /admin/structure/block and looking at
the Block layout page to verify that our regions are now available, as shown in the
following image:

So far, we are progressing very nicely with adding our required metadata and
regions that our theme will need, sort of a wash, rinse, and repeat pattern; with
options like adding configuration information, clearing cache, and verifying changes
being available. How about taking a look at adding some assets that we will need
before we start tackling different page sections of our site?

Setting up our assets
Drupal 8 definitely manages assets in a different way than we were used to in Drupal
7. With the introduction of Yaml configuration and asset libraries, we now have a
separation of how CSS and JavaScript is referenced and used. Of course, we should
be experts by now, but to recap, the process contains two steps.

1. First, we need to create a *.libraries.yml file, which will allow us
to organize our theme's CSS, JavaScript, and dependencies.

2. Second, we will need to add the library reference to our theme's
configuration file.

Chapter 5

[151]

We will be using the Twitter Bootstrap library again with our theme. To ensure
that we all use the same version of Bootstrap, we have provided a copy within
the exercise files.

Begin by copying the Bootstrap folder contained in the Chapter05/start/themes/
octo/vendor folder and place it within the themes/octo/vendor folder.

With Bootstrap accessible by our theme, we can create a new file named
octo.libraries.yml and save it within the root of our theme. Next, we will
want to add the following metadata to our octo.libraries.yml file:

bootstrap:
 version: 3.3.6
 css:
 theme:
 vendor/bootstrap/css/bootstrap.min.css: {}
 vendor/bootstrap/css/bootstrap-theme.min.css: {}
 js:
 vendor/bootstrap/js/bootstrap.min.js: {}
 dependencies:
 - core/jquery

The metadata we added basically starts with a variable name for how we want
to access the library from our configuration file such as octo/bootstrap. Next,
we need to make sure that we reference the version of the library we are adding
followed by the path to the CSS, JS, and any dependencies. When dealing with YAML
files, it is important to make sure that you have the proper indentations or else we
may experience errors.

Now that we have our octo.libraries.yml file in place and have added a reference
to Bootstrap, we need to open up our octo.info.yml file and add a pointer to
our library in order for Drupal to recognize any assets that need to be loaded
into our theme.

Open up the octo.info.yml file, and add the following prior to our regions section:

libraries:
 - octo/bootstrap

Prepping Our Project

[152]

Make sure to save our changes and then clear Drupal's cache. If everything was
successful, we should be able to navigate back to our homepage and note the
Bootstrap CSS affecting out page elements. We can also confirm this by inspecting
the page with Google Chrome and see in fact that Bootstrap is being loaded properly,
as shown in the following screenshot:

Adding additional assets
Now that we have a sense of how libraries are added to our theme, we will need to
add additional assets including our images, CSS, and JavaScript files that we will
be using to create our theme throughout the remaining lessons.

Begin by opening the Chapter05/start/themes/octo folder and copying the
contents of the css, img and js folders and placing them into their respective
folders inside the themes/octo folder, as shown in the following screenshot:

With our base assets in place, we will need to open back up our octo.libraries.
yml file within our editor and add a global library entry that points to our new files.

Chapter 5

[153]

Open up octo.libraries.yml and add the following entry directly below the
bootstrap entry:

base:
 version: VERSION
 css:
 theme:
 css/styles.css: {}
 js:
 js/octo.js: {}
 dependencies:
 - core/jquery

It's important to remember that the formatting and order of these entries is crucial
in making sure that we don't experience any Drupal errors, so feel free to look at the
completed octo.libraries.yml file located in the Chapter05/end/themes/octo
folder as a reference. Just to clarify, we want to make sure that Twitter Bootstrap
loads first, then our base styling and scripts.

Once we have completed adding the new entry, make sure to save the file, then open
up octo.info.yml, and add the following reference to our base library so that it
reads as follows:

libraries:
 - octo/bootstrap
 - octo/base

Save the file and don't forget to clear Drupal's cache, this will ensure that our
changes take effect. Now if we browse back to our homepage and inspect the
markup, we will see that the new references have been added to our page and
our styling has changed again:

Prepping Our Project

[154]

We will be adding additional assets to our octo.libraries.yml file as we address
each page of our site that needs additional functionality, so it is important to be
comfortable with this process.

Handling default files
One last thing we need to make sure that we take care of before finishing this chapter
is considering how Drupal handles default files. That is, files that we upload such as
a logo, an image field on a content type, or any inline images that we would place
directly in the content of our page.

Since we are using database snapshots to save time on having to recreate content,
we want to make sure that any images that the database may be referencing are
available to us and we don't encounter broken image paths.

We can take care of this by copying the contents of our files folder located within
the Chatper05/start/sites/default/files folder and placing them into the
sites/default/files folder of our Drupal 8 instance. If prompted to replace or
overwrite files, go ahead and say yes to ensure that we have all the files needed.

Once we are done, our sites/default/files folder should contain subfolders
with images organized based on the upload date, inline images, and styles for
image derivatives, as shown in the following screenshot:

We have now completed adding all the assets and initial libraries that our new
custom theme will need—a great start to strengthen our theming skills.

Chapter 5

[155]

Summary
The process of reviewing HTML mockups in preparation to convert it into a Drupal
8 theme takes time and patience. We need to make sure that we explore a website in
great detail to spot possible layouts, regions, and user interactions that may require
custom JavaScript and libraries. In this lesson, we accomplished the following:

• We broke down our HTML mockup page by page to enable us to better
define what regions, layouts, and libraries we may need to create and
configure for Drupal 8

• Having a clear starting point for everyone to begin theming from is
important, and we used the database snapshots to ensure that we
didn't have to work through the tedious process of entering content

• Finally, we began configuring our new theme by setting up our octo.info.
yml file with regions and references to asset libraries that we set up within
our octo.libraries.yml file

In the next chapter, we will dive into setting up our homepage layout to match the
homepage of our mockup. We will begin creating Twig templates for our HTML
wrapper and homepage as well as work further with libraries and assets.

[157]

Theming Our Homepage
Any good design draws the user in with a visually exciting homepage, whether it
is a clean, minimal navigation menu, great-looking photographs, or clear, concise
information that keeps the user engaged. We are tasked with providing all of those
features and more, though the thought of implementing a homepage with all these
items may seem overwhelming at first. We will soon realize that they are just a series
of steps that will become the norm for any Drupal 8 project. In this chapter, we will
walk through implementing the following:

• We will start with the obvious task of applying our website logo and
working with the new site branding block. This will be followed by creating
our first Twig template to handle our HTML wrapper and any assets and
functionality that should be globally applied.

• Next, we will address converting our mockup's homepage markup into a
Twig template with various regions to hold content.

• We will start with static content and then slowly convert it into dynamic
content with blocks for our search block, menu, and other regions.

• Because aggregating data is such an integral part of Drupal with Views now
in core, we will discover how to replicate content to use with the theming of
our homepage slider.

As we work through each section, we have the ability to refer back to the Chapter06
exercise files folder. Each folder contains the start and end folders with files that we
can use to compare our work when needed. This also includes database snapshots that
will allow us to all start from the same point when working through various lessons.

Theming Our Homepage

[158]

Creating our HTML wrapper
In order to start addressing the markup of our homepage, we need to look at creating
our first Twig template. The html.html.twig template is a little different than most
templates, as it contains the basic structure or wrapper for a Drupal page that the rest
of our templates will inherit. This template contains your standard HTML5 markup
containing html, head, title, and body elements along with any other variables that
Drupal 8 needs to output content.

We can begin by navigating to core/modules/system/templates and copying the
html.html.twig Twig template to our themes/octo/templates folder. One thing
to keep in mind as we start working with the Twig templates is that we will always
copy a template from core to our themes folder to ensure that we don't accidentally
modify any core files.

Next, we can open html.html.twig and review the markup in our editor. We have
the following code:

<!DOCTYPE html>
<html{{ html_attributes }}>
 <head>
 <head-placeholder token="{{ placeholder_token|raw }}">
 <title>{{ head_title|safe_join(' | ') }}</title>
 <css-placeholder token="{{ placeholder_token|raw }}">
 <js-placeholder token="{{ placeholder_token|raw }}">
 </head>
 <body{{ attributes }}>

 {{ 'Skip to main content'|t }}

 {{ page_top }}
 {{ page }}
 {{ page_bottom }}
 <js-bottom-placeholder token="{{ placeholder_token|raw }}">
 </body>
</html>

The markup is similar to any other HTML document, with the addition of Twig
variables and filters to output attributes, title, regions, and placeholders for CSS/
JS. For example, <css-placeholder token="{{ placeholder_token|raw }}">
outputs any CSS files that we added to our *.libraries.yml file and have
referenced from within our themes configuration. Then, the {{ page }} variable
will output the contents of any page.html.twig templates that it calls.

If we begin to compare the html.html.twig template to the markup of our
homepage mockup, we can start to visualize how things come together.

Chapter 6

[159]

Introducing web fonts
Our mockup takes full advantage of Google Fonts by adding it to the head of our
document. The external reference allows our CSS to render the typography on
various pages. The only problem is that currently we are not including the web
fonts in our Drupal theme. Because we cannot download Google Fonts and use
them locally, they need to be externally hosted. But how do we add externally
hosted files to a *.libraries.yml file?

The answer is actually quite simple. We need to specify the file type as external, and
adding an external asset is something new we have yet to discuss. So, we can walk
through the steps involved:

1. Open octo.libraries.yml.
2. Add the following entry:

 webfonts:
 version: VERSION
 css:
 theme:
 //fonts.googleapis.com/css?family=Open+Sans:300,400,
 600,700,800|Roboto+Slab: { type: external }

3. Save octo.libraries.yml.
4. Open octo.info.yml.
5. Add the following library reference pointing to the entry of our new

web fonts:
 libraries:
 - octo/bootstrap
 - octo/webfonts
 - octo/base

6. Save octo.info.yml.

Make sure to clear Drupal's cache and refresh our homepage. If we inspect the page,
we should see our external reference to Google Fonts being loaded directly after
Twitter Bootstrap. Now that our HTML wrapper is complete, we can move on to
creating our homepage template.

Theming Our Homepage

[160]

Creating our homepage
The next item we will move on to is creating the main homepage template. By
default, Drupal uses the page.html.twig template to render any regions we have
defined within our configuration. Because we broke out our Mockup into functional
areas, we have a sense of what each region will contain. Our job is to recreate the
homepage, which will require us to follow these basic theming techniques.

1. First, we will take advantage of Drupal's file name suggestions to create our
homepage template.

2. Then, we will replace the contents of our template with the contents of our
Mockups homepage.

3. Finally, we will need to review the output of our new template.

Using page templates
If we inspect the homepage, it is currently using the core page.html.twig template
to output content. But if we take advantage of the FILE NAME SUGGESTIONS provided,
we are presented with a couple of additional choices for displaying content.

The reason we are interested in alternative templates for our homepage is due
to the fact that as we navigate from page to page, we have clear layout changes.
Our homepage has a completely different layout than our interior page, with the
exception of any global elements. Knowing this, it would make sense to create a
separate homepage template to manage our content.

We can begin by following these steps:

1. Navigate to core/modules/system/templates and copy page.html.twig.
2. Place the copy within our themes/octo/templates folder.
3. Rename page.html.twig to the suggested name of page--front.html.twig.

Chapter 6

[161]

Make sure to clear Drupal's cache and refresh our homepage. If we inspect the page
again, we will note that we have an indicator next to page--front.html.twig under
the FILE NAME SUGGESTIONS, and the output is now pointing to our themes folder.

Working with static content
When working with a mockup, the easiest way to start any theming project is by
simply replacing the Twig templates contents with the static content from our design.

1. Open page--front.html.twig and delete the entire contents.
2. Navigate to Mockup/index.html and copy the markup between the opening

and closing body element minus the JavaScript references and paste it into
page--front-html.twig.

3. Save page--front-html.twig.

Make sure to clear Drupal's cache and refresh the homepage within our browser.
We should now have a working copy of the homepage mockup; well, sort of.

If it was only that simple, we would all be Drupal rock stars. What we do have
though is a good starting point for which we can begin to replace static content with
dynamic content. Also, we can validate the following:

• Our page--front.html.twig template is only being used on the homepage,
or else our Error page would look the same once we navigated to any
other page.

• Our CSS, JavaScript, and assets are being included properly or else our
homepage would look horrible.

Theming Our Homepage

[162]

Implementing our Header Top region
The first item we will need to address is replacing the static content in our Header
Top region. Referring back to the Mockup, we have a menu of social icons that
display within this region. Also, if we look closely, each social icon is using the Font
Awesome library. Tackling the next section will require the following techniques:

1. First, we will create a custom block to display our Social Icons menu and
then assign it to the Header Top region so that it is available to render.

2. Next, we will add the Font Awesome library for our social icon to use.
3. Finally, we will modify our static content to display our Header Top region.

Creating our Social Icons block
Creating blocks of content is fairly simple, and we will be doing this often as we
recreate each section of our theme. We will start by navigating to the Block layout
page at /admin/structure/block and following these nine steps:

1. Click on the Place block button in the Header Top region.
2. Click on the Add custom block button.
3. Enter a Block description of Social Icons.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper06/start/content/SocialIcons.txt

file to the Body field, as shown in the following image:

6. Click on the Save button to proceed to the Configure block screen.
7. Uncheck the Display title checkbox.

Chapter 6

[163]

8. Choose Header Top from the Region field.
9. Click on the Save block button, as shown in the following image:

We now have our Social Icons block created and assigned to our Header Top region.
Next, we need to add the Font Awesome icon library.

Installing Font Awesome library
Font Awesome is an icon font implementation that allows scalable vector icons to
be referenced the same way you would a font family. Our social icons as well as
other sections of our theme will take advantage of Font Awesome to display various
icons. We can find detailed information regarding Font Awesome at https://
fortawesome.github.io/Font-Awesome. To ensure that we all use the same version
of Font Awesome, we will need to navigate to the Chapter06/start/themes/octo/
vendor folder and copy the font-awesome folder to our themes/octo/vendor folder.

https://fortawesome.github.io/Font-Awesome
https://fortawesome.github.io/Font-Awesome

Theming Our Homepage

[164]

Once the files are accessible by Drupal, we can follow these remaining steps to add
Font Awesome to our theme:

1. Open octo.libraries.yml.
2. Add the following entry:

 font-awesome:
 version: 4.3.0
 css:
 theme:
 vendor/font-awesome/css/font-awesome.min.css: {}

3. Save octo.libraries.yml:
4. Open octo.info.yml:
5. Add the following library reference pointing to our new web fonts entry:

 libraries:
 - octo/bootstrap
 - octo/webfonts
 - octo/font-awesome
 - octo/base

6. Save octo.info.yml:

Make sure to save our changes and clear Drupal's cache for our changes to take
effect. Finally, we will need to add the Header Top region to our homepage before
being able to see our Social Icons menu.

Refactoring Header Top region
Currently, our page--front.html.twig template is not outputting our Header Top
region. We will need to refactor our markup to replace the static content with the
output of the {{ page.header_top }} region.

Current markup

<div class="header-top">
 <div class="container">
 <div id="block-socialicons" class="block">
 <ul class="social-icons">
 <a class="button--icon" target="_blank"
 href="https://www.facebook.com/PacktPub" title="">
 <i class="fa fa-facebook"></i>
 <a class="button--icon" target="_blank"
 href="https://www.linkedin.com/company/
 packt-publishing" title="">
 <i class="fa fa-linkedin"></i>

Chapter 6

[165]

 <a class="button--icon" target="_blank"
 href="https://twitter.com/packtpub" title="">
 <i class="fa fa-twitter"></i>
 <a class="button--icon" target="_blank"
 href="https://plus.google.com/+packtpublishing/posts"
 title=""><i class="fa fa-google-plus"></i>

 </div>
 </div>
</div>

New markup

<div class="header-top">
 <div class="container">
 {{ page.header_top }}
 </div>
</div>

Make sure to save our changes, clear Drupal's cache and then refresh the browser. If
all was successful, our Header Top region should now be identical to the mockup:

Implementing our Header region
The second item we will need to address is replacing the static content in our Header
region. Referring back to the mockup, we have a logo, menu, and search form, each
with their respective functionality. Tackling this next section will require quite a few
more steps:

• First, we will address the logo that has been moved into the brand new site
branding block. We will upload a new logo, assign the block to our header
region, and work with block templates.

• Next, we will use Twig to print our Header region within our homepage to
view any blocks assigned to it.

• Then, we will work with the search form block and create both the block
template and the input template while introducing some new Twig
techniques to work with variables. We will also add our first custom
JavaScript to enable the toggle functionality.

Theming Our Homepage

[166]

• We will also take a look at our main menu and work with menu templates to
modify the markup to match our design.

• Finally, we will add our custom script to make our header region sticky, so
that as our user scrolls down the page, the header remains within our view.

Adding a logo
Currently, our website is not displaying a site logo. This is in part due to the fact that
we have yet to upload a logo for our theme. We can address this by navigating to
/admin/appearance/settings in our browser, as shown in the following image:

We can upload a new image by following these four steps:

1. Uncheck Use the default logo supplied by the theme.
2. Click on the Choose File button under the Upload logo image field.
3. Select the logo.png file located in the Chapter06/start/themes/octo/img

folder.
4. Click on the Save configuration.

Chapter 6

[167]

We should now see that the path to custom logo displays as logo.png with the
path to our file being public://logo.png or sites/default/files/logo.png,
as shown in the following image:

If for some reason the path to the image is different but the logo still displays properly,
it may be due to us uploading a logo in the previous chapter.

Enabling Site branding
In Drupal 8, the Site logo, Site name, and Site slogan have been moved into a brand
new Site branding block. We will need to place this block into the Header region,
so that it will display later once we add the region to our page--front-html.twig
template.

Begin by navigating to /admin/structure/block and locate the Disabled region
section. We will see the Site branding block currently disabled. We can place the
Site branding block into the Header region by following these steps:

1. Select Header from the Region dropdown.
2. Click on the Save blocks button.

Now that the block is assigned to our Header region, we can continue with configuring
it by clicking on the Configure button to the right of the Site branding block:

Theming Our Homepage

[168]

Located under the TOGGLE BRANDING ELEMENTS, we have the option of
enabling or disabling specific page elements. In our case, we only want the Site
logo to be displayed:

1. Uncheck Site name.
2. Uncheck Site slogan.
3. Click the Save block button.

Now that we have our logo uploaded and our site branding block assigned to a
region, we need to add the Header region to our homepage template.

Printing our Header region
Within our page--front.html.twig template, we want to be able to see any blocks
of content that we assign to the Header region. In order to do this, we will need to
add the {{ page.header }} variable.

1. Open page--front.html.twig.
2. Add the Twig variable {{ page.header }} directly below the header-nav

container so that our markup looks like the following:
 <div class="header-nav container">
 {{ page.header}}

3. Save page--front.html.twig.

Make sure to save our changes, clear Drupal's cache, and then refresh the browser.
Currently, we are displaying two logos, which we will address next by moving our
static markup in a new block template.

Creating Block templates
In an attempt to clean up our page template, we will create a block template for
our site branding block. However, we first need to know the location of the Twig
template that Drupal is using to output our logo. When we inspect the page, we
should see the following:

Chapter 6

[169]

Now that we know the path to block--system-branding-block-html-twig, we
can grab a copy and place it within our themes templates folder:

1. Navigate to core/modules/system/templates and copy the block-
-system-branding-block.html.twig template to our themes/octo/
templates folder.

2. Open block--system-branding-block.html.twig and delete the
current markup.

3. Replace the content with the following markup:
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".navbar-main">
 <i class="fa fa-bars"></i>
 </button>

 {% if site_logo %}
 <h1 class="logo">
 <a href="{{ url('<front>') }}"
 title="{{ 'Home'|t }}" rel="home" id="logo">

 </h1>
 {% endif %}
 </div>

4. Save block--system-branding-block.html.twig.
5. Open page--front.html.twig.
6. Delete the navbar-header section.
7. Save page--front.html.twig.

Make sure to save our changes, clear Drupal's cache, and then refresh the browser.
Our header is coming along nicely, and should look like the following image:

Theming Our Homepage

[170]

There are a lot of different Twig variables, filters, and conditional logic happening
with the markup for our block--system-branding-block.html.twig template,
so let's take a moment to explain.

• First, we are using Twig conditional logic {%...%} to test whether the site
logo exists, and if so, print the markup between.

• Second, we are replacing the href value with {{ url('front') }}, which
outputs the current URL path to our homepage.

• Third, we are using a Twig translation filter {{ 'value|t' }} to translate
the values in the title and alt attributes.

• Finally, we are using a Twig variable {{ site_logo }} to grab the path
to our logo.

If for some reason our header does not look like what we are expecting, we can
always take a look at the Chapter06/end/themes/octo/templates folder and
compare our Twig templates with the completed ones.

Implementing our search form block
The next item we will move on to is replacing the search functionality within our
page header. Referring back to the mockup, we have a hidden search form that can
be toggled to display by the end user. Tackling this next section will require multiple
theming techniques.

1. First, we will need to assign Drupal's search for block to the Header region.
2. Next, we will need to create a Twig template for the search block and move

the markup out of our homepage and into the template.
3. Finally, we will need to add the proper JS to enable the toggling of the

search field.

Placing our search form block
Currently, we do not have a search form block available to us within our Block
layout. We will need to locate the block and place it within our Header region.

1. Navigate to /admin/structure/block.
2. Locate the Header region.
3. Click on the Place block button.
4. Locate the Search form block from the Place block dialog.

Chapter 6

[171]

5. Click on the Place block button.
6. Uncheck the Display title checkbox.
7. Click on the Save block button from the Block layout page.

Our Header region should now contain two blocks: one for site branding and
the other for our search form.

If we navigate back to our homepage, we should see our search form block displayed
to the right of our logo. We will want to refactor our navbar-search markup by
adding it to the search form block being output by Drupal.

Creating a search form block template
If we inspect the search form block using Chrome's developer tools, we will identify
that Drupal is using the general block.html.twig template. We want to be more
specific with our naming convention as we will be modifying the markup in this
block. Based on the FILE NAME SUGGESTIONS, we can create a new block named
block--search-form-block.html.twig. Follow these steps:

1. Navigate to core/modules/block/templates and copy the block.html.
twig template to our themes/octo/templates folder.

2. Rename block.html.twig to block--search-form-block.html.twig.
3. Replace the content with the following markup:

 <div class="navbar-search">
 <div class="search-icons">
 <i class="fa fa-search"></i>
 <i class="fa fa-times"></i>
 </div>
 <div class="search-block-form">
 {{ content }}
 </div>
 </div>

4. Save block--search-form-block.html.twig.

Theming Our Homepage

[172]

Our search form block is now in place, but we still need to remove the
navbar-search section from our page--front-html.twig template so
that we don't have duplicate markup.

1. Open page--front.html.twig.
2. Delete the navbar-section of the markup:

 <div class="navbar-search">
 ...content...
 </div>

Make sure to save our changes, clear Drupal's cache and then refresh the browser.
Our search form block is now in place and styled similarly to our mockup. However,
if we click on the search icon, nothing will happen. We are currently missing the
custom JavaScript to enable this functionality.

Adding custom JavaScript
Initially, when we added our base styling to our octo.libraries.yml file, we
also referenced a custom JavaScript file that is located in our themes/octo/js folder
titled octo.js. If we open this file, we will see the shell to add jQuery that is initiated
once the page has finished loading. We will be adding any custom script within
this function:

! function($) {
 $(document).ready(function() {

 });
}(jQuery);

As this is not meant to be a JavaScript lesson, we will not be going into detail about
any scripts we added to this function. We will, though briefly, discuss the intention
of each script.

In order for our search form to be unhidden and hidden, it relies on the click event
of the search icon being triggered. We can add the following script to our function
to enable this interaction:

//-- Search icon
(function() {
 $(".open-form").click(function(){
 $(".open-form").hide();
 $(".close-form").css("display","block");
 $(".search-block-form").show();
 $(".search-block-form input").focus();

Chapter 6

[173]

 return false;
 });
 $(".close-form").click(function(){
 $(".close-form").hide();
 $(".open-form").css("display","block");
 $(".search-block-form").hide();
 return false;
 });
})();

We can also find the completed octo.js file within the Chapter06/end/themes/
octo/js folder to compare with our file. Make sure to save the file, clear Drupal's
cache, and then refresh our homepage. If we click on the search icon, we should
see our search form being displayed, as shown in the following image:

We are not quite done; the input element is not displaying over the menu. We can
clearly see the outline of the input and the placeholder attribute, which prompts
the user what to enter into our input, is missing. We can fix this by adding one
additional Twig template for the input element.

Creating an input element template
If we inspect the markup for the search input, we can identify that the Twig template
being used by Drupal is input.html.twig. As is the case with all input elements, we
may find that this is not sufficient. Using the FILE NAME SUGGESTIONS, we can create
a new input template titled input--search.html.twig:

1. Navigate to core/modules/system/templates and copy the input.html.
twig template to our themes/octo/templates folder.

2. Rename input.html.twig to input--search.html.twig.
3. Replace the content with the following markup:

{% set classes = ['form-control',] %}

<input{{attributes.addClass(classes).setAttribute
 ('placeholder','Enter your search terms...') }} />
 {{ children }}

Theming Our Homepage

[174]

Make sure to save our changes, clear Drupal's cache, and then refresh the browser.
Now if we click on the search icon, everything should look and function exactly
like our mockup.

Therefore, we once again are introducing some new Twig functionality that should
be explained in a little more detail.

First, we are using adding a new CSS class named form-control that is specific to
Twitter Bootstrap. We are then setting a Twig variable named classes with that
value, and then using the Twig function attributes.addClass() to pass the value
to Drupal.

Second, we are using a second Twig function setAttribute(), which allows us
to add the placeholder attribute with a value of Enter your search terms.

As we are starting to see, the new Twig functionality in Drupal is very powerful and
allows us to achieve most theming requirements directly in a Twig template without
the need to use the Theme layer.

Working with menus
When dealing with our main menu, we are using Drupal's Main navigation menu
block. This block is already assigned to our Primary menu region, which makes it
very easy to access within our page--front.html.twig template:

1. Open page--front.html.twig.
2. Add the {{ page.primary_menu }} variable to our page directly below the

{{ page.header }} variable.
3. Save page--front.html.twig.

Make sure to save our changes, clear Drupal's cache, and refresh the browser. We
will now see the Main navigation block being displayed to the right of our logo,
as shown in the following image:

Chapter 6

[175]

Taking a closer look, it's clear that the unordered list for our menu is missing the
following classes, nav nav-pills nav-main, which is causing the menu items to
not display inline or show with the Bootstrap pill formatting that our static menu
is displaying.

Creating a menu template
If we inspect the markup for the main menu, we can identify the Twig template
being used by Drupal is menu.html.twig. Using the FILE NAME SUGGESTIONS,
we can create a more specific template titled menu--main.html.twig.

1. Navigate to core/modules/system/template and copy menu.html.twig
to the themes/octo/templates folder.

2. Rename menu.html.twig to menu--main.html.twig.
3. Now we will need to open our new template, locate the first unordered list,

and add the missing CSS classes by replacing the following markup:
Current markup
<ul{{ attributes }}>

New markup
<ul{{ attributes.addClass('nav nav-pills nav-main') }}>

Make sure to save our changes, clear Drupal's cache, and refresh the browser. We
will now see the Main navigation block displaying inline similar to our static menu.

Creating System Menu block template
Similar to how we handled the markup for our site branding, it would be much
easier to manage the navbar-main wrapper within the block that outputs our menu.
This will allow us to also remove the navbar-main markup completely from our
homepage template.

If we inspect the markup for the main menu, we can identify the block template
being used by Drupal is block--system-menu-block.html.twig. Knowing the
fact that there will only ever be a single main menu, we can feel confident using
this same template for our needs:

1. Navigate to core/modules/system/template and copy block--system-
menu-block.html.twig to the themes/octo/templates folder.

2. Replace the content with the following markup:
 <div class="navbar-main navbar-collapse collapse">
 {{ content }}
 </div>

Theming Our Homepage

[176]

3. Save block--system-menu-block.html.twig.
4. Open page--front.html.twig.
5. Modify the header-nav section to look like the following:

 <div class="header-nav container">
 {{ page.header}}
 {{ page.primary_menu }}
 </div>

6. Save page--front.html.twig.

Make sure to clear Drupal's cache and then refresh the homepage. Our menu is now
complete and functional. Finally, we need to add our custom script that will turn our
header into a sticky header.

Creating a sticky header
One of the more common UI improvements seen around the Web is the implementation
of sticky headers. Our mockup implements this with a little bit of CSS and some custom
JavaScript.

First, the markup for our header region contain a class of header that will be used to
add an additional class of sticky once the user has scrolled down the page a certain
number of pixels.

Second, we can use the Document Object Model (DOM) with JavaScript to
determine how far the user has scrolled past a specific element in our markup. We
can use the reverse to then remove the sticky class once they have scrolled back
to the top of the page.

1. Open octo.js located in the themes/octo/js folder.
2. Add the following script block:

 //-- Sticky Header
 (function() {
 var mainnav = $('.header');
 if (mainnav.length) {
 var elmHeight = $('.header-top').outerHeight(true);
 $(window).scroll(function() {
 var scrolltop = $(window).scrollTop();
 if (scrolltop > elmHeight) {

 if (!mainnav.hasClass('sticky')) {
 mainnav.addClass('sticky');
 }

Chapter 6

[177]

 } else {
 mainnav.removeClass('sticky');
 }
 })
 }
 })();

Make sure to save our changes, clear Drupal's cache and then refresh the browser. If
we begin to scroll down the page, we will see the Header region stick to the top of
our browser. Scrolling back up to the top, our Header region then returns to normal.

We have successfully completed the header of our homepage. Complete it with logo,
dynamic main menu, and search functionality.

Implementing our Headline Region
The third item we will need to address is replacing the static content in our Headline
region. Referring back to the mockup, we have a responsive slider, parallax content,
and a jump to the menu icon. Tackling the next section will introduce some new steps:

1. First, we will address the Headline slider, which will require us to build a
view to aggregate Headline content using a block display.

2. Next, we will assign the new block to our Headline region and refactor
the markup.

3. Finally, we will add a JS library for FlexSlider to enable the responsive slider.

Creating our Headline View and Block
Drupal 8 has taken the popular Views module and integrated it into the core module
system. We can take advantage of Views to aggregate the content that our Headline
slider needs.

To get started, we will need to navigate to /admin/structure/views and click on
the Add new view button from the Views Admin screen, where we will add the
following information:

• VIEW BASIC INFORMATION:
1. View name: Headlines.
2. Check the Description box.
3. Description: A listing of Headlines.

Theming Our Homepage

[178]

• VIEW SETTINGS: Show: Content of type: Headlines sorted by:
Newest first

• BLOCK SETTINGS:
1. Check the Create a block checkbox.
2. Block title: Headlines.

• BLOCK DISPLAY SETTINGS:
1. Display format: HTML List of: titles.
2. Items per block: 3.
3. Click on the Save and edit button.

Chapter 6

[179]

Now that our Headlines view has been created, we will need to add an additional
field and adjust the format settings before we can use our new block. With the
view still open, we will need to make the following adjustments to the Block:
Style options.

1. Click on the Settings link next to the Format: HTML List link under the
FORMAT section.

2. Change the Wrapper class from item-list to flexslider.
3. Add a List class named slides.
4. Click on the Apply button.

Next, we will need to make adjustments to the Block: Row style options:

1. Click on the Settings link next to the Show: Fields link under the
FORMAT section.

2. Uncheck the Provide default field wrapper elements checkbox.

Theming Our Homepage

[180]

3. Click on the Apply button.

We now need to add an additional field for our Headlines view that will display
the subheading under the main heading of our content. We can accomplish this
by performing the following steps:

1. Click on the Add button in the Fields section.
2. From the Add fields dialog, enter subheading in the Search field
3. Check the checkbox next to Sub Heading.
4. Click on the Apply (all displays) button.
5. From the Configure field: Content: Sub Heading dialog, expand the

STYLE SETTINGS and uncheck Add default classes checkbox.
6. Click on the Apply button and then on the Save button to make sure

that our changes to the Headlines view have been saved.

One last field configuration we will need to make is to the Title field. We need to
have it displayed as an H2 heading for styling and SEO purposes.

1. Click on the Content: Title link in the FIELDS section.
2. Expand the STYLE SETTINGS section.
3. Check the Customize field HTML checkbox.
4. Select H2 from the HTML Element field.
5. Uncheck the Add default classes checkbox.
6. Click on the Apply (all displays) button.

At this point, make sure to save the View, and then we can move on to the next step
of placing our block.

Chapter 6

[181]

Adding our Headlines Block
We can start by navigating to /admin/structure/block and following these steps:

1. Click on the Place block button in the Headline region.
2. Locate the Headlines block.
3. Click on the Place block button.
4. Uncheck the Display title checkbox.
5. Click on the Save block button.

We now have our Headlines block placed into the Headline region for us to be able
to output from our homepage template.

Printing our Headline region
Within our page--front.html.twig template, we want to be able to display our
Headlines block. In order to do this, we will need to add the {{ page.headline }}
variable.

1. Open page--front.html.twig.
2. Add the Twig variable {{ page.headline }} directly below the headline

container and delete the remaining markup between the opening and closing
headline container so that our markup looks like the following:
 <div class="headline">
 {{ page.headline }}
 </div>

3. Save page--front.html.twig.

Theming Our Homepage

[182]

Make sure to save our changes, clear Drupal's cache, and refresh the browser. Feel
free to review the page--front.html.twig template located in the Chapter06/end/
themes/octo/templates folder to compare the markup if needed. If everything was
done properly, our Headline region should be displaying three headlines, as shown
in the following image:

Configuring FlexSlider library
FlexSlider is a fully responsive jQuery slider developed by Woo Themes. The slider is
very easy to implement and has numerous configuration options. We can find detailed
information regarding FlexSlider at https://www.woothemes.com/flexslider.

To ensure that we use the same version of FlexSlider, we will need to navigate to the
Chapter06/start/themes/octo/vendor folder and copy the flexslider folder
to our themes/octo/vendor folder. Once the files are accessible by Drupal, we can
follow these remaining steps to add FlexSlider to our theme:

Open octo.libraries.yml and add the following entry:

 flexslider:
 version: 2.5.0
 css:
 theme:
 vendor/flexslider/flexslider.css: {}
 js:
 vendor/flexslider/jquery.flexslider-min.js: {}
 dependencies:
 - core/jquery

https://www.woothemes.com/flexslider

Chapter 6

[183]

Make sure to save our changes and clear Drupal's cache for our changes to take
effect. Next, we need to consider how we will be using the FlexSlider library. If
we were going to use it globally, then we could add it to our octo.info.yml file.
However, because we will only be using it on our homepage, we can take advantage
of the {{attach library() }} function.

Attaching a library using Twig
In order to attach a library using Twig, we will need to follow these steps:

1. Open page--front.html.twig.
2. Add the following Twig function to the top of our template:

 {{ attach_library('octo/flexslider') }}

Make sure to save our changes and clear Drupal's cache for our changes to take
effect. If we now inspect our homepage, we will see the FlexSlider library loading.
However, if we go to any of the interior pages and inspect the markup, we will see
that the FlexSlider library is absent. Being able to attach libraries only where needed
is helpful, as it makes sure unnecessary CSS or scripts are not loaded.

Enable FlexSlider
In order for us to enable FlexSlider, we have one last step. We need to add the
configuration for our slider to our octo.js so that it knows which markup
to use for the slides:

Open octo.js. and add the following script block:

 //-- Flexslider
 (function() {
 $('.flexslider').flexslider({
 direction: "vertical",
 controlNav: false,
 directionNav: false
 });
 })();

Theming Our Homepage

[184]

Make sure to save our changes and clear Drupal's cache for our changes to take
effect. If we browse our homepage, we will see our Headline slider is now fully
functional, as shown in the following image:

We have almost completed our Headline region. There are two more pieces of UI to
implement, one of these is what is known as the Parallax effect.

Implementing Parallax
Parallax is a scrolling effect where the background image scrolls at a slower speed
than the foreground of the page. The effect creates a subtle 3D effect. In order for us
to implement this, we just need to add a small script block to our octo.js file, which
targets our markup that has a class of intro and then uses data attributes on that
section to manage the speed of the effect and how far to scroll.

Open octo.js and add the following script block:

 //-- Parallax
 (function() {
 $(window).scroll(function(e){
 var bg = $('.intro');
 var yPos = -($(window).scrollTop() / bg.data('speed'));
 var coords = '50% '+ yPos + 'px';
 bg.css({ backgroundPosition: coords});
 })
 })();

Make sure to save our changes and clear Drupal's cache. If we browse our homepage,
we will see the Parallax effect within the Headline region. As we begin to scroll down
the page, we will see that our Headline background image scrolls at a slower speed.

Chapter 6

[185]

Adding a scroll effect
A subtle yet nice touch to our homepage is the addition of an animated scroll effect.
At the bottom of our Headline region we have a link, which when clicked by a user
smoothly scrolls the page to the next section. The markup is already in place and
uses IDs for JavaScript to trigger the effect and to know where to scroll the page
to. All we need to do is add the library and the script, and attach the library to
our homepage.

Begin by navigating to the Chapter06/start/themes/octo/vendor folder and copy
the jquery-scrollTo folder to our themes/octo/vendor folder. Once the files are
accessible by Drupal, we can follow these remaining steps to add the library:

Open octo.libraries.yml and add the following entry:

 scroll-to:
 version: 2.1.1
 js:
 vendor/jquery-scrollTo/jquery.scrollTo.min.js: {}
 dependencies:
 - core/jquery

Make sure to save our changes and clear Drupal's cache for our changes
to take effect.

Enabling the scroll script
In order for us to enable jQuery Scroller, we need to initialize it within our octo.js
so that we know which element should be triggered when the user clicks on the link.

Open octo.js and add the following script block:

 //-- Scroll to
 (function() {
 $('#goto-section2').on('click', function(e){
 e.preventDefault()
 $.scrollTo('#section2', 800, { offset: -220 });
 });
 })();

Make sure to save our changes and clear Drupal's cache for our changes to take
effect. Finally, all that is left is attaching the library to our homepage.

Theming Our Homepage

[186]

Attaching ScrollTo library using Twig
In order to attach our library using Twig, we will need to follow these steps:

1. Open page--front.html.twig.
2. Add to the top of our template the following Twig function:

 {{ attach_library('octo/ scroll-to) }}

Make sure to save our changes and clear Drupal's. If we browse our homepage and
click on the link at the bottom of our Headline region, we will now see the animated
smooth scrolling functioning perfectly.

We definitely covered a lot of different techniques when refactoring our Headline
region, but we now need to move on to our Before Content region.

Implementing our Before Content region
The fourth item we will need to address is replacing the static content in our Before
Content region. Referring back to the mockup, we have two blocks of content that
will require us to follow these steps to implement.

1. First, we will create the Our Services block and Our Features block and
assign it to the Before Content region.

2. Finally, we will refactor the markup and print the Before Content region
using Twig variables.

Creating our Services block
Creating blocks of content is fairly simple and we should already be comfortable
with the process.

We will start by navigating to the Block layout page at /admin/structure/block
and following these steps:

1. Click on the Place block button in the Before Content region.
2. Click on the Add custom block button.
3. Enter a Block description of our services.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper06/start/content/OurServices.

txt file to the Body field.

Chapter 6

[187]

6. Click on the Save button to proceed to the Configure block screen.
7. Uncheck the Display title checkbox.
8. Select the Pages vertical tab within the Visibility section.
9. Enter a value of <front> in the Pages text area.
10. Choose Show for the listed pages under Negate the condition.
11. Choose Before Content from the Region field.
12. Click on the Save block button.

We have one block completed, now let's add the second block.

Creating our Features block
Creating blocks of content is fairly simple, and we should already be comfortable
with the process.

We will start by navigating to the Block layout page at /admin/structure/block
and following these steps:

1. Click on the Place block button in the Before Content region.
2. Click on the Add custom block button.
3. Enter a Block description of our features.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper06/start/content/

OurFeatures.txt file to the Body field.
6. Click on the Save button to proceed to the Configure block screen.
7. Uncheck the Display title checkbox.
8. Select the Pages vertical tab within the Visibility section.
9. Enter a value of <front> in the Pages text area.
10. Choose Show for the listed pages under Negate the condition.
11. Choose Before Content from the Region field.
12. Click on the Save block button.

With our two blocks completed and assigned to the Before Content region, we need
to make sure that they are ordered correctly. From the Block layout page, make sure
that Our Services is followed by Our Features within the Before Content region. Now
it's time to refactor our static markup and print the region to our page--front.
html.twig template.

Theming Our Homepage

[188]

Refactoring Before Content region
Currently, our page--front.html.twig template is not outputting our Before
Content region. We will need to refactor our markup to add a new Twig variable
that contains our two blocks {{ page.before_content }}.

Begin by opening page--front.html.twig and locating the section wrapper, and
replace all the content between with our new Twig variable.

Current markup

<section id="section2" class="section">
 <div class="container">
 ... content ...
 </div>
</section>

New markup

<section id="section2" class="section">
 <div class="container">
 {{ page.before_content }}
 </div>
</section>

Make sure to save our changes, clear Drupal's cache and then refresh the browser. If
all was successful, our Before Content region should now be identical to the Mockup.

Finally, we are at the end of our homepage, with the only piece left to refactor being
our Footer region, which consists of several custom blocks.

Chapter 6

[189]

Implementing the footer
Our footer is a little different to what we have been implementing so far. The footer
consists of multiple regions and custom blocks to easily match our mockup, and will
mean us following these steps:

1. First, we will need to create five custom blocks for our Newsletter, About Us,
Contact Us, Copyright, and Social Icons content. Once the blocks are created,
they will need to be assigned to their respective regions.

2. Finally, we will need to refactor the markup in our footer to accommodate
the various Twig variables to print out each region.

Creating our custom blocks
We will begin with creating the five custom blocks as well as assigning them to the
regions they need to be placed in. This will be somewhat repetitive, but is needed in
order for us to complete our footer. We will start by navigating to the Block layout
page at /admin/structure/block and following these steps.

Newsletter block:

1. Click on the Place block button in the Footer first region.
2. Click on the Add custom block button.
3. Enter a Block description of Newsletter.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper06/start/content/

Newsletter.txt file to the Body field.
6. Click on the Save button to proceed to the Configure block screen.
7. Choose Footer first from the Region field.
8. Click on the Save block button.

About Us block:

1. Click on the Place block button in the Footer second region.
2. Click on the Add custom block button.
3. Enter a Block description of About Us.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper06/start/content/AboutUs.txt

file to the Body field.
6. Click on the Save button to proceed to the Configure block screen.

Theming Our Homepage

[190]

7. Choose Footer second from the Region field.
8. Click on the Save block button.

Footer Contact block:

1. Click on the Place block button in the Footer third region.
2. Click on the Add custom block button.
3. Enter a Block description of Footer Contact.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper06/start/content/

FooterContact.txt file to the Body field.
6. Click on the Save button to proceed to the Configure block screen.
7. Enter a title of Contact Us in the Title field.
8. Choose Footer third from the Region field.
9. Click on the Save block button.

Copyright block:

1. Click on the Place block button in the Footer Bottom Left region.
2. Click on the Add custom block button.
3. Enter a Block description of copyright.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper06/start/content/Copyright.txt

file to the Body field.
6. Click on the Save button to proceed to the Configure block screen.
7. Uncheck the Display title checkbox.
8. Choose Footer Bottom Left from the Region field.
9. Click on the Save block button.

Social Icons block:

1. Click on the Place block button in the Footer Bottom Right region.
2. Click on the Place block button next to the Social Icons block. We don't

need to recreate this block since blocks are now reusable.
3. Uncheck the Display title checkbox.
4. Footer Bottom Right should already be selected for us from the Region field.
5. Click on the Save block button.

Chapter 6

[191]

We have successfully added all five blocks and assigned them to their respective
regions. Now we just need to refactor the markup for each region, and we should
be all set.

Refactoring our main footer
We will be refactoring the markup for each section of our main footer by replacing
the static markup with the Twig variable for each region. We should be comfortable
with this process by now, so let's start.

Begin by opening page--front.html.twig and locating the main-footer section
of our markup. Within the main footer, we will see individual sections of content
for each of the blocks we just created.

Footer first
Locate the following markup and replace the content between with the Twig variable
that represents the page region.

Current markup

<div class="col-md-4">
 ... content ...
</div>

New markup

<div class="col-md-4">
 {{ page.footer_first }}
</div>

Footer second
Locate the following markup and replace the content between with the Twig variable
that represents the page region.

Current markup

<div class="col-md-4">
 ... content ...
</div>

New markup

<div class="col-md-4">
 {{ page.footer_second }}
</div>

Theming Our Homepage

[192]

Footer third
Locate the following markup and replace the content between with the Twig variable
that represents the page region.

Current markup

<div class="col-md-4">
 ... content ...
</div>

New markup

<div class="col-md-4">
 {{ page.footer_third }}
</div>

With our markup now refactored, if we look at the main-footer section of our
homepage, the complete markup should look like the following:

<div class="container main-footer">
 <div class="row">
 <div class="col-md-4">
 {{ page.footer_first }}
 </div>

 <div class="col-md-4">
 {{ page.footer_second }}
 </div>

 <div class="col-md-4">
 {{ page.footer_third }}
 </div>

 </div>
</div>

Make sure to save our changes and then clear Drupal's cache. If we browse our
homepage, we should see our static content has been replaced with the three
custom blocks.

Now, let's refactor the two remaining blocks of content by locating the
footer-copyright section of our markup. Within the footer copyright,
we will see individual sections of content for the two blocks we just created.

Chapter 6

[193]

Footer bottom left
Locate the following markup and replace the content between with the Twig variable
that represents the page region.

Current markup

<div class="col-md-8">
 ... content ...
</div>

New markup
<div class="col-md-8">
 {{ page.footer_bottom_left }}
</div>

Footer bottom right
Locate the following markup and replace the content between with the Twig variable
that represents the page region.

Current markup

<div class="col-md-4">
 ... content ...
</div>

New markup

<div class="col-md-4">
 {{ page.footer_bottom_right }}
</div>

With our markup now refactored, if we look at the footer-copyright section of our
homepage, the complete markup should look like the following:

<div class="footer-copyright">
 <div class="container">
 <div class="row">
 <div class="col-md-8">
 {{ page.footer_bottom_left }}
 </div>
 <div class="col-md-4">
 {{ page.footer_bottom_right }}
 </div>
 </div>
 </div>
</div>

Theming Our Homepage

[194]

Make sure to save our changes and then clear Drupal's cache. If we browse our
homepage, we should see our static content has been replaced with the two custom
blocks. Our footer is complete, and should look like the following image:

Summary
When we first started our homepage, it seemed to be a daunting task filled with
deciding how we should convert our mockup into a dynamic rendition of blocks,
regions, Twig templates, and variables. We learned through repetition that
such a daunting task is actually not that complicated after all. In this chapter,
we accomplished the following:

• We worked with site branding by adding our logo, creating Twig templates
for blocks, and refactoring markup.

• We learned best practices to add assets with libraries, custom scripts, and
scripts to our website and individual pages.

• We discovered how to develop the aggregated content using Views, create
Block layouts from Views, and format the output of Views content for use
with JavaScript libraries.

In the next chapter, we will continue our theming by taking a look at creating an
interior page template, carrying over any global regions such as our Header and
Footer, and will continue working with various Twig templates.

[195]

Theming Our Interior Page
One of the great features of Drupal 8 is the new Twig templating engine. Simply by
using the recommended file name suggestions, we saw how easy it was to theme
our homepage by creating a page--front.html.twig template. However, we are
not able to use this same template for our interior pages as Drupal only renders our
homepage template on the front page of our website.

Instead, we will need to create a new Twig template that all of our interior pages can
use when a user is navigating our website. By default, Drupal outputs content using
the page.html.twig template. In this chapter, we will look at using the page.html.
twig template, along with discussing strategies to address the following:

• We will begin with reviewing the About Us page mockup and identify
any additional components that may require custom blocks, new regions,
and Twig templates.

• Then, we will take a look at reusing regions such as our header and footer as
they are considered global components that will be needed across all of our
interior pages.

• Drupal 8 has moved the page title into a new Page title block. We will take
a closer look at how we can use this block to recreate our Title Bar region.

• Using regions to control page flow is important in order to manage the
content, and in Drupal we will look at printing out different regions while
outputting any block content that has been assigned to them.

• Sometimes, we have the need to manipulate our main content's markup
to add additional styling. You will learn how to not only print the content
region but also take advantage of Node templates.

• Finally, Views play such an integrated part of any theme, so we will take
another look at Drupal Views to display the content. You will learn how
to use Twig variables to override fields as well as display the content by
creating block displays.

Theming Our Interior Page

[196]

Although we will work through each section, we can refer back to the Chapter07
exercise files folder. Each folder contains a start folder and an end folder with files
that we can use to compare our work when needed. This also includes database
snapshots that will allow us all to start from the same point when working through
various lessons.

Reviewing the About Us mockup
In order for us to identify page elements, we will be recreating them for the About
Us page and need to take a closer look at our mockup. The About Us page can be
found in the Mockup folder located in our exercise files. Begin by opening up the
about-us.html file within the browser, as shown in the following image:

There are several page elements that we will need to recreate, and we can identify
the following:

1. First is the header, which we created previously on our homepage. We will
need to add this region to our interior pages as well to ensure that our users
can navigate from page to page and use the global search functionality.

2. Second is the page title, which spans across the top of all our interior pages.
This is a common element in Drupal that helps the user to identify which
page they are currently on.

Chapter 7

[197]

3. Third is the main content region. Any nodes or custom blocks can output
content in this region. We will need to make sure that we account for the
content assigned to this region and manage how it flows within our page.
As we continue to scroll down the page, we come across additional content,
as shown in the following image:

4. The Team Member listing represents the content that is repeated, and
anytime we see repeating content, we should consider building this using
Drupal 8 views. This view will be specific to our About Us page, so we
will look at creating a view block for this section and control the visibility
accordingly.

5. Finally, we will need to include our page footer. Once again, we already
created this region on our homepage, so we will need to make sure that
we include it within our interior page template as well.

We identified five specific page sections that need to be developed and themed. Most
of the sections are global to all pages, with the exception of our team member listing.
Now that we have a plan for what we will be developing, let's get started by creating
our interior page template.

Theming Our Interior Page

[198]

Creating our interior page template
Drupal provides us with multiple ways to address templating a specific page.
As we saw when we created our homepage, we can take advantage of Twig
debugging to identify which templates are being output. The same is true for our
interior pages. If we navigate to the About Us page and inspect the markup we
can identify that Drupal is using the default page.html.twig template, as shown
in the following image:

This template is clearly different than the page--front.html.twig template
we created earlier, which explains why some of our page elements are missing.
However, this is a good example of how we can use different Twig templates to
control the markup.

Begin by following these steps:

1. Navigate to the core/modules/system/templates folder and copy
page.html.twig.

2. Place the copy within our themes/octo/templates folder.

Make sure to clear Drupal's cache and refresh the About Us page. If we inspect the
page again, we will note that our new template is being used. We can now begin
to modify the markup safely.

Adding our Global Header
Our website has several global components that were present on our home page
that don't currently exist on our interior pages. One such item is the Global Header,
which consists of the Utility menu, Logo, Main menu, and Search form block.

Chapter 7

[199]

To add this section to our template, all we need to do is simply copy the header
markup from the page--front.html.twig template.

1. Open page.html.twig and delete the entire contents.
2. Open page--front.html.twig and copy the following markup:

 <header class="header" role="banner">
 <div class="header-top">
 <div class="container">
 {{ page.header_top }}
 </div>
 </div>

 <div class="header-nav container">
 {{ page.header}}
 {{ page.primary_menu }}
 </div>
 </header>

3. Paste the markup into page.html.twig.

One more very important item to keep in mind is that we will need to also
add the page content region to our template. Failure to add the {{ page.
content }} region will result in not being able to log in to the Drupal
Admin or see any content that Drupal assigns to this region.

4. Add the following Twig variable to the bottom of our template:
 {{ page.content }}

5. Save page.html.twig.

Make sure to clear Drupal's cache and refresh the About Us page within our browser.
Our header is now in place and functioning as we would expect.

Theming Our Interior Page

[200]

Implementing our page title
Every content type we develop in Drupal includes a title field, which is used to
identify the node currently being displayed. In Drupal 8, the title field warrants its
own block called Page title. This new block provides us with the flexibility to place
the page title into any region and have it display wherever it is needed in our layout.

In order for us to implement the page title displayed within our mockup, we will
need to complete a series of steps:

1. First, we will copy the static markup from our mockup into our interior page
template and preview the results.

2. Second, we will configure our theme to add a new Title Bar region that we
can use to assign content to.

3. Next, we will need to assign the Page title block to our new region and then
output it within our page.html.twig template.

4. Finally, we will refactor the static Page title markup using Twig to create
a new block template.

Working with static HTML
When implementing any section of content within our theme, this will often begin
with copying static HTML. Having actual working HTML within our template file
ensures that our content displays the way we are expecting. The other advantage
of copying static HTML into our template is that it allows us to easily replace the
markup with dynamic content. Let's begin by following these steps:

1. Open page.html.twig.
2. Navigate to Mockup/about-us.html and copy the following markup. Don't

forget to include the opening and closing main layout section, as shown here:
 <main role="main" class="main">

 <section class="page-top">
 <div class="container">
 <h1>About Us</h1>
 </div>
 </section>

 </main>

3. Paste the markup into the page.html.twig template.
4. Save page.html.twig.

Chapter 7

[201]

Make sure to clear Drupal's cache and refresh the About Us page within our browser.
We should now see the static page title being displayed.

We may also note the Page title block being displayed below our static title. By
default, Drupal assigns the Page title block to the Content region. In order for
us to replace our static title with Drupal's Page title block, we will need to add
a new region.

Adding new regions
When we first created our theme, we added regions for Drupal to use when
assigning blocks of content. While we may have thought we accounted for all the
regions our theme would need, we neglected to add one for our page title.

We can add new regions to our theme at any time by modifying our configuration
file. In order to add a new Title Bar region, we will need to navigate to our themes/
octo folder and follow these steps:

1. Open the octo.info.yml file.
2. Add the following to our regions section:

 title_bar: 'Title Bar'

3. Save octo.info.yml.

Make sure to clear Drupal's cache and then navigate to the Block layout page
located at /admin/structure/block. We should now see that the new region
has been added.

Theming Our Interior Page

[202]

Reassigning the Page title block
With our new region added, we can focus on reassigning the Page title block by
following these steps:

1. Locate the Page title block in the Content region.
2. Select Title Bar from the Region dropdown.
3. Click on the Save blocks button.

If for any reason the Page title block is missing from the Block layout screen, we
can add it by using the Place block button next to the region we want to place it in.
Now we need to print our new region so that we can view the Page title block within
our template.

Printing the Title Bar region
In order for our page.html.twig template to display the Page title block, we need
to print the Title Bar region. The Twig variable that represents the region's name can
always be found by looking in our themes octo.info.yml file.

1. Open page.html.twig.
2. Add the Twig variable {{ page.title_bar }} directly below the main

element so that our markup looks like the following:
 <main role="main" class="main">
 {{ page.title_bar}}

3. Save page.html.twig.

Make sure to clear Drupal's cache and then refresh the browser. Our About Us
page is now displaying two page titles—one dynamic and one static, as shown
in the following image:

Chapter 7

[203]

We can fix the duplicated page titles by moving our static markup into the Page
title block template that Drupal is outputting. This will give us the freedom to then
remove the static markup completely from our page.html.twig template while
maintaining the styling that is currently being displayed.

Creating a block template
If we inspect the page title on the About Us page, we will see that Drupal is using
the default block.html.twig template. We can take advantage of FILE NAME
SUGGESTIONS to create our own block template specific to the Page title and then
refactor the markup into it by following these steps:

1. Navigate to core/modules/block/templates and copy the block.html.
twig template to our themes/octo/templates folder.

2. Rename block.html.twig to block--page-title-block.html.twig.
3. Replace the content with the following markup:

 <section class="page-top">
 <div class="container">
 {{ content }}
 </div>
 </section>

4. Save block--page-title-block.html.twig.
5. Open page.html.twig.
6. Delete the page-top section.
7. Save both templates.

Make sure to clear Drupal's cache and then refresh the browser. As we navigate
from page to page, we should see a single page title being displayed and updating
to display the current page's title. Time to move on to our main content section.

Implementing our main page structure
Our main page structure can be considered anything below the global header and
page title and anything above the global footer. In our case, the main page structure
for our About Us page consists of three regions—Before Content, Content, and After
Content. Currently, we are already printing the main content region, but we have yet
to add our structural layout or the other two regions.

Theming Our Interior Page

[204]

Begin by opening page.html.twig, located in our themes/octo folder, and replace
the following markup section with the new markup.

Current markup

<main role="main" class="main">
 {{ page.title_bar }}
</main>

{{ page.content }}

New markup

<main role="main" class="main">
 {{ page.title_bar }}
 {{ page.before_content }}
 <div id="content" class="content full">
 <div class="container">
 <div class="row">
 <div class="col-md-12">
 {{ page.content }}
 </div>
 </div>
 </div>
 </div>
 {{ page.after_content }}
</main>

Make sure to save our changes and then clear Drupal's cache to ensure the theme
registry has picked up our new layout.

While reviewing the markup earlier, we are adding the Before Content region
followed by the structural markup for our main content and then our After Content
region. These two new regions will allow our layout to be flexible enough to add
block content above and below our main content area. We will be using both these
regions as we continue to implement our theme.

In the meantime, let's preview our About Us page in the browser and compare it
to our mockup. We want to make sure that we haven't lost any styling during our
refactoring of markup.

Chapter 7

[205]

In comparing our About Us page side by side with the mockup, we will note that
our h3 and h4 elements are missing some CSS. Upon closer inspection, our design
is expecting our Landing page content type to include a CSS class of landing.
Including this CSS class would ensure that our h3 has the adequate bottom margin
and our h4 would be colored gray and include the bottom border separating the
Headings from the content.

So how would we go about adding a CSS class to our About Us page? Actually,
we can create a Twig template for any specific node or content type using the same
methods we have for any other page.

Theming Our Interior Page

[206]

Creating a Node template
If we inspect the About Us page, we can determine exactly what Twig template we
should use. By default, Drupal will use the node.html.twig template. However, we
can create our own copy of the template based on the multiple file name suggestions.
This will result in all of our Landing Page content types using this new template:

Begin by navigating to the core/modules/node/templates folder and following
these steps:

1. Copy the node.html.twig template to our themes/octo/templates folder.
2. Rename node.html.twig to node--landing-page.html.twig.
3. Replace the content with the following markup:

 {% set classes = ['landing'] %}

 <article{{ attributes.addClass(classes) }}>
 <div{{ content_attributes }}>
 {{ content }}
 </div>
 </article>

4. Save node--landing-page.html.twig.

In the earlier-mentioned markup, we are adding the minimal structure that our
landing page content type needs to output any fields that have been enabled. We
also take advantage of Twig to create a variable named classes that allows us to
add CSS class names to any existing classes that Drupal may be adding using the
attributes.addClass() function. This is a simple technique, but one that will be
used often to add CSS classes to our markup.

Make sure to clear Drupal's cache and then refresh the browser. If we take a look
at the About Us page again, we will see that our H3 and H4 headings are styled to
match our mockup.

Chapter 7

[207]

Implementing our Team members section
The next area of our About Us page we will need to create is the display of our Team
members listing. We will be taking an existing Drupal content type named Team and
using Views to display the four team members.

In order for us to implement the Team members section, we will need to complete a
series of steps as follows:

1. First, we will review the structural markup for our team members section in
preparation for creating a new Drupal View.

2. Next, we will look at various methods to theme View content as we complete
our Team Members display.

3. Finally, we will assign our custom View block to a new region and limit the
page visibility to our About Us page.

Prepping our Team Member View
The Views module provides multiple ways of creating block displays, whether we
are simply outputting the fields of a content type as an unordered list or relying
on rendering a specific content type directly. In any case, it is best to start off by
breaking down how the Team Members block is structured within our mockup
and then creating our view based on those needs.

Let's start by reviewing the visual display and then break down the structural
markup. Navigate to the exercise files and open up the about-us.html file found
in the Mockup folder as shown here:

Theming Our Interior Page

[208]

Visually, we can determine that our view will require the following content:

• Header
• Subheader
• Four-column layout, with each column representing a team member

However, if we inspect the markup of an individual Team member, we will
get a better idea of what fields a team member will need to display.

Markup

<div class="col-md-3 col-sm-6 views-row">

 <div class="img-round img-grayscale-hover">

 <img src="img/team-one.jpg" width="250" height="250"
 alt="Stephen Maturin">

 </div>

 <h6>Stephen Maturin</h6>

 <p>Technical Architect</p>

 <a class="button--icon" href="https://www.facebook.com/
 PacktPub"><i class="fa fa-facebook"></i>

 <a class="button--icon" href="https://twitter.com/
 packtpub"><i class="fa fa-twitter"></i>

 <a class="button--icon" href="https://plus.google.com/
 +packtpublishing/posts"><i class="fa fa-google-plus"></i>

</div>

Based on the markup mentioned earlier, each team member content type will need to
display the following fields:

• Team Photo
• Title
• Position
• Social icons

Chapter 7

[209]

Now that we have identified both our visual and structural markup and fields,
we can begin creating our new Team Member view.

Creating our Team Member View
To get started, we will need to navigate to /admin/structure/views and click on
the Add new view button. From the Views Admin screen, we will add the following
information:

• VIEW BASIC INFORMATION:
1. View name: Team Members
2. Check the Description box
3. Description: A listing of Team Members

• VIEW SETTINGS: Show: Content of type: Team sorted by: Newest first

• BLOCK SETTINGS:
1. Check the Create a block checkbox.
2. Block title: Team Members Listing

Theming Our Interior Page

[210]

• BLOCK DISPLAY SETTINGS:
1. Display format: Unformatted list of: fields.
2. Items per block: 4.
3. Click on the Save and edit button.

Now that our Team Member view has been created, we will need to add additional
fields and adjust the format settings before we can use our new block. With the view
still open we will need to add the following fields:

1. Click on the Add button next to the FIELDS section.
2. Enter the term photo in the Search field to filter our choices.
3. Click on the Team Photo checkbox.
4. Click on the Apply (all displays) button.

Chapter 7

[211]

Next, we will need to configure the Team Photo field.

1. Click on the STYLE SETTINGS section link.
2. Uncheck the Add default classes checkbox.
3. Click on the Apply (all displays) button.

Theming Our Interior Page

[212]

With our Team Photo field added, we will need to repeat the steps mentioned earlier
to add the remaining fields.

Job Position

1. Click on the Add button next to the FIELDS section.
2. Enter the term Job Position in the Search field to filter our choices.
3. Click on the Job Position checkbox.
4. Click on the Apply (all displays) button.
5. Click on the STYLE SETTINGS section link.
6. Uncheck the Add default classes checkbox.
7. Click the Apply (all displays) button.

Facebook link

1. Click on the Add button next to the FIELDS section.
2. Enter the term Facebook link in the Search field to filter our choices.
3. Click on the Facebook link checkbox.
4. Click on the Apply (all displays) button.
5. Click on the STYLE SETTINGS section link.
6. Uncheck the Add default classes checkbox.
7. Click on the Apply (all displays) button.

Twitter link

1. Click on the Add button next to the FIELDS section.
2. Enter the term Twitter link in the Search field to filter our choices.
3. Click on the Twitter link checkbox.
4. Click on the Apply (all displays) button.
5. Click on the STYLE SETTINGS section link.
6. Uncheck the Add default classes checkbox.
7. Click on the Apply (all displays) button.

Chapter 7

[213]

Google Plus link

1. Click on the Add button next to the FIELDS section.
2. Enter the term Google Plus link in the Search field to filter our choices.
3. Click on the Google Plus link checkbox.
4. Click on the Apply (all displays) button.
5. Click on the STYLE SETTINGS section link.
6. Uncheck the Add default classes checkbox.
7. Click on the Apply (all displays) button.

With all of our fields now added to our view, we can click on the Save button to
make sure that we don't lose any of our work. Our fields should now look like the
following image:

We will be modifying our view quite frequently as we begin theming it, but in the
meantime, let's assign our new block to the After Content region we created earlier.
This will give us a better idea of what it currently looks like before proceeding.

Theming Our Interior Page

[214]

Managing our Team Members listing block
Any time we create a new block display using views, we can easily assign it to any
region from the Block layout page. Begin by navigating to /admin/structure/
block and follow these nine steps:

1. Locate the After Content region.
2. Click on the Place block button.
3. Locate the Team Members block.
4. Click on the Place block button.
5. Uncheck the Display title checkbox.
6. Select the Pages tab under Visibility.
7. Enter the path /about into the Page text field.
8. Make sure that the Show for the listed pages checkbox is selected.
9. Click on the Save block button.

With our Team Members block assigned to the After Content region, we can now
navigate back to the About Us page and preview the display:

We clearly have to do something to match our Team Members block to our mockup.
If we compare the mockup to our About Us page, we can see that it doesn't yet
match. We can address this, starting with adding some CSS directly to our View.

Chapter 7

[215]

Formatting Views with CSS
The first noticeable thing is that our four team members are stacked on the page
vertically versus displaying nicely in four columns across the page. In order to
resolve this, we need to simply add the Twitter Bootstrap column classes to our
view's rows. We can achieve this by navigating to /admin/structure/views/view/
team_members and following these four steps:

1. Click on the Settings link next to Unformatted list within the FORMAT
section.

2. From the Block: Style options dialog, select the Row class text field and
enter a value of col-md-3 col-sm-6.

3. Click on the Apply button.
4. Click on the Save button.

Navigate back to the About Us page, and our Team Members block should be
displaying in their proper columns, as shown in the following image:

If we inspect the Team Members block, we can see that our view rows are now
outputting the CSS class we added:

So far so good, but we still need to clean up how the Team Members block and fields
are being output. Fortunately, we can add CSS classes to our overall view as well as
rewrite the fields output to better match our mockup.

Theming Our Interior Page

[216]

Adding CSS classes to Views
So far we have been working with the basic settings of a View. We can actually
achieve more complex settings, such as contextual filters, relationships, and other
miscellaneous settings within the Views UI. In the case of our Team Members view,
we need to globally add a single CSS class name. While you may think we would
need to create a Twig template to achieve this, we can actually add a CSS class from
the admin by navigating to /admin/structure/views/view/team_members and
following these steps:

1. Click on the ADVANCED field set to expand the options within it.
2. Locate the OTHER section.
3. Click on the None link next to CSS class:.
4. Enter a value of team into the CSS class name(s) text field.
5. Click on the Apply (all displays) button.
6. Click on the Save button.

If we navigate back to the About Us page and inspect the Team Members block,
we will see that our view now has the new class added to it.

Using Twig variables to rewrite field content
Another feature widely used when theming Views is the ability to rewrite field
content. Every field we add to a view can be rewritten to easily modify the markup,
and with Twig now part of Drupal 8 we can use this syntax to achieve the markup
that our view needs.

One important item to remember when using this technique is that by default Drupal
will provide field wrapper elements to each field. This unfortunately adds additional
and unneeded div elements around every field. We will want to turn this setting off
by navigating to /admin/structure/views/view/team_members and completing
the following:

1. Locate the FORMAT section.
2. Click on the Settings link next to Show: Fields.
3. Uncheck the Provide default field wrapper elements checkbox.
4. Click on the Apply button.

Chapter 7

[217]

Now that we have turned off the default field wrapper elements, we can proceed to
rewriting each field starting with Team Photo.

Content: Team Photo

1. Click on the Content: Team Photo link under the FIELDS section.
2. Choose the Team (250x250) image style from the Image style dropdown.
3. Expand the REWRITE RESULTS section.
4. Check the Override the output of this field with custom text checkbox.
5. Expand the REPLACEMENT PATTERNS section to view the replacement

patterns we can use to rewrite our markup.
6. Enter the following markup in the Text field:

 <div class="img-round img-grayscale-hover">

 {{ field_team_photo }}

 </div>

7. Click on the Apply (all displays) button to complete the field rewrite.
8. Click on the Save button to save our view.

To validate that our field has been rewritten, navigate back to the About Us page
and our Team Members' photographs should now be displaying, as shown in the
following image:

Theming Our Interior Page

[218]

If we inspect the markup of the page, we can see how simple rewriting the field
output of views can be. Let's finish rewriting our fields by navigating to /admin/
structure/views/view/team_members and following these remaining steps.

Content: Title field

1. Click on the Content: Title link under the FIELDS section.
2. Uncheck the Link to the Content checkbox.
3. Expand the REWRITE RESULTS section.
4. Check the Override the output of this field with custom text

checkbox.
5. Expand the REPLACEMENT PATTERNS section to view the

replacement patterns we can use to rewrite our markup.
6. Enter the following markup in the Text field:

<h6>{{ title }}</h6>

7. Click on the Apply (all displays) button.
8. Click on the Save button to save our view.

Content: Job Position field

1. Click on the Content: Job Position link under the FIELDS section.
2. Expand the REWRITE RESULTS section.
3. Check the Override the output of this field with custom text

checkbox.
4. Expand the REPLACEMENT PATTERNS section to view the

replacement patterns we can use to rewrite our markup.
5. Enter the following markup in the Text field:

<p>{{ field_job_position }}</p>

6. Click on the Apply (all displays) button.
7. Click on the Save button to save our view.

Content: Facebook link field

1. Click on the Content: Facebook link link under the FIELDS section.
2. Expand the REWRITE RESULTS section.
3. Check the Override the output of this field with custom text checkbox.
4. Expand the REPLACEMENT PATTERNS section to view the replacement

patterns we can use to rewrite our markup.

Chapter 7

[219]

5. Enter the following markup in the Text field:
<a class="button--icon"
 href="{{ field_facebook_link__uri }}">
 <i class="fa fa-facebook"></i>

6. Click on the Apply (all displays) button to complete the field rewrite.
7. Click on the Save button to save our view.

Content: Twitter link field

1. Click on the Content: Twitter link link under the FIELDS section.
2. Expand the REWRITE RESULTS section.
3. Check the Override the output of this field with custom text

checkbox.
4. Expand the REPLACEMENT PATTERNS section to view the

replacement patterns we can use to rewrite our markup.
5. Enter the following markup in the Text field:

<a class="button--icon"
 href="{{ field_twitter_link__uri }}">
 <i class="fa fa-twitter"></i>

6. Click on the Apply (all displays) button.
7. Click on the Save button to save our view.

Content: Google Plus link field

1. Click on the Content: Google Plus link link under the FIELDS section.
2. Expand the REWRITE RESULTS section.
3. Check the Override the output of this field with custom text

checkbox.
4. Expand the REPLACEMENT PATTERNS section to view the

replacement patterns we can use to rewrite our markup.
5. Enter the following markup in the Text field:

<a class="button--icon"
href="{{ field_google_plus_link__uri }}">
<i class="fa fa-google-plus"></i>

6. Click on the Apply (all displays) button.
7. Click on the Save button to save our view.

Theming Our Interior Page

[220]

With the remaining fields rewritten using the proper Twig replacement patterns,
we can navigate back to our About Us page and review the results, as shown in
the following image:

Our Team Members block is coming together nicely. We do have one field that is out
of order and that is our team members' names. Currently, they are appearing above
our images, and we need to fix that by rearranging our View's fields.

Rearranging View fields
When we work with Views, we will often need to modify the fields that we have
added, including rearranging them so that they display properly to match our
design. We can easily accomplish this using the Views UI by navigating to /admin/
structure/views/view/team_members and following these steps:

1. Click on the dropdown button next to the FIELDS section.
2. Choose Rearrange from the list.
3. Drag the Content: Title field below the Content: Team Photo field

using the drag icons.
4. Click on the Apply (all displays) button.
5. Click on the Save button to save our view.

Now that we have our fields rearranged properly, we still need to add the header
and subheader so that they appear above our block. Because we need the headings
to be part of our view block, we can take a look at using the View header to add the
markup and content required to match our mockup.

Chapter 7

[221]

Adding a View header
Our best option to add this markup is to use the View header, which can be done
by navigating to /admin/structure/views/view/team_members and following
these steps:

1. Click on the Add button within the HEADER section of our views
BLOCK SETTINGS.

2. Choose Text area from the Add header window, this will allow us to provide
markup text for the area.

3. Click on the Apply (all displays) button.
4. Choose Full HTML from the Text format dropdown.
5. Enter the following markup in the Content field:

<div class="view-header">
 <h2 class="block-title">Meet our awesome team</h2>
 <hr>
 <p class="block-subtitle">We bring you an awesomeness of
 design, creative skills, thoughts, and ideas.</p>
</div>

6. Click on the Apply button.
7. Click on the Save button to save our view.

If we view our About Us page, we see that our header and tagline are now being
displayed. We are almost finished with this section.

Theming Our Interior Page

[222]

The only visual element still missing is the gray background that helps separate
our Team Members block from the rest of our content. Also, if we were to resize the
page and check for any responsive qualities, we would note that something is just
not quite right. In fact, upon further investigation, our After Content region does
not include the container class that enables Twitter Bootstrap to apply its media
queries properly.

Refactoring the After Content region
Adding markup to any regions requires us to either create or modify an existing
Twig template. As we have seen before, all we need to do is inspect our page
markup to determine where the template resides and what file name suggestion
we should use:

Begin by following these steps:

1. Navigate to core/modules/system/templates and copy the region.html.
twig template to our themes/octo/templates folder.

2. Rename region.html.twig to region--after-content.html.twig.
3. Replace the content with the following markup:

{% set classes = ['region','region-' ~ region|clean_class,] %}

{% if content %}
 <div{{ attributes.addClass(classes) }}>
 <div class="container">
 {{ content }}
 </div>
 </div>
{% endif %}

4. Save region--after-content.html.twig.

Chapter 7

[223]

Make sure you clear Drupal's cache and then refresh the browser. If we preview the
About Us page, we will now see our completed Team Members section. By using
Twig to create a template for our After Content region, we enabled the markup to be
responsive with the container class as well as using the classes variable to display
the name of the region for our global styling to take effect.

In order for us to complete the interior page structure, we need to add back our
global footer. Let's take a look at doing that now.

Adding our global footer
Our website has several global components that were present on our homepage
that don't currently exist on our interior pages. One such item is the global header,
which consists of the utility menu, logo, main menu, and search form block.

To add this section to our template, we need to simply copy the footer markup
from the page--front.html.twig template:

1. Open page.html.twig and delete the entire contents.
2. Open page--front.html.twig and copy the following markup:

<footer id="footer" role="contentinfo">

 <div class="container main-footer">
 <div class="row">
 <div class="col-md-4">
 {{ page.footer_first }}
 </div>

 <div class="col-md-4">
 {{ page.footer_second }}
 </div>

 <div class="col-md-4">
 {{ page.footer_third }}
 </div>

 </div>
 </div>

 <div class="footer-copyright">
 <div class="container">
 <div class="row">

Theming Our Interior Page

[224]

 <div class="col-md-8">
 {{ page.footer_bottom_left }}
 </div>

 <div class="col-md-4">
 {{ page.footer_bottom_right }}
 </div>

 </div>
 </div>
 </div>

 </footer>

3. Paste the markup into page.html.twig.
4. Save page.html.twig.

Make sure you clear Drupal's cache and refresh the About Us page within your
browser. Our footer is now in place, and it is functioning as we would expect.

We have successfully completed theming our About Us page and in the process
created our interior page template. The remaining pages we will be creating can take
advantage of our new page.html.twig template, but before we wrap up this lesson
I want to address one more item.

Fixing JavaScript errors
When we created our homepage, we attached a couple of JavaScript libraries
directly to our page--front.html.twig template. However, since we are loading
our theme's custom scripts file globally, this can sometimes create unnecessary
JavaScript errors.

Chapter 7

[225]

If we inspect our About Us page, we will see one such error caused by our script
trying to configure the FlexSlider library, which only exists on our homepage.

While we are not covering the fundamentals of JavaScript and how to write proper
syntax, it is important to point out this issue. This can be a common error when using
JavaScript with the different techniques used to theme Drupal 8. So, let's take a quick
look at how to fix this to have this as part of our theming tools moving forward.

Begin by navigating to themes/octo/js and opening the octo.js file. From here,
we can follow these steps to resolve the JavaScript error:

1. Locate the Flexslider function call.
2. Wrap the function in a conditional structure that will look to see if the

flexslider library exists before configuring it. The revised structure
should look like the following:
//-- Flexslider
 (function() {

 if (typeof $.fn.flexslider === 'function'){

 $('.flexslider').flexslider({
 direction: "vertical",
 controlNav: false,
 directionNav: false
 });

 }

 })();

3. Save octo.js.

The simple typeof operator can be used with any JavaScript library we may
be referencing within our theme to ensure that we don't initialize a library
unnecessarily. If we clear Drupal's cache and then reload our About Us page,
we will no longer have any JavaScript function errors.

Theming Our Interior Page

[226]

Summary
We covered a lot of different techniques while recreating our About Us page. From
reviewing the mockup to working with various Twig templates, our theming skills
have improved. Let's take a moment to recap what we accomplished in this chapter:

• We began with reviewing our About Us mockup to help identify the
different page elements we would need to consider when creating our
interior page template.

• Next, we added back any global regions to our template so that users
would be able to navigate to the various pages of our website.

• The page title plays a very important part in identifying where a user
is within our site, so you learned how to work with the Page title block,
create a block template, and refactor markup to match our design.

• Our Team Members section required you to learn different techniques to
create and format fields using Drupal's View module. We rewrote fields
using Twig, added View headers to create introductory text, and followed
up by adding CSS classes to various sections.

• Finally, we looked at a common JavaScript error and how to resolve loading
libraries unnecessarily.

In the next chapter, we will continue our theming by taking a look at setting up our
Blog Landing page, working with various display modes associated with content
types, and using those display modes with Views.

[227]

Theming Our Blog
Listing Page

The blog section of our website will be by far be the most complex to set up, as we
will be taking advantage of the Twig template layer to modify the HTML markup
from the Node level all the way down to the field level. What does this mean? It
simply means we will be breaking our mockup down into small chunks, whether it
be the blog teaser, a listing of blog categories, or even the simple blog image itself.

In this chapter, we will look at creating multiple Twig templates that our Blog listing
page will use, as well as the following:

• We will begin by reviewing our Blog listing page as displayed in our mockup
and identifying the areas we will need to theme.

• Next, we will create our Blog listing page, along with a teaser view of our
content that will link to the Blog detail page.

• Our Blog listing also contains three custom blocks of content, which will
require us to dive a little deeper into using Drupal views, custom blocks, and
Twig templates to create categories, popular blogs, and a recent blogs list.

• We will also take a look at how we can deal with multiple field items to
create a slideshow of images that will be used both on our Blog listing and
Blog detail pages.

• Finally, we will focus on how to work with comments and the theme layer to
display them properly.

While we work through each section, we have the ability to refer back to the
Chapter08 exercise files folder. Each folder contains a start and end folder with
files that we can use to compare our work when needed. This also includes database
snapshots that will allow us all to start from the same point when working through
various lessons.

Theming Our Blog Listing Page

[228]

Reviewing the Blog Listing mockup
In order to assist us in identifying page elements that we will be recreating for the
blog page, it would make sense to open up our mockup and review the layout and
structure. The Blog page can be found in the Mockup folder located in our exercise
files. Begin by opening up the blog.html file within the browser, as shown in the
following image:

Chapter 8

[229]

If we look at our mockup and break it down into manageable parts, we will notice
several components that we will need to create using our existing post content type:

• The first is the blog teaser in the main content area, which consists of one or
more images, post metadata, title, text, and some taxonomy terms that help
identify the type of post we are viewing. Since this is repeated content,
we will take advantage of Drupal views and custom view modes to recreate
this section.

• The second is the Categories listing in the right-hand sidebar, which displays
the category of posts available on our website. This is a simple HTML list
that we can recreate using Drupal views.

• The third is a tabbed component to display Popular and Recent blog posts.
While this looks a little more complex, we will use some advanced Drupal
views techniques to recreate it.

• The fourth is a custom block with some About Us text and should be simple
to develop.

So we have identified four specific page components for our blog listing page. We
will concentrate on creating these various items of our site and, once complete, we
should be able to compare our blog listing page with our mockup.

Creating our blog listing
Our blog listing is a shortened representation of our Blog detail page, with just
enough information to tease our users into reading more. To help us identify what
fields we will need to display for our blog listing, we should review each individual
post on our mockup. We can visually identify that we will need to display the
following fields:

• Image
• Post date
• Title
• Teaser
• Author
• Tags (taxonomy)
• Comments

Theming Our Blog Listing Page

[230]

While all of these fields make up our post content type, there are also additional
fields such as Thumbnail and Full content that are not being displayed. So how
would we go about presenting the same data to users differently, based on the
layout? We could hide fields using CSS, or add PHP conditions, but there is a
much easier method for creating different display modes.

Adding a new display mode
One feature of Drupal 8 that provides us with the flexibility to present content
differently based on specific requirements is display modes. By default, Drupal
provides each content type or node with a handful of displays for enabling fields
based on a default view or teaser view. We can see a listing of all the current display
modes associated with content by navigating to /admin/structure/display-
modes/view, as shown in the following image:

However, we are not limited to just these displays. We can create different displays
for both Node forms and Node views. In fact, let's create a new view mode for our
blog listing by following these steps:

1. Click on the Add new Content view mode link.
2. Enter the value Listing in the Name text field.
3. Click on the Save button.

Chapter 8

[231]

Now that we have created our new View mode, we can use it with any content type
that we choose. In the case of our post content type, we will utilize it to manage what
fields will be displayed when using the listing display.

Managing the display
The ability to manage a content types display has actually been around since Drupal
6. Once known as build modes, we can now utilize our new display by navigating to
/admin/structure/types/manage/post/display and enabling the custom display
settings as shown:

1. Click on the CUSTOM DISPLAY SETTINGS fieldset to expand it.
2. Check the Listing checkbox under Use custom display settings for the

following modes.
3. Click on the Save button.

Our new listing display should now be available to select along the top of our
Manage display screen. Selecting Listing will display a new view mode that
we can use to specify which fields will be enabled.

Theming Our Blog Listing Page

[232]

Enabling fields
Fields can be dragged, dropped, and rearranged by simply clicking on the drag icon
next to each field name. Any fields located under the Disabled section will not be
displayed when the Listing view mode is used. For our blog listing page, we only
want to display the Image, Teaser, and Tags fields. Go ahead and drag these into
place, as shown in the following image:

Once we have rearranged the fields as needed, we can click on the Save button to
lock in our changes.

Managing the display of fields is not just about selecting which fields are enabled
or disabled. We also have the ability to specify how the label of each field will be
presented, as well as how each field will be formatted.

Chapter 8

[233]

Field label visibility
The label for each field can have one of four states. The label can display above or
inline with the field, as well as be hidden or visually hidden. Visually hiding a label
does not prevent the label itself from being available for screen readers, and is great
for accessibility requirements.

For our three fields, we will want them to all be hidden from our display, so we can
follow these steps to hide each field:

1. Click on the LABEL dropdown next to the Image field and choose Hidden.
2. Click on the LABEL dropdown next to the Teaser field and choose Hidden.
3. Click on the LABEL dropdown next to the Tags field and choose Hidden.
4. Click on the Save button.

Formatting fields
Each field can also be formatted so that it is displayed differently, based on the
formatting options. This allows us to have finer control over how text is displayed,
how content is referenced, and what size an image is displayed at. Based on the
formatting options, there may be additional settings that can be applied.

For example, if we click on the gear icon to the right of our image field, we will be
presented with options to select various image styles and even enable the image
to link to the node itself:

Theming Our Blog Listing Page

[234]

Currently, our fields do not require formatting, but it is important to know where to
manage this functionality when the need arises.

Creating a Post Listing view
So now that we have a new listing display for our post content type, you may be
asking how do we actually use it? Just like any content that we want to aggregate,
we will start with creating a Drupal view. But unlike previous views that we
created, which used fields, we will be creating a view that uses the Content Types
display mode.

To get started, we will need to navigate to /admin/structure/views and click on
the Add new view button. From the Views admin screen, we will add the following
information:

• VIEW BASIC INFORMATION:
1. View name: Post Listing.
2. Check the Description box.
3. Description: A listing of all Posts.

• VIEW SETTINGS: Show: Content of type: Post sorted by: Newest first
• BLOCK SETTINGS:

1. Check the Create a block.
2. Block title: Post Listing.

• BLOCK DISPLAY SETTINGS:
1. Display format: Unformatted list of: teasers.
2. Items per block: 3.
3. Click on the Save and edit button.

All of these steps are similar to the Team Member view we created in Chapter 7,
Theming Our Interior Page. Instead of displaying fields though, we are displaying
the Teaser view mode to begin with and will modify our format to use the Listing
display mode next.

Chapter 8

[235]

Using Content Display modes with views
Our Post Listing view is currently using the Teaser view mode of our Post content
type. This varies from the typical fields display that we have created so far. Using a
view mode from a content type is more flexible because it allows us to manage the
display of our fields from the content type itself, without the need to modify our
view in the future.

If we preview our view, we will get a glimpse of what fields our post's teaser display
has enabled:

In order for us to utilize the Listing view mode for our Post content type, we will
need to modify the format currently being used. We can change this by following
these steps:

1. Select the Teaser link under the FORMAT section.
2. Choose Listing from the View mode dropdown.
3. Click on the Apply button.
4. Click on the Save button to save the changes.

If we preview the results, we will see our display has changed and we are now
showing only the fields we enabled previously on the Listing view mode.

Now that we have our Post Listing view created, we can manage the block display
and place it on our Blog listing page.

Theming Our Blog Listing Page

[236]

Managing our Post Listing block
Any time we create a new block display using views, we can easily assign it to any
region from the Block layout page. Begin by navigating to /admin/structure/
block and follow these steps:

1. Locate the Content region.
2. Click on the Place block button.
3. Locate the Post Listing block.
4. Click on the Place block button.
5. Uncheck the Display title checkbox.
6. Select the Pages tab under Visibility.
7. Enter the path /blog into the Page text field.
8. Make sure the Show for the listed pages checkbox is selected.
9. Click on the Save block button.
10. Click on the Save blocks button at the bottom of the Block layout page.

Make sure the Post Listing block is the last block displayed in our content region. If
not, then reorder the blocks accordingly and click on the Save blocks button at the
bottom of the Block layout screen.

Navigate back to the Blog listing page by browsing to /blog or by selecting the Blog
link in the main menu. We can see that our Post listing block is now displaying on
the page in a single column, as shown in the following image:

Chapter 8

[237]

If we refer back to our mockup ,we can see that while most of the content we need
is being displayed, we are still missing the post date, author, and comment count.
Also our structure and styling still needs some work. This is where creating a Twig
template specific to our nodes display mode will allow us to modify our markup
and add any missing variables that our page may need.

Implementing our Node template
Creating a node template is not foreign to us; our process begins the same way
we would create any Twig template. We begin by inspecting the markup of our
page to identify which template is currently being used and the various file name
suggestions available to us. Since our Post Listing block is referencing the listing
view mode of our post content type, we can create a new Twig template called
node--post--listing.html.twig.

Begin by grabbing a copy of the node.html.twig template from core/modules/
node/templates and placing it into our themes/octo/templates folder. We will
then rename the file to node--post--listing.html.twig so that we only affect the
markup for this particular content types display. Next, we will need to replace the
current markup within our template with the following new markup:

New markup

<article{{ attributes }}>
 {{ content }}
</article>

Make sure to save the template, clear Drupal's cache, and refresh the Blog page. At
first glance, nothing has changed, but we are now using a custom Twig template to
display our content. We will be walking through building up our template until it
resembles our mockup by discussing the following techniques:

• First, we will use Twig to add additional CSS classes to our article element.
This will allow us to apply formatted styling to each individual post that is
being repeated on the page.

• Next we will work with the {{ content }} variable to print individual
fields. This will give us the opportunity to add additional HTML markup for
both formatting and structure to each post.

• We will learn how to work with field level templates to account for multiple
content within a single field. This will enable us to create the image slider
for each post when it has more than one image uploaded, as well as add
additional markup to individual fields so that taxonomy tags display correctly.

Theming Our Blog Listing Page

[238]

• Twig filters play an important role in theming and we will learn how to use
them to format dates. This will allow us to display the post date properly,
based on the design.

• Finally, we will dive into the Theme layer to preprocess variables needed to
help identify the path for each page and to retrieve the comment count if one
exists for each post.

Adding CSS classes to Twig
Adding additional CSS classes to our markup is not new for us. We implemented
this technique in the previous lesson when we developed our node--landing-
page.html.twig template in Chapter 7, Theming Our Interior Page. In fact, Drupal
8 provides us with various ways to work with its attributes, with everything from
adding classes to removing classes. We are only touching the surface of how we can
use this technique. For even more information, we can refer to the documentation at
Drupal.org, located at https://www.drupal.org/node/2513632.

For our post listing,, we need to add two CSS classes to our article element. We can
accomplish this by setting a classes variable within our template and then using
the {{ attributes.addClass() }} function to inject the two new classes into
the attributes.

Open up node--post--listing.html.twig and replace the markup with the
following:

New markup

{% set classes = ['post', 'post--listing'] %}

<article{{ attributes.addClass(classes) }}>
 {{ content }}
</article>

Make sure to save the template, clear Drupal's cache, and refresh the blog page. We
should see a slight change in our styling with the introduction of a bottom border
separating each post.

Working with content variables
So far, our node template is just printing out the {{ content }} variable, which
contains all the fields we have enabled for the listing display mode. In some cases this
may suffice, but we can actually print the individual fields that the {{ content }}
variable contains by referencing the field using dot syntax notation. Having this
flexibility allows us to add structural markup for each field.

https://www.drupal.org/node/2513632

Chapter 8

[239]

Let's give this a try by opening node--post--listing.html.twig and modifying
our markup to print the image field for our post:

New markup

{% set classes = ['post', 'post--listing'] %}

<article{{ attributes.addClass(classes) }}>
 {{ content.field_image }}
 {{ content }}
</article>

Make sure to save the template, clear Drupal's cache, and refresh the blog page.
We should see our post image is now duplicated for each post. Why is this?
Well, if we refer back to our markup, we are telling Drupal to output
{{ content.field_image }}, which prints the image field. But we are
also following that by printing all of the content using {{ content }}.

Using the without filter
Any time we are developing a Twig template and start printing individual fields
for a content type, we will want to prevent the same field from being printed again
when the {{ content }} variable is called. Twig provides us with the without
filter to assist us in accomplishing this.

To test this, open up node--post--listing.html.twig and modify the markup to
reflect the following:

New markup

{% set classes = ['post', 'post--listing'] %}

<article{{ attributes.addClass(classes) }}>
 {{ content.field_image }}
 {{ content|without('field_image') }}
</article>

Make sure to save the template, clear Drupal's cache, and refresh the Blog page. We
now only have a single instance of our image field displayed. Using the without
filter and passing the field name as a value has successfully prevented the field from
printing a second time. We will continue using this technique, as well as printing the
individual fields for our Post Listing block as we theme our node.

Theming Our Blog Listing Page

[240]

Creating our post image slider
If we refer back to our mockup of the blog page by opening the blog.html page
located in our Mockup folder, we will notice that our post can contain one or more
images. However, when more than one image exists, we present the image in a
slider for the user to see all post images:

In order for us to implement this functionality, we will need to know exactly how
many images our image field contains. While we can't access this information from
the node level, we can implement this from the field level by creating a field template
specifically for the field.

Working with field templates
If we browse back to our Drupal instance and navigate to the blog page, we can
inspect the image field and locate which Twig template is currently being used
by Drupal:

Chapter 8

[241]

Drupal provides multiple FILE NAME SUGGESTIONS for us to choose from, but
since we don't know if we will reuse this field with another content type later, we
will be as specific as possible and create field--node--field-image--post.html.
twig by following these steps:

1. Navigate to the core/modules/system/templates folder and copy the
field.html.twig template.

2. Place field.html.twig into our themes/octo/templates folder and
rename it field--node--field-image--post.html.twig.

3. Open field--node--field-image--post.html.twig and replace the
markup with the following:
{% if items|length > 1 %}
 <div class="post-image">
 <div class="owl-carousel">
 {% for item in items %}
 <div class="img-thumbnail">
 {{ item.content }}
 </div>
 {% endfor %}
 </div>
 </div>
{% else %}
 <div class="single-post-image post-image">
 {% for item in items %}
 <div class="img-thumbnail">{{ item.content }}</div>
 {% endfor %}
 </div>
{% endif %}

Make sure to save the template and clear Drupal's cache. Before we preview the blog
page let's take a moment to discuss what exactly is happening in this new template.

1. First, we are using a Twig filter {% if items|length > 1 %} to test the
length of the items variable to see if our image field contains multiple images.
If it does, we will print the markup for that condition, but if not, we will print
the markup contained in the {% else %} condition.

2. Second, since any field item can contain multiple items, we need to loop {%
for item in items %} through the items and print {{ item.content }}.

3. Finally, the remaining markup adds the necessary structure and CSS classes
for the next step of the process, which is adding the Owl Carousel library to
our theme.

If we now browse to the blog page, we will see that our field images are styled to
include a rounded border, a light box shadow, and some necessary padding.

Theming Our Blog Listing Page

[242]

Adding the Owl Carousel library
In order to add the slider functionality to multiple images, we will be implementing
Owl Carousel, which can be found at http://owlgraphic.com/owlcarousel/. Owl
Carousel provides us with a responsive touch enabled slider that we can apply to our
post images. We will be grabbing a copy of the library from our exercise files, adding
the library to our theme, configuring it within our octo.libraries.yml file, and
then using Twig to attach the library to our node templates.

Begin by navigating to the Chapter08/start/themes/octo/vendor folder and
copying the owl-carousel folder to our themes/octo/vendor folder. Once the files
are accessible by Drupal, we can add the reference to our library by following these
remaining steps:

1. Open octo.libraries.yml.
2. Add the following entry:

 owl-carousel:
 version: 1.3.3
 css:
 theme:
 vendor/owl-carousel/owl.carousel.css: {}
 vendor/owl-carousel/owl.theme.css: {}
 js:
 vendor/owl-carousel/owl.carousel.min.js: {}
 dependencies:
 - core/jquery

3. Save octo.libraries.yml.

Before we can preview the new functionality, we still have a few steps left to
complete. Next, we will need to attach the library to our Blog listing page. As we
will not want this library to load on every page, using the {{ attach_library() }}
function will be our preferred method.

Begin by opening node--post--listing.html.twig and then adding the following
Twig function to the top of our template:

{{ attach_library('octo/owl-carousel') }}

It is very important to make sure that we are using single quotes to surround the
path to our library, otherwise the slightest typo will cause the library to not be
loaded. Now make sure to save the template and then we can move on to initializing
Owl Carousel.

http://owlgraphic.com/owlcarousel/

Chapter 8

[243]

Begin by opening octo.js and adding the following script to the bottom of our file
directly below our Scroll to function:

//-- Owl Carousel
(function() {

 if (typeof $.fn.owlCarousel === 'function'){
 $('.owl-carousel').owlCarousel({
 slideSpeed : 300,
 paginationSpeed : 400,
 singleItem:true
 });
 }

})();

Make sure to save octo.js and then let's review exactly what our new function
is doing:

1. First, we are conditionally checking if the Owl Carousel function exists. This
ensures we avoid any JavaScript errors on other pages where our library is
not loaded.

2. Next, we are initializing Owl Carousel and passing three parameters to it:
one for how fast an image should slide, one for pagination, and then finally
we tell it how many images we want to display.

With our library added, attached to our template, and initialized, we can now clear
Drupal's cache and refresh our Blog listing page. We will now see that any posts
that contain multiple images display as a slider. This provides some nice responsive
functionality for our users.

Using Twig filters for dates
The next section of our post listing we need to address is the post date. By default,
Drupal will print dates in the form of a Unix timestamp. In most cases, we will
want to convert these dates into a more user friendly format. Luckily, we can take
advantage of another Twig function, date(), to convert dates easily.

Theming Our Blog Listing Page

[244]

Begin by opening node--post-listing.html.twig and adding the following
markup directly after where we are printing the post image:

New markup

<div class="post-date">
 {{ node.createdtime }}
 {{ node.createdtime }}
</div>

Make sure to save the template, clear Drupal's cache, and then refresh the Blog
listing page. We will now see exactly what the Unix timestamp looks like when
printed. While our theming is now being applied, we need to convert the timestamp
into day and month:

Let's now use the date() function and apply it to node.createdtime to display the
day and month format of our timestamp.

Open node--post-listing.html.twig and modify our post-date markup to reflect
the following:

New markup

<div class="post-date">
 {{ node.createdtime|date('d') }}
 {{ node.createdtime|date('M') }}
</div>

Make sure to save the template, clear Drupal's cache, and then refresh the Blog
listing page. By adding the simple Twig function to our timestamp, we now have
the correct formatting and styling:

Our post listing is starting to come together. Next, we will add the title of our post
along with the teaser field, before moving on to our metadata.

Chapter 8

[245]

Printing title and teaser
Working with Node titles when theming can sometimes be a mystery, unless you
have a good understanding of what Drupal is doing behind the scenes. The title field
is one of the few required fields that each Content type must contain. The challenge
is that while it's considered a field, it doesn't truly function like other fields. We do
not have access to manage the Node title in the admin, as we can with the rest of our
fields. While we could extend the functionality by using modules such as https://
www.drupal.org/project/title, we will manage the Node title directly within
our Twig template.

Open node--post-listing.html.twig and add the following markup directly after
our post-date section:

New markup

<div class="post-content">

 {{ title_prefix }}
 <h2{{ title_attributes }}>
 {{ label }}
 </h2>
 {{ title_suffix }}

 {{ content.field_teaser }}

</div>

{{ content|without('field_image','field_teaser') }}

Make sure to save the template, clear Drupal's cache, and then refresh the Blog
listing page. Our post title and teaser should now be displayed:

We are familiar with printing individual fields and removing them from the main
content flow. What is new though is how we print the title. Within a node template, the
title is referred to as {{ label }} and the {{ url }} variable points to the path of the
individual post. We utilize these two variables to create our title within a h2 heading
and a link. We also have some extraneous variables, such as {{ title_prefix }}
and {{ title_suffix }}, which are utilized by contributed modules to inject
markup before or after our title.

https://www.drupal.org/project/title
https://www.drupal.org/project/title

Theming Our Blog Listing Page

[246]

Creating our post metadata
We are getting close to completing the theming of the post listing. We are still
missing the post metadata, which consists of the author, the categories that a
post has been tagged with, and the comment count.

We will begin with adding the structural markup for our post-meta content,
including printing the author associated with each post:

1. Open node--post--listing.html.twig.
2. Add the following markup directly below the teaser variable:

<div class="post-meta">

 <i class="fa fa-user"></i> By {{ author_name }}

</div>

Make sure to save the template, clear Drupal's cache, and then refresh the blog listing
page. Our post author is now displayed, with a link to the user profile. Since we are
using the default author information for the node, and not a specific field, we have
the ability to print that information using the {{ author_name }} variable:

Now we need to address the tags field, which displays any categories associated
with a post. The tags field, as we will see in a moment, can contain one or more
values, which will require us to modify the markup on the field level:

1. Open node--post--listing.html.twig.
2. Add the following markup within our post-meta section, directly below our

post-meta-user markup:

 <i class="fa fa-tag"></i> {{ content.field_tags }}

3. Make sure to exclude the field_tags variable from the main content variable.

Chapter 8

[247]

Make sure to save the template, clear Drupal's cache, and then refresh the Blog
listing page. We should now see our post categories displayed only once per post.
However, our tags are displayed stacked on top of each other, instead of inline as
our design requires. If we inspect the page markup for our tags, we will see that
each category has a div element wrapped around it, causing them to be block
level elements.

Field templates and taxonomy
In order for us to modify the markup for our taxonomy tags, we will need to create
a field level template. Using the file name suggestions provided by Twig, we can
create our own template by following these steps:

1. Navigate to the core/modules/system/templates folder and copy the
field.html.twig template.

2. Place a copy of the template in our themes/octo/templates folder.
3. Rename the file field--field-tags.html.twig.
4. Replace the markup with the following:

 {% for item in items %}
 <li{{ item.attributes.addClass('field-item') }}>
 {{ item.content }}

 {% endfor %}

Make sure to save the template, clear Drupal's cache, and then refresh the Blog listing
page. Based on the markup we added, we have replaced the block level elements
with an unordered list, and each taxonomy tag is now a list item:

Our post listing is starting to take shape, but you may have noticed that we are not
returning the number of comments that each post contains. How do we remedy this
when there is no comment count variable available to the Node template?

Theming Our Blog Listing Page

[248]

Handling comments in Drupal 8
One of the new things introduced in Drupal 8 is the comment field. Previously, when
you created or edited a content type, you would simply enable Comments by turning
them on or off. Well, comments are now their own field and must be added to a
content type like any other field that you want to create.

If we navigate to /admin/structure/comment, we will get a glimpse of the Default
comments configured by Drupal.

Comment types are similar to Content types, as they are fieldable and multiple
comment types can be created. Feel free to inspect the comment type in more detail,
but be aware that this is the comment type we are using with our Post content type.

In fact, if we navigate to /admin/structure/types/manage/post/fields, we will
see that we have a field called field_comments which is of FIELD TYPE Comments.
The comment field was added to our Post content type and provided to us with the
database snapshot.

If we were to add this field to our Listing display, it would not return a comment
count, but instead display the Comment form. Based on our design, that does not
help us. However, knowing the field name for our comments will allow us to do
some advanced theming within the Drupal 8 theme layer to retrieve the comment
count, place it within a variable and print it within our Twig template.

Creating a theme file
The *.theme file is a PHP file that contains theme hooks for preprocessing variables.
We will create a theme file specific to our theme that we can use to grab the comment
count, based on each individual post, and then return the count to our Twig template
as a variable that can be printed.

Let's begin by creating a new file called octo.theme and saving it to our themes/
octo folder.

Chapter 8

[249]

Next, we will add the following PHP code:

<?php

function octo_preprocess_node(&$variables) {
 $node = $variables ['elements']['#node'];
 $id = $node->id();

 // Create comment count variable for template
 $count = _octo_comment_count($id);
 $variables['comment_count'] = _octo_plural($count, 'Comment',
 'Comments');
}

The octo_preprocess_node(&$variables) function is known as a theme hook and
is an adaptation of theme_preprocess_node. Within this function, we are passing by
reference any variables accessible to the Node using &$variables. Since everything
in Drupal is an array, we can traverse the $variables array to retrieve the Node ID,
which we use to pass to a custom function that returns the number of comments for
each node.

Next, we will add the two custom functions directly below our preprocess function:

function _octo_comment_count($id) {
 $count = db_query("SELECT comment_count FROM
 comment_entity_statistics WHERE entity_id = :id",
 array(':id' => $id))->fetchField();

 return empty($count) ? '0' : $count;
}

function _octo_plural($count, $singular, $plural) {
 if ($count == 1)
 return $count . ' ' . $singular;
 else
 return $count . ' ' . $plural;
}

Our first custom function returns the comment count for a specific node ID, which
is passed to the function from our preprocess function. This custom function uses
db_query to select the count from the comment_entity_statistics table in Drupal.

Theming Our Blog Listing Page

[250]

Our second custom function allows us to pluralize the count and return a more
formatted count to our preprocess function, which we in turn will assign to our
comment_count variable for use in our Twig template.

Once finished, make sure to save our file and clear Drupal's cache.

Printing our comment count
Now that we have utilized the theme layer to create a new variable containing the
comment count for each node, we can print the variable to our template by following
these steps:

1. Open node--post--listing.html.twig.
2. Add the following markup directly after our post-meta-tag section:

 <i class="fa fa-comments"></i>
 {{ comment_count }}

Make sure to save the template, clear Drupal's cache, and then refresh the Blog listing
page. Based on the markup we added, we now have our comment count displayed
for each post:

Adding a read more link
We have almost completed the theming of our Post listing. We have one more
component to add, and that is our read more link. We have all the elements we
need to create this link, so let's start by following these steps:

1. Open node--post--listing.html.twig.
2. Add the following markup directly after our post-meta-comments section:

<a href="{{ url }}" class="button button--primary button--xs
pull-right">Read more...

Chapter 8

[251]

Make sure to save the template, clear Drupal's cache, and then refresh the Blog
listing page. The main content area of our Post listing is now finished. It is time to
move on to the sidebar and our three blocks of content, which contain Categories,
Popular content, and our About block.

Creating a Categories block
The content of each of our posts has been assigned one or more tags to identify what
category the post belongs to. This type of identification gives our end users another
way to easily navigate content. On our mockup, the right-hand sidebar contains a
custom block with an unordered list of categories. We will utilize views to create
a block display of taxonomy terms by following these steps.

To get started, we will need to navigate to /admin/structure/views and click on
the Add new view button. From the Views admin screen, we will add the following
information:

• VIEW BASIC INFORMATION:
1. View name: Categories.
2. Check the Description box.
3. Description: Post categories.

• VIEW SETTINGS: Show: Taxonomy terms of type: Tags sorted by:
Unsorted.

• BLOCK SETTINGS:
1. Check Create a block.
2. Block title: Categories.

• BLOCK DISPLAY SETTINGS:
1. Display format: Unformatted list of: Fields.
2. Items per block: 5.
3. Click on the Save and edit button.

Now that our Categories view has been created, we will need to adjust
the format settings. With the view still open, we will need to adjust the
following fields:

Theming Our Blog Listing Page

[252]

• FORMAT SETTINGS:
1. Click on the Settings link next to Format: Unformatted list.
2. Uncheck the Add views row classes checkbox from the Block: Style

options window and click on the Apply button.
3. Click on the Settings link next to Show: Fields.
4. Uncheck the Provide default field wrapper elements checkbox from

the Block: Row style options window and click on the Apply button.

We now need to adjust the settings of our Taxonomy term field to exclude
any extraneous CSS. With the view still open, we will need to adjust the
following field:

• FIELDS:
1. Select Taxonomy term: Name.
2. Expand STYLE SETTINGS.
3. Uncheck Add default classes.
4. Click on the Apply (all displays) button.

Make sure to click on the Save button in the main view window to save the changes
we just made, and then look at the results in the Preview window.

Managing our Categories block
Any time we create a new block display using views, we can easily assign it to any
region from the Block layout page. Begin by navigating to /admin/structure/
block and then follow these nine steps:

1. Locate the Sidebar second region.
2. Click on the Place block button.
3. Locate the Categories block.
4. Click on the Place block button.
5. Select the Pages tab under Visibility.
6. Enter the path /blog into the Page text field.
7. On a second line, add another path to /blog/*.
8. Make sure the Show for the listed pages checkbox is selected.
9. Click on the Save block button.

Chapter 8

[253]

With our Categories block assigned to the Sidebar second region, we will now need
to add the Sidebar second region to our page.html.twig template before we can
preview it.

Implementing responsive sidebars
So far, we have only been dealing with a one column layout. All of our blocks have
been assigned to regions before, after, or within our main content. Now we are faced
with our first block that is associated with a sidebar. The challenge is to make sure
that when content is added to a sidebar, our main content region adjusts accordingly.

For this next section, we will be modifying our page.html.twig template to
conditionally look for the existence of sidebars and alter the column classes of our
content region.

Begin by opening page.html.twig and adding the logic and markup for the sidebar
first region. This markup will be added directly below the <div class="row">
section, but above the content wrapper:

New markup

{% if page.sidebar_first %}
 <aside class="layout-sidebar-first" role="complementary">
 <div class="col-md-3">
 {{ page.sidebar_first }}
 </div>
 </aside>
{% endif %}

The markup we added conditionally checks to see if any blocks are assigned to the
Sidebar first region. If any blocks are present, it will then print the included markup
and blocks within the region.

When a sidebar is available to print, we need to be able to adjust our main content
region's grid measurements accordingly. We can use similar logic to test and then
create a new column class that can be used for our content region.

Add the following markup directly after our Sidebar first region:

New markup

{% if page.sidebar_second and page.sidebar_first %}
 {% set col_class = 'col-md-6' %}
{% elseif page.sidebar_second or page.sidebar_first %}
 {% set col_class = 'col-md-9' %}

Theming Our Blog Listing Page

[254]

{% else %}
 {% set col_class = 'col-md-12' %}
{% endif %}

The logic above checks for one or more sidebar regions and creates our new column
class accordingly. We can then apply the new class to our content region by replacing
the hardcoded column class with our new col_class variable:

<div class="{{ col_class }}">
 {{ page.content }}
</div>

Finally, we can add the conditional logic to print the Sidebar second region. This
logic is similar to what we added for the Sidebar first region. Add the following
markup directly below our main content region:

New markup

{% if page.sidebar_second %}
 <aside class="layout-sidebar-second" role="complementary">
 <div class="col-md-3">
 {{ page.sidebar_second }}
 </div>
 </aside>
{% endif %}

Make sure to save the template, clear Drupal's cache, and then refresh the Blog
listing page. The main content area of our post listing is now adjusted to allow
our Sidebar second region to display the Categories block:

Chapter 8

[255]

If we look at our mockup, we can see that our Categories heading should be <h4> and
the list of terms should be contained within an unordered list. How can we modify
the markup for this block or view? Easy: we can create Twig templates for both the
Block and the View to override the markup and add any classes that we need.

Theming a Block template
In the case of our Categories block, we can begin by navigating to the core/
modules/block/templates folder and following these remaining steps:

1. Copy block.html.twig and place it into our theme/octo/templates folder.
2. Rename block.html.twig to block--views-block--categories-

block-1.html.twig based on the template's suggestions.
3. Next, we will need to replace the current markup with the following new

markup to convert the default <h2> to <h4>:

New markup

{% set classes = ['block'] %}

<div{{ attributes.addClass(classes) }}>
 {{ title_prefix }}

 {% if label %}
 <h4{{ title_attributes }}>{{ label }}</h4>
 {% endif %}

 {{ title_suffix }}

 {% block content %}
 {{ content }}
 {% endblock %}

</div>

Once finished, make sure to save the template, clear Drupal's cache, and then refresh
the Blog listing page in the browser. Our Categories block heading is now displayed
properly. We have managed to alter the heading of our Categories block, but we still
need to modify the output of our categories to display as an unordered list, along
with any additional CSS classes we may need. Time to add a Views template.

Theming Our Blog Listing Page

[256]

Drupal Views and Twig templates
Unlike most of Drupal's templates, Views do not provide a file name suggestion for
overriding Twig templates. So how do we know exactly what to name our template?
View templates can be created in a variety of ways, but the easiest way to remember
this is by following this rule:

[base template name]--[view machine name].html.twig

So in the case of our Categories view, will want to create a new Twig template with
the name views-view-unformatted--categories.html.twig.

Begin by navigating to the core/modules/view/templates folder and following
these remaining steps:

1. Copy views-view-unformatted.html.twig and place it into our theme/
octo/templates folder.

2. Rename views-view-unformatted.html.twig to views-view-
unformatted--categories.html.twig.

3. Next, we will need to replace the current markup with the following new
markup to convert the default <div> to :
New markup

{% if title %}
 <h3>{{ title }}</h3>
{% endif %}

<ul class="nav nav-list primary pull-bottom">
{% for row in rows %}
 {%
 set row_classes = [
 default_row_class ? 'views-row',
]
 %}
 <li{{ row.attributes.addClass(row_classes) }}>
 {{ row.content }}

{% endfor %}

Chapter 8

[257]

Once finished, make sure to save the template, clear Drupal's cache, and then refresh
the Blog listing page. Our Categories block is now styled correctly and matches
our design:

Managing popular versus recent content
The second block of content that we need to create for our Blog listing page is a
little more complex to build and will provide us with experience of building and
combining multiple views into a single view.

Creating our recent posts block
Our recent posts block will be a view that contains a listing of three of the most
recent posts added to our site. We will take advantage of the Teaser display mode
of our Post content type to present our view block.

To get started, we will need to navigate to /admin/structure/views and click
on the Add new view button. From the Views Admin screen, we will add the
following information:

• VIEW BASIC INFORMATION:
1. View name: Recent Posts.
2. Check the Description box.
3. Description: A listing of recent posts.

• VIEW SETTINGS: Show: Content of type: Post sorted by: Newest first.

Theming Our Blog Listing Page

[258]

• BLOCK SETTINGS:
1. Check Create a block.
2. Block title: Recent Posts.

• BLOCK DISPLAY SETTINGS:
1. Display format: Unformatted list of: Teasers.
2. Items per block: 3.
3. Click on the Save and edit button.

With our view now created, if we look at the Preview section, we will see our Post
Teaser displayed with the title and thumbnail image. Since we are using the display
mode of our post, we can manage the fields directly from the content type. Our
Teaser display happens to be configured exactly how we will need it, so there is
no need to change anything.

Make sure to click on the Save button to finalize our changes. We have the first part
of our block created. Now we need to create our next view to display popular posts.

Creating our popular posts block
Popular posts, or anything popular for that matter, is all subjective. However, clients
often want to see this type of information. We can accomplish this type of View block
by utilizing the Comment statistics for each post. The number of comments each post
has will determine which post will be displayed.

To get started, we will need to navigate to /admin/structure/views and click
on the Add new view button. From the Views Admin screen, we will add the
following information:

• VIEW BASIC INFORMATION:
1. View name: Popular Posts.
2. Check the Description box.
3. Description: A listing of popular posts.

• VIEW SETTINGS: Show: Content of type: Post sorted by: Newest first.
• BLOCK SETTINGS:

1. Check: Create a block.
2. Block title: Popular Posts.

Chapter 8

[259]

• BLOCK DISPLAY SETTINGS:
1. Display format: Unformatted list of: Teasers.
2. Items per block: 3.
3. Click on Save and edit button.

With our view now created, if we look at the Preview section, we will see our
Post Teaser displayed with the title and thumbnail image. However, we are only
sorting the posts by the date they were authored versus the number of comments
each post contains.

Sorting views by comment count
In order for us to determine the most popular posts, we will need to sort by the
number of comments each post has. Begin by following these steps:

SORT CRITERIA:

1. Select the Content: Authored on (desc) link.
2. Click on the Remove link.
3. Click on the Add button.
4. Select Comment count from the Add sort criteria window.
5. Click on the Apply (all displays) button.
6. Choose Sort descending from the Order options.
7. Click on the Apply (all displays) button.

Make sure to click on the Save button in the main view window to save the changes.
Now that we have our Popular Posts view complete, we need to combine it with our
recent posts so that the two views act as one.

Attaching a view to the footer
One feature within views is the ability to create view footers. View footers can
consist of custom text, other fields, or, as in our case, another view. We will use
this feature to add our recent posts view by following these steps:

FOOTER:

1. Click on the Add button.
2. Scroll to bottom of the Add footer window and choose View area.
3. Click on the Apply (all displays) button.

Theming Our Blog Listing Page

[260]

4. Select View: recent_posts - Display: block_1 from the View to insert
dropdown.

5. Click on the Apply (all displays) button.

Make sure to click on the Save button in the main view window to save the changes.
If we look in the preview window, we should now see both views being displayed.
This is not so difficult once you understand how to use and manipulate Drupal
views. Now that we have our two View blocks combined into a single Block,
we can add it to our Blog listing page.

Managing our popular posts block
Any time we create a new block display using views, we can easily assign it to any
region from the Block layout page. Let's begin by navigating to /admin/structure/
block and following these steps:

1. Locate the Sidebar second region.
2. Click on the Place block button.
3. Locate the Popular Posts block.
4. Click on the Place block button.
5. Uncheck Display title.
6. Select the Pages tab under Visibility.
7. Enter the path /blog into the Page text field.
8. On a second line, add another path to /blog/*.
9. Make sure the Show for the listed pages checkbox is selected.
10. Click on the Save block button.

With our Popular Posts block assigned to the Sidebar second region, we will want
to make sure it is second in the block order. Reorder the blocks if necessary and then
click on the Save blocks button. If we navigate back to the Blog listing page, we will
now see our new block displayed, but in desperate need of some styling.

Now for the fun part. We need to create a Twig template and modify the output of
our View block so that we can place each view into its own tab. Let's take a look at
how we can accomplish that.

Chapter 8

[261]

Using Twig and Bootstrap tabs
The structure for Twitter Bootstrap tabs requires each block of content to be wrapped
in a <div> element with a class of tab-pane. Also, each Tab pane must consist of an
unordered list of items to display. We will start with converting both view blocks
from an unformatted list to an unordered list, similar to what we did with our
Categories block.

Recent Posts Twig template
Begin by navigating to the core/modules/view/templates folder and follow these
remaining steps:

1. Copy views-view-unformatted.html.twig and place it in our theme/
octo/templates folder.

2. Rename views-view-unformatted.html.twig to views-view-
unformatted--recent-posts.html.twig.

3. Next, we will need to replace the current markup with the following:
New markup

{% if title %}
 <h3>{{ title }}</h3>
{% endif %}

<ul class="simple-post-list">
{% for row in rows %}
 {%
 set row_classes = [
 default_row_class ? 'views-row',
]
 %}
 <li{{ row.attributes.addClass(row_classes) }}>
 {{ row.content }}

{% endfor %}

Once finished, make sure to save the template, clear Drupal's cache, and then refresh
the page in the browser to verify that our Recent Posts block is now displayed as an
unordered list. We will now repeat this step for the Popular Posts view.

Theming Our Blog Listing Page

[262]

Popular Posts Twig template
Begin by navigating to the core/modules/view/templates folder and follow these
remaining steps:

1. Copy views-view-unformatted.html.twig and place it in our theme/
octo/templates folder.

2. Rename views-view-unformatted.html.twig to views-view-
unformatted--popular-posts.html.twig.

3. Next, we will need to replace the current markup with the following:
New markup

{% if title %}
 <h3>{{ title }}</h3>
{% endif %}

<ul class="simple-post-list">
{% for row in rows %}
 {%
 set row_classes = [
 default_row_class ? 'views-row',
]
 %}
 <li{{ row.attributes.addClass(row_classes) }}>
 {{ row.content }}

{% endfor %}

Once finished, make sure to save the template, clear Drupal's cache, and then
refresh the page in the browser to verify our Popular Posts block is now displayed
as an unordered list. This next part will be a little trickier to accomplish, but will
demonstrate that anything is possible with Twig templates.

Using Views-view templates
The main structure of views is contained within the views-view.html.twig
template. We will need to modify this template to add some additional classes that
will allow us to display each view within their own tab, as designed in the mockup.
Like our previous view templates, the naming convention follows the same rules:

[base template name]--[view machine name].html.twig

Chapter 8

[263]

So in the case of our Popular Posts view, will want to create a new Twig template
with the name of views-view--popular-posts.html.twig that we can then
modify the markup to accomplish our tabbed design.

Begin by navigating to the core/modules/view/templates folder and follow these
remaining steps:

1. Copy views-view.html.twig and place it in our theme/octo/templates
folder.

2. Rename views-view.html.twig to views-view--popular-posts.html.
twig.

3. Next, we will need to replace the current markup with the following
new markup:

New markup

<div class="tabs">

 <ul class="nav nav-tabs">
 <li class="active">

 <i class="fa fa-star"></i> {{ 'Popular'|t }}

 {{ 'Recent'|t }}

 <div class="tab-content">

 {% if rows %}
 <div class="tab-pane active" id="popularPosts">
 {{ rows }}
 </div>
 {% elseif empty %}
 <div class="view-empty">
 {{ empty }}
 </div>
 {% endif %}

Theming Our Blog Listing Page

[264]

 {% if footer %}
 <div class="tab-pane" id="recentPosts">
 {{ footer }}
 </div>
 {% endif %}

 </div>

</div>

Once finished, make sure to save the template, clear Drupal's cache, and then refresh
the Blog listing page. Our Popular/Recent Posts block is now displaying in the
tabbed interface, as shown in the following image:

By reviewing the markup, we can see that the way we constructed our view block
allows for each independent view to be displayed in its own tab.

We are not quite done with our theming of this new block. As we can see from the
page, our Post Teaser is missing some additional fields and formatting necessary to
match our mockup. We will need to introduce another Twig template to handle the
Teaser display mode and clean up our markup.

Chapter 8

[265]

Creating a Post Teaser Twig template
Currently, the teaser display for our Post content type uses the default node.html.
twig template. If we inspect the markup of our block, we can create a new Twig
template with the recommended file name of node--post--teaser.html.twig.

Begin by navigating to the core/modules/node/templates folder and follow these
remaining steps:

1. Copy node.html.twig and place it in our theme/octo/templates folder.
2. Rename node.html.twig to node--post--teaser.html.twig.
3. Next, we will need to replace the current markup with the following:

New markup

<div class="post-image">
 <div class="img-thumbnail">

 {{ content.field_thumbnail }}

 </div>
</div>

<div class="post-info">
 {{ label }}
 <div class="post-meta">
 {{ node.createdtime|date('M d, Y') }}
 </div>
</div>

{{ content|without('field_thumbnail') }}

Theming Our Blog Listing Page

[266]

Once finished, make sure to save the template, clear Drupal's cache, and then refresh
the Blog listing page. As we can see from the following image, our tabbed interface is
identical to our mockup:

The markup we added is pretty straightforward. We are utilizing the content
variable that each node has available to print out the thumbnail image, title, and
post created date. We used these same techniques when we created the Post Listing
template earlier.

There are quite a few steps involved in creating the final tabbed interface, but the
ease of being able to create Twig templates makes modifying the markup simple.

Adding the About Us block
After all the complex Views, Blocks, and Twig templates, adding the About Us
block to our sidebar will seem quite simple. The last block to complete our Blog
Listing page already exists, so adding it will just be an exercise in managing
custom block layouts.

Begin by navigating to /admin/structure/block and follow these steps:

1. Locate the Sidebar second region.
2. Click on the Place block button.
3. Locate the About Us block.
4. Click on the Place block button.
5. Select the Pages tab under Visibility.

Chapter 8

[267]

6. Enter the path /blog into the Page text field.
7. On a second line, add another path to /blog/*.
8. Make sure the Show for the listed pages checkbox is selected.
9. Click on the Save block button.

With our About Us block assigned to the Sidebar second region, we will want to
make sure it is third in the block order. Reorder the blocks if necessary and then click
on the Save blocks button. We have one final piece of theming before our About Us
block is complete.

Implementing the About Us template
In the case of our About Us block, we need to adjust the heading to display it
similar to our Categories block. This will require us to replace the current <h2>
with a <h4> heading.

Begin by navigating to the core/modules/block/templates folder and follow these
remaining steps:

1. Copy block.html.twig and place it in our theme/octo/templates folder.
2. Rename block.html.twig to block--aboutus-2.html.twig, based on the

template suggestions.
3. Next, we will need to replace the current markup with the following new

markup to convert the default <h2> to <h4>:
New markup

{% set classes = ['block'] %}

<div{{ attributes.addClass(classes) }}>
 {{ title_prefix }}

 {% if label %}
 <h4{{ title_attributes }}>{{ label }}</h4>
 {% endif %}

 {{ title_suffix }}

 {% block content %}
 {{ content }}
 {% endblock %}

</div>

Theming Our Blog Listing Page

[268]

Once finished, make sure to save the template, clear Drupal's cache, and then refresh
the Blog listing page in the browser. Let's give ourselves a big pat on the back as our
page is now complete:

Chapter 8

[269]

Summary
Let's give ourselves a big pat on the back. We learned a lot of new techniques for
theming Drupal 8 in this chapter and our Blog listing page looks great. Quite a
few different techniques were covered in a short period of time. We adopted best
practices for theming different sections of our page, which will be used in almost
any theme we create. Let's take a moment to recap what we have accomplished in
this chapter:

• We began by reviewing our Blog Listing mockup to identify the key areas of
our website that we will need to recreate.

• We learned how to effectively use Display modes to manage our content
types fields, including how to hide labels and use field formatters.

• Field level Twig templates came in handy for modifying individual field
markup, adding classes, using filters, and checking for multiple field items.

• Twitter Bootstrap gave us the flexibility to add slideshows and tabbed
interfaces to our page content.

• We took a deeper look at using preprocessing and creating a *.theme file to
create new variables accessible by our Twig templates.

In the next chapter, we will continue with our Post content by theming our Blog
detail page, which will include focusing on the Comment field in more detail,
additional preprocessing functions, and additional Twig templates.

[271]

Theming Our Blog
Detail Page

Having completed the Blog listing page, we now need to focus on the development
and theming of our Blog detail page. While not quite as complex as creating a listing
page, we will need to have a better understanding of how content types interact with
comments. In this chapter, we will take a look at creating a single node.html.twig
template that our Blog detail page will use. This template will be based on the Full
Content display mode and the introduction of the revamped comment system in
Drupal 8. Let's review what tasks we will be accomplishing:

• We will begin with reviewing our Blog detail page as displayed in our
mockup, and identify how specific fields will need to be presented for display.

• Next, we will create our Blog detail template, which will focus on the default
display mode for our Post content type.

• We will take a more detailed look at how comments work in Drupal 8 as we
enable them the comment form, display them, and thread them for a post.

• Finally, we will take a look at how to use the profile images that users have
attached to their accounts to display in our page.

While we work through each section, we have the ability to refer back to the
Chapter09 exercise files folder. Each folder contains a start and end folder with
files that we can use to compare our work when needed. This also includes database
snapshots that will allow us all to start from the same point when working through
various lessons.

Theming Our Blog Detail Page

[272]

Reviewing the Blog detail mockup
In order to assist us in identifying page elements we will be recreating for the Blog
detail page, it would make sense to open up our mockup and review the layout and
structure. The Blog page can be found in the Mockup folder located in our exercise
files. Begin by opening up the blog-detail.html file within the browser, as shown
in the following image:

The Blog detail mockup looks very similar to the Blog listing page, with the
exception of a few new areas that were not present before:

• First, we have replaced the teaser content with the full content of the post.
• Second, we now have a new section below our main content that lists any

comment threads, with a photo of the comment's author.
• Third, we have a comment form that allows users to leave their name,

a subject, and a comment for each post.
Having identified these three different components, we can now take a quick look at
what our Blog detail page currently looks like and discuss the best way to tackle each
of these requirements.

Chapter 9

[273]

Previewing our Blog detail page
Navigate to one of the Blog detail pages by clicking on the Post title from the main
blog page or simply entering /blog/post-one in the browser:

We are in luck when it comes to our sidebar elements, as they are already positioned
and themed the way they appear in the mockup. However, upon closer review we
can see that we are missing some elements on our Blog detail page, or they are not
themed the we may have expected. These issues may include:

• Post date
• Post title
• Post tags properly themed
• Comment thread
• Comment form

Theming Our Blog Detail Page

[274]

The challenge for us is to think how Drupal outputs each of these sections and
address them individually as we build our Twig templates. Since we have Twig
debugging enabled, we can determine that we should start with creating a new
node--post--full.html.twig template.

Creating a Post Full template
While we know what our new Twig template should be named, we should also
consider just how similar the Blog detail page is to each Post displayed on our Blog
listing page. In fact, the only real differences are that our Blog detail displays the full
content of our Post along with the Comments.

So instead of creating a brand new template, we can begin by duplicating the node--
post--listing.html.twig template located in our themes/octo/templates folder
and rename it node--post--full.html.twig.

Make sure to clear Drupal's cache and refresh the Blog detail page.

At first glance, we would think that most of our theming is completed for us.
However, we actually have some components that need to be removed, such as the
read more link and the teaser field. While some of these fields may not be displayed
because they are being controlled from the Manager display admin, it is still good
practice to remove these fields from our template.

Chapter 9

[275]

Altering fields
We can begin by removing and replacing fields that we do not need. Begin by
opening our Twig template, node--post--full.html.twig, and adjusting the
markup in our post-content section:

New markup

<div class="post-content">
 {{ title_prefix }}
 <h2{{ title_attributes }}>
 {{ label }}
 </h2>
 {{ title_suffix }}

 <div class="post-meta">

 <i class="fa fa-user"></i> By {{ author_name }}

 <i class="fa fa-tag"></i> {{ content.field_tags }}

 <i class="fa fa-comments"></i>
 {{ comment_count }}

 </div>
</div>

Make sure to save the template, clear Drupal's cache, and refresh the Blog detail
page. The read more link should now be gone and the page is starting to resemble
our mockup:

Theming Our Blog Detail Page

[276]

One thing we may be asking ourselves is how is the full content of our Post being
displayed if we are not printing it? We actually are printing it at the bottom of our
template using the general {{ content }} variable. If we want to be more specific
though, we can add the full content field directly to our template and exclude it
from the general content variable by following these steps:

1. Open node--post--full.html.twig.
2. Modify the markup as shown here:

New markup
 <div class="post-meta">
 ..existing markup..

 {{ content.field_full_content }}
 </div>

 {{ content|without('field_image','field_teaser', 'field_tags',
 'field_full_content') }}

</article>

Make sure to save the template, clear Drupal's cache, and refresh the Blog detail
page. We now have the first part of our blog detail page complete. What we are still
missing though is the comment thread and comment form, which will allow users
to interact with each post. Let's take a look at how to work with comments.

Working with comments
Drupal 8 introduced comments as a fieldable entity that can now be referenced by
any other entity using the new comment field. So what exactly does that mean? This
means you no longer manage comments as a configuration option from a content
type. The benefit of moving comments into a fieldable entity is that it provides a wide
range of flexibility. We can add additional fields if needed along with additional
display modes to output comments.

In the case of our Post content type, we already created a relationship to comments
to expedite our theming, but we should take a moment to review how that was done
and then move on to printing comments in our Blog detail page.

Chapter 9

[277]

Introducing Comment types
Comment types can be located by navigating to /admin/structure/comment and, as
we can see by the interface in the following image, Comment types look very similar
to Content types:

For our website, we are using the Default comments that Drupal creates as part
of the default installation profile. It is just as simple to create additional Comment
types the same way you would create any Content type. This comes in handy for
providing multiple feedback mechanisms and provides us with various ways to
display comments.

Reviewing Default Comment type fields and
display
If we navigate to the Manage fields configuration by clicking on the Manage fields
button, we will see that there is only a single text area field called Comment. This
field allows the user to input the specific comment. We could easily add additional
fields to capture more data, but this single field will suffice for our use.

Theming Our Blog Detail Page

[278]

While this appears to be the only field, there are actually two additional default
fields for author and subject that we may not be aware of until we navigate to the
Manage form display screen by clicking on the Manage form display tab at the
top of the page:

One thing to note is that the Manage form display interface handles the display of
the comment form and any of its fields that are displayed when a user looks to add
a comment to a Post. These fields can be reordered, disabled, or modified as needed.

Chapter 9

[279]

This differs from the Manage display interface, which controls the display of the
comments thread that users see when viewing a post. We can navigate to the Manage
display screen by clicking on its tab:

A very important field to point out on the Manage display screen is the Links field.
If this field is disabled for any Comment type, we will have no links attached to each
comment thread that allow for replying, editing, or deleting a thread, based on a
user's permissions. Now that we have oriented ourselves with the new Comment
type, we will need to enable it for our Post type.

Theming Our Blog Detail Page

[280]

Enabling Post Type Comments field
Currently our Blog detail page is not displaying a comment form and therefore no
way to display comment threads. If we navigate to /admin/structure/types/
manage/post/display, we will be taken to the Manage display screen for out Post
type. If we take a closer look, we can see that the Comment field is disabled for our
Default display mode:

We can remedy that by dragging the Comments field out of the Disabled section
and placing it directly under the Full content field:

Chapter 9

[281]

Once complete, click the Save button. If we navigate back to /blog/post-one, we
will see the default appearance of our Comment form:

One thing still missing is some actual comment threads, so let's take a moment and
add a few comments by filling in the comment form for Post one. Make sure to fill in
both the Subject and Comment fields. Once we hit the Save button, you should now
see a new comment thread displayed directly above the comment form, as shown in
the following screenshot:

Theming Our Blog Detail Page

[282]

A general rule of theming comments is that when someone replies to an existing
comment, the reply is displayed directly below the original comment and indented
so that you have a visual clue as to the thread developing. So that we can see what an
actual thread looks like, let's reply to our first comment by clicking on the Reply link,
filling in the required fields, and hitting the Save button. Our Comments section
should now contain a comment thread:

Perfect, we now have almost everything we need in place to theme the Comment
section of our Blog detail page. We have a Comments thread, nested comments, and
an Add new comment form. We will address each of these components individually
in order to implement our required markup to match our mockup.

Creating a Field Comments template
Just like any other field attached to a content type, this has a corresponding field
template that Twig uses to output the content. If we inspect the markup of our
Comment section, we can determine which template is being used and where it
is located:

Chapter 9

[283]

Using FILE NAME SUGGESTIONS, we can navigate to the core/modules/
comment/templates folder and copy the field--comment.html.twig template
to our themes/octo/templates folder. Next, we will need to replace the markup
within our template with the following new markup:

New markup

<section id="comments" class="post-block post-comments">

 {% if comments and not label_hidden %}
 {{ title_prefix }}
 <h3{{ title_attributes }}>
 <i class="fa fa-comments"></i>{{ label }}
 </h3>
 {{ title_suffix }}
 {% endif %}

 {{ comments }}

 {% if comment_form %}
 <div class="post-block post-leave-comment">
 <h3{{ content_attributes }}>{{ 'Leave a comment'|t }}</h3>
 {{ comment_form }}
 </div>
 {% endif %}

</section>

Make sure to save the template, clear Drupal's cache, and refresh the Blog detail page
for Post One. The formatting we just applied adds a few classes to our comments
wrapper, as well as adding a Font Awesome icon to the Comments heading. We
should also notice that the field--comment.html.twig template really breaks the
entire comment block into three distinct regions:

• The Comment heading, indicated by the {{ label }} variable
• The Comment thread, indicated by the {{ comments }} variable
• The Comment form, indicated by the {{ comment_form }} variable

Now that we have identified the three key pieces of a comment block, we need to focus
on the {{ comments }} variable itself as it contains our comment thread. Currently,
our thread is not displaying as we would like. Each thread is hard to differentiate
where it begins and ends, and we are missing the styling that would help it match
our mockup. To remedy this, we can take advantage of another Twig template.

Theming Our Blog Detail Page

[284]

Theming the Comment thread
Drupal only provides two Twig templates for outputting the Comment section of our
page. We have already addressed the Comment field template, so all that is left for
us to target is the comment.html.twig template. It is this template that contains the
markup for the thread that displays, and we can modify the markup to display the
content exactly how we need it by following these steps.

Using the FILE NAME SUGGESTIONS, we can navigate to the core/modules/
comment/templates folder and copy the comment.html.twig template to our
themes/octo/templates folder. Next, we will need to replace the markup with
our own, making sure to print the existing variables:

New markup

<article{{ attributes }}>

 <div class="comment">
 {{ user_picture }}

 <div class="comment-block">
 <div class="comment-arrow"></div>

 <div class="comment-by">
 {{ author }}

 {{ content.links }}

 </div>

 <div class="comment-content">
 {{ content.comment_body }}
 </div>

 <div class="comment-date">
 {{ created }}
 </div>
 </div>

 </div>

 {% if parent %}
 <p class="visually-hidden">{{ parent }}</p>
 {% endif %}

</article>

Chapter 9

[285]

Make sure to save the template, clear Drupal's cache, and then reload the Blog detail
page in the browser. Our Comments thread should now be styled and indented as
shown in the following image:

Obviously there is something still missing. The user image associated with the
author of each comment is not being displayed. Also, our comment date is formatted
using military time, which the majority of our users may not be familiar with.
We can address both of these items fairly easily.

Enabling user photos for Comment threads
Right now, we have comment threads lacking a photo to identify the user that posted
the comment. In most cases, this is due to a user not having uploaded a photo to
their Drupal profile. In order for us to have an image for the {{ user_picture }}
variable to print, we will need to upload our own photo.

Navigate to /user/1/edit, which will take us to our current profile page, keeping in
mind that the user ID may be different, depending on how many users are in Drupal:

1. Locate the Picture field.
2. Click on the Choose File button.
3. Locate a photo or any image we want to represent ourselves, select it and

then click on the Open button in the File dialog window.

Theming Our Blog Detail Page

[286]

4. We should now see a thumbnail image:

5. Click the Save button to complete this.

If we navigate back to the Blog detail page located at /blog/post-one, we will see
the user photo displayed next to each comment:

Now that we have the user image being displayed, we still need to clean up the
markup by formatting the field template.

Cleaning up the User Picture field
If we inspect the markup for the user picture field, we will notice an <article>
element wrapped around each image. Currently, the <article> element is
respecting the block display and causing the user image to display on a separate line.
While we could easily adjust the CSS to resolve this, we want to respect the HTML
provided in the mockup.

Chapter 9

[287]

To bring our User Picture back in line with how it displays in our mockup, we will
need to first modify the user.html.twig template.

Begin by navigating to the core/modules/user/templates folder and copying the
user.html.twig template to our themes/octo/templates folder. Next, we will
replace the current markup with the following:

New markup

{% if content %}
 {{- content -}}
{% endif %}

Make sure to save the template, clear Drupal's cache, and then refresh the page in
the browser. You will not see a visual change just yet, but the surrounding article
element is now removed.

Creating the Field User Picture template
We will need to modify an additional Twig template that outputs the image itself.
We will be borrowing the markup and styling from an earlier template so that our
user picture is framed similar to our Post image.

1. Begin by navigating to the core/modules/system/templates folder and
copying the field.html.twig template to our themes/octo/templates
folder.

2. Next, we will rename field.html.twig to field--user-picture.html.
twig, based on the recommended file name suggestions.

3. Finally, we will replace the markup with the following:
New markup

{% for item in items %}
 <div class="img-thumbnail">
 <div class="user-picture">
 {{ item.content }}
 </div>
 </div>
{% endfor %}

Theming Our Blog Detail Page

[288]

Make sure to save the template, clear Drupal's cache, and then refresh the page
in the browser. Our comment threads are perfectly styled, with the user image
for each thread aligned next to each other.

At this point, we only have one more item to adjust for our comment thread.
Currently, the default date for each comment is displayed in a 24-hour format,
often referred to as military time.

Date and time formats
There are multiple ways to address date and time formats within Drupal. In Chapter 8,
Theming Our Blog Listing Page, we worked with Twig filters and field variables
to format the date. However, the comment thread date is already formatted for
us using the default medium date format. So where would we need to configure
this to display a non-24-hour format?

If we navigate to /admin/configuration/region/date-time, we will get
a glimpse of the date and time formats that Drupal configures for us:

Chapter 9

[289]

Each of the date and time formats that are shown can be used within Drupal by
either managing a Content types field format or referencing the name with a Twig
template or preprocessing function. As we can see, some of the formats can be
edited, while others cannot. We can also add additional formats.

In the case of our comment thread created date, we can assume by reviewing the
PATTERN of Default medium date that this is the format being used. Luckily for us,
we can easily modify the pattern to change the time from 24-hour to 12-hour format
by following these steps:

1. Click on the Edit button for the Default medium date format.
2. Replace Format string with the following pattern:

D, m/d/Y - h:ia

3. Click on the Save format button.

We have successfully changed the default medium date format. One thing to note
is that the date and time formats in Drupal take advantage of the Date object in
PHP. We can get additional information regarding various formats by reviewing
the parameters available in the manual at http://php.net/manual/en/function.
date.php.

If we now navigate back to our Blog detail page for Post One, we will see that our
comment threads now use the modified default medium date format:

Our Blog detail page is just about complete. While users can now read our Posts and
comment on them, we are still missing the ability for users to share a post on their
favorite social networks.

Implementing social sharing capabilities
Social networks such as Facebook, Twitter, and Pinterest provide another medium
for content to be shared with family, friends, and coworkers. Most websites provide
a mechanism for sharing content, and our Blog detail page is no different.

http://php.net/manual/en/function.date.php
http://php.net/manual/en/function.date.php

Theming Our Blog Detail Page

[290]

Based on our mockup, we allow users to share a post as well as see the number of
likes, tweets, or pins. In fact, there are a number of different third-party libraries or
APIs that make this functionality easy to implement. Services such as Share This,
http://www.sharethis.com/, or even Add This , https://www.addthis.com/,
provide either a library or contributed modules to implement this functionality
within Drupal.

The Add This buttons
For our particular page, we will be using the Add This service. There are various
button options and configurations that can be created, so to avoid any confusion
with adding this service to our template, we will be using the standard buttons.
The implementation of the Add This button requires each of us to have created
a free account. However, for demonstration purposes, we will be using my account.
Please remember to replace the pubid with yours once an account has been created.

The process of adding the Add This library to our Twig template requires us to
configure the type of social sharing buttons we want to use, copy the JavaScript to
our page, and then add specific markup that will enable the display of the buttons:

http://www.sharethis.com/
https://www.addthis.com/

Chapter 9

[291]

The basic code displayed above is a simple JavaScript block that needs to be placed
within our webpage. We will be using our themes octo.libraries.yml file to
configure this block and then using the {{ attach_library }} function to add
it to our Blog detail page.

Creating a library entry
Begin by opening octo.libraries.yml located in our themes/octo folder. We will
then add the following metadata to the bottom of our file:

add-this:
 version: VERSION
 js:
 //s7.addthis.com/js/300/addthis_widget.js#pubid=chazchumley: {
type: external, asynch: asynch }

Note that the JavaScript path is all on a single line. In the above metadata, we are
pointing to an external script and are also adding a new parameter for calling the
script asynchronously. Also, please remember to replace the pubid value with your
Add This username.

Once we have added the metadata to our file, we can save octo.libraries.yml and
then clear Drupal's cache.

Attaching the library to our Blog detail page
Now that Drupal has knowledge of our new library, we can attach it to our Blog
detail page by following these steps:

1. Open node--post--full.html.twig.
2. Add the following Twig function directly below where we are referencing

the owl-carousel:
{{ attach_library('octo/add-this') }}

3. Save node--post--full.html.twig.

Make sure to clear Drupal's cache and then refresh the Blog detail page. We now
need to add the markup required to display the sharing buttons on our page.

Theming Our Blog Detail Page

[292]

Displaying buttons
We will be adding some additional markup around the required div so that our
"Share this post" section matches our mockup. With node--post--full.html.twig
still open, we will add the following markup directly after the {{ content.field_
full_content }} variable:

<div class="post-share">
 <h3><i class="fa fa-share"></i> Share this post</h3>
 <div class="addthis_native_toolbox"></div>
</div>

Make sure to clear Drupal's cache and then refresh the Blog detail page. If all
the steps were completed successfully, we should see our new Share this post
section displayed:

Congratulations, we have now completed the theming of our Blog detail page.
Everything has been configured, styled, and modified to match our mockup.

Chapter 9

[293]

Summary
While we revisited some common theming techniques, we also learned a few new
ones. Slowly and methodically dissecting each section of our mockup, we walked
through creating Twig templates, and worked with the new Comment field and a
lot more to create a fully functional Blog detail page. We definitely covered a lot of
material, so let's review everything we covered before moving on to the next chapter:

• We started by reviewing the Blog Detail mockup to identify key areas of our
website that we would need to recreate.

• We familiarized ourselves with additional node templates and learned how
to theme the default display of our Post content type.

• We dug a little deeper into the new Comment type and learned how to best
manage the various Twig templates it provides. This included managing
user profile pictures for each comment thread and configuring date and
time formats for the comment created date.

• Finally, we implemented social sharing buttons using our themes octo.
libraries.yml file, attaching the Add This library to our Blog detail page,
and adding the required markup for our buttons to display properly.

In the next chapter, we will take a look at the new contact forms that are in the
Drupal 8 core. We will add a default form to our page that users can interact with,
and learn how to add a custom block to a Drupal-generated page. Even more
excitingly, we will take a look at adding a Google Maps block to our page that
provides a dynamic map with a map marker.

[295]

Theming Our Contact Page
Almost every website provides a mechanism for users to contact the individual,
business, or association that owns the site, whether that be in the form of a simple
e-mail link or something more advanced using a web form. Often, a contact page is
part of the main menu hierarchy, as is evident in our mockup.

In this chapter, we will take a look at creating a contact page that uses the new
contact forms that are part of Drupal 8 core. We will not be using any contributed
modules, as core provides us with the configuration and templates needed to create
most forms. We will also not be covering the extensive Form API, as it is beyond the
scope of this book.

However, we will be learning the following theming techniques that will allow us to
create a well-structured contact page:

• We will begin with reviewing the mockup of our contact page and identify
how specific blocks or fields will need to be presented for display.

• Next, we will take a closer look at contact forms in Drupal and how to
modify an existing form that we can use for our contact page.

• As Drupal creates the page that all contact forms utilize, we will make use
of alternative regions within our theme to add additional content to our
contact page.

• Finally, we will see how simple it is to add a Google map while working
some more with libraries and Twig.

While we work through each section, we have the ability to refer back to the
Chapter10 exercise files folder. Each folder contains start and end folders with
files that we can use to compare our work when needed. This also includes database
snapshots that will allow us to all start from the same point when working through
various lessons.

Theming Our Contact Page

[296]

Reviewing the contact page mockup
Like previous sections of our website, having a mockup to review makes planning
how to develop a page much easier. Page structure, blocks, web forms, and other
functionality we will need to consider can easily be discovered by looking at the
contact page in the Mockup folder located in our exercise files. Begin by opening
up the contact.html file within the browser.

The contact page mockup has some fairly standard components that most websites
seem to use today. Starting at the top of our layout and working our way down, we
can identify three different sections that we will need to develop and theme for our
Drupal site.

1. First, we have a Google map displaying the current address using a map
marker. We will revisit building this section of the site after we have created
our contact form.

2. Second, we have a simple block of information or callout telling users how
they can get in touch with us.

3. The last section is the web form itself and is by far the most important
component of the contact page.

Having identified these three different components, we will focus on the most
important and most detailed piece of functionality first—the contact form.

Chapter 10

[297]

Introducing contact forms
Contact forms in Drupal 8 have taken some of the characteristics of previously used
contributed modules such as WebForm and placed the most common functionality
into core. This new core feature allows us to create any type of form needed for users
to be able to contact us. We can see the basic implementation of a contact form by
navigating to /contact within our site.

By default, Drupal creates a contact form that contains fields for name, e-mail,
subject, and message. As part of the database snapshot, we have a contact page
already created for us. However, we can easily add additional fields and manage
the display and format of fields just like we can with content types.

To get a better understanding of how contact forms work, we can navigate to the
Contact forms admin by entering /admin/structure/contact within our browser.

Theming Our Contact Page

[298]

We can see that two forms have already been configured:

• Personal contact form that each user of our site will receive.
• Contact Us (renamed from the default of Website feedback) that our global

contact page will be using.

Editing a contact form
Contact forms can be managed similar to how we work with content types and
blocks. Contact forms are also fieldable and can have additional fields added to them
to capture a variety of information. We can get a closer look at how our form can be
configured by clicking on the Edit button to the right of the Contact Us form.

Chapter 10

[299]

The Edit screen consists of several fields vital to a working contact form:

• A Label that identifies which form we are creating
• Recipients, which contains a required list of e-mail addresses that we would

like the web form and its content to be sent to
• Auto-reply, which contains an optional message that we want to send users

after they have submitted the form
• The Weight field, used to simply sort multiple forms on the contact form's

admin page
• The Make this the default form checkbox, which designates which form to

use as the default contact form

One thing to note is that the default Website feedback form has been renamed to
Contact Us using the Label field. If for some reason the database snapshot has not
been imported at this time, you will see the default form instead.

Whenever we create a new contact form, the machine name provided by the Label
field is used to generate the predefined URL of /contact/machine-name. In the case
of our Contact Us form, we were able to navigate to the form by entering /contact
or /contact/feedback. Keep in mind that we cannot modify the machine name
once we have entered a label and saved the form.

Managing form fields
Our Contact Us form is not using any additional fields. However, if we wanted to
add any, the functionality is identical to how fields are added to content types or
blocks using the Field UI.

Theming Our Contact Page

[300]

Managing form display
Any time we create a new contact form, there are five fields that are created by
default that Drupal requires to handle functionality behind the scenes. Those five
fields can be seen on the Manage form display screen.

All contact forms consist of the following fields:

• Sender name—an input to collect the user's name
• Sender email—an input to collect the user's e-mail
• Subject—an input for the subject line of the form
• Message—a text area to collect the message or content of the form
• Send copy to sender—a checkbox to allow the user to receive a copy of the

submitted form

For our contact form, we have chosen to disable the Send copy to sender control.
This means that when a user submits the form, they will not receive a copy of their
submission.

As we can see from the Manage form display screen, we have all the flexibility to
enable, disable, and format our fields as needed.

Now that we have a better understanding of contact forms, let's navigate back to our
default contact page located at /contact and discuss how we will begin to lay out
the remaining components.

Chapter 10

[301]

Contact page layout
So far, we have been working with mainly content types and blocks. Content created
using any of our content types generates a Node and a Twig template with it.
However, contact forms generate a page for us that is not quite like what we are used
to working with. The only way for us to add additional content such as our Callout
block or Google map is by using blocks. This requires us to rethink the layout of the
Contact page a little.

We can begin by inspecting the markup to see what Twig templates Drupal is
providing us.

It appears that the Contact Us form is output as a form element and is assigned to
our Main content region. This means that we can add additional content both above
and below the form using the Before Content and After Content regions. In fact, this
is a perfect example of why creating regions in our design that can appear above or
below the main content flow provides flexibility.

Adding a Callout block
We will take advantage of the Before Content region we created in our theme's
configuration file to add our next component. The Callout block we identified in our
mockup earlier allows us to add additional information that helps introduce our
Contact form.

If we quickly review the contact.html page from the Mockup folder, we can
identify that we will need to create a custom block that consists of a heading
and a paragraph.

Theming Our Contact Page

[302]

This is a pretty simple block to create, so let's get started by navigating to /admin/
structure/block, which will take us to the Block layout admin.

Next, we will follow these steps:

1. Click on the Place block button in the Before Content region.
2. Click on the Add custom block button.
3. Enter a Block description of Contact Callout.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper10/start/content/

ContactCallout.txt file to the Body field, as shown in the following image:

6. Click on the Save button to proceed to the Configure block screen.
7. Uncheck the Display title checkbox.
8. Select the Pages vertical tab within the Visibility section.
9. Enter a value of /contact in the Pages text area.
10. Choose Show for the listed pages under Negate the condition.
11. Choose Before Content from the Region field.
12. Click on the Save block button.

Chapter 10

[303]

We now have our Contact Callout block created and assigned to our Before Content
region. Let's make sure that our new block is displaying correctly by navigating back
to our Contact page.

Therefore, our content is displaying in the correct region but not quite visually what
we were expecting. However, like any other block, we can remedy this by creating a
Twig template and apply any additional markup or classes that may be needed.

Creating the Callout block template
Using the FILE NAME SUGGESTIONS, we can navigate to the core/modules/
block/templates folder and copy the block.html.twig template to our themes/
octo/templates folder. Next, we will need to rename the template to block--
contactcallout.html.twig and then replace the markup with the following:

New markup

{% set classes = ['block','contact-intro'] %}

<div{{ attributes.addClass(classes) }}>
 <div class="container">
 {{ title_prefix }}
 {% if label %}
 <h4{{ title_attributes }}>{{ label }}</h4>
 {% endif %}
 {{ title_suffix }}
 {% block content %}
 {{ content }}
 {% endblock %}
 </div>
</div>

Make sure to save the template, clear Drupal's cache, and refresh the Contact page
in the browser. Our block should now look exactly like our mockup. Now we will
move on to our next component, which involves integrating Google Maps.

Theming Our Contact Page

[304]

Integrating Google Maps into our contact
page
The Google Maps API provides developers with the flexibility to add interactive
mapping functionality to any website. With our Contact page, we are implementing
a map that provides a map marker pointing to a specific location based on the
latitude and longitude that we will provide. As we implement this functionality, it is
important to note that we will not be covering the in-depth details required to create
a Google map or work with the developer API found at https://developers.
google.com/maps/tutorials/fundamentals/adding-a-google-map.

Instead, we will take advantage of one of the many libraries that simplify the
JavaScript knowledge required. For our next lesson, we have chosen to work
with the jQuery-gMap plugin, which can be found at https://github.com/
marioestrada/jQuery-gMap.

In order to implement our map, we will need to follow a series of steps that
involve making sure that Drupal can locate the jquery-gMap library, create a
library entry with any dependencies, create our custom block, and finally attach
the library to our template.

Because the JavaScript to initialize Google Maps is quite long, we have broken the
script into its own file. This allows us to keep specific functionality organized better
for implementation. Let's get started by configuring the necessary files.

Configure Google Maps
In order to configure the Google Maps library, we will be adding two different
library entries to our octo.libraries.yml file. The first will be pointing to our
custom map script. The second will be pointing to the jquery-gmap library, which
includes an external reference of the Google Maps API.

Before we get started, let's ensure that we have the proper files copied to our
theme. Begin by navigating to the Chapter10/start/themes/octo/vendor folder
and copy the jquery-gmap folder to our themes/octo/vendor folder. Next, copy
the map.js file from the Chapter10/start/themes/octo/js folder to our themes/
octo/js folder.

https://developers.google.com/maps/tutorials/fundamentals/adding-a-google-map
https://developers.google.com/maps/tutorials/fundamentals/adding-a-google-map
https://github.com/marioestrada/jQuery-gMap
https://github.com/marioestrada/jQuery-gMap

Chapter 10

[305]

With the two files now accessible by Drupal, we can add the library entries:

1. Open octo.libraries.yml.
2. Add the following entry:

map:
 version: VERSION
 js:
 js/map: {}
 dependencies:
 - octo/jquery-gmap

Note the dependency to jquery-gmap; we will add that entry directly below
the jquery-gmap entry.

3. Add the following entry:

jquery-gmap:
 version: 2.1.5
 js:
 vendor/jquery-gmap/jquery.gmap.min.js: {}
 //maps.google.com/maps/api/js?sensor=true: { type: external }
 dependencies:
 - core/jquery

Make sure to save octo.libraries.yml and clear Drupal's cache to ensure that our
new library entries are added to the theme registry. To recap, we added two library
entries that will allow us to enable Google Maps.

The first entry points to our custom JavaScript that initializes the map and then looks
for any markup within our page that has an ID of #map, and renders a map. The first
entry also has a dependency of jquery-gmap, which we have added.

The second entry points to our vendor library, which simplifies the creation
of Google Maps, and because it obviously requires both jQuery and the Google
Maps API, we add those to our entry.

With Google Maps now configured, we will need to create a new block and add the
required markup that will render our map.

Theming Our Contact Page

[306]

Creating our Google Maps block
We will take advantage of the Before Content region to add our Contact Map block.
Being by navigating to /admin/structure/block and follow these steps.

1. Click on the Place block button in the Before Content region:
2. Click on the Add custom block button.
3. Enter a Block description of Contact Map.
4. Select HTML No Editor from the Text format dropdown.
5. Add the markup located in the Chatper10/start/content/ContactMap.

txt file to the Body field, as shown in the following image:

The markup we are adding introduces data attributes, which allow us to better
describe the element being displayed while storing extra information. For example,
we are adding data attributes for latitude and longitude that our custom script uses
to render our map.

1. Click on the Save button to proceed to the Configure block screen.
2. Uncheck the Display title checkbox.
3. Select the Pages vertical tab within the Visibility section.
4. Enter a value of /contact in the Pages text area.
5. Choose Show for the listed pages under Negate the condition.
6. Choose Before Content from the Region field.
7. Click on the Save block button.

Chapter 10

[307]

Once the block has been saved, make sure that the order of our Blocks with
the Before Content region has the Contact Map displaying before our Contact
Callout block.

Now that we have our Contact Map block created and assigned to the correct region,
we will need to create a Twig template that will allow us to attach the library entry
to it.

Creating the Callout Map template
If we navigate back to our Contact page, we will see the outline for our map
represented by a gray box. Our markup is actually being output correctly, but we
do not yet have a reference to the Google Maps script that renders the map. We can
remedy this by using the FILE NAME SUGGESTIONS to create a Twig template
for our block.

Navigate to the core/modules/block/templates folder and copy the block.html.
twig template to our themes/octo/templates folder. Next, we will need to rename
the template to block--contactmap.html.twig and then replace the markup with
the following:

New markup

{{ attach_library('octo/map') }}

<div{{ attributes.addClass(classes) }}>
 {{ title_prefix }}
 {% if label %}
 <h4{{ title_attributes }}>{{ label }}</h4>
 {% endif %}
 {{ title_suffix }}
 {% block content %}
 {{ content }}
 {% endblock %}
</div>

Theming Our Contact Page

[308]

Make sure to save the template, clear Drupal's cache, and refresh the Contact page in
the browser then. Now we have our map rendering properly.

Summary
While our Contact Us page may have seemed at first to be a little more complex,
it actually turned out to be quite simple as we were able to harness the power of
Drupal 8's core functionality when it comes to both blocks and the new contact
forms. In review, we covered the following:

• We began by reviewing the Contact Us page mockup to identify specific
components and functionality that we would need to build.

• Next, we took a look at how Drupal implements contact forms for general
website feedback and how to configure the fields and display of forms for
use on our Contact Us page.

• Then, we used the Block layout admin to create two blocks for use on our
Contact Us page—one to implement a callout and the second to render a
Google map.

• Finally, we used libraries, scripts, and Twig to attach our jquery-gmap
functionality to our Contact Map block.

In the next chapter, we will move on to Drupal's core search functionality as we tie
back in our search block. We will also work with global search, use Twig to theme
the results, and discuss how to best handle the search in Drupal 8.

[309]

Theming Our Search Results
Providing users the capability to search content within Drupal will help you ensure
that the various content types are easily discoverable. Whenever a user cannot find
content they are looking for, they will generally default to using some sort of global
search. Earlier, we developed a Search form block that we placed within the main
menu to globally search our site. In this chapter, we will circle around this block and
focus on the Search results page that is displayed.

• We will begin with reviewing the mockup of our search page and identify
how our search form input and any search results will need to be presented
for display

• Next, we will take a closer look at search pages in core to learn how to
configure what will be displayed in our results

• Finally, we will extend upon search by working with the Search API module
to provide flexibility regarding which content types and fields can be added
to search and how to use views to display our results

While we work through each section, we have the ability to refer back to the
Chapter11 exercise files folder. Each folder contains a start and end folder with
files that we can use to compare our work when needed. This also includes database
snapshots that will allow us to all to start from the same point when working
through various lessons.

Reviewing the Search Results mockup
Like previous sections of our website, having a mockup already provided to us to
review makes planning how to develop a page much easier. Page structure, blocks,
web forms, and other functionality, which we will need to consider, can easily be
discovered by looking at the Search results page in the Mockup folder located in our
exercise files.

Theming Our Search Results

[310]

Begin by opening up the search.html file within the browser.

The search page mockup provides us with a look at how the search term lorem
would look when Drupal has returned results. The nice thing is that Drupal already
provides us with a Search results page regardless of whether there are any results,
which we will see later when we test different search terms. Because we do not need
to provide any additional content, we will have no additional blocks of content to
worry about. In fact, the only item we will need to focus on to recreate the themed
mockup is the following:

1. First, we will need to inspect the markup provided by the Search input
including any form of controls displayed on our page and determine if we
need to alter the HTML.

2. Second, we will want to take a look at what Twig variables the Search results
page is displaying and determine whether we need to suppress anything
from being output.

Having identified these two different components, we need to keep one thing in
mind. Our mockup takes into account what our search results will look like once we
have extended Drupal's default search using the Search API module, https://www.
drupal.org/project/search_api, which you will learn about later in the lesson.
For now, let's take a look at what a default search results page looks like, so we can
determine what work we have in store for us.

Looking at default Search results
The easiest way for us to take a look at what Drupal will return is by navigating to
the homepage of our site and clicking on the search icon in the main menu.

https://www.drupal.org/project/search_api
https://www.drupal.org/project/search_api

Chapter 11

[311]

We can now enter the keyword or term of lorem, as shown in the following image:

Once we have entered a keyword, we can hit Enter on our keyboard, which will take
us to the Search results page located at /search/node?keys=lorem. We now have
our first glance at the markup that Drupal displays by default.

Comparing the results to our Mockup, we can visually see that each individual
result is displaying as an ordered list. Within each result, there is also additional
information such as comments, which we will need to suppress. Search provides us
with a couple of Twig templates we can use to clean up our markup. But before we
move on to theming, it would help to have a better understanding of the options we
have within core search and how to configure it for our needs.

Theming Our Search Results

[312]

Introducing core search
The admin for search pages can be located by navigating to /admin/config/
search/pages. Search pages are part of the core search and metadata that allow both
users and content to be indexed and searched based on different factors. If we take
a more detailed look, we will note that we can index content, configure minimum
word length, and specify which search page to use for our results.

Indexing content
The most important aspect of search pages is the INDEXING PROGRESS
status. Indexing is the process of crawling the site or database, which, in turn,
stores a result set that allows content to be found when a user enters a keyword
or term in the search form. Unless content has been indexed, we will not have any
results to display.

In order to index our site, we need to complete two steps.

1. First, we must click on the Re-index site button, as shown in the following
image:

Clicking on the Re-index site button does not perform the actual indexing
but merely triggers the indexing to occur.

Chapter 11

[313]

2. Second, we must run a cron maintenance task, which can be located at
/admin/config/system/cron by clicking on the Run cron button.

Cron allows specific tasks to run based on a set interval. The interval can be modified
by changing CRON SETTINGS. By default, Drupal will run Cron every 3 hours.
Cron is triggered when a user first visits the site after the 3-hour period has expired.
Cron can also be triggered from a URL outside the site, which allows the manager
of the Cron task to be run from the web server itself.

We will not be covering the configuration of Cron from systems administration level.
Just know that we can manually run Cron when needed by visiting this page.

After completing the two steps required to index our site, if we navigate back to the
search page's admin, we should now see that our INDEXING PROGRESS reports
that 100% of the site has been indexed.

Editing search pages
Another configuration within the search pages interface allows us to modify or
configure additional settings for the label, URL, and content ranking.

Theming Our Search Results

[314]

In order to configure our Content search page, we will need to expand the SEARCH
PAGES section and click on the Edit button, as shown in the following image:

The most important configuration option is the CONTENT RANKING section, which
allows us to influence certain factors that search uses, including but not limited to
Keyword relevance and Number of comments. Content ranking, as shown in the
following image, can be modified by changing the value next to each factor.

A higher INFLUENCE value determines the order of the search results, and
modifying this value does not require reindexing the site. For demonstration
purposes, we will not change the values on this page.

Chapter 11

[315]

One important thing to note is that Drupal not only indexes content but also any
users that have accounts within the website. Although this is great in order to create
member directories, in our case, we only want users to be able to search on content.
We can remedy this by disabling users' search pages.

Disabling search pages
From the Search pages admin, if we look under the SEARCH PAGES section,
we will see Users currently enabled:

1. Click on the Edit button for Users.
2. Click on the Delete link.
3. Click on the Delete button for complete removal.

We can always create a new Users page at a later time by returning to the Search
pages admin. One last step, make sure to reindex the site now that we have removed
users and then it's time to move on to review the markup of our Search results page.

Working with Search Results templates
If we navigate back to our Search results page, we can inspect the markup to help
locate which Twig templates Drupal uses to output the content. If we break the
page into sections, we will be left with two different sections:

1. First is the search results list, which is currently being output as an ordered
list. We can address this by modifying the item-list-html.twig template.

2. Second is the Search results itself, which contains the title and snippet with
a highlighted keyword. We will address this by modifying the search-
result.html.twig template.

Modifying the item list template
Using the FILE NAME SUGGESTIONS, we can navigate to the core/modules/
system/templates folder and copy the item-list.html.twig template to our
themes/octo/templates folder. Next, we will need to rename the template to
item-list--search-results.html.twig and then add the following markup:

New markup

{% set classes = ['list-unstyled'] %}

{% if context.list_style %}
 {%- set attributes = attributes.addClass('item-list__' ~

Theming Our Search Results

[316]

 context.list_style) %}
{% endif %}

{% if items or empty %}

 {%- if title is not empty -%}
 <h3>{{ title }}</h3>
 {%- endif -%}

 {%- if items -%}
 <{{ list_type }}{{ attributes.addClass(classes) }}>
 {%- for item in items -%}
 <li{{ item.attributes }}>{{ item.value }}
 {%- endfor -%}
 </{{ list_type }}>
 {%- else -%}
 {{- empty -}}
 {%- endif -%}

{%- endif %}

Make sure to save the template, clear Drupal's cache, and then refresh the Search
results page in the browser.

Our ordered list should now be displaying exactly like the Mockup. All we
had to do to accomplish this was add a new CSS class to our template using
Twig. We then added the new class to our markup using the Twig function
attributes.addClass().

Chapter 11

[317]

Cleaning up each result
Now that our list is styled accordingly, we can focus on each individual search result.
By default, each result returns the title, snippet, and additional information such as
the number of comments if the result contains a Post. As each result is consistently
styled, we will be removing the {{ info }} variable from the Twig template.

Using the FILE NAME SUGGESTIONS, we can navigate to the core/modules/
search/templates folder and copy the search-result.html.twig template to
our themes/octo/templates folder. Next, we will need to replace the markup by
adding the following:

New markup

{{ title_prefix }}
<h3{{ title_attributes }}>
 {{ title }}
</h3>
{{ title_suffix }}
{% if snippet %}
 <p{{ content_attributes }}>{{ snippet }}</p>
{% endif %}

Make sure to save the template, clear Drupal's cache, and then refresh the
Search results page in the browser. Each result is now consistent in the information
it displays.

Theming Our Search Results

[318]

Search alternatives
Although working with the core search functionality in Drupal 8 can feel somewhat
limited, it is not the only solution. There are alternatives to search that can be
implemented to provide for more robust options. Two such alternatives are: Search
API and Search API Solr Search. We will not be discussing Apache Solr as it is a little
more complex to install and configure. However, the Search API will allow us to
extend the default database search and is a perfect solution for our needs.

Search API
The Search API module at https://www.drupal.org/project/search_api
provides a framework in order to extend core search. Multiple Search indexes can
be created that then allow the use of Views to list search content. Each index can also
can enhance the user interaction by creating a series of Facets that allow results to be
filtered down to a granular level. Finally, each index based on the content type can
be configured to let Drupal know exactly which fields should be included and the
importance or weight of each field.

The advantage of using this great module is the flexibility it provides to display the
search results. Instead of having to manage the display using a single Twig template
as we did previously, we can use display modes for each content type. This, in turn,
allows us to also have additional Twig templates for each result if needed.

Let's take a deeper look at enhancing our site's search functionality by installing and
configuring the Search API module.

Installing the Search API
Begin by browsing the Search API project page located at https://www.drupal.
org/project/search_api and extract the contents to our modules directory, as
shown in the following image:

https://www.drupal.org/project/search_api
https://www.drupal.org/project/search_api
https://www.drupal.org/project/search_api

Chapter 11

[319]

With the module in place, we can now navigate back to our Drupal instance and
finish installing the Search API. Navigate to /admin/modules and locate the
Database Search and Search API modules located in the SEARCH section.

1. Select the checkbox for Database Search.
2. Select the checkbox for Search API.
3. Click on the Install button.

One important thing to note is that we will also want to uninstall the default Drupal
Search module because we are replacing it with the Search API. We can do this by
following these steps:

1. Select the Uninstall tab.
2. Select the checkbox for Search.
3. Click on the Uninstall button.
4. Click on the Uninstall button again from the Confirm uninstall page.

Now that we have replaced the default Drupal search with the Search API module, it
is time to do some simple configuration.

Adding a server
The first step in configuring the Search API is to add a server definition for our index
to use. In our case, we will be pointing to the default Drupal database.

Theming Our Search Results

[320]

To get started, we will need to navigate to /admin/config/search/search-api,
which will bring us to the Search API admin page.

From here, we can follow these steps to add our server:

1. Click on the Add server button.
2. Enter a value of database in the Server name field.
3. Leave the remaining defaults, as shown in the following image:

4. Click on the Save button.

We have now successfully added a search server that uses our Drupal database.
We will point to this search server in our next step when we create an index.

Chapter 11

[321]

Adding an index
Adding a search index allows us to be more explicit with the type of content we
want Drupal to use when someone searches for a keyword or term. Having an index
available allows us to use Views to create our Search results page and utilize our
content's various display modes.

From the Search API admin page, we can follow these steps to add our index:

1. Click on the Add index button.
2. Enter a value of Content in the Index name field.
3. Choose Content from the Data sources field.
4. Choose Database from the Server checkbox.
5. Leave the remaining defaults, as shown in the following image:

6. Click on the Save button.

Theming Our Search Results

[322]

At this point, we have created an index but we have not defined which content types
or fields our index will use. By default, all content types will be searched. While this
may be okay in most cases, we only want our Post content to be searchable. Let's take
a look at how to restrict which content types are indexed.

Configuring bundles
Content in Drupal is referred to as an entity, and the type of entity is called a bundle.
We can configure which bundles are indexed by selecting them from our Edit page
within the CONFIGURE THE CONTENT DATASOURCE section, as shown in the
following image:

By default, all bundles will be indexed. However, we only want the post bundle to be
searched, hence we make sure that we select the following:

1. Select All except those selected under What should be indexed?
2. Select Headlines, Landing page, and Team from Bundles.
3. Click on the Save button.

Now that we have configured our bundles, we will move on to choosing which fields
will be searched on within our Post content type.

Adding fields to our index
The Search API module provides great flexibility when it comes to exactly what
fields will be indexed. In the case of our Post content type, we only want to search on
the Title and Teaser fields. We can start by selecting the Fields tab from our index
and following these steps:

1. Click on the Add fields button.
2. Click on the plus sign next to Content to expand the field.

Chapter 11

[323]

3. Click on the Add button next to Title.
4. Click on the Add button next to Teaser.
5. Click on the Done button.

We should now have our two fields added to the CONTENT section.

Although we are still within the Fields tab, we will want to take a quick look at some
additional settings we have available to us.

• The first setting is the TYPE dropdown, which allows us to specify how a
field will be treated when searched. In the case of our Title field, which is
currently set to String, we will want to be able to do a Fulltext search on
this field. We can select Fulltext from the dropdown to change the value.
This will ensure that when a user enters a keyword, it searches all characters
within the Title. If we left the default set to String, we would not get results
returned properly.

• The second setting is the BOOST field, which allows us to give a field a
higher level of importance when searched on. We will want our Title field
to be more important than our Teaser field, so we can increase the BOOST
value so that it has a higher number.

Make sure to click on the Save changes button to finish configuring our fields.
Because we have made changes to both our bundles and fields, we will need
to reindex our content. If we select the View tab, we can then click on the Index
now button.

Now that our index is ready to use, we can create our Search results view.

Creating a Search Results View
We should be very comfortable working with Views, but this will be the first time
we have used a search index as the source. To get started, we will need to navigate
to /admin/structure/views and click on the Add new view button.

Theming Our Search Results

[324]

From the Views admin screen, we will add the following information:

• VIEW BASIC INFORMATION:
1. View name: Search.
2. Check the Description box.
3. Description: Search results.

• VIEW SETTINGS: Show: Index Content sorted by: Unsorted.
• PAGE SETTINGS:

1. Check: Create a page.
2. Page title: Search.
3. Path: search.

• PAGE DISPLAY SETTINGS:

1. Display format: Unformatted list of: Rendered entity.
2. Items to display: 10.
3. Click on the Save and edit button.

From the Search (Index Content) admin, we will need to add some additional
settings to our page. This includes selecting the display mode for our post to use,
a filter criteria so that we can expose a form to replace our Global Search form, and
a header to display the number of results.

Using the Search index view mode
We are familiar with using view modes to display content within a view. Our Search
view will be using the Search index view mode, which we will need to add to our
Post content type. Navigate to /admin/structure/types/manage/post/display
and expand the CUSTOM DISPLAY SETTINGS field.

1. Select Search index from the Use custom display settings for the
following modes.

2. Click on the Save button.

Chapter 11

[325]

Next, we will want to enable only our Teaser field to display when the Search index
view mode is used. We can accomplish this by selecting the Search index tab and
adding our Teaser field, as shown in the following image:

With the field now enabled, make sure to click on the Save button to complete
our changes. We can now navigate back to our Search view and select our new
view mode.

Begin by navigating to /admin/structure/views/view/search and follow
these steps:

1. Select the Settings link next to Rendered entity within the FORMAT section.
2. Choose Search index from the View mode for datasource Content, bundle

Post dropdown.
3. Click on the Apply button.
4. Click on the Save button to finalize our changes.

If we preview our results, we should see only the title and teaser fields being
returned. Next, we need to add a Fulltext search filter that we can expose to our
end users.

Theming Our Search Results

[326]

Adding filter criteria
Within the FILTER CRITERIA section, we can add various filters and expose them
for use within our page. The form we will be adding will also be replacing our
Global search form within the header:

1. Click on the Add button under FILTER CRITERIA.
2. Choose Fulltext search.
3. Click on the Apply (all displays) button.
4. Enter a value of 3 within the Minimum keyword length field.
5. Click on the Apply (all displays) button.
6. Click on the Save button to finalize our changes.

We now have a Fulltext search field added to our view. However, we still need to
expose the form to end users. We can enable this by selecting the Search: Fulltext
search link and following these steps:

1. Click on the Expose this filter to visitors, to allow them to change it
checkbox.

2. Delete the Label value.
3. Replace the Filter identifier field value with the value term.
4. Click on the Apply (all displays) button.
5. Click on the Save button to finalize our changes.

Now that we have exposed our form, we will want to make it available within the
Block layout page. We can do this by expanding the ADVANCED section of our
view and following these steps:

• EXPOSED FORM:
1. Select the link next to Expose form in block.
2. Select Yes.
3. Click on the Apply button.

• OTHER:

1. Select the Machine Name link and change the value to search.
2. Click on the Apply button.
3. Select the CSS class link and change the value to search-index.
4. Click on the Apply (all displays) button.
5. Click on the Save button to finalize our changes.

Chapter 11

[327]

With our exposed form now available to our Block layout, let's add it back to our
Header region so that we can test our Search view.

Placing our exposed search form
If we navigate to /admin/structure/block, we will now be able to add our
exposed form to the Header region. This new exposed form will replace the
global search form.

1. Click on the Place block button next to the Header region.
2. Click on the Place block button next to Exposed form: search-search.
3. Uncheck Display title.
4. Add a value of search_form_block in the Machine-readable name field.
5. Click on the Save block button.

If we navigate to our home page, we can now test our exposed search form by
clicking on the search icon. At first glance, we may not notice any difference from
our original search form. However, we are missing the placeholder that once
prompted our users to enter their search terms. Let's remedy this by adding some
custom JavaScript to our theme that will add back this attribute.

Adding our placeholder attribute
So far we have only worked with Twig templates to add additional attributes to our
markup. However, there may be times where simple JavaScript makes more sense
to add to our project to add functionality. In the case of our Search form input, we
would like to prompt our users what to enter, but the input is currently empty. Using
some simple jQuery, we can target the element and add our placeholder attribute.

If we open up octo.js, located in our themes/octo/js folder, we can add the
following snippet directly after the last function to accomplish this:

JavaScript

// Add Placeholder attribute
$(".search-block-form #edit-term").attr("placeholder", "Enter your
search terms");

Theming Our Search Results

[328]

Make sure to save the file, clear Drupal's cache and then refresh the homepage. If we
now click on the search icon, we will see that we now have a placeholder prompting
our users what to enter.

The JavaScript that we added uses jQuery to point to the element and then adds an
attribute to the element with the specified value. This is an example of how easy it is
to use custom script to add simple functionality.

Using our search form
Let's now add a search term to our input. We can enter the term Post and hit Enter,
which will take us to the Search results page generated by our view.

The search results are returning all content that we included in our search index. The
term we entered is used to look at both the Title and Teaser fields for a match to the
value of Post. One thing we are missing that would enhance our page is the number
of search results being displayed.

Chapter 11

[329]

Displaying the number of search results
Because our search results page is created by our view, we have the option to add
additional information to our page using the Views header. We are familiar with this
capability as we used it in earlier views. This time around, we will use it to display
the number of records being returned by our view.

Begin by navigating to /admin/structure/views/view/search, which will allow
us to modify our Search view. We will be adding Result summary to our page by
following these steps:

1. Click on the Add button next to the HEADER section.
2. Select the checkbox next to Result summary within the Add header modal.
3. Click on the Apply (all displays) button.
4. Within the Display field, we will wrap the content with an h3 heading, as

shown here:

5. Click on the Apply (all displays) button.
6. Click on the Save button to finalize our Views configuration.

Theming Our Search Results

[330]

If we now navigate back to our Search results page by navigating to /search, we
will see our newly added Result summary heading along with all results displayed.

We can use the global search form to add different terms, and based on the term we
enter, the Results summary will change to reflect the number of items in our results.

One last thing to test is what happens when we enter a term that has no results. Let's
enter a term of Drupal and hit Enter. Our page returns no results, but we have not
displayed that to the user. This can sometimes lead our user to believe that search is
broken. It is always a best practice to alert the user that no results were found instead
of just a blank page.

Adding a No Results message
If we navigate back to our Search view located at /admin/structure/views/view/
search, we can easily add a message to our page when the search index doesn't
return results.

We will be adding a Text area field to our page by following these steps:

1. Click on the Add button next to the NO RESULTS BEHAVIOR section.
2. Select the checkbox next to Text area.
3. Click on the Apply (all displays) button.

Chapter 11

[331]

4. Within the Content field, we will add the following markup as shown here:

5. Click on the Apply (all displays) button.
6. Click on the Save button to finalize our Views configuration.

If we now navigate back to our Search results page and enter the term Drupal again,
our page will now display the No Results Behavior section that we just added.

Theming Our Search Results

[332]

Summary
Congratulations! We have completed the theming of our Search results page.
We began with the default core search and worked our way through replacing
core search with the more robust Search API. The ability to extend Drupal using
contributed modules is one of the primary reasons that makes it such a widely
used platform to develop websites.

Let's review what we covered in this lesson:

• We started with our Search results page mockup and identified form
elements and markup that would need to be modified in Drupal.

• Using core Drupal search, you learned the important aspects of configuration
and how to control keyword factors. Once search was configured, we
used Twig templates to override the Search results templates to match our
mockup with minimal changes.

• Realizing that we needed to extend search to make it more flexible for our
needs, we explored using the Search API module. Being able to create a
search server, search index, and use Views to build our Search results page
provided us with the ability to better customize the search experience.

At this point, we have themed every section of our website and successfully
recreated our Mockup using Drupal 8 and Twig. So where do we go from here? Well,
there are still a few tricks for us to learn in the final chapter. These are: theming a few
Admin components, such as the local tasks menu and status messages, reusing Twig
templates, and finally getting involved in the community.

[333]

Tips, Tricks, and Where to Go
from Here

Now that we have followed the frontend developer's path of taking a design or
mockup and converting it into a working Drupal 8 theme, we have to ask that
burning question, what next? The answer to that question depends on the problems
we need to solve.

For example, what about theming some more common, but often forgotten,
admin sections, such as the local tasks menu or status messages block? How about
extending Twig templates to reduce having to manage markup in multiple places?
However, the most common question is what about contributed modules that can
help us with our theming?

In this final chapter, we will take a look at answering these last-minute questions,
as we cover the following:

• We will begin with cleaning up our theme by adding some additional Twig
templates for both the local tasks menu and the status messages block.

• Next, we will take a look at extending Twig templates by using template
inheritance to reduce the amount of markup we have to manage in
our theme.

• Finally, we will take a look at the state of some common Drupal contributed
modules, such as Display Suite.

While we work through each section, we have the ability to refer back to the
Chapter12 exercise files folder. Each folder contains start and end folders with
files that we can use to compare our work when needed. These also include database
snapshots that will allow us all to start from the same point when working through
various lessons.

Tips, Tricks, and Where to Go from Here

[334]

Working with Local Tasks
One of the most common content blocks within Drupal 8 that is often forgotten
about when creating a theme is Local Tasks, often referred to as Tabs. We can see
an example of the Tabs block whenever a user needs to perform some sort of action,
such as viewing and editing a Node, or even when logging in to Drupal. If we make
sure that we are logged out of Drupal Admin and then navigate to /user/login, we
will see the Log in and Reset your password links that make up the tabs on the user
login page:

If we input our admin credentials and log in to our Drupal instance we will see that
the local tasks menu changes to display View, Shortcuts, and Edit links. The local
tasks menu will change, based on the type of page we are on and the permissions
that each user has been assigned.

If we navigate to the About Us page located at /about, we will see that our local tasks
menu now provides us with the ability to View, Edit, or Delete the current Node.

Now that we have a better understanding of how the Local Tasks menu or tab
changes, lets dive into how we would go about theming it.

Chapter 12

[335]

Theming local tasks
Local tasks, or the Tabs menu, is quite simple to theme. Drupal provides us with
two Twig templates, menu-local-tasks.html.twig and menu-local-task.html.
twig, which we can modify using techniques we are familiar with. For this exercise,
we will simply add some classes to the template so that it styles our links as the pill
buttons provided by the Twitter Bootstrap framework.

Begin by creating a copy of menu-local-tasks.html.twig located in the core/
modules/system/templates folder and add it to our themes/octo/templates
folder. Next, we will open the template and replace the markup with the following:

New markup

{% if primary %}
 <h2 class="visually-hidden">{{ 'Primary tabs'|t }}</h2>
 <ul class="nav nav-pills primary">{{ primary }}
{% endif %}
{% if secondary %}
 <h2 class="visually-hidden">{{ 'Secondary tabs'|t }}</h2>
 <ul class="nav nav-pills secondary">{{ secondary }}
{% endif %}

Make sure to save our changes, clear Drupal's cache and then refresh the browser.
Our local tasks are now displayed inline and if we hover over each item, we will see
the outline of the pill formatting. Next, we need to add the active class to each list
item to help differentiate which action is currently being displayed.

Begin by creating a copy of menu-local-task.html.twig, located in the core/
modules/system/templates folder, and add it to our themes/octo/ templates
folder. Next, we will open the template and replace the markup with the following:

New markup

<li{{ attributes.addClass(is_active ? 'active') }}>{{ link }}

Make sure to save our changes, clear Drupal's cache, and then refresh the browser.
The markup we added looks to see whether the list item is active and if it is, we add
the active class to it. This then displays as a blue pill button within our webpage:

Tips, Tricks, and Where to Go from Here

[336]

Great, we have now themed our first Admin component. The next item we will look
at implementing is our Status messages block.

Working with Status messages
The Status messages block is what Drupal uses to inform users of specific actions
they have completed, as well as to display any PHP warnings or errors. If we
navigate to the Block layout admin, we can see that the Status messages block
is currently assigned to the Highlighted region of our theme.

However, we are currently not outputting this region within our page template,
which means that any messages Drupal is trying to display will not be seen. Let's
remedy this by printing the region to our page.html.twig template.

Adding the Highlighted region
Begin by opening page.html.twig, located in our themes/octo/templates folder.
We will want to modify our markup to add the page.highlighted region variable
to our template. We can add it between our title_bar and before_content regions
as shown here:

New markup

{{ page.title_bar }}
{{ page.highlighted }}
{{ page.before_content }}

Make sure to save our changes, clear Drupal's cache, and then refresh the browser. If
we are on the About Us page, we simply need to click on the Edit button to modify
the page content and then click on the Save and keep published button to trigger
our status message.

Chapter 12

[337]

It is easy to see how a user visiting our site could miss any status messages that we
may want them to see, simply because we forgot to theme this component.

Theming our Status message block
It is important to ensure that any messages that we display to the end user are
visible and invoke the proper message, based on whether the action was successful
or whether the action returned an error. For this purpose, we can borrow from the
Twitter Bootstrap Alert component.

If we inspect the page, we can see that Drupal is using the status-messages.html.
twig template. Begin by creating a copy of status-messages.html.twig, located
in the core/modules/system/templates folder, and add it to our themes/octo/
templates folder. Next, we will open the template and replace the markup with
the following:

New markup

<div class="container">
 {% for type, messages in message_list %}

 {% if type == 'error' %}
 {% set classes = ['alert', 'alert-danger', 'alert--' ~
 type] %}
 {% else %}
 {% set classes = ['alert', 'alert-success', 'alert--' ~
 type] %}
 {% endif %}

 <div {{ attributes.addClass(classes) }} role="alert">
 {% if messages|length > 1 %}

 {% for message in messages %}
 {{ message }}
 {% endfor %}

 {% else %}
 {{ messages|first }}
 {% endif %}
 </div>

 {# Remove type specific classes #}
 {{ attributes.removeClass(classes) }}

 {% endfor %}
</div>

Tips, Tricks, and Where to Go from Here

[338]

Make sure to save our changes, clear Drupal's cache, and then refresh the browser.
If we click on the Edit button and then click on the Save and keep published button,
we will trigger our status message to display. However, this time it is displayed with
the proper styling:

There are a couple of things to point out regarding our modification of the
status-messages.html.twig template:

1. First, we added a block element to wrap our status message block with
a class attribute of container to ensure we had proper margin and
constraints on the content.

2. Next, we tested for the type of message Drupal was outputting and
added the proper alert type to the classes variable. We then appended
our classes variable to any existing classes on our alert element, using the
attributes.addClass() function.

3. Finally, since we may have multiple messages of varying types being
displayed, we removed the classes variable using the Twig function
attributes.removeClass() through each iteration, so that we display
the proper alerts.

We have now successfully themed both our tabs and status messages. This provides
us with a cleaner user interface and allows for messages to be clearly displayed.

Reusing Twig templates
If we look at our themes templates folder, we can see that we have created quite a
few Twig templates. While having an abundance of Twig templates is not necessarily
a bad thing, it does become a little bit harder to manage our code.

One powerful feature of Twig templates is that they allow us to address this by
extending or sharing markup between each template. This is great for global sections
of markup. For example, the header and footer of our page never change, so why
have the same markup in both page templates?

Chapter 12

[339]

Using extends to share layouts
Twig {% extends %} allows us to share markup between templates by extending a
template from another one. In our case, we could use this Twig function by extending
the page.html.twig template from our page--front.html.twig template.

Begin by opening up the page--front.html.twig template in our favorite editor
and add the following markup to the very top of our page:

New markup

{% extends 'themes/octo/templates/page.html.twig' %}

Now, if we were to save our template, clear Drupal's cache, and browse to our
homepage, we would see Drupal complaining about how a template that extends
another cannot have a body. The reason is that, while we are extending the page.
html.twig template, we are not exposing any Twig blocks, which is a requirement
for reusing sections of markup.

Working with Twig blocks
Twig blocks, not to be confused with Drupal Blocks, are just containers that we can
place around a section of content which allow another template to be able to replace
the content within it. So how does this work exactly?

First, a Twig block is referenced using the following syntax:

{% block content %}
some content or markup
{% endblock %}

In this example, some content or markup could be replaced from another template
extending the parent template. It's not important what you call your {% block %},
just as long as you're consistent.

Continuing with extending the page.html.twig template, begin by adding the
following Twig block around our <main> content section:

New markup

{% block content %}
<main>…</main>
{% endblock %}

Tips, Tricks, and Where to Go from Here

[340]

Now we have a Twig block that can be referenced from within page--front.html.
twig so that any content within the <main> content element can potentially be
replaced.

Next, we will want to edit page--front.html.twig and first remove the <header>
and <footer> blocks, as we will inherit those from the page.html.twig template:

New markup

{% extends 'themes/octo/templates/page.html.twig' %}
{% block content %}
{{ attach_library('octo/flexslider') }}
{{ attach_library('octo/scroll-to') }}

 <section class="intro" id="section1" data-speed="5" data-
 type="background" style="background-position: 50% 0px;">
 <div class="overlay">
 <div class="headline">
 {{ page.headline }}
 </div>
 </div>
 Get
 started
 </section>

 <main role="main" class="main">
 <div class="layout-content">
 <section id="section2" class="section">
 <div class="container">
 {{ page.before_content }}
 </div>
 </section>
 </div>
 </main>

{% endblock %}

Now, if we save both templates, clear Drupal's cache, and refresh our homepage, we
should see that our markup is being output correctly. So here's a quick explanation
of what's happening here:

• First, our homepage is now inheriting all markup from page.html.twig
including the header, footer, and Twig block. This is why we still see the
header and footer of our website being displayed. However, we now only
have to worry about managing that markup from a single template.

Chapter 12

[341]

• Second, since we are including our own markup within the Twig block from
our page--front.html.twig template, it is overriding the markup in page.
html.twig and displaying the proper content for our homepage.

This is very powerful, as we can start to look at any content that is repeated across
our templates and, with some proper planning, use {% extends %} and {% block
%} to manage our markup.

This is just the surface of how Twig can be extended; for more information and
more details of all the possibilities, take a look at the documentation at Sensio Labs:
http://twig.sensiolabs.org/.

Where do we go from here?
We have covered a lot of information on how to use Drupal 8 and the new Twig
template architecture to produce a great looking theme. So where do we go from
here? One of the challenges of working with Drupal 8 in its infancy is the lack of
contributed modules that have been ported over from Drupal 7. Just know that module
maintainers are working hard to bring new and familiar ways to extend Drupal 8.

Some great modules worth taking a look at that have made great progress include:

• Panels: https://www.drupal.org/project/panels
• Page Manager: https://www.drupal.org/project/page_manager
• Display Suite: https://www.drupal.org/project/ds

Each module by itself is great, but together these modules will allow you to achieve
a lot of different layouts quickly and easily, without the need to always create a
Twig template.

As always, keep an eye on the Drupal 8 theming documentation located at
https://www.drupal.org/theme-guide/8 for detailed information on how
to accomplish basic concepts.

Drupal also has a great community of people with various levels of knowledge and
expertise, located at https://www.drupal.org/. While visiting Drupal.org, please
become a member of the Drupal Association at https://assoc.drupal.org/
support-project-you-love as well as creating a Drupal profile.

Finally, get involved and attend a local Drupal camp or DrupalCon itself for great
sessions, training and fun. More information can be found at https://www.drupal.
org/drupalcon.

http://twig.sensiolabs.org/
https://www.drupal.org/project/panels
https://www.drupal.org/project/page_manager
https://www.drupal.org/project/ds
https://www.drupal.org/theme-guide/8
https://www.drupal.org/
https://assoc.drupal.org/support-project-you-love
https://assoc.drupal.org/support-project-you-love
https://www.drupal.org/drupalcon
https://www.drupal.org/drupalcon

Tips, Tricks, and Where to Go from Here

[342]

Summary
Wow! Time to pat ourselves on the back; we shared a lot of information that has
taken us from zero to hero with Drupal 8 theming with Twig. We learned basic site
architecture, how to navigate all that is new with the exciting changes in the Drupal 8
Admin, Custom Blocks, Views, Twig templates and so much more. Before we know
it, we will be challenging ourselves with the next great design and creating themes
with ease.

So until next time, keep coding…

[343]

Index
A
About Us block

adding 266, 267
template, implementing 267, 268

About Us mockup
reviewing 196, 197

additional assets
adding 152, 153

Add This buttons
about 290, 291
displaying 292
library, attaching to Blog detail page 291
library entry, creating 291
reference link 290

admin interface
previewing 21-26
reviewing 20

admin menu
exploring 20

AMP stack
installing 2

Appearance interface
exploring 38, 39

assets
setting up 150, 151

attributes.addClass() function 206, 316

B
Bartik 39
basic page layout, design mockup

about 138, 139
interior regions, defining 139

basic theme, creating
about 87
core templates, copying 88
info file, creating 88
new folder, creating 88
screenshot, including 88
theme, installing 89
Welcome to Twig message, displaying 89

Before Content region
Features block, creating 187
implementing 186
refactoring 188
Services block, creating 186, 187

Block layout
exploring 56

block regions
demonstrating 58, 59

blocks
about 57
configuring 60, 61
content, managing with 56
Core 57
Custom 57
Forms 57
Lists (Views) 57
Menus 57
placing, into regions 59
System 57

block types
exploring 67

Blog detail mockup
areas 272
reviewing 272

[344]

Blog detail page
library, attaching 291
previewing 273, 274

Blog Listing mockup
creating 229, 230
display, managing 231
display mode, adding 230, 231
reviewing 228, 229

Bootstrap starter
columns 106
creating 105
grids 106
libraries, working with 109
screenshot, adding 107
theme, configuring 107
theme folder, setting up 107
theme, installing 108, 109
URL 105

C
Callout block

adding 301-303
template, creating 303

Callout Map template
creating 307, 308

Categories block
creating 251, 252
managing 252, 253

Classy
about 39, 126-128
library, overriding 129, 130

comments
Comment thread, theming 284, 285
Comment types 277
date and time formats, addressing 288, 289
Default Comment type display,

reviewing 277-279
Default Comment type fields,

reviewing 277-279
Field Comments template, creating 282, 283
Post Type Comments field,

enabling 280-282
user photos, enabling for Comment

threads 285, 286
User Picture field, cleaning up 286
working with 276

Comment thread
theming 284, 285
user photos, enabling 285, 286

Comment types 277
configuration

file, creating 147
managing, in Drupal 8 77

configuration, settings.local.php file
CSS and JS aggregation, disabling 75
render and page cache, disabling 75
test modules and themes, disabling 76

contact forms
about 297, 298
display, managing 300
editing 298, 299
fields, managing 299

contact page
Callout Map template, creating 307
Google Maps, integrating with 304
layout 301
page mockup, reviewing 296

content
managing, with blocks 56

content management system (CMS) 38
core folder 26, 27
core search

about 312
content, indexing 312, 313
search pages, editing 314, 315

core themes, Drupal
about 39
Bartik 39
Classy 39
Seven 39
Stark 39

custom block
creating 63-66
display, managing 70, 71
fields, managing 68, 69
library, editing 66, 67
managing 66

custom blocks, creating
about 189
About Us block 189
Copyright block 190
Footer Contact block 190

[345]

Newsletter block 189
Social Icons block 190

custom themes
about 76
additional assets, adding 152, 153
assets, setting up 150, 152
configuration file, creating 147
creating 146
default files, handling 154
installing 148
regions, setting up 149, 150
screenshot, adding 147
theme folders, setting up 146, 147
versus default themes 76

D
database

backup 31, 32
creating, for Drupal 10
creating, phpMyAdmin used 11, 12
export settings 32, 33
restore 33
snapshot, restoring 145

Default Comment type
display, reviewing 277, 279
fields, reviewing 277-279

default files
handling 154

default Search results
viewing 310, 311

default themes
about 41, 76
versus custom themes 76

dependencies 111
design mockup

basic page layout 138, 139
Blog landing page 140
bog detail layout 141, 142
Contact Us page 142-144
homepage layout 134-136
navigating through 134
search results 144

Devel
project page, URL 122
URL 122

used, for printing variables 122, 123
variables, printing from function 124-126

display, Blog Listing mockup
field label visibility 233
fields, enabling 232
fields, formatting 233
managing 231
modes 230

Display Suite
reference link 341

Document Object Model (DOM) 176
document root

about 8
creating 8

Drupal
core themes 39
database, creating for 10

Drupal 8
challenges 341
configuration, managing in 77
downloading 8
folder structure, exploring 26
installing 7
reference link 101, 341
security features, URL 145
theming documentation, reference link 341
URL 121

Drupal 8 installation, completing
about 13
database configuration 16, 17
language, selecting 13
notifications, updating 19
profile, selecting 14
regional settings 19
requirements, verifying 14, 16
site configuration 18
site maintenance account information 19

Drupal API
reference link 99

DrupalCon
reference link 341

Drupal.org
about 8
reference link 238
URL 8

Drupal Views
and Twig templates 256, 257

[346]

E
elements

inspecting, Google Chrome used 33, 34
exercise files

downloading 31
extracting 31

extends
used, for sharing layouts 339

F
Field Comments template

creating 282, 283
file properties

reference link 74
filters

reference link 95
FlexSlider

about 182, 183
enabling 183, 184
reference link 182

folder structure, Drupal 8
about 76
core folder 26, 27
custom themes 76
default themes 76
exploring 26
modules folder 28, 29
sites folder 29
themes folder 30

Font Awesome
about 163, 164
reference link 163

footer
custom blocks, creating 189, 190
implementing 189
main footer, refactoring 191

fundamentals, Twig
about 91
control structures 96, 97, 98
filters 94, 95
variables, commenting 91
variables, dumping 93, 94
variables, printing 92
variables, setting 92

G
global footer

adding 223, 224
Global Header

adding 198, 199
Google Chrome

used, for inspecting elements 33, 34
Google Maps

block, creating 306, 307
configuring 304, 305
integrating, with contact page 304
reference link 304

H
Header region

Block templates, creating 168, 169
custom JavaScript, adding 172, 173
implementing 165, 166
input element template, creating 173, 174
logo, adding 166, 167
menus, working with 174, 175
menu template, creating 175
printing 168
search form block, implementing 170
search form block, placing 170, 171
search form block template, creating 171
Site branding, enabling 167
sticky header, creating 176, 177
System Menu block template,

creating 175, 176
Header Top region

Font Awesome library, installing 163, 164
implementing 162
refactoring 164, 165
Social Icons block, creating 162, 163

Headline Region
Block, creating 177-180
FlexSlider, enabling 183, 184
FlexSlider library, configuring 182, 183
Headline region, printing 181
Headlines Block, adding 181
Headline View, creating 177-180
implementing 177
library, attaching with Twig 183
Parallax, implementing 184
scroll effect, adding 185

[347]

scroll script, enabling 185
ScrollTo library, attaching with Twig 186

homepage
creating 160
page templates, using 160, 161
static content, working with 161
template, creating 118, 119

homepage layout, design mockup
about 134-137
homepage region, defining 137
user interaction, defining 137

hooks 99
host entry

about 8
creating 9, 10

host settings, MAMP PRO 6, 7
HTML wrapper

creating 158
web fonts 159

I
index

adding 321, 322
bundles, configuring 322
fields, adding to 322, 323

info.yml file
metadata 78
reviewing 77, 78

installed themes 40
installation

AMP stack 2
Drupal 8 7
MAMP 3, 4
themes 41, 49

interior page template
creating 198

J
JavaScript errors

fixing 224, 225
jQuery-gMap plugin

reference link 304
Jumbotron

block content, managing 113
creating 112
page title, hiding 114

L
layout

block content, managing 117
regions, adding 115
rethinking 115

libraries
about 78
assets, adding 109
attaching 81
attaching, preprocess functions used 82
attaching, Twig used 81
defining 79
extending 80
including 111, 112
overriding 80
reference, creating 110
working with 109

local development environment
setting up 74

Local Tasks
status messages, working with 336
theming 335, 336
working with 334

M
main footer, refactoring

bottom left 193
bottom right 193, 194
first 191
second 191
third 192

main page structure
implementing 203-205
Node template, creating 206

MAMP
about 2
downloading 3
installing 3, 4
URL 2
URL, for downloads 3

MAMP PRO
about 4, 5
general settings 5
host settings 6, 7

Manage fields 277-279

[348]

metadata, info.yml file 78
modules

Display Suite 341
folder 28, 29
Page Manager 341
panels 341
reference link 245

N
naming conventions 76
Node template implementation

about 237
comments, handling in Drupal 8 248
content variables, working with 238, 239
CSS classes, adding to Twig 238
field templates, creating 247
field templates, working with 240, 241
Owl Carousel library, adding 242, 243
post image slider, creating 240
post metadata, creating 246
taxonomy 247
teaser, printing 245
title, printing 245
Twig filters, using for dates 243, 244
without filter, using 239

O
Owl Carousel

adding 242
reference link 242

P
Page Manager

reference link 341
page title

block template, creating 203
hiding 114
implementing 200
new regions, adding 201
Page title block, reassigning 202
static HTML, working with 200, 201
Title Bar region, printing 202, 203

panels
reference link 341

Parallax
about 184
implementing 184

phpMyAdmin
used, for creating database 11, 12

popular content, versus recent content
managing 257
popular posts block, creating 258
popular posts block, managing 260
Post Teaser Twig template,

creating 265, 266
recent posts block, creating 257, 258
Twig and Bootstrap tabs, using 261
view, attaching to footer 259, 260
views, sorting by comment count 259
views-view templates, using 262-264

Post Full template
creating 274
fields, altering 275, 276

Post Listing block
managing 236, 237

Post Listing view
Content Display modes, using with

views 235
creating 234

Post Type Comments field
enabling 280-282

prebuilt themes
using 48

preprocess functions
used, for attaching libraries 82

preprocessors 99
project files

using 31

R
regions

about 58, 82, 83
blocks, placing into 59
setting up 149, 150
templates, creating 120, 121

responsive sidebars
implementing 253, 254

[349]

S
Sassy 126
screenshot

adding 147
search alternatives

about 318
index, adding 321, 322
Search API 318
search form, using 328
Search Results View, creating 323
server, adding 319

Search API
about 318
advantage 318
installing 318, 319
reference link 310, 318

search form
No Results message, adding 330, 331
search results count, displaying 329, 330
using 328

search pages
disabling 315
editing 313, 315

Search Results mockup
reviewing 309, 310

Search Results templates
item list template, modifying 315, 316
result, cleaning up 317
working with 315

Search Results View
creating 323, 324
exposed search form, placing 327
filter criteria, adding 326
placeholder attribute, adding 327, 328
view mode, using 324, 325

Sensio Labs
reference link 341

server
adding 319, 320

settings.local.php file
configuring 74, 75

Seven theme 39
Share This

reference link 290
sites/default folder permissions

managing 74

sites folder 29
Slick Carousel

reference link 81
SMACSS

reference link 79
social sharing capabilities

Add This buttons 290, 291
implementing 289

Stark 39
starter themes 104, 105
status messages

block, theming 337, 338
highlighted region, adding 336
working with 336

subthemes
about 126
screenshot, including 127
theme, configuring 127
theme folder, adding 127
theme, installing 127, 128

T
Team members section

After Content region, refactoring 222
CSS classes, adding to Views 216
implementing 207
listing block, managing 214
Team Member View, creating 209, 210, 212,

213
Team Member View, prepping 207, 208
Twig variables, used for rewriting field

content 216, 217, 218, 219
View fields, rearranging 220
View header, adding 221, 222
Views, formatting with CSS 215

templates
about 83
content 85
finding 85, 86
footer 85
header 85
HTML wrapper 84
page wrapper 84
sidebar 85
working 83, 84

[350]

theme file
about 99
comment count, printing 250
creating 248, 250
read more link, adding 250

theme folders
setting up 146, 147

Theme layer
working with 121, 122

themes
about 38
installing 41, 49
installing, from URL 49-51
installing, manually 54, 55
uninstalling 41, 42

theme settings
about 43
display, toggling of page elements 43
logo image settings 44, 45
shortcut icon settings 45, 46

themes folder
about 30
cleaning up 56

theme-specific settings 46, 47
theme states

about 40
default theme 41
installed themes 40
uninstalled themes 40

title
managing 61

Twig
about 90
blocks, working with 339, 340
fundamentals 91
URL 90
used, for attaching libraries 81
used, for attaching library 183
used, for attaching ScrollTo library 186

Twig debug
enabling 90

Twig templates
Devel, used for printing variables 122
extends, used for sharing layouts 339
homepage template, creating 118, 119
region templates, creating 120, 121
reusing 338
Theme layer, working with 121, 122
Twig blocks, working with 339, 340
using 118

Twitter Bootstrap
URL 109

U
uninstalled themes 40
URL

themes, installing from 49-51
User Picture field

cleaning up 286, 287
Field User Picture template,

creating 287, 288

V
variables

overriding 100, 101
printing, from function 124-126
printing, with Devel 122, 123

visibility settings
content types restriction 62
managing 61
page restriction 62
role restriction 63

Y
YAML, Symfony website

reference link 77

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Our Development Environment
	Installing an AMP (Apache, MySQL, PHP) stack
	Introducing MAMP
	Downloading MAMP
	Installing MAMP

	A quick tour of MAMP PRO
	General settings for MAMP PRO
	Host settings

	Installing Drupal 8
	Downloading Drupal 8
	Creating our document root
	Creating our host entry

	Creating a new database for Drupal
	Using phpMyAdmin

	Completing Drupal 8 installation
	Choosing a language
	Choosing a profile
	Verifying requirements
	Database configuration
	Configuring the site
	Site maintenance account
	Regional settings
	Update notifications

	Reviewing the new admin interface
	Exploring the admin menu
	Previewing the interface
	Exploring Drupal 8 folder structure
	The core folder
	The modules folder
	The sites folder
	The themes folder

	Using the project files
	Downloading and extracting the exercise files
	Database backup
	Export settings

	Database restore
	Using Google Chrome to inspect elements

	Summary

	Chapter 2: Theme Administration
	What is a theme?
	Exploring the Appearance interface
	Drupal's core themes
	Bartik
	Seven
	Stark
	Classy

	Theme states
	Installed themes
	Uninstalled themes
	Default theme

	Installing and uninstalling themes
	Step one – installing a theme
	Step two – uninstalling a theme

	Theme settings
	Toggling the display of page elements
	Logo image settings
	Shortcut icon settings

	Theme-specific settings
	Using prebuilt themes
	Installing a new theme
	Installing from a URL
	Uploading a module or theme archive to install

	Manually installing a theme
	Cleaning up our themes folder
	Managing content with blocks
	Exploring the Block layout
	Blocks and regions
	Demonstrating block regions
	Placing blocks into regions
	Configuring a block
	Managing the title

	Managing visibility settings
	Content types restriction
	Page restriction
	Role restriction

	Creating a custom block

	Managing custom blocks
	Exploring the custom block library
	Exploring block types
	Managing fields
	Managing display

	Summary

	Chapter 3: Dissecting a Theme
	Setting up a local development environment
	Managing sites/default folder permissions
	Configuring settings.local.php
	Disabling CSS and JS aggregation
	Disabling render and page cache
	Disabling test modules and themes

	Default themes versus custom themes
	Folder structure and naming conventions
	Managing configuration in Drupal 8
	Reviewing the new info.yml file
	Metadata
	Libraries
	Defining a library
	Attaching a library

	Regions

	The role of templates in Drupal
	How templates work
	Where to find templates

	Creating our first basic theme
	Step One – creating a new folder
	Step two – create an info file
	Step three – copy core templates
	Step four – include a screenshot
	Step five – installing our theme
	Step six – Welcome to Twig

	Introducing Twig
	Enabling Twig debug
	Twig fundamentals
	Commenting variables
	Setting variables
	Printing variables
	Dumping variables
	Filters
	Control structures

	Template variables
	The role of the theme file in Drupal
	Preprocessors and hooks
	Overriding variables

	Summary

	Chapter 4: Getting Started – Creating Themes
	Starter themes
	Creating a Bootstrap starter
	Understanding grids and columns
	Setting up a theme folder
	Adding a screenshot
	Configuring our theme
	Installing our theme
	Working with libraries
	Adding assets
	Creating a library reference
	Including our library

	Creating a Jumbotron
	Step one – managing block content
	Step two – hiding the page title

	Rethinking our layout
	Adding regions
	Managing the block content

	Using Twig templates
	Creating a homepage template
	Creating region templates
	Working with the Theme layer
	Using Devel to print variables
	Printing variables from a function

	Subthemes
	Adding the theme folder
	Including a screenshot
	Configuring our theme
	Installing our theme

	Touring Classy
	Overriding a library

	Summary

	Chapter 5: Prepping Our Project
	Walking through the design mockup
	Homepage layout
	Defining homepage regions and user interaction

	Basic page layout
	Defining interior regions

	Landing page layout
	Blog detail layout
	Contact page
	Search results

	Restoring our database snapshot
	Creating a custom theme
	Setting up theme folders
	Adding a screenshot
	Creating our configuration file
	Installing our theme
	Setting up our regions
	Setting up our assets
	Adding additional assets
	Handling default files

	Summary

	Chapter 6: Theming Our Homepage
	Creating our HTML wrapper
	Introducing web fonts

	Creating our homepage
	Using page templates
	Working with static content

	Implementing our Header Top region
	Creating our Social Icons block
	Installing Font Awesome library
	Refactoring Header Top region

	Implementing our Header region
	Adding a logo
	Enabling Site branding
	Printing our Header region
	Creating Block templates
	Implementing our search form block
	Placing our search form block
	Creating a search form block template
	Adding custom JavaScript
	Creating an input element template
	Working with menus
	Creating a menu template
	Creating System Menu block template
	Creating a sticky header

	Implementing our Headline Region
	Creating our Headline View and Block
	Adding our Headlines Block
	Printing our Headline region
	Configuring FlexSlider library
	Attaching a library using Twig
	Enable FlexSlider
	Implementing Parallax
	Adding a scroll effect
	Enabling the scroll script
	Attaching ScrollTo library using Twig

	Implementing our Before Content region
	Creating our Services block
	Creating our Features block
	Refactoring Before Content region

	Implementing the footer
	Creating our custom blocks
	Refactoring our main footer
	Footer first
	Footer second
	Footer third
	Footer bottom left
	Footer bottom right

	Summary

	Chapter 7: Theming Our Interior Page
	Reviewing the About Us mockup
	Creating our interior page template
	Adding our Global Header
	Implementing our page title
	Working with static HTML
	Adding new regions
	Reassigning the Page title block
	Printing the Title Bar region
	Creating a block template

	Implementing our main page structure
	Creating a Node template

	Implementing our Team members section
	Prepping our Team Member View
	Creating our Team Member View
	Managing our Team Members listing block
	Formatting Views with CSS
	Adding CSS classes to Views
	Using Twig variables to rewrite field content
	Rearranging View fields
	Adding a View header
	Refactoring the After Content region

	Adding our global footer
	Fixing JavaScript errors
	Summary

	Chapter 8: Theming Our Blog Listing Page
	Reviewing the Blog Listing mockup
	Creating our blog listing
	Adding a new display mode
	Managing the display
	Enabling fields
	Field label visibility
	Formatting fields

	Creating a Post Listing view
	Using Content Display modes with views

	Managing our Post Listing block
	Implementing our Node template
	Adding CSS classes to Twig
	Working with content variables
	Using the without filter
	Creating our post image slider
	Working with field templates
	Adding the Owl Carousel library
	Using Twig filters for dates
	Printing title and teaser
	Creating our post metadata
	Field templates and taxonomy
	Handling comments in Drupal 8

	Creating a theme file
	Printing our comment count
	Adding a read more link

	Creating a Categories block
	Managing our Categories block
	Implementing responsive sidebars
	Theming a Block template
	Drupal Views and Twig templates
	Managing popular versus recent content
	Creating our recent posts block
	Creating our popular posts block
	Sorting views by comment count
	Attaching a view to the footer
	Managing our popular posts block
	Using Twig and Bootstrap tabs
	Recent Posts Twig template
	Popular Posts Twig template

	Using Views-view templates
	Creating a Post Teaser Twig template

	Adding the About Us block
	Implementing the About Us template

	Summary

	Chapter 9: Theming Our Blog Detail Page
	Reviewing the Blog detail mockup
	Previewing our Blog detail page
	Creating a Post Full template
	Altering fields

	Working with comments
	Introducing Comment types
	Reviewing Default Comment type fields and display
	Enabling Post Type Comments field
	Creating a Field Comments template
	Theming the Comment thread
	Enabling user photos for Comment threads
	Cleaning up the User Picture field
	Creating the Field User Picture template

	Date and time formats

	Implementing social sharing capabilities
	The Add This buttons
	Creating a library entry
	Attaching the library to our Blog detail page
	Displaying buttons

	Summary

	Chapter 10: Theming Our Contact Page
	Reviewing the contact page mockup
	Introducing contact forms
	Editing a contact form
	Managing form fields
	Managing form display

	Contact page layout
	Adding a Callout block
	Creating the Callout block template

	Integrating Google Maps into our contact page
	Configure Google Maps
	Creating our Google Maps block
	Creating the Callout Map template

	Summary

	Chapter 11: Theming Our Search Results
	Reviewing the Search Results mockup
	Looking at default Search results
	Introducing core search
	Indexing content
	Editing search pages
	Disabling search pages

	Working with Search Results templates
	Modifying the item list template
	Cleaning up each result

	Search alternatives
	Search API
	Installing the Search API

	Adding a server
	Adding an index
	Configuring bundles
	Adding fields to our index

	Creating a Search Results View
	Using the Search index view mode
	Adding filter criteria
	Placing our exposed search form
	Adding our placeholder attribute

	Using our search form
	Displaying the number of search results
	Adding a No Results message

	Summary

	Chapter 12: Tips, Tricks, and Where to Go from Here
	Working with Local Tasks
	Theming local tasks
	Working with Status messages
	Adding the Highlighted region
	Theming our Status message block

	Reusing Twig templates
	Using extends to share layouts
	Working with Twig blocks

	Where do we go from here?
	Summary

	Index

