

Laravel Application
Development Blueprints

Learn to develop 10 fantastic applications with the new
and improved Laravel 4

Arda Kılıçdağı

Halil İbrahim Yılmaz

BIRMINGHAM - MUMBAI

Laravel Application Development Blueprints

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1071113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-211-1

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

Credits

Authors
Arda Kılıçdağı

Halil İbrahim Yılmaz

Reviewers
James Blackwell

Mhd Zaher Ghaibeh

Acquisition Editor
Kevin Colaco

Lead Technical Editor
Ankita Shashi

Technical Editors
Vrinda Nitesh Bhosale

Nikhita K. Gaikwad

Rahul U. Nair

Copy Editors
Alisha Aranha

Janbal Dharmaraj

Tanvi Gaitonde

Gladson Monteiro

Alfida Paiva

Adithi Shetty

Project Coordinator
Wendell Palmer

Proofreader
Joanna McMahon

Indexer
Hemangini Bari

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

About the Authors

Arda Kılıçdağı is a PHP, MySQL, and JavaScript programmer from Turkey. He
has been developing applications in PHP since 2005. He has been administrating
the Turkish national support website for the well-known open source content
management script, PHP-Fusion. He's also one of the international developers and
a member of the management team for PHP-Fusion, and he has an important role
in the project's future. He has worked as a developer and has experience on projects
such as Begendy (an exclusive private shopping website) and Futbolkurdu (a local
soccer news website). He is experienced in using the Facebook API, Twitter API, and
PayPal's Adaptive Payments API (which is used on crowdfunding websites such as
KickStarter). He's also experienced in using JavaScript, and he's currently infusing
his applications with JavaScript and jQuery, both on the frontend and backend.

He has also developed applications using CodeIgniter and CakePHP for about four
years, but these PHP frameworks didn't suit his needs completely. This is why he
decided to use another framework for his projects, and that is when he met Laravel.
Currently he is developing all his applications using Laravel.

He's also obsessed with Unix/Linux and uses Linux on a daily basis. In addition,
he is administrating the world's best-known microcomputer, Raspberry Pi's biggest
Turkish community website.

I'd like to thank to my mother and father, Serhan Karakaya, Barkev
Keskin, Alpbuğra Bahadır Gültekin, Ferdi, Mrs. Deger Dundar, Mr.
Orkun Altinbayrak, and all my other friends who I cannot list, for
their support and understanding.

Halil İbrahim Yılmaz is a Python and PHP programmer and an e-commerce
consultant from Turkey. He has worked as a developer and a software coordinator
in over a dozen ventures, including Begendy, Modeum, Futbolkurdu, Arkeoidea,
and Uzmanlazim. He is experienced in using many APIs such as Google, YouTube,
Facebook, Twitter, Grooveshark, and PayPal. After meeting his business partner,
he co-founded 16 Pixel, a Bursa-based creative consultancy that specializes in web
development and e-commerce.

He loves learning functional programming languages (Erlang and Haskell),
new JavaScript technologies (Node.js), and NoSQL database systems (Riak and
MongoDB). When he is not working on client projects, he is often trying to code a
web application with those technologies.

He lives in a house full of Linux boxes in Bursa, Turkey.

I'd like to thank my daughter İklim for her presence, and Gezi Park
protestors for their cause to make the world a better place.

About the Reviewers

James Blackwell is a full stack, freelance web developer with years of experience
in producing web applications. He's produced and worked on many large websites
and applications for a range of companies with multiple technologies such as PHP,
JavaScript, MySQL, and MongoDB.

Mhd Zaher Ghaibeh is the co-founder of Creative Web Group, Syria
(http://creativewebgroup-sy.com/), a web development startup that specializes
in developing modern web applications and utilizes the latest web development
technologies and methodologies. He has over eight years of web development
experience and holds a Bachelor of Information Technology degree from Syrian
University, Damascus.

He is currently working with Tipsy & Tumbler Limited
(http://www.tipsyandtumbler.co.uk/) as a PHP web developer.

http://www.tipsyandtumbler.co.uk/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Building a URL Shortener Website	 7

Creating a database and migrating our URL shortener's table	 7
Creating our form	 11
Creating our Link model	 13
Saving data to the database	 15

Validating the users' input	 16
Returning the messages to the view	 17

Diving further into controller and processing the form	 18
Getting individual URL from the database and redirecting	 20
Summary	 22

Chapter 2: Building a To-do List with Ajax 	 23
Creating and migrating our to-do list's database	 23
Creating a todos model	 25
Creating the template	 26
Inserting data to the database with Ajax	 30
Retrieving the list from the database	 34
How to allow only Ajax requests	 34

Allowing the request using route filters	 35
Allowing the request using the controller side	 35

Wrapping up	 36
Summary	 38

Chapter 3: Building an Image Sharing Website	 39
Creating a database and migrating the images table	 39
Creating a photo model	 41
Setting custom configuration values	 42
Installing a third-party library	 43
Creating a secure form for file upload	 44

Table of Contents

[ii]

Validating and processing the form	 48
Showing the image with a user interface	 52
Listing images	 54
Deleting the image from the database and server	 56
Summary	 58

Chapter 4: Building a Personal Blog	 59
Creating and migrating the posts database	 59
Creating a posts model	 61
Creating and migrating the authors database	 62
Creating a members-only area	 65
Saving a blog post	 68

Assigning blog posts to users	 69
Listing articles	 70
Paginating the content	 72
Summary	 72

Chapter 5: Building a News Aggregation Website	 73
Creating the database and migrating the feeds table	 73
Creating a feeds model	 75
Creating our form	 75
Validating and processing the form	 78
Extending the core classes	 80
Reading and parsing an external feed	 81
Summary	 87

Chapter 6: Creating a Photo Gallery System	 89
Creating a table and migrating albums	 89

Creating an Album model	 91
Creating the images database with the migrating class	 92
Creating an Image model	 93
Creating an album	 94

Adding a template for creating albums	 98
Creating a photo upload form	 103

Validating the photo	 106
Assigning a photo to an album	 108

Moving photos between albums	 109
Creating an update form	 113

Summary	 114
Chapter 7: Creating a Newsletter System	 115

Creating a database and migrating the subscribers table	 115
Creating a subscribers model	 117
Creating our subscription form	 117

Table of Contents

[iii]

Validating and processing the form	 120
Creating a queue system for basic e-mail sending	 122
Using the Email class to process e-mails inside the queue	 125
Testing the system	 126
Sending e-mails with the queue directly	 127
Summary	 127

Chapter 8: Building a Q&A Web Application	 129
Removing the public segment from Laravel 4	 130
Installing Sentry 2 and an authentication library
and setting access rights	 131
Creating custom filters	 133
Creating our registration and login forms	 135

Validating and processing the form	 141
Processing the login and logout requests	 145

Creating our questions table and model	 148
Creating our tags table with a pivot table	 150
Creating and processing our question form	 153

Creating our questions form	 153
Processing our questions form	 155

Creating our questions list page	 160
Adding upvote and downvote functionality	 164

Creating our questions page	 166
Creating our answers table and resources	 172

Processing the answers	 174
Choosing the best answer	 180

Searching questions by the tags	 184
Summary	 186

Chapter 9: Building a RESTful API – The Movies
and Actors Databases	 187

Creating and migrating the users database	 188
Adding sample users	 190

Creating and migrating the movies database	 191
Creating a movie model	 191

Adding sample movies	 192
Creating and migrating the actors database	 193
Creating an actor model	 193
Assigning actors to movies	 194
Understanding the authentication mechanism	 195

Table of Contents

[iv]

Querying the API	 196
Getting movie/actor information from the API	 197
Sending new movies/actors to the API's database	 200
Deleting movies/actors from the API	 202

Summary	 208
Chapter 10: Building an E-Commerce Website	 209

Building an authorization system	 209
Creating and migrating the members' database	 210
Creating and migrating the authors' database	 214

Adding authors to the database	 215
Creating and migrating the books database	 216

Adding books to the database	 217
Creating and migrating the carts database	 218
Creating and migrating the orders database	 219
Listing books	 221

Creating a template file to list books	 225
Taking orders	 232
Summary	 238

Index	 239

Preface
Laravel Application Development Blueprints covers how to develop 10 different
applications step-by-step using Laravel 4. You will also learn about both basic and
advanced usage of Laravel's built-in methods, which will come in handy for your
project. Also, you will learn how to extend the current libraries with the built-in
methods and include third-party libraries.

This book looks at the Laravel PHP framework and breaks down the ingrained
prejudice that coding with PHP causes spaghetti code. It will take you through
a number of clear, practical applications that will help you take advantage of
the Laravel PHP framework and PHP OOP programming, while avoiding
spaghetti code.

You'll also learn about creating secure web applications using different methods,
such as file uploading and processing, making RESTful Ajax requests, and form
processing. If you want to take advantage of the Laravel PHP framework's validate,
file processing, and RESTful controllers in various types of projects, this is the book
for you. Everything you need to know to code fast and secure applications with the
Laravel PHP framework will be discussed in this book.

What this book covers
Chapter 1, Building a URL Shortener Website, provides an overview of the very basics
of Laravel 4. This chapter introduces the basics of routes, migrations, models,
and views.

Chapter 2, Building a To-do List with Ajax, uses the Laravel PHP framework and
jQuery to build the application. Through out this chapter, we'll show you the basics
of RESTful controllers, RESTful routing, and validating request types.

Chapter 3, Building an Image Sharing Website, covers how to add a third-party library
to the project, and how to upload, resize, process, and show images.

Preface

[2]

Chapter 4, Building a Personal Blog, covers how to code a simple personal blog
with Laravel. Throughout the chapter, Laravel's built-in authentication, paginate
mechanism, and the named routes' features are covered. In this chapter, we'll also
elaborate on some rapid development methods that come with Laravel, such as
methods to easily create a URL for routes.

Chapter 5, Building a News Aggregation Website, focuses mainly on extending the core
classes with custom functions and using them. The usage of migrations and the
basics of validating, saving, and retrieving data is also covered.

Chapter 6, Creating a Photo Gallery System, helps us code a simple photo gallery system
with Laravel. In this chapter, we'll cover Laravel's built-in file validation, file upload,
and the hasMany database relation method. We'll also cover the validation class for
validating the data and the uploaded files. Finally, we'll elaborate on Laravel's file
class for processing the files.

Chapter 7, Creating a Newsletter System, covers an advanced newsletter system, which
will use Laravel's queue and e-mail libraries. This chapter also focuses on how to
set and fire/trigger queued tasks, and how to parse e-mail templates and send mass
e-mails to subscribers.

Chapter 8, Building a Q&A Web Application, mainly focuses on pivot tables, why and
where they are needed, and their usage. This chapter also covers the usage of a third-
party authentication system and methods to remove or rename the public segment.

Chapter 9, Building a RESTful API – The Movies and Actors Database, focuses on the
basics of REST by coding a simple movies and actors API with Laravel. We'll make
some JSON endpoints behind a basic authentication system and learn a few Laravel
4 tricks throughout the chapter. Also, we'll cover the basics of RESTful controllers,
RESTful routing, and adding sample data to the database with migrations.

Chapter 10, Building an E-commerce Website, discusses how to code a simple
e-commerce application with Laravel. In this chapter we'll cover Laravel's built-in,
basic-authentication mechanism named routes and database seeding. We will also
elaborate on some rapid development methods that come with Laravel 4. We'll also
cover advanced usage of pivot tables. Our e-commerce application will be a simple
bookstore. The application will have order, administration, and cart features.

What you need for this book
The applications written in the chapters are all based on Laravel 4, so you will
require what's listed on Laravel 4's standard requirements list, which will be
available at http://four.laravel.com/docs#server-requirements.

Preface

[3]

The chapter requirements are as follows:

•	 PHP 5.3.7 or above
•	 MCrypt PHP Extension
•	 A SQL database to store the data

There may be additional requirements for individual third-party packages. Please
refer to their requirements page if they are used anywhere during the chapters.

Who this book is for
This book is great for developers new to the PHP 5 object-oriented programming
standards and who are looking to work with the Laravel PHP framework. It's
assumed that you will have some experience in PHP already, as well as being
familiar with coding current "old school" methods, such as not using any PHP
framework. This book is also for those who are already using a PHP framework
and are looking for a better solution.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

<?php
class Todo extends Eloquent
{
 protected $table = 'todos';

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 public function run()
 {
 Eloquent::unguard();
 $this->call('UsersTableSeeder');
 $this->command->info('Users table seeded!');

Preface

[4]

 $this->call('AuthorsTableSeeder');
 $this->command->info('Authors table seeded!');
 }

}

Any command-line input or output is written as follows:

php artisan migrate

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Then, we
check whether the user who has clicked on the best answer button is either the poser
of the question or the application's administrator."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Building a URL
Shortener Website

Throughout the book, we will be using the Laravel PHP framework to build different
types of web projects.

In this chapter, we'll see how to build a URL Shortener website with the basics of
Laravel framework. The covered topics include:

•	 Creating a database and migrating our URL Shortener's table
•	 Creating our form
•	 Creating our Link model
•	 Saving data to the database
•	 Getting individual URL from the database and redirecting

Creating a database and migrating our
URL shortener's table
Migrations are like version control for your application's database. They permit
a team (or yourself) to modify the database schema, and provide up-to-date
information on the current schema state. To create and migrate your URL Shortener's
database, perform the following steps:

1.	 First of all, we have to create a database, and define the connection
information to Laravel. To do this, we open the database.php file under
app/config, and then fill the required credentials. Laravel supports MySQL,
SQLite, PostgreSQL, and SQLSRV (Microsoft SQL Server) by default. For this
tutorial, we will be using MySQL.

Building a URL Shortener Website

[8]

2.	 We will have to create a MySQL database. To do this, open your MySQL
console (or phpMyAdmin), and write down the following query:
CREATE DATABASE urls

3.	 The previous command will generate a new MySQL database named urls
for us. After having successfully generated the database, we will be defining
the database credentials. To do this, open your database.php file under
app/config. In that file, you will see multiple arrays being returned with
database definitions.

4.	 The default key defines what database driver to be used, and each database
driver key holds individual credentials. We just need to fill the one that
we will be using. In our case, I've made sure that the default key's value is
mysql. To set the connection credentials, we will be filling the value of the
mysql key with our database name, username, and password. In our case,
since we have a database named urls, with the username as root and
without a password, our mysql connection settings in the database.php file
will be as follows:
'mysql' => array(
 'driver' => 'mysql',
 'host' => 'localhost',
 'database' => 'database',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
),

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

5.	 Now, we will be using the Artisan CLI to create migrations. Artisan is a
command-line interface specially made for Laravel. It provides numerous
helpful commands to help us in development. We'll be using the following
migrate:make command to create a migration on Artisan:
php artisan migrate:make create_links_table --table=
 links --create

Chapter 1

[9]

The command has two parts:
°° The first is migrate:make create_links_table. This part of the

command creates a migration file which is named something like
2013_05_01_194506_create_links_table.php. We'll examine the
file further.

°° The second part of the command is --table=links --create.

°° The --table=links option points to the database name.
°° The --create option is for creating the table on the

database server to which we've given the --table=links
option.

6.	 As you can see, unlike Laravel 3, when you run the previous command, it
will create both the migrations table and our migration. You can access the
migration file under app/database/migrations, having the following code:
<?php
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;
class CreateLinksTable extends Migration {
 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('links', function(Blueprint $table)
 {
 $table->increments('id');
 });
 }
 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('links');
 }
}

Building a URL Shortener Website

[10]

7.	 Let's inspect the sample migration file. There are two public functions which
are declared as up() and down(). When you execute the following migrate
command, the contents of the up() function will be executed:
php artsian migrate

This command will execute all of the migrations and create the links table in
our case.

If you receive a class not found error when running the migration
file, try running the composer update command.

8.	 We can also roll back to the last migration, like it was never executed in the
first place. We can do this by using the following command:
php artisan migrate:rollback

9.	 In some cases, we may also want to roll back all migrations we have created.
This can be done with the following command:
php artisan migrate:reset

10.	 While in the development stages, we may forget to add/remove some fields,
or even forget to create some tables, and we may want to roll back everything
and remigrate them all. This can be done using the following command:
php artisan migrate:refresh

11.	 Now, let's add our fields. We've created two additional fields called url and
hash. The url field will hold the actual URL, to which the URL present in the
hash field will be redirected. The hash field will hold the shortened version
of the URL that is present in the url field. The final content of the migration
file is as shown in the following code:

<?php
use Illuminate\Database\Migrations\Migration;
class CreateLinksTable extends Migration {
 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('links', function(Blueprint $table)
 {

Chapter 1

[11]

 $table->increments('id');
 $table->text('url');
 $table->string('hash',400);
 });
 }
 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('links');
 }
}

Creating our form
Now let's make our first form view.

1.	 Save the following code as form.blade.php under app/views. The file's
extension is blade.php because we will be benefiting from Laravel 4's built-
in template engine called Blade. There may be some methods you don't
understand in the form yet, but don't worry. We will cover everything
regarding this form in this chapter.
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>URL Shortener</title>
 <link rel="stylesheet" href="/assets/css/styles.css" />
 </head>
 <body>
 <div id="container">
 <h2>Uber-Shortener</h2>
 {{Form::open(array('url'=>'/','method'=>'post'))}}

 {{Form::text('link',Input::old('link'),
 array('placeholder'=>
 'Insert your URL here and press enter!'))}}
 {{Form::close()}}
 </div>
 </body>
</html>

Building a URL Shortener Website

[12]

2.	 Now save the following codes as styles.css under public/assets/css:
div#container{padding-top:100px;
 text-align:center;
 width:75%;
 margin:auto;
 border-radius:4px}
div#container h2{font-family:Arial,sans-serif;
 font-size:28px;
 color:#555}
div#container h3{font-family:Arial,sans-serif;
 font-size:28px}
div#container h3.error{color:#a00}
div#container h3.success{color:#0a0}
div#container input{display:block;
 width:90%;
 float:left;
 font-size:24px;
 border-radius:5px}
div#error,div#success{border-radius:3px;
 display:block;
 width:90%;
 padding:10px}
div#error{background:#ff8080;
 border:1px solid red}
div#success{background:#80ff80;
 border:1px solid #0f0}

This code will produce you a form that looks like the following screenshot:

Chapter 1

[13]

As you can see, we have used a CSS file to tidy up the form a bit, but the
actual part of the form is at the bottom of the View file, inside div with the ID
of the container.

3.	 We have used the Laravel's built-in Form class to generate a form, and we
have used the old() method of the Input library. Now let's dig the code:

°° Form::open(): It creates a <form> opening tag. Within the first
provided parameter, you can define how the form is sent, and where
it is going to be sent. It can be a controller's action, a direct URL, or a
named route.

°° Form::text(): It creates an <input> tag with type as text. The first
parameter is the name of the input, the second parameter is the value
of the input, and within the array given in the third parameter, you
can define assets and other attributes of the <input> tag.

°° Input::old(): It will return the old input from a form, after the form
is returned with the inputs. The first parameter is the name of the old
input submitted. In our case, if the form is returned after submission
(for example, if the form validation fails), the text field will be filled
with our old input and we can reuse it for later requests.

°° Form::close(): It closes the <form> tag.

Creating our Link model
To benefit from Laravel's ORM class called Eloquent, we need to define a model.
Save the following code as Link.php under app/models:

<?php
class Link extends Eloquent {
 protected $table = 'links';
 protected $fillable = array('url','hash');
 public $timestamps = false;
}

The Eloquent model is quite easy to understand.

•	 The variable $table is used to define the table name for the model, but it's
not compulsory. Even if we don't define this variable, it would use the plural
form of the model name as a database table name. For example, if the model
name was post, it would look for the post's table as default. This way, you
can use any model names for the tables.

Building a URL Shortener Website

[14]

•	 The protected $fillable variable defines what columns can be (mass)
created and updated. Laravel 4 blocks the mass-assignment of the values of
all the columns with Eloquent by default. This way, for example, if you have
a users table, and you are the only user/administrator, the mass-assignment
protects your database from another user being added.

•	 The public $timestamps variable checks whether the model should try
setting the timestamps created_at and updated_at by default, while
creating and updating the query respectively. Since we don't need these
features for our chapter, we will disable this by setting the value to false.

We now need to define this view to show whether we can navigate to our virtual
host's index page. You can do this either from the controllers defined in routes.php,
or from routes.php directly. Since our application is small, defining them directly
from routes.php should suffice. To define this, open the routes.php file under the
app folder and add the following code:

Route::get('/', function()	
{
 return View::make('form');
});

If you already have a section starting with Route::get('/',
function(), you should replace that section with the previous code.

Laravel can listen get, post, put, and delete requests. Since our action is a get
action (because we will be navigating through the browser without posting), our
route type will be get, and because we want to show the view on the root page,
our first parameter of the Route::get() method will be /, and we wrap a closure
function as the second parameter to define what we want to do. In our case, we
will be returning form.blade.php placed under app/views that we had generated
before, so we just type return View::make('form'). This method returns the
form.blade.php view from the views folder.

If the view was in a subdirectory, it would be called subfolder.form.

Chapter 1

[15]

Saving data to the database
Now we need to write a route that will have to listen to our post request. For this,
we open our routes.php file under the app folder and add the following code:

Route::post('/',function(){
 //We first define the Form validation rule(s)
 $rules = array(
 'link' => 'required|url'
);
 //Then we run the form validation
 $validation = Validator::make(Input::all(),$rules);
 //If validation fails, we return to the main page with an
 error info
 if($validation->fails()) {
 return Redirect::to('/')
 ->withInput()
 ->withErrors($validation);
 } else {
 //Now let's check if we already have the link in
 our database. If so, we get the first result
 $link = Link::where('url','=',Input::get('link'))
 ->first();
 //If we have the URL saved in our database already, we
 provide that information back to view.
 if($link) {
 return Redirect::to('/')
 ->withInput()
 ->with('link',$link->hash);
 //Else we create a new unique URL
 } else {
 //First we create a new unique Hash
 do {
 $newHash = Str::random(6);
 } while(Link::where('hash','=',$newHash)
 ->count() > 0);

 //Now we create a new database record
 Link::create(array(
 'url' => Input::get('link'),
 'hash' => $newHash
));

Building a URL Shortener Website

[16]

 //And then we return the new shortened URL info to
 our action
 return Redirect::to('/')
 ->withInput()
 ->with('link',$newHash);
 }
 }
});

Validating the users' input
Using the post action function that we've coded now, we will be validating the
user's input with the Laravel's built-in Validation class. This class helps us prevent
invalid inputs from getting into our database.

We first define a $rules array to set the rules for each field. In our case, we want
the link to have a valid URL format. Then we can run the form validation using
the Validator::make() method and assign it to the $validation variable. Let's
understand the parameters of the Validator::make() method:

•	 The first parameter of the Validator::make() method takes an array of
inputs and values to be validated. In our case, the whole form has only one
field called link, so we've put the Input::all() method, which returns all
the inputs from the form.

•	 The second parameter takes the validation rules to be checked. The stored
$validation variable holds some information for us. For example, we can
check whether the validation has failed or passed (using $validation-
>fails() and $validation->passes()). These two methods return
Boolean results, so we can easily check if the validation has passed or
failed. Also, the $validation variable holds a method messages(), which
contains the information of a failed validation. And we can catch them using
$validation->messages().

If the form validation fails, we redirect the user back to our index page (return
Redirect::to('/')), which holds the URL shortener form, and we return some
flash data back to the form. In Laravel, we do this by adding the withVariableName
object to the redirected page. Using with is mandatory here, which will tell Laravel
that we are returning something additional. We can do this for both redirecting and
making views. If we are making views and showing some content to the end user,
those withVariableName will be variables, and we can call them directly using
$VariableName, but if we are redirecting to a page with the withVariableName
object, VariableName will be a flash session data, and we can call it using the
Session class (Session::get('VariableName')).

Chapter 1

[17]

In our example, to return the errors, we used a special method
withErrors($validation), instead of returning $validation->messages(). We
could also return using that, but the $errors variable is always defined on views, so
we can use our $validation variable as a parameter with withErrors() directly.
The withInput() method is also a special method, which will return the results back
to the form.

//If validation fails, we return to the main page with
 an error info
if($validation->fails()) {
 return Redirect::to('/')
 ->withInput()
 ->withErrors($validation);
}

If the user forgets one field in the form, and if the validation fails and shows the form
again with error messages, using the withInput() method, the form can be filled
with the old inputs again. To show these old inputs in Laravel, we use the old()
method of the Input class. For example, Input::old('link') will return us the old
input of the form field named link.

Returning the messages to the view
To return the error message back to the form, we can add the following HTML code
into form.blade.php:

@if(Session::has('errors'))
<h3 class="error">{{$errors->first('link')}}</h3>
@endif

As you can already guess, Session::has('variableName') returns a Boolean
value to check whether there is a variable name for the session. Then, with the
first('formFieldName') method of Laravel's Validator class, we are returning
the first error message of a form field. In our case, we are showing the first error
message of our link form field.

Building a URL Shortener Website

[18]

Diving further into controller and
processing the form
The else part of the validation checking part that is executed when the form
validation is completed successfully in our example, holds the further processing
of the link. In this section, we will perform the following steps:

1.	 Checking whether the link is already in our database.
2.	 If the link is already in our database, returning the shortened link.
3.	 If the link is not present in our database, creating a new random string

(the hash that will be in our URL) for the link.
4.	 Creating a new record in our database with the provided values.
5.	 Returning the shortened link back to the user.

Now, let's dig the code.

1.	 Here's the first part of our code:
// Now let's check if we already have the link in our
 database. If so, we get the first result
$link = Link::where('url','=',Input::get('link'))
->first();

First, we check if the URL is already present in our database using the
where() method of Fluent Query Builder, and get the first result via the
method first(), and assign it to the $link variable. You can use the
Fluent query methods along with the Eloquent ORM easily. If this confuses
you, don't worry, we will cover this further in the later chapters.

2.	 This is the next part of our controller method's code:
//If we have the URL saved in our database already, we
 provide that information back to view.
if($link) {
 return Redirect::to('/')
 ->withInput()
 ->with('link',$link->hash);

If we have the URL saved in our database, the $link variable will hold the
object of our link's information taken from the database. So with a simple
if() clause, we can check if there is a result. If there is a result returned,
we can access it using $link->columnname.

Chapter 1

[19]

In our case, if the query has a result, we redirect the inputs and the link
back to the form. As we've used here, the with() method can also be used
with two parameters instead of using a camel case—withName('value') is
exactly the same as with('name','value'). So, we can return the hash code
with a flash data named link with('link',$link->hash). To show this, we
can add the following code to our form:
@if(Session::has('link'))
<h3 class="success">
 {{Html::link(Session::get('link'),'Click here for your
 shortened URL')}}
</h3>
@endif

The Html class helps us write HTML codes easily. The link() method
requires the following two parameters:

°° The first parameter is link. If we provide a string directly (the hash
string in our case), the class will identify it automatically and make
an internal URL from our website.

°° The second parameter is the string that has the link.

The optional third parameter has to be an array, holding attributes (such as
class, ID, and target) as a two-dimensional array.

3.	 The following is the next part of our code:
//Else we create a new unique URL
} else {
 //First we create a new unique Hash
 do {
 $newHash = Str::random(6);
 } while(Link::where('hash','=',$newHash)->count() > 0);

If there is no result (the else clause of the variable), we are creating a six-
character-long alphanumeric random string with the Str class's random()
method and checking it each time to make sure that it is a unique string,
using PHP's own do-while statement. For real world application, you can use
an alternative method to shorten, for example, converting an entry in the ID
column to base_62 and using it as a hash value. This way, the URL would be
cleaner, and it's always a better practice.

4.	 This is the next part of our code:
//Now we create a new database record
Link::create(array(
 'url' => Input::get('link'),
 'hash' => $newHash
));

Building a URL Shortener Website

[20]

Once we have a unique hash, we can add the link and the hash values to the
database with the create() method of the Laravel's Eloquent ORM. The
only parameter should be a two-dimensional array, in which the keys of the
array are holding the database column names, and the values of the array are
holding the values to be inserted as a new row.
In our case, the url column has to have the link field's value that came from
the form. We can catch these values that came from the post request using
Laravel's Input class's get() method. In our case, we can catch the value of
the link form field that came from the post request (which we would catch
using the spaghetti code $_POST['link']) using Input::get('link'), and
return the hash value to the view as we did earlier.

5.	 This is the final part of our code:

//And then we return the new shortened URL info to our
 action return Redirect::to('/')
->withInput()
->with('link',$newHash);

Now, at the output, we're redirected to oursite.dev/hashcode. There
is a link stored in the variable $newHash; we need to catch this hash code
and query our database, and if there is a record, we need to redirect to the
actual URL.

Getting individual URL from the database
and redirecting
Now, in the final part of our first chapter, we need to get the hash part from the
generated URL, and if there is a value, we need to redirect it to the URL which is
stored in our database. To do this, add the following code at the end of your routes.
php file under the app folder:

Route::get('{hash}',function($hash) {
 //First we check if the hash is from a URL from our
 database
 $link = Link::where('hash','=',$hash)
 ->first();
 //If found, we redirect to the URL
 if($link) {
 return Redirect::to($link->url);
 //If not found, we redirect to index page with error
 message
 } else {

Chapter 1

[21]

 return Redirect::to('/')
 ->with('message','Invalid Link');
 }
})->where('hash', '[0-9a-zA-Z]{6}');

In the previous code, unlike other route definitions, we added curly brackets
around the name hash, which tells Laravel that it's a parameter; and with the
where() method we defined how the name parameter will be. The first parameter
is the name of the variable (which is hash in our case), and the second parameter
is a regular expression that will filter the parameter. In our case, the regular
expression filters an exact alphanumeric string that is six-characters long. This way,
we can filter our URLs and secure them from start, and we won't have to check
if the url parameter has something we don't want (for example, if alphabets are
entered instead of numbers in the ID column). To get individual URL from the
database and redirect, we perform the following steps:

1.	 In the Route class, we first make a search query, as we did in the earlier
section, and check if we have a link with the given hash from a URL in our
database, and set it to a variable called $link.
//First we check if the hash is from an URL from our
 database
$link = Link::where('hash','=',$hash)
->first();

2.	 If there is a result, we redirect the page to the url column of our database,
which has the link to which the user should be redirected.
//If found, we redirect to the link
if($link) {
 return Redirect::to($link->url);
}

3.	 If there is no result, we redirect the user back to our index page using the
$message variable, which holds the value Invalid Link.

//If not found, we redirect to index page with error message
} else {
 return Redirect::to('/')
 ->with('message','Invalid Link');
}

To show the Invalid Link message in the form, add the following code in
your form.blade.php file placed under app/views:
@if(Session::has('message'))
<h3 class="error">{{Session::get('message')}}</h3>
@endif

Building a URL Shortener Website

[22]

Summary
In this chapter, we have covered the basic usage of Laravel's routes, models, artisan
commands, and database drivers by making a simple URL shortener website. Once
you've followed this chapter, you can now create database tables with migrations,
write simple forms with the Laravel Form Builder Class, validate these forms with
the Validation class, and process these forms and insert new data to the table(s)
with the Fluent Query Builder or Eloquent ORM. In the next chapter, we'll cover
the advanced usage of these awesome features.

Building a To-do
List with Ajax

In this chapter, we will be using the Laravel PHP framework and jQuery to build a
to-do list with Ajax.

Through out this chapter, we'll show you the basics of RESTful controllers, RESTful
routing, and Request types. The list of topics covered in this chapter is as follows:

•	 Creating and migrating our to-do list's database
•	 Creating a to-do list's model
•	 Creating the template
•	 Inserting data to the database with Ajax
•	 Retrieving the list from the database
•	 How to allow only Ajax requests

Creating and migrating our to-do list's
database
As you know from the previous chapter, migrations are very helpful to control
development steps. We'll use migrations again in this chapter.

To create our first migration, type the following command:

php artisan migrate:make create_todos_table --table=todos --create

When you run this command, Artisan will generate a migration to generate a
database table named todos.

Building a To-do List with Ajax

[24]

Now we should edit the migration file for the necessary database table columns.
When you open the folder migration in app/database/ with a file manager, you
will see the migration file under it.

Let's open and edit the file as follows:

<?php
use Illuminate\Database\Migrations\Migration;
class CreateTodosTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {

 Schema::create('todos', function(Blueprint $table){
 $table->create();
 $table->increments("id");
 $table->string("title", 255);
 $table->enum('status', array('0', '1'))->default('0');
 $table->timestamps();
 });

 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop("todos");
 }

}

To build a simple to-do list, we need five columns:

•	 The id column will store ID numbers of to-do tasks
•	 The title column will store a to-do task's title

Chapter 2

[25]

•	 The status column will store the status of each task
•	 The created_at and updated_at columns will store the created and

updated dates of tasks

If you write $table->timestamps() in the migration file, Laravel's migration

class automatically creates created_at and updated_at columns. As you know
from Chapter 1, Building a URL Shortener Website, to apply migrations, we should
run the following command:

php artisan migrate

After the command is run, if you check your database, you will see that our todos
table and columns have been created. Now we need to write our model.

Creating a todos model
To create a model, you should open the app/models/ directory with your file
manager. Create a file named Todo.php under the directory and write the
following code:

<?php
class Todo extends Eloquent
{
 protected $table = 'todos';

}

Let's examine the Todo.php file.

As you see, our Todo class extends an Eloquent model, which is the ORM (Object
Relational Mapper) database class of Laravel.

The protected $table = 'todos'; code tells Eloquent about our model's table
name. If we don't set the table variable, Eloquent accepts the plural version of the
lower case model name as the table name. So this isn't required technically.

Now, our application needs a template file, so let's create it.

Building a To-do List with Ajax

[26]

Creating the template
Laravel uses a template engine that is called Blade for static and application template
files. Laravel calls the template files from the app/views/ directory, so we need to
create our first template under this directory.

1.	 Create a file with the name index.blade.php.
2.	 The file contains the following code:

<html>
 <head>
 <title>To-do List Application</title>
 <link rel="stylesheet" href="assets/css/style.css">
 <!--[if lt IE 9]><script
 src="//html5shim.googlecode.com/svn/trunk/html5.js">
 </script><![endif]-->

 </head>
 <body>
 <div class="container">
 <section id="data_section" class="todo">
 <ul class="todo-controls">
 <img src="/assets/img/add.png" width="14px"
 onClick="show_form('add_task');" />

 <ul id="task_list" class="todo-list">
 @foreach($todos as $todo)
 @if($todo->status)
 <li id="{{$todo->id}}" class="done">

 id}}">{
 {$todo->title}} <a href="#"
 onClick="delete_task('{{$todo->id}}');"
 class="icon-delete">Delete <a href="#"
 onClick="edit_task('{{$todo->id}}',
 '{{$todo->title}}');"
 class="icon-edit">Edit
 @else
 <li id="{{$todo->id}}"><a href="#"
 onClick="task_done('{{$todo->id}}');"
 class="toggle"> <span id="span_{
 {$todo->id}}">{{$todo->title}}
 <a href="#" onClick="delete_task('{
 {$todo->id}}');" class=
 "icon-delete">Delete

Chapter 2

[27]

 <a href="#" onClick="edit_task('{
 {$todo->id}}','{{$todo->title}}');"
 class="icon-edit">Edit
 @endif
 @endforeach

 </section>
 <section id="form_section">

 <form id="add_task" class="todo"
 style="display:none">
 <input id="task_title" type="text" name="title"
 placeholder="Enter a task name" value=""/>
 <button name="submit">Add Task</button>
 </form>

 <form id="edit_task" class="todo"
 style="display:none">
 <input id="edit_task_id" type="hidden" value="" />
 <input id="edit_task_title" type="text"
 name="title" value="" />
 <button name="submit">Edit Task</button>
 </form>

 </section>

 </div>
 <script src="http://code.jquery.com/
 jquery-latest.min.js"type="text/javascript"></script>
 <script src="assets/js/todo.js"
 type="text/javascript"></script>
 </body>
</html>

The preceding code may be difficult to understand if you're writing a Blade template
for the first time, so we'll try to examine it. You see a foreach loop in the file. This
statement loops our todo records.

We will provide you with more knowledge about it when we are creating our
controller in this chapter.

If and else statements are used for separating finished and waiting tasks. We use
if and else statements for styling the tasks.

Building a To-do List with Ajax

[28]

We need one more template file for appending new records to the task list on the fly.
Create a file with the name ajaxData.blade.php under the app/views/ folder. The
file contains the following code:

@foreach($todos as $todo)
 <li id="{{$todo->id}}"><a href="#" onClick="task_done('{{$todo-
 >id}}');" class="toggle"> <span id="span_{{$todo
 >id}}">{{$todo->title}} <a href="#"
 onClick="delete_task('{{$todo->id}}');" class="icon
 delete">Delete <a href="#" onClick="edit_task('{{$todo
 >id}}','{{$todo->title}}');" class="icon-edit">Edit
@endforeach

Also, you will see the /assets/ directory in the source path of static files. When you
look at the app/views directory, there is no directory named assets. Laravel separates
the system and public files. Public accessible files stay under your public folder in
root. So you should create a directory under your public folder for asset files.

We recommend working with these types of organized folders for developing
tidy and easy-to-read code. Finally, you will see that we are calling jQuery from
its main website. We also recommend this way for getting the latest, stable jQuery
in your application.

You can style your application as you wish, hence we'll not examine styling code
here. We are putting our style.css files under /public/assets/css/.

For performing Ajax requests, we need JavaScript coding. This code posts our add_
task and edit_task forms, and updates them when our tasks are completed. Let's
create a JavaScript file with the name todo.js in /public/assets/js/. The files
contain the following code:

function task_done(id){

 $.get("/done/"+id, function(data) {

 if(data=="OK"){

 $("#"+id).addClass("done");
 }

 });
}
function delete_task(id){

 $.get("/delete/"+id, function(data) {

Chapter 2

[29]

 if(data=="OK"){
 var target = $("#"+id);

 target.hide('slow', function(){ target.remove(); });

 }

 });
}

function show_form(form_id){

 $("form").hide();

 $('#'+form_id).show("slow");

}
function edit_task(id,title){

 $("#edit_task_id").val(id);

 $("#edit_task_title").val(title);

 show_form('edit_task');
}
$('#add_task').submit(function(event) {

 /* stop form from submitting normally */
 event.preventDefault();

 var title = $('#task_title').val();
 if(title){
 //ajax post the form
 $.post("/add", {title: title}).done(function(data) {

 $('#add_task').hide("slow");
 $("#task_list").append(data);
 });

 }
 else{
 alert("Please give a title to task");
 }

Building a To-do List with Ajax

[30]

});

$('#edit_task').submit(function() {

 /* stop form from submitting normally */
 event.preventDefault();

 var task_id = $('#edit_task_id').val();
 var title = $('#edit_task_title').val();
 var current_title = $("#span_"+task_id).text();
 var new_title = current_title.replace(current_title, title);
 if(title){
 //ajax post the form
 $.post("/update/"+task_id, {title: title}).done(function(data)
 {
 $('#edit_task').hide("slow");
 $("#span_"+task_id).text(new_title);
 });
 }
 else{
 alert("Please give a title to task");
 }
});

Let's examine the JavaScript file.

Inserting data to the database with Ajax
In this application, we'll use the Ajax POST method for inserting data to the
database. jQuery is the best JavaScript framework for these kinds of applications.
jQuery also comes with powerful selector functions.

We have two forms in our HTML code, so we need to post them with Ajax to insert
or update the data. We'll do it with jQuery's post() method.

We'll serve our JavaScript files under /public/assets/js, so let's create a todo.
js file under this directory. First we need a request to add new tasks. The JavaScript
code contains the following code:

$('#add_task').submit(function(event) {
 /* stop form from submitting normally */
 event.preventDefault();
 var title = $('#task_title').val();
 if(title){
 //ajax post the form

Chapter 2

[31]

 $.post("/add", {title: title}).done(function(data) {
 $('#add_task').hide("slow");
 $("#task_list").append(data);
 });
 }
 else{
 alert("Please give a title to task");
 }
});

This code posts our add_task form to the server if the user remembers to provide a
title to the task. If the user forgets to provide a title to the task, the code does not post
the form. After it is posted, the code will hide the form and append the task list with
a new record. Meanwhile, we will be waiting for the response to get the data.

So we need a second form to update a task's title. The code will update the task's title
and change the text of updated records via Ajax on-the-fly. On-the-fly programming
(or live coding) is a style of programming in which the programmer/performer/
composer augments and modifies the program while it is running, without stopping
or restarting, in order to assert expressive, programmable control for performance,
composition, and experimentation at runtime. Because of the fundamental powers
of programming languages, we believe the technical and aesthetic aspects of on-the-
fly programming are worth exploring in web applications. The update form's code
should be as follows:

$('#edit_task').submit(function(event) {
 /* stop form from submitting normally */
 event.preventDefault();
 var task_id = $('#edit_task_id').val();
 var title = $('#edit_task_title').val();
 var current_title = $("#span_"+task_id).text();
 var new_title = current_title.replace(current_title, title);
 if(title){
 //ajax post the form
 $.post("/update/"+task_id, {title: title}).done(function(data)
 {
 $('#edit_task').hide("slow");
 $("#span_"+task_id).text(new_title);
 });
 }
 else{
 alert("Please give a title to task");
 }
});

Building a To-do List with Ajax

[32]

Laravel has the RESTful controller feature. This means you can define the RESTful
base of the routes and controller functions. Also, routes can be defined for different
request types such as POST, GET, PUT, or DELETE.

Before defining the routes, we need to code our controller. The controller files stay
under app/controllers/; create a file in it named TodoController.php. The
controller code should be as follows:

<?php
class TodoController extends BaseController
{
 public $restful = true;
 public function postAdd() {
 $todo = new Todo();
 $todo->title = Input::get("title");
 $todo->save();
 $last_todo = $todo->id;
 $todos = Todo::whereId($last_todo)->get();
 return View::make("ajaxData")
 ->with("todos", $todos);
 }
 public function postUpdate($id) {
 $task = Todo::find($id);
 $task->title = Input::get("title");
 $task->save();
 return "OK";
 }
}

Let's examine the code.

As you can see in the code, RESTful functions define syntaxes such as postFunction,
getFunction, putFunction, or deleteFunction.

We have two post forms, so we need two POST functions and one GET method
to get records from the database and show them in the template in the foreach
statement to the visitor.

Let's examine the postUpdate() method in the preceding code:

public function postUpdate($id) {
 $task = Todo::find($id);
 $task->title = Input::get("title");
 $task->save();
 return "OK";
}

Chapter 2

[33]

The following points explain the preceding code:

•	 The method needs a record called id to update. The route where we post
would be similar to /update/record_id.

•	 $task = Todo::find($id); is that part of the method which finds the
record from the database which has the given id.

•	 $task->title = Input::get("title"); means to get the value of the
form element named title and updating the title column record as the
posted value.

•	 $task->save(); applies the changes and runs the update query on the
database server.

Let's examine the postAdd() method. This method works like our getIndex()
method. The first part of the code creates a new record on the database server:

public function postAdd() {
 $todo = new Todo();
 $todo->title = Input::get("title");
 $todo->save();
 $last_todo = $todo->id;
 $todos = Todo::whereId($last_todo)->get();
 return View::make("ajaxData")
 ->with("todos", $todos);
}

The following points explain the preceding code:

•	 The code line $last_todo = $todo->id; gets the ID of this record.
It is equivalent to the mysql_insert_id() function.

•	 The code line $todos = Todo::whereId($last_todo)->get();
fetches the record from the todo table which has an id column equal
to $last_todo variable.

•	 The code line View::make("ajaxData") ->with("todos", $todos); is
very important to understand Laravel's view mechanism:

°° The code line View::make("ajaxData") refers to our template file.
Do you remember the ajaxData.blade.php file, which we created
under /app/views/? The code calls this file.

°° The code line ->with("todos", $todos); assigns the last record
to the template file as a variable named todos (the first parameter).
So, we can show the last record in the template file with the
foreach loop.

Building a To-do List with Ajax

[34]

Retrieving the list from the database
We also need a method for getting the existing data from our database server. In our
controller file, we need the function as shown in the following code:

public function getIndex() {
 $todos = Todo::all();
 return View::make("index")
 ->with("todos", $todos);
}

Let's examine the getIndex() method:

•	 In the code, $todos = Todo:all() means to get all records from the
database and assign them to the $todos variable.

•	 In the code, View::make("index") defines our template file. Did you
remember the index.blade.php file, which we created under /app/
views/? The code calls this file.

•	 In the code, ->with("todos", $todos); assigns the records to the template
file. So, we can show the records in the template file with the foreach loop.

Finally, we will define our routes. For defining routes, you should open the routes.
php file in the apps folder. Laravel has a great feature for defining routes named the
RESTful controller. You can define all the routes with a single line of code as follows:

Route::controller('/', 'TodoController');

The preceding code assigns all the applications' root-based requests to the
TodoController function. If you need to, you can also define the routes
manually as follows:

Route::method('path/{variable}', 'TheController@functionName');

How to allow only Ajax requests
Our application accepts all POST and GET requests even without Ajax. But we just
need to allow an Ajax request for add and update functions. Laravel's Request class
provides many methods for examining the HTTP request for your applications. One
of these functions is named ajax(). We can check the request type under controllers
or route filters.

Chapter 2

[35]

Allowing the request using route filters
Route filters provide a convenient way of limiting, accessing, or filtering the requests
to a given route. There are several filters included in Laravel, which are located in the
filters.php file in the app folder. We can define our custom filter under this file.
We'll not use this method in this chapter, but we'll examine route filters in further
chapters. The route filter for an Ajax request should be as shown in the following code:

Route::filter('ajax_check', function()
{
 if (Request::ajax())
 {
 return true;
 }
});

Attaching a filter to a route is also very easy. Check the sample route shown in the
following code:

Route::get('/add', array('before' => 'ajax_check', function()
{
 return 'The Request is AJAX!';
}));

In the preceding example, we defined a route filter to the route with the before
variable. This means, our application first checks the request type and then calls the
controller function and passes the data.

Allowing the request using the controller side
We can check for the request type under controller. We'll use this method in this
section. This method is useful for function-based filtering. For doing this, we should
change our add and update functions as shown in the following code:

public function postAdd() {
 if(Request::ajax()){
 $todo = new Todo();
 $todo->title = Input::get("title");
 $todo->save();
 $last_todo = $todo->id;
 $todos = Todo::whereId($last_todo)->get();
 return View::make("ajaxData")
 ->with("todos", $todos);
 }
}

Building a To-do List with Ajax

[36]

public function postUpdate($id) {
 if(Request::ajax()){
 $task = Todo::find($id);
 $task->title = Input::get("title");
 $task->save();
 return "OK";
 }
}

Wrapping up
In this chapter, we coded to add a new task, updated it, and listed the tasks. We
also need to update each status and delete the tasks. For doing that, we need two
functions that are called getDone() and getDelete(). As you know from previous
sections of this chapter, these functions are RESTful and accept GET method
requests. So, our function should be as shown in the following code:

public function getDelete($id) {
 if(Request::ajax()){
 $todo = Todo::whereId($id)->first();
 $todo->delete();
 return "OK";
 }
}
public function getDone($id) {
 if(Request::ajax()){
 $task = Todo::find($id);
 $task->status = 1;
 $task->save();
 return "OK";
 }
}

We also need to update the todo.js file. The final JavaScript code should be as
shown in the following code:

function task_done(id){
 $.get("/done/"+id, function(data) {
 if(data=="OK"){
 $("#"+id).addClass("done");
 }
 });
}
function delete_task(id){

Chapter 2

[37]

 $.get("/delete/"+id, function(data) {
 if(data=="OK"){
 var target = $("#"+id);
 target.hide('slow', function(){ target.remove(); });
 }
 });
}
function show_form(form_id){
 $("form").hide();
 $('#'+form_id).show("slow");
}
function edit_task(id,title){
 $("#edit_task_id").val(id);
 $("#edit_task_title").val(title);
 show_form('edit_task');
}
$('#add_task').submit(function(event) {
/* stop form from submitting normally */
 event.preventDefault();
 var title = $('#task_title').val();
 if(title){
 //ajax post the form
 $.post("/add", {title: title}).done(function(data) {
 $('#add_task').hide("slow");
 $("#task_list").append(data);
 });
 }
 else{
 alert("Please give a title to task");
 }
});
$('#edit_task').submit(function(event) {
/* stop form from submitting normally */
 event.preventDefault();
 var task_id = $('#edit_task_id').val();
 var title = $('#edit_task_title').val();
 var current_title = $("#span_"+task_id).text();
 var new_title = current_title.replace(current_title, title);
 if(title){
 //ajax post the form
 $.post("/update/"+task_id, {title:
 title}).done(function(data) {
 $('#edit_task').hide("slow");
 $("#span_"+task_id).text(new_title);

Building a To-do List with Ajax

[38]

 });
 }
 else{
 alert("Please give a title to task");
 }
});

Summary
In this section we tried to understand how to use Ajax with Laravel. Throughout
the chapter, we used the basics of templating, request filtering, routing, and
RESTful controllers. We also learned to update and delete data from our database.

In the next chapter we'll try to examine Laravel's file validation and file
processing methods.

Building an Image
Sharing Website

With this chapter, we are going to create a photo sharing website. First, we are going
to create an images table. Then we'll cover methods to resize and share images.

The following topics are covered in this chapter:

•	 Creating a database and migrating the images table
•	 Creating a photo model
•	 Setting custom configuration values
•	 Installing a third-party library
•	 Creating a secure form for file upload
•	 Validating and processing the form
•	 Showing the image with a user interface
•	 Listing images
•	 Deleting the image from the database and server

Creating a database and migrating the
images table
After successfully installing Laravel 4 and defining database credentials from app/
config/database.php, create a database called images. For this, you can either
create a new database from your hosting provider's panel, or if you are the server
administrator, you can simply run the following SQL command:

CREATE DATABASE images

Building an Image Sharing Website

[40]

After successfully creating the database for the application, we need to create
a photos table and install it to the database. To do this, open up your terminal,
navigate to your project folder and run the following command:

php artisan migrate:make create_photos_table --table=photos –create

This command will generate a new MySQL database migration for us to create a
table named photos.

Now we need to define what sections should be in our database table. For our
example, I thought id column, image titles, image file names, and timestamps
should be sufficient. So for this, open the migration file just created with the
preceding command and change its contents as shown in the following code:

<?php
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreatePhotosTable extends Migration {

 /**
 * Run the migrations.
 * @return void
 */
 public function up()
 {
 Schema::create('photos', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('title',400)->default('');
 //the column that holds the image's name
 $table->string('image',400)->default('');
 //the column that holds the image's filename
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 * @return void
 */
 public function down()
 {
 Schema::drop('photos');
 }
}

Chapter 3

[41]

After saving the file, run the following command to execute migrations:

php artsian migrate

If no error has occurred, you are ready for the next step of the project.

Creating a photo model
As you know, for anything related to database operations on Laravel, using models
is the best practice. We will take advantage of the Eloquent ORM.

Save the following code as images.php in the app/models/ directory:

<?php
class Photo extends Eloquent {

 //the variable that sets the table name
 protected $table = 'photos';

 //the variable that sets which columns can be edited
 protected $fillable = array('title','image');

 //The variable which enables or disables the Laravel's
 timestamps option. Default is true. We're leaving this here
 anyways
 public $timestamps = true;
}

We have set the table name with the protected $table variable. The content
of which columns of the table can be updated/inserted will be decided with the
protected $fillable variable. Finally, whether the model can add/update
timestamps or not will be decided by the value of the public $timestamps variable.
Just by setting this model (even without setting anything), we can easily use all the
advantages of Eloquent ORM.

Our model is ready, now we can proceed to the next step and start to create our
controller along with the upload forms. But before this, we are missing one simple
thing. Where should the images be uploaded? What will be the maximum width and
height of the thumbnails? To set these configuration values (think of it like constants
of raw PHP), we should create a new configuration file.

Building an Image Sharing Website

[42]

Setting custom configuration values
With Laravel, setting configuration values is quite easy. All config values are within
an array and will be defined as a key=>value pair.

Now let's make a new configuration file. Save this file as image.php in app/config:

<?php

/**
 * app/config/image.php
*/

return array(

 //the folder that will hold original uploaded images
 'upload_folder' => 'uploads',

 //the folder that will hold thumbnails
 'thumb_folder' => 'uploads/thumbs',

 //width of the resized thumbnail
 'thumb_width' => 320,

 //height of the resized thumbnail
 'thumb_height' => 240

);

You can set any other setting as you like. That's limited to your imagination. You
can call the settings with Laravel's built-in Config Library's get() method. Sample
usage is as shown in the following code:

Config::get('filename.key')

There is a dot (.) between the parameter, which splits the string into two. The first
part is the filename of the Config without the extension, the second part is the key
name of the configuration value. In our example, if we want to identify which folder
is the uploaded folder name, we should write it as shown in the following code:

Config::get('image.upload_folder')

The preceding code will return whatever the value is. In our example, it will return
public/uploads.

Chapter 3

[43]

One more thing: We defined some folder names for our app, but we didn't create
them. For some server configurations, the folders may be autocreated at the first
attempt to upload the file, but if you don't create them, most probably it will cause
errors on your server configuration. Create the following folders in the public folder
and make them writable:

•	 uploads/

•	 uploads/thumbs

Now we should make an upload form for our image site.

Installing a third-party library
We should make an upload form and then a controller for our image site. But before
doing that, we will install a third-party library for image processing as we will be
benefiting from its methods. Laravel 4 uses Composer, so it's quite easy to install
packages, update packages, and even update Laravel. For our project, we will be
using a library called Intervention. The following steps must be followed to install
the library:

1.	 First, make sure you have the latest composer.phar file by running php
composer.phar self-update in your terminal.

2.	 Then open composer.json and add a new value to the require section. The
value for our library is intervention/image: "dev-master".
Currently, our composer.json file's require section looks as follows:
"require": {
 "laravel/framework": "4.0.*",
 "intervention/image": "dev-master"
}

You can find more packages for Composer at www.packagist.org.

3.	 After setting the value, open your terminal, navigate to the project's root
folder, and type the following command:
php composer.phar update

This command will check composer.json and update all the dependencies
(including Laravel itself) and if new requirements are added, it will
download and install them.

Building an Image Sharing Website

[44]

4.	 After successfully downloading the library, we will now activate it. For this,
we refer to the website of the Intervention class. Now open your app/
config/app.php, and add the following value to the providers key:
Intervention\Image\ImageServiceProvider

5.	 Now, we need to set an alias so that we can call the class easily. To do this,
add the following value to the aliases key of the same file:
'Image' => 'Intervention\Image\Facades\Image',

6.	 The class has a notation that is quite easy to understand. To resize an image,
running the following code will suffice:
Image::make(Input::file('photo')->getRealPath())
 ->resize(300, 200)->save('foo.jpg');

For more information about the Intervention class, go to
the following web address:
http://intervention.olivervogel.net

Now, everything for the views and the form processing is ready; we can go on to the
next step of our project.

Creating a secure form for file upload
Now we should make an upload form for our image site. We must make a view file,
which will be loaded over a controller.

1.	 First, open up app/routes.php, remove the line starting with Route::get()
that comes with Laravel, and add the following lines:
//This is for the get event of the index page
Route::get('/',array('as'=>'index_page','uses'=>
 'ImageController@getIndex'));
//This is for the post event of the index.page
Route::post('/',array('as'=>'index_page_post','before' =>
 'csrf', 'uses'=>'ImageController@postIndex'));

The key 'as' defines the name of the route (like a shortcut). So if you make
links to the routes, even if the URL changes for the route, your links to the
application won't be broken. The before key defines what filters will be used
before the action starts. You can define your own filters, or use the built-in
ones. We set csrf, so the CSRF (Cross-site Request Forgery) checking will
be done before the action starts. This way, you can prevent attackers from
injecting unauthorized requests into your application. You can use multiple
filters with the separator; for example, filter1|filter2.

Chapter 3

[45]

You can also define the CSRF protection from controllers directly.

2.	 Now, let's create our first method for the controller. Add a new file
containing the following code and name it ImageController.php in
app/controllers/:
<?php

class ImageController extends BaseController {

 public function getIndex()
 {
 //Let's load the form view
 return View::make('tpl.index');
 }

}

Our controller is RESTful; that's why our method index is named
getIndex(). In this method, we are simply loading a view.

3.	 Now let's create a master page for the view using the following code.
Save this file as frontend_master.blade.php in app/views/:
<!DOCTYPE HTML PUBLIC "-//W3C//
 DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html lang="en">
 <head>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8">
 <title>Laravel Image Sharing</title>
 {{HTML::style('css/styles.css')}}
 </head>

 <body>
 {{--Your title of the image (and yeah, blade engine
 has its own commenting, cool, isn't it?)--}}
 <h2>Your Awesome Image Sharing Website</h2>

 {{--If there is an error flashdata in session
 (from form validation), we show the first one--}}

Building an Image Sharing Website

[46]

 @if(Session::has('errors'))
 <h3 class="error">{{$errors->first()}}</h3>
 @endif

 {{--If there is an error flashdata in session which
 is set manually, we will show it--}}
 @if(Session::has('error'))
 <h3 class="error">{{Session::get('error')}}</h3>
 @endif

 {{--If we have a success message to show, we print
 it--}}
 @if(Session::has('success'))
 <h3 class="error">{{Session::get('success')}}</h3>
 @endif

 {{--We yield (get the contents of) the section named
 'content' from the view files--}}
 @yield('content')

 </body>
</html>

To add a CSS file (which we will create in the next steps), we use the style()
method of the HTML class. And our masterpage yields a section named
content, which will be filled with the view files sections.

4.	 Now, let's create our view file section by using the following code. Save
this file as index.blade.php in the app/views/tpl/directory:
@extends('frontend_master')

@section('content')
 {{Form::open(array('url' => '/', 'files' => true))}}
 {{Form::text('title','',array('placeholder'=>
 'Please insert your title here'))}}
 {{Form::file('image')}}
 {{Form::submit('save!',array('name'=>'send'))}}
 {{Form::close()}}
@stop

In the first line of the preceding code, we told the Blade Engine that we will
be using frontend_master.blade.php as the layout. This is done using the
@extends() method in Laravel 4.

Chapter 3

[47]

If you are coming from Laravel 3, @layout is renamed as @extends.

Benefiting from the Form class of Laravel, we generated an upload form with
the title field and upload field. Unlike Laravel 3, to make a new upload
form, we are not using Form::open_for_files() anymore. It's merged with
the open() method, which accepts either a string or an array if you want to
pass more than one parameter. We will be passing the action URL as well
as telling it that it's an upload form, so we passed two parameters. The url
key is to define where the form will be submitted. The files parameter is
Boolean, and if it's set to true, it'll make the form an upload form, so we can
work with files.
To secure the form and to prevent unwanted form submission attempts, we
will be needing a CSRF key hidden in our form. Thanks to Laravel's Form
class, it's generated in the form automatically, right after the form opening
tag. You can check it by looking at the source code of the generated form.
The hidden autogenerated CSRF form element looks as follows:

<input name="_token" type="hidden" value="SnRocsQQlOnqEDH45ewP2GLx
PFUy5eH4RyLzeKm3">

5.	 Now let's tidy up the form a bit. This is not directly related to our project,
but just for the look. Save the styles.css file in public/css/ (the path we
defined on the master page):

/*Body adjustment*/
body{width:60%; margin:auto; background:#dedede}
/*The title*/
h2{font-size:40px; text-align:center; font-family:
 Tahoma,Arial,sans-serif}
/*Sub title (success and error messages)*/
h3{font-size:25px; border-radius:4px; font-family:
 Tahoma,Arial,sans-serif; text-align:center;
 width:100%}
h3.error{border:3px solid #d00; background-color:
 #f66; color:#d00 }
h3.success{border:3px solid #0d0; background-color:
 #0f0; color:#0d0}
p{font-size:25px; font-weight: bold; color: black;
 font-family: Tahoma,Arial,sans-serif}
ul{float:left;width:100%;list-style:none}
 li{float:left;margin-right:10px}

Building an Image Sharing Website

[48]

/*For the input files of the form*/
input{float:left; width:100%; border-radius:13px;
 font-size:20px; height:30px; border:10px 0 10px 0;
 margin-bottom:20px}

We've styled the body by giving it 60 percent width, making it
center-aligned, and giving it a grayish background. We also formatted
h2 and h3 messages with success and error classes, and forms.
After the styling, the form will look as shown in the following screenshot:

Now that our form is ready, we are ready to progress to the next step of the project.

Validating and processing the form
In this section, we are going to validate the submitted form and make sure that the
required fields are present and the submitted file is an image. Then we will upload
the image to our server, process the image, create the thumbnail, and save the image
information to the database as follows:

1.	 First, we need to define the form validation rules. We prefer adding such
values to the related model, so the rules become reusable, and this prevents
the code from becoming bloated. To do this, add the following code in the
photo.php file in the app/models/ directory (the model that we generated
earlier in this chapter) inside the class definition before the last curly
bracket(}):
//rules of the image upload form
public static $upload_rules = array(

Chapter 3

[49]

 'title'=> 'required|min:3',
 'image'=> 'required|image'
);

We set the variable as public, so it can be used outside the model file, and
we set it to static, so we can directly access the variable.
We want both title and image to be mandatory, and title should have
at least three characters. Also, we want to check MIME types of the image
column and make sure that it's an image.

Laravel's MIME-type checking requires the Fileinfo extension to
be installed. So make sure it's enabled in your PHP configuration.

2.	 Now we need the controller's post method to process the form. Add this
method in the ImageController.php file in app/controllers/ before the
last curly bracket(}):
public function postIndex()
{

 //Let's validate the form first with the rules which are
 set at the model
 $validation = Validator::make(Input::all(),
 Photo::$upload_rules);

 //If the validation fails, we redirect the user to the
 index page, with the error messages
 if($validation->fails()) {
 return Redirect::to('/')
 ->withInput()
 ->withErrors($validation);
 }
 else {

 //If the validation passes, we upload the image to the
 database and process it
 $image = Input::file('image');

 //This is the original uploaded client name of the
 image
 $filename = $image->getClientOriginalName();
 //Because Symfony API does not provide filename
 //without extension, we will be using raw PHP here

Building an Image Sharing Website

[50]

 $filename = pathinfo($filename, PATHINFO_FILENAME);

 //We should salt and make an url-friendly version of
 //the filename
 //(In ideal application, you should check the filename
 //to be unique)
 $fullname = Str::slug(Str::random(8).$filename).'.'.
 $image->getClientOriginalExtension();

 //We upload the image first to the upload folder, then
 get make a thumbnail from the uploaded image
 $upload = $image->move
 (Config::get('image.upload_folder'),$fullname);

 //Our model that we've created is named Photo, this
 library has an alias named Image, don't mix them two!
 //These parameters are related to the image processing
 class that we've included, not really related to
 Laravel
 Image::make(Config::
 get('image.upload_folder').'/'.$fullname)
 ->resize(Config::get('image.thumb_width'),
 null, true)
 ->save(Config::get
 ('image.thumb_folder').'/'.$fullname);

 //If the file is now uploaded, we show an error message
 to the user, else we add a new column to the database
 and show the success message
 if($upload) {

 //image is now uploaded, we first need to add column
 to the database
 $insert_id = DB::table('photos')->insertGetId(
 array(
 'title' => Input::get('title'),
 'image' => $fullname
)
);

 //Now we redirect to the image's permalink
 return Redirect::to(URL::to('snatch/'.$insert_id))
 ->with('success','Your image is uploaded
 successfully!');

Chapter 3

[51]

 } else {
 //image cannot be uploaded
 return Redirect::to('/')->withInput()
 ->with('error','Sorry, the image could not be
 uploaded, please try again later');
 }
 }
}

Let's dig the code one by one.

1.	 First, we made a form validation and called our validation rules
from the model that we've generated via Photo::$upload_rules.

2.	 Then we've salted (added additional random characters for security)
the filename and made the filename URL-friendly. First, we get the
uploaded filename with the getClientOriginalName() method, then
get the extension with the getClientOriginalExtension() method.
We salted the filename with an eight character-long random string,
which we gained by the random() method of the STR class. Lastly, we
made the filename URL-friendly with Laravel's built-in slug() method
of the STR class.

3.	 After all the variables are ready, we first uploaded the file to the
server with the move() method, which takes two parameters. The first
parameter is the path to which the file is going to be transferred, the
second parameter is the filename of the uploaded file.

4.	 After uploading, we created a static thumbnail for the uploaded
image. For this, we benefited from Intervention, an image processing
class we've implemented earlier.

5.	 Lastly, if everything goes okay, we add the title and image filenames
to the database and get the ID with the insertGetId() method of
Fluent Query Builder, which inserts the row first and returns insert_
id of the column. We could also create the row with Eloquent ORM
by setting the create() method to a variable and get the id_column
name such as $create->id.

6.	 After everything is okay and we get insert_id, we redirect the
user to a new page that will show thumbnails, full-image links,
and a forum thumbnail BBCode, which we will generate in the
next sections.

Building an Image Sharing Website

[52]

Showing the image with a user interface
Now, we need to make a new view and method from the controller to show the
information of the image uploaded. This can be done as follows:

1.	 First, we need to define a GET route for the controller. For this, open your file
routes.php in the app folder and add the following codes:
//This is to show the image's permalink on our website
Route::get('snatch/{id}',
 array('as'=>'get_image_information',
 'uses'=>'ImageController@getSnatch'))
 ->where('id', '[0-9]+');

We defined an id variable on the route, and with the where() method, using
regular expression, we filtered it first hand. So we don't need to worry about
filtering the ID field, whether it's a natural number or not.

2.	 Now, let's create our controller method. Add the following code inside
ImageController.php in app/controllers/ before the last curly bracket
(}):
public function getSnatch($id) {
 //Let's try to find the image from database first
 $image = Photo::find($id);
 //If found, we load the view and pass the image info as
 parameter, else we redirect to main page with error
 message
 if($image) {
 return View::make('tpl.permalink')
 ->with('image',$image);
 } else {
 return Redirect::
 to('/')->with('error','Image not found');
 }
}

First, we looked for the image with the find() method of Eloquent ORM.
If it returns the value as false, that means there is a row found. So we can
simply check whether there is a result or not with a simple if clause. If there
is a result, we will load our view with the found image info as a variable
named $image, using the with() method. If no values are found, we return
to the index page with an error message.

Chapter 3

[53]

3.	 Now let's create the template file containing the following code. Save this file
as permalink.blade.php in app/views/tpl/:

@extends('frontend_master')
@section('content')
<table cellpadding="0" cellspacing="0" border="0"
width="100percent">
 <tr>
 <td width="450" valign="top">
 <p>Title: {{$image->title}}</p>
 {{HTML::image(Config::get
 ('image.thumb_folder').'/'.$image->image)}}
 </td>
 <td valign="top">
 <p>Direct Image URL</p>
 <input onclick="this.select()" type="text"
 width="100percent" value=
 "{{URL::to(Config::get('image.upload_folder').'/'
 $image->image)}}" />

 <p>Thumbnail Forum BBCode</p>
 <input onclick="this.select()" type="text"
 width="100percent" value=
 "[url={{URL::to('snatch/'
 $image->id)}}][img]{{
 URL::to(Config::get('image.thumb_folder')
 '/'.$image->image)}}[/img][/url]" />

 <p>Thumbnail HTML Code</p>
 <input onclick="this.select()" type="text"
 width="100percent"
 value="{{HTML::entities(HTML::link(
 URL::to('snatch/'.$image->id),
 HTML::image(Config::get('image.thumb_folder').'/'
 $image->image)))}}" />
 </td>
 </tr>
</table>
@stop

You should be familiar with most methods used in this template by now.
There is a new method called entities() of the HTML class, which actually is
htmlentities() of raw PHP, but with some pre-checks and as Laravel's way.

Building an Image Sharing Website

[54]

Also, because we've returned the $image variable to the view (which is the
database row object that we've gained using Eloquent), we can use it directly
as $image->columnName in the view.
This will produce a view as shown in the following image:

4.	 We have added a permalink feature for our project, but what if we want
to show all the images? For that, we need an 'all pages' section in
our system.

Listing images
In this section, we are going to create an 'all images' section in our system, which
will have a page navigation (pagination) system. There are a few steps to be followed
as shown:

1.	 First, we need to define its URL from our route.php file. For this, open app/
routes.php and add the following lines:

//This route is to show all images.
Route::get('all',array('as'=>'all_images','uses'=>'ImageController@
getAll'));

Chapter 3

[55]

2.	 Now, we need a method named getAll() (there is a get method at the start
because it will be a RESTful controller) to get values and load the view. To
do this, open your app/controllers/ImageController.php and add these
codes before the last curly bracket (}):
public function getAll(){

 //Let's first take all images with a pagination feature
 $all_images = DB::
 table('photos')->orderBy('id','desc')->paginate(6);

 //Then let's load the view with found data and pass the
 variable to the view
 return View::make('tpl.all_images')
 ->with('images',$all_images);
}

Here, we first got all the images from the database using the paginate()
method, which will allow us to get the pagination links easily. After that,
we loaded the view for the user with the images data with pagination.

3.	 To view this properly, we need a view file. Save the following code in a file
named all_image.blade.php in the app/views/tpl/ directory:
@extends('frontend_master')

@section('content')

@if(count($images))

 @foreach($images as $each)

 <a href="{{URL::to('snatch/'
 $each->id)}}">{{
 HTML::image(Config::get('image.thumb_folder')
 '/'.$each->image)}}

 @endforeach

 <p>{{$images->links()}}</p>
@else
 {{--If no images are found on the database, we will show
 a no image found error message--}}
 <p>No images uploaded yet, {
 {HTML::link('/','care to upload one?')}}</p>
@endif
@stop

Building an Image Sharing Website

[56]

We first extend the frontend_master.blade.php file with our content
section. As for the content section, we first check whether any rows are
returned. If so, then we loop them all in list item tags () with their
permalinks. The links() method that came with the paginate class will
create the pagination for us.

You can switch the pagination template from app/config/view.php.

If no rows have returned, that means there are no images (yet), so we show
a warning message with a link to the new upload page (which is the index
page in our case).

What if a person uploads an image that is not allowed or not safe for work? You
would not like to have them on your website, right? So there should be an image
deleting feature on your website.

Deleting the image from the database
and server
We would like to have a delete feature in our script, using which we will delete the
image both from the database and from its uploaded folder. This process is quite
easy with Laravel.

1.	 First, we need to create a new route for the action. To do this, open app/
routes.php and add the following lines:
//This route is to delete the image with given ID
Route::get('delete/{id}', array
 ('as'=>'delete_image','uses'=>
 'ImageController@getDelete'))
 ->where('id', '[0-9]+');

2.	 Now, we need to define the controller method getDelete($id) inside
ImageController. To do this, open app/controllers/ImageController.
php and add the following code above the last curly bracket (}):
public function getDelete($id) {
 //Let's first find the image
 $image = Photo::find($id);

 //If there's an image, we will continue to the deleting
 process
 if($image) {

Chapter 3

[57]

 //First, let's delete the images from FTP
 File::delete(Config::get('image.upload_folder').'/'
 $image->image);
 File::delete(Config::get('image.thumb_folder').'/'
 $image->image);

 //Now let's delete the value from database
 $image->delete();

 //Let's return to the main page with a success message
 return Redirect::to('/')
 ->with('success','Image deleted successfully');

 } else {
 //Image not found, so we will redirect to the index
 page with an error message flash data.
 return Redirect::to('/')
 ->with('error','No image with given ID found');
 }
}

Let's understand the code:

1.	 First, we look at our database, and if we have an image with a given
ID already with the find() method of Eloquent ORM, we will store
it with a variable called $image.

2.	 If the value of the $image is not false, there is an image matching the
image in our database. Then, we delete the file with the delete()
method of the File class. Alternatively, you can also use the unlink()
method of raw PHP.

3.	 After the files are deleted from the file server, we delete the image's
information row from the database. To do this, we are using the
delete() method of Eloquent ORM.

4.	 If everything goes smoothly, we should redirect back to the main
page with a success message saying the image is deleted successfully.

In practical application, you should have a backend interface for
such actions.

Building an Image Sharing Website

[58]

Summary
In this chapter, we've created a simple image sharing website with Laravel's built-
in functions. We've learned how to validate our forms, how to work with files
and check their MIME types, and set custom configuration values. We've learned
more about database methods both with Fluent and Eloquent ORM. Also, for
image processing, we've installed a third-party library from packagist.org using
Composer and learned how to update them. We've also listed images with the page
navigation feature and learned to delete files from the server. In the next chapter, we
will be building a personal blog site with authentication and a members-only area,
and we will assign blog posts to the author(s).

Building a Personal Blog
In this chapter, we'll code a simple personal blog with Laravel. We'll also cover
Laravel's built-in authentication, paginate mechanism, and named routes. We'll
elaborate some rapid development methods, which come with Laravel, such as
creating route URLs. The following topics will be covered in this chapter:

•	 Creating and migrating the posts database
•	 Creating a posts model
•	 Creating and migrating the authors database
•	 Creating a members-only area
•	 Saving a blog post
•	 Assigning blog posts to users
•	 Listing articles
•	 Paginating the content

Creating and migrating the posts
database
We assume that you have already defined database credentials in the app/config/
database.php file. For this application, we need a database. You can simply create
and run the following SQL command or basically you can use your database
administration interface, something like phpMyAdmin:

CREATE DATABASE laravel_blog

After successfully creating the database for the application, first we need to create a
posts table and install it in the database. To do this, open up your terminal, navigate
through your project folder, and run this command:

Building a Personal Blog

[60]

php artisan migrate:make create_posts_table --table=posts --create

This command will generate a migration file under app/database/migrations for
generating a new MySQL table named posts in our laravel_blog database.

To define our table columns and specifications, we need to edit this file. After editing
the migration file, it should look like this:

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreatePostsTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('posts', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('title');
 $table->text('content');
 $table->integer('author_id');
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('posts');
 }
}

Chapter 4

[61]

After saving the file, we need to use a simple artisan command to execute migrations:

php artisian migrate

If no error occurs, check the laravel_blog database for the posts table and columns.

Creating a posts model
As you know, for anything related to database operations on Laravel, using models
is the best practice. We will benefit from the Eloquent ORM.

Save this code in a file named as Posts.php under app/models/:

<?php
class Post extends Eloquent {

protected $table = 'posts';

protected $fillable = array('title','content','author_id');

public $timestamps = true;

public function Author(){

 return $this->belongsTo('User','author_id');
}

}

We have set the database table name with the protected $table variable. We have
also set editable columns with the $fillable variable and timestamps with the
$timestamps variable as we've already seen and used in previous chapters. The
variables which are defined in the model are enough for using Laravel's Eloquent
ORM. We'll cover the public Author() function in the Assigning blog posts to users
section of this chapter.

Our posts model is ready. Now we need an authors model and database to assign
blog posts to authors. Let's investigate Laravel's built-in authentication mechanism.

Building a Personal Blog

[62]

Creating and migrating the authors
database
Contrary to most of the PHP frameworks, Laravel has a basic authentication class.
The authentication class is very helpful in rapidly developing applications. First, we
need a secret key for our application. The application secret key is very important
for our application's security because all data is hashed salting this key. The artisan
command can generate this key for us with a single command line:

php artisian key:generate

If no error occurs, you will see a message that tells you that the key is generated
successfully. After key generation, if you face problems with opening your Laravel
application, simply clear your browser cache and try again. Next, we should edit the
authentication class's configuration file. For using Laravel's built-in authentication
class, we need to edit the configuration file, which is located at app/config/auth.
php. The file contains several options for the authentication facilities. If you need to
change the table name, and so on, you can make the changes under this file. By default,
Laravel comes with the User model. You can see the User.php file, which is located at
app/models/. With Laravel 4, we need to define which fields are fillable in our Users
model. Let's edit User.php located at app/models/ and add the "fillable" array:

<?php

use Illuminate\Auth\UserInterface;
use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements UserInterface,
RemindableInterface {

 /**
 * The database table used by the model.
 *
 * @var string
 */
 protected $table = 'users';

 /**
 * The attributes excluded from the model's JSON form.
 *
 * @var array
 */
 protected $hidden = array('password');

Chapter 4

[63]

 //Add to the "fillable" array
 protected $fillable = array('email', 'password', 'name');

 /**
 * Get the unique identifier for the user.
 *
 * @return mixed
 */
 public function getAuthIdentifier()
 {
 return $this->getKey();
 }

 /**
 * Get the password for the user.
 *
 * @return string
 */
 public function getAuthPassword()
 {
 return $this->password;
 }

 /**
 * Get the e-mail address where password reminders are sent.
 *
 * @return string
 */
 public function getReminderEmail()
 {
 return $this->email;
 }

}

Basically, we need three columns for our authors. These are:

•	 email: This column stores author's e-mails
•	 password: This column stores authors' passwords
•	 name: This column stores the authors' names and surnames

Building a Personal Blog

[64]

Now we need several migration files to create the users table and add an author to
our database. To create a migration file, give a command such as the following:

php artisan migrate:make create_users_table --table=users --create

Open the migration file, which was created recently and located at app/database/
migrations/. We need to edit the up() function as the following:

 public function up()
 {
 Schema::create('users', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('email');
 $table->string('password');
 $table->string('name');
 $table->timestamps();
 });
 }

After editing the migration file, run the migrate command:

php artisian migrate

As you know, the command creates the users table and its columns. If no error
occurs, check the laravel_blog database for the users table and the columns.

Now we need to create a new migration file for adding some authors to the database.
We can do so by running the following command:

php artisan migrate:make add_some_users

Open up the migration file and edit the up() function as the following:

 public function up()
 {
 User::create(array(
 'email' => 'your@email.com',
 'password' => Hash::make('password'),
 'name' => 'John Doe'
));
 }

We used a new class in the up() function, which is named Hash. Laravel has a hash
maker/checker class, which is based on secure Bcrypt. Bcrypt is an accepted, secure
hashing method for important data such as passwords.

Chapter 4

[65]

The class for which we have created an application key with the artisan tool at the
beginning of this chapter is used for salting. So, to apply migration, we need to
migrate with the following artisan command:

php artisian migrate

Now, check the users table for a record. If you check the password column, you will
see a record stored as follows:

$2y$08$ayylAhkVNCnkfj2rITbQr.L5pd2AIfpeccdnW6.BGbA.1VtJ6Sdqy

It is very important to securely store your user's passwords and their critical data. Do
not forget that if you change the application key, all the existing hashed records will
be unusable because the Hash class uses the application key as the salting key when
validating and storing given data.

Creating a members-only area
As you know, our blog system is member based. Because of that we need some areas
to be accessible by members only, for adding new posts to the blog. We have two
different methods to do this. The first one is the route filter method, which we will
elaborate in the next chapters. The second is the template-based authorization check.
This method is a more effective way of understanding the use of the Auth class with
the Blade template system.

With the Auth class we can check the authorization status of a visitor by just a single
line of code:

Auth::check();

The check() function, which is based on the Auth class, always returns true or
false. So, that means we can easily use the function in an if/else statement in our
code. As you know from previous chapters, with the blade template system we were
able to use that kind of PHP statement in the template files.

Before creating the template files we need to write our routes. We need four routes
for our application. These are:

•	 A login route to process login requests
•	 A new post route to process new post requests
•	 An admin route to show a new post form and a login form
•	 An index route to list posts

Building a Personal Blog

[66]

Named routing is another amazing feature of the Laravel framework for rapid
development. Named routes allow referring to routes when generating redirects
or URLs more comfortably. You may specify a name for a route as follows:

Route::get('all/posts', array('as' => 'posts', function()
{
 //
}));

You may also specify route names for controllers:

Route::get('all/posts', array('as' => 'allposts', , 'uses' =>
'PostController@showPosts'));

Thanks to the named routes, we can easily create URLs for our application:

$url = URL::route('allposts');

We can also use the named routes to redirect:

$redirect = Redirect::route('allposts');

Open the route configuration file, which is located at app/routes.php and add the
following code:

Route::get('/', array('as' => 'index', 'uses' => 'PostsController@
getIndex'));
Route::get('/admin', array('as' => 'admin_area', 'uses' =>
'PostsController@getAdmin'));
Route::post('/add', array('as' => 'add_new_post', 'uses' =>
'PostsController@postAdd'));
Route::post('/login', array('as' => 'login', 'uses' =>
'UsersController@postLogin'));
Route::get('/logout', array('as' => 'logout', 'uses' =>
'UsersController@getLogout'));

Now we need to write the code for the controller side and templates of our
application. First, we can start coding from our admin area. Let's create a file under
app/views/ with the name addpost.blade.php. Our admin template should look
like the following:

<html>
<head>
<title>Welcome to Your Blog</title>
<link rel="stylesheet" type="text/css" href="/assets/css/style.css">
<!--[if lt IE 9]><script src="//html5shim.googlecode.com/svn/trunk/
html5.js"></script><![endif]-->
</head>

Chapter 4

[67]

<body>
@if(Auth::check())
<section class="container">
<div class="content">
<h1>Welcome to Admin Area, {{Auth::user()->name}} ! - {{link_to_
route('logout','Logout')}}</h1>
<form name="add_post" method="POST" action="{{URL::route('add_new_
post')}}">
<p><input type="text" name="title" placeholder="Post Title"
value=""/></p>
<p><textarea name="content" placeholder="Post Content"></textarea></p>
<p><input type="submit" name="submit" /></p>
</div>
</section>
@else
<section class="container">
<div class="login">
<h1>Please Login</h1>
<form name="login" method="POST" action="{{URL::route('login')}}">
<p><input type="text" name="email" value="" placeholder="Email"></p>
<p><input type="password" name="password" value=""
placeholder="Password"></p>
<p class="submit"><input type="submit" name="commit" value="Login"></
p>
</form>
</div>
</section>
@endif
</body>
</html>

As you can see in the code, we use if/else statements in a template to check a
user's login credentials. We know already from the beginning of this section that we
use the Auth::check() function to check the login status of a user. Also, we've used
a new method to get the currently logged in user's name:

Auth::user()->name;

We can get any information about the current user with the user method:

Auth::user()->id;
Auth::user()->email;

The template code first checks the login status of the visitor. If the visitor has logged
in, the template shows a new post form; else it shows a login form.

Building a Personal Blog

[68]

Now we have to code the controller side of our blog application. Let's start from
our users controller. Create a file under app/controller/, which is named
UsersContoller.php. The final code of the controller should be as follows:

<?php

class UsersController extends BaseController{

 public function postLogin()
 {
 Auth::attempt(array('email' => Input::get('email'),
 'password' => Input::get('password')));
 return Redirect::route('add_new_post');

 }

 public function getLogout()
 {
 Auth::logout();
 return Redirect::route('index');
 }
}

The controller has two functions: the first is the postLogin() function. This function
basically checks the posted form data for user login and then redirects the visitor to
the add_new_post route to show the new post form. The second function processes
the logout request and redirects to the index route.

Saving a blog post
Now we need one more controller for our blog posts. So, create a file under app/
controller/, that is named PostsContoller.php. The final code of the controller
should be as follows:

<?php
class PostsController extends BaseController{

 public function getIndex()
 {

 $posts = Post::with('Author')-> orderBy('id', 'DESC')->get();
 return View::make('index')->with('posts',$posts);

 }

Chapter 4

[69]

 public function getAdmin()
 {
 return View::make('addpost');
 }
 public function postAdd()
 {
 Post::create(array(
 'title' => Input::get('title'),
 'content' => Input::get('content'),
 'author_id' => Auth::user()->id
));
 return Redirect::route('index');
 }
}

Assigning blog posts to users
The postAdd() function processes the new blog post create request on the database.
As you can see, we can get the author's ID with a previously mentioned method:

Auth::user()->id

With this method, we can assign the current user with a blog post. As you will see,
we have a new method in the query:

Post::with('Author')->

If you remember, we've defined a public Author () function in our Posts model:

public function Author(){

 return $this->belongsTo('User','author_id');
}

The belongsTo() method is an Eloquent function to create relations between tables.
Basically the function needs one required variable and one optional variable. The
first variable (required) defines the target Model. The second and optional variable
is to define the source column of the current model's table. If you don't define the
optional variable, the Eloquent class searches the targetModelName_id column.
In the posts table, we store the authors' IDs in the author_id column, not in the
column named user_id. Because of this, we need to define a second optional
variable in the function. With this method, we can pass our blog posts and all its
authors' information to the template file. You can think of the method as some kind
of a SQL join method.

Building a Personal Blog

[70]

When we want to use these relation functions in queries, we can easily call them
as follows:

Books::with('Categories')->with('Author')->get();

It is easy to manage the template files with fewer variables. Now we have just one
variable to pass the template file, which is combined with all the necessary data. So,
we need the second template file to list our blog posts. This template will work at our
blog's frontend.

Listing articles
In the previous sections of this chapter, we've learned to use PHP if/else
statements within blade template files. Laravel passes data to the template file as
an array. So we need to use the foreach loop to parse data into the template file.
We can also use a foreach loop in template files. So create a file under app/views/
named index.blade.php. The code should look as follows:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>My Awesome Blog</title>
<link rel="stylesheet" href="/assets/blog/css/styles.css" type="text/
css" media="screen" />
<link rel="stylesheet" type="text/css" href="/assets/blog/css/print.
css" media="print" />
<!--[if IE]><script src="http://html5shiv.googlecode.com/svn/trunk/
html5.js"></script><![endif]-->
</head>
<body>
<div id="wrapper">
<header>
<h1>My Awesome Blog</h1>
<p>Welcome to my awesome blog</p>
</header>
<section id="main">
<section id="content">
@foreach($posts as $post)
<article>
<h2>{{$post->title}}</h2>

Chapter 4

[71]

<p>{{$post->content}}</p>
<p><small>Posted by {{$post->Author->name}} at {{$post-
>created_at}}</small></p>
</article>

@endforeach
</section>
</aside>
</section>
<footer>
<section id="footer-area">
<section id="footer-outer-block">
<aside class="footer-segment">
<h4>My Awesome Blog</h4>
</aside>
</section>
</section>
</footer>
</div>
</body>
</html>

Let's dig the code. We've used a foreach loop inside the template file to parse all
blog post data. Also, we see the combined author data usage in the foreach loop. As
you may remember, we get the author information with the belongsTo() method in
the model side. The whole relational data parsing is done inside an array, which is
named the relation function name. For example, if we had a second relation function,
which is named Categories(), the query would be something as follows on the
controller side:

$books = Books::with('Author')-> with('Categories')->orderBy('id',
'DESC')->get();

The foreach loop would look as follows:

@foreach($books as $book)

<article>
<h2>{{$book->title}}</h2>
<p>Author: {{$book->Author->name}}</p>
<p>Category: {{$book->Category->name}}</p>
</article>

@endforeach

Building a Personal Blog

[72]

Paginating the content
Eloquent's get() method, which we've used in the controller side in the Eloquent
query, fetches all the data from the database with a given condition. Often we
need to paginate the content for a user-friendly frontend or less page loads and
optimizations. The Eloquent class has a helpful method to do this quickly, which is
called paginate(). This method fetches the data paginated and generates paginate
links in the template with just a single line of code. Open the app/controllers/
PostsController.php file and change the query as follows:

$posts = Post::with('Author')->orderBy('id', 'DESC')->paginate(5);

The paginate() method paginates the data with the given numeric value. So, the
blog posts will be paginating each page into 5 blog posts. We have to also change our
template to show pagination links. Open app/views/index.blade.php and add the
following code after the foreach loop:

{{$posts->links()}}

The section in the template, which has the İD as "main", should look as follows:

<section id="main">
<section id="content">
@foreach($posts as $post)

<article>
<h2>{{$post->title}}</h2>
<p>{{$post->content}}</p>
<p><small>Posted by {{$post->Author->name}} at {{$post-
>created_at}}</small></p>
</article>
@endforeach

</section>
{{$posts->links()}}
</section>

The links() function will generate pagination links automatically, if there is enough
data to paginate. Else, the function shows nothing.

Summary
In this chapter, we've created a simple blog with Laravel's built-in functions and the
Eloquent database driver. We've learned how to paginate the data and Eloquent's
basic data relation mechanism. Also we've covered Laravel's built-in authentication
mechanism. In the next chapters, we'll learn how to work with more complex tables
and relational data.

Building a News
Aggregation Website

During this chapter, we will create a news aggregation site. We will parse multiple
feeds, categorize them, activate/deactivate them for our website, and display them
on our website using PHP's SimpleXML extension. The following topics will be
covered in this chapter:

•	 Creating the database and migrating the feeds table
•	 Creating a feeds model
•	 Creating our form
•	 Validating and processing the form
•	 Extending the core classes
•	 Reading and parsing an external feed

Creating the database and migrating the
feeds table
After successfully installing Laravel 4 and defining database credentials from app/
config/database.php, create a database called feeds.

After creating the database, open your terminal, navigate to your project folder, and
run this command:

php artisan migrate:make create_feeds_table --table=feeds --create

Building a News Aggregation Website

[74]

This command will generate a new database migration named feeds for us. Now
navigate to app/database/migrations, open the migration file just created by the
preceding command, and change its contents as follows:

<?php
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateFeedsTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('feeds', function(Blueprint $table)
 {
 $table->increments('id');
 $table->enum('active', array('0', '1'));
 $table->string('title,100)->default('');
 $table->enum('category', array('News', 'Sports','Technology'));
 $table->string('feed',1000)->default('');
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('feeds');
 }

}

We have a title column to show titles on the website, which is more user-friendly.
Also, we set a key named active because we want to enable/disable feeds; we set it
with the new enum() method of Laravel, which is featured with Laravel 4. We also
set a category column that is also set with the enum() method to group feeds.

Chapter 5

[75]

After saving the file, run the following command to execute migration:

php artisan migrate

If no error occurs, you are ready for the next step of the project.

Creating a feeds model
As you know, for anything related to database operations on Laravel, using models
is the best practice. We will benefit from the Eloquent ORM.

Save this file as feeds.php under app/models/:

<?php
Class Feeds Extends Eloquent{
 protected $table = 'feeds';
 protected $fillable = array('feed', 'title', 'active','category');
}

We set the table name and the fillable columns with values. Now that our model is
ready, we can proceed to the next step, and start creating our controller, along with
the form.

Creating our form
Now we should create a form to save records to the database and specify its
properties.

1.	 First, open your terminal and enter the following command:
php artisan controller:make FeedsController

This command will generate a FeedsController.php file for you with some
blank methods in the app/controllers folder.

The default methods in the controller that are auto-filled by the
artisan commands are not RESTful.

2.	 Now, open app/routes.php and add the following lines:
//We defined a RESTful controller and all its via route directly

Route::controller('feeds', 'FeedsController');

Building a News Aggregation Website

[76]

Instead of defining all actions one by one, we can define all actions declared
on a controller with a line of code. If your method names are usable as get
or post actions directly, using the controller() method can save you a
large amount of time. The first parameter sets the URI for the controller and
the second parameter defines which class in the controllers folder will be
accessed and defined.

Controllers that are set in this manner are automatically RESTful.

3.	 Now, let's create the form's method. Add these lines of code into your
controller file:
 //The method to show the form to add a new feed
 public function getCreate() {
 //We load a view directly and return it to be served
 return View::make('create_feed');
 }

The process is quite simple here; we named the method as getCreate()
because we want our create method to be RESTful. We simply loaded a
view file, which we will be generating in the next step directly.

4.	 Now let's create our view file. Save this file as create_feed.blade.php
under app/views/:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Save a new ATOM Feed to Database</title>
</head>
<body>
 <h1>Save a new ATOM Feed to Database</h1>
 @if(Session::has('message'))
 <h2>{{Session::get('message')}}</h2>
 @endif
 {{Form::open(array('url' => 'feeds/create', 'method' =>
'post'))}}
 <h3>Feed Category</h3>
 {{Form::select('category',array('News'=>'News','Sports'=>'Sports
','Technology'=>'Technology'),Input::old('category'))}}
 <h3>Title</h3>
 {{Form::text('title',Input::old('title'))}}

Chapter 5

[77]

 <h3>Feed URL</h3>
 {{Form::text('feed',Input::old('feed'))}}

 <h3>Show on Site?</h3>
{{Form::select('active',array('1'=>'Yes','2'=>'No'),Input::old('ac
tive'))}}
 {{Form::submit('Save!',array('style'=>'margin:20px 100% 0
0'))}}
 {{Form::close()}}
</body>
</html>

The preceding code will produce a simple form, shown as follows:

Building a News Aggregation Website

[78]

Validating and processing the form
In this section, we will validate the submitted form and ensure that the fields are
valid and the required fields are filled. Then we will save the data to the database.

1.	 First, we need to define the form validation rules. We prefer adding
validation rules to the related model, so the rules become reusable, and this
prevents the code from becoming bloated. To do this, add the following code
in feeds.php located at app/models/ (the model that we generated earlier in
this chapter), inside the class definition before the last }:
//Validation rules
public static $form_rules = array(
 'feed' => 'required|url|active_url',
 'title' => 'required'
 'active' => 'required|between:0,1',
 'category' => 'required| in:News,Sports,Technology'
);

We set the variable as public, so it can be used outside the model's file itself,
and we set it to static, so we can directly access the variable.
We want the feed to be a URL, and we want to check whether it's an active
URL or not using the active_url validation rule, which depends on PHP's
chkdnsrr() method.
Our active field can only get two values, 1 or 0. Since we set it with integers,
we can use the between rule of Laravel's form validation and check whether
the number is between 1 and 0.
Our category field also has the enum type, and its value should only be News,
Sports, or Technology. To check the exact values with Laravel, you can use
the validation rule in.

Not all server configurations support the chkdnsrr() method, so make
sure it's installed on your side, else you may depend on only validating it
if the URL is formatted correctly.

2.	 Now we need a controller post method to process the form. Add the
following method to app/controllers/FeedsController.php before
the last }:

//Processing the form
public function postCreate(){

//Let's first run the validation with all provided input
 $validation = Validator::make(Input::all(),Feeds::$form_rules);

Chapter 5

[79]

 //If the validation passes, we add the values to the database and
return to the form
 if($validation->passes()) {
 //We try to insert a new row with Eloquent
 $create = Feeds::create(array(
 'feed' => Input::get('feed'),
 'title' => Input::get('title'),
 'active' => Input::get('active'),
 'category' => Input::get('category')
));

 //We return to the form with success or error message due to state
of the
 if($create) {
 return Redirect::to('feeds/create')
 ->with('message','The feed added to the database
successfully!');
 } else {
 return Redirect::to('feeds/create')
 ->withInput()
 ->with('message','The feed could not be added, please try
again later!');
 }
 } else {
 //If the validation does not pass, we return to the form with
first error message as flash data
 return Redirect::to('feeds/create')
 ->withInput()
 ->with('message',$validation->errors()->first());

 }
}

Let's dig into the code one by one. First, we made a form validation and
called our validation rules from the model that we've generated via
Feeds::$form_rules.
After that, we created an if() statement and divided the code into two parts
with it. If the form validation fails, we return to the form with old inputs
using the withInput() special method, and add a flash data message field
using the method with().
If the form validation passes, we try to add a new column to the database
with Eloquent's create() method, and we return to the form with a success
or error message depending on what the create method returns.

Building a News Aggregation Website

[80]

Now, we need to make a new view for the index page, which will show the last five
entries of all the feeds. But before that, we need a function to parse the Atom feeds.
For this, we will be extending the build in the Str class of Laravel.

Extending the core classes
Laravel has many built-in methods that make our life easier. But as in all bundled
packages, the bundle itself may not satisfy any of its users as it is introduced. So, you
may want to use your own methods along with the bundled ones. You can always
create new classes, but what if half of what you want to achieve is already built-
in? For example, you want to add a form element, but there is already a Form class
bundled. In this case, you may want to extend the current class(es) with your own
methods instead of creating new ones to keep the code tidy.

In this section, we will be extending the Str class with the method called parse_
atom(), which we will code.

1.	 First, you must find where the class file is. We will be extending the Str class,
which is under vendor/laravel/framework/src/Illuminate/Support.
Note that you can also find this class under the aliases key in app/config/
app.php.

2.	 Now create a new folder called lib under app/folder. This folder will
hold our class extensions. Because the Str class is grouped under the folder
Support, it is suggested that you create a new folder named Support under
lib too.

3.	 Now create a new file named Str.php under app/lib/Support, which
you've just created:
<?php namespace app\lib\Support;
class Str extends \Illuminate\Support\Str {
 //Our shiny extended codes will come here
 }

We gave a namespace to it so we can access it easily. Instead of using it like \
app\lib\Support\Str::trim() (which you can), you can directly use it like
Str::trim(). The rest of the code explains how to extend the library. We
have provided the class name starting from the Illuminate path to access
the Str class directly.

4.	 Now open your app.php file located at app/config/; comment out the
following line:
'Str' => 'Illuminate\Support\Str',

Chapter 5

[81]

5.	 Now, add the following line:
'Str' => 'app\lib\Support\Str',

This way, we switched the autoloaded Str class with our class, which is
already extending the original.

6.	 Now to make it identifiable on autoruns, open your composer.json file and
add these lines into autoload's classmap object:
"app/lib",
"app/lib/Support"

7.	 Finally, run the following command in the terminal:

php composer.phar dump-autoload

This will look for dependencies and recompile common classes. If everything
goes smoothly, you will now have an extended Str class.

Folder and class names are case-sensitive, even on Windows servers.

Reading and parsing an external feed
We have the feed URLs and the titles on our server all categorized. Now all we have
to do is to parse them and show them to the end user. There are some steps to follow
for this:

1.	 First, we need a method to parse external Atom feeds. Open your Str.php
file located at app/lib/Support/ and add this method into the class:
public static function parse_feed($url) {
 //First, we get our well-formatted external feed
 $feed = simplexml_load_file($url);
 //if cannot be found, or a parse/syntax error occurs, we
return a blank array
 if(!count($feed)) {
 return array();
 } else {
 //If found, we return the newest five <item>s in the
<channel>
 $out = array();
 $items = $feed->channel->item;
 for($i=0;$i<5;$i++) {
 $out[] = $items[$i];

Building a News Aggregation Website

[82]

 }
 //and we return the output
 return $out;
 }
 }

First, we load the XML feed on the method using SimpleXML's built-in
method, simplexml_load_file(). If no results are found or the feed
contains errors, we return an empty array. In SimpleXML, all objects and
their child objects are exactly like XML tags. So if there is a <channel> tag,
there will be an object named channel, and if there are <item> tags inside
<channel>, there will be an object named item beneath each channel object.
So if you want to access the first item inside the channel, you can access it as
$xml->channel->item[0].

2.	 Now we need a view to show the contents. First, open your routes.php
under app and delete the get route that is present by default:
Route::get('/', array('as'=>'index', 'uses' =>
'FeedsController@getIndex'));

3.	 Now open FeedsController.php located at app/controller/ and paste
this code:
public function getIndex(){
 //First we get all the records that are active category by
category:
 $news_raw = Feeds::whereActive(1)->whereCategory('News')-
>get();
 $sports_raw = Feeds::whereActive(1)->whereCategory('Sports')-
>get();
 $technology_raw = Feeds::whereActive(1)-
>whereCategory('Technology')->get();

 //Now we load our view file and send variables to the view
 return View::make('index')
 ->with('news',$news_raw)
 ->with('sports',$sports_raw)
 ->with('technology',$technology_raw);
 }

In the controller, we got the feeds' URLs one by one, and then loaded a view
and set them one by one as separated variables for each of the categories.

Chapter 5

[83]

4.	 Now we need to loop each feed category and show its contents. Save the
following code in a file called index.blade.php under app/views/:
<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Your awesome news aggregation site</title>
 <style type="text/css">
 body { font-family: Tahoma, Arial, sans-serif; }
 h1, h2, h3, strong { color: #666; }
 blockquote{ background: #bbb; border-radius: 3px; }
 li { border: 2px solid #ccc; border-radius: 5px; list-style-
type: none; margin-bottom: 10px }
 a { color: #1B9BE0; }
 </style>
</head>
<body>
 <h1>Your awesome news aggregation site</h1>
 <h2>Latest News</h2>
 @if(count($news))
 {{--We loop all news feed items --}}
 @foreach($news as $each)
 <h3>News from {{$each->title}}:</h3>

 {{-- for each feed item, we get and parse its feed
elements --}}
 <?php $feeds = Str::parse_feed($each->feed); ?>
 @if(count($feeds))
 {{-- In a loop, we show all feed elements one by
one --}}
 @foreach($feeds as $eachfeed)

 {{$eachfeed->title}}

 <blockquote>{{Str::limit(strip_
tags($eachfeed->description),250)}}</blockquote>
 Date: {{$eachfeed->pubDate}}</
strong>

 Source: {{HTML::link($eachfeed-
>link,Str::limit($eachfeed->link,35))}}

Building a News Aggregation Website

[84]

 @endforeach
 @else
 No news found for {{$each->title}}.
 @endif

 @endforeach
 @else
 <p>No News found :(</p>
 @endif

 <hr />

 <h2>Latest Sports News</h2>
 @if(count($sports))
 {{--We loop all news feed items --}}
 @foreach($sports as $each)
 <h3>Sports News from {{$each->title}}:</h3>

 {{-- for each feed item, we get and parse its feed
elements --}}
 <?php $feeds = Str::parse_feed($each->feed); ?>
 @if(count($feeds))
 {{-- In a loop, we show all feed elements one by
one --}}
 @foreach($feeds as $eachfeed)

 {{$eachfeed->title}}

 <blockquote>{{Str::limit(strip_
tags($eachfeed->description),250)}}</blockquote>
 Date: {{$eachfeed->pubDate}}</
strong>

 Source: {{HTML::link($eachfeed-
>link,Str::limit($eachfeed->link,35))}}

 @endforeach
 @else
 No Sports News found for {{$each->title}}.</
li>
 @endif

 @endforeach

Chapter 5

[85]

 @else
 <p>No Sports News found :(</p>
 @endif

 <hr />

 <h2>Latest Technology News</h2>
 @if(count($technology))
 {{--We loop all news feed items --}}
 @foreach($technology as $each)
 <h3>Technology News from {{$each->title}}:</h3>

 {{-- for each feed item, we get and parse its feed
elements --}}
 <?php $feeds = Str::parse_feed($each->feed); ?>
 @if(count($feeds))
 {{-- In a loop, we show all feed elements one by
one --}}
 @foreach($feeds as $eachfeed)

 {{$eachfeed->title}}

 <blockquote>{{Str::limit(strip_
tags($eachfeed->description),250)}}</blockquote>
 Date: {{$eachfeed->pubDate}}</
strong>

 Source: {{HTML::link($eachfeed-
>link,Str::limit($eachfeed->link,35))}}

 @endforeach
 @else
 No Technology News found for {{$each-
>title}}.
 @endif

 @endforeach
 @else
 <p>No Technology News found :(</p>
 @endif

</body>
</html>

Building a News Aggregation Website

[86]

5.	 We wrote the same code for each of the categories thrice. Also, between
the head tags, a bit of styling is done, so the page will look prettier for
the end user.

We have divided each category's section with an <hr> tag. All three parts
are working with the same mechanics of each other, except for the source
variables and grouping.
We first checked whether records exist for each category (the results from
the database, since we may not have added any news feeds yet). If there are
results, they are looped through each record using the @foreach() method
of Blade template engine.
For each record, we first show the feed's friendly name (which we defined
before while saving them) and parse the feed with the parse_feed() method
we've just created .
After we parse each feed, we look to see whether any records are found; if so,
we loop them all again. To keep the tidiness of our feed reader, we trimmed
all HTML tags with PHP's strip_tags() function and limited them to a
maximum of 250 characters using the limit() method of Laravel's Str class
(which we have extended).
Individual feeds' items also have their own title, date, and source link, so we
have displayed them as well on the feed. To prevent the link from breaking
our interface, we limited the text, to be written between anchor tags, to
35 characters.

Chapter 5

[87]

After all of the edits, you should get an output like this:

Summary
In this chapter, we've created a simple feeds reader using Laravel's built-in functions
and PHP's SimpleXML class. We've learned how to extend core libraries, write our
own methods, and use them in production. We also learned how to filter results
while querying the database and how to create records. Finally, we learned how to
work with strings, limit them, and clean them up. In the next chapter, we will be
creating a photo gallery system. We will ensure that the uploaded files are photos.
We will also group the photos into albums, and will relate albums and photos with
Laravel's built-in relation methods.

Creating a Photo
Gallery System

In this chapter, we'll code a simple photo gallery system with Laravel. We'll also
cover Laravel's built-in file validation, file upload, and the hasMany database
relation mechanism. We will use the validation class to validate the data and files.
Also, we'll cover the file class for processing files. The following topics are covered
in this chapter:

•	 Creating an Album model
•	 Creating an Image model
•	 Creating an album
•	 Creating a photo upload form
•	 Moving photos between albums

Creating a table and migrating albums
We assume that you've already defined the database credentials in the database.
php file located at app/config/. To build a photo gallery system, we need a database
that has two tables: albums and images. To create a new database, simply run the
following SQL command:

CREATE DATABASE laravel_photogallery

After successfully creating the database for the application, we will first need to
create the albums table and install it in the database. To do this, open up your
terminal, navigate through your project folder, and run the following command:

php artisan migrate:make create_albums_table --table=albums --create

Creating a Photo Gallery System

[90]

The preceding command will generate a migration file under app/database/
migrations to generate a new MySQL table, named posts, in our laravel_
photogallery database.

To define our table columns, we need to edit the migration file. After editing, the file
should have the following code:

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateAlbumsTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('albums', function(Blueprint $table)
 {
 $table->increments('id')->unsigned();
 $table->string('name');
 $table->text('description');
 $table->string('cover_image');
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('albums');
 }
}

Chapter 6

[91]

After saving the file, we need to use a simple artisan command again to
execute migrations:

php artisan migrate

If no error has occurred, please check the laravel_photogallery database
for the albums table and its columns.

Let's examine the columns in the following list:

•	 id: This column is used for storing the ID of the album
•	 name: This column is used for storing the name of the album
•	 description: This column is used for storing the description of the album
•	 cover_image: This column is for storing the cover image of the album

We've successfully created our albums table, so we need to code our Album model.

Creating an Album model
As you know, for anything related to database operations on Laravel, using models
is the best practice. We will benefit from using the Eloquent ORM.

Save the following code as Album.php in the app/models/ directory:

<?php
class Album extends Eloquent {

 protected $table = 'albums';

 protected $fillable = array('name','description','cover_image');

 public function Photos(){

 return $this->has_many('images');
 }
}

We have set the database table name using the protected $table variable; we've
also set the editable columns using the protected $fillable variable, which
we've already seen and used in previous chapters. The variables that are defined in
the model are enough for using Laravel's Eloquent ORM. We'll cover the public
Photos () function in the Assigning a photo to an album section of this chapter.

Creating a Photo Gallery System

[92]

Our Album model is ready; now we need an Image model and a database to assign
photos to albums. Let's create them.

Creating the images database with the
migrating class
To create our migration file for images, open up your terminal, navigate through
your project folder, and run the following command:

php artisan migrate:make create_images_table --table=images --create

As you know, the command will generate a migration file in app/database/
migrations. Let's edit the migration file; the final code should be as follows:

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateImagesTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('images', function(Blueprint $table)
 {
 $table->increments('id')->unsigned();
 $table->integer('album_id')->unsigned();
 $table->string('image');
 $table->string('description');
 $table->foreign('album_id')->references('id')
 ->on('albums')->onDelete('CASCADE')
 ->onUpdate('CASCADE');
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 *

Chapter 6

[93]

 * @return void
 */
 public function down()
 {
 Schema::drop('images');
 }
}

After editing the migration file, run the following migrate command:

php artisan migrate

As you know, the command creates the images table and its columns. If no error
has occurred, check the laravel_photogallery database for the users table and
the columns.

Let's examine the columns in the following list:

•	 id: This column is used for storing the id of the image
•	 album_id: This column is used for storing the id of the image's album
•	 description: This column is used for storing the description of the image
•	 image: This column is used for storing the path of the image

We need to explain one more thing for this migration file. As you can see in the
migration code, there is a foreign key. We use the foreign key when we need to
link two tables. We have an albums table and each album will have images. If the
album is deleted from the database, you want all its images to be deleted as well.

Creating an Image model
We've already created the images table. So, as you know, we need a model to
operate database tables on Laravel. To create that, save the following code as Image.
php in the app/models/ directory:

class Images extends Eloquent {

 protected $table = 'images';

 protected $fillable = array('album_id','description','image');

}

Our Image model is ready; now we need a controller to create the albums on our
database. Let's create that.

Creating a Photo Gallery System

[94]

Creating an album
As you know from the previous chapters in this book, Laravel has a great RESTful
controller mechanism. We'll continue to use that to keep the code simple and short
during development. In the next chapters, we'll cover another great controller/
routing method named Resource Controllers.

To list, create, and delete an album, we need some functions in our controller.
To create them, save the following code as AlbumsController.php in the app/
controllers/ directory:

<?php

class AlbumsController extends BaseController{

 public function getList()
 {
 $albums = Album::with('Photos')->get();
 return View::make('index')
 ->with('albums',$albums);
 }
 public function getAlbum($id)
 {
 $album = Album::with('Photos')->find($id);
 return View::make('album')
 ->with('album',$album);
 }
 public function getForm()
 {
 return View::make('createalbum');
 }
 public function postCreate()
 {
 $rules = array(

 'name' => 'required',
 'cover_image'=>'required|image'

);

 $validator = Validator::make(Input::all(), $rules);
 if($validator->fails()){

Chapter 6

[95]

 return Redirect::route('create_album_form')
 ->withErrors($validator)
 ->withInput();
 }

 $file = Input::file('cover_image');
 $random_name = str_random(8);
 $destinationPath = 'albums/';
 $extension = $file->getClientOriginalExtension();
 $filename=$random_name.'_cover.'.$extension;
 $uploadSuccess = Input::file('cover_image')
 ->move($destinationPath, $filename);
 $album = Album::create(array(
 'name' => Input::get('name'),
 'description' => Input::get('description'),
 'cover_image' => $filename,
));

 return Redirect::route('show_album',array('id'=>$album->id));
 }

 public function getDelete($id)
 {
 $album = Album::find($id);

 $album->delete();

 return Redirect::route('index');
 }
}

The postCreate() function first validates the posted data of the form. We'll cover
validation next. If the data is validated successfully, we will rename the cover image
and upload it with a new filename, because the code overwrites files which have the
same name.

The getDelete() function is deleting the album along with assigned images (which
are stored in an images table) from the database. Please remember the following
migration file code:

$table->foreign('album_id')->references('id')->on('albums')
 ->onDelete('CASCADE')->onUpdate('CASCADE');

Creating a Photo Gallery System

[96]

Before creating our templates, we need to define the routes. So, open up the routes.
php file in the app folder and replace the code with the following one:

<?php
Route::get('/', array('as' => 'index',
 'uses' => 'AlbumsController@getList'));
Route::get('/createalbum', array('as' => 'create_album_form',
 'uses' => 'AlbumsController@getForm'));
Route::post('/createalbum', array('as' => 'create_album',
 'uses' => 'AlbumsController@postCreate'));
Route::get('/deletealbum/{id}', array('as' => 'delete_album',
 'uses' => 'AlbumsController@getDelete'));
Route::get('/album/{id}', array('as' => 'show_album',
 'uses' => 'AlbumsController@getAlbum'));

Now, we need some template files to show, create, and list the albums. First, we
should create the index template. To create that, save the following code as index.
blade.php in the app/views/ directory:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Awesome Albums</title>
 <!-- Latest compiled and minified CSS -->
 <link href="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/css/bootstrap.min.css" rel="stylesheet">

 <!-- Latest compiled and minified JavaScript -->
 <script src="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/js/bootstrap.min.js"></script>
 <style>
 body {
 padding-top: 50px;
 }
 .starter-template {
 padding: 40px 15px;
 text-align: center;
 }
 </style>
 </head>
 <body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".nav-collapse">

Chapter 6

[97]

 </button>
 Awesome Albums
 <div class="nav-collapse collapse">
 <ul class="nav navbar-nav">

 Create New Album

 </div><!--/.nav-collapse -->
 </div>
 </div>

 <div class="container">

 <div class="starter-template">

 <div class="row">
 @foreach($albums as $album)
 <div class="col-lg-3">
 <div class="thumbnail" style="min-height: 514px;">
 name}}" src="/albums/{
 {$album->cover_image}}">
 <div class="caption">
 <h3>{{$album->name}}</h3>
 <p>{{$album->description}}</p>
 <p>{{count($album->Photos)}} image(s).</p>
 <p>Created date: {{ date("d F Y",strtotime
 ($album->created_at)) }} at {{
 date("g:ha",strtotime($album
 ->created_at)) }}</p>
 <p><a href="{{URL::route('show_album', array
 ('id'=>$album->id))}}" class=
 "btn btn-big btn-default">Show Gallery</p>
 </div>
 </div>
 </div>
 @endforeach
 </div>

 </div><!-- /.container -->
 </div>

 </body>
</html>

Creating a Photo Gallery System

[98]

Adding a template for creating albums
As you can see in the following code, we prefer to use Twitter's bootstrap CSS
framework. This framework allows you to rapidly create useful, responsive, and
multi-browser supported interfaces. Next, we need to create a template for creating
albums. To create that, save the following code as createalbum.blade.php in the
app/views/ directory:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0">
 <title>Create an Album</title>
 <!-- Latest compiled and minified CSS -->
 <link href="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/css/bootstrap.min.css" rel="stylesheet">

 <!-- Latest compiled and minified JavaScript -->
 <script src="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/js/bootstrap.min.js"></script>
 </head>
 <body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".nav-collapse">

 </button>
 Awesome Albums
 <div class="nav-collapse collapse">
 <ul class="nav navbar-nav">
 <li class="active">Create
 New Album

 </div><!--/.nav-collapse -->
 </div>
 </div>
 <div class="container" style="text-align: center;">
 <div class="span4" style="display: inline-block;
 margin-top:100px;">

Chapter 6

[99]

 @if($errors->has())
 <div class="alert alert-block alert-error fade in"
 id="error-block">
 <?php
 $messages = $errors->all(':message');
 ?>
 <button type="button" class="close"
 data-dismiss="alert">×</button>

 <h4>Warning!</h4>

 @foreach($messages as $message)
 {{$message}}
 @endforeach

 </div>
 @endif

 <form name="createnewalbum" method="POST"
 action="{{URL::route('create_album')}}"
 enctype="multipart/form-data">
 <fieldset>
 <legend>Create an Album</legend>
 <div class="form-group">
 <label for="name">Album Name</label>
 <input name="name" type="text" class="form-control"
 placeholder="Album Name"
 value="{{Input::old('name')}}">
 </div>
 <div class="form-group">
 <label for="description">Album Description</label>
 <textarea name="description" type="text"
 class="form-control" placeholder="Album
 description">{{Input::old('descrption')}}
 </textarea>
 </div>
 <div class="form-group">
 <label for="cover_image">Select a Cover Image
 </label>
 {{Form::file('cover_image')}}
 </div>
 <button type="submit" class="btn
 btn-default">Create!</button>
 </fieldset>

Creating a Photo Gallery System

[100]

 </form>
 </div>
 </div> <!-- /container -->
 </body>
</html>

The template creates a basic upload form and shows the validation errors which are
passed from the controller side. We need just one more template file to list the album
images. So, to create it, save the following code as album.blade.php in the app/
views/ directory:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>{{$album->name}}</title>
 <!-- Latest compiled and minified CSS -->
 <link href="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/css/bootstrap.min.css" rel="stylesheet">

 <!-- Latest compiled and minified JavaScript -->
 <script src="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/js/bootstrap.min.js"></script>
 <style>
 body {
 padding-top: 50px;
 }
 .starter-template {
 padding: 40px 15px;
 text-align: center;
 }
 </style>
 </head>
 <body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".nav-collapse">

 </button>
 Awesome Albums
 <div class="nav-collapse collapse">

Chapter 6

[101]

 <ul class="nav navbar-nav">

 Create New Album

 </div><!--/.nav-collapse -->
 </div>
 </div>
 <div class="container">

 <div class="starter-template">
 <div class="media">
 <img class="media-object pull-left"
 alt="{{$album->name}}" src="/albums/{{
 $album->cover_image}}" width="350px">
 <div class="media-body">
 <h2 class="media-heading" style="font-size: 26px;">
 Album Name:</h2>
 <p>{{$album->name}}</p>
 <div class="media">
 <h2 class="media-heading" style="font-size: 26px;">Album
 Description :</h2>
 <p>{{$album->description}}<p>

 $album->id))}}"><button type="button"
 class="btn btn-primary btn-large">
 Add New Image to Album</button>

 $album->id))}}" onclick="return confirm('Are you
 sure?')"><button type="button"
 class="btn btn-danger btn-large">Delete Album
 </button>
 </div>
 </div>
 </div>
 </div>
 <div class="row">
 @foreach($album->Photos as $photo)
 <div class="col-lg-3">
 <div class="thumbnail" style="max-height: 350px;
 min-height: 350px;">
 name}}" src="/albums/{
 {$photo->image}}">
 <div class="caption">
 <p>{{$photo->description}}</p>

Creating a Photo Gallery System

[102]

 <p><p>Created date: {{ date("d F Y",strtotime(
 $photo->created_at)) }} at {{ date
 ("g:ha",strtotime($photo->created_at)) }}
 </p></p>

 $photo->id))}}" onclick="return confirm('Are you
 sure?')"><button type="button" class="btn
 btn-danger btn-small">Delete Image </button>
 </div>
 </div>
 </div>
 @endforeach
 </div>
 </div>

 </body>
</html>

As you may remember, we have used the hasMany() Eloquent method on our model
side. On the controller side, we use the function as follows:

$albums = Album::with('Photos')->get();

The code fetches the whole image data in an array that belongs to the album. Because
of that, we use the foreach loop in the following template:

@foreach($album->Photos as $photo)
 <div class="col-lg-3">
 <div class="thumbnail" style="max-height: 350px;
 min-height: 350px;">
 name}}" src="/albums/{
 {$photo->image}}">
 <div class="caption">
 <p>{{$photo->description}}</p>
 <p><p>Created date: {{ date("d F Y",strtotime(
 $photo->created_at)) }} at {{ date
 ("g:ha",strtotime($photo->created_at)) }}</p></p>

 $photo->id))}}" onclick="return confirm('Are you
 sure?')"><button type="button" class="btn
 btn-danger btn-small">Delete Image</button>
 </div>
 </div>
 </div>
@endforeach

Chapter 6

[103]

Creating a photo upload form
Now we need to create a photo upload form. We'll upload the photos and assign
them to the albums. Let's first set the routes; open the routes.php file in the app
folder and add the following code:

Route::get('/addimage/{id}', array('as' => 'add_image',
 'uses' => 'ImagesController@getForm'));
Route::post('/addimage', array('as' => 'add_image_to_album',
 'uses' => 'ImagesController@postAdd'));
Route::get('/deleteimage/{id}', array('as' => 'delete_image',
 'uses' => 'ImagesController@getDelete'));

We need a template for the photo upload form. To create that, save the following
code as addimage.blade.php in the app/views/ directory:

<!doctype html>
 <html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0">
 <title>Laravel PHP Framework</title>
 <!-- Latest compiled and minified CSS -->
 <link href="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/css/bootstrap.min.css" rel="stylesheet">

 <!-- Latest compiled and minified JavaScript -->
 <script src="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/js/bootstrap.min.js"></script>
 </head>
 <body>

 <div class="container" style="text-align: center;">
 <div class="span4" style="display: inline-block;
 margin-top:100px;">
 @if($errors->has())
 <div class="alert alert-block alert-error fade in"
 id="error-block">
 <?php
 $messages = $errors->all(':message');
 ?>
 <button type="button" class="close"
 data-dismiss="alert">×</button>

Creating a Photo Gallery System

[104]

 <h4>Warning!</h4>

 @foreach($messages as $message)
 {{$message}}
 @endforeach

 </div>
 @endif
 <form name="addimagetoalbum" method="POST"
 action="{{URL::route('add_image_to_album')}}"
 enctype="multipart/form-data">
 <input type="hidden" name="album_id"
 value="{{$album->id}}" />
 <fieldset>
 <legend>Add an Image to {{$album->name}}</legend>
 <div class="form-group">
 <label for="description">Image Description</label>
 <textarea name="description" type="text"
 class="form-control" placeholder="Image
 description"></textarea>
 </div>
 <div class="form-group">
 <label for="image">Select an Image</label>
 {{Form::file('image')}}
 </div>
 <button type="submit" class="btn
 btn-default">Add Image!
 </button>
 </fieldset>
 </form>
 </div>
 </div> <!-- /container -->
 </body>
</html>

Before creating the template, we need to code our controller. So, save the following
code as ImageController.php in the app/controllers/ directory:

<?php
class ImagesController extends BaseController{

 public function getForm($id)
 {
 $album = Album::find($id);
 return View::make('addimage')

Chapter 6

[105]

 ->with('album',$album);
 }

 public function postAdd()
 {
 $rules = array(

 'album_id' => 'required|numeric|exists:albums,id',
 'image'=>'required|image'

);

 $validator = Validator::make(Input::all(), $rules);
 if($validator->fails()){

 return Redirect::route('add_image',array('id' =>
 Input::get('album_id')))
 ->withErrors($validator)
 ->withInput();
 }

 $file = Input::file('image');
 $random_name = str_random(8);
 $destinationPath = 'albums/';
 $extension = $file->getClientOriginalExtension();
 $filename=$random_name.'_album_image.'.$extension;
 $uploadSuccess = Input::file('image')
 ->move($destinationPath, $filename);
 Image::create(array(
 'description' => Input::get('description'),
 'image' => $filename,
 'album_id'=> Input::get('album_id')
));

 return Redirect::route('show_album',
 array('id'=>Input::get('album_id')));
 }
 public function getDelete($id)
 {
 $image = Image::find($id);
 $image->delete();
 return Redirect::route('show_album',
 array('id'=>$image->album_id));
 }
}

Creating a Photo Gallery System

[106]

The controller has three functions; the first one is the getForm() function. This
function basically shows our photo upload form. The second one validates and
inserts the data into the database. We'll explain the validating and inserting functions
in the next section. The third one is the getDelete() function. This function basically
deletes the image records from the database.

Validating the photo
Laravel has a powerful validation library, which has been mentioned in this book
many times. We validate the data in controllers as follows:

$rules = array(

 'album_id' => 'required|numeric|exists:albums,id',
 'image'=>'required|image'

);

$validator = Validator::make(Input::all(), $rules);
if($validator->fails()){

 return Redirect::route('add_image',array('id' =>
 Input::get('album_id')))
 ->withErrors($validator)
 ->withInput();
}

Let's examine the code. We defined some rules in array. We have two validation
rules in the rules array. The first rule is as follows:

'album_id' => 'required|numeric|exists:albums,id'

The preceding rule means that the album_id field is required (must be posted in the
form), it must be a numeric value, and must exist in the id column of the albums
table as we want to assign images to albums. The second rule is as follows:

'image'=>'required|image'

The preceding rule means that the image field is required (must be posted in the
form) and its content must be an image. Then we check the posted form data using
the following code:

$validator = Validator::make(Input::all(), $rules);

Chapter 6

[107]

The validation function needs two variables. The first one is the data that we need
to validate. In this case, we set that using the Input::all() method, which means
we need to validate the posted form data. The second one is the rules variable. The
rules variable must be set as an array as shown in the following code:

$rules = array(

 'album_id' => 'required|numeric|exists:albums,id',
 'image'=>'required|image'

);

Laravel's validation class comes with many predefined rules. You can see the
updated list of all available validation rules at http://laravel.com/docs/
validation#available-validation-rules.

Sometimes, we need to validate only specific MIME types, such as JPEG, BMP, ORG,
and PNG. You can easily set the validation rule for this kind of validation as shown in
the following code:

'image' =>'required|mimes:jpeg,bmp,png'

Then we check the validation process using the following code:

if($validator->fails()){

 return Redirect::route('add_image',array('id' =>
 Input::get('album_id')))
 ->withErrors($validator)
 ->withInput();
}

If validation fails, we redirect the browser to the image upload form. Then, we show
the rules in the template file using the following code:

@if($errors->has())
 <div class="alert alert-block alert-error fade in"
 id="error-block">
 <?php
 $messages = $errors->all(':message');
 ?>
 <button type="button" class="close"
 data-dismiss="alert">×</button>

Creating a Photo Gallery System

[108]

 <h4>Warning!</h4>

 @foreach($messages as $message)
 {{$message}}
 @endforeach

 </div>
@endif

Assigning a photo to an album
The postAdd() function is used for processing the request to create a new image
record in the database. We get the author's ID using the following previously
mentioned method:

Auth::user()->id

Using the following method, we assign the current user with the blog post. We have
a new method in the query as shown in the following code:

Posts::with('Author')->…

We've defined a public Photos () function in our Album model using the
following code:

public function Photos(){

 return $this->hasMany('images','album_id');
}

The hasMany() method is an Eloquent function for creating relations between tables.
Basically, the function has one required variable and one optional variable. The
first variable (required) is for defining the target model. The second, which is the
optional variable, is for defining the source column of the current model's table.
In this case, we store the albums' IDs in the album_id column in the images table.
Because of that, we need to define the second variable as album_id in the function.
The second parameter is only required if your ID doesn't follow the convention.
Using this method, we can pass our albums' information and assigned images' data
to the template at the same time.

Chapter 6

[109]

As you can remember from Chapter 4, Building a Personal Blog, we can list the relational
data in the foreach loop. Let's have a quick look at the image-listing section of code in
our template file, which is located in app/views/ album.blade.php:

@foreach($album->Photos as $photo)

 <div class="col-lg-3">
 <div class="thumbnail" style="max-height: 350px;
 min-height: 350px;">
 name}}" src="/albums/{{$photo->image}}">
 <div class="caption">
 <p>{{$photo->description}}</p>
 <p><p>Created date: {{ date("d F Y",
 strtotime($photo->created_at)) }} at {{ date
 ("g:ha",strtotime($photo->created_at)) }}</p></p>

 $photo->id))}}" onclick="return confirm('Are you
 sure?')"><button type="button" class="btn
 btn-danger btn-small">Delete Image</button>
 </div>
 </div>
 </div>

@endforeach

Moving photos between albums
Moving photos between albums is a great feature for managing the album's
images. Many photo gallery systems come with this feature. So, we can code it
easily with Laravel. We need a form and controller function for adding this feature
to our photo gallery system. Let's code the controller function first. Open the
ImagesController.php file which is located in app/controllers/ and add the
following code in it:

public function postMove()
{
 $rules = array(

 'new_album' => 'required|numeric|exists:albums,id',
 'photo'=>'required|numeric|exists:images,id'

);

Creating a Photo Gallery System

[110]

 $validator = Validator::make(Input::all(), $rules);
 if($validator->fails()){

 return Redirect::route('index');
 }
 $image = Image::find(Input::get('photo'));
 $image->album_id = Input::get('new_album');
 $image->save();
 return Redirect::route('show_album',
 array('id'=>Input::get('new_album')));
}

As you can see in the preceding code, we use the Validation class again. Let's
examine the rules. The first rule is as follows:

'new_album' => 'required|numeric|exists:albums,id'

The preceding rule means that the new_album field is required (must be posted in
the form), must be a numeric value, and exist in the id column of the albums table.
We want to assign images to albums, so the images must exist. The second rule is
as follows:

'photo'=>'required|numeric|exists:images,id'

The preceding rule means that the photo field is required (must be posted in the
form), must be a numeric value, and exist in the id column of the images table.

After successful validation, we update the album_id column of the photos field and
redirect the browser to show the new album of photos using the following code:

$image = Image::find(Input::get('photo'));
$image->album_id = Input::get('new_album');
$image->save();
return Redirect::route('show_album',
 array('id'=>Input::get('new_album')));

The final code of the Images controller should be as follows:

<?php

class ImagesController extends BaseController{

 public function getForm($id)
 {
 $album = Album::find($id);

 return View::make('addimage')

Chapter 6

[111]

 ->with('album',$album);
 }

 public function postAdd()
 {
 $rules = array(

 'album_id' => 'required|numeric|exists:albums,id',
 'image'=>'required|image'

);

 $validator = Validator::make(Input::all(), $rules);
 if($validator->fails()){

 return Redirect::route('add_image',array('id' =>
 Input::get('album_id')))
 ->withErrors($validator)
 ->withInput();
 }

 $file = Input::file('image');
 $random_name = str_random(8);
 $destinationPath = 'albums/';
 $extension = $file->getClientOriginalExtension();
 $filename=$random_name.'_album_image.'.$extension;
 $uploadSuccess = Input::file('image')->move(
 $destinationPath, $filename);
 Image::create(array(
 'description' => Input::get('description'),
 'image' => $filename,
 'album_id'=> Input::get('album_id')
));

 return Redirect::route('show_album',
 array('id'=>Input::get('album_id')));
 }
 public function getDelete($id)
 {
 $image = Image::find($id);

 $image->delete();

 return Redirect::route('show_album',
 array('id'=>$image->album_id));
 }
 public function postMove()

Creating a Photo Gallery System

[112]

 {
 $rules = array(
 'new_album' => 'required|numeric|exists:albums,id',
 'photo'=>'required|numeric|exists:images,id'
);
 $validator = Validator::make(Input::all(), $rules);
 if($validator->fails()){

 return Redirect::route('index');
 }
 $image = Image::find(Input::get('photo'));
 $image->album_id = Input::get('new_album');
 $image->save();
 return Redirect::route('show_album',
 array('id'=>Input::get('new_album')));
 }
}

Our controller is ready, so we need to set up the updated form's route in app/
routes.php. Open the file and add the following code:

Route::post('/moveimage', array('as' => 'move_image', 'uses' =>
'ImagesController@postMove'));

The final code located in app/routes.php should look as follows:

<?php
Route::get('/', array('as' => 'index', 'uses' =>
 'AlbumsController@getList'));
Route::get('/createalbum', array('as' => 'create_album_form',
 'uses' => 'AlbumsController@getForm'));
Route::post('/createalbum', array('as' => 'create_album',
 'uses' => 'AlbumsController@postCreate'));
Route::get('/deletealbum/{id}', array('as' => 'delete_album',
 'uses' => 'AlbumsController@getDelete'));
Route::get('/album/{id}', array('as' => 'show_album', 'uses' =>
 'AlbumsController@getAlbum'));
Route::get('/addimage/{id}', array('as' => 'add_image', 'uses' =>
 'ImagesController@getForm'));
Route::post('/addimage', array('as' => 'add_image_to_album',
 'uses' => 'ImagesController@postAdd'));
Route::get('/deleteimage/{id}', array('as' => 'delete_image',
'uses' => 'ImagesController@getDelete'));
Route::post('/moveimage', array('as' => 'move_image',
'uses' => 'ImagesController@postMove'));

Chapter 6

[113]

Creating an update form
Now we need to create our update form in our template file. Open the template file
which is located in app/views/ album.blade.php and change the foreach loop
as follows:

@foreach($album->Photos as $photo)
 <div class="col-lg-3">
 <div class="thumbnail" style="max-height: 350px;
 min-height: 350px;">
 name}}" src="/albums/{{$photo->image}}">
 <div class="caption">
 <p>{{$photo->description}}</p>
 <p>Created date: {{ date("d F Y",
 strtotime($photo->created_at)) }}
 at {{ date("g:ha",strtotime($photo->created_at)) }}</p>
 <a href="{{URL::route('delete_image',
 array('id'=>$photo->id))}}" onclick="return
 confirm('Are you sure?')"><button type="button"
 class="btn btn-danger btn-small">Delete Image
 </button>
 <p>Move image to another Album :</p>
 <form name="movephoto" method="POST"
 action="{{URL::route('move_image')}}">
 <select name="new_album">
 @foreach($albums as $others)
 <option value="{{$others->id}}">{{$others->name}}
 </option>
 @endforeach
 </select>
 <input type="hidden" name="photo"
 value="{{$photo->id}}" />
 <button type="submit" class="btn btn-small
 btn-info" onclick="return confirm('Are you sure?')">
 Move Image</button>
 </form>
 </div>
 </div>
 </div>
@endforeach

Creating a Photo Gallery System

[114]

Summary
In this chapter, we've created a simple photo gallery system with Laravel's built-in
functions and the Eloquent database driver. We've learned how to validate the data,
and about the powerful data relation method in Eloquent named hasMany. In the
next chapters, we'll learn to work with more complex tables, and relational data and
relation types.

Creating a Newsletter System
In this chapter, we will cover an advanced newsletter system, which will use
Laravel's queue and email libraries. After this section, we will learn how to set and
fire/trigger queued tasks, and how to parse e-mail templates and send mass e-mails
to subscribers. The topics covered in this chapter are:

•	 Creating a database and migrating the subscriber's table
•	 Creating a subscriber's model
•	 Creating our subscription form
•	 Validating and processing the form
•	 Creating a queue system to process the e-mail
•	 Using the Email class to process e-mails inside the queue
•	 Testing the system
•	 Sending e-mails with the queue directly

In this chapter, we will be using third-party services, which will require access to
your script, so before proceeding, make sure your project is available online.

Creating a database and migrating the
subscribers table
After successfully installing Laravel 4 and defining database credentials from app/
config/database.php, create a database called chapter7.

After creating the database, open up your terminal and navigate through your
project folder, and run the following command:

php artisan migrate:make create_subscribers_table --table=subscribers
–-create

Creating a Newsletter System

[116]

The preceding command will generate a new MySQL migration named
subscribers for us. Now navigate to the migrations folder in app/database/ and
open up the migration file just created by the preceding command, and change its
contents as shown in the following code:

<?php
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateSubscribersTable extends Migration {

 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('subscribers', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('email,100)->default('');
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('subscribers');
 }
}

For this chapter, we will only need the email column, which will hold the e-mail
address, of the subscribers. I set this column to be, at most, 100 characters long,
having datatype VARCHAR, and it is not to be left as null.

After saving the file, run the following command to execute migration:

php artisan migrate

If no error has occurred, you are ready for the next step of the project.

Chapter 7

[117]

Creating a subscribers model
To benefit from Eloquent ORM, the best practice is to create a model.

Save the following code in subscribers.php at app/models/:

<?php
Class Subscribers Extends Eloquent{
 protected $table = 'subscribers';
 protected $fillable = array('email');
}

We set the table name with the variable $table, and columns in which the value
must be filled by the user are set with the $fillable variable. Now that our model is
ready, we can proceed to the next step, and start creating our controller, along with
the form.

Creating our subscription form
Now we should create a form to save records to the database and specify its
properties.

1.	 First, open your terminal and type the following command:
php artisan controller:make SubscribersController

This command will generate a SubscribersController.php file for you
with some blank methods in the app/controllers directory.

The default controller methods generated by the artisan command
are not RESTful.

2.	 Now, open up app/routes.php and add the following code:
//We define a RESTful controller and all its via route
 //directly
Route::controller('subscribers', 'SubscribersController');

Instead of defining all actions one by one, we can define all actions declared
on a controller with one line of code. If your method names are usable as get
or post actions directly, using the controller() method can save a lot of
time. The first parameter sets the URI (Uniform Resource Identifier) for the
controller and the second parameter defines which class in the controllers
folder will be accessed and defined.

Creating a Newsletter System

[118]

Controllers which are set like this are automatically RESTful.

3.	 Now, let's create the form's controller. Remove all methods inside the auto-
generated class and add the following code in your controller file:
//The method to show the form to add a new feed
public function getIndex() {
 //We load a view directly and return it to be served
 return View::make('subscribe_form');
}

First, we defined the process. It is quite simple here; we named the method
as getCreate(), because we want our Create method to be RESTful.
We simply loaded a view file, which we will be generating in the next
step directly.

4.	 Now let's create our view file. In this example, I've used the Ajax POST
technique using jQuery. Save this file as subscribe_form.blade.php at
app/views/:

<!doctype html>
<!doctype html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Subscribe to Newsletter</title>
 <style>
 /*Some Little Minor CSS to tidy up the form*/
 body{margin:0;font-family:Arial,Tahoma,sans-serif;
 text-align:center;padding-top:60px;color:#666;
 font-size:24px}
 input{font-size:18px}
 input[type=text]{width:300px}
 div.content{padding-top:24px;font-weight:700;
 font-size:24px}
 .success{color:#0b0}
 .error{color:#b00}
 </style>
 </head>
 <body>

 {{-- Form Starts Here --}}
 {{Form::open(array('url'=> URL::to
 ('subscribers/submit'),'method' => 'post'))}}

Chapter 7

[119]

 <p>Simple Newsletter Subscription</p>
 {{Form::text('email',null,array
 ('placeholder'=>'Type your E-mail address here'))}}
 {{Form::submit('Submit!')}}

 {{Form::close()}}
 {{-- Form Ends Here --}}

 {{-- This div will show the ajax response --}}
 <div class="content"></div>
 {{-- Because it'll be sent over AJAX, We add the
 jQuery source --}}
 {{ HTML::script
 ('http://code.jquery.com/jquery-1.8.3.min.js') }}
 <script type="text/javascript">
 //Even though it's on footer, I just like to make
 //sure that DOM is ready
 $(function(){
 //We hide de the result div on start
 $('div.content').hide();
 //This part is more jQuery Related. In short, we
 //make an Ajax post request and get the response
 //back from server
 $('input[type="submit"]').click(function(e){
 e.preventDefault();
 $.post('/subscribers/submit', {
 email: $('input[name="email"]').val()
 }, function($data){
 if($data=='1') {
 $('div.content').hide().removeClass
 ('success error').addClass('success').html
 ('You\'ve successfully subscribed to our
 newsletter').fadeIn('fast');
 } else {
 //This part echos our form validation errors
 $('div.content').hide().removeClass
 ('success error').addClass('error').html
 ('There has been an error occurred:

'+$data).fadeIn('fast');
 }
 });
 });
 //We prevented to submit by pressing enter or any
 other way
 $('form').submit(function(e){
 e.preventDefault();

Creating a Newsletter System

[120]

 $('input[type="submit"]').click();
 });
 });
 </script>
 </body>
</html>

The preceding code will produce a simple form as shown in the
following screenshot:

Now that our form is ready, we can continue and process the form.

Validating and processing the form
Now that we have the form, we need to validate and store the data. We also need
to check whether the request is an Ajax request. Also, we need to return successful
code or error messages back to the form with Ajax methods, so that the end-user can
understand what has happened at the backend.

Chapter 7

[121]

Save the data inside SubscribersController.php at app/controllers/:

//This method is to process the form
public function postSubmit() {

 //we check if it's really an AJAX request
 if(Request::ajax()) {

 $validation = Validator::make(Input::all(), array(
 //email field should be required, should be in an email
 //format, and should be unique
 'email' => 'required|email|unique:subscribers,email'
)
);

 if($validation->fails()) {
 return $validation->errors()->first();
 } else {

 $create = Subscribers::create(array(
 'email' => Input::get('email')
));

 //If successful, we will be returning the '1' so the form
 //understands it's successful
 //or if we encountered an unsuccessful creation attempt,
 return its info
 return $create?'1':'We could not save your address to our
 system, please try again later';
 }

 } else {
 return Redirect::to('subscribers');
 }
}

The following points explain the preceding code:

1.	 With the ajax() method of the Request class, you can check whether the
request is an Ajax request or not. If it's not an Ajax request, we are redirected
back to our subscriber's page (the form itself).

2.	 If it's a valid request, then we run our form using the make() method of the
Validation class. In this example, I've written the rules directly, but the best
practice is to set them in models and call them to the controller directly. The
rule required checks whether the field is filled. The rule email checks if the
input is in a valid e-mail format, and lastly, the rule unique helps us to know
whether the value is already on a row or not.

Creating a Newsletter System

[122]

3.	 If the form validation fails, we return the first error message directly. Returned
content will be Ajax's response that will be echoed out into our form page.
Since the error message is an auto-generated meaningful text message, it's
safe to use it in our example directly. This message will show all errors from
our validation. For example, it will echo out if the field is not a valid e-mail
address, or if the e-mail has been submitted to the database already.

4.	 If the form validation passes, we try to add the e-mail to our database with
the create() method of Laravel's Eloquent ORM.

Creating a queue system for basic e-mail
sending
Queues, which are featured in Laravel 4, are one of the best features that come
with the framework. Imagine you have a long process, such as resizing all images,
sending mass e-mails, or mass database operations. When you process these, they
will take time. So why should we wait? Instead we will put these processes in a
queue. With Laravel v4, this is quite easy to manage. In this section, we are going to
create a simple queue and loop through the e-mails and will try to send an e-mail to
each subscriber using the following steps:

1.	 First, we need a queue driver for our project. This may be Amazon SQS,
Beanstalkd, or Iron IO. I chose Iron IO because, currently, it's the only queue
driver that supports push queues. Then we need to get the package from
packagist. Add "iron-io/iron_mq": "dev-master" to the require key of
composer.json. It should look like the following code:
"require": {
 "laravel/framework": "4.0.*",
 "iron-io/iron_mq": "dev-master"
},

2.	 Now you should run the following command to update/download new
packages:
php composer.phar update

3.	 We need an account from one of the queue services that Laravel officially
supports. In this example, I'll be using the free Iron.io service.

1.	 First, sign up to the website http://iron.io.
2.	 Second, after you're logged in, create a project named laravel.

Chapter 7

[123]

3.	 Then, click on your project. There is a key icon that will give you the
project's credentials. Click on that; it will provide you with project_
id and token.

4.	 Now navigate to app/config/queue.php, and change the default key driver
to iron.
In the queue file that we opened, there is a key named iron, which you
will be using to fill the credentials. Provide your token and project_id
information there, and for the queue key, type laravel.

5.	 Now, open your terminal and type the following command:
php artisan queue:subscribe laravel
 http://your-site-url/queue/push

6.	 If everything went okay, you will get an output as follows:
Queue subscriber added: http://your-site-url/queue/push

7.	 Now, when you check the queues tab on the Iron.io project page, you will see
a new push queue generated by Laravel. Because it's a push queue, the queue
will call us when its time comes.

8.	 Now we need some methods to catch the push request, to marshal it, and to
fire it.

1.	 First, we will need a get method to trigger the push queue (which
will mimic the codes to trigger the queue).
Add the following code into your routes.php file in the app folder:

 //This code will trigger the push request
 Route::get('queue/process',function(){
 Queue::push('SendEmail');
 return 'Queue Processed Successfully!';
 });

This code will make a push request to a class called SendEmail,
which we will be creating in further steps.

2.	 Now we will need a listener to marshal the queue. Add the following
code into your routes.php file in the app folder:

 //When the push driver sends us back, we will have to
 //marshal and process the queue.
 Route::post('queue/push',function(){
 return Queue::marshal();
 });

Creating a Newsletter System

[124]

This code will get the push request from our queue driver, which will
put it up in the queue and run.
We will need a class to fire up the queue and send e-mails, but first
we need an e-mail template. Save the code as test.blade.php in the
app/views/ emails/ directory:

 <!DOCTYPE html>
 <html lang="en-US">
 <head>
 <meta charset="utf-8">
 </head>
 <body>
 <h2>Welcome to our newsletter</h2>
 <div>Hello {{$email}}, this is our test message from
 our Awesome Laravel queue system.</div>
 /body>
 </html>

This is a simple e-mail template that will wrap our e-mail.

3.	 Now we need a class to fire up the queue and send the e-mail. Save
these class files directly into the routes.php file in the app folder:

 //When the queue is pushed and waiting to be marshalled,
 we should assign a Class to make the job done
 Class SendEmail {

 public function fire($job,$data) {

 //We first get the all data from our subscribers
 //database
 $subscribers = Subscribers::all();

 foreach ($subscribers as $each) {

 //Now we send an email to each subscriber
 Mail::send('emails.test',
 array('email'=>$each->email), function($message){

 $message->from('us@oursite.com', 'Our Name');

 $message->to($each->email);

 });
 }

 $job->delete();
 }
 }

Chapter 7

[125]

The class SendEmail, which we have written in the preceding code,
will cover the queue job that we will be assigning. The method
fire() is Laravel's own method to process the queue event. So when
the queue is marshaled, the code inside the method fire() will be
run. We can also pass parameters to job as a second parameter while
we are calling the Queue::push() method.
With the help of Eloquent ORM, we have obtained all the subscriber
methods from the database using the all() method, then with a
foreach loop, we looped through all the records.
After job is processed successfully, at the bottom, we use the
delete() method so the job won't be started again on the next
queue call.

Before digging into the code further, we must learn the basics of Laravel 4's new
feature, Email class.

Using the Email class to process e-mails
inside the queue
Before proceeding further, we need to make sure that our e-mail credentials are
correct and we have set all the values correctly. Open the mail.php file in the app/
config/ directory, and fill the settings according to your configuration:

•	 The parameter driver sets which e-mail driver is to be used; mail, sendmail,
and smtp are the default mail-sending parameters.

•	 If you are using smtp, you will need to fill the host, port, encryption,
username, and password fields according to your provider.

•	 You can also set a default from-address with the field from, so you won't
have to type the same address over and over again.

•	 If you're using sendmail as the mail-sending driver, you should make sure
its path in the parameter sendmail is correct. Otherwise, the e-mails won't
be sent.

•	 If you're still testing your application, or you are in a live environment and
want to test your updates without the risk of sending the wrong/unfinished
e-mails, you should set pretend to true, so instead of actually sending the
e-mails, it will keep them on the logfiles for you to debug.

While we were looping through all the records, we used Laravel's new e-mail sender,
the Mail class, which is based on the popular component, Swiftmailer.

Creating a Newsletter System

[126]

The Mail::send() method takes three major parameters:

•	 The first parameter is the path of the e-mail template file in which the e-mail
will be wrapped

•	 The second parameter is the variable that will be sent to the view
•	 The third parameter is a closure function, where we can set the titles from,

to, CC/BCC, and attachments
Additionally, you can also use the method attach() to add attachments to
the e-mail

Testing the system
After we set the queue system and the email class, we are ready to test the code
we've written:

1.	 First, make sure there are some valid e-mail addresses in the database.
2.	 Now navigate through your browser and type http://your-site-url/

queue/process.
3.	 When you see the message Queue Processed, this means the queue was sent

to our queue driver successfully. I want to describe what's happening here,
step by step:

°° First, we ping our queue driver containing Queue::push() with the
parameters and additional data that we need to queue

°° Then, after the queue driver gets our response, it will make a post
request to our post route queue/push, which we had set up with the
queue:subscribe artisan command earlier

°° When the push request is received from the queue driver by our
script, it marshals and triggers the queued event

°° After it's triggered, the method fire() that is inside the class runs
and does the job that we assigned to it

4.	 After a while, if everything went okay, you will start to receive those e-mails
in your inbox(es).

Chapter 7

[127]

Sending e-mails with the queue directly
In some e-mail-sending cases, especially if we are using a third-party SMTP and
if we are sending user registration, validation e-mails, and so on, queue calling
may not be the best solution, but it would be great if we could queue it directly
while sending the e-mails. Laravel's Email class also handles this. Instead of using
Mail::send(), if we use Mail::queue() with the same parameters, the e-mail
sending will be done with the help of the queue driver, and the response times for
the end-user will be faster.

Summary
Throughout this chapter, we've created a simple newsletter subscription form using
Laravel's Form Builder class using jQuery's Ajax post methods. We've validated
and processed the form and saved the data into the database. We've also learned
how to queue long processes easily with Laravel's queue class using a third-party
queue driver. We've also covered the basics of e-mail sending with Laravel 4.

In the next chapter, we will be writing a Q&A site, which will have a pagination
system, a tag system, a third-party authentication library, a question and answer
voting system, options to choose the best answer, and a search system for questions.

Building a Q&A
Web Application

In this chapter we are going to create a Q&A web application. First, we will learn
to remove the public segment from Laravel, to be able to use some shared hosting
solutions. Then, we will use a third-party extension for authentication and process
access rights. Finally, we will make a question system which will allow commenting
and answering questions, a tag system, upvoting and downvoting, and choosing
the best answer. We will use pivot tables for question tags. We will also benefit from
the jQuery Ajax requests at various places. The following are the topics that will be
covered in this chapter:

•	 Removing the public segment from Laravel 4
•	 Installing Sentry 2 and an authentication library, and setting access rights
•	 Creating custom filters
•	 Creating our registration and login forms
•	 Creating our questions table and model
•	 Creating our tags table with a pivot table
•	 Creating and processing our question form
•	 Creating our questions list page
•	 Creating our question page
•	 Creating our answers table and resources
•	 Searching questions by tags

Building a Q&A Web Application

[130]

Removing the public segment from
Laravel 4
In some real-world cases, you may have to stick with badly configured, shared web
hosting solutions, which don't have a www, public_html, or a similar folder. In that
case, you would want to remove the public segment from your Laravel 4 installation.
To remove this public segment, there are some easy steps to follow:

1.	 First, make sure you have a running Laravel 4 instance.
2.	 Then, move everything inside the public folder into the parent folder (where

app, bootstrap, vendor, and other folders are present), and then delete the
blank public folder.

3.	 Next, open the index.php file (which we had just moved from the public
folder), and find the following line:
require __DIR__.'/../bootstrap/autoload.php';

Replace the previous line with the following line:

require __DIR__.'/bootstrap/autoload.php';

4.	 Now, find this line in the index.php file:
$app = require_once __DIR__.'/../bootstrap/start.php';

Replace the previous line with the following line:

$app = require_once __DIR__.'/bootstrap/start.php';

5.	 Now, open the paths.php file under the bootstrap folder, and find this line:
'public' => __DIR__.'/../public',

Replace the previous line with the following line:

'public' => __DIR__.'/..',

6.	 If you are using a virtual host, don't forget to change the directory settings
and restart your web server.

In the previous steps, we first moved everything from the public folder to the
parent folder since we won't be using the parent segment anymore. Then we
altered the index.php file to identify the proper paths of autoload.php and
start.php, so that the framework can run. If everything went okay, you won't
see any issues whatsoever when you refresh your page, and this means you have
successfully removed the public segment from your Laravel 4 installation.

Chapter 8

[131]

Not to forget that this method will make all your code available in the
public web root, and this may bring security issues on your project. In
that case, you should prevent using this method, or you should find a
better web hosting solution.

Installing Sentry 2 and an authentication
library and setting access rights
In this section, we will be installing a third-party library for user authentication and
access rights called Sentry 2, made available by Cartalyst. Cartalyst is a developer
centric, open source company with a strong focus on documentation, community
support, and framework. In this section, we will be following the Sentry's official
Laravel 4 installation steps, with a simple extra step, which is currently available at
http://docs.cartalyst.com/sentry-2/installation/laravel-4.

1.	 First, open your composer.json file, and add the following line to the
require attribute:
"cartalyst/sentry": "2.0.*"

2.	 Then, run the composer update command to fetch the package:
php composer.phar update

3.	 Now, open your app.php file under app/config, and add the following line
to the providers array:
'Cartalyst\Sentry\SentryServiceProvider',

4.	 Now, add the following line to your aliases array in app.php:
'Sentry' => 'Cartalyst\Sentry\Facades\Laravel\Sentry',

5.	 Now, run the following command to install the required tables (or users) to
the database:
php artisan migrate --package=cartalyst/sentry

6.	 Next, we need to publish the configuration file of Sentry 2 to our app folder,
so that we can manage throttling or other settings if we want to. Run the
following command from your terminal:
php artisan config:publish cartalyst/sentry

Building a Q&A Web Application

[132]

7.	 Now, we should alter the default User model to be able to use it with Sentry
2. Open your User.php file under app/models, and replace all its contents
with the following code:
<?php
class User extends Cartalyst\Sentry\Users\Eloquent\User {
}

8.	 Lastly, we should create our admin user. Add the following code to your
routes.php file under the app folder and run it once. Comment out or delete
the code after that. We are practically assigning the admin ID=1 for our
system, with an access right called admin.

/**
* This method is to create an admin once.
* Just run it once, and then remove or comment it out.
**/
Route::get('create_user',function(){

$user = Sentry::getUserProvider()->create(array(
 'email' => 'admin@admin.com',
 //password will be hashed upon creation by Sentry 2
 'password' => 'password',
 'first_name' => 'John',
 'last_name' => 'Doe',
 'activated' => 1,
 'permissions' => array (
 'admin' => 1
)
));
return 'admin created with id of '.$user->id;
});

Doing this, you've successfully created a user with admin@admin.com as
an e-mail address and password as the password. The password will be
automatically hashed upon creation by Sentry 2, so we won't have to hash
and salt the password before creation. We have set the admin's name as
John and the surname as Doe. Also, we've set a permission for the user that
we've just generated called admin to check the access right before the request
processes.

You're now all set. If everything went okay and you check your database, you should
see the migrations table generated by Laravel 4 (which you had to manually set
before the first migration in Laravel 3) and the tables generated by Sentry 2. In the
users table, you should see an entry for the user generated by our closure method.

Chapter 8

[133]

Now that our user authentication system is ready, we need to generate our filters,
and then create registration and login forms.

Creating custom filters
Custom filters will help us filter requests and help us make some prechecks
beforehand. Benefiting from the Sentry 2's built-in methods, we can define custom
filters easily. But first we need to define some routes, which will be used in
our project.

Add the following code to your routes.php file under the app folder:

//Auth Resource
Route::get('signup',array('as'=>'signup_form', 'before'=>
 'is_guest', 'uses'=>'AuthController@getSignup'));
Route::post('signup',array('as'=>'signup_form_post', 'before' =>
 'csrf|is_guest', 'uses' => 'AuthController@postSignup'));
Route::post('login',array('as'=>'login_post', 'before' =>
 'csrf| is_guest', 'uses' => 'AuthController@postLogin'));
Route::get('logout',array('as'=>'logout', 'before'=>'
 user', 'uses' => 'AuthController@getLogout'));

//---- Q & A Resources
Route::get('/',array('as'=>'index','uses'=>
 'MainController@getIndex'));

In these named resources, the names are defined with the key as in the array,
and the filters are set with the key before. As you can see, there are some before
parameters, such as is_guest and user. These filters will run before any request
is made by the user, and even call the controller. The key uses sets the controller
that will be executed when the resource is called. We will write the code for those
controllers later. As a result, for example, a user can't even try to post to the login
form. If the user tries that, our filter will run and do the filtering before the request is
made by the user.

Now that our routes are ready, we can add the filters. To add the filters, open your
filters.php file under the app folder and add the following code:

/*
 |---
 | Q&A Custom Filters
 |---
*/

Building a Q&A Web Application

[134]

Route::filter('user',function($route,$request){
 if(Sentry::check()) {
 //is logged in
 } else {
 return Redirect::route('index')
 ->with('error','You need to log in first');
 }
});

Route::filter('is_guest',function($route,$request){
 if(!Sentry::check()) {
 //is a guest
 } else {
 return Redirect::route('index')
 ->with('error','You are already logged in');
 }
});

Route::filter('access_check',function($route,$request,$right){
 if(Sentry::check()) {
 if(Sentry::getUser()->hasAccess($right)) {
 //logged in and can access
 } else {
 return Redirect::route('index')
 ->with('error',
 'You don\'t have enough priviliges to access that
 page');
 }
 } else {
 return Redirect::route('index')
 ->with('error','You need to log in first');
 }
});

The method Route::filter() allows us to create our own filters. The first
parameter is the filter's name and the second parameter is a closure function, which
itself takes at least two parameters. If you need to provide a parameter to the filter,
you can add this as a third parameter.

The check() helper function of Sentry 2 returns a Boolean value whether the user
is logged in or not. If it returns true, it means the user is logged in, else the user
browsing the web page is currently not logged in. In our custom filter user and is_
guest, we check exactly this. The passing clause of your filter can be left blank. But if
the user fails to satisfy the filter's conditions, appropriate action can be taken. In our
example, we are redirecting the user to our index route.

Chapter 8

[135]

However, our third filter access_check is a little bit more complicated. As you can
see, we've added a third parameter called $right, which we will pass through the
calling filter. This filter checks two conditions. First, it checks whether the user is
logged in by using the Sentry::check() method. Then, it checks whether the user
has access to the $right section (which we will see when we define filters) by using
the hasAccess() method. But this method requires a current logged in user first. For
this, we will validate the current user's information by using the getUser() method
of Sentry 2.

To pass parameter(s) while calling a filter, you can use filter_name:parameter1,
parameter2. In our example, we will check whether the user is an admin, using the
filter access_check:admin.

To use multiple filters in the before parameter, add a | character between the
parameters. In our example, our login post and sign up resources' filters are defined
as csrf|guest (csrf is predefined in our filters.php file by Laravel itself).

Creating our registration and login forms
Before creating our registration and login forms, we need a template to set the
sections. I'll be using a custom HTML/CSS template that I've generated for this
chapter, which is inspired by the Snow theme of the open source Q&A script,
Question2Answer.

We perform the following steps to create our registration and login forms:

1.	 First, copy everything in the assets folder of the provided example code,
to your project folder's root (where the app, bootstrap, and other folders
are located), because we had removed the public folder segment in the first
section of this chapter.

2.	 Next, add the following code to your template_masterpage.blade.php file
under app/views:
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7">
<![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8">
<![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9">
<![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js">
<!--<![endif]-->

<head>
 <meta charset="utf-8" />

Building a Q&A Web Application

[136]

 <title>{{isset($title)?$title.' | ':''}} LARAVEL Q & A
 </title>
 {{ HTML::style('assets/css/style.css') }}
</head>
<body>

 {{-- We include the top menu view here --}}
 @include('template.topmenu')

 <div class="centerfix" id="header">
 <div class="centercontent">

 {{HTML::image('assets/img/header/logo.png')}}

 </div>
 </div>
 <div class="centerfix" id="main" role="main">
 <div class="centercontent clearfix">
 <div id="contentblock">

 {{-- Showing the Error and Success Messages--}}
 @if(Session::has('error'))
 <div class="warningx wredy">
 {{Session::get('error')}}
 </div>
 @endif

 @if(Session::has('success'))
 <div class="warningx wgreeny">
 {{Session::get('success')}}
 </div>
 @endif

 {{-- Content section of the template --}}
 @yield('content')
 </div>
 </div>
 </div>
 {{-- JavaScript Files --}}
 {{ HTML::script('assets/js/libs.js') }}
 {{ HTML::script('assets/js/plugins.js') }}
 {{ HTML::script('assets/js/script.js') }}

Chapter 8

[137]

 {{-- Each page's custom assets (if available) will be
 yielded here --}}
 @yield('footer_assets')

</body>
</html>

Now, let's dig the code:
°° If we load a view with a title attribute, the <title> tag will include

the title; else it will just display our website's name.
°° The style() method of the HTML class will help us add CSS files to

our template easily. Also, the script() method of the HTML class
allows us to add JavaScript to our output HTML file.

°° We have included another file to our template_masterpage.blade.
php file using the @include() method of the Blade template engine.
We will describe its sections in the next step.

°° The route() method of the URL class will return a link to a named
route. This is pretty handy actually, because if we change the URL
structure we won't need to dig into all the template files and edit all
our links.

°° The image() method of the HTML class allows us to add the tag
to our template.

°° In filters, we redirected to the route pages using the with() method
with the parameter error. If we loaded pages (View::make()) using
with(), the parameters would be variables. But because we have
redirected the user to a page, these parameters passed with with()
will be a session flashdata, which will only be available once. To
check whether these sessions are set, we use the has() method of
the Session class. Session::has('sessionName') will return a
Boolean value to identify whether a session is set or not. If it's set, we
can use the get() method of the Session class to use it in our views,
controllers, and other places as well.

°° The @yield() method of the Blade template engine fetches the data
present in @section(), and parses it to the master template page.

3.	 In the previous section, we included another view by calling the @include()
method as @include('template.topmenu'). Now save the following code
as topmenu.blade.php under app/views/template:
{{-- Top error (about login etc.) --}}
@if(Session::has('topError'))
 <div class="centerfix" id="infobar">

Building a Q&A Web Application

[138]

 <div class="centercontent">{{ Session::get
 ('topError') }}
 </div>
 </div>
@endif

{{-- Check if a user is logged in, login and logout has
 different templates --}}
@if(!Sentry::check())
<div class="centerfix" id="login">
 <div class="centercontent">
 {{Form::open(array('route'=>'login_post'))}}
 {{Form::email('email', Input::old('email'),
 array('placeholder'=>'E-mail Address'))}}
 {{Form::password('password', array('placeholder' =>
 'Password'))}}
 {{Form::submit('Log in!')}}
 {{Form::close()}}

 {{HTML::link('signup_form','Register',array(),
 array('class'=>'wybutton'))}}
 </div>
</div>
@else
 <div class="centerfix" id="login">
 <div class="centercontent">
 <div id="userblock">Hello again,
 {{HTML::link('#',Sentry::getUser()->first_name.'
 '.Sentry::getUser()->last_name)}}</div>
 {{HTML::linkRoute('logout','Logout',array(),
 array('class'=>'wybutton'))}}
 </div>
 </div>
@endif

Now, let's dig the code:

°° In our template we have two error messages of which the first one is
totally reserved for the login area that will be shown at the top. I've
named it as error_top. With the methods has() and get() that we've
just learned, we check whether an error is present, and display it.

°° The top menu will depend on whether a user is logged in or not. So we
create an if clause using the user checking method check() of Sentry
2 and check if the user is logged in. If the user is not logged in (guest),
we show the login form that we've made using the Form class, else we
show the user infobar with a profile and a logout button.

Chapter 8

[139]

4.	 Now, we need a registration form page. We've already defined its methods in
our routes.php file under the app folder earlier:
//Auth Resource
Route::get('signup',array('as'=>'signup_form',
 'before' => 'is_guest',
 'uses' => 'AuthController@getSignup'));
Route::post('signup',array('as' => 'signup_form_post',
 'before' => 'csrf|is_guest',
 'uses' => 'AuthController@postSignup'));

5.	 According to the route resource we've created, we need a controller
named AuthController, having two methods called getSignup() and
postSignup(). Now let's first create the controller. Open your terminal and
type the following command:
php artisan controller:make AuthController

6.	 The previous command will create a new file, AuthController.php under
app/controllers with some default methods. Delete the code present inside
the AuthController class and add the following code inside that class, to
make the sign up form:
/**
 * Signup GET method
**/
public function getSignup() {
 return View::make('qa.signup')
 ->with('title','Sign Up!');
}

7.	 We now need a view file to make the form. Save the following code as
signup.blade.php under app/views/qa:

@extends('template_masterpage')

@section('content')
 <h1 id="replyh">Sign Up</h1>
 <p class="bluey">Please fill all the credentials
 correctly to register to our site</p>

 {{Form::open(array('route'=>'signup_form_post'))}}
 <p class="minihead">First Name:</p>
 {{Form::text('first_name',Input::get('first_name'),
 array('class'=>'fullinput'))}}
 <p class="minihead">Last Name:</p>

Building a Q&A Web Application

[140]

 {{Form::text('last_name',Input::get('last_name'),
 array('class'=>'fullinput'))}}
 <p class="minihead">E-mail address:</p>
 {{Form::email('email',Input::get('email'),
 array('class'=>'fullinput'))}}
 <p class="minihead">Password:</p>
 {{Form::password('password','',
 array('class'=>'fullinput'))}}
 <p class="minihead">Re-password:</p>
 {{Form::password('re_password','',
 array('class'=>'fullinput'))}}
 <p class="minihead">Your personal info will not be
 shared with any 3rd party companies.</p>
 {{Form::submit('Register now!')}}
 {{Form::close()}}
@stop

If you have done everything correctly, when you navigate to chapter8.dev/signup,
you should see the following form:

Chapter 8

[141]

Validating and processing the form
Now, we need to validate and process the form. We first need to define our
validation rules. Add the following code to the User class in your user.php file
under app/models:

public static $signup_rules = array(
 'first_name' => 'required|min:2',
 'last_name' => 'required|min:2',
 'email' => 'required|email|unique:users,email',
 'password' => 'required|min:6',
 're_password' => 'required|same:password'
);

The rules mentioned in the previous code will make all the fields required. We set
the first_name and last_name columns as required, and we set a minimum length
of two characters. We set the email field to be in a valid e-mail format, and the code
will check the users table (which is created upon installing Sentry 2) for unique
e-mail addresses. We set the password field to be required, and its length should
be a minimum of six characters. We also set the re_password field to match the
password field, so that we can make sure that the password is typed correctly.

Sentry 2 can also throw a unique e-mail checking exception, upon
an attempt to log in a user.

Before processing the form, we need a dummy index page to return the user after
signing up successfully. We will create a temporary index page by performing the
following steps:

1.	 First, run the following command to create a new controller:
php artisan controller:make MainController

2.	 Then, remove all methods that auto inserted, and add the following method
inside the class:
public function getIndex() {
 return View::make('qa.index');
}

3.	 Now, save this view file as index.blade.php under app/views/qa:
@extends('template_masterpage')

@section('content')
Heya!
@stop

Building a Q&A Web Application

[142]

4.	 Now, we need a controller method (which we defined in routes.php) to
process the signup form's post request. To do this, add the following code to
your AuthController.php file under app/controllers:
/**
 * Signup Post Method
**/
public function postSignup() {

 //Let's validate the form first
 $validation = Validator::make(Input::all(),User::$signup_rules);

 //let's check if the validation passed
 if($validation->passes()) {

 //Now let's create the user with Sentry 2's create method
 $user = Sentry::getUserProvider()->create(array(
 'email' => Input::get('email'),
 'password' => Input::get('password'),
 'first_name' => Input::get('first_name'),
 'last_name' => Input::get('last_name'),
 'activated' => 1
));

 //Since we don't use an email validation in this example,
 let's log the user in directly
 $login = Sentry::authenticate(array(
 'email'=>Input::get('email'),
 'password'=>Input::get('password')));

 return Redirect::route('index')
 ->with('success','You\'ve signed up and logged in
 successfully!');
 //if the validation failed, let's return the user
 //to the signup form with the first error message
 } else {
 return Redirect::route('signup_form')
 ->withInput(Input::except('password','re_password'))
 ->with('error',$validation->errors()->first());
 }
}

Chapter 8

[143]

Now, let's dig the code:
1.	 First, we check the form items using Laravel's built-in form

validation class using the rules we've defined in the model.
2.	 We check whether the form validation passes, using the passes()

method. We could also check the exact opposite situation using the
fails() method.

If the validation fails, we return the user to the Sign Up form with given
credentials using withInput(). But by using Input::except(), we filter
some columns such as password and re_password, so that the value in those
fields are not returned. Also, by passing a parameter using with, the form
validation's error message is returned. $validation->errors()->first()
returns the first error message string after the form validation step.

If the validation passes, we create a new user using the provided credentials.
We have set the column activated to 1, so that the sign up process would
not require an e-mail validation in our example.

Building a Q&A Web Application

[144]

Sentry 2 also uses a try/catch clause to catch errors. Don't forget to check
the documentation of Sentry 2, to learn how to catch unusual errors.

1.	 Since we are not using an e-mail validation system, we could simply
authenticate and sign in the user using the authenticate() method of
Sentry 2, right after signing up. The first parameter takes an array of email
and password (with key => value matching) and the optional second
parameter takes a Boolean value as an input, to check whether the user is to
be remembered or not (the remember me button).

2.	 After the authentication, we simply redirect the user to our index route with
a success message, as shown in the following screenshot:

Chapter 8

[145]

Processing the login and logout requests
Now that our registration system is ready, we need to process login and logout
requests. Since our login form is already prepared, we can directly go ahead and
process it. To process login and logout requests, we perform the following steps:

1.	 First, we need the login form validation rules. Add the following code to
your User.php file under app/models:
public static $login_rules = array(
	 'email'		 => 'required|email|exists:users,email',
	 'password'	 => 'required|min:6'
);

2.	 Now, we need a controller method to process the login request. Add the
following code to your AuthController.php file under app/controllers:
/**
 * Login Post Method Resource
**/
public function postLogin() {
 //let's first validate the form:
 $validation =
 Validator::make(Input::all(),User::$login_rules);

 //if the validation fails, return to the index page with
 first error message
 if($validation->fails()) {
 return Redirect::route('index')
 ->withInput(Input::except('password'))
 ->with('topError',$validation->errors()->first());
 } else {

 //if everything looks okay, we try to authenticate the
 user
 try {

 // Set login credentials
 $credentials = array(
 'email' => Input::get('email'),
 'password' => Input::get('password'),
);

 // Try to authenticate the user, remember me is set
 to false
 $user = Sentry::authenticate($credentials, false);
 //if everything went okay, we redirect to index route
 with success message

Building a Q&A Web Application

[146]

 return Redirect::route('index')
 ->with('success',
 'You\'ve successfully logged in!');
 } catch (Cartalyst\Sentry\Users\
 LoginRequiredException $e) {
 return Redirect::route('index')
 -> withInput(Input::except('password'))
 ->with('topError','Login field is required.');
 } catch (Cartalyst\Sentry\Users\
 PasswordRequiredException $e) {
 return Redirect::route('index')
 -> withInput(Input::except('password'))
 ->with('topError','Password field is required.');
 } catch (Cartalyst\Sentry\Users\
 WrongPasswordException $e) {
 return Redirect::route('index')
 -> withInput(Input::except('password'))
 ->with('topError','Wrong password, try again.');
 } catch (Cartalyst\Sentry\Users\
 UserNotFoundException $e) {
 return Redirect::route('index')
 -> withInput(Input::except('password'))
 ->with('topError','User was not found.');
 } catch (Cartalyst\Sentry\Users\
 UserNotActivatedException $e) {
 return Redirect::route('index')
 -> withInput(Input::except('password'))
 ->with('topError','User is not activated.');
 }

 // The following is only required if throttle is
 enabled
 catch (Cartalyst\Sentry\Throttling\
 UserSuspendedException $e) {
 return Redirect::route('index')
 -> withInput(Input::except('password'))
 ->with('topError','User is suspended.');
 } catch (Cartalyst\Sentry\Throttling\
 UserBannedException $e) {
 return Redirect::route('index')
 -> withInput(Input::except('password'))
 ->with('topError','User is banned.');
 }
 }
}

Chapter 8

[147]

Now, let's dig the code:

1.	 First, we check the form items via Laravel's built-in form validation
class, using the rules we've defined in the model.

2.	 Then we check whether the form validation has failed using the
fails() method of the form validation class. If the form validation
fails, we return the user to the index route with the first form
validation error.

3.	 The else clause in the previous code holds the events that will be
done if the form validation passes. In this, we authenticate a user
using the try/catch clauses of Sentry 2, catch all the exceptions, and
return an error message according to the type of exception.

We don't need all the exceptions in our example application, but as an
example we tried to show all the exceptions, just in case you needed to do
something different while following up.

All these try/catch exceptions are documented on the website of Sentry 2.

4.	 If no exceptions were thrown by Sentry 2, we return to the index page
with a success message.

3.	 Now, the only thing remaining regarding authentication is the logout button.
To create one, add the following code to the AuthController.php file under
app/controllers:

/**
 * Logout method
**/

Building a Q&A Web Application

[148]

public function getLogout() {
 //we simply log out the user
 Sentry::logout();

 //then, we return to the index route with a success
 message
 return Redirect::route('index')
 ->with('success','You\'ve successfully signed out');
}

Now let's dig the code:

1.	 First, we call the logout() method of Sentry 2, which logs the user
out.

2.	 Then, we simply return the user (who is currently a guest) to
the index route with a success message, telling that they have
successfully logged out.

Now that our authentication system is ready, we are ready to create our
questions table.

Creating our questions table and model
Now that we have a fully working authentication system, we are ready to
create our questions table. To create our questions table, we will be using
a database migration.

To create a migration, run the following command in your terminal:

php artisan migrate:make create_questions_table --table=
 questions --create

The previous command will create a new migration under app/database/
migrations.

For questions, we will be needing a question title, question details, the question's
poser, the question's date, how many times a question has been viewed, total sum of
votes, and the question's tags.

Now, open the migration that you've just created and replace its content with the
following code:

Schema::create('questions', function(Blueprint $table)
{
 //Question's ID
 $table->increments('id');

Chapter 8

[149]

 //title of the question
 $table->string('title',400)->default('');
 //asker's id
 $table->integer('userID')->unsigned()->default(0);
 //question's details
 $table->text('question')->default('');
 //how many times it's been viewed:
 $table->integer('viewed')->unsigned()->default(0);
 //total number of votes:
 $table->integer('votes')->default(0);
 //Foreign key to match userID (asker's id) to users
 $table->foreign('userID')->references('id')->
 on('users')->onDelete('cascade');
 //we will get asking time from the created_at column
 $table->timestamps();
});

For tags, we will be using a pivot table, that's why they are not present in our
current schema. For votes, in this example, we are simply holding an integer (that
can be positive or negative). In a real-world application, you would want to use a
second pivot table to keep users' votes, to prevent double voting, and to get a more
accurate result.

1.	 Now that your schema is ready, run the migration using the
following command:
php artisan migrate

2.	 After successfully migrating the schema, we now need a model to benefit
from Eloquent. Save the following code as Question.php under app/models:
<?php

class Question extends Eloquent {

 protected $fillable = array('title', 'userID', 'question',
 'viewed', 'answered', 'votes');

}

3.	 Now, we need the database relations to match tables. First, add the following
code to your User.php file under app/models:
public function questions() {
 return $this->hasMany('Question','userID');
}

Building a Q&A Web Application

[150]

4.	 Next, add the following code to your Question.php file under app/models:

public function users() {
 return $this->belongsTo('User','userID');
}

Since a user may have more than one question, we have used the hasMany() method
for the relation in our User model. Also, since all the questions are owned by the
users, we have used the belongsTo() method to match questions to users. In these
methods, the first parameter is the model name, which in our case is Question and
User. The second parameter is the column name in that model to match the tables,
which in our case is userID.

Creating our tags table with a pivot table
First, we should understand why we need pivot tables for tags. In a real world
situation, a question may have more than one tag; also, a tag may have more than
one question. In such situations (many to many relationships), where both the tables
may have more than one of each other to match them properly, we should create and
use a third pivot table.

1.	 First, we should create a new tags table using schema. Open your terminal
and run the following command to create our pivot table schema:
php artisan migrate:make create_tags_table --table= tags --create

2.	 Now we need to fill the table's contents. In our example, we just need the
tag name and tag's friendly URL name. Replace the schema's up function
contents with the following code:
Schema::create('tags', function(Blueprint $table)
{
 //id is needed to match pivot
 $table->increments('id');

 //Tag's name
 $table->string('tag')->default('');
 //Tag's URL-friendly name
 $table->string('tagFriendly')->unique();

 //I like to keep timestamps
 $table->timestamps();
});

Chapter 8

[151]

We have the id column to match questions with tags in the pivot table. We
have a string field tag, which will be the title of the tag, and the column
tagFriendly is what will be shown as a URL. I have also kept timestamps,
so that, in future, it can give us information about when the tag was created.

3.	 Lastly, run the following command in your terminal to run the migration and
install the table:
php artisan migrate

4.	 Now, we need a model for the tags table. Save the following file as Tag.php
under app/models:
<?php

class Tag extends Eloquent {

 protected $fillable = array('tag', 'tagFriendly');

}

5.	 Now, we need to create our pivot table. As a good practice, its name should
be modelname1_modelname2, and its content sorted alphabetically. In our
example, we have the questions and tags table, so we will set the pivot
table's name as question_tags (this is not forced, you can give any name
to your pivot table). As you may guess, its schema will have two columns to
match the two tables and two foreign keys for these columns. You can even
add additional columns to the pivot table.
To create the migration file, run the following command in your terminal:

php artisan migrate:make create_question_tags_table
--table=question_tags --create

6.	 Now, open the schema that we've generated in the migrations folder under
app/database and alter its up() method contents with the following code:
Schema::create('question_tags', function(Blueprint $table)
{
 $table->increments('id');

 $table->integer('question_id')->unsigned()->default(0);
 $table->integer('tag_id')->unsigned()->default(0);

 $table->foreign('question_id')->references('id')->
 on('questions')->onDelete('cascade');
 $table->foreign('tag_id')->references('id')->
 on('tags')->onDelete('cascade');

Building a Q&A Web Application

[152]

 $table->timestamps();
});

We need two columns, and its name structure should be modelname_id. In
our migration, they are question_id and tag_id. Also, we've set the foreign
keys to match them in our database.

7.	 Now, run the migration and install the table:
php artisan migrate

8.	 Now, we need to add methods to describe to Eloquent that we are using a
pivot table. To teach the pivot information to the question model, add the
following code to the Question.php file under app/models:

public function tags() {
 return $this->belongsToMany('Tag','question_tags')->
 withTimestamps();
}

To describe the pivot information to the tag model, add the following code to
the Tag.php file under app/models:
public function questions() {
 return $this->
 belongsToMany('Question','question_tags')->
 withTimestamps();
}

The first parameter in the belongsToMany() method is the model name, and
the second parameter is the pivot table's name. Using withTimestamps()
(which brings us the pivot data's creation and updation dates) is optional.
Also, if we had some extra data to be added to the pivot table, we could call
it using the method withPivot(). Consider the following example code:

$this->belongsToMany('Question ', 'question_tags')->
 withPivot('column1', 'column2')->withTimestamps();

Now that our pivot table structure is ready, in the later chapters, we can easily fetch
both the question's tags and all questions tagged with $tagname easily.

Chapter 8

[153]

Creating and processing our question
form
Now that our structure is ready, we can proceed to create and process our
question form.

Creating our questions form
We perform the following steps to create our question form:

1.	 First, we need a new route resource for the question form. Open your
routes.php file in the app folder and add the following code:
Route::get('ask',array('as'=>'ask', 'before'=>'user',
 'uses' => 'QuestionsController@getNew'));

Route::post('ask',array('as'=>'ask_post',
 'before'=>'user|csrf', 'uses' =>
 'QuestionsController@postNew'));

2.	 Now that our resource is defined, we need to add the resource to our top
menu for navigation. Open your topmenu.blade.php file under app/views/
template, and find the following line:
{{HTML::linkRoute('logout','Logout',array(),
 array('class'=>'wybutton'))}}

Add the previous line above the following line:

{{HTML::linkRoute('ask','Ask a Question!', array(),
 array('class'=>'wybutton'))}}

3.	 Now, we need the controller file to handle the resources. Run the following
command in your terminal:
php artisan controller:make QuestionsController

4.	 Next, open the newly created QuestionsController.php file under app/
controllers and delete all the methods inside the class. Then add the
following code:
/**
 * A new question asking form
**/
public function getNew() {
 return View::make('qa.ask')
 ->with('title','New Question');
}

Building a Q&A Web Application

[154]

5.	 Now, we need to create the view we've just assigned. Save the following code
as ask.blade.php under app/views/qa:
@extends('template_masterpage')

@section('content')

 <h1 id="replyh">Ask A Question</h1>
 <p class="bluey">Note: If you think your question's
 been answered correctly, please don't forget
 to click "✓" icon to mark the answer as "correct".</p>
 {{Form::open(array('route'=>'ask_post'))}}

 <p class="minihead">Question's title:</p>
 {{Form::text('title',Input::old('title'),array('class'=>
 'fullinput'))}}

 <p class="minihead">Explain your question:</p>
 {{Form::textarea('question',Input::old('question'),
 array('class'=>'fullinput'))}}

 <p class="minihead">Tags: Use commas to split tags
 (tag1, tag2 etc.). To join multiple words in a tag,
 use - between the words (tag-name, tag-name-2):</p>
 {{Form::text('tags',Input::old('tags'),
 array('class'=>'fullinput'))}}
 {{Form::submit('Ask this Question')}}
 {{Form::close()}}

@stop
@section('footer_assets')

 {{-- A simple jQuery code to lowercase all tags
 before submission --}}
 <script type="text/javascript">
 $('input[name="tags"]').keyup(function(){
 $(this).val($(this).val().toLowerCase());
 });
 </script>

@stop

In addition to the previous views we had created, in this view we added a
JavaScript code to the footer by filling the footer_assets section, which we
defined earlier in our master page.

Chapter 8

[155]

6.	 If you have done everything correctly, when you navigate to site.com/ask,
you will see a form styled like the following screenshot:

Now that our question form is ready, we are ready to process the form.

Processing our questions form
To process the form, we need some validation rules and the controller method.

1.	 First, add the following form validation rules to your Question.php file
under app/models:
public static $add_rules = array(
 'title' => 'required|min:2',
 'question' => 'required|min:10'
);

Building a Q&A Web Application

[156]

2.	 After saving the question successfully, we would like to provide the
question's permalink to the user, so the user can access the question easily.
But to do this, we first need to define a route to create this link. Add the
following line into your routes.php file in the app folder:
Route::get('question/{id}/{title}',array(
 'as'=> 'question_details', '
 uses' => 'QuestionsController@getDetails'))->
 where(array('id'=>'[0-9]+' ,
 'title' => '[0-9a-zA-Z\-_]+'));

We set two parameters into this route, id and title. The id parameter has
to be a positive integer, whereas title should contain only alphanumeric
characters, score, and underscore.

3.	 Now, we are ready to process the question form. Add the following code to
your QuestionsController.php file under app/controllers:
/**
 * Post method to process the form
**/
public function postNew() {

 //first, let's validate the form
 $validation = Validator::make(Input::all(),
 Question::$add_rules);

 if($validation->passes()) {
 //First, let's create the question
 $create = Question::create(array(
 'userID' => Sentry::getUser()->id,
 'title' => Input::get('title'),
 'question' => Input::get('question')
));

 //We get the insert id of the question
 $insert_id = $create->id;

 //Now, we need to re-find the question to "attach" the
 tag to the question
 $question = Question::find($insert_id);

 //Now, we should check if tags column is filled, and
 split the string and add a new tag and a relation
 if(Str::length(Input::get('tags'))) {
 //let's explode all tags from the comma
 $tags_array = explode(',', Input::get('tags'));

Chapter 8

[157]

 //if there are any tags, we will check if they are
 new, if so, we will add them to database
 //After checking the tags, we will have to "attach"
 tag(s) to the new question
 if(count($tags_array)) {
 foreach ($tags_array as $tag) {
 //first, let's trim and get rid of the extra
 space bars between commas
 //(tag1, tag2, vs tag1,tag2)
 $tag = trim($tag);

 //We should double check its length, because the
 user may have just typed "tag1,,tag2"
 (two or more commas) accidentally
 //We check the slugged version of the tag,
 because tag string may only be meaningless
 character(s), like "tag1,+++//,tag2"
 if(Str::length(Str::slug($tag))) {
 //the URL-Friendly version of the tag
 $tag_friendly = Str::slug($tag);

 //Now let's check if there is a tag with the
 url friendly version of the provided tag
 already in our database:
 $tag_check =
 Tag::where('tagFriendly',$tag_friendly);

 //if the tag is a new tag, then we will create
 a new one
 if($tag_check->count() == 0) {
 $tag_info = Tag::create(array(
 'tag' => $tag,
 'tagFriendly' => $tag_friendly
));

 //If the tag is not new, this means There was
 a tag previously added on the same name to
 another question previously
 //We still need to get that tag's info from
 our database
 } else {
 $tag_info = $tag_check->first();
 }
 }

Building a Q&A Web Application

[158]

 //Now the attaching the current tag to the
 question
 $question->tags()->attach($tag_info->id);
 }
 }
 }

 //lastly, we should return the user to the asking page
 with a permalink of the question
 return Redirect::route('ask')
 ->with('success','Your question has been created
 successfully! '.HTML::linkRoute('question_details',
 'Click here to see your question',array(
 'id'=>$insert_id,'title'=>Str::slug($question->
 title))));

 } else {
 return Redirect::route('ask')
 ->withInput()
 ->with('error',$validation->errors()->first());
 }
}

Now, let's dig the code:

1.	 First, we run the form validation class to check whether the values
are valid. If the validation has failed, we return the user to the
question page with the old inputs he had provided, and with the first
validation error message.

2.	 If the validation passes, we continue processing the form. We first
create and add the question, add a new row to the database, and then
we fetch the row that we've just created. To get the current user's ID,
we use the id object of the getUser() method by Sentry 2, which
returns the info of the current logged in user.

3.	 After creating the question, we check the length of the tags field. If
the field is not empty, we split the string at the commas and make a
raw tags array.

4.	 After that, we loop through each of the tags that we had split, and
make their friendly URL version using Laravel 4's slug() method of
the String class. If the slugged version has a length, it's a valid tag.

Chapter 8

[159]

5.	 After finding all the valid tags, we check the database to find whether
there is a tag already created. If so, we get its ID. If the tag is new
to the system, then we create a new tag. So, in this way, we avoid
unnecessary multiple tags in our system.

6.	 After that, we use the method attach() to create a new tag in the
pivot table. To attach a new relation, we first need to find the ID,
which we want to attach, and then go to the model of the attachment
and use the attach() method.

7.	 In our example, we need to attach the question to the tag(s). So we
find the question, which needs to be attached, use a many-to-many
relation to show that tags will be attached to the question, and attach
the tag's id to the question.

8.	 If everything goes without any problem, you should be redirected
back to the question page with a success message and a permalink to
your question.

9.	 Also, if you check your question_tags table, you will see the
relation data filled.

Always validate and filter the contents coming from forms, and make
sure you are not accepting any unwanted content.

Building a Q&A Web Application

[160]

After successfully adding the question, you should see a page like the
following screenshot:

Creating our questions list page
Now that we can create questions, it's time to fill our dummy index page with
actual question data. To do this, open your MainController.php file under app/
controllers, and alter the function getIndex() with the following code:

public function getIndex() {
 return View::make('qa.index')
 ->with('title','Hot Questions!')
 ->with('questions',Question::with('users','tags')->
 orderBy('id','desc')->paginate(2));
}

Chapter 8

[161]

In this method, we loaded the same page, but we added two variables named title
and questions. The title variable is the dynamic title of our application, and the
questions variable holds the last two questions, with pagination. Instead of get(),
if you use paginate($number), you can get a ready-to-use pagination system. Also,
using the method with(), we eagerly loaded the users and tags relations directly
with the questions collection, for better performance.

In the view, we will have a crude upvote/downvote option for the questions, and
a route link for the questions tagged with $tag. For this, we will need some new
routes. Add the following code to your routes.php file under the app folder:

//Upvoting and Downvoting
Route::get('question/vote/{direction}/{id}',array('as'=>
 'vote', 'before'=>'user', 'uses'=>
 'QuestionsController@getvote'))->where
 (array('direction'=>'(up|down)', 'id'=>'[0-9]+'));

//Question tags page
Route::get('question/tagged/{tag}',array('as'=>
 'tagged','uses'=>'QuestionsController@getTaggedWith'))->
 where('tag','[0-9a-zA-Z\-_]+');

Now open your index.blade.php file under app/views/qa, and alter the whole file
with the following code:

@extends('template_masterpage')

@section('content')
 <h1>{{$title}}</h1>

 @if(count($questions))

 @foreach($questions as $question)

 <?php
 //Question's asker and tags info
 $asker = $question->users;
 $tags = $question->tags;	
 ?>

 <div class="qwrap questions">
 {{-- Guests cannot see the vote arrows --}}
 @if(Sentry::check())
 <div class="arrowbox">

Building a Q&A Web Application

[162]

 {{HTML::linkRoute('vote','',array('up',
 $question->id),array('class'=>'like',
 'title'=>'Upvote'))}}
 {{HTML::linkRoute('vote','',array('down',
 $question->id),array('class'=>'dislike',
 'title'=>'Downvote'))}}
 </div>
 @endif

 {{-- class will differ on the situation --}}
 @if($question->votes > 0)
 <div class="cntbox cntgreen">
 @elseif($question->votes == 0)
 <div class="cntbox">
 @else
 <div class="cntbox cntred">
 @endif
 <div class="cntcount">{{$question->votes}}</div>
 <div class="cnttext">vote</div>
 </div>

 {{--Answer section will be filled later in this
 chapter--}}
 <div class="cntbox">
 <div class="cntcount">0</div>
 <div class="cnttext">answer</div>
 </div>

 <div class="qtext">
 <div class="qhead">
 {{HTML::linkRoute('question_details',
 $question->title,array($question->id,
 Str::slug($question->title)))}}
 </div>
 <div class="qinfo"">Asked by
 {{$asker->first_name.' '.$asker->last_name}}
 around {{date('m/d/Y H:i:s',
 strtotime($question->created_at))}}</div>
 @if($tags!=null)
 <ul class="qtagul">
 @foreach($tags as $tag)
 {{HTML::linkRoute('tagged',$tag->tag,
 $tag->tagFriendly)}}
 @endforeach

Chapter 8

[163]

 @endif
 </div>
 </div>
 @endforeach

 {{-- and lastly, the pagination --}}
 {{$questions->links()}}

 @else
 No questions found. {{HTML::linkRoute('ask',
 'Ask a question?')}}
 @endif

@stop

Since we've set the relations, we can directly use $question->users to access the
poser, or $question->tags to access the question's tags directly.

The method links() brings Laravel's built-in pagination system. The system is
ready to be used with Bootstrap. Also we can alter its appearance from the view.php
file under app/config.

If you followed up until here, when you navigate to your index page, after inserting
some new questions, you will see a view like the following screenshot:

Building a Q&A Web Application

[164]

Now, we need to add functionality to the upvote and downvote buttons.

Adding upvote and downvote functionality
The upvote and downvote buttons will be on almost every page in our project, so
adding them to the master page is a better practice instead of adding and cloning
them into each template more than once.

To do this, open your template_masterpage.php file under app/views, and find
the following line:

@yield('footer_assets')

Add the following code below the previous code:

{{-- if the user is logged in and on index or question details
 page--}}
@if(Sentry::check() && (Route::currentRouteName() ==
 'index' || Route::currentRouteName() == 'question_details'))
 <script type="text/javascript">
 $('.questions .arrowbox .like, .questions .arrowbox
 .dislike').click(function(e){
 e.preventDefault();
 var $this = $(this);
 $.get($(this).attr('href'),function($data){
 $this.parent('.arrowbox').next('.cntbox').find
 ('.cntcount').text($data);
 }).fail(function(){
 alert('An error has been occurred, please try again
 later');
 });
 });
 </script>
@endif

In the previous code, we check whether the user is logged in, and whether the user
has navigated either to the index or the details page. Then we use JavaScript to
prevent the user from clicking on the link, and we alter the click event to be an Ajax
get() request. In the next code we will fill the vote's value with the result, which will
come from the Ajax() request.

Chapter 8

[165]

Now we need to write the vote update method to make it work correctly. For this,
open your QuestionsController.php file under app/controllers, and add the
following code:

/**
 * Vote AJAX Request
**/
public function getVote($direction,$id) {

 //request has to be AJAX Request
 if(Request::ajax()) {

 $question = Question::find($id);

 //if the question id is valid
 if($question) {

 //new vote count
 if($direction == 'up') {
 $newVote = $question->votes+1;
 } else {
 $newVote = $question->votes-1;
 }

 //now the update
 $update = $question->update(array(
 'votes' => $newVote
));

 //we return the new number
 return $newVote;
 } else {
 //question not found
 Response::make("FAIL", 400);
 }
 } else {
 return Redirect::route('index');
 }
}

The getVote() method checks whether the question is valid, and if it's valid, it
increases or decreases its vote count by one. We didn't validate the parameter
$direction here, because we've already prefiltered using regular expression at
the resource that the value of $direction should either be up or down.

Building a Q&A Web Application

[166]

In real-world cases, you should even store the votes in a new table and
check whether the users' votes are unique. You should also make sure
that a user votes only once.

Now that our index page is ready and functioning, we can proceed to the next step.

Creating our questions page
In the details page, we need to show the full question to the user. Also there will be a
place for the answers. To create our question page, we perform the following steps:

1.	 First, we need to add the details method what we've defined on our route
earlier. Add the following code to your QuesionsController.php file under
app/controllers:
/**
 * Details page
**/
public function getDetails($id,$title) {
 //First, let's try to find the question:
 $question = Question::with('users','tags')->find($id);

 if($question) {

 //We should increase the "viewed" amount
 $question->update(array(
 'viewed' => $question->viewed+1
));

 return View::make('qa.details')
 ->with('title',$question->title)
 ->with('question',$question);

 } else {
 return Redirect::route('index')
 ->with('error','Question not found');
 }
}

We first try to fetch the question information using tags and the poser's
information. If the question is found, we increase the view count by one, and
we simply load the view, and add the title and the question information to
the view.

Chapter 8

[167]

2.	 Before displaying the view, we first need some extra routes to delete the
question and reply to the post. To add these, add the following code to your
routes.php file in the app folder:
//Reply Question:
Route::post('question/{id}/{title}',array('as'=>
 'question_reply','before'=>'csrf|user',
 'uses'=>'AnswersController@postReply'))->
 where(array('id'=>'[0-9]+','title'=>'[0-9a-zA-Z\-_]+'));

//Admin Question Deletion
Route::get('question/delete/{id}',array('as'=>'
 delete_question','before'=>'access_check:admin',
 'uses'=>'QuestionsController@getDelete'))->
 where('id','[0-9]+');

3.	 Now that the controller method and the routes required in the view are
ready, we need the view to show the data to the end user. Follow the steps
and add all the code provided further, by parts, to the details.blade.php
file under app/views/qa:
@extends('template_masterpage')

@section('content')

<h1 id="replyh">{{$question->title}}</h1>
<div class="qwrap questions">
 <div id="rcount">Viewed {{$question->viewed}}
 time{{$question->viewed>0?'s':''}}.</div>

 @if(Sentry::check())
 <div class="arrowbox">
 {{HTML::linkRoute('vote',''array('up',$question->id)
 ,array('class'=>'like', 'title'=>'Upvote'))}}
 {{HTML::linkRoute('vote','',array('down',
 $question->id),array('class'=>'dislike','title'=>
 'Downvote'))}}
 </div>
 @endif

 {{-- class will differ on the situation --}}
 @if($question->votes > 0)
 <div class="cntbox cntgreen">
 @elseif($question->votes == 0)
 <div class="cntbox">
 @else
 <div class="cntbox cntred">

Building a Q&A Web Application

[168]

 @endif
 <div class="cntcount">{{$question->votes}}</div>
 <div class="cnttext">vote</div>
 </div>

In the first section of the view, we extend the view file to our master page
template_masterpage. Then we start to fill the code for the section content.
We made two links using named routes for upvoting and downvoting that
will be handled using Ajax. Also, since we have different styles for each
voting state (green for a positive vote and red for a negative vote), we used
an if clause and altered the opening <div> tag.

4.	 Now add the following code to details.blade.php:
 <div class="rblock">
 <div class="rbox">
 <p>{{nl2br($question->question)}}</p>
 </div>
 <div class="qinfo">Asked by
 {{$question->users->first_name.' '.$question->
 users->last_name}} around {{date('m/d/Y
 H:i:s',strtotime($question->created_at))}}</div>

 {{--if the question has tags, show them --}}
 @if($question->tags!=null)
 <ul class="qtagul">
 @foreach($question->tags as $tag)
 {{HTML::linkRoute('tagged',$tag->tag,
 $tag->tagFriendly)}}
 @endforeach

 @endif

In this section, we are showing the question itself, and checking whether
there are tags. If the tags object is not null (tags are present), we make a link
with a named route for each tag, to show the questions tagged with $tag.

5.	 Now add the following code to details.blade.php:
 {{-- if the user/admin is logged in, we will have a
 buttons section --}}
 @if(Sentry::check())
 <div class="qwrap">
 <ul class="fastbar">
 @if(Sentry::getUser()->hasAccess('admin'))

Chapter 8

[169]

 <li class="close">{{HTML::linkRoute(
 'delete_question','delete',$question->id)}}

 @endif
 <li class="answer">answer

 </div>
 @endif
 </div>
 <div id="rreplycount">{{count($question->answers)}}
 answers</div>

In this section, if the end user is an admin, we show buttons to answer and
delete questions.

6.	 Now add the following code to details.blade.php:
 {{-- if it's a user, we will also have the answer block
 inside our view--}}
 @if(Sentry::check())
 <div class="rrepol" id="replyarea" style=
 "margin-bottom:10px">
 {{Form::open(array('route'=>array(
 'question_reply',$question->id,
 Str::slug($question->title))))}}
 <p class="minihead">Provide your Answer:</p>
 {{Form::textarea('answer',Input::old('answer'),
 array('class'=>'fullinput'))}}
 {{Form::submit('Answer the Question!')}}
 {{Form::close()}}
 </div>
 @endif

</div>
@stop

In this section, we are adding the answering block to the question itself,
benefitting from Laravel 4's built-in Form class. This form will only be
available for logged in users (and for the admins, since they are also logged
in users). We finish the section content using @stop.

7.	 Now add the following code to details.blade.php:

@section('footer_assets')

 {{--If it's a user, hide the answer area and make a
 simple show/hide button --}}

Building a Q&A Web Application

[170]

 @if(Sentry::check())
 <script type="text/javascript">

 var $replyarea = $('div#replyarea');
 $replyarea.hide();

 $('li.answer a').click(function(e){
 e.preventDefault();

 if($replyarea.is(':hidden')) {
 $replyarea.fadeIn('fast');
 } else {
 $replyarea.fadeOut('fast');
 }
 });
 </script>
 @endif

 {{-- If the admin is logged in, make a confirmation to
 delete attempt --}}
 @if(Sentry::check())
 @if(Sentry::getUser()->hasAccess('admin'))
 <script type="text/javascript">
 $('li.close a').click(function(){
 return confirm('Are you sure you want to delete
 this? There is no turning back!');
 });
 </script>
 @endif
 @endif
@stop

In this section, we fill the footer_assets section to add some JavaScript to
show/hide the answer field to the users, and a confirmation box is displayed
to the admin before deleting the question.

Chapter 8

[171]

If all the steps are performed, you should have a view like the following screenshot:

Lastly, we need a method to delete the question. Add the following code to your
QuestionsController.php file under app/controllers:

/**
 * Deletes the question
**/

public function getDelete($id) {
 //First, let's try to find the question:
 $question = Question::find($id);

 if($question) {
 //We delete the question directly
 Question::delete();

Building a Q&A Web Application

[172]

 //We won't have to think about the tags and the answers,
 //because they are set as foreign key and we defined them
 cascading on deletion,
 //they will be automatically deleted

 //Let's return to the index page with a success message
 return Redirect::route('index')
 ->with('success','Question deleted successfully!');
 } else {
 return Redirect::route('index')
 ->with('error','Nothing to delete!');
 }
}

Since we've set the related tables to cascade on deletion, we won't have to worry
about deleting the answers and the tags while deleting a question.

Now that we are ready to post answers, we should create the answers table and
process our answers.

Creating our answers table and
resources
Our answers table will be very similar to the current questions table, only that it will
have fewer columns. Our answers can also be voted, and an answer can be marked
as the best answer either by a question's poser or an admin. To create our answers
table and resources, we perform the following steps:

1.	 First, let's create the database table. Run the following command in
the terminal:
php artisan migrate:make create_answers_table --table=
 answers --create

2.	 Now, open the migration, which is created under app/database/
migrations, and replace the up() function's contents with the
following code:
Schema::create('answers', function(Blueprint $table)
{
 $table->increments('id');

 //question's id
 $table->integer('questionID')->unsigned()->default(0);
 //answerer's user id

Chapter 8

[173]

 $table->integer('userID')->unsigned()->default(0);
 $table->text('answer');
 //if the question's been marked as correct
 $table->enum('correct',array('0','1'))->default(0);
 //total number of votes:
 $table->integer('votes')->default(0);
 //foreign keys
 $table->foreign('questionID')->references('id')->
 on('questions')->onDelete('cascade');
 $table->foreign('userID')->references('id')->
 on('users')->onDelete('cascade');

 $table->timestamps();
});

3.	 Now, to benefit from the Eloquent ORM and its relations, we need a
model for the answers table. Add the following code as Answer.php
under app/models:
<?php

class Answer extends Eloquent {

 //The relation with users
 public function users() {
 return $this->belongsTo('User','userID');
 }

 //The relation with questions
 public function questions() {
 return $this->belongsTo('Question','questionID');
 }

 //which fields can be filled
 protected $fillable = array('questionID', 'userID',
 'answer', 'correct', 'votes');

 //Answer Form Validation Rules
 public static $add_rules = array(
 'answer'	 => 'required|min:10'
);

}

Building a Q&A Web Application

[174]

The answers are children of both users and questions, that's why in our
model, we should use belongsTo() for users and questions to relate
their tables.

4.	 Since a question may have more than one answer, we should also add a
relation from the questions table to the answers table (to get the data about
the answers to your question, all of the answers to your questions, or all of
my upvoted questions' answers). To do this, open your Question.php file
under app/models and add the following code:
public function answers() {
 return $this->hasMany('Answer','questionID');
}

5.	 Finally, we need a controller to process the requests related to answers. Run
the following command in the terminal to make a controller for the answers:

php artisan controller:make AnswersController

This command will create a file AnswersController.php under app/
controllers.

Now that our answers' resource is ready, we can process the answers.

Processing the answers
In the previous section, we successfully created a question with tags, and our
answers form. We now have to process the answers and add them to the database.
There are some simple steps to follow for this:

1.	 First, we need the controller form to process the answers and add them to
the table. To do this, open your freshly created AnswersController.php file
under app/controllers, remove every autogenerated method inside the
class, and add the following code inside the class definition:
/**
 * Adds a reply to the questions
**/
public function postReply($id,$title) {

 //First, let's check if the question id is valid
 $question = Question::find($id);

 //if question is found, we keep on processing
 if($question) {

Chapter 8

[175]

 //Now let's run the form validation
 $validation = Validator::make(Input::all(),
 Answer::$add_rules);

 if($validation->passes()) {

 //Now let's create the answer
 Answer::create(array(
 'questionID' => $question->id,
 'userID' => Sentry::getUser()->id,
 'answer' => Input::get('answer')
));

 //Finally, we redirect the user back to the question page
with a success message
 return Redirect::route('question_details',
 array($id,$title))
 ->with('success','Answer submitted successfully!');

 } else {
 return Redirect::route('question_details',
 array($id,$title))
 ->withInput()
 ->with('error',$validation->errors()->first());
 }

 } else {
 return Redirect::route('index')
 ->with('error','Question not found');
 }

}

The postReply() method simply checks whether the question is valid, runs
a form validation, adds an answer owned by the question and the user to the
database, and returns the user back to the questions page.

2.	 Now in the questions page, we also need to include the answers and the
number of answers. But before that, we need to fetch them. There are some
steps to do this.

1.	 First, open your QuestionsController.php file under app/
controllers, and find the following line:

 $question = Question::with('users','tags')->
 find($id);

Building a Q&A Web Application

[176]

Replace the previous line with the following line:
 $question = Question::with('users','tags',
 'answers')->find($id);

2.	 Now, find the following line in the MainController.php file
under app/controllers, and find this line:

 ->with('questions',Question::with('users','tags')->
 orderBy('id','desc')->paginate(2));

Replace the previous line with the following line:

 ->with('questions',Question::with('users', 'tags',
 'answers')->orderBy('id','desc')->paginate(2));

3.	 Now open your index.blade.php file under app/views/qa,
and find the following code:

 {{--Answer section will be filled later in
 this chapter--}}
 <div class="cntbox">
 <div class="cntcount">0</div>
 <div class="cnttext">answer</div>
 </div>

Replace the previous code with the following code:

 <?php
 //does the question have an accepted answer?
 $answers = $question->answers;
 $accepted = false; //default false

 //We loop through each answer, and check if there
 is an accepted answer
 if($question->answers!=null) {
 foreach ($answers as $answer) {
 //If an accepted answer is found, we break
 the loop
 if($answer->correct==1) {
 $accepted=true;
 break;
 }
 }
 }
 ?>
 @if($accepted)
 <div class="cntbox cntgreen">

Chapter 8

[177]

 @else
 <div class="cntbox cntred">
 @endif
 <div class="cntcount">{{count($answers)}}</div>
 <div class="cnttext">answer</div>
 </div>

In this alteration, we added a PHP code and a loop, checking each
answer if it's an accepted one. And if it is, we change the div holder
class. Also we added a feature to show the number of answers.

3.	 Next, we need the route resources defined to answer upvoting and
downvoting and choose the best answer. Add the following code into your
routes.php file under the app folder:
 //Answer upvoting and Downvoting
 Route::get('answer/vote/{direction}}/{id}',
 array('as'=>'vote_answer', 'before'=>'user',
 'uses'=>'AnswersController@getVote'))->
 where(array('direction'=>'(up|down)', 'id'=>'[0-9]+'));

4.	 Now we need to display the answers in the question details page so that
the users can see the answers. To do this, open the details.blade.php file
under app/views/qa, and perform the following steps:

1.	 First, find the following line:
 <div id="rreplycount">0 answers</div>

Replace the previous line with the following line:

 <div id="rreplycount">{{count($question->answers)}}
 answers</div>

2.	 Now find the following code:
 </div>
 @stop

 @section('footer_assets')

Add the following code above the previous code:

 @if(count($question->answers))
 @foreach($question->answers as $answer)

 @if($answer->correct==1)
 <div class="rrepol correct">
 @else
 <div class="rrepol">
 @endif

Building a Q&A Web Application

[178]

 @if(Sentry::check())
 <div class="arrowbox">
 {{HTML::linkRoute('vote_answer','',
 array('up', $answer->id),array('class'=>
 'like', 'title'=>'Upvote'))}}
 {{HTML::linkRoute('vote_answer','',
 array('down',$answer->id),
 array('class'=>'dislike','title'=>'Downvote'
))}}

 </div>
 @endif

 <div class="cntbox">
 <div class="cntcount">{{$answer->votes}}</div>
 <div class="cnttext">vote</div>
 </div>

 @if($answer->correct==1)
 <div class="bestanswer">best answer</div>
 @else
 {{-- if the user is admin or the owner of the
 question, show the best answer button --}}
 @if(Sentry::check())
 @if(Sentry::getUser()->hasAccess('admin') ||
 Sentry::getUser()->id == $question->userID)
 <a class="chooseme" href="{{URL::route
 ('choose_answer',$answer->id)}}"><div
 class="choosebestanswer">choose</div>
 @endif
 @endif
 @endif
 <div class="rblock">
 <div class="rbox">
 <p>{{nl2br($answer->answer)}}</p>
 </div>
 <div class="rrepolinf">
 <p>Answered by {{$answer->
 users->first_name.' '.$answer->users->
 last_name}} around {{date('m/d/Y H:i:s',
 strtotime($answer->created_at))}}</p>
 </div>
 </div>
 </div>
 @endforeach
 @endif

Chapter 8

[179]

The current structure of answers is very close to the questions structure,
which we had created earlier in this chapter. In addition, we have a button to
choose the best answer, which is shown only to the poser of the question and
to the admin.

3.	 Now, we need a confirmation button in the same view. For this, add
the following code to the footer_assets section:

 {{-- for admins and question owners --}}
 @if(Sentry::check())
 @if(Sentry::getUser()->hasAccess('admin') ||
 Sentry::getUser()->id == $question->userID)
 <script type="text/javascript">
 $('a.chooseme').click(function(){
 return confirm('Are you sure you want to
 choose this answer as best answer?');
 });
 </script>
 @endif
 @endif

5.	 Now, we need a method to increase or decrease the votes of the answers.
Add the following code to your AnswersController.php file under app/
controllers:

/**
 * Vote AJAX Request
**/
public function getVote($direction, $id) {

 //request has to be AJAX Request
 if(Request::ajax()) {
 $answer = Answer::find($id);
 //if the answer id is valid
 if($answer) {
 //new vote count
 if($direction == 'up') {
 $newVote = $answer->votes+1;
 } else {
 $newVote = $answer->votes-1;
 }

 //now the update
 $update = $answer->update(array(
 'votes' => $newVote
));

Building a Q&A Web Application

[180]

 //we return the new number
 return $newVote;
 } else {
 //answer not found
 Response::make("FAIL", 400);
 }
 } else {
 return Redirect::route('index');
 }
}

The getVote() method is exactly the same as the questions voting method. The
only difference here is that, instead of the question, the answers are affected.

Choosing the best answer
We need a processing method to choose a selected answer as the best answer.
To choose the best answer, we perform the following steps:

1.	 Open your AnswersController.php file under app/controllers, and
add the following code:
/**
 * Chooses a best answer
**/
public function getChoose($id) {

 //First, let's check if there is an answer with that given ID
 $answer = Answer::with('questions')->find($id);

 if($answer) {
 //Now we should check if the user who clicked is an
 admin or the owner of the question
 if(Sentry::getUser()->hasAccess('admin') || $answer->
 userID == Sentry::getUser()->id) {
 //First we should unmark all the answers of the
 question from correct (1) to incorrect (0)
 Answer::where('questionID',$answer->questionID)
 ->update(array(
 'correct' => 0
));

 //And we should mark the current answer as correct/
 best answer
 $answer->update(array(
 'correct' => 1

Chapter 8

[181]

));

 //And now let's return the user back to the
 questions page
 return Redirect::route('question_details',
 array($answer->questionID, Str::slug($answer->
 questions->title)))
 ->with('success','Best answer chosen
 successfully');
 } else {
 return Redirect::route('question_details',
 array($answer->questionID, Str::slug($answer->
 questions->title)))
 ->with('error','You don\'t have access to this
 attempt!');
 }

 } else {
 return Redirect::route('index')
 ->with('error','Answer not found');
 }

}

In the previous code, we first check whether the answer is a valid answer.
Then, we check whether the user who has clicked on the best answer button
is either the poser of the question or the application's administrator. After
that, we mark all the answers of the question as unchecked (we erase all the
best answer information to the answers of the question), and mark the chosen
answer as the best answer. And finally, we return the form with a
success message.

2.	 Now, we need a method to delete the answers. For this, first we need a route.
Open your routes.php file under app and add the following code:
//Deleting an answer
Route::get('answer/delete/{id}',array('as'=>
 'delete_answer','before'=>'user', 'uses'=>
 'AnswersController@getDelete'))->where('id','[0-9]+');

3.	 Next, find the following code in the details.blade.php file under app/
views/qa:
<p>Answered by {{$answer->users->
first_name.' '.$answer->users->last_name}}
around {{date('m/d/Y H:i:s',strtotime(
$answer->created_at))}}</p>

Building a Q&A Web Application

[182]

Add the following code below the previous code:

{{-- Only the answer's owner or the admin can delete the answer
--}}
@if(Sentry::check())
 <div class="qwrap">
 <ul class="fastbar">
 @if(Sentry::getUser()->hasAccess('admin') ||
 Sentry::getUser()->id == $answer->userID)
 <li class="close">{{HTML::linkRoute(
 'delete_answer','delete',$answer->id)}}
 @endif

 </div>
@endif

4.	 Now, we need the controller method to delete an answer. Add the following
code to the AnswersController.php file under app/controllers:

/**
 * Deletes an answer
**/
public function getDelete($id) {

 //First, let's check if there is an answer with
 that given ID
 $answer = Answer::with('questions')->find($id);

 if($answer) {
 //Now we should check if the user who clicked is
 an admin or the owner of the question
 if(Sentry::getUser()->hasAccess('admin') ||
 $answer->userID==Sentry::getUser()->id) {

 //Now let's delete the answer
 $delete = Answer::find($id)->delete();

 //And now let's return the user back to the
 questions page
 return Redirect::route('question_details',
 array($answer->questionID, Str::slug($answer->
 questions->title)))
 ->with('success','Answer deleted successfully');
 } else {
 return Redirect::route('question_details',
 array($answer->questionID, Str::slug($answer->
 questions->title)))

Chapter 8

[183]

 ->with('error','You don\'t');
 }

 } else {
 return Redirect::route('index')
 ->with('error','Answer not found');
 }
}

If you have done everything correctly, the final version of our details page would
look like the following screenshot:

Now that everything is ready to ask questions, answer, mark the best answer, and
delete, only one thing is missing in our application, tag searching. As you know,
we've made all the tags as links, so we should now process their routes.

Building a Q&A Web Application

[184]

Searching questions by the tags
In our main page and details page, we've given all the tags a special link. We will
perform the following steps to search questions by the tags:

1.	 First, open your QuestionsController.php file under app/controllers,
and add the following code:
/**
 * Shows the questions tagged with $tag friendly URL
**/
public function getTaggedWith($tag) {

 $tag = Tag::where('tagFriendly',$tag)->first();

 if($tag) {
 return View::make('qa.index')
 ->with('title','Questions Tagged with: '.$tag->tag)
 ->with('questions',$tag->questions()->
 with('users','tags','answers')->paginate(2));
 } else {
 return Redirect::route('index')
 ->with('error','Tag not found');
 }
}

What this code does is, it first searches for a tag using the column
tagFriendly, which gives a unique result. So, we can safely return the
first result using first(). Then we check whether the tag is present in our
system. If not, we return the user to the index page with an error message
stating that the tag has not been found.
If the tag is found, using the relations we've defined, we catch all the
questions tagged using that tag, and we use eager loading to load the users,
tags (all of the tags of the questions), and answers (although we don't show
the answers on this page, we need a count of them to display it on the page).
Our view would be exactly the same as the index page's view. So instead of
creating a new one, we've directly used that view.
We've kept the pagination limit to two, just to show that it works.

Chapter 8

[185]

2.	 Finally, to allow JavaScript assets on the page (such as enabling Ajax
upvoting and downvoting), open your template_masterpage.php file
under app/views, and find the following line:

@if(Sentry::check() && (Route::currentRouteName() ==
 'index' || Route::currentRouteName() ==
 'question_details'))

Replace the previous code with the following code:

@if(Sentry::check() && (Route::currentRouteName() ==
 'index' || Route::currentRouteName() == 'tagged' ||
 Route::currentRouteName() == 'question_details'))

This way, we allow these Ajax events even on pages having the route named tagged.

If you have done everything correctly, and if you click on a tag's name, a page like
this will appear:

Building a Q&A Web Application

[186]

Summary
In this chapter, we've used various features of Laravel 4. We've learned to remove
the public segment, to make Laravel work on some of the shared hosting solutions.
We've also learned the basics of Sentry 2, a powerful authentication class. We've
learned how to use many-to-many relationships and pivot tables. We've also used
the belongs-to and has-any relationships using Eloquent ORM. We defined all
our URLs, form actions, and links with routes using resources. So if you need to
change the application's URL structure (let's say you need to change your website
to German, and the German for question is frage), you only need to edit routes.
php. So this way, you won't have to dig each file to fix the links. We've used the
pagination class to navigate through records, and we've also used the Laravel Form
Builder Class.

In the next chapter, we will be developing a fully featured e-commerce website using
everything we've learned so far.

Building a RESTful API – The
Movies and Actors Databases
Designing and developing a successful RESTful API is mostly very difficult. There
are a lot of aspects to designing and writing a successful RESTful API; for example,
securing and limiting the API. In this chapter, we'll focus on the basics of REST
with coding a simple Movies and Actors API with Laravel. We'll make some JSON
endpoints behind a basic authentication system, and will also learn a few Laravel 4
tricks. We'll cover the following topics in this chapter:

•	 Creating and migrating the users database
•	 Configuring the users model
•	 Adding sample users
•	 Creating and migrating the movies database
•	 Creating a movie model
•	 Adding sample movies
•	 Creating and migrating the actors database
•	 Creating an actor model
•	 Assigning actors to movies
•	 Understanding the authentication mechanism
•	 Querying the API

Building a RESTful API – The Movies and Actors Databases

[188]

Creating and migrating the users
database
We assume that you have already defined database credentials in the database.php
file located at app/config/. For this application, we need a database. You can create
a new database by simply running the following SQL command, or basically you can
use your database administration interface such as phpMyAdmin:

CREATE DATABASE laravel_api

After successfully creating the database for the application, first we need to generate
an application key for our application. As you know from the previous chapters,
this is necessary for the security and authentication class of our application. To
do this, first open your terminal, navigate to your project folder, and run the
following command:

php artisian key:generate

If no error occurs, we should edit the authentication class' configuration file. For
using Laravel's built-in authentication class, we need to edit the configuration file,
auth.php, which is located at app/config/. This file contains several options for
the authentication facilities. If you need to change the table name, and so on, you
can perform the changes in the auth.php file. By default, Laravel comes with a users
model; you can see the User.php file that is located at app/models/. With Laravel
4, we need to define which fields can be filled in our User model. Let's edit app/
models/User.php and add the "fillable" array:

<?php

use Illuminate\Auth\UserInterface;
use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements UserInterface,
RemindableInterface {

 /**
 * The database table used by the model.
 *
 * @var string
 */
 protected $table = 'users';

 /**
 * The attributes excluded from the model's JSON form.
 *
 * @var array

Chapter 9

[189]

 */
 protected $hidden = array('password');

 // Specify which attributes should be mass-assignable
 protected $fillable = array('email', 'password');

 /**
 * Get the unique identifier for the user.
 *
 * @return mixed
 */
 public function getAuthIdentifier()
 {
 return $this->getKey();
 }

 /**
 * Get the password for the user.
 *
 * @return string
 */
 public function getAuthPassword()
 {
 return $this->password;
 }

 /**
 * Get the e-mail address where password reminders are sent.
 *
 * @return string
 */
 public function getReminderEmail()
 {
 return $this->email;
 }

}

Basically we need two columns for our RESTful API users, they are:

•	 email: This column stores the author's e-mail ID
•	 password: This column is for storing the author's password

Building a RESTful API – The Movies and Actors Databases

[190]

Now we need several migration files to create the users table and add an author to
our database. To create a migration file, give a command such as the following:

php artisan migrate:make create_users_table --table=users --create

Open the migration file that was created recently and located at app/database/
migrations/. We need to edit the up() function as follows:

 public function up()
 {
 Schema::create('users', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('email');
 $table->string('password');
 $table->timestamps();
 });
 }

After editing the migration file, please run the migrate command:

php artisian migrate

As you know, the command creates the users table and its columns. If no error
occurs, check the laravel_api database for the users table and the columns.

Adding sample users
Now we need to create a new migration file for adding some API users to
the database:

php artisan migrate:make add_some_users

Open up the migration file and edit the up() function as follows:

public function up()
 {
 User::create(array(
 'email' => 'john@gmail.com',
 'password' => Hash::make('johnspassword'),
));
 User::create(array(
 'email' => 'andrea@gmail.com',
 'password' => Hash::make('andreaspassword'),
));
 }

Chapter 9

[191]

Now we have two API users for our application. The users will be accessible for
querying our RESTful API.

Creating and migrating the movies
database
For a simple Movies and Actors application, basically we need two tables for storing
data. One of them is the movies table. The table will contain the name of the movie
and its release year.

We need a migration file to create our movies table and its columns. We'll do it again
with the artisan tool. Open your terminal, navigate to your project's folder, and run
the following command:

php artisan migrate:make create_movies_table --table=movies --create

Open the migration file that was created recently and located at app/database/
migrations/. We need to edit the up() function as follows:

 public function up()
 {
 Schema::create('movies', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('name');
 $table->integer('release_year');
 $table->timestamps();
 });
 }

After editing the migration file, run the migrate command:

php artisian migrate

Creating a movie model
As you know, for anything related to database operations on Laravel, using models
is the best practice. We will use the benefits of Eloquent ORM.

Save the following code in the Movie.php file under app/models/:

<?php
class Movie extends Eloquent {

Building a RESTful API – The Movies and Actors Databases

[192]

protected $table = 'movies';

protected $fillable = array('name','release_year');

public function Actors(){

 return $this-> belongsToMany('Actor' , 'pivot_table');
}

}

We have set the database table name with the protected $table variable. Also, we set
the editable column's $fillable variable, and for timestamps with a $timestamps
variable, as we've already seen and used in the previous chapters. The variables that
are defined in the model are enough for using Laravel's Eloquent ORM. We'll cover
the public Actor() function in the Assigning actors to movies section in this chapter.

Our movie model is ready: now we need an actor model and its corresponding table.

Adding sample movies
Now we need to create a new migration file for adding some movies to the database.
Actually, you can also use the database seeder for seeding the database. Here, we
will use migration files for seeding the database. You can check out the seeders at:

http://laravel.com/docs/migrations#database-seeding

Run the following migrate command:

php artisan migrate:make add_some_movies

Open up the migration file and edit the up() function as follows:

 public function up()
 {
 Movie::create(array(
 'name' => 'Annie Hall',
 'release_year' => '1977'
));

 Movie::create(array(
 'name' => ' Manhattan ',
 'release_year' => '1978'
));

Movie::create(array(

Chapter 9

[193]

 'name' => 'The Shining',
 'release_year' => '1980'
));
 }

Creating and migrating the actors
database
We need to create an actors table that will contain the names of the actors of the
movies. We need a migration file to create our movies table and columns. We'll do
it again with the artisan tool. Let's open up our terminal, navigate to our project
folder, and run the following command:

php artisan migrate:make create_actors_table --table=actors –create

Open the migration file that was created recently and located at app/database/
migrations/. We need to edit the up() function as follows:

 public function up()
 {
 Schema::create('actors', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('name');
 $table->timestamps();
 });
 }

After editing the migration file, run the migrate command as follows:

php artisian migrate

Creating an actor model
For creating the actor model, save the following code as Movies.php under app/
models/:

<?php
class Actor extends Eloquent {

protected $table = 'actors';

protected $fillable = array('name');

Building a RESTful API – The Movies and Actors Databases

[194]

public function Movies(){

 return $this-> belongsToMany('Movies', 'pivot_table');
}

}

Assigning actors to movies
As you know, we used the belongsToMany relation between the actors and movie
models. This is because an actor has probably acted in many movies. A movie also
would probably have many actors.

As you will see, in the previous sections of this chapter, we used a pivot table named
pivot_table. We can also create the pivot table with the artisan tool. Let's create it:

php artisan migrate:make create_pivot_table --table=pivot_table
--create

Open the migration file that was created recently and located at app/database/
migrations/. We need to edit the up() function as follows:

 public function up()
 {
 Schema::create('pivot_table', function(Blueprint $table)
 {
 $table->increments('id');
 $table->integer('movies_id');
 $table->integer('actors_id');
 $table->timestamps();
 });
}

After editing the migration file, run the migrate command:

php artisian migrate

Now we need to create a new migration file for adding some actors to the database:

php artisan migrate:make add_some_actors

Open up the migration file and edit the up() function as follows:

 public function up()
 {
 $woody = Actor::create(array(

Chapter 9

[195]

 'name' => 'Woody Allen'
));

 $woody->Movies()->attach(array('1','2'));

 $diane = Actor::create(array(
 'name' => 'Diane Keaton'
));

$diane->Movies()->attach(array('1','2'));

$jack = Actor::create(array(
 'name' => 'Jack Nicholson'
));

$jack->Movies()->attach(3);

}

Let's grab the migration file. When we attach users to movies, we've to use the
movie IDs shown as follows:

$voody = Actor::create(array(
 'name' => 'Woody Allen'
));

$voody->Movies()->attach(array('1','2'));

This means Woody Allen has played a role in two films, and the ID of these movies
are 1 and 2. Also, Diane Keaton has played a role in those two movies. But Jack
Nicholson has played a role in The Shining and the ID of the film is 3. As we have
already elaborated on the Eloquent ORM relations in Chapter 8, Building a Q&A Web
Application, our relation type is the Eloquent belongsToMany relation.

Understanding the authentication
mechanism
Like many other APIs, our API system is authentication based. As you may
remember from the previous chapters, Laravel comes with an authentication
mechanism. In this section, we'll use the pattern-based route filtering feature of
Laravel for securing and limiting our API. First, we need to edit the auth.basic
filter for our application.

Building a RESTful API – The Movies and Actors Databases

[196]

Open the route filter configuration file that is located at app/filters.php and edit
the auth.basic filter as follows:

Route::filter('auth.basic', function()
{
 return Auth::basic('email');
});

The API users should be sending their e-mail IDs and passwords, along with their
requests, to our application. Because of the request, we edit the filter. An API request
will be as follows:

curl -i –user andrea@gmail.com:andreaspassword localhost/api/
getactorinfo/Woody%20Allen

Now, we need to apply a filter on our routes. Open the route filter configuration file
that is located at app/routes.php and add the following code:

Route::when('*', 'auth.basic');

This code indicates that our application needs authentication for every request on it.
Now we need to write our routes. Add the following lines to app/routes.php:

Route::get('api/getactorinfo/{actorname}', array('uses' =>
'ActorController@getActorInfo'));
Route::get('api/getmovieinfo/{moviename}', array('uses' =>
'MovieController@getMovieInfo'));
Route::put('api/addactor/{actorname}', array('uses' =>
'ActorController@putActor'));
Route::put('api/addmovie/{moviename}/{movieyear}', array('uses' =>
'MovieController@putMovie'));
Route::delete('api/deleteactor/{id}', array('uses' =>
'ActorController@deleteActor'));
Route::delete('api/deletemovie/{id}', array('uses' =>
'MovieController@deleteMovie'));

Querying the API
We need two controller files for our RESTful route functions. Let's create
two controller files under app/controllers/. The files should be named
MovieController.php and ActorController.php.

Chapter 9

[197]

Getting movie/actor information from the API
First, we need the getActorInfo() and getMovieInfo() functions for getting actor
and movie information from the database. Open the ActorController.php file
located at app/controllers/ and write the following code:

<?php

class ActorController extends BaseController {
public function getActorInfo($actorname){

$actor = Actor::where('name', 'like', '%'.$actorname.'%')->first();
if($actor){

$actorInfo = array('error'=>false,'Actor Name'=>$actor->name,'Actor
ID'=>$actor->id);
$actormovies = json_decode($actor->Movies);
foreach ($actormovies as $movie) {
$movielist[] = array("Movie Name"=>$movie->name, "Release
Year"=>$movie->release_year);
}
$movielist =array('Movies'=>$movielist);
return Response::json(array_merge($actorInfo,$movielist));

}
else{

return Response::json(array(
'error'=>true,
'description'=>'We could not find any actor in database like
:'.$actorname
));
}
}
}

Next, open the MovieController.php file located at app/controllers/ and write
the following code:

<?php

class MovieController extends BaseController {

Building a RESTful API – The Movies and Actors Databases

[198]

public function getMovieInfo($moviename){
$movie = Movie::where('name', 'like', '%'.$moviename.'%')->first();
if($movie){

$movieInfo = array('error'=>false,'Movie Name'=>$movie->name,'Release
Year'=>$movie->release_year,'Movie ID'=>$movie->id);
$movieactors = json_decode($movie->Actors);
foreach ($movieactors as $actor) {
$actorlist[] = array("Actor"=>$actor->name);
}
$actorlist =array('Actors'=>$actorlist);
return Response::json(array_merge($movieInfo,$actorlist));

}
else{

return Response::json(array(
'error'=>true,
'description'=>'We could not find any movie in database like
:'.$moviename
));
}
}
}

The functions getActorInfo() and getMovieInfo() basically search the database
for the movie/actor name with the given text. If such a movie or actor is found, it
is returned in the JSON format. So, for getting actor information from the API, our
users can make a request as follows:

curl -i –-user andrea@gmail.com:andreaspassword localhost/api/
getactorinfo/Woody

The response for the actor information request will be as follows:

{
 "error":false,
 "Actor Name":"Woody Allen",
 "Actor ID":1,
 "Movies":[
 {
 "Movie Name":"AnnieHall",
 "Release Year":1977
 },

Chapter 9

[199]

 {
 "Movie Name":"Manhattan",
 "Release Year":1978
 }
]
}

The request for any movie would be similar to this:

curl -i --user andrea@gmail.com:andreaspassword localhost/api/
getmovieinfo/Manhattan

The response for the movie information request will be as follows:

{
 "error":false,
 "Movie Name":"Manhattan",
 "Release Year":1978,
 "Movie ID":2,
 "Actors":[
 {
 "Actor":"Woody Allen"
 },
 {
 "Actor":"Diane Keaton"
 }
]
}

If any user requests movie information from an API that doesn't exist in the database,
the response will look like this:

{
 "error":true,
 "description":"We could not find any movie in database like
:Terminator"
}

Also, a similar response will be for an actor that doesn't exist in the database:

{
 "error":true,
 "description":"We could not find any actor in database like :Al
Pacino"
}

Building a RESTful API – The Movies and Actors Databases

[200]

Sending new movies/actors to the API's
database
We need the putActor() and putMovie() functions for allowing users to add new
actors/movies to our database.

Open the ActorController.php file located at app/controllers/ and add the
following function:

public function putActor($actorname)
{

$actor = Actor::where('name', '=', $actorname)->first();
if(!$actor){

$the_actor = Actor::create(array('name'=>$actorname));

return Response::json(array(
'error'=>false,
'description'=>'The actor successfully saved. The ID number of Actor
is : '.$the_actor->id
));

}
else{

return Response::json(array(
'error'=>true,
'description'=>'We have already in database : '.$actorname.'. The ID
number of Actor is : '.$actor->id
));
}
}

Now open the MovieController.php file located at app/controllers/ and add the
following function:

public function putMovie($moviename,$movieyear)
{

$movie = Movie::where('name', '=', $moviename)->first();
if(!$movie){

Chapter 9

[201]

$the_movie = Movie::create(array('name'=>$moviename,'release_
year'=>$movieyear));

return Response::json(array(
'error'=>false,
'description'=>'The movie successfully saved. The ID number of Movie
is : '.$the_movie->id
));

}
else{

return Response::json(array(
'error'=>true,
'description'=>'We have already in database : '.$moviename.'. The ID
number of Movie is : '.$movie->id
));
}
}

The functions putActor() and putMovie() basically search the database for
movies/actors names with the given text. If there is a movie or actor found, the
functions return its ID in the JSON format, else it creates the new actor/movie and
responds with the new record ID. So, for creating a new actor in the API database,
our users can make a request such as the following:

curl –i –X PUT –-user andrea@gmail.com:andreaspassword localhost/api/
addactor/Al%20Pacino

The response for the movie information request will be as follows:

{
 "error":false,
 "description":"The actor successfully saved. The ID number of Actor
is : 4"
}

If any API user tries to add the existing actor, the API will respond as follows:

{
 "error":true,
 "description":"We have already in database : Al Pacino. The ID
number of Actor is : 4"
}

Building a RESTful API – The Movies and Actors Databases

[202]

Also, the response for creating a new movie in the API database should be
as follows:

curl -i –X PUT –-user andrea@gmail.com:andreaspassword localhost/api/
addmovie/The%20Terminator/1984

The response for the request will be as follows:

{
 "error":false,
 "description":"The movie successfully saved. The ID number of Movie
is : 4"
}

If any API user tries to add the existing actor, the API will respond as follows:

{
 "error":true,
 "description":"We have already in database : The Terminator. The ID
number of Movie is : 4"
}

Deleting movies/actors from the API
Now we need the deleteActor() and deleteMovie() functions for allowing users
to add new actors/movies to our database.

Open the ActorController.php file under app/controllers/ and add the
following function:

public function deleteActor($id)
{

$actor = Actor::find($id);
if($actor){

$actor->delete();

return Response::json(array(
'error'=>false,
'description'=>'The actor successfully deleted : '.$actor->name
));

}
else{

Chapter 9

[203]

return Response::json(array(
'error'=>true,
'description'=>'We could not find any actor in database with ID number
:'.$id
));
}
}

After adding the function, the content in ActorController.php located at app/
controllers/, should look like the following:

<?php
class ActorController extends BaseController
{
 public function getActorInfo($actorname)
 {
 $actor = Actor::where('name', 'like', '%' . $actorname .
'%')->first();
 if ($actor)
 {
 $actorInfo = array(
 'error' => false,
 'Actor Name' => $actor->name,
 'Actor ID' => $actor->id
);
 $actormovies = json_decode($actor->Movies);
 foreach ($actormovies as $movie)
 {
 $movielist[] = array(
 "Movie Name" => $movie->name,
 "Release Year" => $movie->release_year
);
 }
 $movielist = array(
 'Movies' => $movielist
);
 return Response::json(array_merge($actorInfo,
$movielist));
 }
 else
 {
 return Response::json(array(
 'error' => true,
 'description' => 'We could not find any actor in
database like :' . $actorname

Building a RESTful API – The Movies and Actors Databases

[204]

));
 }
 }
 public function putActor($actorname)
 {
 $actor = Actor::where('name', '=', $actorname)->first();
 if (!$actor)
 {
 $the_actor = Actor::create(array(
 'name' => $actorname
));
 return Response::json(array(
 'error' => false,
 'description' => 'The actor successfully saved. The ID
number of Actor is : ' . $the_actor->id
));
 }
 else
 {
 return Response::json(array(
 'error' => true,
 'description' => 'We have already in database : ' .
$actorname . '. The ID number of Actor is : ' . $actor->id
));
 }
 }
 public function deleteActor($id)
 {
 $actor = Actor::find($id);
 if ($actor)
 {
 $actor->delete();
 return Response::json(array(
 'error' => false,
 'description' => 'The actor successfully deleted : ' .
$actor->name
));
 }
 else
 {
 return Response::json(array(
 'error' => true,
 'description' => 'We could not find any actor in
database with ID number :' . $id

Chapter 9

[205]

));
 }
 }
}

Now we need a similar function for MovieController. Open the MovieController.
php file under app/controllers/ and add the following function:

public function deleteMovie($id)
{

$movie = Movie::find($id);
if($movie){

$movie->delete();

return Response::json(array(
'error'=>false,
'description'=>'The movie successfully deleted : '.$movie->name
));

}
else{

return Response::json(array(
'error'=>true,
'description'=>'We could not find any movie in database with ID number
:'.$id
));
}
}

After adding the function, the content under ActorController.php located at
app/controllers/ should look like the following:

<?php
class extends BaseController
{
 public function getMovieInfo($moviename)
 {
 $movie = Movie::where('name', 'like', '%' . $moviename .
'%')->first();
 if ($movie)
 {
 $movieInfo = array(
 'error' => false,

Building a RESTful API – The Movies and Actors Databases

[206]

 'Movie Name' => $movie->name,
 'Release Year' => $movie->release_year,
 'Movie ID' => $movie->id
);
 $movieactors = json_decode($movie->Actors);
 foreach ($movieactors as $actor)
 {
 $actorlist[] = array(
 "Actor" => $actor->name
);
 }
 $actorlist = array(
 'Actors' => $actorlist
);
 return Response::json(array_merge($movieInfo,
$actorlist));
 }
 else
 {
 return Response::json(array(
 'error' => true,
 'description' => 'We could not find any movie in
database like :' . $moviename
));
 }
 }
 public function putMovie($moviename, $movieyear)
 {
 $movie = Movie::where('name', '=', $moviename)->first();
 if (!$movie)
 {
 $the_movie = Movie::create(array(
 'name' => $moviename,
 'release_year' => $movieyear
));
 return Response::json(array(
 'error' => false,
 'description' => 'The movie successfully saved. The ID
number of Movie is : ' . $the_movie->id
));
 }
 else
 {
 return Response::json(array(

Chapter 9

[207]

 'error' => true,
 'description' => 'We have already in database : ' .
$moviename . '. The ID number of Movie is : ' . $movie->id
));
 }
 }
 public function deleteMovie($id)
 {
 $movie = Movie::find($id);
 if ($movie)
 {
 $movie->delete();
 return Response::json(array(
 'error' => false,
 'description' => 'The movie successfully deleted : ' .
$movie->name
));
 }
 else
 {
 return Response::json(array(
 'error' => true,
 'description' => 'We could not find any movie in
database with ID number :' . $id
));
 }
 }
}

The functions deleteActor() and deleteMovie() basically search the database for
a movie/actor with the given ID. If there is a movie or an actor, the API deletes the
actor/movie and returns the status in the JSON format. So, for deleting an actor from
the API, our users can make a request as follows:

curl –I –X DELETE –-user andrea@gmail.com:andreaspassword localhost/api/
deleteactor/4

The response for the request will be as follows:

{
 "error":false,
 "description":"The actor successfully deleted : Al Pacino"
}

Building a RESTful API – The Movies and Actors Databases

[208]

Also, the response for deleting a movie from the API database should be as follows:

curl –I –X DELETE –-user andrea@gmail.com:andreaspassword localhost/api/
deletemovie/4

The response for the request will be as follows:

{
 "error":false,
 "description":"The movie successfully deleted : The Terminator"
}

If any API user tries to delete a movie/actor from the API database that doesn't exist,
the API will respond as follows:

{
 "error":true,
 "description":"We could not find any movie in database with ID
number :17"
}

For deleting an actor that doesn't exist, the response will be as follows:

{
 "error":true,
 "description":"We could not find any actor in database with ID
number :58"
}

Summary
In this chapter, we've focused on the basics of REST with coding a simple Movies
and Actors API with Laravel. We've made some JSON endpoints behind a basic
authentication system, and learned a few Laravel 4 tricks while the chapter uses
something like a pattern-based route filtering. As you saw, developing and securing
a RESTful application is very easy with Laravel. In the next chapter, we'll cover more
effective methods in Laravel while coding a simple e-commerce application.

Building an E-Commerce
Website

In this chapter, we'll code a simple book store example using Laravel. We'll also
cover Laravel's built-in authentication, named routes, and database seeding. We'll
also elaborate some rapid development methods that come with Laravel such as
creating route URLs. Also, we'll working with a new relation type called belongs to
many. We'll cover pivot tables as well. Our e-commerce application will be a simple
book store. This application will have order, administration, and cart features. We
will cover the following topics:

•	 Building an authorization system
•	 Creating and migrating authors, books, carts, and orders tables
•	 Creating template files
•	 Listing books
•	 Building a shopping cart
•	 Taking orders
•	 Listing orders

Building an authorization system
We assume that you have already defined the database credentials in the database.
php file located at app/config. To create our e-commerce application, we need a
database. You can create and simply run the following SQL command or basically
you can use a database administration interface such as phpMyAdmin:

CREATE DATABASE laravel_store

Building an E-Commerce Website

[210]

Creating and migrating the members'
database
Contrary to most of the PHP frameworks, Laravel has a basic and customizable
authentication mechanism. The authentication class is very helpful for rapidly
developing applications. First, we need a secret key for our application. As we
mentioned in previous chapters, the application's secret key is very important for our
application's security because all the data is hashed salting this key. The artisan can
generate this key for us with a single command line:

php artisan key:generate

If no error occurs, you will see a message that tells you the key is generated
successfully. After key generation, if you've visited your project URL before you
face problems with opening your Laravel application, simply clear your browser's
cache and try again. Next, we should edit the authentication class's configuration file.
To use Laravel's built-in authentication class, we need to edit the configuration file,
which is located at app/config/auth.php. This file contains several options for the
authentication facilities. If you need a change in the table name, and so on, you can
make the changes under this file. By default, Laravel comes with a User model. You
can see the file, which is located at app/models/User.php. With Laravel 4, we need
to define which fields are fillable in our User model. Let's edit User.php located at
app/models/ and add the fillable array:

<?php

use Illuminate\Auth\UserInterface;
use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements UserInterface,
RemindableInterface {

 protected $table = 'users';

 /**
 * The attributes excluded from the model's JSON form.
 *
 * @var array
 */
 protected $hidden = array('password');

 //Add to the "fillable" array
 protected $fillable = array('email', 'password', 'name', 'admin');

Chapter 10

[211]

 /**
 * Get the unique identifier for the user.
 *
 * @return mixed
 */
 public function getAuthIdentifier()
 {
 return $this->getKey();
 }

 /**
 * Get the password for the user.
 *
 * @return string
 */
 public function getAuthPassword()
 {
 return $this->password;
 }

 /**
 * Get the e-mail address where password reminders are sent.
 *
 * @return string
 */
 public function getReminderEmail()
 {
 return $this->email;
 }

}

Basically we need four columns for our members. These are:

•	 email: This is the column for storing a member's e-mails
•	 password: This is the column for storing a member's password
•	 name: This is the column for storing a member's name and surname
•	 admin: This is the column for flagging store admin

Now we need several migration files to create the users table and add a member to
our database. To create a migration file, give a command as follows:

php artisan migrate:make create_users_table --table=users --create

Building an E-Commerce Website

[212]

Open the migration file, which was created recently and located at app/database/
migrations/. We need to edit the up() function, as shown in the following
code snippet:

 public function up()
 {
 Schema::create('users', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('email');
 $table->string('password');
 $table->string('name');
 $table->integer('admin');
 $table->timestamps();
 });
 }

After editing the migration file, run the migrate command:

php artisan migrate

Now we need to create a database seeder file to add some users to the database.
Database seeding is another highly recommended way to add data to your
application database. The database seeder files are located at app/database/seeds.
Let's create our first seeder file under the UsersTableSeeder.php directory.

We can create both the seeder file and the seeder class with any name.
But it is highly recommended for the seeder file and class name that
the table name should follow camel case, for example, TableSeeder.
Following the world-wide programming standards will improve the
quality of your code.

The content of UsersTableSeeder.php should look like the following:

<?php
Class UsersTableSeeder extends Seeder {

 public function run()
 {
 DB::table('users')->delete();

User::create(array(
 'email' => 'member@email.com',
 'password' => Hash::make('password'),
 'name' => 'John Doe',

Chapter 10

[213]

 'admin'=>0
));

 User::create(array(
 'email' => 'admin@store.com',
 'password' => Hash::make('adminpassword'),
 'name' => 'Jeniffer Taylor',
 'admin'=>1
));

 }

}

To apply seeding, first we need to call the Seeder class. Let's open the
DatabaseSeeder.php file located at app/database/seeds and edit the file, as shown
in the following code snippet:

<?php
class DatabaseSeeder extends Seeder {

 /**
 * Run the database seeds.
 *
 * @return void
 */
 public function run()
 {
 Eloquent::unguard();

 $this->call('UsersTableSeeder');
 $this->command->info('Users table seeded!');
 }

}

It is very important to securely store your users' passwords and their critical data. Do
not forget that if you change the application key, all the existing hashed records will
be unusable because the Hash class uses the application key as the salting key, when
validating and storing given data.

Building an E-Commerce Website

[214]

Creating and migrating the authors'
database
We need an Author model for storing the book authors. It will be a very simple
structure. Let's create the Author.php file under app/models and add the
following code:

<?php
Class Author extends Eloquent {

protected $table = 'authors';

protected $fillable = array('name','surname');

}

Now we need several migration files to create the authors table and add some
authors to our database. To create a migration file, give a command as follows:

php artisan migrate:make create_authors_table --table=authors --create

Open the migration file that was created recently and located at app/database/
migrations/. We need to edit the up() function as follows:

 public function up()
 {
 Schema::create('authors', function(Blueprint $table)
 {
 $table->increments('id');
 $table->string('name');
 $table->string('surname');
 $table->timestamps();
 });
 }

After editing the migration file, run the migrate command:

php artisan migrate

As you know, the command creates the authors table and its columns. If no error
occurs, check the laravel_store database for the authors table and the columns.

Chapter 10

[215]

Adding authors to the database
Now we need to create a database seeder file to add some authors to the database. Let's
create our first seeder file under app/database/seeds/AuthorsTableSeeder.php.

The content in AuthorsTableSeeder.php should look like the following:

<?php
Class AuthorsTableSeeder extends Seeder {

 public function run()
 {
DB::table('authors')->delete();

 Author::create(array(
 'name' => 'Lauren',
 'surname'=>'Oliver'
));

 Author::create(array(
 'name' => 'Stephenie',
 'surname'=>'Meyer'
));

 Author::create(array(
 'name' => 'Dan',
 'surname'=>'Brown'
));

 }

}

To apply seeding, first we need to call the Seeder class. Let's open the file
DatabaseSeeder.php located at app/database/seeds/and edit the file as shown in
the following code snippet:

<?php
class DatabaseSeeder extends Seeder {

 /**
 * Run the database seeds.
 *
 * @return void
 */

Building an E-Commerce Website

[216]

 public function run()
 {
 Eloquent::unguard();
 $this->call('UsersTableSeeder');
 $this->command->info('Users table seeded!');
 $this->call('AuthorsTableSeeder');
 $this->command->info('Authors table seeded!');
 }

}

We need to seed our database with the following artisan command:

php artisan db:seed

When you want to rollback and re-run all migrations, you can use the
following command:
php artisan migrate:refresh --seed

Creating and migrating the books
database
We need a Book model to store the author's books. Let's create the Book.php file
under app/models/ and add the following code:

<?php
Class Book extends Eloquent {

protected $table = 'books';

protected $fillable = array('title','isbn','cover','price','author_
id');

public function Author(){

return $this->belongsTo('Author');

}

}

Chapter 10

[217]

Let's explain the role of the author_id column and the Author() function. As you
know from previous chapters, Eloquent has several functions for different kinds of
database relations. The author_id will store the ID of the authors. The Author()
function is used to fetch names and surnames of authors from the authors table.

Adding books to the database
Now we need to create a database seeder file to add some books to the database. Let's
create the first seeder file under app/database/seeds/BooksTableSeeder.php.

The content in BooksTableSeeder.php should look like the following:

<?php
Class BooksTableSeeder extends Seeder {

 public function run()
 {
 DB::table('books')->delete();

 Book::create(array(
 'title'=>'Requiem',
 'isbn'=>'9780062014535',
 'price'=>'13.40',
 'cover'=>'requiem.jpg',
 'author_id'=>1
));
 Book::create(array(
 'title'=>'Twilight',
 'isbn'=>'9780316015844',
 'price'=>'15.40',
 'cover'=>'twilight.jpg',
 'author_id'=>2
));
 Book::create(array(
 'title'=>'Deception Point',
 'isbn'=>'9780671027384',
 'price'=>'16.40',
 'cover'=>'deception.jpg',
 'author_id'=>3
));

 }

}

Building an E-Commerce Website

[218]

To apply seeding, first we need to call the seeder class. Let's open the
DatabaseSeeder.php file located at app/database/seeds and edit the file, as shown
in the following code snippet:

<?php
class DatabaseSeeder extends Seeder {

 /**
 * Run the database seeds.
 *
 * @return void
 */
 public function run()
 {
 Eloquent::unguard();
 $this->call('UsersTableSeeder');
 $this->command->info('Users table seeded!');
 $this->call('AuthorsTableSeeder');
 $this->command->info('Authors table seeded!');
 $this->call('BooksTableSeeder');
 $this->command->info('Books table seeded!');
 }

}

Now, we need to seed our database with the following artisan command:

php artisan db:seed

Creating and migrating the carts
database
As you know, all e-commerce applications should have a cart. In this application,
we'll have a cart too. We'll design a member-based cart, which means we can store
and show each visitor their carts and cart items. So, we need a Cart model to store
the cart items. It will be a very simple structure. Let's create the Cart.php file under
app/models and add following code:

<?php
Class Cart extends Eloquent {

protected $table = 'carts';

protected $fillable = array('member_id','book_id','amount','total');

Chapter 10

[219]

public function Books(){

return $this->belongsTo('Book','book_id');

}

}

Now we need a migration file to create the carts table. To create a migration file,
give a command such as the following:

php artisan migrate:make create_carts_table --table=carts --create

Open the migration file, which was created recently and located at app/database/
migrations/. We need to edit the up() function as shown in the following
code snippet:

 public function up()
 {
 Schema::create('carts', function(Blueprint $table)
 {
 $table->increments('id');
 $table->integer('member_id');
 $table->integer('book_id');
 $table->integer('amount');
 $table->decimal('total', 10, 2);
 $table->timestamps();
 });
 }

To apply migration, we need to migrate with the following artisan command:

php artisan migrate

Creating and migrating the orders
database
To store members' orders, we need two tables. The first of them is the orders table,
which will store shipping details, member ID, and the total value of the order. The
second one is the order_books table. This table will store orders' books and will
be our pivot table. In this model, we'll use the belongsToMany() relation. This is
because an order can have many books.

Building an E-Commerce Website

[220]

So, first we need an Order model to store the book orders. Let's create the Order.php
file under app/models and add the following code:

<?php
Class Order extends Eloquent {

protected $table = 'orders';

protected $fillable = array('member_id','address','total');

public function orderItems()
 {
 return $this->belongsToMany('Book')
->withPivot('amount','total');
 }

}

As you can see in the code, we've used a new option named withPivot() with the
belongsToMany() function. With the withPivot() function, we can fetch extra fields
from our pivot table. Normally, without the function, the relational query accesses
from the pivot table with just the id object of related rows. This is necessary for our
application because of price changes. Thus, previous orders, which were possibly
done before any price change, are not affected.

Now we need a migration file to create the carts table. To create a migration file,
give a command such as the following:

php artisan migrate:make create_orders_table --table=orders --create

Open the migration file, which was created recently and located at app/database/
migrations. We need to edit the up() function as follows:

 public function up()
 {
 Schema::create('orders', function(Blueprint $table)
 {
 $table->increments('id');
 $table->integer('member_id');
 $table->text('address');
 $table->decimal('total', 10, 2);
 $table->timestamps();
 });
 }

Chapter 10

[221]

To apply migration, we need to migrate with the following artisan command:

php artisan migrate

Let's create our pivot table. We need a migration file to create the order_books
table. To create a migration file, give a command such as the following:

php artisan migrate:make create_order_books_table --table=order_books
--create

Open the migration file, which was created recently and located at app/database/
migrations. We need to edit the up() function as follows:

 public function up()
 {
 Schema::create('order_books', function(Blueprint $table)
 {
 $table->increments('id');
 $table->integer('order_id');
 $table->integer('book_id');
 $table->integer('amount');
$table->decimal('price', 10, 2);
 $table->decimal('total', 10, 2);
 });
}

To apply migration, we need to migrate with the following artisan command:

php artisan migrate

Our database design and models are finished. Now we need to code controllers and
our application's front pages.

Listing books
First, we need to list our products. To do that, we need to create a controller, which
is named BookController. Let's create a file under app/controllers/ and save
it with the name BookController.php. The controller code should look like
the following:

<?php
class BookController extends BaseController{

 public function getIndex()
 {

Building an E-Commerce Website

[222]

 $books = Book::all();

 return View::make('book_list')->with('books',$books);

 }
}

The code simply fetches all the books from our books table and passes the data
book_list.blade.php template with the $books variable. So we need to create a
template file under app/controllers/, which is named as book_list.blade.php.
Before doing this we need a layout page for our templates. Working with layout files
is very helpful to manage html code. So first, we need a template file under app/
controllers/, which is named main_layout.blade.php. The code should look like
the following:

<!DOCTYPE html>
<html>
<head>
 <title>Awesome Book Store</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <!-- Bootstrap -->
 <link href="//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/css/
bootstrap.min.css" rel="stylesheet">
</head>
<body>
<div class="navbar navbar-inverse nav">
 <div class="navbar-inner">
 <div class="container">
 <a class="btn btn-navbar" data-toggle="collapse" data-
target=".nav-collapse">

 Awesome Book Store
 <div class="nav-collapse collapse">
 <ul class="nav">
 <li class="divider-vertical">
 <i class="icon-home icon-white"></i>
Book List

 <div class="pull-right">
 <ul class="nav pull-right">
 @if(!Auth::check())

Chapter 10

[223]

 <ul class="nav pull-right">
 <li class="divider-vertical">
 <li class="dropdown">
 <a class="dropdown-toggle" href="#" data-
toggle="dropdown">Sign In <strong class="caret">
 <div class="dropdown-menu" style="padding: 15px;
padding-bottom: 0px;">
 <p>Please Login
 <form action="/user/login" method="post"
accept-charset="UTF-8">
 <input id="email" style="margin-bottom:
15px;" type="text" name="email" size="30" placeholder="email" />
 <input id="password" style="margin-bottom:
15px;" type="password" name="password" size="30" />
 <input class="btn btn-info" style="clear:
left; width: 100%; height: 32px; font-size: 13px;" type="submit"
name="commit" value="Sign In" />
 </form>
 </div>

 @else
 <i class="icon-shopping-cart icon-
white"></i> Your Cart
 <li class="dropdown"><a href="#" class="dropdown-
toggle" data-toggle="dropdown">Welcome, {{Auth::user()->name}} <b
class="caret">
 <ul class="dropdown-menu">
 <i class="icon-
envelope"></i> My Orders
 <li class="divider">
 <i class="icon-
off"></i> Logout

 @endif

 </div>
 </div>
 </div>
 </div>
</div>

@yield('content')

Building an E-Commerce Website

[224]

 <script src="http://code.jquery.com/jquery.js"></script>
 <script src="//netdna.bootstrapcdn.com/bootstrap/3.0.0/js/bootstrap.
min.js"></script>
 <script type="text/javascript">
 $(function() {
 $('.dropdown-toggle').dropdown();

 $('.dropdown input, .dropdown label').click(function(e) {
 e.stopPropagation();
 });
 });

 @if(isset($error))
 alert("{{$error}}");
 @endif

 @if(Session::has('error'))
 alert("{{Session::get('error')}}");
 @endif

 @if(Session::has('message'))
 alert("{{Session::get('message')}}");
 @endif

 </script>
</body>
</html>

The template file contains a menu, a login form, and some JavaScript code for the
drop-down login form. We'll use the file as our application's layout template. We
need to code our login and logout functions in the UserController.php file located
at app/controllers. The login function should look like the following code:

<?php
class UserController extends BaseController {

 public function postLogin()
 {
 $email=Input::get('email');
 $password=Input::get('password');

 if (Auth::attempt(array('email' => $email, 'password' =>
$password)))
 {

Chapter 10

[225]

 return Redirect::route('index');

 }else{

 return Redirect::route('index')
 ->with('error','Please check your password & email');
 }
 }

 public function getLogout()
 {
 Auth::logout();
 return Redirect::route('index');
 }
}

As shown in the following code, we need to add routes to our route file, routes.php,
found under apps:

Route::get('/', array('as'=>'index','uses'=>'BookController@
getIndex'));
Route::post('/user/login', array('uses'=>'UserController@postLogin'));
Route::get('/user/logout', array('uses'=>'UserController@getLogout'));

Creating a template file to list books
Now we need a template file to list books. As mentioned previously, we need to
create a template file under app/views/ and save it as book_list.blade.php. This
file should look like the following:

@extends('main_layout')

@section('content')

<div class="container">
 <div class="span12">
 <div class="row">
 <ul class="thumbnails">
 @foreach($books as $book)
 <li class="span4">
 <div class="thumbnail">
 cover}}" alt="ALT NAME">
 <div class="caption">
 <h3>{{$book->title}}</h3>

Building an E-Commerce Website

[226]

 <p>Author : {{$book->author->name}} {{$book->author-
>surname}}</p>
 <p>Price : {{$book->price}}</p>
 <form action="/cart/add" name="add_to_cart"
method="post" accept-charset="UTF-8">
 <input type="hidden" name="book" value="{{$book->id}}"
/>
 <select name="amount" style="width: 100%;">
 <option value="1">1</option>
 <option value="2">2</option>
 <option value="3">3</option>
 <option value="4">4</option>
 <option value="5">5</option>
 </select>
 <p align="center"><button class="btn btn-info btn-
block">Add to Cart</button></p>
 </form>
 </div>
 </div>

 @endforeach

 </div>
 </div>
</div>

@stop

The template file has a form to add books to a cart. Now we need to code our
functions in the CartController.php file located at app/controllers/. The
content of CartController.php should look like the following:

<?php
class CartController extends BaseController {

 public function postAddToCart()
 {
 $rules=array(

 'amount'=>'required|numeric',
 'book'=>'required|numeric|exists:books,id'
);

 $validator = Validator::make(Input::all(), $rules);

Chapter 10

[227]

 if ($validator->fails())
 {
 return Redirect::route('index')->with('error','The book
could not added to your cart!');
 }

 $member_id = Auth::user()->id;
 $book_id = Input::get('book');
 $amount = Input::get('amount');

 $book = Book::find($book_id);
 $total = $amount*$book->price;

 $count = Cart::where('book_id','=',$book_id)->where('member_
id','=',$member_id)->count();

 if($count){

 return Redirect::route('index')->with('error','The book
already in your cart.');
 }

 Cart::create(
 array(
 'member_id'=>$member_id,
 'book_id'=>$book_id,
 'amount'=>$amount,
 'total'=>$total
));

 return Redirect::route('cart');
 }

 public function getIndex(){

 $member_id = Auth::user()->id;

 $cart_books=Cart::with('Books')->where('member_id','=',$member_
id)->get();

 $cart_total=Cart::with('Books')->where('member_id','=',$member_
id)->sum('total');

Building an E-Commerce Website

[228]

 if(!$cart_books){

 return Redirect::route('index')->with('error','Your cart is
empty');
 }

 return View::make('cart')
 ->with('cart_books', $cart_books)
 ->with('cart_total',$cart_total);
 }

 public function getDelete($id){

 $cart = Cart::find($id)->delete();

 return Redirect::route('cart');
 }

}

Our controller has three functions. The first of them is postAddToCart():

public function postAddToCart()
 {
 $rules=array(

 'amount'=>'required|numeric',
 'book'=>'required|numeric|exists:books,id'
);

 $validator = Validator::make(Input::all(), $rules);

 if ($validator->fails())
 {
 return Redirect::route('index')->with('error','The book
could not added to your cart!');
 }

 $member_id = Auth::user()->id;
 $book_id = Input::get('book');
 $amount = Input::get('amount');

 $book = Book::find($book_id);
 $total = $amount*$book->price;

Chapter 10

[229]

 $count = Cart::where('book_id','=',$book_id)->where('member_
id','=',$member_id)->count();

 if($count){

 return Redirect::route('index')->with('error','The book
already in your cart.');
 }

 Cart::create(
 array(
 'member_id'=>$member_id,
 'book_id'=>$book_id,
 'amount'=>$amount,
 'total'=>$total
));

 return Redirect::route('cart');
 }

The function basically, at first, validates the posted data. The validated data checks
the carts table for duplicate records. If the same book is not in the member's cart,
the function creates a new record in the carts table. The second function of the
CartController is getIndex():

 public function getIndex(){

 $member_id = Auth::user()->id;

 $cart_books=Cart::with('Books')->where('member_id','=',$member_
id)->get();

 $cart_total=Cart::with('Books')->where('member_id','=',$member_
id)->sum('total');

 if(!$cart_books){

 return Redirect::route('index')->with('error','Your cart is
empty');
 }

 return View::make('cart')
 ->with('cart_books', $cart_books)
 ->with('cart_total',$cart_total);
 }

Building an E-Commerce Website

[230]

The function fetches whole cart items, books' information, and cart total and passes
the data to the template file. The last function of the class is getDelete():

 public function getDelete($id){

 $cart = Cart::find($id)->delete();

 return Redirect::route('cart');
 }

The function basically finds from the carts table the given ID and deletes the record.
We use the function to delete items from a cart. Now we need to create a template
file. The file will show all cart information of members and also contains the order
form. Save the file under app/views/ as cart.blade.php. The content of cart.
blade.php should look like the following:

@extends('main_layout')

@section('content')

<div class="container" style="width:60%">
 <h1>Your Cart</h1>
 <table class="table">
 <tbody>
 <tr>
 <td>
 Title
 </td>
 <td>
 Amount
 </td>
 <td>
 Price
 </td>
 <td>
 Total
 </td>
 <td>
 Delete
 </td>
 </tr>
 @foreach($cart_books as $cart_item)
 <tr>
 <td>{{$cart_item->Books->title}}</td>
 <td>

Chapter 10

[231]

 {{$cart_item->amount}}
 </td>
 <td>
 {{$cart_item->Books->price}}
 </td>
 <td>
 {{$cart_item->total}}
 </td>
 <td>
 <a href="{{URL::route('delete_book_from_cart',array($cart_
item->id))}}">Delete
 </td>
 </tr>
 @endforeach
 <tr>
 <td>
 </td>
 <td>
 </td>
 <td>
 Total
 </td>
 <td>
 {{$cart_total}}
 </td>
 <td>
 </td>
 </tr>
 </tbody>
 </table>
 <h1>Shipping</h1>
 <form action="/order" method="post" accept-charset="UTF-8">
 <label>Address</label>
 <textarea class="span4" name="address" rows="5"></textarea>
 <button class="btn btn-block btn-primary btn-large">Place order</
button>
 </form>
</div>
@stop

Now we need to write our routes. The functions of the controller should just be
accessible to members. So we can easily use Laravel's built-in auth.basic filter:

Route::get('/cart', array('before'=>'auth.basic','as'=>'cart','uses'=>
'CartController@getIndex'));

Building an E-Commerce Website

[232]

Route::post('/cart/add', array('before'=>'auth.
basic','uses'=>'CartController@postAddToCart'));
Route::get('/cart/delete/{id}', array('before'=>'auth.
basic','as'=>'delete_book_from_cart','uses'=>'CartController@
getDelete'));

Taking orders
As you may remember, we've already created an order form in the cart.blade.php
template file located at app/views/. Now we need to process the order. Let's code
the OrderController.php file under app/controllers/:

<?php
class OrderController extends BaseController {

 public function postOrder()
 {
 $rules=array(

 'address'=>'required'
);

 $validator = Validator::make(Input::all(), $rules);

 if ($validator->fails())
 {
 return Redirect::route('cart')->with('error','Address field
is required!');
 }

 $member_id = Auth::user()->id;
 $address = Input::get('address');

 $cart_books = Cart::with('Books')->where('member_
id','=',$member_id)->get();

 $cart_total=Cart::with('Books')->where('member_id','=',$member_
id)->sum('total');

 if(!$cart_books){

 return Redirect::route('index')->with('error','Your cart is
empty.');
 }

Chapter 10

[233]

 $order = Order::create(
 array(
 'member_id'=>$member_id,
 'address'=>$address,
 'total'=>$cart_total
));

 foreach ($cart_books as $order_books) {

 $order->orderItems()->attach($order_books->book_id, array(
 'amount'=>$order_books->amount,
 'price'=>$order_books->Books->price,
 'total'=>$order_books->Books->price*$order_books->amount
));

 }

 Cart::where('member_id','=',$member_id)->delete();

 return Redirect::route('index')->with('message','Your order
processed successfully.');
 }

 public function getIndex(){

 $member_id = Auth::user()->id;

 if(Auth::user()->admin){

 $orders=Order::all();

 }else{

 $orders=Order::with('orderItems')->where('member_
id','=',$member_id)->get();
 }

 if(!$orders){

 return Redirect::route('index')->with('error','There is no
order.');
 }

Building an E-Commerce Website

[234]

 return View::make('order')
 ->with('orders', $orders);
 }
}

The controller has two functions. The first of them is postOrder():

public function postOrder()
 {
 $rules=array(

 'address'=>'required'
);

 $validator = Validator::make(Input::all(), $rules);

 if ($validator->fails())
 {
 return Redirect::route('cart')->with('error','Address field
is required!');
 }

 $member_id = Auth::user()->id;
 $address = Input::get('address');

 $cart_books = Cart::with('Books')->where('member_
id','=',$member_id)->get();

 $cart_total=Cart::with('Books')->where('member_id','=',$member_
id)->sum('total');

 if(!$cart_books){

 return Redirect::route('index')->with('error','Your cart is
empty.');
 }

 $order = Order::create(
 array(
 'member_id'=>$member_id,
 'address'=>$address,
 'total'=>$cart_total
));

 foreach ($cart_books as $order_books) {

Chapter 10

[235]

 $order->orderItems()->attach($order_books->book_id, array(
 'amount'=>$order_books->amount,
 'price'=>$order_books->Books->price,
 'total'=>$order_books->Books->price*$order_books->amount
));

 }

 Cart::where('member_id','=',$member_id)->delete();

 return Redirect::route('index')->with('message','Your order
processed successfully.');
 }

The function, first, validates the posted data. After successful validation, the function
creates a new order on the orders table. The order table stores the member ID,
shipping address, and total amount of the order. Then, the function attaches all cart
items to the pivot table with their amount, price, and total amounts. In this way, the
order items will not be affected by any price change. The function then deletes all
items from the member's cart. The second function of the controller is getIndex():

public function getIndex(){

 $member_id = Auth::user()->id;

 if(Auth::user()->admin){

 $orders=Order::all();

 }else{

 $orders=Order::with('orderItems')->where('member_
id','=',$member_id)->get();
 }

 if(!$orders){

 return Redirect::route('index')->with('error','There is no
order.');
 }

 return View::make('order')
 ->with('orders', $orders);
 }

Building an E-Commerce Website

[236]

The function queries the database by looking at current user rights. If the current
user has admin rights, the function fetches all the orders. If the current user has no
admin rights, the function fetches just the user's orders. So, now we need to write
our routes. Add the following route code to app/routes.php:

Route::post('/order', array('before'=>'auth.
basic','uses'=>'OrderController@postOrder'));
Route::get('/user/orders', array('before'=>'auth.
basic','uses'=>'OrderController@getIndex'));

Our e-commerce application is almost done. Now we need to add a template file.
Save the file under app/views/ as cart.blade.php. The content of cart.blade.php
should be like the following:

@extends('main_layout')
@section('content')
<div class="container" style="width:60%">
<h3>Your Orders</h3>
<div class="menu">
 <div class="accordion">
@foreach($orders as $order)
 <div class="accordion-group">
 <div class="accordion-heading country">
 @if(Auth::user()->admin)
 <a class="accordion-toggle" data-toggle="collapse"
href="#order{{$order->id}}">Order #{{$order->id}} - {{$order->User-
>name}} - {{$order->created_at}}
 @else
 <a class="accordion-toggle" data-toggle="collapse"
href="#order{{$order->id}}">Order #{{$order->id}} - {{$order->created_
at}}
 @endif
 </div>
 <div id="order{{$order->id}}" class="accordion-body collapse">
 <div class="accordion-inner">
 <table class="table table-striped table-condensed">
 <thead>
 <tr>
 <th>
 Title
 </th>
 <th>
 Amount
 </th>
 <th>

Chapter 10

[237]

 Price
 </th>
 <th>
 Total
 </th>
 </tr>
 </thead>
 <tbody>
 @foreach($order->orderItems as $orderitem)
 <tr>
 <td>{{$orderitem->title}}</td>
 <td>{{$orderitem->pivot->amount}}</td>
 <td>{{$orderitem->pivot->price}}</td>
 <td>{{$orderitem->pivot->total}}</td>
 </tr>
 @endforeach
 <tr>
 <td></td>
 <td></td>
 <td>Total</td>
 <td>{{$order->total}}</td>
 </tr>
 <tr>
 <td>Shipping Address</td>
 <td>{{$order->address}}</td>
 <td></td>
 <td></td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
@endforeach
</div>
</div>
@stop

The template file contains all the information about orders. The template is a very
simple example of how to use pivot table columns. The pivot data comes as an array.
So, we've used the foreach loop to use the data. You can store any data that you do
not want to be affected by any changes in the database, such as price changes.

Building an E-Commerce Website

[238]

Summary
In this chapter, we've built a simple e-commerce application. As you can see, thanks
to Laravel's template system and built-in authorization system, you can easily create
huge applications. You can improve the application with third-party packages.
Since Laravel Version 4, the main package manager has been Composer. There
is a huge library at http://packagist.org, which provides packages for image
manipulating, social media APIs, and so on. The number of packages increase
day-by-day, which are becoming, by default, Laravel compatible. We suggest that,
before coding anything, you take a look at the Packagist website. There are many
contributors still sharing their codes while you're reading these sentences. Reviewing
another programmer's code gives new answers to old problems. Do not forget to
share your knowledge with people to have a better programming experience.

During the entire book we've tried to explain building different kinds of applications
with the Laravel PHP framework. So, we've covered RESTful controllers, routing,
route filters, the authentication class, Blade template engine, database migrations,
database seeding, string, and file-processing classes. Also, we've given some tips for
rapid development with Laravel. We hope that this book will be a good resource for
learning the Laravel framework.

The co-author of the book, Halil İbrahim Yılmaz, has developed an open source,
multilingual CMS with Laravel, which is named HERKOBI. You can use both the
source codes of the book chapters and the source code of the CMS. You can access
the CRM and the codes at http://herkobi.org and also at http://herkobi.com.

Laravel has a good community, which is very helpful and friendly. You can ask
any question in the Laravel forums. The international Laravel community can
be accessed at http://laravel.com. Laravel also has some national Laravel
communities, such as a Turkish Laravel community, which is located at
http://laravel.gen.tr.

You can send an e-mail to the authors when you need help on anything in the book
or the Laravel PHP framework.

Thank you for being interested in and purchasing this book.

Index
Symbols
$fillable variable 61
$table variable 61
$timestamps variable 61
@extends() method 46
@foreach() method 86
<form> opening tag 13
<form> tag 13
@include() method 137
<input> tag 13
@yield() method 137

A
actor model, RESTful API

creating 195
actors database, RESTful API

creating 195
migrating 195

Ajax
used, for creating to-do list 23
used, for inserting data to database 30

ajax() method 121
Ajax POST method 30
Ajax requests

allowing 34
allowing, controller side used 35
allowing, route filters used 35

Album model, photo gallery system
creating 91

album, photo gallery system
creating 94, 95

all() method 125
Amazon SQS 122

answers table, Q&A web application
creating 172

articles
listing 70

Artisan CLI 8
artisan command 61
authenticate() method 144
authentication mechanism,

RESTful API 197, 198
Author() function 61
authorization system, e-commerce

application
building 211

authors database
creating 62, 64

authors database, e-commerce
application

creating 216
migrating 216

B
BBCode 51
Bcrypt 64
Beanstalkd 122
belongsToMany() function 221
belongsTo() method 69, 71
blade 11, 26
blade template system 65
blog post

assigning, to users 69
saving 68

books database, e-commerce application
creating 218
migrating 219

[240]

C
Cartalyst 131
carts database, e-commerce application

creating 220
migrating 221

check() function 65, 134
Composer 43
content

paginating 72
controller() method 117
core classes, news aggregation site

extending 80, 81
create() method 20
CSRF 44
custom configuration values, photo sharing

website
setting 42

custom filters, Q&A web application
creating 133-135

D
data, URL Shorterner website

saving 15
deleteActor() 204
delete() method 57, 125
deleteMovie() 204
downvote button Q&A web application

adding 164

E
e-commerce application

authorization system, building 211
authors, adding to database 217, 218
authors database, creating 216
authors database, migrating 216
books, adding to database 219, 220
books database, creating 218
books database, migrating 219
books, listing 223, 226
carts database, creating 220
carts database, migrating 221
members database, creating 212, 213
members database, migrating 214, 215
orders database, creating 221

orders database, migrating 222
orders, taking 234-239
template file, creating for

listing books 227-233
Eloquent function 69
Eloquent ORM 41, 193
external feed, news aggregation site

parsing 81, 82
reading 81, 83

F
feeds database, news aggregation site

creating 73, 74
feeds model, news aggregation site

creating 75
find() method 52
fire() method 125
Fluent Query Builder 18, 51
foreach loop

using 71
form, news aggregation site

creating 75, 76
processing 78
validating 78

form, newsletter system
creating 117-120
processing 121
validating 120

form, photo sharing website
validating 48, 51

form, Q&A web application
processing 141
validating 141

form, URL Shorterner website
creating 11-13
processing 18-20

form validation, photo sharing website
defining 48

G
getActorInfo() function 199
getClientOriginalExtension() method 51
getClientOriginalName() method 51
getCreate() method 118
getDelete() function 95

[241]

getForm() function 106
getIndex() method 34
get() method 72
getMovieInfo() function 199
getUser() method 135

H
hasAccess() method 135
hasMany database relation mechanism 89
hasMany() method 102, 108

I
image() method 137
Image model, photo gallery system

creating 93
image, photo sharing website

creating 39
deleting from database and server 56, 57
displaying with user interface 52, 53
listing 54, 55

images database, photo gallery system
creating 92, 93

insertGetId() method 51
Intervention class 43
Iron IO 122

L
Laravel

personal blog, building 59
limit() method 86
link() method 19
Link model, URL Shorterner website

creating 13, 14
links() function 72
login form, Q&A web application

creating 135
login requests, Q&A web application

processing 145
logout requests, Q&A web application

processing 145

M
make() method 121

members database, e-commerce application
creating 212
migrating 214

migrate command 64
migrate*make command 8
move() method 51
movies/actors

deleting, from API 204
movies database, RESTful API

creating 193
migrating 193

N
news aggregation site

core classes, extending 80
creating 73
external feed, parsing 81, 82
external feed, reading 81
feeds database, creating 73
feeds database, migrating 74
feeds model, creating 75
form, creating 75, 76
form, processing 78, 80
form, validating 78-80

newsletter system
creating 115
email class, using 125
email, processing 125
e-mails, sending with queue 127
form, creating 117-120
form, processing 121
form, validating 120
queue system, creating 122-125
subscribers database, creating 115
subscribers database, migrating 116
subscribers model, migrating 117
testing 126

O
orders database, e-commerce application

creating 221
migrating 222

orders, e-commerce application
taking 234-237

ORM (Object Relational Mapper) database
25

[242]

P
paginate() method 72
parse_feed() method 86
passes() method 143
personal blog, building

articles, listing 70, 71
authors database, creating 62
authors database, migrating 62
blog post, assigning to users 69
blog post, saving 68
content, paginating 72
members-only area, creating 65-68
post model, creating 61
posts database, creating 59
posts database, migrating 59

photo gallery system
album, creating 94, 95
Album model, creating 91
albums, migrating 89, 91
creating 89
Image model, creating 93
images database, creating with

migrating class 92, 93
photos, moving between albums 109, 112
photo upload form, creating 103
table, creating 89, 91
template, adding for creating albums 98,

100, 102
update form, creating 113

photo model, photo sharing website
creating 41

photo sharing website
creating 39
custom configuration values, setting 42, 43
database, creating 39
form, processing 51
form, validating 48
image, deleting from database 56
image, deleting from server 56, 57
image, displaying with user interface 52, 53
images, listing 54, 56
images, migrating 41
photo model, creating 41
secure form, creating for file upload 44-48
third-party library, installing 43, 44

photos, photo gallery system
moving, between albums 109

photo upload form, photo gallery system
creating 103-106
photo, assigning to album 108
photo, validating 106, 107

postAdd() function 69, 108
postCreate() function 95
postLogin() function 68
post model

creating 61
posts database

creating 59
migrating 60

protected $fillable variable 41
public $timestamps variable 41
public Photos () function 91, 108
putActor() function 202
putMovie() function 202

Q
Q&A web application

access rights, setting 133
answers, processing 174-180
answers table, creating 172-174
authentication library, installing 131
best answer, selecting 180-183
creating 129
custom filters, creating 133-135
downvote button, adding 164, 165
form, processing 141-144
form, validating 141
login form, creating 135-139
login request, processing 145, 147
logout request, processing 145-148
public segment, removing from

Laravel 4 130
question form, creating 153-155
question form, processing 155-159
question page, creating 166-172
questions list page, creating 160-163
questions, searching by tags 184, 185
questions table, creating 148-150
registration form, creating 135-140
resources, creating 172-174
Sentry 2, installing 131

[243]

tags table, creating with pivot table 150-152
upvote button, adding 164, 165

Question2Answer 135
question form, Q&A web application

creating 153
processing 155, 156

questions list page, Q&A web application
creating 160-163

questions, Q&A web application
searching, by tags 184

questions table, Q&A web application
creating 148, 149

Queue**push() method 125
queue system, newsletter system

creating 122

R
random() method 51
registration form, Q&A web application

creating 135
Resource Controllers 94
resources, Q&A web application

creating 172
RESTful API

actor model, creating 195
actors, assigning to movies 196, 197
actors database, creating 195
actors database, migrating 195
authentication mechanism 197, 198
building 189
movie/actor information, getting from

199-201
movie model, creating 193, 194
movies/actors, deleting 204-209
movies database, creating 193
movies database, migrating 193
new movies/actors, sending to

database 202, 203
querying 198
sample movies, adding 194
sample users, adding 192
users database, creating 190
users database, migrating 192

Route**filter() method 134
route() method 137

S
sample users, RESTful API

adding 192
script() method 137
secure form, photo sharing website

creating 44, 45
Sentry**check() method 135
slug() method 51
strip_tags() function 86
style() method 46, 137
subscribers data, newsletter system

creating 115, 116
subscribers model, newsletter system

creating 117

T
tags table, Q&A web application

creating 150, 152
template, to-do list

creating 26-28
third-party library, photo sharing website

installing 43
TodoController function 34
to-do list

Ajax requests, allowing 34
Ajax requests, allowing using

controller side 35
Ajax requests, allowing using route

filters 35
building, with Ajax 23
database, creating 23, 25
database, migrating 23
data, inserting to database with Ajax 30-33
list, retrieving from database 34
template, creating 26, 27
todos Model, creating 25

todos Model
creating 25

U
unlink() method 57
up() function 64
upvote button, Q&A web application

adding 164

[244]

URL Shortener website
building 7
database, creating 7-10
data, saving to database 15
form, creating 11-13
form, processing 18-20
Link model, creating 13, 14
messages, returning to view 17
URL, redirecting 20, 21
users input, validating 16, 17

users database, RESTful API
creating 190
migrating 192

V
Validator**make() method 16

W
withInput() method 17, 143
with() method 137
withPivot() function 222

Thank you for buying
Laravel Application Development Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Laravel Application Development
Cookbook
ISBN: 978-1-78216-282-7 Paperback: 272 pages

Over 90 recipes to learn all the key aspects of Laravel,
including installation, authentication, testing, and the
deployment and integration of third parties in your
application

1.	 Install and set up a Laravel application and
then deploy and integrate third parties in your
application

2.	 Create a secure authentication system and build
a RESTful API

3.	 Build your own Composer Package and
incorporate JavaScript and Ajax methods into
Laravel

Instant Laravel Starter
ISBN: 978-1-78216-090-8 Paperback: 64 pages

The definitive introduction to the Laravel PHP
web-development framework

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Create databases using Laravel's migrations

3.	 Learn how to implement powerful relationships
with Laravel's own "Eloquent" ActiveRecord
implementation

4.	 Learn about maximizing code reuse with the
bundles

5.	 Get started by building a useful real-world
application

Please check www.PacktPub.com for information on our titles

Magento PHP Developer's Guide
ISBN: 978-1-78216-306-0 Paperback: 256 pages

Get started with the flexible and powerful
e-commerce framework, Magento

1.	 Build your first Magento extension, step-by-step

2.	 Extend core Magento functionality, such as
the API

3.	 Learn how to test your Magento code

PHP Application Development
with NetBeans: Beginner's Guide
ISBN: 978-1-84951-580-1 Paperback: 302 pages

Boost your PHP development skills with this step-by-
step practical guide

1.	 Clear, step-by-step instructions with lots of
practical examples

2.	 Develop cutting-edge PHP applications like
never before with the help of this popular IDE,
through quick and simple techniques

3.	 Experience exciting features of PHP application
development with real-life PHP projects

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a URL
Shortener Website
	Creating a database and migrating our URL shortener's table
	Creating our form
	Creating our Link model
	Saving data to the database
	Validating the users' input
	Returning the messages to the view

	Diving further into controller and processing the form
	Getting individual URL from the database and redirecting
	Summary

	Chapter 2: Building a To-do
List with Ajax
	Creating and migrating our to-do list's database
	Creating a todos model
	Creating the template
	Inserting data to the database with Ajax
	Retrieving the list from the database
	How to allow only Ajax requests
	Allowing the request using route filters
	Allowing the request using the controller side

	Wrapping up
	Summary

	Chapter 3: Building an Image
Sharing Website
	Creating a database and migrating the images table
	Creating a photo model
	Setting custom configuration values
	Installing a third-party library
	Creating a secure form for file upload
	Validating and processing the form
	Showing the image with a user interface
	Listing images
	Deleting the image from the database and server
	Summary

	Chapter 4: Building a Personal Blog
	Creating and migrating the posts database
	Creating a posts model
	Creating and migrating the authors database
	Creating a members-only area
	Saving a blog post
	Assigning blog posts to users

	Listing articles
	Paginating the content
	Summary

	Chapter 5: Building a News
Aggregation Website
	Creating the database and migrating the feeds table
	Creating a feeds model
	Creating our form
	Validating and processing the form
	Extending the core classes
	Reading and parsing an external feed
	Summary

	Chapter 6: Creating a Photo
Gallery System
	Creating a table and migrating albums
	Creating an Album model

	Creating the images database with the migrating class
	Creating an Image model
	Creating an album
	Adding a template for creating albums

	Creating a photo upload form
	Validating the photo
	Assigning a photo to an album

	Moving photos between albums
	Creating an update form

	Summary

	Chapter 7: Creating a Newsletter System
	Creating a database and migrating the subscribers table
	Creating a subscribers model
	Creating our subscription form
	Validating and processing the form
	Creating a queue system for basic e-mail sending
	Using the Email class to process e-mails inside the queue
	Testing the system
	Sending e-mails with the queue directly
	Summary

	Chapter 8: Building a Q&A
Web Application
	Removing the public segment from Laravel 4
	Installing Sentry 2 and an authentication library and setting access rights
	Creating custom filters
	Creating our registration and login forms
	Validating and processing the form
	Processing the login and logout requests

	Creating our questions table and model
	Creating our tags table with a pivot table
	Creating and processing our question form
	Creating our questions form
	Processing our questions form

	Creating our questions list page
	Adding upvote and downvote functionality

	Creating our questions page
	Creating our answers table and resources
	Processing the answers
	Choosing the best answer

	Searching questions by the tags
	Summary

	Chapter 9: Building a RESTful API – The Movies and Actors Databases
	Creating and migrating the users database
	Adding sample users

	Creating and migrating the movies database
	Creating a movie model
	Adding sample movies

	Creating and migrating the actors database
	Creating an actor model
	Assigning actors to movies
	Understanding the authentication mechanism
	Querying the API
	Getting movie/actor information from the API
	Sending new movies/actors to the API's database
	Deleting movies/actors from the API

	Summary

	Chapter 10: Building an E-Commerce Website
	Building an authorization system
	Creating and migrating the members' database
	Creating and migrating the authors' database
	Adding authors to the database

	Creating and migrating the books database
	Adding books to the database

	Creating and migrating the carts database
	Creating and migrating the orders database
	Listing books
	Creating a template file to list books

	Taking orders
	Summary

	Index

