

Laravel Design Patterns and
Best Practices

Enhance the quality of your web applications by
efficiently implementing design patterns in Laravel

Arda Kılıçdağı

H. İbrahim YILMAZ

BIRMINGHAM - MUMBAI

Laravel Design Patterns and Best Practices

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1180714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-798-7

www.packtpub.com

Cover image by Abhinav Pandey (abhinavphotography30@gmail.com)

www.packtpub.com

Credits

Authors
Arda Kılıçdağı

H. İbrahim YILMAZ

Reviewers
Fabio Alessandro Locati

Brayan Rastelli

Pavel Tkachenko

Commissioning Editor
Taron Pereira

Acquisition Editor
Meeta Rajani

Content Development Editor
Neeshma Ramakrishnan

Technical Editor
Shashank Desai

Copy Editors
Insiya Morbiwala

Sayanee Mukherjee

Aditya Nair

Project Coordinators
Danuta Jones

Harshal Ved

Proofreader
Maria Gould

Indexer
Tejal Soni

Graphics
Valentina D'silva

Yuvraj Mannari

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Authors

Arda Kılıçdağı is a PHP/MySQL/JavaScript/Linux programmer and server
administrator from Turkey. He has been developing applications with PHP since
2005. He administers the Turkish national support site of the world famous open
source content management script, PHP-Fusion. He's also one of the international
developers and a member of the management team of CMS, and he plays an
important role in CMS's future. He has worked as a developer and has experience on
projects such as Begendy (an exclusive private shopping website) and Futbolkurdu
(a local soccer news website). He has experience working with the Facebook API, the
Twitter API, and PayPal's Adaptive Payment API (used on crowdfunding websites
such as KickStarter). He's also experienced with JavaScript, and he's infusing his
applications with JavaScript and jQuery, both on frontend and backend sides.

He has developed applications using CodeIgniter and CakePHP for about 4 years,
but these PHP frameworks didn't suit his needs completely, and that's why he
decided to use another framework for his projects. After getting introduced to
Laravel, he has developed all his applications with it.

He's also interested in Unix and Linux, and he uses Linux on a daily basis. He's
administering the world's best-known microcomputer, Raspberry Pi's biggest
Turkish community website, Raspberry Pi Türkiye Topluluğu (Raspberry Pi
Turkish Community Website).

Before authoring this book, Arda has written two other books. The first book
is Laravel Application Development Blueprints, Packt Publishing, coauthored by
H. İbrahim YILMAZ. The second book, Raspberry Pi, Dikeyeksen Consulting &
Publishing, is written in Turkish.

H. İbrahim YILMAZ is a daddy, developer, geek, and an e-commerce consultant
from Turkey. After his education at Münster University, Germany, he worked as a
developer and software coordinator in over a dozen ventures. During this period,
he developed the usage of APIs such as Google, YouTube, Facebook, Twitter,
Grooveshark, and PayPal.

Currently, he's focused on creating his company about concurrent computing,
Big Data, and game programming. He writes articles on Erlang, Riak, functional
programming, and Big Data on his personal blog at http://blog.drlinux.org.
He is a big Pink Floyd fan, playing bass guitar is his hobby, and he writes poems at
http://okyan.us.

He has a daughter called İklim. He lives in a house full of Linux boxes in
Istanbul, Turkey.

I'd like to thank my daughter İklim and my family for their presence.
I'd also like to thank the Gezi Park protesters for their cause to make
the world a better place.

I'd like to dedicate this book to Berkin Elvan. Berkin was a 15-year-old
boy who was hit on the head by a teargas canister fired by a police
officer in Istanbul, while out to buy bread for his family during the
June 2013 antigovernment protests in Turkey. He died on March 11,
2014, following a 269-day coma.

http://blog.drlinux.org
http://okyan.us

About the Reviewers

Fabio Alessandro Locati is an Italian IT external consultant. His main areas
of expertise are Linux, networking, security, data centers, and web applications.
With more than 10 years of working experience in the field, he has experienced
different IT roles, technologies, and languages. Fabio has worked in many different
companies, starting from a single-man company to huge companies like Tech Data
and Samsung. This has allowed him to consider various technologies from different
points of view, helping him develop critical thinking and understand whether a
technology is the correct one, in a very short span of time. Since he is always looking
for better technologies, he tries new technologies to see their advantages over the
old ones. For web development, he often uses PHP with Laravel due to its power
and simplicity, ever since he discovered it in the first months of 2012. Fabio has used
Laravel for public websites and intranet applications.

I'd like to thank my father who introduced me to computer science
even before I could write, and also thank my whole family who has
always been supportive.

Brayan Rastelli is involved in web development for more than 5 years now, and
he is in constant pursuit of new technologies to work with. Brayan has a passion to
make things faster and more efficient. He carries with him an extensive knowledge of
PHP, and most notably of the Laravel Framework, having recently created a Laravel
course to train Brazilians. In addition, Brayan has also created and maintained both
the website and forum for the Laravel community in Brazil in order to try to help
them propel and support the knowledge base both nationally and worldwide.

Currently, he works at Speed-to-Contact (SpeedToContact.com) on a single
page/real-time application using Laravel, AngularJS, WebSockets, telephony, and
other cutting-edge proprietary technologies. Brayan's Twitter handle is @heybrayan.

SpeedToContact.com
http://www.speedtocontact.com/

Pavel Tkachenko is an inspired self-taught computer wizard. Since childhood,
he has had a passion for designing and developing websites, reverse engineering
applications, file formats, and APIs. In both areas, he has created a number of
original tools such as HTMLki, Sqobot, Lightpath, and ApiHook to tackle many
complex computer problems. He is also the founder of the Russian Laravel
community (Laravel.ru) and an active member of Russian publication networks
such as the collaborative blog Habrahabr (Habrahabr.ru).

He has been freelancing since 2009, working on e-commerce, entertainment, travel,
and all other types of websites built around PHP, JavaScript, and MySQL. Since then,
and with over a decade of development experience, he has gathered his own team to
create even more challenging and high-quality applications for companies all over
the world, with high standards and great support. You can reach Pavel via his page
at http://proger.me.

Laravel.ru
Habrahabr.ru
http://proger.me
http://laravel.ru/
http://habrahabr.ru/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Design and Architectural Pattern Fundamentals 5

Design patterns 6
Elements of design patterns 8
Classification of design patterns 9

Creational patterns 9
Structural patterns 9
Behavioral patterns 10

What is MVC? 11
Summary 12

Chapter 2: Models in MVC 13
What is a Model? 13
Purposes of the Model 14
Model instances 15
The Model in Laravel 16

Fluent Query Builder 16
Eloquent ORM 20

Relationships 22
Mass assignment 25
Soft deleting 26
Eager loading 27
Timestamps 27
Query scopes 28
Accessors and mutators 28
Model events 29
Model observers 29

Migrations 30
Database seeders 31

Summary 32

Table of Contents

[ii]

Chapter 3: Views in MVC 33
What is a View? 33
View objects 35
View in Laravel 37
Summary 39

Chapter 4: Controllers in MVC 41
What is a Controller? 41
The purpose of the Controller 42
Controllers in Laravel 43

Routes 44
Using Controllers inside folders 48
Summary 51

Chapter 5: Design Patterns in Laravel 53
The Builder (Manager) pattern 53

The need for the Builder (Manager) pattern 53
The Factory pattern 57

The need for the Factory pattern 58
The Repository pattern 61

The need for the Repository pattern 62
The Strategy pattern 64

The need for the Strategy pattern 64
The Provider pattern 65
The Facade pattern 67
Summary 69

Chapter 6: Best Practices in Laravel 71
Basic practices 71
Advanced practices 73

The Factory pattern 75
The Builder pattern 78
The Strategy pattern 81
The Repository pattern 83

Summary 88
Index 89

Preface
This book covers how to develop different applications and solve recurring problems
using Laravel 4 design patterns. It will walk you through the widely used design
patterns—the Builder (Manager) pattern, the Factory pattern, the Repository pattern,
and the Strategy pattern—and will empower you to use these patterns while
developing various applications with Laravel. This book will help you find stable
and acceptable solutions, thereby improving the quality of your applications.

Throughout the course of the book, you will be introduced to a number of clear,
practical examples about PHP design patterns and their usage in various projects.
You will also get acquainted with the best practices for Laravel, which will greatly
reduce the probability of introducing errors into your web applications.

By the end of this book, you will be accustomed with Laravel best practices and the
important design patterns to make a great website.

What this book covers
Chapter 1, Design and Architectural Pattern Fundamentals, explains design and
architectural pattern terms and explains the classification of these design patterns
and their elements. This chapter provides some examples from the Laravel core code,
which contains the design patterns used in the framework. At end of this chapter, the
Mode-View-Controller (MVC) architectural pattern and its benefits will be explained.

Chapter 2, Models in MVC, covers the function of the Model layer in the MVC
architectural pattern, its structure, its purpose, its role in the SOLID design pattern,
how Laravel uses it, and the advantages of Laravel's Model layers and Eloquent
ORM. Laravel classes that handle data are also discussed.

Preface

[2]

Chapter 3, Views in MVC, covers the function of the View layer in the MVC
architectural pattern, its structure, its purpose, and the advantages of Laravel's View
layer and Blade template engine. The role of View in the MVC pattern and Laravel's
approach to that is also covered.

Chapter 4, Controllers in MVC, covers the function of the Controller layer in the MVC
architectural pattern, its structure, its purpose, and its usage in Laravel's structure.

Chapter 5, Design Patterns in Laravel, discusses the design patterns used in Laravel.
We will also see how and why they are used, with examples.

Chapter 6, Best Practices in Laravel, will cover basic and advanced practices in Laravel,
examples of design patterns used in Laravel that we were described in previous
chapters, and the reasons these patterns are used.

What you need for this book
The applications written in these chapters are all based on Laravel v4, so you will
require what's listed on Laravel v4's standard requirements list, which is available
at http://laravel.com/docs/installation. The requirements are as follows:

• PHP v5.4 or higher
• The MCrypt PHP extension

Who this book is for
This book is intended for web application developers working with Laravel who
want to increase the efficiency of their web applications. It assumes that you have
some experience with the Laravel PHP framework and are familiar with coding
OOP methods.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The where() method filters the query with given parameters."

http://laravel.com/docs/installation

Preface

[3]

A block of code is set as follows:

$users = DB::table('users')->get();
foreach ($users as $user)
{
 var_dump($user->name);
}

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Design and Architectural
Pattern Fundamentals

Programming is actually a lifestyle rather than a job. It's an intense mental activity.
The best developers in the world think about their work 24/7. They come up with
their best ideas when they are not at their work desks. Generally, their finest work
is done away from the keyboard.

As developers need to look at problems from a different standpoint, software projects
cannot be accelerated by spending more time in the office or adding more people
to a project. Development is not just about timelines and assigned tasks. If you visit
the development centers of world-famous software companies such as Google and
IBM, you'll see that there are many opportunities for spending time away from the
keyboard for developers. Programming questions have to be thought of in the context
of the real world. So, object-oriented programming was invented to make writing
software more instinctive for our hunter-gatherer brains; that is, software components
took on the properties and behavior of objects in the real world. When looking for
a solution to a problem or a way to accomplish what we want, we generally hope
to find a way that is reusable, optimized, and cheap. We, as developers, have a few
standard ways of approaching some commonly recurring problems in programming,
which are called design patterns.

When you come across certain problems that recur, you try and find solutions to
solve them that can be used by anyone and everyone. This concept is prevalent
everywhere – mechanics, architecture, and even human behavior for that matter.
Programming is absolutely not an exception.

Design and Architectural Pattern Fundamentals

[6]

Programming solutions depend on the needs of the problems and are modified
accordingly because each problem has its own unique conditions. Commonly
recurring problems exist in both real life and programming life. So, design patterns
are given to us to implement our project. These patterns have already been tested
and used by many other developers for solving similar problems successfully.
Using design patterns also makes it possible to work with clean, standardized,
and readable code. Deciding to write a program that does X but using pattern Y
is a recipe for disaster. It might work for programs such as hello world, fit for
demonstrating the code constructs for patterns, but not much else.

Through patterns, we could also find a way to work around the inefficiencies that a
language may have. Also, a thing to note here, inefficiency is usually associated with
negativity, but it may not necessarily be bad at all times.

In this book, we'll cover PHP design patterns with the Laravel PHP Framework. In the
first few chapters, we'll also give examples from the Laravel core code. In the chapters
that follow, we'll cover the MVC pattern fundamentals. Then we'll try to examine
the differences between an MVC pattern approach to Laravel and a common MVC
approach. We hope this book will help you increase your code quality.

Please note that finding the best stable, high-quality solution directly depends on
your knowledge of the platform and language. We highly recommend that you be
well-versed with the data types and fundamentals of object-oriented programming
in PHP and Laravel Framework.

In this chapter, we'll explain design pattern terms and learn about the classification of
these design patterns and their elements. We'll give some examples from the Laravel
core code, which contains the design patterns used in the framework. Finally, we'll
explain the Mode-View-Controller (MVC) architectural pattern and its benefits.

Design patterns
Design patterns were first introduced by Eric Gamma and his three friends in 1994.
A design pattern is basically a pattern of software design that is implemented on
multiple projects, and its intended success gives an idea to prove this pattern as a
solution of commonly recurring problems.

Design patterns are ways to solve a problem and the way to get your intended result
in the best possible manner. So, design patterns are not only ways to create a large
and robust system, but they also provide great architectures in a friendly manner.

Chapter 1

[7]

In software engineering, a design pattern is a general repeatable and optimized
solution to a commonly occurring problem within a given context in software design.
It is a description or template for how to solve a problem, and the solution can be used
in different instances. The following are some of the benefits of using design patterns:

• Maintenance
• Documentation
• Readability
• Ease in finding appropriate objects
• Ease in determining object granularity
• Ease in specifying object interfaces
• Ease in implementing even for large software projects
• Implements the code reusability concept

If you are not familiar with design patterns, the best way to begin understanding is
observing the solutions we use for commonly occurring, everyday life problems.

Let's take a look at the following image:

Design and Architectural Pattern Fundamentals

[8]

Many different types of power plugs exist in the world. So, we need a solution that is
reusable, optimized, and cheaper than buying a new device for different power plug
types. In simple words, we need an adapter. Have a look at the following image of
an adapter:

In this case, an adapter is the best solution that's reusable, optimized, and cheap.
But an adapter does not provide us with a solution when our car's wheel blows out.

In object-oriented languages, we the programmers use the objects to do whatever
we want to have the outcome we desire. Hence, we have many types of objects,
situations, and problems. That means we need more than just one approach to
solving different kinds of problems.

Elements of design patterns
The following are the elements of design patterns:

• Name: This is a handle we can use to describe the problem
• Problem: This describes when to apply the pattern
• Solution: This describes the elements, relationships, responsibilities, and

collaborations, in a way that we follow to solve a problem
• Consequences: This details the results and trade-offs of applying the pattern

Chapter 1

[9]

Classification of design patterns
Design patterns are generally divided into three fundamental groups:

• Creational patterns
• Structural patterns
• Behavioral patterns

Let's examine these in the following subsections.

Creational patterns
Creational patterns are a subset of design patterns in the field of software
development; they serve to create objects. They decouple the design of an object
from its representation. Object creation is encapsulated and outsourced (for example,
in a factory) to keep the context of object creation independent from concrete
implementation. This is in accordance with the rule: "Program on the interface,
not the implementation."

Some of the features of creational patterns are as follows:

• Generic instantiation: This allows objects to be created in a system
without having to identify a specific class type in code (Abstract Factory
and Factory pattern)

• Simplicity: Some of the patterns make object creation easier, so callers
will not have to write large, complex code to instantiate an object
(Builder (Manager) and Prototype pattern)

• Creation constraints: Creational patterns can put bounds on who can create
objects, how they are created, and when they are created

The following patterns are called creational patterns:

• The Abstract Factory pattern
• The Factory pattern
• The Builder (Manager) pattern
• The Prototype pattern
• The Singleton pattern

Structural patterns
In software engineering, design patterns structure patterns facilitate easy ways for
communications between various entities.

Design and Architectural Pattern Fundamentals

[10]

Some of the examples of structures of the samples are as follows:

• Composition: This composes objects into a tree structure (whole hierarchies).
Composition allows customers to be uniformly treated as individual objects
according to their composition.

• Decorator: This dynamically adds options to an object. A Decorator is a
flexible alternative embodiment to extend functionality.

• Flies: This is a share of small objects (objects without conditions) that
prevent overproduction.

• Adapter: This converts the interface of a class into another interface that the
clients expect. Adapter lets those classes work together that would normally
not be able to because of the different interfaces.

• Facade: This provides a unified interface meeting the various interfaces of a
subsystem. Facade defines a higher-level interface to the subsystem, which is
easier to use.

• Proxy: This implements the replacement (surrogate) of another object that
controls access to the original object.

• Bridge: This separates an abstraction from its implementation, which can
then be independently altered.

Behavioral patterns
Behavioral patterns are all about a class' objects' communication. Behavioral patterns
are those patterns that are most specifically concerned with communication between
objects. The following is a list of the behavioral patterns:

• Chain of Responsibility pattern
• Command pattern
• Interpreter pattern
• Iterator pattern
• Mediator pattern
• Memento pattern
• Observer pattern
• State pattern
• Strategy pattern
• Template pattern
• Visitor pattern

Chapter 1

[11]

We'll cover these patterns in the following chapters. If you want to check out the
usage of some patterns in the Laravel core, have a look at the following list:

• The Builder (Manager) pattern: Illuminate\Auth\AuthManager and
Illuminate\Session\SessionManager

• The Factory pattern: Illuminate\Database\DatabaseManager and
Illuminate\Validation\Factory

• The Repository pattern: Illuminate\Config\Repository and
Illuminate\Cache\Repository

• The Strategy pattern: IIlluminate\Cache\StoreInterface and
Illuminate\Config\LoaderInterface

• The Provider pattern: IIlluminate\Auth\AuthServiceProvider and
Illuminate\Hash\HashServiceProvider

What is MVC?
The MVC triad of classes were used to build user interfaces in Smalltalk-80 in
1988. MVC is an architectural pattern that is used in software engineering, whose
fundamental principle is based on the idea that the logic of an application should
be separated from its presentation. It divides a given software application into three
interconnected parts, so as to separate internal representations of information from
the way that information is presented to or accepted from the user. Refer to the
following figure:

MODEL

VIEW CONTROLLER

USER

SEES
USE

S

UPDATES MANIPULATES

Design and Architectural Pattern Fundamentals

[12]

In the preceding figure, you'll see the elements of MVC. It shows the general
life cycle on an MVC-based application of a request. As you can see, using an
MVC architectural pattern in projects allows you to separate different layers of
applications, such as the database layer and the UI layer.

The benefits of using the MVC pattern are as follows:

• Different views and controllers can be substituted to provide alternate user
interfaces for the same model.

• It provides multiple simultaneous views of the same model.
• The change propagation mechanism ensures that all views simultaneously

reflect the current state of the model.
• Changes affecting just the user interface of the application become easier

to make.
• It is easier to test the core of the application, as it is encapsulated by the model.
• One of the great benefits of the MVC pattern is that it allows you to recycle

the application's logic when you use different templates. For example, when
you want to implement an external API inside a part of your application, it
will be very helpful to reuse the application's logic. If the MVC approach of
Laravel is followed thoroughly, you will only need to modify the controller
to render many different templates/views.

Summary
In this chapter, we have explained the fundamentals of design patterns. We've also
introduced some design patterns that are used in the Laravel Framework. Finally,
we explained the MVC architectural pattern concepts and its benefits.

In the next chapter, we'll cover the MVC concept in depth and its usage in Laravel.
Before moving on to learn about design patterns and their usage in Laravel with the
actual code, the most important thing is understanding the framework's approach to
the MVC concept.

Models in MVC
Throughout the chapter, we will be discussing what Model is in the MVC structure,
what its purpose is, what its role is in the SOLID design pattern, how Laravel defines
it, and the advantages of Laravel's Model layers and Eloquent ORM. We will also
discuss Laravel's classes related to handling data.

The following is the list of topics that will be covered in this chapter:

• The meaning of the Model
• The roles of the Model in a solid MVC design pattern
• The Model and Model Instances
• How Laravel defines the Model
• The database-related classes of Laravel

What is a Model?
The Model is that part of the Model-View-Controller design pattern that we can
simply describe as the layer of the design pattern that handles the management of
the data, which is received from the corresponding layers and then sent back to those
layers. One thing to note here is that the Model does not know where the data comes
from and how it is received.

Models in MVC

[14]

In simple words, we can say that the Model implements the business logic of the
application. The Model is responsible for fetching the data and converting it into
more meaningful data that can be managed by other layers of the application and
sending it back to corresponding layers. The Model is another name for the domain
layer or business layer of an application.

Datebase Model

Interaction with
Data Model

Controller

Purposes of the Model
The Model in an application manages all of the dynamic data (anything that's not
hardcoded and comes from a database driver) and lets other related components of
the application know about the changes. For example, let's say that there is a news
article in your database. If you alter it from the database manually, when a route is
called—and due to this request—the Controller requests for the data over the Model
after the request from the Routing handler, and the Controller receives the updated
data from the Model. As a result, it sends this updated data to the View, and the end
user sees the changes from the response. All of these data-related interactions are
the tasks of the Model. This "data" that the Model handles does not always have to
be database related. In some implementations, the Model can also be used to handle
some temporary session variables.

The basic purposes of the Model in a general MVC pattern are as follows:

• To fetch the data using a specified (database) driver
• To validate the data
• To store the data
• To update the data

Chapter 2

[15]

• To delete the data
• To create conditional relations
• To monitor the file I/O
• To interact with third-party web services
• To handle caches and sessions

As you can see, if you follow with an MVC pattern consistently, the Model covers a
huge percentage of the application's logic. In modern frameworks, there is a common
mistake about the Model that is made by users when learning design patterns. They
usually confuse the Model with Model Instances. Although they are quite similar,
they have different meanings.

Model instances
In your application, there will usually be more than one data structure to manage.
For example, let's say you are running a blog. In a simple blog system, there are
authors, blog posts, tags, and comments. Let's say you want to update a blog post;
how do you define that the data you want to update is for the blog posts? This is
where Model Instances come handy.

Model Instances are simple classes that mostly extend from the Model layer of
the application. These instances separate the data logic for each section of your
application. In our example, we have four sections to handle (users, posts, tags, and
comments). If we are going to handle these using the Model, we have to create at
least four instances (we will cover why it is at least four and not exactly four in the
Relationships section that is under Eloquent ORM in this chapter).

Datebase Model

Interaction with
Data Model

Model
Object Controller

Ex
te

nd
s f

ro
m m

od
el

Models in MVC

[16]

As you can see from the diagram, the Controller interacts with the Model Instance to
fetch data. Since Model Instances extend from the Model itself, instead of raw Model
output, the Controller can customize it or add other layers (such as Validation) to
the process.

Let's say you want to fetch the user who has the username George. If no Validation
layer has been added from the Model Instance to the database, the username
parameter will go to the database directly, which could be harmful. If you did add a
validation layer on your Model Instance (which checks if the username parameter is
a clean string), even if the parameter was SQL injection code, it would first be filtered
by the validation layer instead of going to the database directly and then be detected
as harmful code. Then, the Model Instance will return a message or an exception to the
Controller that the parameter is invalid. Then, the Controller will send a corresponding
message to the View, and from there, the message will be shown to the end user. In
this process, optionally, the application might even fire an Event to log this attempt.

The Model in Laravel
If you recall, we mentioned earlier in this chapter that there are many important jobs
that the Model needs to handle. Laravel 4 does not use the MVC pattern directly,
but it extends the pattern further. For example, Validation—which is part of the
Model in the solid MVC pattern—has its own class, but it's not part of the Model
itself. The database connection layer has its own classes for each database driver,
but they are not packed in the Model directly. This brings testability, modularity,
and extensibility to the Models.

The Laravel Model structure focuses more on the database processes directly, and
it is separated from other purposes. The other purposes are categorized as Facades.

To access the database, Laravel has two classes. The first one is Fluent Query Builder
and the second one is Eloquent ORM.

Fluent Query Builder
Fluent is the query builder class of Laravel 4. Fluent Query Builder handles base
database query actions using PHP Data Objects in the backend, and it can be used
with almost any database driver. Let's say that you need to change the database
driver from SQLite to MySQL; if you've written your queries using Fluent, then you
mostly don't need to rewrite or alter your code unless you've written raw queries
using DB::raw(). Fluent handles this behind the scenes.

Chapter 2

[17]

Let's take a quick look at the Eloquent Model of Laravel 4 (which can be found in the
Vendor\Laravel\Framework\src\Illuminate\Database\Query folder):

<?php namespace Illuminate\Database\Query;

use Closure;
use Illuminate\Support\Collection;
use Illuminate\Database\ConnectionInterface;
use Illuminate\Database\Query\Grammars\Grammar;
use Illuminate\Database\Query\Processors\Processor;

class Builder {
 //methods and variables come here
}

As you can see, the Eloquent Model uses some classes, such as Database,
ConnectionInterface, Collection, Grammar, and Processor. All of these
are required to standardize database queries in the backend, cache the queries
if required, and return the output as a collection object.

The following are some basic examples that present how the queries look:

• To get all of the names and show them one by one from a users table, use
the following code:
$users = DB::table('users')->get();
foreach ($users as $user)
{
 var_dump($user->name);
}

The get()method fetches all of the records from the table in the form of
a collection. With a foreach() loop, the records are looped, and then we
access each name column using ->name (an object). If the column we want
to access is an e-mail, then it'll look like $user->email.

• To fetch the first user named Arda from the users table, use the
following code:
$user = DB::table('users')->where('name', 'Arda')->first();
var_dump($user->name);

The where() method filters the query with given parameters. The first()
method directly returns the collection object of a single item from the first
matched element. If there were two users named Arda, only the first one
would be caught and set to the $user variable.

Models in MVC

[18]

• If you wanted to use OR statements in the where clauses, you could use the
following code:
$user = DB::table('users')
->where('name', 'Arda')
->orWhere('name', 'Ibrahim')
->first();
var_dump($user->name);

• To use operators in the where clauses, the following third parameter should
be added between the column name and variable that is to be filtered:
$user = DB::table('users')->where('id', '>', '2')->get();
foreach ($users as $user)
{
 var_dump($user->email);
}

• If you are using offsets and limits, execute the following query:
$users = DB::table('users')->skip(10)->take(5)->get();

This produces SELECT * FROM users LIMIT 10,5 in MySQL. The
skip($integer) method will set an offset to the query, and take($ integer)
will limit the output by the natural number that has been set as the parameter.

• You can also limit what is to be fetched using the select() method and use
the following join statements easily in Fluent Query Builder:
DB::table('users')
 ->join('contacts', 'users.id', '=', 'contacts.user_id')
 ->join('orders', 'users.id', '=', 'orders.user_id')
 ->select('users.id', 'contacts.phone', 'orders.price');

These methods simply join the users table with contacts, then join orders
with users, and then get the user ID, the phone column from the contacts
table, and the price column from the orders table.

• You can group queries by parameters easily, using closure functions. This
will allow you to write more complicated queries with ease, as follows:
DB::table('users')
 ->where('name', '=', 'John')
 ->orWhere(function($query)
 {
 $query->where('votes', '>', 100)
 ->where('title', '<>', 'Admin');

Chapter 2

[19]

 })
 ->get();

This will produce the following SQL query:

select * from users
 where name = 'John'
 or
 (votes > 100 and title <> 'Admin')

• You can also use aggregations in the query builder (such as count, max, min,
avg, and sum) as follows:
$users = DB::table('users')->count();
$price = DB::table('orders')->max('price');

• Sometimes, such builders might not be enough, or you might want to run
raw queries. You can also wrap your raw queries inside of Fluent as follows:
$users = DB::table('users')
 ->select(
array(
DB::raw('count(*) as user_count'),
'status',
)
)
 ->where('status', '<>', 1)
 ->groupBy('status')
 ->get();

• To insert new data into the table, use the insert() method:
DB::table('users')->insert(
 array('email' => 'me@ardakilicdagi.com', 'points' => 100)
);

• To update a row(s) from a table, use the update() method:
DB::table('users')
->where('id', 1)
->update(array('votes' => 100));

• To delete a row(s) from a table, use the delete() method:
DB::table('users')
->where('last_login', '2013-01-01 00:00:00')
->delete();

Models in MVC

[20]

• Benefiting of CachingIterator that's used the Collection class, Fluent
Query Builder can also cache results upon calling using the method
remember():
$user = DB::table('users')
->where('name', 'Arda')
->remember(10)
->first();

After this query is called once, it's cached for 10 minutes; if this query is
called again, instead of fetching from the database, it'll fetch directly from
the cache instead, until 10 minutes have passed.

Eloquent ORM
Eloquent ORM is the Active Record implementation in Laravel. It's simple, powerful,
and easy to handle and manage.

For each database table, you'll need a new Model Instance to benefit from Eloquent.

Let's say you have a posts table, and you want to benefit from Eloquent; you need
to navigate to app/models and save this file as Post.php (the singular form of the
table name):

<?php class Post extends Eloquent {}

And that's it! You're ready to benefit from Eloquent methods for your table.

Laravel allows you to assign any table to any Eloquent Model Instance. It's not
necessary, but it's a good habit to name Model Instances with the singular name of
the corresponding table. This name should be a singular form of the table name it
represents. If you have to use a name that does not follow this general rule, you can
do so by setting a protected $table variable inside of the Model Instance.

<?php Class Post Extends Eloquent {

 protected $table = 'my_uber_posts_table';

}

This way, you can assign a table to any desired Model Instance.

It's not necessary to add the instance into the models folder in app.
As long as you've set an autoload path in composer.json, you
can get rid of this folder completely and add it wherever you like.
This will bring flexibility to your architecture during programming.

Chapter 2

[21]

Let's take a quick look at the following Model class of Laravel 4 that we just extended
from (which is in the Vendor\Laravel\Framework\src\Illuminate\Database\
Eloquent folder):

<?php namespace Illuminate\Database\Eloquent;

use DateTime;
use ArrayAccess;
use Carbon\Carbon;
use LogicException;
use JsonSerializable;
use Illuminate\Events\Dispatcher;
use Illuminate\Database\Eloquent\Relations\Pivot;
use Illuminate\Database\Eloquent\Relations\HasOne;
use Illuminate\Database\Eloquent\Relations\HasMany;
use Illuminate\Support\Contracts\JsonableInterface;
use Illuminate\Support\Contracts\ArrayableInterface;
use Illuminate\Database\Eloquent\Relations\Relation;
use Illuminate\Database\Eloquent\Relations\MorphOne;
use Illuminate\Database\Eloquent\Relations\MorphMany;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Database\Query\Builder as QueryBuilder;
use Illuminate\Database\Eloquent\Relations\MorphToMany;
use Illuminate\Database\Eloquent\Relations\BelongsToMany;
use Illuminate\Database\Eloquent\Relations\HasManyThrough;
use Illuminate\Database\ConnectionResolverInterface as Resolver;

abstract class Model implements ArrayAccess, ArrayableInterface,
JsonableInterface, JsonSerializable {
 //Methods and variables come here
}

Eloquent uses Illuminate\Database\Query\Builder, which is the Fluent Query
Builder that we described earlier, and its methods are defined inside it. Thanks to
this, all of the methods that can be defined in Fluent Query Builder can also be used
in Eloquent ORM.

As you can see, all of the used classes are split according to their purpose.
This brings a better Abstraction and Reusability to the architecture.

Models in MVC

[22]

Relationships
Eloquent ORM has other benefits in addition to Fluent Query Builder. The major
benefit is Model Instance Relations, which allows Fluent Query Builder to form a
relationship with other Model Instances easily. Let's say you have users and posts
tables, and you want to get the posts made by a user with an ID of 5. After the
relationship is set, the collection of these posts can be fetched with this code easily:

User::find(5)->posts;

This couldn't be easier, could it? There are three major relationship types: one-to-one,
one-to-many, and many-to-many. In addition to these, Laravel 4 also has the
has-many-through and morph-to-many (many-to-many polymorphic) relationships:

• One-to-one relationships: These are used when both Models have only one
element of each other. Let's say you have a User Model, which should only
have one element in your Phone Model. In this case, the relationship will be
defined as follows:
//User.php model
Class User Extends Eloquent {

 public function phone() {
 return $this->hasOne('Phone'); //Phone is the name of
 Model Instance here, not a table or column name
 }

}

//Phone.php model
Class Phone Extends Eloquent {

 public function user() {
 return $this->hasOne('User');
 }

}

• One-to-many relationships: These are used when a Model has more than
one element of another. Let's say you have a news system with categories.
A category can have more than one item. In this case, the relationship will
be defined as follows:
//Category.php model
class Category extends Eloquent {

 public function news() {

Chapter 2

[23]

 return $this->hasMany('News'); //News is the name of
 Model Instance here
 }

}

//News.php model
class News extends Eloquent {

 public function categories() {
 return $this->belongsTo('Category');
 }

}

• Many-to-many relationships: These are used when two Models have more
than one element of each other. Let's say you have Blog and Tag Models.
A blog post might have more than one tag, and a tag might be assigned to
more than one blog post. For such instances, a pivot table is used along with
Many to Many Relationships. The relationship can be defined as follows:
//Blog.php Model
Class Blog Extends Eloquent {

 public function tags() {
 return $this->belongsToMany('Tag', 'blog_tag');
 //blog_tag is the name of the pivot table
 }

}

//Tag.php model
Class Tag Extends Eloquent {

 public function blogs() {
 return $this->belongsToMany('Blog', 'blog_tag');
 }

}

Laravel 4 adds some flexibility and additional relationships to these known
relationships. They are "has-many-through" and "polymorphic relationships".

Models in MVC

[24]

• Has-many-through relationships: These are more like shortcuts. Let's say
you have a Country Model, User Model, and Post Model. A country may
have more than one user, and a user may have more than one post. If you
want to access all of the posts created by the users of a specific country, you
need to define the relationship as follows:
//Country.php Model
Class Country Extends Eloquent {

 public function posts() {
 return $this->hasManyThrough('Post', 'User');
 }

}

• Polymorphic relationships: These are featured in Laravel v4.1. Let's say
you have a News Model, Blog Model, and Photo Model. This Photo Model
holds images for both News and Blog, but how do you relate this or identify
a specific photo that is either for blogs or posts? This can be done easily. It
needs to be set as follows:

//Photo.php Model
Class Photo Extends Eloquent {

 public function imageable() {
 return $this->morphTo(); //This method doesn't take
 any parameters, Eloquent will understand what will
 be morphed by calling this method
 }

}

//News.php Model
Class News Extends Eloquent {

 public function photos() {
 return $this->morphMany('Photo', 'imageable');
 }

}

//Blog.php Model
Class Blog Extends Eloquent {

 public function photos() {
 return $this->morphMany('Photo', 'imageable');
 }

}

Chapter 2

[25]

The keyword imageable, which will describe the owner of the image, is not
a must; it could be anything, but you need to set it as a method name and put
it as a second parameter into morphMany relationship definitions. This helps
us understand how we're going to access the owner of the photo. This way,
we can call this easily from the Photo Model without needing to understand
whether its owner is Blog or News:
$photo = Photo::find(1);
$owner = $photo->imageable; //This brings either a blog
 collection or News according to its owner.

In this example, you'll need to add two additional columns to
your Photo Model's table. These columns are imageable_id
and imageable_type. The section imageable is the name of
the morphing method, and the suffix's ID and type are the keys
that will define the exact ID and type of the item that it will be
morphed to.

Mass assignment
When creating a new Model Instance (when inserting or updating data), we pass
a variable that is set as an array with attribute names and values. These attributes
are then assigned to the Model by mass assignment. If we blindly add all of the
inputs into mass assignment, this will become a serious security issue. In addition to
querying methods, Eloquent ORM also helps us with mass assignment. Let's say you
don't want the column e-mail in your User Model (Object) to be altered in any way
(blacklist), or you just want the title and body columns to be altered in your Post
Model (whitelist). This can be done by setting protected $fillable and $guarded
variables in your Model:

//User.php model
Class User Extends Eloquent {
 //Disable the mass assignment of the column email
 protected $guarded = array('email');

}

//Blog.php model
Class User Extends Eloquent {
 //Only allow title and body columns to be mass assigned
 protected $fillable = array('title', 'body');

}

Models in MVC

[26]

Soft deleting
Let's say you have a posts table, and let's assume the data inside this table is
important. Even if the delete command is run from the Model, you want to keep the
deleted data inside your database just in case. In such cases, you can use soft deletes
with Laravel.

Soft deleting doesn't actually delete the row from the table; instead, it adds a key
if the data is actually deleted. When a soft deletion is made, a new column called
deleted_at is filled with a timestamp.

To enable the soft deletes, you need to first add a timestamp column called
deleted_at to your table (you could do this by adding $table->softDeletes()
to your migration), then set a variable called $softDelete to true in your
Model Instance.

The following is an example Model Instance for soft deletes:

//Post.php model
Class Post Extends Eloquent {
 //Allow Soft Deletes
 protected $softDelete = true;

}

Now, when you run the delete() method in this model, instead of actually deleting
the column, it will add a deleted_at timestamp to it.

Now, when you run the all() or get() method, the soft-deleted columns won't be
listed, like they have actually been deleted.

After such deletes, you might want to get results along with soft-deleted rows.
To do this, use the withTrashed() method as follows:

$allPosts = Post::withTrashed()->get(); //These results will include
both soft-deleted and non-soft-deleted posts.

In some cases, you may want to fetch only soft-deleted rows. To do this, use the
onlyTrashed() method as follows:

$onlySoftDeletedPosts = Post::onlyTrashed()->get();

To restore the soft-deleted rows, use the restore() method. To restore all
soft-deleted posts, run a code like the following:

$restoreAllSoftDeletedPosts = Post::onlyTrashed()->restore();

Chapter 2

[27]

To hard delete (totally delete) the soft-deleted rows from a table, use the
forceDelete() method as follows:

$forceDeleteSoftDeletedPosts = Post::onlyTrashed()->forceDelete();

When fetching rows from a table (including soft deletes), you may want to check
whether they have been soft deleted or not. This check is done by running the
trashed() method on collection rows. This method will return a Boolean value.
If true, it means the row has been soft deleted.

//Let's fetch a post without the soft-delete checking:
$post = Post::withTrashed()->find(1);
//Then let's check whether it's soft deleted or now
 if($post->trashed()) {
return 'This post is soft-deleted';
 } else {
 return 'This post is not soft-deleted';
}

Eager loading
Eloquent ORM also brings a neat solution to the N+1 query problem with
Eager Loading. Let's assume that you have a query and loop like the following:

$blogs = Blog::all();
foreach($blogs as $blog) {
 var_dump($blog->images());
}

In this case, to access the images, one more query is executed for each loop in the
backend. This will exhaust the database drastically, so to prevent this, we will use the
with() method on the query. This will fetch all of the blogs and images, relate them
in the backend, and serve them as a collection directly. Refer to the following code:

$blogs = Blog::with('images')->get();
foreach($blogs as $blog) {
 var_dump($blog->images);
}

This way, the querying will be much faster, and fewer resources will be used.

Timestamps
The main benefits of Eloquent ORM are seen when you set $timestamps to true
(which is the default); you will have two columns, the first is created_at and the
second is updated_at. These two columns keep the creation and last update times
of data as timestamps and update them automatically on the creation or update of
each row.

Models in MVC

[28]

Query scopes
Let's say that you repeat a where condition several times because it's a commonly
used clause in your application and this condition means something. Let's say you
want to get all of the blog posts that have more than 100 views (we'll call it popular
posts). Without using scopes, you'd get the posts in the following format:

$popularBlogPosts = Blog::where('views', '>', '100')->get();

However, in the example, you'll be repeating this through your application over and
over again. So, why not set this as a scope? You can do this easily using Laravel's
Query Scope feature.

Add the following code to your Blog model:

public function scopePopular($query) {
 return $query->where('views', '>', '100');
}

After doing this, you can use your scope easily with the following code:

$popularBlogPosts = Blog::popular()->get();

You can also chain the post as follows:

$popularBlogPosts = Blog::recent()->popular()->get();

Accessors and mutators
One of the features of Eloquent ORM is accessors and mutators. Let's say you have
a column called name on your table, and on calling this column, you want to pass
PHP's ucfirst() method to uppercase its name. This can be done by simply adding
the following lines of code to the model:

public function getNameAttribute($value) {
 return ucfirst($value);
}

Now, let's consider the opposite. Each time you save or update the name column, you
want to pass the PHP strtolower() function to the column (you want to mutate the
input). This can be done by adding the following lines of code to the model:

public function setNameAttribute($value) {
 return strtolower($value);
}

Chapter 2

[29]

Note that the method name should be CamelCased even though the column name is
snake_cased. If your column name is first_name, the getter method name should
be getFirstNameAttribute.

Model events
Model events play an important part in the Laravel design pattern. Using Model
events, you can call any method right after the event is fired.

Let's say that you have set a cache for your comments, and you want to flush the
cache each time a comment is deleted. How can you catch the comment's deletion
event and do something there? Should there be various places in the application
that such comments can be deleted? Is there a way to catch exact the "deleting" or
"deleted" event? In such case, the Model events come in handy.

Models hold the following methods: creating, created, updating, updated,
saving, saved, deleting, deleted, restoring, and restored.

Whenever a new item is being saved for the first time, the creating and created
events will fire. If you are updating a current item on the Model, the updating/
updated events will fire. Whether you are creating a new item or updating a current
one, the saving/saved events will fire.

If false is returned from the creating, updating, saving, or deleting event, the
action will be canceled.

For example, let's check whether a user has been created. If its first name is Hybrid,
we'll cancel the creation. To add this condition, include the following lines of code in
your User Model:

User::creating(function($user){
 if ($user->first_name == 'Hybrid') return false;
});

Model observers
Model observers are quite similar to Model Events, but the approach is a little bit
different. Instead of defining all events (creating, created, updating, updated,
saving, saved, deleting, deleted, restoring, and restored) inside of the Model,
it "abstracts" the logic of the events to a different class and "observes" it with the
observe() method. Let's assume we have a Model event like the following:

User::creating(function($user){
 if ($user->first_name == 'Hybrid') return false;
});

Models in MVC

[30]

To keep the abstraction, it will be much better to wrap all of these events and separate
their logic from the Model. In an observer, these events will look like the following:

class UserObserver {

 public function creating($model){
 if ($model->first_name == 'Hybrid') return false;
 }

 public function saving($model)
 {
 //Another model event action here
 }

}

As you can imagine, you can put this class anywhere in your application. You can
even group all of these events in a separate folder for a better architectural pattern.

Now, you need to register this event Observer class to a Model. This can be done
with the following simple command:

User::observe(new UserObserver);

The main advantage of this approach is that you can use observers in more than one
Model and register more than one observer to a Model this way.

Migrations
Migrations are easy tools to version control your database. Let's say there is a place
where you need to add a new column to the table or roll back to the previous state
because you did something wrong or the link to your application broke. Without
migrations, these are tedious tasks to handle, but with migrations, your life will be
much easier.

There are various reasons to use migrations; some of these are as follows:

• You'll benefit from this versioning system. If you made a mistake or need
to roll back to a previous state, you can do so with only a single command
using migrations.

• The use of migrations for alteration will bring about flexibility. The
migrations that are written will work on all supported database drivers,
so you won't need to rewrite database code again and again for different
drivers. Laravel will handle this in the background.

Chapter 2

[31]

• They are quite easy to generate. Using the migration commands of the
Laravel php client, which is called artisan, you can manage all of your
application's migrations.

The following is what a migration file looks like:

<?php

use Illuminate\Database\Migrations\Migration;

class CreateNewsTable extends Migration {

 /**
 * Run the migrations.
 */
 public function up()
 {
 //
 }

 /**
 * Reverse the migrations.
 */
 public function down()
 {
 //
 }

}

The up() method runs when the migration is run forward (a new migration). The
down() method runs when the migration is run backward, meaning it reverses or
resets (reverses and reruns) the migration.

After these methods are triggered via the artisan command, it runs the method up
or down, corresponding the parameters of the artisan command, and returns the
status of the message.

Database seeders
Let's say you've programmed a blog application. You need to show what it's
capable of, but there are no example blog posts to show the awesome blog
you've programmed. This is where seeders come in handy.

Models in MVC

[32]

Database seeders are some simple classes that fill random data in a specified table.
The seeder class has a simple method called run() to make this seeding(s). The
following is what a seeder looks like:

<?php

class BlogTableSeeder extends Seeder {

 public function run()
 {
 DB::table('blogs')->insert(array(
 array('title' => 'My Title'),
 array('title' => 'My Second Title'),
 array('title' => 'My Third Title')
));
 }

}

When you call this class from a terminal using the artisan command, it connects to
the database and fills it with the given data. After this attempt, it returns a command
message to the user over the terminal about the status of the seeding.

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Summary
In this chapter, we have learned about the role of the Model in the MVC pattern and
how Laravel 4 "defines" the Model by extending its roles to various classes. We've
also seen what the Model components of Laravel 4 are capable of with examples.

In the next chapter, we'll learn about the role of the View and how it interacts with
end users and other aspects of the application using the MVC pattern on Laravel 4.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Views in MVC
In this chapter, we will discuss what the View is, its structure, its purpose, and the
advantages of Laravel's View layer and Blade template engine.

What is a View?
The View in Laravel refers to the V in MVC. The View consists of presentation
logic aspects such as templates and caching and the code that involves presentation.
Precisely, the View defines exactly what is presented to the user. Usually,
Controllers pass data to each View to render in some format. Views collect
data from users as well. This is where you're likely to find HTML markup
in your MVC application.

Most modern MVCs, such as Laravel Framework, implement a template language
that adds a further layer of abstraction from PHP. Added layers mean added
overhead. Here, we stick with the speed of PHP within the template, yet all the
logic stays outside. This makes it easy for User Interface (UI) designers to develop
themes/templates without the need to learn any programming languages.

Views in MVC

[34]

In many MVC implementations, the View layer speaks with Controllers and Models.
The approach is well explained in the following figure:

User

View

Strong Pointer
Weak Pointer

Model

Controller

As you can see in the preceding figure, the View communicates with both the
Controller and the Model. At first sight, it seems like a very flexible approach to
develop an application with OOP languages. Sharing data between all objects
of MVC and accessing them in any layer of application sounds very cool.
Unfortunately, the method causes some problems that depend on the project's size.

The foremost problems are the complexity of allocating development tasks between
teams/developers. If you don't set the development rules, it will lead to chaotic
situations such as unmanageable spaghetti code. Also, we have to consider extra
costs of development such as training the developers and comparatively long
development processes, which directly affect the cost of the project.

As we mentioned at the beginning of the book, development not only involves coding
or sharing tasks, it's also the process that includes the planning and marketing of the
project development method.

Chapter 3

[35]

Laravel ships a different kind of approach to MVC. According to Laravel, the View
layer should only communicate with the Controller. The Model communicates with
the Controller. Let's look at the following figure:

View Controller

Model

Only
UI components

Database
and
logic

Connection between
View
and

Model

As you can see in the preceding figure, the layers of application are completely
separated. Thus, you can get easily manageable code and a development team.
Generally, we need at least three files in MVCs: the Model file, the Controller file,
and the View file. Let's explain the View file through its objects.

View objects
In your application, there is usually more than one HTML page that contains forms,
asset references, and so on; for example, if you are developing an e-commerce
application. In a simple e-commerce system, there are product lists, categories,
carts, and product detail pages that we need. This means that we need four templates
and too much data to present to our users. We can group the objects of the View
layer as shown:

• HTML elements (div, header, section, and so on)
• HTML form elements (input, select, and so on)
• Asset and JavaScript references (.css and .js)

Views in MVC

[36]

When you work on a project that has dynamic data, separating the template files
does not help simplify the problem because you still need programming language
functions to process objects. This causes what we don't want to face—spaghetti code.
When a project has inline PHP code in HTML documents, you will face problems in
keeping the code simple. Let's take a look at the generic template file contents that
are not implemented with any template language in the following code:

<!DOCTYPE html>
<html lang="en">
<head>
<title><?php echo $title; ?></title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"
 />
<meta http-equiv="x-ua-compatible" content="chrome=1" />
<meta name="description" content="<?php echo $meta_desc; ?>" />
<meta name="keywords" content="<?php echo $meta_keys; ?>" />
<meta name="robots" content="index,follow" />
<meta property="og:title" content="<?php echo $title; ?>" />
<meta property="og:site_name" content="<?php echo $site_name; ?>"
 />
<meta property="og:image" content="http://www.example.com/
images/"<?php echo $thumbnail; ?>
 />
<meta property="og:type" content="product" />
<meta property="og:description" content="<?php echo $meta_desc;
 ?>" />
</head>
<body>
<?php
if($user_name){
?>
<div class="username">Welcome <?php echo strtoupper($user_name);
 ?> !</div>
<?php
}else{

echo '<div class="username">Welcome Guest!</div>';

}
?>
</body>

Chapter 3

[37]

As a UI developer, you need prior knowledge of the PHP language (at least
knowledge of the syntax of the language) to understand the code you see. As we
mentioned in Chapter 1, Design and Architectural Pattern Fundamentals, most modern
MVC frameworks come with a template language bundled to be used in Views.
Laravel ships an implemented template language to be used with Views; this is
called the Blade template engine, or simply Blade.

View in Laravel
According to Laravel's MVC approach, the View handles data from the Controller.
This means that the View gets the data that is usually already formatted as we need.
If the View directly communicates with the Model, we have to format, validate, or
filter the data at the View layer, as seen in the previous example code. So, let's see
what a Blade template file looks like in the following code:

<!DOCTYPE html>
<html lang="en">
<head>
<title>{{$title}}</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"
 />
<meta http-equiv="x-ua-compatible" content="chrome=1" />
<meta name="description" content="{{$meta_desc}}" />
<meta name="keywords" content="{{$meta_keys}}" />
<meta name="robots" content="index,follow" />
<meta property="og:title" content="{{$title}}" />
<meta property="og:site_name" content="{{$site_name}}" />
<meta property="og:image" content="http://www.example.com/
images/"{{$thumbnail}} />
<meta property="og:type" content="product" />
<meta property="og:description" content="{{$meta_desc}}" />

</head>

<body>
@if($user_name)

<div class="username">Welcome {{$user_name}} !</div>

@else

<div class="username">Welcome Guest !</div>

@endif
</body>

Views in MVC

[38]

There is neither PHP syntax nor any unclosed brackets problems. So, we have a
cleaner template file. Thanks to Blade's built-in features, we can get clearer View
files. Generally, the header and footer sections are common to all pages in our
applications. There are two ways to add them. The first and unrecommended way is
to separate the header, footer, and body sections in three files, similar to something
shown in the following example:

@include('header')
<body>
@if($user_name)

<div class="username">Welcome {{Str::upper($user_name)}} !</div>

@else

<div class="username">Welcome Guest !</div>

@endif
</body>

@include('footer')

This way is not recommended because it requires each page to include both the
header and the footer. This also means that if we add a right or left column, we will
need to change all the Views of our application. The best way to implement this in
Blade is shown as follows:

<!D OCTYPE html>
<html lang="en">
<head>
<title>{{$title}}</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="x-ua-compatible" content="chrome=1" />
<meta name="description" content="{{$meta_desc}}" />
<meta name="keywords" content="{{$meta_keys}}" />
<meta name="robots" content="index,follow" />
<meta property="og:title" content="{{$title}}" />
<meta property="og:site_name" content="{{$site_name}}" />
<meta property="og:image" content="http://www.example.com/
images/"{{$thumbnail}} />
<meta property="og:type" content="product" />
<meta property="og:description" content="{{$meta_desc}}" />

</head>

Chapter 3

[39]

<body>

 @yield('content')

</body>

The preceding file is our layout View, for example, master_layout.blade.php.
As you can see, there is a function for the content that is using the yield() function.
This is a placeholder; therefore, when any View file extends this file, the section
named content will be shown instead of the yield() function. You can define as
many sections in your master layout as you need. So, when we want to use this
layout in a View file, we should use it as shown in the following code:

@extends('master_layout')

@section(''content')
<body>
@if($user_name)

<div class="username">Welcome {{Str::upper($user_name)}} !</div>

@else

<div class="username">Welcome Guest !</div>

@endif
</body>

@stop

That's it! You can extend the master layout in as many Views as you need, and you
can create multiple layouts as your application requires.

Summary
In this chapter, we learned the role of Views in the MVC pattern, and what Laravel's
approach to Views is. We saw the basics of the Blade template engine functions.
For more information, please refer to Laravel's online documentation at
http://laravel.com/.

In the next chapter, we'll cover the role of the Controller, the maestro in the MVC
philosophy of Laravel.

http://laravel.com/

Controllers in MVC
Throughout this chapter, we will be discussing what a Controller is, its structure,
what its purpose is in the MVC pattern, and its usage in Laravel's extended design
pattern and structure.

The topics that will be discussed in this chapter are as follows:

• What is a Controller?
• The Controller's purpose in the MVC design pattern
• The Controller's interaction with other components of the MVC

design pattern
• How Laravel handles the Controller in its design pattern

What is a Controller?
The Controller is a part of the Model-View-Controller (MVC) design pattern that
we can simply describe as the logical layer of our application. It understands the
requests that come from the other end (a user or an API request), makes calls to the
corresponding methods, performs primary checks, handles the logic of the request,
and then returns the data to the corresponding View or redirects the end user to
another route.

Controllers in MVC

[42]

The purpose of the Controller
The following are some of the major roles of the Controller in an MVC structure:

• Holding the logic of the application and defining which event should be fired
upon actions

• Being the intermediary step between the Model, View, and other components
of the application

• Translating actions and responses that come from the View and Model that
can be understood by them and sending them to other layers

• Making a bridge between other components of the application and
facilitating communication between them

• Making primary permission checks in construct methods before any action

This can best be explained with a real-world example.

Let's assume we have a user management website, and in the administration
panel, an administrator tries to delete a user. In design patterns that follow SOLID
principles, the following things happen if an admin clicks on the delete user button:

1. From the View, the admin sends a request to the corresponding Controller to
delete the news item.

2. The Controller understands this request and performs primary checks.
First, it checks if the requester (the administrator, in our case) is really an
administrator and has permissions to delete this user.

3. After the primary checks, the Controller tells the Model to delete the user.
4. The Model performs some checks of its own and either deletes the user and

tells the Controller that the user is deleted, or tells the Controller that the user
is not available (maybe the user is already deleted).

5. After the response comes from the Model, the Controller either tells the View
to tell the administrator the user is deleted or redirects to another page with a
response like a 404 not found page.

As you can see from the preceding example, for all interactions, the Controller holds
the major role for the communication between the components of the application.
In an MVC pattern that follows SOLID principles, without the Controller, the View
cannot interact with the Model and vice versa. Although there are some derivations
to this architectural pattern, like where View interacts with Model(s) directly, in a
perfect SOLID design architecture, the Controller should always be the intermediate
element for all interactions.

Chapter 4

[43]

The Controller can also be considered as a translator. It gets input from the View in
various ways and converts it to request(s) that can be understood by the Model(s),
and vice versa.

Logic and Translator

Controller

Model View

Property
Update

Property
Change

User
Action

Component
Update

Controllers in Laravel
In Laravel 4, the Controllers are simple PHP classes with their filenames and
classnames ending with the suffix Controller (not forced, but highly recommended;
it's a standard between developers), which extends the class BaseController, and
are stored in the folder app/controllers as default. This folder structure is defined
in the composer.json file's classmap key and is not forced. Thanks to the Composer,
as long as you define where the Controllers are stored in your application's structure,
you can put them in any folder you like.

The following is a very simple Controller for Laravel 4:

<?php

class UserController extends BaseController {

 public function showProfile($id)
 {
 $user = User::find($id);

 return View::make('user.profile', array('user' => $user));
 }

}

The Controller holds all the action methods for actions that are defined in routes.php,
in which all the actions (every link that the users interact with) are set in Laravel 4.

Controllers in MVC

[44]

In Laravel 3, the developers had to prefix methods with either GET or POST so as to
understand the corresponding request's type. If your request was a GET request,
your method's name would have to be get_profile, and if the request was a POST
request, it'd have to be like post_profile. Thanks to Laravel 4, it's now not forced,
and you can name your methods any way you like.

A question now crops up. How do we access this method of the Controller? As we
mentioned earlier, we'll be using routes to do this.

Routes
Routes are a set of rules defined in app/routes.php that tell Laravel, upon receiving
an incoming request, which closure functions and/or Controller methods are being
called based on the requested URL. There are various ways to define a route. Three
of these are explained as follows:

• You can use closure functions and set the logic for the action directly from
app/routes.php. Have a look at the following code:
Route::get('hello', function(){
 return 'Ahoy, everyone!';
});

Here, we've called the get() method because we want this route to be
a GET request. The first parameter is the path of the action, so if we call
http://ourwebsite.com/hello, this route action will be called. The second
parameter can be from various selections. It can either be an array that holds
the name, filter and action, a string that defines the Controller's method for
action, or a closure function which holds the logic directly. In our example,
we've put a closure function and returned a string directly to the end user.
So if the user navigates to http://ourwebsite.com/hello, the end user will
see the message Ahoy, everyone! directly.

• The second way to set a route is to pass a second parameter as a string, define
which Controller it is passed to, and the action to be called. Have a look at
the following code:
Route::get('hello', 'ProfileController@hello');

Here, the string ProfileController@hello tells Laravel that the method
hello will be called from the Controller named ProfileController. We've
separated them using the character @.

Chapter 4

[45]

• The third way is to set an array as a second parameter, which gets various
keys and values. Have a look at the following code:
Route::get('hello', array(
 'before' => 'member',
 'as' => 'our_hello_page'
 'uses' => 'ProfileController@hello'
));

The array can have more than one parameter that define the route's name, the filter
that'll be applied before calling the action, and which Controller and its method(s)
will be used. The following are the three different keys:

• The before key defines the filter before calling the action, so you can set
some filtering parameters before calling each action. For example, if you have
a members-only area and you don't want guests to access that resource, you
can pass filters by using the before parameter in your route.

• The as key defines the name of the route. This is quite beneficial. Let's say
you need to change the URL structure of your application. Classically, if you
change the route's action path, you need to change every URL or redirections
for this action through your application. Instead, if you set the links and
redirections with names, you only need to change the path once, and all links
and redirections will be magically fixed.

• The uses key has the exact same structure as our second example. It holds
the name of the Controller and its method(s) upon calling.

In all these examples, the route did not get any parameters, and we didn't pass any
parameters. Think like this: we have accessed the profiles area by using routes, but
in these examples, we didn't set a way to access a specific user. How would we set a
parameter to these routes? For this, we'll have to set the parameters in curly brackets.

Run the following to set a parameter to a route:

Route::get('users/{id}', function($id){
 return 'Hello, the user with ID of '.$id;
});

The parameter(s) in curly brackets become a variable name directly in closure
methods. This approach also offers us a way to filter these parameters before the
Controller's method runs. Using where(), you can filter these parameters. Have a
look at the following code:

Route::get('users/{id}', function($id){
 return 'Hello, the user with ID of '.$id;
})->where(array('id' => '[0-9]+'));

Controllers in MVC

[46]

The method where() is either an array with keys and values, or two parameters, in
which the first is the name in curly brackets, and the second is a regular expression to
filter the parameter.

In our example, we've filtered the parameter ID with a regular expression to match
only numbers, so in this way, we will be distinguishing different kinds of data to
overload the endpoint.

Also, there is another benefit to this approach. If a person tries to navigate to
http://ourwebsite.com/users/xssSqlInjection, Laravel will throw a 404 error
even before going to the Controller's method.

If we follow this structure, we need to set each action one by one for each GET, POST,
PUT, and DELETE requests. If you want to use the RESTful structure for your actions,
instead of setting each route one by one, you can use the controller() method of
the Route class.

Certain steps need to be followed to set the routes of a RESTful Controller. For a user
Controller, the following are the steps:

1. You first need to make a new Controller named UserController and set
your RESTful methods such as index(), create(), store(), show($id),
edit($id), update($id), and destroy($id).

2. Then you need to set the RESTful Controller in app/routes.php by running
the following:
Route::controller('users', 'UserController');

Laravel offers a faster way to create Resourceful Controllers. These are called Resource
Controllers by Laravel. Follow these steps to set the routes of a Resourceful Controller:

1. You first need to make a new Controller with Resourceful methods using
Laravel's PHP client, artisan. Have a look at the following code:
php artisan controller:make NewsController

With this command, a new file named NewsController.php is automatically
generated in the app/controllers folder with all the Resourceful methods
already defined inside it.

2. Then you need to set the Resourceful Controller in app/routes.php by
running the following:
Route::resource('news', 'NewsController');

While setting the Resourceful Controller, you can set what actions are to be
included or excluded by setting a third parameter to this Route definition.

Chapter 4

[47]

3. To include actions that will be defined in the Resourceful Controller (kind of
like a whitelist), you use the only key as follows:
Route::resource(
 'news',
 'NewsController',
 array('only' => array('index', 'show'))
);

4. To exclude actions that will be defined in the Resourceful Controller (kind of
like a blacklist), you use the except key as follows:
Route::resource(
 'news',
 'NewsController',
 array('except' => array('create', 'store', 'update',
 'destroy'))
);

5. All Resource Controller actions have defined route names. You may also
want to override action names in some cases, and this can be done by setting
up a third parameter called names as follows:
Route::resource(
 'news',
 'NewsController',
 array('names' => array('create' =>
 'news.myCoolCreateAction')
);

If you have gone through the previous chapter, you may remember we had filters
in routes, but we didn't use the key before in RESTful and Resourceful Controllers.
To use the key before, we can perform the steps we the previously followed or
set filters in Controllers. These can be set in the __construct() method of the
Controller (if there is none, create one) as follows:

class NewsController extends BaseController {

 public function __construct()
 {

 $this->beforeFilter('csrf', array('on' => 'post'));

 $this->beforeFilter(function(){
 //my custom filter codes in closure function
 });

Controllers in MVC

[48]

 $this->afterFilter('log',
 array('only' => array('fooAction', 'barAction'))
);
 }

}

As you can see, we've set filters using the beforeFilter() and afterFilter()
methods. These methods either get a closure function or the name of the filter as a
first parameter and an optional second parameter, as an array, to define where these
filters work.

In this example, we've firstly set CSRF (Cross-site Request Forgery, which is a
method to forge a trusted request and to inject malicious code into the application
through this forged request) protection filters to all the POST actions; after that, we've
defined a filter in a closure function and used the afterFilter method to log all
fooAction and barAction events' statuses.

The following table is a list of actions that Laravel's Resource Controller handles:

Verb Path Action Route name
GET /resource Index resource.index

GET /resource/create Create resource.create

POST /resource Store resource.store

GET /resource/{resource} Show resource.show

GET /resource/{resource}/edit Edit resource.edit

PUT/PATCH /resource/{resource} Update resource.update

DELETE /resource/{resource} Destroy resource.destroy

Using Controllers inside folders
In some cases, you may want to group Controllers inside a folder, and have them in
a more hierarchical structure. There are two ways to achieve this.

Before explaining these methods, let's assume we have a UserController.php
file inside an app/controllers/admin folder, which we've just created for
admin-related Controller files. There is a question that crops up here: how do we
make both Laravel and the Controller files understand where the Controllers are?
Namespaces are used for such requirements. Namespaces are simple ways to
encapsulate and group items.

Chapter 4

[49]

Let's say you have the app/controllers/UserController.php and app/
controllers/admin/UserController.php files. How do we call a specific one?
Namespaces come in handy here. Save the following file as app/controllers/
admin/UserController.php:

<?php namespace admin; //The definition of namespace

use View; //What will be used

Class UserController Extends \BaseController {

 public function index() {
 return View::make('hello');
 }

}

Now we define the route as follows:

Route::get('my/admin/users/index', 'Admin\UserController@index');

Here, we've added some new additions to this Controller. They are as follows:

• The first one is namespace admin;. This simply defines that this file is inside
a folder called admin.

• The second one is use View;. If our Controller is under a folder or a defined
namespace unless we import them, all the classes we'll be calling will be
like namespace\class. If we didn't add this line, the View::make()
function would throw an error saying Class admin\View not found. To
understand this better, you can think of this like HTML's assets calling. Let's
assume you are browsing admin/users.html, and inside it there is an image
whose path is defined in this format: <img src= "assets/img/avatar.
png" />. As you may imagine, the image will be requested from admin/
assets/img/avatar.png because it is inside a folder called assets. This is
exactly the same situation.

• We've added a \ (backslash) character while we're extending from the
BaseController class. This will signify that it will be called from root. If we
didn't add use View; to our class and wanted to make View::make() work,
we should modify it to \View::make() (with a leading backslash) so that the
correct class will be requested.

Controllers in MVC

[50]

If there is a totally new folder structure, it can be defined in two ways. Either add
each folder path into the autoload/classmap object in the composer.json file or
define a psr-0 autoload. Let's assume we have a new app/myApp folder, and inside it
is a Controller located at app/myApp/controllers/admin/UserController.php.

Add a classmap object to the Controller as follows:

"autoload": {
 "classmap": [
 "app/commands",
 "app/controllers",
 "app/models",
 "app/database/migrations",
 "app/database/seeds",
 "app/tests/TestCase.php",

 "app/myApp/controllers/admin",
]
}

Now add a psr-0 autoload to the code as follows:

"autoload": {
 "classmap": [
 "app/commands",
 "app/controllers",
 "app/models",
 "app/database/migrations",
 "app/database/seeds",
 "app/tests/TestCase.php",

],

 "psr-0": {
 "myApp", "app/"
 }

}

Then run composer dump-autoload from the terminal to regenerate autoload
classes. By this psr-0 autoload, we've taught our Composer project to autoload
everything recursively inside the myApp folder, which is inside the app folder.
Another way is to prefix the classname with the namespace folders and use
underscores (_) between each folder.

Chapter 4

[51]

Let's assume we have a Controller, app/controllers/foo/bar/BazController.
php. Save the following inside this folder:

<?php

Class foo_bar_BazController extends BaseController {

 public function index() {
 return View::make('hello');
 }

}

Now we define the route as follows:

Route::get('foobarbaz', ' foo_bar_BazController@index');

Then, we navigate to http://yourwebsite/foobarbaz. It will work automatically
even without namespacing or including classes using use.

Summary
In this chapter, we learned the role of the Controller in the MVC pattern and how
you can use Controllers and set routes in Laravel 4. We also learned about filters and
RESTful and Resourceful Controllers.

For more information, you can refer to the official documentation page, located
at http://laravel.com/docs/controllers. In the next chapter, we'll learn
about Laravel's unique design pattern, and how it uses Repositories, Facades,
and the Factory pattern.

http://laravel.com/docs/controllers

Design Patterns in Laravel
In this chapter, we will discuss the design patterns Laravel uses, and how and why
are they used, with examples.

The topics that will be discussed in this chapter are as follows:

• Design patterns used in Laravel
• The reasons these patterns are used in Laravel

The Builder (Manager) pattern
This design pattern aims to gain simpler, reusable objects. Its goal is to separate
bigger and more convoluted object construction layers from the rest so that the
separated layers can be used in different layers of the application.

The need for the Builder (Manager) pattern
In Laravel, the AuthManager class needs to create some secure elements to reuse
with selected auth storage drivers such as cookie, session, or custom elements.
To achieve this, the AuthManager class needs to use storage functions such as
callCustomCreator() and getDrivers() from the Manager class.

Design Patterns in Laravel

[54]

Let's see how the Builder (Manager) pattern is used in Laravel. To see what happens
in this pattern, navigate to the vendor/Illuminate/Support/Manager.php and
vendor/Illuminate/Auth/AuthManager.php files, as shown in the following code:

 public function driver($driver = null)
 {
 ...

 }

 protected function createDriver($driver)
 {
 $method = 'create'.ucfirst($driver).'Driver';

 ...
 }

 protected function callCustomCreator($driver)
 {
 return $this->customCreators[$driver]($this->app);
 }

 public function extend($driver, Closure $callback)
 {
 $this->customCreators[$driver] = $callback;

 return $this;
 }
 public function getDrivers()
 {
 return $this->drivers;
 }

 public function __call($method, $parameters)
 {
 return call_user_func_array(array($this->driver(), $method),
$parameters);
 }

Chapter 5

[55]

Now, navigate to the /vendor/Illuminate/Auth/AuthManager.php file, as shown
in the following code:

 protected function createDriver($driver)
 {

 }

 protected function callCustomCreator($driver)
 {

 }

 public function createDatabaseDriver()
 {

 }

 protected function createDatabaseProvider()
 {

 }

 public function createEloquentDriver()
 {
 ...

 }

 protected function createEloquentProvider()
 {
 ...

 }

Design Patterns in Laravel

[56]

 public function getDefaultDriver()
 {
 ...
 }

 public function setDefaultDriver($name)
 {
 ...
 }

As we can see in the preceding code, the AuthManager class extends from the
Manager class. Laravel ships with a basic auth mechanism. So, we need to store auth
credentials in a database. First, the class checks our default database configuration
with the AuthManager::setDefaultDriver() function. This function actually uses
the Manager class for eloquent operations. All the database and auth options (such as
cookie name) are obtained from the application's config file, except the auth model
table name.

To understand this Builder (Manager) pattern better, we can take the following
presentation as an example:

<<create>>

<<create>>

<<create>>

Pizzac c PizzaBuilder c Waiter
1 1

c ChinesePizzaBuilder c AsianPizzaBuilder

c Client

1 1

<<create>>

In the preceding example diagram, we assumed that we want to fetch data, for
example, pizza, from the previous illustration. The client ordered two pizzas: an
Asian pizza and/or a Chinese pizza. This pizza is requested through the Waiter
class. The PizzaBuilder class (which is the Manager class, in our case) made a pizza
according to the AuthRequest request, in our case, and delivered the pizza through
the waiter.

Also, you can navigate to vendor/Illuminate/Session/SessionManage.php and
check for the use of this pattern in Laravel Framework.

Chapter 5

[57]

The Factory pattern
In this subsection, we'll examine the Factory pattern and its usage in Laravel
Framework. The Factory pattern is based on creating template method objects, which
is based on defining the algorithm of a class in a subclass to implement an algorithm.
There is a subclass, which is derived from a big superclass, in this pattern structure.
The main class, which we may call a superclass, only holds major and generic logic;
the subclasses are derived from this superclass. As a result, there may be more than
one subclass inherited from this superclass, which are aimed at different purposes.

Unlike other design patterns used in Laravel, the Factory method is more
customizable. For an extended subclass plus main class, you don't need to set a new
class, just a new operation. This method is beneficial if the class or its components
usually change, or methods need to be overridden, much like initialization.

While creating a design, developers usually start with using the Factory pattern
in their applications. Such a pattern is changed into an abstract Factory, Builder,
or Prototype pattern. Unlike the Factory pattern, the Prototype pattern requires
initialization once. Due to the pattern's architecture, the methods of the Factory
pattern (Factory methods) are usually called inside template methods.

There are some differences between the Factory pattern and the Abstract Factory or
Prototype pattern. They are as follows:

• Unlike an Abstract Factory pattern, the Factory pattern can't be implemented
using the Prototype pattern.

• Unlike the Prototype pattern, the Factory pattern doesn't need an
initialization, but it needs subclassing. This is an advantage when compared
with other patterns. Thanks to this approach, the Factory pattern can return
an injected subclass instead of an object.

• Since the classes designed with the Factory pattern may return subclasses
directly for other components, no other class or component needs to know
and access the constructor methods. Due to this, it's recommended that all
constructor methods and variables should be protected or private.

• There is another thing to take into consideration. As this pattern might return
subclasses aimed for the exact need, it's not recommended to make a new
instance of the class using this pattern using the key new.

Design Patterns in Laravel

[58]

The need for the Factory pattern
Laravel ships various types of validation rules with the Validation class. When we
develop applications, we usually need to validate data as we proceed. To do this, a
common approach is to set the validation rules in the Model and call them from the
Controller. By "rules" here, we mean both validation type and its range.

Sometimes, we need to set custom rules and custom error messages to validate the
data. Let's examine how it works and how we are able to extend the Validation
class to create custom rules. The Controller in the MVC pattern can also be described
as a bridge between Model and View. This can best be explained with a live
world example.

Let's assume we have a news aggregation website. In the administration panel,
an administrator tries to delete the news item. In the SOLID design pattern, this
happens if an admin clicks on the Delete News button.

First, as an example to check, let's open the vendor/Illuminate/Validation/
Factory.php file, as shown in the following code:

<?php namespace Illuminate\Validation;

use Closure;
use Illuminate\Container\Container;
use Symfony\Component\Translation\TranslatorInterface;

class Factory {

 protected $translator;

 protected $verifier;

 protected $container;

 protected $extensions = array();

 protected $implicitExtensions = array();

 protected $replacers = array();

 protected $fallbackMessages = array();

 protected $resolver;

 public function __construct(TranslatorInterface $translator,
 Container $container = null)

Chapter 5

[59]

 {
 $this->container = $container;
 $this->translator = $translator;
 }

 public function make(array $data, array $rules, array $messages
 = array(), array $customAttributes = array())
 {

 $validator = $this->resolve($data, $rules, $messages,
 $customAttributes);

 if (! is_null($this->verifier))
 {
 $validator->setPresenceVerifier($this->verifier);
 }

 if (! is_null($this->container))
 {
 $validator->setContainer($this->container);
 }

 $this->addExtensions($validator);

 return $validator;
 }

 protected function addExtensions(Validator $validator)
 {
 $validator->addExtensions($this->extensions);

 $implicit = $this->implicitExtensions;

 $validator->addImplicitExtensions($implicit);

 $validator->addReplacers($this->replacers);

 $validator->setFallbackMessages($this->fallbackMessages);
 }

 protected function resolve(array $data, array $rules, array
 $messages, array $customAttributes)
 {

Design Patterns in Laravel

[60]

 if (is_null($this->resolver))
 {
 return new Validator($this->translator, $data, $rules,
 $messages, $customAttributes);
 }
 else
 {
 return call_user_func($this->resolver, $this->translator,
 $data, $rules, $messages, $customAttributes);
 }
 }

 public function extend($rule, $extension, $message = null)
 {
 $this->extensions[$rule] = $extension;

 if ($message) $this->fallbackMessages[snake_case($rule)] =
 $message;
 }

 public function extendImplicit($rule, $extension, $message =
 null)
 {
 $this->implicitExtensions[$rule] = $extension;

 if ($message) $this->fallbackMessages[snake_case($rule)] =
 $message;
 }

 public function replacer($rule, $replacer)
 {
 $this->replacers[$rule] = $replacer;
 }

 public function resolver(Closure $resolver)
 {
 $this->resolver = $resolver;
 }

 public function getTranslator()
 {
 return $this->translator;
 }

 public function getPresenceVerifier()
 {
 return $this->verifier;
 }

Chapter 5

[61]

 public function setPresenceVerifier(PresenceVerifierInterface
 $presenceVerifier
 {
 $this->verifier = $presenceVerifier;
 }

}

As we can see in the preceding code, the Validation Factory class is constructed
with the Translator class and an IoC container. The addExtensions() function
is set after this. This method includes the user-defined extensions to a Validator
instance, thus allowing us to write the template (structure) to create the Validator
class's extensions. The functions, which are public, allow us to implement the
Translator class, and by this we mean that they allow us to write custom validation
rules and messages. Refer to the following CarFactory diagram:

CarAssembler

CarFactory

Car

ToyotaFactorySuzukiFactory

ToyotaSuzuki

In the preceding diagram, you can see that all cars are based on CarFactory
(the basics of all cars), regardless of the brand. For all brands, the main process is the
same (all cars have an engine, tires, brakes, bulbs, gear, and so on). You may want
either a Suzuki car or a Toyota car, and depending on this choice, the SuzukiFactory
or ToyotaFactory creates a Suzuki car or a Toyota car from the CarFactory.

The Repository pattern
The Repository pattern is usually used to create an interface between two distinct
layers of an application. In our case, the developers of Laravel use this pattern to
create an abstract layer between NamespaceItemResolver (the class that resolves the
namespaces and understands which file is in which namespace) and Loader (a class
that requires and loads another class into the application). The Loader class simply
loads the given namespace's configuration group. As you might know, nearly all of
the Laravel Framework code is developed using namespaces.

Design Patterns in Laravel

[62]

The need for the Repository pattern
Let's assume you're trying to fetch a product from your database using Eloquent
ORM. The method will be something like Product::find(1) in your Controller.
For abstraction purposes, this approach is not ideal. If you now put a code such as
this, your Controller knows you're using Eloquent, which ideally shouldn't happen
in a good and abstracted structure. If you want to contain the changes done to the
database scheme so that the calls outside of the class do not reference to the fields
directly but through a repository, you have to dig all codes one by one.

Now, let's create an imaginart repository interface (a list of methods that will be
used in the pattern) for the users. Let's call it UserRepository.php:

<?php namespace Arda\Storage\User;

interface UserRepository {

 public function all();

 public function get();

 public function create($input);

 public function update($input);

 public function delete($input);

 public function find($id);

}

Here, you can see that all the methods' names used in the Model are declared one by
one. Now, let's create the repository and name it EloquentUserRepository.php:

<?php namespace Arda\Storage\User;

use User;

class EloquentUserRepository implements UserRepository {

 public function all()
 {
 return User::all();
 }

 public function get()
 {

Chapter 5

[63]

 return User::get();
 }

 public function create($input)
 {
 return User::create($input);
 }

 public function update($input)
 {
 return User::update($input);
 }

 public function delete($input)
 {
 return User::delete($input);
 }

 public function find($input)
 {
 return User::find($input);
 }

}

As you can see, this repository class implemented our UserRepository that we created
earlier. Now, you need to bind the two so that when the UserRepositoryInterface
interface is called, we actually acquire EloquentUserRepository.

This can be done either with a service provider or by a simple command, such as the
following, in Laravel:

App:bind(
 'Arda\Storage\User\UserRepository',
 'Arda\Storage\User\EloquentUserRepository'
);

Now, in your Controllers, you can simply use the repositories as Use Arda\
Storage\User\UserRepository as User.

Design Patterns in Laravel

[64]

Every time the controller uses a User::find($id) code, it first goes to the interface,
and then goes to the binded repository, which is the Eloquent repository in our
case. Through this, it goes to the Eloquent ORM. This way, it's impossible for the
Controller to know how the data is fetched.

The Strategy pattern
The best approach to describe the Strategy pattern is through a problem.

The need for the Strategy pattern
In this design pattern, the logic is extracted from complex classes into easier
components so that they can be replaced easily with simpler methods. For example,
you want to show popular blog posts on your website. In a classic approach, you
will calculate the popularity, make the pagination, and list the items relative to the
current paginated offset and popularity, and make all calculations in a simple class.
This pattern aims to separate each algorithm into separate components so that they
can be reused or combined in other parts of the application easily. This approach also
brings flexibility and makes it easy to change an algorithm system wide.

To understand this better, let's take a look at the following loader interface located at
vendor/Illuminate/Config/LoaderInterface:

<?php namespace Illuminate\Config;

interface LoaderInterface {

 public function load($environment, $group, $namespace = null);

 public function exists($group, $namespace = null);

 public function addNamespace($namespace, $hint);

 public function getNamespaces();

 public function cascadePackage($environment, $package, $group,
$items);

}

Chapter 5

[65]

When we dig the code, the LoaderInterface works will follow a certain structure.
The getNamespaces() function loads all namespaces defined in the app\config\
app.php file. The addNamespace() method passes the namespaces to the load()
function as grouped. If the exist() function returns true, there is at least one
configuration group that belongs to a given namespace. For the full structure,
you can refer to the repository section of this chapter. As a result, you can easily
call the method that you need through an interface of the Loader class to load
various configuration options. If we download a package through the composer, or
implement a package to an application that is being authored, the pattern makes all
of them available and loads them from their own namespaces without any conflicts,
though they are inside different namespaces or have the same filenames.

The Provider pattern
The Provider pattern was formulated by Microsoft for use in the ASP.NET Starter
Kits and formalized in .NET Version 2.0 (http://en.wikipedia.org/wiki/
Provider_model). It is a mid layer between an API class and the Business
Logic/Data Abstraction Layer of the application. The provider is the implementation
of the API separated from the API itself.

This pattern, its aims, and its usage are quite similar to the Strategy pattern. This is
why many developers are already discussing whether to accept this approach as a
design pattern.

To understand these patterns better, let's open vendor/Illuminate/
Auth/AuthServiceProvider.php and vendor/Illuminate/Hashing/
HashServiceProvider.php:

<?php namespace Illuminate\Auth;

use Illuminate\Support\ServiceProvider;

class AuthServiceProvider extends ServiceProvider {

 protected $defer = true;

 public function register()
 {
 $this->app->bindShared('auth', function($app)
 {
 // Once the authentication service has actually been
 requested by the developer
 // we will set a variable in the application indicating
 this, which helps us

http://en.wikipedia.org/wiki/Provider_model
http://en.wikipedia.org/wiki/Provider_model

Design Patterns in Laravel

[66]

 // to know that we need to set any queued cookies in the
 after event later.
 $app['auth.loaded'] = true;

 return new AuthManager($app);
 });
 }

 public function provides()
 {
 return array('auth');
 }

}

<?php namespace Illuminate\Hashing;

use Illuminate\Support\ServiceProvider;

class HashServiceProvider extends ServiceProvider {

 protected $defer = true;

 public function register()
 {
 $this->app->bindShared('hash', function() { return new
 BcryptHasher; });
 }

 public function provides()
 {
 return array('hash');
 }

}

As you can see, both the classes extend ServiceProvider. The AuthServiceProvider
class allows us to provide all services to AuthManager when an authentication request,
such as checking whether a cookie and session is created or whether the content is
invalid, is sent. After the authentication service has been requested, the developer can
define whether a session or cookie is set through the response through AuthDriver.

Chapter 5

[67]

However, HashServiceProvider provides us with the related methods when a
secure hash request is done so that we can use, fetch, check, or do other things with
these hashes. Both providers return the values as an array.

The Facade pattern
The Facade (façade) pattern allows a developer to unite various complicated
interfaces into a single class interface. This pattern also allows you to wrap
various methods from various classes into a single structure.

Client

Class

Class

Class

Class Class

Class

Class

Class

Facade

In Laravel 4, as you may already know, almost every method looks like a static
method, for example, Input::has(), Config::get(), URL::route(), View::make(),
and HTML::style(). However, they are not static methods. If they were static
methods, it would be quite hard to make tests for them all. They are actually the
mimics of this behavior. In the background, with the help of the IoC Container (a way
to inject dependencies into a class), Laravel actually calls another class(es) through a
Facade class. The Facade base class benefits from PHP's own __callStatic() magic
method to call the required methods, such as static methods.

Design Patterns in Laravel

[68]

For example, let's assume we have a method called URL::to('home'). Let's check
what the URL is and what it refers to. First, let's open app/config/app.php. In the
aliases array, there is a line like the following:

'URL' => 'Illuminate\Support\Facades\URL',

So, if we call URL::to('home'), we actually call Illuminate\Support\Facades \
URL::to('home').

Now, let's check what's inside the file. Open the vendor/Illuminate/Support/
Facades/URL.php file:

<?php namespace Illuminate\Support\Facades;

class URL extends Facade {

 protected static function getFacadeAccessor() { return 'url'; }

}

As you can see, the class actually extends from the Facade class, and there is no
static method called to(). Instead, there is a method called getFacadeAccessor(),
which returns the string url. The getFacadeAccessor() method's purpose is to
define what to inject. This way, Laravel understands that this class is looking for
$app['url'].

This is defined in vendor/Illuminate/Routing/RoutingServiceProvider.php,
as follows:

protected function registerUrlGenerator()
{
 $this->app['url'] = $this->app->share(function($app)
 {

 $routes = $app['router']->getRoutes();

 return new UrlGenerator($routes, $app->rebinding('request',
 function($app, $request)
 {
 $app['url']->setRequest($request);
 }));
 });
}

Chapter 5

[69]

As you can see, it returns a new instance of the UrlGenerator class in the same
namespace, which holds the to() method we're looking for:

//Illuminate/Routing/UrlGenerator.php
public function to($path, $extra = array(), $secure = null)
{
 //...
}

So each time you use a method like this, Laravel first goes to and checks the facade, it
then checks what's injected through, and then the real method through the injected
class is called.

Summary
In this chapter, we learned about various design pattern uses in the Laravel PHP
framework, how and why they are used, and what problems they can solve.

In the next chapter, we'll learn about best practices to create an application using
Laravel using the design patterns in our code in a Laravel project.

Best Practices in Laravel
In this chapter, we will see examples of various previously-described design patterns
used in Laravel.

The topics that will be discussed in this chapter are as follows:

• Basic and advanced practices
• Real-life examples of design patterns used in Laravel
• The reasons why these design patterns are used in the examples

Basic practices
As a developer, when you are working on an application, there should be a
systematic order to things to prevent confusion and allow flexibility. For example, in
an MVC architecture, Controller should only hold the logic and Model should only
hold dataflow-related stuff. You should not write database queries in View files. This
way, anyone working on the project can find what they are looking for easily and can
change, fork, or improve it with greater ease. If this is not followed, the project will
turn into a mess as it gets bigger and bigger.

A basic good practice would be to avoid repeating yourself. If you're using a code
snippet or a condition a number of times, it'd be better for you to prepare a method
or a scope for that action. This way, you wouldn't have to repeat yourself over and
over. For example, let's say we have an imaginary Controller as follows:

<?php

class UserController extends BaseController {

 //An imaginary method that lists all active users
 public function listUsers() {

Best Practices in Laravel

[72]

 $users = User::where('active', 1)->get();

 return View::make('frontend.users.list')
 ->with('users', $users);
 }

 //An imaginary method that finds a specific user
 public function fetch($id) {

 $user = User::where('active', 1)->find($id);

 return View::make('frontend.users.single')
 ->with('user', $user);

 }

}

As you can see, the where() condition checks if active is repeated twice. In
real-world examples, it would be used even more.

To prevent this, in Laravel, you can use query scopes. Query scopes are single
functions that help you reuse the logic in Models. Let's define a query scope in Model
and change the Controller method as follows:

<?php

//Model File
Class User extends Eloquent {

 //We've defined a Query scope called active
 public function scopeActive($query) {
 return $query->where('active', 1);
 }

}

//Controller File
class UserController extends BaseController {

 //An imaginary method that lists all active users
 public function listUsers() {

 $users = User::active()->get();

Chapter 6

[73]

 return View::make('frontend.users.list')
 ->with('users', $users);
 }

 //An imaginary method that finds a specific user
 public function fetch($id) {

 $user = User::active()->find($id);

 return View::make('frontend.users.single')
 ->with('user', $user);

 }

}

As you can see, we've defined a method called scopeActive() in Model, which is
prefixed with the word scope and CamelCased. This way, Laravel can understand that
it's a query scope, and you can use that scope directly. As you can see, the conditions
in the Controller have also changed. They have changed from where('active', 1)
to active().

Design patterns are advanced practices and can be used to keep the code tidy and
systematic using various approaches.

Advanced practices
In this subsection, we will see various design patterns' usage in Laravel. If you test
the custom classes that include the design patterns, which are provided within the
book, they should be autoloaded in your application. This can be done either by
adding them to the ClassLoader::addDirectories() array of the global.php
file (which can be found by navigating to app/start) or the start.php file in the
bootstrap folder. Alternatively, we can add a psr-0 autoload in composer.json.

To add directories from app/start/global.php, first find the following code:

ClassLoader::addDirectories(array(

 app_path().'/commands',
 app_path().'/controllers',
 app_path().'/models',
 app_path().'/database/seeds',

));

Best Practices in Laravel

[74]

Then add your folders below. The resulting code will look as follows:

ClassLoader::addDirectories(array(

 app_path().'/commands',
 app_path().'/controllers',
 app_path().'/models',
 app_path().'/database/seeds',

 //our custom directory that holds classes
 app_path().'/acme',
));

If you want to autoload classes or files from the composer.json file using the psr-0
autoload, you have to add the namespace and directory into composer.json. The key
will be the namespace and the value will be the path of the folder that holds the files
and classes to be autoloaded. Have a look at the following code:

"autoload": {

 "psr-0": {
 "Acme": "app/lib"
 }
}

In this example, if our composer.json file doesn't have a psr-0 object, first we'll
create it and then add the namespace and the path values inside. You can see we
have a namespace called Acme, which is under the folder app/lib.

If you don't want to autoload a whole folder but only a few single files, you can also
use the files object in composer.json. It's a single object that only holds the paths
of files.

"autoload": {
 "files": [
 "app/acme/myFunctions.php"
]
},

After adding these values, you need to dump the autoload files and make Laravel
understand them. To do this, after editing the composer.json file, simply run the
following command:

composer dump-autoload

Chapter 6

[75]

You can also run the following command if the composer is not installed in
your environment:

php composer.phar dump-autoload

After this, the classes or files that you've just added will be autoloaded and available
for your project.

The Factory pattern
As you might recollect from Chapter 5, Design Patterns in Laravel, the Factory pattern
is based on creating template method objects to implement an algorithm. Let's
assume we are developing the following application:

CarAssembler

SuzukiFactory ToyotaFactory

ToyotaSuzuki

CarFactory

Car

Let's assume the Toyota brand only produces C-class red cars, and the Suzuki brand
only produces B-class green cars. Let's assume we have a Model for this purpose that
is defined as follows:

<?php

class CarFactoryModel extends BaseModel{

 public static function createCar($manufacturer)
 {
 switch ($manufacturer)
 {

 }

Best Practices in Laravel

[76]

 throw new \InvalidArgumentException("Unsupported manufacturer
[$manufacturer]");
 }

 public static function createCarFromColor($color)
 {
 switch ($color)
 {
 case 'Red':

 return static::createCar('Toyota');

 case 'Green':

 return static::createCar('Suzuki');

 }

 throw new \InvalidArgumentException("Unsupported color
[$color]");
 }

 public static function createCarFromClass($class)
 {
 switch ($class)
 {
 case 'B':

 return static::createCar('Suzuki');

 case 'C':

 return static::createCar('Toyota');
 }

 throw new \InvalidArgumentException("Unsupported car class
[$class]");

 }
}

Chapter 6

[77]

As you can see, in this approach, the same carFactory() class is called for both
Suzuki and Toyota because in this example both brands would have the same
processes to create the core of the car. The quality-class and color are set after the
core of the car is produced. After this is set, for the color and quality-class choices,
we can directly call the corresponding class with its brand. Let's say we are going to
buy a B-class car. Now, because the code knows which brand produces B-class cars,
it will directly call Suzuki. This Model can have a Controller like the one seen in the
following code:

<?php

class CarController extends BaseController{

 public function showCarsByManufacturer($manufacturerName){

 return CarFactory::createCar($manufacturerName);

 }

 public function showCarsByColor($color){

 return CarFactory::createCarFromColor($color);

 }

 public function showCarsByClass($className){

 return CarFactory::createCarFromClass($className);

 }

}

The three different routes of this approach are as follows:

Route::get(
'cars/{manufacturer}',
array(
'as' => 'cars_by_manufacturer',
'uses' => 'CarController@showCarsbyManufacturer'
)
);

Best Practices in Laravel

[78]

Route::get(
'cars/color/{color}',
array(
'as' => 'cars_by_color',
'uses' => 'CarController@showCarsbyColor'
)
);

Route::get(
'cars/class/{class}',
array(
'as' => 'cars_by_class',
'uses' => 'CarController@showCarsbyClass'
)
);

In such situations, in addition to the Factory pattern, having an approach like these
three routes would be a good practice for URL richness, ease of use, and improved
search engine optimization of the website.

The Builder pattern
We discussed in Chapter 5, Design Patterns in Laravel, that, in a way, the Builder
pattern is an approach to separate bigger objects into smaller ones and make them
available for reuse.

In this subsection, as in the example in Chapter 5, Design Patterns in Laravel, let's assume
we are baking a pizza that has certain properties, such as Italian and small/big:

<<create>>

<<create>>

<<create>>

Pizzac c PizzaBuilder c Waiter
1 1

c ChinesePizzaBuilder c AsianPizzaBuilder

c Client

1 1

<<create>>

Let's assume we have an autoloaded class as follows:

<?php

class PizzaDelivery
{

Chapter 6

[79]

 protected $pizza;

 protected $config = array();

 public function __construct(array $config)
 {
 $this->pizza = new PizzaBuilder();
 $this->setConfig($config);
 }

 /**
 * Process some configuration parameters
 *
 * @param array $config
 */
 protected function setConfig(array $config)
 {
 $defaults = array(
 'spice' => true,
 'type' => 'Italian',
 'size' => 'Small',
);

 $config = array_replace($defaults, $config);
 $this->config = $config;
 }

 /**
 * Build the pizza using the supplied configuration parameters
 * From the constructor that is set using setConfig() method.
 *

 * @return null
 */
 public function build()
 {
 foreach ($this->config as $option => $value) {
 $method = sprintf('set%s', ucfirst($option));
 if (method_exists($this->pizza, $method) === true) {
 call_user_func(array($this->pizza, $method),
 $value);
 }

Best Practices in Laravel

[80]

 }
 }

 /**
 * @return Pizza
 */
 public function getPizza()
 {
 return $this->pizza;
 }
}

As you can see, we have injected a builder, the PizzaBuilder class, which includes
two chefs: one is an Italian pizza maker and the other is an Asian pizza maker. The
PizzaBuilder class in this approach can be coded as follows:

<?php
class PizzaBuilder
{
 protected $type = '';
 protected $size = '';
 protected $spice = '';
 public function setSpice($spice)
 {
 $this->spice = $spice;
 }

 public function setSize($size)
 {
 $this->size = $size;
 }

 public function setType($type)
 {
 $this->type = $type;
 }
}

Chapter 6

[81]

As you can see, it holds all the basic stuff to bake a pizza, but the properties are
defined outside the class, through the Model using methods such as setType()
and setSize(). With this approach, by only defining the properties and without
thinking about the rest, we can build and get our pizza directly from the waiter
(PizzaDelivery). If we need to get an Asian pizza, we'd call the following code
anywhere in our application:

$myFavoritePizza = new PizzaDelivery(array('type' => 'Asian'));
$myFavoritePizza ->build();
return $myFavoritePizza->get();

The Strategy pattern
As you might recall from Chapter 5, Design Patterns in Laravel, the Strategy pattern is
used to divide the logic into smaller parts according to their tasks so that these parts
can be reused.

In the sample application we'll code for this approach, we will make a package
shipment calculation application for different package carriers. Let's assume we
have a class like the following:

<?php

interface ShipmentPricingStrategy {

 function shipmentPrice();

}

abstract class ShippingPriceStrategy implements
ShipmentPricingStrategy {
 function __construct() {}
 abstract function shipmentPrice();
}

class FedexPriceStrategy extends ShippingPriceStrategy {

 function shipmentPrice() {
 return 4.95;
 }
}

class UpsPriceStrategy extends ShippingPriceStrategy {

Best Practices in Laravel

[82]

 function shipmentPrice() {
 return 3.75;
 }
}

class Shipping {

 public $shipping_pricing_structure;

 function __construct(ShippingPriceStrategy $shipment_pricing_
strategy) {

 $this->shipping_pricing_structure = $shipment_pricing_
strategy;

 }
}

As you can see in the code, in the Shipping class, we have injected
ShippingPriceStrategy. This Strategy pattern has features for each carrier
(shipmentPrice() in our case). With this approach, for different shipping carriers,
we can show different delivery prices and include them in our shipping process,
which will be defined in our Shipping class. This way, we've used the prices set in
the Strategy pattern both when showing the shipping price and counting a sum total
for the shipping process.

By assuming that the class is autoloaded, we can use the class that has the Strategy
pattern in an example like this:

<?php

$cart_total = 77.90;

$fedex_price = new Shipping(new FedexPriceStrategy());

$ups_price = new Shipping(new UpsPriceStrategy());

$ups_price_with_cart = $cart_total+$ups_price->shipping_pricing_
structure->shipmentPrice();

$fedex_price_with_cart = $cart_total+$fedex_price->shipping_pricing_
structure->shipmentPrice();

echo 'The cost of this order with Fedex is: '.$fedex_price_with_
cart."\n";

echo 'The cost of this order with UPS is: '.$ups_price_with_cart."\n";

Chapter 6

[83]

As you can see, for the same shipping process (the Shipping class), by injecting
different shipping strategies for the two brands, we've managed to gain different
shipping prices due to the difference in their strategies.

The Repository pattern
The main reason to use a Repository pattern is to provide abstraction and flexibility.
For example, let's say you are fetching a product from the database. By default, in
Laravel, the usual way is to use Eloquent ORM in Controller and to pass it to the
View. This way, your Controller knows that you are using Eloquent ORM to fetch
data from the data source / database. For small applications, this should be no
problem, but in bigger applications, an issue might occur. In future, for some reason,
you might want to drop MySQL using Eloquent ORM and might need to use another
ORM in MongoDB. When this happens, because the Controller knows that you are
using Eloquent ORM, you'll have to dig each Controller (or any other layer) one by
one and change them. Another limitation is that you cannot unit test this code.

This would not happen if you had used repositories. If you do this, the Controller
would connect only with the repository, and the repository would handle the other
regarding layers. Therefore, the Controller wouldn't know how the data was fetched
(abstraction). This way, on bigger applications, managing stuff or testing stuff should
be much easier.

To understand this approach, first let's assume we have the ProductsController
and Product models, and we want to fetch a product with a given ID and another
method to dump all products. The Controller would look something like this:

<?php

Class ProductsController extends \BaseController {

 public function findProduct($id) {
 $product = Product::find($id);
 return View::make('product')
 ->with('product', $product);
 }

 public function allProducts() {
 $products = Product::all();
 return View::make('all_products')
 ->with('products', $products);
 }

}

Best Practices in Laravel

[84]

There is a flaw in this approach. If you are testing code that is written like this and
there is an error, you can't directly detect what the source of the error is unless
Whoops (the error handler library used in Laravel) is active. Repositories are helpful
in situations like this because they extract the logic. To inject a repository, one way is
to define and set it in a constructor method of the Controller.

Let's name this repository EloquentProductRepository, which is part of the
\Acme\Repositories namespace. Our Controller would change into something
like the following:

<?php

//We use the repository in our class
use Acme\Repositories\EloquentProductRepository;

Class ProductsController extends \BaseController {

 //A protected variable to hold the Repository
 protected $product;

 //Let's define a constructor class, and assigning to the
 variable $product
 public function __construct(EloquentProductRepository $product)
 {
 $this->product = $product;
 }

 public function findProduct($id) {
 //$product = Product::find($id);
 $product = $this->product->find($id);
 return View::make('product')
 ->with('product', $product);
 }

 public function allProducts() {
 //$products = Product::orderBy('id', 'desc')->get();
 //let's give it a unique method name
 $products = $this->product->getNewest();
 return View::make('all_products')
 ->with('products', $products);
 }

}

Chapter 6

[85]

Note that instead of making orderBy('id', 'desc')->get(), we have given a
new method name, getNewest(). Now let's create this repository. Let's assume we
have a file called EloquentProductRepository.php inside the namespace Acme\
Repositories folder. Have a look at the following code:

<?php namespace Acme\Repositories;

Class EloquentProductRepository {

 public function getNewest() {

 return \Order::orderBy('id', 'desc')->get();

 }

 public function find($id) {
 return \Order::find($id);
 }

}

For each method that is used, you need to define functions once you are in the
repositories. A major advantage of this approach is that it brings flexibility. Let's
say you will be using mocks, or you'll switch from Eloquent ORM to another one in
future that has totally different method names. To switch your application's database
layer from Eloquent to MongoDB, if you've used repositories, you only need to
change the used repository in your Controllers, nothing else. You won't need to dig
all of your Controllers, Models, or other components.

There is still a feature lacking here. Our Controller still knows that we are using an
Eloquent-specific repository. For a better approach and abstraction, our Controller
should not know what kind of repository we are using. To ensure this, we will have
to code an interface for this.

Now, let's create an interface in the same namespace path (it is not forced; you may
create it anywhere as long as it's loaded) as ProductInterface. Our Controller
would then look like this:

<?php

//We use the interface in our class
use Acme\Repositories\ProductInterface;

Class ProductsController extends \BaseController {

Best Practices in Laravel

[86]

 //A protected variable to hold the Interface
 protected $product;

 //Let's define a constructor class, and inject the interface as
 $product variable
 public function __construct(ProductInterface $product) {
 $this->product = $product;
 }

 public function findProduct($id) {
 //$product = Product::find($id);
 $product = $this->product->find($id);
 return View::make('product')
 ->with('product', $product);
 }

 public function allProducts() {
 //$products = Product::orderBy('id', 'desc')->get();
 //let's give it a unique method name
 $products = $this->product->getNewest();
 return View::make('all_products')
 ->with('products', $products);
 }

}

Instead of the repository, the interface is injected and used. Now let's code the
ProductInterface interface:

<?php namespace Acme\Repositories;

interface ProductInterface {

 public function getNewest();
 public function find();

}

As you can see, the interface holds the method names, which are actually the
methods available to the implemented repository. Now let's implement this
interface to our repository to connect them:

<?php namespace Acme\Repositories;

Class EloquentProductRepository implements ProductInterface {

 public function getNewest() {

Chapter 6

[87]

 return \Order::orderBy('id', 'desc')->get();

 }

 public function find($id) {
 return \Order::find($id);
 }

}

This implementation has an advantage. Let's assume that you've implemented an
interface in the repository and it is missing the getNewest() custom method. Thanks
to this implementation, the interface will directly let you know that it needs that
specific method and it's missing.

Lastly, we need to bind the interface to the repository. One of the ways to do this is
to use Laravel's built-in App:bind(); method. To bind the repository that we've just
created to the interface, add this line into your app/routes.php file or any other file
that's autoloaded.

App::bind(
'Acme\Repositories\ProductInterface',
'Acme\Repositories\EloquentProductRepository'
);

Another way to bind these two is to create a service provider. Let's write a service
provider as follows:

<?php namespace Acme\Repositories;

use Illuminate\Support\ServiceProvider;

class UserServiceProvider extends ServiceProvider {

 public function register()
 {
 $this->app::bind('Acme\\Repositories\\ProductInterface',
'Acme\Repositories\EloquentProductRepository');
 }
}

We've assumed that this provider is in the namespace Acme\Repositories folder.
We've also used Illuminate\Support\ServiceProvider to extend our class from it.
In the public method register, we've binded the interface to our product repository.

Best Practices in Laravel

[88]

In future, if you want to switch to MongoDB or any other interface that you've
coded, all you have to do is switch EloquentRepositoryInterface to the new
one. It will be updated everywhere in the application.

Summary
In this chapter, we saw examples of basic and advanced practices of design patterns
and architectures that are used both in Laravel and in general development
processes. We have learned the advantages of various design patterns while citing
real-world examples for each one of them.

Design patterns are there to make your life easier. If development is done without
following any pattern or architecture, as the application grows, both refactoring
and implementing features would be harder after each refactoring. Also, if another
developer joins the project, he or she first needs to understand what's where. This
will possibly cause bloating, bad performance, inflexibility, and a variety of errors
that are hard to fix. The application would be a time-bomb ready to explode. Design
and architectural patterns are there to help you prevent these issues. Not only in
your Laravel application, but in anything that you're developing, as the application
grows, to keep everything under control, you must use a design pattern or a
combination of them. In the end, there will be a day you'll thank yourself for using
these patterns.

Index
A
Abstract Factory pattern

versus Factory pattern 57
abstraction 21
accessors 28
advanced practices, Laravel

about 73, 74
Builder (Manager) pattern 78-81
Factory pattern 75-78
Repository pattern 83-87
Strategy pattern 81, 82

afterFilter() method 48
artisan command 32
as key 45

B
basic practices, Laravel 71-73
beforeFilter() method 48
before key 45
behavioral patterns

examples 10, 11
benefits, design patterns 7
benefits, migration 30
benefits, MVC pattern 12
Builder (Manager) pattern

about 11, 53, 78-81
need for 53-56

C
CarFactory example 61
classifications, design patterns

behavioral patterns 10
creational patterns 9
structural patterns 9

Controller
about 41-44
purpose 42
real-world example 42
routes 44-48
using, inside folders 48-51

creational patterns
examples 9
features 9

CSRF (Cross-site Request Forgery) 48

D
database seeders 32
design patterns

about 5, 6
benefits 7
Builder (Manager) pattern 53-56
classifying 9
elements 8
examples 7, 8
Facade pattern 67
Factory pattern 57-61
Provider pattern 65-69
Repository pattern 61-64
Strategy pattern 64, 65

E
Eager Loading 27
elements, design patterns

about 8
consequences 8
name 8
problem 8
solution 8

[90]

Eloquent ORM
about 20, 21
accessors 28
Eager Loading 27
mass assignment 25
Model events 29
Model observers 29, 30
mutators 28
query scopes 28
relationships 22-25
soft deleting 26
timestamps 27

examples, behavioral patterns 10, 11
examples, creational patterns 9
examples, structural patterns

adapter 10
bridge 10
composition 10
decorator 10
facade 10
flies 10
proxy 10

F
Facade pattern 67-69
Factory pattern

about 11, 57, 75-78
need for 58-61
versus Abstract Factory pattern 57

features, creational patterns
creation constraints 9
generic instantiation 9
simplicity 9

Fluent Query Builder 16-20
folders

Controllers, using inside 48-51

H
has-many-through relationships 24

L
Laravel

advanced practices 73, 74
basic practices 71-73
View, exploring in 33-35

M
many-to-many relationships 23
mass assignment 25
migration file 31
migrations

about 30
benefits 30

Model
about 13, 16
database seeders 32
Eloquent ORM 20, 21
Fluent Query Builder 16-20
migrations 30, 31
purposes 14, 15

Model events 29
Model Instances 15, 16
Model observers 29, 30
mutators 28
MVC pattern (Model-View-Controller)

about 11-13
benefits 12

O
one-to-many relationships 22
one-to-one relationships 22

P
polymorphic relationships 24
programming 5
programming solutions 6
Provider pattern

about 11, 65, 66
URL 65

Q
query scopes 28

R
relationships

about 22
has-many-through relationships 24
many-to-many relationships 23
one-to-many relationships 22

[91]

one-to-one relationships 22
polymorphic relationships 24, 25

Repository pattern
about 11, 83-87
need for 61-64

reusability 21
routes

overview 44-48

S
soft deletes

enabling 26
soft deleting 26
SOLID principles 42
Strategy pattern

about 11, 64, 81, 82
need for 64, 65

structural patterns
examples 10

T
timestamps 27

U
uses key 45

V
View

about 37-39
exploring, in Laravel 33-35

view objects
overview 35, 36

Y
yield() function 39

Thank you for buying
Laravel Design Patterns and

Best Practices

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Getting Started with Laravel 4
ISBN: 978-1-78328-703-1 Paperback: 128 pages

Discover Laravel – one of the most expressive, robust,
and flexible PHP web application frameworks around

1. Provides a concise introduction to all the
concepts needed to get started with Laravel.

2. Walks through the different steps involved in
creating a complete Laravel application.

3. Gives an overview of Laravel's advanced
features that can be used when applications
grow in complexity.

4. Learn how to build structured, more
maintainable, and more secure applications
with less code by using Laravel.

Laravel Application Development
Cookbook
ISBN: 978-1-78216-282-7 Paperback: 272 pages

Over 90 recipes to learn all the key aspects of Laravel,
including installation, authentication, testing, and
the deployment and integration of third parties in
your application

1. Install and set up a Laravel application and
then deploy and integrate third parties in
your application.

2. Create a secure authentication system and build
a RESTful API.

3. Build your own Composer Package and
incorporate JavaScript and AJAX methods
into Laravel.

Please check www.PacktPub.com for information on our titles

Learning Laravel 4 Application
Development
ISBN: 978-1-78328-057-5 Paperback: 256 pages

Develop real-world web applications in Laravel 4
using its refined and expressive syntax

1. Build real-world web applications using the
Laravel 4 framework.

2. Learn how to configure, optimize, and deploy
Laravel 4 applications.

3. Packed with illustrations along with lots of tips
and tricks to help you learn more about one of
the most exciting PHP frameworks around.

Laravel Application Development
Blueprints
ISBN: 978-1-78328-211-1 Paperback: 260 pages

Learn to develop 10 fantastic applications with the
new and improved Laravel 4

1. Learn how to integrate third-party scripts and
libraries into your application.

2. With different techniques, learn how to adapt
different methods to your needs.

3. Expand your knowledge of Laravel 4 so you can
tailor the sample solutions to your requirements.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Design and Architectural Pattern Fundamentals
	Design patterns
	Elements of design patterns
	Classification of the design patterns
	Creational patterns
	Structural patterns
	Behavioral patterns

	What is MVC?
	Summary

	Chapter 2: Model in MVC
	What is the Model?
	Purposes of the Model
	Model Instances
	The Model in Laravel
	Fluent Query Builder
	Eloquent ORM
	Relationships
	Mass assignment
	Soft deleting
	Eager Loading
	Timestamps
	Query scopes
	Accessors and mutators
	Model events
	Model observers

	Migrations
	Database seeders

	Summary

	Chapter 3: View in MVC
	What is a View?
	View objects
	View in Laravel
	Summary

	Chapter 4: Controllers in MVC
	What is a Controller?
	The purpose of the Controller
	Controllers in Laravel
	Routes

	Using Controllers inside folders
	Summary

	Chapter 5: Design Patterns in Laravel
	The Builder (Manager) pattern
	The need for the Builder (Manager) pattern

	The Factory pattern
	The need for the Factory pattern

	The Repository pattern
	The need for the Repository pattern

	The Strategy pattern
	The need for the Strategy pattern

	The Provider pattern
	The Facade pattern
	Summary

	Chapter 6: Best Practices in Laravel
	Basic practices
	Advanced practices
	The Factory pattern
	The Builder pattern
	Strategy pattern
	The Repository pattern

	Summary

	Index

