— - -
N
> a"’~\~ ! »
B e Ty e
— RSESS T i,
S7s S e
C Ay S (e =%
S /s o
® ¢ /s
/ /
/ / / / ",’ ; # /
ey i

] Stuff Doné

with\Laravel 4

A journey through application design and
development using PHP’s hottest new framework

/ ‘I“’ ! - ~
/ = / '
S -
S~ L s
/ S S S~
S~ = /
(——
) S
o =2 —
L Ty S
£ & & e
£ ~ = o
= & /o e —
/S S
/-
L
/ L
4
/i

by Chuck Heintzelman

Getting Stuff Done with Laravel 4

A journey through application design and development
using PHP's hottest new framework

Chuck Heintzelman
This book is for sale at http://leanpub.com/gettingstuffdonelaravel

This version was published on 2014-02-02

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2014 Chuck Heintzelman

Tweet This Book!

Please help Chuck Heintzelman by spreading the word about this book on Twitter!
The suggested hashtag for this book is #LaravelGSD.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#LaravelGSD

Contents

Thank You i
Revision History ii

A special thankyouo ii
HelpWanted iii
Source Codeon GitHub iv
Welcome 1
Chapter 1 - This book’s purpose, 2

What’snotinthisbook 2

What’sinthisbook 3
Chapter 2- Who areyou? 4
Chapter 3-WhoamI? 5
Chapter 4 - Whatis Laravel? 6
Chapter 5 - How to justify Laravel 7
Chapter 6 - Why programmers like Laravel 9
Chapter 7 - Wordpress: The Good, The Bad, TheUgly 10
Chapter 8 - Conventions Used in thisBook 11

What OSam [using? 12
Part 1 - Design Philosophies and Principles 13
Chapter 9 - Yee Haw! Cowboy Coding is Great. 14
Chapter 10 - Every Programmer Is Different 17

A Quick Litmus Test e 17

CONTENTS

Chapter 11 - Decouplingis Good 19
It's All About Hair Loss Lo o 19
A Simple Decoupling Example 20
Chapter 12 - Don’t Be a WET Programmer 23
Chapter 13 - Dependency Injection 24
Step 1 - Move the dependency decision to the classlevel 25
Step 2 - Use manual injection 25
Step 3 - Use automatic injection L L L 26
Chapter 14 - Inversion of Control 28
A General Example 28
The IoC Container 29
Chapter 15 - Interface As Contract, 32
Interfaceshidecode 32
Chapter 16 - SOLID Object Design 34
Single Responsibility Principle Lo oo 34
Open/Closed Principle e 35
Liskov Substitution Principle 38
Interface Segregation Principle L 40
Dependency Inversion Principle L o 42
Chapter 17 - A Dirty, Little Design Secret 46
Programming like a Novelist L Lo 47
Part 2 - Designing the Application. 48
Chapter 18 - What application will we create? 49
Naming the application 50
Whatis GTD o 50
Chapter 19 - Installing Laravel 0 0 L. 51
Creating the project e 52
The project hierarchy 52
Delete unneeded directories 53
Create the Source directories L 54
Update COmpoOSer v v v vttt e e e e e 54
Test Your Installation 55
Chapter 20 - Designinga Todo List 57
Configuration Data e 57

Laravel’s Configuration and Environments 58

CONTENTS

What’s our todo list look like L 60
Initial List and Task objects 60
TodoRepositorylnterface 61
Chapter 21 - Thinking about the Tasks 63
TodoTaskInterface L 63
TaskCollectionInterface L 65
The Wonderful World of Facades 67
Chapter 22 - Creating the TaskListInterface 70
TaskListInterface L 70
AMini-Recap 72
Chapter 23 - Format of the textfile 74
File formatting rules L 74
Rules about the tasksinalist Lo 75
How individual lists are sorted L o 75
Chapter 24 - Application Functions 0. 78
Laundry list of functions L 78
UsingaTodoFacade 79
Chapter 25 - Facade Planning 81
Facade Components 81
The Todo Facade Class Shell 81
The Todo Facade Implementation 82
Testing the Todo Facade Implementation 83
Tying things together L 85
Testing the Todo Facade 87
Chapter 26 - Midstream Refactoring 89
Inthe foggy woods 89
TaskListInterface 90
TaskCollectionInterface L 94
TodoTaskInterface 94
Finishing Upand Testing 97
Chapter 27 - Starting the TodoManagerclass 98
TodoManager:makeList() 98
Installing Mockery 101
Testing TodoManager:makelist() 102
Chapter 28 - Finishing the TodoManagerclass 105
Creating TodoManager::allLists()o o i 105

Testing TodoManager::allLists() o 107

CONTENTS

Creating TodoManager:get() 109
Chapter 29 - Implementing ListInterface 112
Creating a TodoList shell 112
Binding the ListInterface 115
The TodoList::__construct() e 117
Implementing TodoList::save() 119
Implementing TodoList::set() and TodoList::get() 121
Testing TodoList::set() and TodoList::get() o oL 123
Testing TodoList:save() L 125
Chapter 30 - Finishing the TodoListclass 128
Finishing the “List Attribute” methods 128
Removing TodoList:load() 129
Implementing TodoList::archive() 129
Implementing TodoList:taskAdd() Lo 132
The final three TodoList::tasks(), TodoList::taskSet(), and TodoList::taskRemove() 135
Chapter 31 - The TaskCollection and Task classes 137
The TaskCollection class 137
The Task class e 141
Binding the Interfaces 148
Chapter 32 - Testing the TaskCollection and Task classes 150
Testing the Task class L 150
Fixing the mistake in the Task class 154
Fixing Timezone in the Configuration 155
Testing the TaskCollection class 155
Chapter 33 - Implementing the TodoRepository 161
A dab of Refactoring 161
TodoRepository 162
Creating Testdata 167
Testing the Repository L 169
Part 3 - The Console Application. 173
Chapter 34 - Artisan Tightening, 174
Artisanin 30 Seconds 174
Where are these commands? 176
Removing default commands 0 L oL o 177
Chapter 35 - Planning Our Commands 182

Planning on Planning ... Let’'s Get Meta 182

CONTENTS

The List of commands in our application 182
Createanew list e 183
List All Lists o o o 183
Edit List e e e 184
Archivelist 185
Rename List 186
Addatask 186
Marking atask complete 187
Listing Tasks o 187
EditTask o o 188
Removetask 189
Move Tasks 190
Final Listof all Commands 190
Chapter 36 - Pseudo-coding 193
Create List Pseudo-code 193
Uncreate List Pseudo-code 194
List all Lists Pseudo-code 194
Edit List Pseudo-code 194
Archive List Pseudo-code 195
Unarchive List Pseudo-code 195
Rename List Pseudo-code 195
Add Task Pseudo-code 196
Do Task Pseudo-code 196
Listing Tasks Pseudo-code 196
Edit Task Pseudo-code 197
Remove Task Pseudo-code 197
Move Task Pseudo-code 197
Final Thoughts on Pseudo-coding 198
Chapter 37 - Using Helper Functions 199
The Most Frequent Functions 199
Creating Helper Functions 199
Unit Testing Our Helper Functions 202
Creating pick_from_list() 202
Testing pick_from_list() 204
Chapter 38 - The ListAllCommand 208
ThePlan o 208
Creating the ListAllCommand 209
Telling Artisan About the ListAllCommand 211
Fleshing out the fire() methodabit.o L 212

Using Symfony’s Table Helper 217

CONTENTS

Refactoring taskCount() 219
Sorting the Listids e 220
Chapter 39 - The CreateCommand 223
ThePlan L e 223
Creating the CreateCommand 224
Adding the all null() Helper 227
Expanding CommandBase 229
Implementing fire() 231
Chapter 40 - The UncreateCommand 234
ThePlan L 234
Creating the UncreateCommand 234
Getting Stack Traces on Your Command 238
Implementing askForListld() for existing lists 239
AlittleCleanup 240
Fixing theunittests L 242
Chapter 41 - The EditListCommand 244
ThePlan 244
Updating CommandBase 245
Creating the EditListCommand 248
Telling Artisan About EditListCommand 250
Pretesting EditListCommand L 250
Finishing EditListCommand:fire() L. 251
Chapter 42 - Refactoring Filesand Config 253
Refactoring the Config 253
Refactoring to use Laravel’s Fileclass 255
Chapter 43 - The AddTaskCommand 261
ThePlan o 261
Creating the AddTaskCommand 261
Adding the code to the fire() method Lo L 264
Manually testing 266
Chapter 44 - The DoTaskCommand 267
ThePlan e 267
Creating the DoTaskCommand 268
Updating CommandBase 270
Testing DoTaskCommand 273
Killingthe Bug 274
Chapter 45 - The ListTasksCommand 277

The Plan e 277

CONTENTS

Creating the ListTasksCommand 278
Testing the ListTasksCommand 282
Chapter 46 - Eating Our Own DogFood 284
What is Eating Your Own Dog Food 284
Settingupthe gsdtodo list 284
Chapter 47 - The EditTaskCommand 287
ThePlan o 287
Adding a str2zbool() helper 288
Creating the EditTaskCommand 289
Refactoring TodoList save() 293
Testing EditTask o o 294
Dogfooding 295
Chapter 48 - ArchiveListCommand and UnarchiveListCommand 297
ThePlan L e 297
Creating the Commands 298
Updating ArchiveListCommand 299
Fixing the CommandBasebug 301
Updating UnarchiveListCommand 303
Dogfooding 306
Chapter 49 - The RenameListCommand 309
Blank line after gsd:list title Lo 309
The Plan for RenameListCommand 312
Creating the RenameListCommand 313
Implementing ListInterface:delete() 316
Dogfooding 317
Chapter 50 - Refactoringagain 321
Adding CommandBase:abort() 321
Add to askForListld() 323
Check gsd help consistency 324
Use ListInterface:delete() e 325
The Changed Files 325
Dogfooding 352
Chapter 51 - The RemoveTaskCommand 354
ThePlan o 354
Creating the RemoveTaskCommand 354
Dogfooding 357
Chapter 52 - The MoveTaskCommand 359

The Plan e 359

CONTENTS

Creating the MoveTaskCommand 360
Dogfooding 363
Chapter 53 - Listing Tasks Across Lists 366
ThePlan e 366
Update ListAllCommand 366
Dogfooding 372
Chapter 54 - Command Aliases and the gsd shell script 374
Command Aliases L 374
Planning the aliases and macros oL 376
Implementing the aliases L 377
The Bash Script L 380
Dogfooding 383
Chapter 55 - What’s Next with the Console Application 385
Part 4 - The Web Application 386
Chapter 56 - Setting up the Web Server 387
Web server permissions 387
Using Apache 387
Using Nginx e 388
Using PHP’sbuiltinserver 388
Youhavearrived 389
Chapter 57 - Planning the Web Application 390
Initial Ideas L 390
Planning the AJAX calls 390
Designing the Javascript Objects 391
Dogfooding 393
Chapter 58 - Mocking Up the WebPage 396
Setting Up Bootstrap e 396
Build a basictemplate 397
Expand template toour mockup Lo Lo 398
Dogfooding 403
Chapter 59 - Adding FeedbacktotheUser 406
Structuring the Views L 406
Building the Skeleton 408
Adding gsd style and javascripto 409
Adding amessagebox L 411

Making message box a function Lo o oo 412

CONTENTS

Implementing the Error Message function 416
Dogfooding 417
Chapter 60 - Setting up the AJAXroutes 419
Using a Resource Controller 419
Finishtheroutes. 421
Creating the Controller 422
Finishing the ListController skeleton 422
Testing a ListController method L L .. 425
Dogfooding 425
Chapter 61 - Addingthe TopNavBar 427
Creating thepartial 427
Loading the default list 428
Structuringthe NavBar. 430
Making our first AJAX call 431
Doing the server side of the REST 433
Dogfooding 436
Chapter 62 - Finishing the TopNavBar. 437
Assigning javascript functions to thenavbar Lo o000 437
Loading the result into thenavbar oL 439
Dogfooding 440
Chapter 63 - The Side Navigation 442
Updating the layout 442
Creating thesidebar 443
Finishing the AJAX call. 443
Updating the Javascript L 445
Dogfooding 448
Chapter 64-The Tasks 450
Iteration #1 - Basic structure L oL oL 450
Iteration #2 - Showing Open Tasks 453
Iteration #3 - Showing completed tasks. L. 456
Dogfooding 457
Chapter 65 - DeletingaTask, 459
Refactoring TaskInterface 459
Updating the Controller 460
Update the doDelete() javascript method., 463
Toggling the Completed Flag 464
Dogfooding 465

Chapter 66 - Adding and Editing Tasks 467

CONTENTS

The Modal Task Form 467
The Javascript L 469
Finishing taskboxSave 471
Dogfooding 472
Chapter 67 - Archiving and Unarchiving Lists 474
Implementing the AJAX archive method 474
Calling the AJAX archive() method 476
Implementing the AJAX unarchive method 477
Calling the AJAX unarchive() method 478
Dogfooding 479
Chapter 68 - Creating and Renaming Lists 481
Adding List Modal 481
Adding Create List Javascript 483
Implenting AJAX storecall L 485
Implementing Rename Javascript. L oo 486
Implementing AJAX renamecallo L Lo 487
Dogfooding 488
Chapter 69 - Moveand Beyond 490
The Move Task Command 490
Wheretogonext 491
AFinal Thank You 491
Appendices 493
Appendix I-Composer 494
Appendix II-PHP Unit 495
Appendix III - Apache Setup 496
Installing Apache 496
Fixing Permissions 497
Using Named Virtual Hosts 497
Adding an entry to /etc/hostso 498
Setup up a VirtualHost on UbuntuMint 498
Appendix IV-Nginx Setup 500
Installing Nginxo 0 500
Fixing Permissions L 501
Adding an entry to /etc/hosts oL 501

Setup up a VirtualHost on UbuntuMint 502

Thank You

I want to sincerely thank you for purchasing this book. I hope you find it engaging, entertaining,
and most of all, useful.

Other Places to Learn Laravel

« The website'. This is always my first stop to look something up. Check out the forums there.
It’s chock-full of information.

« NetTuts”. There’s some nice Laravel tutorials on the site.

« Laravel Testing Decoded’ by Jeffery Way. This book is an awesome resource on how to test
your Laravel code.

 Code Bright* by Dayle Rees. This book is both fun and informative.

+ From Apprentice to Artisan® by Taylor Otwell. By the creator of Laravel ... need I say more.

+ Implementing Laravel® by Chris Fidao. This book focuses on implementing projects with
Laravel. It covers structure and and common patterns. A great book.

« Laravel 4 Cookbook” by Christopher Pitt. This book contains various projects built in Laravel
4.

« Laravel in Action® by Maks Surguy. This book is now available from Manning Publications’s
Early Access program.

'http://laravel.com

*http://net.tutsplus.com/
*http://leanpub.com/laravel-testing-decoded
“http://leanpub.com/codebright
*https://leanpub.com/laravel
®https://leanpub.com/implementinglaravel
"https://leanpub.com/laravel4cookbook
8http://www.manning.com/surguy/

Revision History

Current version: 1.2

Version Date Notes

1.2 02-Feb-2014 Typos and updates for Laravel 4.1

1.1 28-Nov-2013 Typos and general cleanup.

1.0 2-Nov-2013 Fixed many typos and released on Leanpub.

0.9 27-Oct-2013 Finished and released on Leanpub.

0.8 20-Oct-2013 Added 4 chapters, released on Leanpub.

0.7 13-Oct-2013 Added 3 chapters, two appendices. Released on Leanpub.
0.6 6-Oct-2013 Added 8 chapters, finishing Part 3. Released on Leanpub.
0.5 29-Sep-2013 Added 7 chapters to Part 3 and released on Leanpub.

0.4 22-Sep-2013 Added 7 chapters to Part 3 and released on Leanpub.

0.3 15-Sep-2013 Cleanup draft through Part 2. Decided to release first version on Leanpub.
0.2 8-Sep-2013 Finish 1st draft of Part 2

0.1 31-Aug-2013 Finish 1st draft of Welcome and Part 1

0.0 3-Aug-2013 Start writing first draft

A special thank you

Here’s a list of non-anonymous people who have helped me by finding typos and other issues in
these pages.

Peter Steenbergen
Jeremy Vaught
George Gombay
Mike Bullock
Kristian Edlund

Thank you very much!

Cover Image

Cover image copyright © Kemaltaner® | Dreamstime.com™

*http://www.dreamstime.com/kemaltaner_info
http://www.dreamstime.com/

Help Wanted

I know there are some errors within these pages. Unfortunately, I don’t know where they are. With
modern self-publishing the time from creation to production can be a matter of minutes.

As such, there’s no middle-man. [write something, check for errors, hit a few keys and WAM! you’ve
got the latest version.

But I'm not perfect. (Even if I do try to convince my wife that I am. Shhh. Don’t tell her.)

Please help me make this book better. If you find misspellings, confusing words, whatever, please
contact me at chuckh@gmail.com' and let me know. I appreciate the help and will give you credit
on the revisions page. (If you mention page numbers, please also provide your version of the book
from the Revision History page.)

Here’s a list of things I could use help with:

« Words: Misspelled words, missing words, and incorrectly used words.
« Instructions for systems other than Ubuntu.

Incorrect facts. (Sometimes I just make ‘em up as I go along.)

« Grammar ... not really. I'd hafta rewrite the whole book to make it grammatically correct.
Know what I’'m sayin?

Translations

After the English (or should I say, the American) version of this book has settled down and the kinks
have been worked out, I will be translating it into other languages. It makes me sad that many of
the idioms will have to be killed—oh, well.

If you’re interested in translating this work into a different language, please shoot me an email.

"mailto:chuckh@gmail.com

0 N O O & W N =

Source Code on GitHub

The source code for this book is available on GitHub in my getting-stuff-done-laravel-code®
repository.

Since each chapter of this book that has code that builds on a previous chapter, I set up a branch for
each chapter.

For example, the first chapter with code is Chapter 19 - Installing Laravel. It’s available in the
chapter19 branch.

It’s pretty easy to pull down from github just the chapter you want. Let’s say you wanted chapter32.
In linux you’d do something like:

$ git clone -b chapter32 \

> https://github.com/ChuckHeintzelman/getting-stuff-done-laravel-code.git
Cloning into 'getting-stuff-done-laravel-code'...

remote: Counting objects: 635, done.

remote: Compressing objects: 100% (273/273), done.

remote: Total 635 (delta 306), reused 622 (delta 295)

Receiving objects: 100% (635/635), 100.08 KiB, done.

Resolving deltas: 100% (306/306), done.

®https://github.com/ChuckHeintzelman/getting-stuff-done-laravel-code

Welcome

Welcome to Getting Stuff Done with Laravel. The Welcome part of the book explains what you’ll
get out of the book.

Here’s how things are broadly organized.
Welcome
The first part of the book explains what you’ll get out of the book.

Part 1 - Design Philosophies and Principles
This part talks about general principles of design we’ll follow in creating the application.

Part 2 - Designing the Application
This is the part where we design the actual application.

Part 3 - The Console Application
Next, we make the application usable from the console.

Part 4 - The Web Application
Now we’ll take our creation and put a web skin on it. Mwaa, haa, ha.

Appendices
Supplemental information. Like how to install Composer.

Chapter 1 - This book’s purpose

This book will take you on a journey through Laravel. Hopefully, you’ll go places you’ve never been
and see you things you’ve never seen. It’s a travelogue of sorts. We’ll have a definite destination
(the application we're creating) and I'll point out some amazing sights along the way. When you
reach the end, drop me a note at chuckh@gmail.com™. 'm very interested in what you thought of
the journey.

This book is meant to be experienced. To be used. Please follow along and build the application
chapter by chapter. Each chapter leads to the next. The sections within a chapter flow forward.
Each part of the book builds on the previous.

You could think of the sections in each chapter as cities. Then the chapters themselves are countries,
and the book’s parts are continents and ... Okay, enough with the labored traveling analogy.

The focus throughout the book is the step-by-step creation of an application using Laravel 4.

ﬁ This is not a typical technical manual

I’ve attempted to mimic the actual process of design and development as closely as possible.
This means there are false starts, design changes, and refactoring along the way.

You’ve been warned <grin>.

What's not in this book

« Every aspect of Laravel. This is not a reference book on the entire framework.

» Caching, Events, or Logging. These are important topics, but the application we’re creating
doesn’t require them.

+ Queues, Authentication, Cookies, or Sessions. Again, important stuff, but we don’t need it.

« Database. Yeah, it almost pains me to admit this. One of the greatest aspects of Laravel is
it’s Fluent Query Builder and Eloquent ORM. I mean, what great names. Names that the
implementation fully lives up to. Sadly, I don’t touch on this because ... you guessed it ...
the application we're creating doesn’t need it.

mailto:chuckh@gmail.com

Chapter 1 - This book’s purpose 3

What's in this book

Mostly, me blabbing away about why I'm doing what I'm doing in creating the application. You
may agree with me some of the time. You may argue with me some of the time. Sometimes you may
think 'm a complete idiot. Hopefully, at times you’ll think “Oh yeah. Good one.” But in the end,
you’re getting the nuts-and-bolts of creating a real system that you can use.

Chapter 2 - Who are you?

Most books start with information about the author but the more important question really is “who
are you?”

I’'m making the following assumptions:

+ You know more about computers than most people.

+ You are a programmer.

+ You know how to program in PHP. Maybe a little. Maybe a lot.

« You’ve heard of Laravel*. (This isn’t a deal-breaker because I'm going to tell you about it.)

+ You love programming or want to get back the passion that first drove you to make computers
do your bidding.

 Your name is not Taylor Otwell because if it is, then I'm not worthy:.

I'll do my best to make the material approachable to beginners, yet interesting and in-depth enough
for intermediate programmers to find the material useful.

Bottom line

You want to learn more about Laravel.

"http://laravel.com

Chapter 3-Who am I?

ﬁ This is the typical rah-rah, ain’t I great chapter. It’s not going to teach you a single thing
about Laravel. The smartest move you could make right now is to skip to the next chapter.

Hello. My name is Chuck Heintzelman and I write computer programs.
(That felt like I was in front a support group. I hope nobody said “Hi Chuck.”)

Seriously. I've written programs since that day in 9" grade when I stayed home “sick” from school
with a borrowed BASIC Language Reference manual and wrote out on paper a game that was like
Asteroids™ except instead of asteroids flying at you it was other ships firing long white blocks of
death at you.

After long hours of debugging and waiting for the TRS-80 to load/save my program to it’s “mass
storage” (a cassette tape), the game finally worked. This was 33 years ago. Back in the day of
computer dinosaurs, large ferocious beasts filling climate-controlled rooms. No, I've never actually
used punched cards, but have seen them in use.

Since then I've written programs in Fortran, COBOL (yeah, I know), Assembly Language, Basic, C,
C++, C#, Java, Pascal, Perl, Javascript, and PHP. I’ve tinkered with many, many other languages, but
have not written programs that people actually used.

I’ve created systems for Fortune 500 companies, as well as small Mom-and-Pop stores. Everything
from mail order systems running in Xenix to web applications running in PHP. I've started several
companies before the days of the Internet (not before the real beginning of the Internet, just before
the excitement starting in the mid-90s), and a few dot coms since then. And through it all I've did
what I loved to do—write computer programs.

Whew! Okay, enough about how great I am.

Here’'s my point

Throughout my career I've never felt the need to create a book about programming until
now. The sole reason I'm writing this is because of Laravel.

Phttp://en.wikipedia.org/wiki/Asteroids_(video_game)

Chapter 4 - What is Laravel?

Raise your hand if this sounds familiar

You’ve been tasked with adding a feature to your company’s existing system. Unfortu-
nately, the system was written in PHP 4 and whoever the original programmer was, you
suspect they watched a few too many “Wordpress Gone Wild” videos.

You’ve inherited this codebase with *gasp™ no classes, a glut of global variables, and a
structure not unlike a 50,000 piece jigsaw puzzle.

You curse your job, the short sightedness of the management-team, and whatever
possessed you to want to make money by programming in the first place.

After all, programming should be fun. Right?

We’ve all been there.
Enter Laravel.

(Cue the sound of kettle drums: duh-duh duh-duh duh-da-duh)

Laravel is a framework for PHP which makes programming fun again.

Come on man ... it's just a framework

Laravel is not a new language. It’s only a framework. If you cut through all the hyperbole and look
at its essence, Laravel is simply a PHP Framework.

Although, I do agree with the motto from the Laravel web site:
The PHP Framework for Web Artisans.

Ruby On Rails is just a framework. Yet look at the fandom behind it.

Laravel’s not going to magically fix your PHP spaghetti code, but it provides you with a new, fast
and elegant way to get stuff done. (Note, the concept of Getting Stuff Done is a reoccurring theme in
this book.)

In short, Laravel provides you with an architecture that makes PHP programming a joy. You’ll be
able to refactor existing code in a way that is expressive, stylish, and will be easy to maintain and
expand in the future.

Laravel is not a panacea. If your existing codebase sucks, it’s going to be painful to get from where
it is now to where it should be. That’s the nature of our industry.

But, if you want to move to a framework that allows simple expressivity (is that even a word?) then
Laravel is the answer.

Chapter 5 - How to justify Laravel

Here's the problem (or a problem) ...

You must work under the constraints your company places on you. Namely, that you
must support the existing software and develop new code that plays nice with your
existing systems. There’s a mix of .NET, some Java, but most of the existing code is
PHP.

You’ve recently discovered Laravel and like it and want to use it for new development.

How can you justify switching to Laravel?

Let’s put on our detective hat for a minute.

Hmmm. The detectives I know (from TV of course) seem to follow the money when looking for
suspects and motives. So let’s follow the money ...

Customers provide money to businesses in exchange for goods and services. The better the product,
and the more customers really want the product, the more money they fork over to the business.

Managers want the business to thrive. They want as many customers as possible to give them as
much money as possible as frequently as possible.

Think about it from management’s perspective ...

[want my customers to be happy.

« [want new customers.

« Customer happiness equates to expectations being met.

« I want my programmers to be able to deliver the requirements on time.

I want the programming team to be agile. (Whatever that means ... see the box below.)

[want to facilitate customer’s requests in a timely manner.
« I want great developers delivering great products

What does Agile even mean?

You ever say or write a word so often that it loses all meaning? Almost like the Smurfs ...
everything is smurfing, smurfable, smurferific. Agile seems to be one of those words. It’s way

Chapter 5 - How to justify Laravel 8

past the buzzword stage. Everything is Agile this, Agile that. Are people talking about the iterative
software process or something else? Something magical? I really don’t know.

If the above list is the management perspective, then Laravel is easily justified:

« Customers are happy when their needs are addressed and met.
« Customers are even happier when their expectations are exceeded.
+ Laravel provides a framework that ...
— Makes it easy to extend functionality.
— Follows best-practices in design.
— Allows multiple programmers to collaborate efficiently.
— Makes programmers happy. (Remember managers: a happy programmer is a productive
programmer.)
— Let’s stuff get done faster.
— Encourages unit testing, considering testing a core component of every application.

Laravel provides managers the ability for their programmers to get more done, quicker, and
eliminates many of the obstacles inherent in web application development. I'll expand on this later.

Pretty easy to justify, ain’t it?

Chapter 6 - Why programmers like
Laravel

Let’s cut to the chase ... why would you, as a programmer, want to use Laravel as a framework?

Let me talk a bit about Framework Envy.

(Here I picture talking to a therapist. Him nodding sagely, taking a drag on his pipe and
saying, “Talk about zee framework envy.”)

I’d been given projects written in PHP. These were bloated, PHP 4 projects written by a developer
whose only concept of “class” was that it is something at school to be skipped. And I'd look across
the street at the Ruby developers and silently wish for some natural disaster—earthquake, tornado,
even lightning—-to level their building.

Does this make me a bad person?

This was at a time when Ruby was all shiny and new. What made Ruby cool wasn’t the language
itself (although there are very nice aspects to the language). No, what made Ruby cool was Ruby on
Rails.

All the developers were flocking to Ruby on Rails.
Why were they flocking to it?

Because it promised a way of development that was fun. And by fun, I mean powerful, expressive,
and quick to implement. I credit RoR on creating an atmosphere making programming a delight
again. The coding joy instilled by RoR is the exact same feeling as that initial impetus that made us
all want to be programmers.

How sad was it that we were mired in the PHP world? Where any Tom, Dick or Henrietta was a
“PHP Programmer” because they could hack a Wordpress install.

(See the next chapter about Wordpress - The Good, The Bad, The Ugly)

But, no, we were stuck with the requirements that our projects be in PHP. We couldn’t be a cool kid
like all those Ruby developers. They were cutting edge. They were the ones pushing the boundaries,
making a name for themselves.

Along comes Laravel. It takes the best of Ruby on Rails and brings it to the PHP world. Suddenly, a
PHP developer is dealing with routes to controllers instead of individual scripts. Concepts like DRY
(Don’t Repeat Yourself) now have more meaning. Suddenly, we have a “blade” template engine
incorporating the essence of PHP in a way Smarty Templates only dreamed of. We have, quite
literally, the potential of PHP Nirvana.

Does it sound like I think Laravel’s awesome? I hope so.

Chapter 7 - Wordpress: The Good, The
Bad, The Ugly

Wordpress revolutionized blogging. It brought blogging to the masses. Sure, there are other platforms
like blogger and livejournal, but what Wordpress did was put out in the public domain a large,
popular system written PHP.

With the advent of Wordpress, anybody could hack the PHP scripts to make the blogging platform
do what they wanted it do it.

“With great power comes great responsibility.” — Uncle Ben (from Spiderman)

Unfortunately, the power Wordpress availed was not met with great responsibility. Scripts were
hacked with no thought toward overall design or usability. To make matters worse, Wordpress
started in the days of PHP 4, when the language didn’t allow the constructs that allowed true
programmers to create maintainable systems.

Wordpress was the best thing that happened to PHP, but it also was the worst thing that happened
to the language.

It’s a case of too much success in the hands of too few artisans.

This attached a stigma to PHP.

Softwarati'®
Self absorbed programming intellectuals who comment on languages.

For your consideration ... a commonly heard quote by the Softwarati:

“Oh. PHP’s a ghetto language. Ugly, hardly maintainable, but it works ... most of the
time”

Thank goodness Laravel came along to kick those Softwarati in their upturned noses.

16Yes, this is a word I totally made up.

B W N =

Chapter 8 - Conventions Used in this
Book

There are several conventions used through this book.

Code is indented 2 spaces

Usually, I indent code 4 spaces but since this book is available in a variety of eBook formats some
of the smaller screens have horizontal space at a premium.

for ($i = 0; $i < 10; $i++)
{

echo "I can count to ", $i, "\n";

}
% This is a tip
It is used to highlight a particularly useful piece of information.

A This is a warning

It is used to warn you about something to be careful of.

0 This is an information block

Used to reiterate an important piece of information

x This is something to do

When there’s code, or other actions you should take, it’s always proceeded by this symbol.

Trailing 7> is used when opening tag is used.

When coding, I always drop the trailing ?> in a file. But the editor I'm writing this book in makes
everything look wonky when I do it. So, within this book, if I open a PHP block with the PHP tag, I
always close it in the code too. For example:

O b W N -

O O b W N =~

Chapter 8 - Conventions Used in this Book 12

<?php
class SomethingOrOther {
private $dummy;

?2>

PHP Opening and Closing Tags

In the code examples sometimes the opening PHP tag (< ?php) is used when it’s not needed (such as
when showing a portion of a file.) Sometimes the closing PHP tag (“?>’) is used when it’s not needed.

<?php
function somethingOrOther()
{
$this->callSetup();
}
2>

With real PHP Code I always omit the closing tag at the end of the file. I'll leave it to you to determine
whether or not the tags are needed. Be aware the opening and closing tags in the code examples
should not be taken verbatim.

What OS am | using?

I’'m writing this manual, the code, etc., using Linux Mint 16'” which based on Debian and Ubuntu.
It’s basically the same as Ubuntu 13.10".

Yhttp://www.linuxmint.com/

http://www.ubuntu.com/

Part 1 - Design Philosophies and
Principles

There’s not much code in this part of the book. Sorry, it’s all about the design at this point. Here I'll
discuss general design principles used in building the application.

You may be thinking, “just take me to the code.” For the most part, I concur. It’s often quickest and
easiest just to jump in the code and learn by doing. If you understand the concepts: SOLID Object
Design, Interface as Contract, Dependency Injection, Decoupling, and Inversion of Control, then
skip to Part 2 to begin designing the application.

Chapter 9 - Yee Haw! Cowboy Coding
Is Great.

0 In This Chapter

In this chapter I discuss Cowboy Programming (or Cowboy Coding) and how it’s often
used in a derogatory manner ... but it shouldn’t be.

Here’s my usual development workflow for creating new systems:

1. What’s it gonna do? [try to figure out what the new system is going to do. This may be as
simple as a single sentence. Or it may involve wire framing'® a portion of user interface. More
often than not, it’s simply something in my head, not written down, and I want to jump in
and code the dang thang.

2. Start coding I start a new project and begin coding. Here I just run straight at what I'm trying
to accomplish.

3. Regroup Eventually I realize step 2 didn’t work as well as I thought it would. Now, a bit of
“refactoring” is in order. But ... since this is a new project I don’t refactor, I recode. In other
words, I set aside the existing code and start fresh, only using the existing code as a rough
blueprint, and pulling in whole chunks (classes, functions, files) as I need.

4. Get bored When I'm 90% finished with the project, I get bored to tears with the whole mess.

What is Refactoring?

Refactoring is a process in which the internal structure of the code is changed without changing
external results. Often it’s a process of removing duplication, separating complex modules into
simpler patterns, or renaming files, classes, or methods for better consistency.

This four-step system works quite well for me. (Except for the last step, where I just “grunt it out.”)
What’s really going on is step #2 is that 'm designing the system. I'm designing it by coding it. So
step #3 is the “real” coding phase.

Phttp://en.wikipedia.org/wiki/Website_wireframe

Chapter 9 - Yee Haw! Cowboy Coding is Great. 15

When coding using this method, experimentation is quick-and-easy, because you’re not bogged
down with a restrictive workflow.

This method of creating projects is often called “Cowboy Programming” or “Cowboy Coding” and
it’s looked down upon by ... guess who? Management. It’s not a process that management can easily
control so they don’t like it.

Is there anything wrong with this method? Absolutely not! Hotshot programmers can get more done
in less time by Cowboy Programming, and that’s what matters in the end, isn’t it?

Don’t get my wrong. Agile, RAD, Extreme Programming, even TDD (especially TDD) are all great
methodologies. And I'm game for any of them, but only if I can keep as much autonomy over the
process as possible.

Does Cowboy coding work with teams? Absolutely, as long as everyone stays in their own corral.
(Ugh, I know. But couldn’t resist the metaphor.)

I've been doing this for enough years that the patterns and structures I use are subconscious. I use
what I need in the white-hot fire of coding, automatically following techniques that have worked
countless times in the past.

Ah, so Cowboy Coding is good?

Probably not.

(Now you’re thinking “Chuck. What the ...? You just extolled the virtues of Cowboy Coding. Dude,
you're sending mixed messages.”)

Sorry about that. But the problem with Cowboy Coding isn’t so much in what I call Cowboy Coding,
as it is in not having an exact definition. Lack of a standard definition leads to every negative
comment about programming to be lumped under the label “Cowboy Coding”

“He won’t comment his code. He’s a gosh-durn Cowboy Coder.”

“She thinks her code is perfect and blames lack of decent equipment for failures. She’s one of those
dang Cowgirl Programmers.”

“She’s a total prima donna. Won't test her code cuz she said it never has a bug. Get a rope”
“He can’t work with others. Thinks he’s the lone ranger, that one does.”

“Why the heck did he go off again and spend hours recoding an unimportant system that wasn’t
broke in the first place. I hate these Cowboys!”

You get the picture. I think Cowboy Coding is the best way to code, but I also believe:

+ You must work well with others.
+ You must not have ego about your code.
+ You must be able to get things done.

Chapter 9 - Yee Haw! Cowboy Coding is Great.

« You must “own” your problems and fix them.
 You must realize your way isn’t always the best way.
+ You must know sometimes good enough is better than perfect.

16

Chapter 10 - Every Programmer Is
Different

0 In This Chapter

This chapter discusses how every programmer is different and what works best for me may
be totally different than what works best for you.

Why am I devoting an entire chapter to one simple statement?
Because, I'm sick of everyone believing there’s one true way.

How you develop code and how I develop code may be diametrically opposed. Maybe you can’t
write a line of code without having every step fully designed. And I want to write code and call it
design. Hah. It doesn’t matter, as long as we both are being effective.

Some programmers are better at behind the scenes, doing library work.
Others really enjoy creating beautiful user interfaces.

Point is, we're all different and have different strengths and weaknesses. And what works for you
may not work for me and visa-versa. If you take ten developers, line them up, march them off a cliff
(no wait, that’s something else...) I mean line them up and have them perform the same programming
task, every one will accomplish it differently. (I'm not talking about something simple, like echoing
“Hello World!”. I'm talking about a problem that takes 30-60 minutes to solve.)

Use What Works For You

If any technique, or philosophy, or piece of advice within this book resonates with you ...
then great. Use it. If something doesn’t fit your tastes, just move on and ignore it.

Everything is on the table. Isn’t that great? That’s one of the coolest things about writing code:
there’s a thousand ways to skin a cat and you can learn new ways to do it all the time. You never
stop learning.

A Quick Litmus Test

The joy of programming is in the journey, but the effectiveness of the coding is the destination.

So let’s have some quick points that we can all agree on to evaluate the destination. Three quick
questions (although I do cheat a little with #3 and make it a long question)

Chapter 10 - Every Programmer Is Different 18

1. Does the program work as expected?
2. Was the coding speed sufficient?
3. Isthe code both maintainable and extendable (by someone other than the original developer?)

If we achieve all three, regardless of the journey taken, then success is assured.

Chapter 11 - Decoupling is Good

Coupling measures how things are tied together in a computer program. It is the dependency one
part of the program has on another part.

There are different forms: Global Coupling, Subclass Coupling, Data Coupling, ... and if I thought
about it I could come up with a few more or even make some up.

Coupling is measured along a continuum. When one part of a software system is dependent on
another part, it is considered tightly coupled. The other extreme is to have parts loosely coupled.
Of course, there are other terms that mean exactly the same thing. All these terms are used
interchangeably:

+ Loose Coupling = Low Coupling = Weak Coupling
« Tight Coupling = High Coupling = Strong Coupling

Decoupling is the process of loosening the coupling between two parts.

As your software system grows larger the amount of coupling indicates how tough the system will
become to maintain, debug, and extend.

Why?

Because the more parts depend on each other, the more a developer must be aware of the
dependencies. Code changes, be it bug fixes or adding features, necessitates time spent in different
areas ensuring functionality is not broken. Tightly coupled systems that grow in size, scope, and
complexity can quickly become impossible to enhance.

I’ve seen this countless times over the years. Applications work well initially. But features are added
and the systems eventually growing too difficult to maintain. Hell, I've designed systems which
become more and more difficult to maintain over time.

It's All About Hair Loss

Let’s take PHP Global variables ...

If a program relies heavily on global variables, then you could say it has tight global coupling. Every
time you change a global variable then you have to take into consideration the effects to other areas
of the program (be it objects, functions, methods, ...) that use that particular global variable.

In a very short period of time, you will be bald from the constant hair pulling. (Yes, even you women
out there.) It’s a dangerous road.

0 N O O & W N =

Chapter 11 - Decoupling is Good 20

Here I've created a simple chart to illustrate how the reliance on global variables affects the amount
of hair a programmer has:

Relation between Global variables and Hair

120
100
80

==ll==% Reliance on Globals
60

=={==9% Hair on Head

40
20
0

Scientific Analysis
As you can see, on the leftmost edge of the chart, when a programmer relies on global variables
100% of the time, they have no hair on their head.
Makes you think, doesn’t it?

Every PHP programmer has heard “Global variables are bad.” But isn’t it cooler to say “Global
Coupling is bad.” It means the same thing but sounds vaguely dirty.

A Simple Decoupling Example

So how does coupling work with objects?

Let’s take an typical error handling class.

class ErrorHandler {
public function notify($errorMessage)
{
$fp = fopen('/error.log');
fputs($fp, "$errorMessage\n");
fclose($fp);

Pretty straightforward. What’s the problem?

© 0 9 O O & W N =

[O N = ==Y
N O O b W N =~ O

Chapter 11 - Decoupling is Good 21

The issue here is that the ErrorHandler class is tied to the notification of errors, namely the file
system writing to an /error . log file.

What happens if the location of the log file changes? Or if we want to send emails instead of logging
errors? To achieve this the ErrorHandler class must be modified.

A Dbetter solution is to abstract the actual notification of errors and pull the functionality out of the
ErrorHandler class.

To do this we used an interface.

interface ErrorNotifierlInterface {
public funtion sendError($errorMessage);

class ErrorHandler {
protected $notifier;

public function __construct(ErrorNotifierInterface $notifier)

{

$this->notifier = $notifier;

public function notify($errorMessage)

{

$this->notifier->sendError($errorMessage);

Now we’ve decoupled error notifications from the error handler. When the ErrorHandler object is
created you specify the notifier to use. (This process is known as Dependency Injection and will
be discussed later.)

We could implement an ErrorNotifier Inter face that does exactly the same as our initial ErrorHandler
and write to /error. log.

© 0 9 O O & W N =

Chapter 11 - Decoupling is Good 22

class StupidErrorLogImplementation implements ErrorNotifierInterface {

public function sendError($errorMessage)

{
$fp = fopen('/error.log');
fputs($fp, "$errorMessage\n");
fclose($fp);

Advantages of this approach should be self-evident.

1. The ErrorHandler class can be tested apart from everything else.

2. To modify how error notifications are handled, there’s no need to modify the ErrorHandler
class, simply create a new class implementing the ErrorNotificationInterface or update
the existing implementation.

(Of course, if this was a real-life example it’d be better to set up a chain of notifiers, but the concept
is the same—notification decoupled from the handler.)

This example follows SOLID principles (which I’ll explain in far too much detail later in this book.)

Chapter 12 - Don’t Be a WET
Programmer

There is a deceptively simple principle in software development called DRY, or Don’t Repeat
Yourself.

You can apply this principle to everything from database design to documentation.

I say this principle is “deceptively simple” because the principle itself is a commandment on what
to do. It’s easy to think “Oh, yeah. DRY makes it quicker to get stuff done ... and there’s less code”

Well ... often programming DRY does speed up development, but sometimes it doesn’t. But
development speed is not the most important benefit of DRY.

Correctly applied, DRY means there is one place in the software that is the authority for any given,
uh, thing. (Wow, that’s unclear. Isn’t it?) Let’s bust apart thing. It is: a piece of knowledge, a business
rule, a step, a function, an action.

Doesn’t really matter what we’re talking about with DRY, the biggest benefit is that there’s one place
that you go to in the code to change that thing.

Principles aren’t laws

Remember all design principles are just that ... principles. There’s no Code Gestapo that’s
going to take a ball peen hammer to your kneecaps if you don’t follow a principle. The
master programmer ignores principles all the time. As long as you’re aware of what
principle you’re breaking and why ... then great.

© 00 N O O b W N =

NS
N » O

Chapter 13 - Dependency Injection

Dependency Injection is setting up a structure that allows the decision of what classes an object uses
to happen outside the object itself.

Why? It all comes back to decoupling. Consider the following method in a class.

class AutomaticStockTrader {
public function doTrades($symbol)

{

$analyzer = new StockTradeAnalyzer();
$numShares = $analyzer->countSellsNeeded($symbol);
if ($numShares > 0)

{

$broker = new StockBroker();
$broker->executeSell($symbol, $numShares);

}

Here we have a nifty little class to sell some stock automatically. The doTrades() method is
dependent on the StockTradeAnalyzer and StockBroker classes. Dependency is okay, in fact you
really can’t get away from it. The important thing is where the decisions on dependencies are made.

That’s important, let me repeat. Dependencies cannot be avoided so ...
The important thing is where dependency decisions are made.

In the case of objects, the question of “where” often becomes “who.” (Because I like to think of objects
as people. They’re my friends.)

In the above example, the doTrades() method itself makes the decision on who it’s dependent on.

Watch for the new keyword

Using new within methods is often a big, red flag there’s some tight coupling going on.

What we want to do is move the decision out of the doTrades() method. We’ll do this in 3 steps.

Chapter 13 - Dependency Injection 25

Get it done quicker

When actually coding, the following three steps are combined into one step, allowing you
to get it done quicker. I'm breaking the steps apart for illustration.

Step 1 - Move the dependency decision to the class
level

The first step is to let the class make the decision, not the method.

class AutomaticStockTrader {
protected $analyzer;
protected $broker;
public function __construct()
{
$this->analyzer = new StockTradeAnalyzer();
$this->broker = new StockBroker();

}
public function doTrades($symbol)

{

$numShares = $this->analyzer->countSellsNeeded($symbol);
if ($numShares > Q)

{

$this->broker->executeSell($symbol, $numShares);

}

Pretty straightforward. No new classes. Just a few extra lines of code. But now all the dependencies
are in one place: the constructor.

Step 2 - Use manual injection

Now that our class has all the decisions about which dependencies to use in the constructor, let’s
move the decision outside the class by using dependency injection.

© 0 9 O O & W N =

N O N T ==Y
N O O b W N =~ O

18
19
20
21
22
23
24

Chapter 13 - Dependency Injection 26

interface StockTradeAnalyzerlInterface {
public function countSellsNeeded($symbol);
}
interface StockBrokerInterface {
public function executeSell($symbol, $numShares);
}
class AutomaticStockTrader {
protected $analyzer;
protected $broker;
public function __construct(StockTradeAnalyzerInterface $analyzer,
StockBrokerInterface $broker)

$this->analyzer = $analyzer;
$this->broker = $broker;
}
public function doTrades($symbol)
{
$numShares = $this->analyzer->countSellsNeeded($symbol);
if ($numShares > 0)
{

$this->broker->executeSell($symbol, $numShares);

Another small step. Here the decision must be made by whoever creates the AutomaticStockTrader
instance. The dependencies are injected into the class at construction time.

Notice I also created interfaces here instead of the classes named StockTradeAnalyzer and
StockBroker? This is because we really don’t care what objects are injected, as long as they
implement these methods we want (countSellsNeeded() and executeSell()).

Unit Testing and Dependency Injection

When your classes use Dependency Injection, unit testing is a breeze. Just mock any
dependencies, inject them in your tests, and BAM! Bob’s your uncle.

Step 3 - Use automatic injection

Laravel provides an often overlooked, but important feature: interface binding. With interface
binding you specify the default concrete classes to use with interfaces. Interface binding let’s you
achieve automatic dependency injection.

O b W N =

O b W N =

Chapter 13 - Dependency Injection 27

Very cool.

App: :bind('StockTradeAnalyzerInterface', function()

{

return new StockTradeAnalyzer();

1);
App: :bind('StockBrokerInterface', 'StockBroker');

(The first binding above uses a Closure. It could just as easily specified the class name like the second
binding does. Just two ways to achieve the same thing.)

This is loC Binding

The above code example introduces the concept of binding. It uses Laravel’s IoC container
which will be discussed in the next chapter.

Now the decision on dependencies can still occur when you construct a new AutomaticStockTrader
instance. (Such as when unit testing.) Or, you can decide to use whatever the defaults are.

To use bound interfaces, a different method of construction should be used.

// Instead of
$trader = new AutomaticStockTrader();

// Use
$trader

App: :make('AutomaticStockTrader');

Laravel is smart enough to implement any automatically injected dependencies when you use
App: :make().

Don’t forget setters

The above illustrated Constructor Dependency Injection. You should be aware of Setter Dependency
Injection. For example we could add a setAnalyzer () method to the AutomaticStockTrader class.

class AutomaticStockTrader {
public function setAnalyzer(StockTradeAnalyzerInterface $analyzer)

{

$this->analyzer = $analyzer;

O O b W N

Chapter 14 - Inversion of Control

Inversion of Control is one of those software engineering concepts that carries a lot of baggage.
What does it mean? What does it do? Why are we even talking about it? Will the Red Sox win the
series?

Well

The problem is that Inversion of Control is a general concept, and usually we talk about it in specific
contexts.

A General Example

Let’s think of it this way. The way we’re taught a program works is linear. Consider a “Hello World”

application.
1. The user executes the hello world program.
2. The operating system loads the program, any associate libraries, and passes “control” to the
program.
3. The program says “System, I am the master. You will do my bidding. I command you to display
“Hello World”
4. The system thinks “Uh, okay. Wow. The ego of some programs. Whatever.” and displays “Hello

World?”

5. The program, satisfied with a job well done, dies.
6. The operating system regains control, shaking its head at the hubris of some programs.

If we were to flip things around, then a different scenario emerges.

L e

The user executes the hello world program.

The operating system loads the program and any associated libraries.

The operating system asks the program if it has any messages.

The program pauses for a bit, then responds in a rush “Uh sorry sir. I was ... I was thinking.
Uh, yeah, can you please display ‘Hello World’”

The system doesn’t respond. It received the message but it’s got more important things to
worry about.

6. The program Kkills itself. Nobody mourns its passing.

7. The system finds itself with an idle few milliseconds, says “What was I doing? Oh yeah.” and

displays “Hello World.”

Chapter 14 - Inversion of Control 29

This silly example illustrates inverting the control between and operating system and program.
It’s really the same within a program, where methods and classes give up control where possible.

In the context of software development, it’s all about decoupling. Yes, decoupling again.

Dependency Injection Again

In the previous chapter about Dependency Injection, we had a class named AutomaticStockTrader
and within the class, a method named doTrades(). First the doTrades() gave up control of it’s
dependencies to the class. Next we had the class give up control of it’s dependencies to whoever
constructed the class.

Dependency Injection is an implementation of Inversion of Control-as are Factory Patterns.

But, with Laravel, most often Inversion of Control is talking about ...

The loC Container

Laravel implements an Inversion of Control container. In fact, the entire framework is built on this
container.

% The 1oC Container is Laravel’'s skeleton

When you strip everything else away from Laravel: the elegant ORM, the cool routing, the
style, the class, the beauty, you are left with the bare bones of the framework. These bones
are the IoC Container.

Laravel’s IoC container is a global object registry. But it’s more than that. It’s a registry of how to
create objects. Think about that for a second. What power?

And the purpose behind all of this is (yet again I will flog this almost dead horse) to allow decoupling.

A The Problem With Dependency Injection

Dependency Injection, or more specifically, Constructor and Setter Dependency Injection
does have a problem. When the number of dependencies a class relies on is more than 2
or 3, then things get hairy. The programmer must constantly look up what to inject. Can
you remember the order to pass six different arguments to the constructor every time you
create an object? I know I can’t. Luckily, using IoC Binding takes care of this need.

loC Binding

As discussed in the previous chapter, IoC Binding let’s you bind interfaces to the actual implemen-
tation. In other words you can specify how an interface will, by default, resolve to a class.

Bsw N -

O 00 N O O b W N

N NN DN DN DNDDNDDNDDNDDNRS »~ » BB
O© 00 N O O b W N~ O © 0 N O U b W N~ O

Chapter 14 - Inversion of Control 30

App: :bind('Somelnterface', function()
{

return new ClassForSomelnterface();

});

App is Laravel’s Application class which is really a facade of the IoC container. Interesting, huh?
(If you don’t fully understand what that sentence means, don’t worry. You will before finishing this
book.)

Here’s a question ... since you’re setting up defaults for your interfaces using loC Binding, then why
pass arguments to the constructor?

The answer ... you don’t need to.

Let’s revisit that class from last chapter. Here’s what we had:

interface StockTradeAnalyzerlInterface {
public function countSellsNeeded($symbol);
}
interface StockBrokerInterface {
public function executeSell($symbol, $numShares);
}
class AutomaticStockTrader
protected $analyzer;
protected $broker;
public function __construct(StockTradeAnalyzerInterface $analyzer,
StockBrokerInterface $broker)

$this->analyzer = $analyzer;
$this->broker = $broker;
}
public function doTrades($symbol)
{
$numShares = $this->analyzer->countSellsNeeded($symbol);
if ($numShares > 0)

{
$this->broker->executeSell($symbol, $numShares);
}
}
}
App: :bind('StockTradeAnalyzerInterface', function()
{
return new StockTradeAnalyzer();
1)

App: :bind('StockBrokerInterface', 'StockBroker');

Chapter 14 - Inversion of Control 31

We could construct an AutomaticStockTrader without any constructor arguments and still have the
constructor inject dependencies. What if we rewrote the class and used the IoC container to inject
dependencies?

1 class AutomaticStockTrader {

2 protected $analyzer;

3 protected $broker;

4 public function __construct()

5 {

6 $this->analyzer = App::make('StockTradeAnalyzerInterface');
7 $this->broker = App: :make('StockBrokerInterface');

8 }

9 public function doTrades($symbol)

10 {
11 $numShares = $this->analyzer->countSellsNeeded($symbol);
12 if ($numShares > 0)
13 {
14 $this->broker->executeSell($symbol, $numShares);
15 }
16 }
17}

Perfect.

You may be thinking “Which way’s better?”

How | Decide

If the class only has 2 or 3 dependencies needing injecting, I'll usually use constructor
arguments. This makes testing slightly easier. Any more than 2 or 3 dependencies and I
have the constructor inject the dependencies using the App: :make() method. This makes
it easier on my brain.

Chapter 15 - Interface As Contract

I’ve discussed using interfaces already in this book. There is a nifty way to think about interfaces:
the interface is a contract.

I must admit, the first time I heard (or read) Taylor Otwell mention Interface as Contract [wasn’t
very interested. I thought he was talking about Design by Contract, which is a formal process I
didn’t want to get bogged down in.

How wrong I was.

He was literally talking about using interfaces as contracts. (Heh, pretty much exactly what he said,
I was just too dumb to realize.) In other words, as a PHP programmer you make use of interfaces.
And you program to the interfaces. The interfaces become a sort of a mini-contract as to what the
actual class is going to do.

How simple. I used to use interfaces quite a bit in my coding, now I use them all the time. Maybe
almost as much as a .NET programmer.

Interfaces hide code

Surprisingly, not every PHP programmer has jumped on the interface bandwagon. I think it’s
because of wrong thinking about what an interface is used for.

Obviously I'm not in your head, and I don’t know what you’re thinking, but I can describe what
was rattling around in my brain when I met Mr. PHP Interface.

ME: “Oh, Hello Mr. Interface. Looking for a job I see?”

Interface: Nods enthusiastically.

ME: “Well, I do like how clean you look.”

Interface: Blushes.

ME: “But you know, I use lots of abstract classes. I think I got the job handled.”
Interface: Trudges off, dejectedly.

My problem was I didn’t understand the greatest benefit of interfaces: HIDING CODE.

See, an interface allows you to design a class without implementing it and it hides the actual
implementation of the class from you. An interface contains no actual code. It is a contract for
what the code does. Simple.

O b W N -

Chapter 15 - Interface As Contract 33

interface OrderProcessorinterface {
public function checkOrderStatus(Order $order);
public function fulfillOrder(Order $order);
public function voidOrder(Order $order);

So, in this example I could write code based on the OrderProcessorInterface without ever even
looking at the actual implementation. And, if I'm part of a team on a project, I may never view the
implementation.

Chapter 16 - SOLID Object Design

There is a set of principles in object-oriented design called SOLID. It’s an acronym standing for:

+ [S]ingle Responsibility
[O]pen/Closed Principle

[L]iskov Substitution Principle
[TInterface Segregation Principle
+ [D]ependency Inversion Principle

Together, they represent a set of best practices which, when followed, makes it more likely software
you develop will be easier to maintain and extend over time.

This chapter explains each principle in greater detail.

Do me a SOLID?

If a programmer comes up to you and says, “Can you do me a SOLID?” Make sure you
understand what you’re being asked.

Single Responsibility Principle

The first letter, ‘S’ in the SOLID acronym, stands for Single Responsibility. The principle states:

“Every class should have a single responsibility, and that responsibility should be
entirely encapsulated by the class. All its services should be narrowly aligned with that
responsibility.”

Another way to think about this is that a class should have one, and only one, reason to change.

Let’s say you have a class that compiles and emails the user a marketing report. What happens if the
delivery method changes? What if the user needs to get the report via text? Or on the web? What if
the report format changes? Or the report’s data source changes? There are many potential reasons
for this class to change.

State the class Purpose without AND

A simple way to implement the Single Responsibility Principle is to be able to define what
the class does without using the word AND

Let’s illustrate this with some code ...

© 0 9 O O & W N =

-
(]

© 0 9 O O & W N =

_R
W N~ O

Chapter 16 - SOLID Object Design 35

// Class Purpose: Compile AND email a user a marketing report.
class MarketingReport {
public function execute($reportName, $userEmail)
{
$report = $this->compileReport($reportName);
$this->emailUser($report, $userkmail);

}
private function compileReport($reportName) { ... }
private function emailUser($report, $email) { ... }

In this case we’d break the class into two classes and push the decision as to what report and
who/how to send it up higher in the food chain.

// Class Purpose: Compiles a marketing report.
class MarketingReporter {
public function compileReport($reportName) { ... }

interface ReportNotifierInterface {
public function sendReport($content, $destination);

// Class Purpose: Emails a report to a user
class ReportEmailer implements ReportNotifierInterface {
public function sendReport($content, $email) { ... }

Notice how I snuck that interface in there? Aye, I be a slippery bugger with them thar interfaces.

0 More Robust Classes

By following the Single Responsibility Principle you’ll end up with robust classes. Since
you’re focusing on a single concern, there’s less likelihood of any code changes within the
class breaking functionality outside the class.

Open/Closed Principle

The second letter in the SOLID acronym stands for the Open/Closed principle. This principle states:

© 00 N O O & W N =

N N = ==
0 I O O b 0w N =~ O

Chapter 16 - SOLID Object Design 36

“Software entities (classes, modules, functions, etc.) should be open for extension, but
closed for modification.”

In other words, once you’ve coded a class you should never have to change that code except to fix
bugs. If additional functionality is needed then the class can be extended.

This principle forces you to think “how could this be changed?” Experience is the best teacher here.
You learn to design software setting up patterns that you've commonly used in earlier situations.

Don’t Be Too Strict

I’ve found strict adherence to this principle can result in software that is over-engineered.
This occurs when programmers try to think of every potential way a class could be used. A
little bit of this thinking is a good thing, but too much can result in more complex classes
or groups of classes that have no true need of being so complex.

Sorry if this offends die-hard fans of this principle, but hey, I just calls ‘em like I sees ‘em.
It’s a principle, not a law.

Nevertheless, let’s work out a common example. Let’s say you're working on an account biller,
specifically the portion that processes refunds.

class AccountRefundProcessor {
protected $repository;

public function __construct(AccountRepositoryInterface $repo)

{

$this->repository = $repo;

}

public function process()

{

foreach ($this->repository->getAllAccounts() as $account)

{

if ($account->isRefundDue())
{

$this->processSingleRefund($account);

Okay, let’s look at the above code. We’re using Dependency Injection thus the storage of accounts
is separated off into its own repository class. Nice.

© 00 N O O b W N =~

W W W W W W N NDNDDNDDNDNDDNDDNDNDDNS=S =~ = 2 B2 2 2 2
O & WO N »~ O O 00 N O O b W N O O 0 N O O b W N~ O

Chapter 16 - SOLID Object Design 37

Unfortunately, you arrive at work one day and your boss is upset. Apparently, management has
decided that accounts due large refunds should have a manual review. Uggh.

Okay, what’s wrong with the code above? You're going to have to modify it, so it’s not closed to
modifications. You could extend it with a subclass, but then you’ll have to duplicate most of the
process() code.

So you set out to refactor the refund processor.

interface AccountRefundValidatorInterface {
public function isValid(Account $account);

}

class AccountRefundDueValidator implements AccountRefundValidatorInterface {
public function isValid(Account $account)

{

return ($account->balance > Q) ? true : false;

}

class AccountRefundReviewedValidator implements
AccountRefundValidatorInterface {
public function isValid(Account $account)

{
if ($account->balance > 1000)

{

return $account->hasBeenReviewed;

}

return true;

}

class AccountRefundProcessor {
protected $repository;
protected $validators;

public function __construct(AccountRepositorylInterface $repo,
array $validators)

$this->repository = $repo;
$this->validators = $validators;

}

public function process()

{
foreach ($this->repository->getAllAccounts() as $account)
{

$refundisvValid = true;

36
37
38
39
40
41
42
43
44
45
46

Chapter 16 - SOLID Object Design 38

foreach ($this->validators as $validator)
{
$refundIisValid = ($refundisValid and $validator->isValid($account));
}
if ($refundisvalid)

{
$this->processSingleRefund($account);
}
}
}
}

Now AccountRefundProcess takes an array of validators during construction. The next time
business rules change you can whip out a new validator, add it to the class construction, and you’re
golden.

Liskov Substitution Principle

The “L” in SOLID stands for Liskov substitution principle. This principle states:

“In a computer program if S is a subtype of T, then objects of type T may be replaced with
objects of type S (i.e., objects of type S may be substituted for objects of type T) without
altering any of the desirable properties of that program (correctness, task performed,
etc.).”

Huh? I'd hazard a guess that this part of the SOLID design causes more confusion than just about
any other.

It’s really all about Substitutability, but if we used the ‘S’ from Substitutability our acronym
becomes SOSID instead of SOLID. Can you imagine the conversations?

Programmer 1: “We should follow the S.0.S.LD. principles when designing classes.”
Programmer 2: “Sausage?”

Programmer 1: “No, SOSID.”

Programmer 2: “Saucy?”

Programmer 1: Calls up Michael Feathers on the phone ... “Hey, we need a better acronym.”

Chapter 16 - SOLID Object Design 39

Simply stated, the Liskov Substitution principle means that your program should be able to use
sub-types of classes wherever they use a class.

In other words if you have a Rectangle class, and your program uses a Rectangle class and you have
a Square class derived from the Rectangle. Then the program should be able to use the Square class
anywhere it uses a Rectangle.

Still confused? I know [was confused initially because I wanted to say “Duh? This is pretty obvious”,
yet I feared there was something I didn’t understand. I mean, why have this as a major tenet of SOLID
design if it’s so obvious?

Turns out there are some subtle aspects to this principle stating preconditions of subtypes should
not be strengthened and postconditions should not be weakened. Or is it the other way around?
And you can’t have subtypes throw exceptions that aren’t the same (or derived from) exceptions the
supertype throws.

Wow! What else? There are other details about Liskov’s principle I won’t get into here and I fear
I’ve really spent too much time on it.

Liskov’s principle doesn’t matter.
What?

Yeah! I said it. (Technically the principle does matter, so I'm lying to you, but I'll try to justify my
lie.)

In PHP, if you follow three guidelines then you’re covered 99% of the time with Liskov.

1 - Use Interfaces

Use interfaces. Use them everywhere that makes sense. There’s not much overhead in adding
interfaces and the result is that you have a “pure” level of abstraction that almost guarantees Liskov
Substitution is followed.

2 - Keep implementation details out of interfaces

When you’re using interfaces, don’t have the interface expose any implementation details. Why
would you have a UserAccountInter face provide any details on storage space left?

3 - Watch your type-checking code.

When you write code that operates differently on certain types, you may be breaking Liskov’s
Substitution Principle (and probably several other SOLID principles).

Consider the following code:

Chapter 16 - SOLID Object Design 40

class PluginManager {
protected $plugins; // array of plugins

public function add(PluginInterface $plugin)
{

if ($plugin instanceof SessionHandler)
{
// Only add if user logged on.
if (! Auth::check())
{
return;
}
}
$this->plugins[] = $plugin;
}

What’s incorrect about that piece of code? It breaks Liskov because the task performed is different
depending on the object type. This is a common enough snippet of code and in a small application,
in the spirit of getting stuff done, I'd be perfectly happy to let it slide.

But ... why should an add() method get picky about what’s added. If you think about it, add()’s
being a bit of a control freak. It needs to take a deep breath and give up control. (Hmmm, Inversion
of Control)

Interface Segregation Principle
The T in SOLID stands for the Interface Segregation Principle. Interface Segregation states:
“No client should be forced to depend on methods it does not use.”

In plain English this means don’t have bloated interfaces. If you follow the “Single Responsibility
Principle” with your interfaces, then this usually isn’t an issue.

The app we’re designing here will be a small application and this principle probably won’t apply
too much. Interface Segregation becomes more important the larger your application becomes.

Often this principle is violated with drivers. Let’s say you have a cache driver. At it’s simplest a cache
is really nothing more than temporary storage for a data value. Thus a save() or put() method
would be needed and a corresponding load() or get() method. But often what happens is the
designer of the cache wants it to have extra bells and whistles and will design an interface like:

© 0 N O O b W N =

SR R sy
0 I O O b 0w N =~ O

Chapter 16 - SOLID Object Design 41

interface Cachelnterface {

public
public
public
public
public
public
public

function
function
function
function
function
function
function

put($key, $value, $expires);
get($key);

clear($key);

clearAll();
getlLastAccess($key);
getNumHits($key);
callBobForSomeCash();

Let’s pretend we implement the cache and realize that the getlLastAccess() is impossible to
implement because your storage doesn’t allow it. Likewise, getNumHits() is problematic. And we
have no clue how to callBobForSomeCash(). Who is this Bob guy? And does he give cash to anyone
that calls? When implementing the interface we decide to just throw exceptions.

class StupidCache

public
public
public
public
public
{

function
function
function
function
function

implements Cachelnterface {
put($key, $value, $expires) { ... }
get($key) { ... }

clear($key) { ... }

clearAll() { ... }
getLastAccess($key)

throw new BadMethodCallException('not implemented');

}

public function getNumHits($key)

{

throw new BadMethodCallException('not implemented');

}

public function callBobForSomeCache()

{

throw new BadMethodCallException('not implemented');

Ugh. Ugly right?

That’s the crux of the Interface Segregation Principle. Instead, you should create smaller interfaces

such as:

© 0 9 O O & W N =

[=
w N =~

Chapter 16 - SOLID Object Design 42

interface Cachelnterface {
public function put($key, $value, $expires);
public function get($key);
public function clear($key);
public function clearAll();

}

interface CacheTrackablelnterface {
public function getlLastAccess($key);
public function getNumHits($key);

}

interface CacheFromBobInterface {
public function callBobForSomeCash();

Make sense?

Dependency Inversion Principle
The final ‘D’ in SOLID stands for Dependency Inversion Principle. This states two things:

“A. High-level modules should not depend on low-level modules. Both should depend on
abstractions.”

“B. Abstractions should not depend upon details. Details should depend upon abstrac-
tions.”

Great so what does this mean?

High-level

High-level code is usually more complex and relies on the functioning of low-level code.

Low-level
Low-level code performs basic, focused operations such as accessing the file system or
managing a database.

There’s a spectrum between low-level and high-level. For example, I consider session management
low-level code. Yet session management relies on other low-level code for session storage.

It’s useful to think of high-level and low-level in relation to each other. Session management
is definitely lower than application specific functionality such as logging a user in, but session
management is high-level to the database access layer.

O© 00 N O O b W N =~

O S =
O O b W N~ O

17
18
19

Chapter 16 - SOLID Object Design 43

I've heard people say ... “Oh, Dependency Inversion is when you implement Inversion of Control”
or “No. Dependency Injection is what Dependency Inversion is” Both answers are partially correct,
because both answers can implement Dependency Inversion.

The Dependency Inversion Principle could be better stated as a technique of decoupling class
dependencies. By decoupling, both the high-level logic and low-level objects don’t rely directly on
each other, instead they rely on abstractions.

In the PHP world ... Dependency Inversion is best achieved through what? You guessed it: interfaces.

Isn’t it interesting how all these design principles work together? And how often these principles
bring into play that most unused of PHP constructs: the interface?

The Simple Rule of Dependency Inversion

Make objects your high-level code uses always be through interfaces. And have your low-level
code implement those interfaces, and you’ve nailed this principle.

An Example

User authentication is a good example. At the highest level is the code that authenticates a user.

<?php
interface UserlInterface ({
public function getPassword();

}

interface UserAuthRepositorylInterface {
Vi
* Return UserlInterface from the $username
*/

public function fetchByUsername($username);

class UserAuth {
protected $repository;

Rk
* Inject repository dependency
*/
public function __construct(UserAuthRepositoryInterface $repo)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

O 00 N O O b W N =~

I S Y
B W N O

Chapter 16 - SOLID Object Design 44

{
$this->repository = $repo;
}
Rk
* Return true if the $username and $password are valid
*/
public function isValid($username, $password)
{
$user = $this->repository->fetchByUsername($username);
if ($user and $user->getPassword() == $password)
{
return true;
}
return false;
}
}
?2>

So we have the high-level class UserAuth, relying on the abstractions of UserAuthRepositoryInter face
and User Inter face. Now, implementing those two abstractions are almost trivial.

<?7php
class User extends Eloquent implements UserlInterface {
public function getPassword()

{

return $this->password;

}

class EloquentUserRepository implements UserAuthRepositoryInterface {
public function fetchByUsername($username)

{

return User: :where('username',

1

="', $username)->first();

2>

Easy, peasey, lemon-squeezy.

Now, to use the UserAuth we would either construct it with the EloquentUserRepository or bind
the interface to the EloquentUserRepository to automatically inject it.

Chapter 16 - SOLID Object Design

Do not confuse the authentication examples used in this chapter with the Laravel Auth
facade. These are just examples to illustrate the principle. Laravel’s implementation,
though similar to these, is far better.

45

Chapter 17 - A Dirty, Little Design
Secret

You probably want to skip this chapter. It doesn’t add anything to this book. I'll probably
be in a curmudgeony mood soon and delete this chapter.

Okay, I’'m going to go on one final tangent before we get to designing the application ... a dirty little
secret about design.

(You think this is really the last tangent I'll go on? Oy, you should be so lucky!)
Software design does not occur like you learn in school.

Since I've been doing this over 3 decades, I learned the old-school method:

1. Design the output

2. Design the input

3. Design the database

4. Design the functionality

There’s all these new-fangled software development methodologies. Sometimes it seems there’s too
much focus on paperwork. If you’ve ever heard someone say “OMG, Gary’s flipping out because
your FSD didn’t account for a whole section of my PRD” then you know what I mean. (Translation
of the proceeding: you’re in trouble because the program specs you created missed part of the
requirements doc.)

Why did we have to get so OCD about software development? I mean, you’re the programmer, just
make it work. All that other stuff, fuggetaboutit.

Even the way I learned, the simple 4 steps above doesn’t work because of one simple reason: IT’S
ALL INTERALATED. YOU MUST DO IT ALL AT ONCE.

Design is messy.

You work on step 1, then step 2, then back to step 1, then skip to step 3, then step 1 again,
then step 4. Yeesh.

It’s easier to teach a linear process: first this, then that. In reality, you do it all simultaneously for
the quickest result.

That’s the point: Getting Stuff Done Quickly.
That’s what my step #2 in the chapter on Cowboy Coding is all about, doing it all simultaneously.

Chapter 17 - A Dirty, Little Design Secret 47

Programming like a Novelist

A novelist combines art and craft to create a work of fiction. There’s definite craft past the word
choices and grammar. Issues like pacing, characterization, cliff hangers, hooking the reader, to just
name a few. Yet, novelists use this craft to create art.

There are two extremes in novel writing methodologies: those that outline everything before writing
a word and those that sit down and just make it up as they go along. I liken software development
methodologies to outlining first—but unlike most novelists, this outlining is often done in teams. And
we know how productive meetings often are.

At first glance the novelist that just wings it seems irresponsible. I mean they’re just making stuff
up. But what’s really going on is that novelist has the craft of writing so ingrained, it’s down there
at the subconscious level. They are free to focus on the story they’re writing and all the craft they
need pours out of the fingertips as they type.

I enjoy programming like a novelist: being a programmer who just sits down and is able to focus
on creating great software and all the programming craft just seeps into the project from the
subconscious when needed.

Sorry if this sounds a bit “woo-wo0,” but I truly believe to the extent we as programmers are able to
do this, we start combining the best of being a craftsman with being an artist.

And that’s why Cowboy Coding is the best way to program. Laravel provides a solid framework
which frees PHP programmers from mundane craft issues, allowing them to focus on creating great
software.

Part 2 - Designing the Application

Finally, after all those long and boring discussions in the last part of the book, we’ll get to designing
the actual application.

Yes, there’s gonna be some actual code to write in this part of the book. But first ...

Chapter 18 - What application will we
create?

0 In this Chapter

In this chapter we’ll finally get around to deciding what application we’re going to create.
Still no actual coding, but it’s coming real soon now.

What application are we going to create in this book? I want something cool. Something people can
use. Something ... well, let’s make a list:

« The application must be usable and helpful.

+ The application should illustrate creating command line utilities in Laravel.

« The application should also have a web component.

« The application should be easily customized by any programmer in order to make it more
useful for him or her.

+ The application should be simple to create.

+ The application must show some cool Laravel tricks.

« Best practices of design should be followed creating the application.

Da, da-duh. And we’ll be creating a “TODO List”.

Okay, I can hear a collective mental groan (odd because the groan is in the future from the point in
the time-stream that ’'m writing this. That’s the magic of writing.).

Just hold on a minute. Let me explain why this will be a great little application.

First let’s store our todo lists (yeah, plural, more than one list) in simple text files. This way we can
edit our lists using text editors if that’s what we want to do. Similar to todo.txt* by Gina Trapani.

Let’s have a series of commands we can use from the console window that makes it easy to add, list,
mark things complete, etc. Again, I'm thinking of something similar to todo.txt.

Let’s add a simple web interface that we can use on our own machine that lets us add, list, mark
things complete, etc., from a browser window.

Are you still groaning, thinking this is going to be lame? I hope you’ve moved from believing this
is going to be a stupid waste of time to maybe—just maybe-having a bit of skepticism, but being
cautiously hopeful.

Ohttps://github.com/ginatrapani/todo.txt-cli

Chapter 18 - What application will we create? 50

Naming the application

I named this book and the application pretty much the same thing. This allows the book to have
multiple meanings. It’s not only what I hope you get out of the book, but is also the name of the
application.

Slick, huh?
Here’s how the name came about ...

At first I was thinking of calling this book Getting Things Done with Laravel but felt that was too
close to the David Allen Getting Things Done*'. Although, I do borrow heavily from his system.

Next I thought of using Todo with Laravel but that just seemed really weak.

I briefly entertained the idea of Git-R-Done with Laravel but didn’t want Larry the Cable Guy?** to
sue me.

Getting Shit Done with Laravel sounded good to me, but just a bit too crass. So I softened the title
to Getting Stuff Done with Laravel.

That’s the name of this application Getting Stuff Done or GSD for short.

What is GTD

Getting Things Done by David Allen is both a method and workflow for managing all the “stuff”
we have to accomplish. I recommend it highly. This book isn’t going to create a GTD system, but it
could be used for that.

Most of GTD is really workflow. Clear you inbox, decide what to do with each item once while
you’re “Processing”. If it’s something you can do in under 2 minutes, then just do it. If it’s something
actionable then is it part of a project? Is it something you want to do later? All these decisions help
you determine what list the item belongs to.

So, besides the workflow, GTD is really nothing other than a way to manage lists of stuff to do. You
have your “Waiting For” list, your list of projects, a list for each project, a bucket for all your next
actions, and so forth.

“It’s full of stars!” — David Bowman, 2001: A Space Odyssey”

Or in our case: it’s full of lists. An application that helps manage a bunch of todo lists.

This will be fun to create.

*'http://en.wikipedia.org/wiki/Getting_Things_Done
*http://en.wikipedia.org/wiki/Larry_the_Cable_Guy

© 00 9 O O & W N =

Chapter 19 - Installing Laravel

G In this Chapter

In this chapter we’ll create the project and establish its structure.

Since we’re going to design some classes and interfaces, we want to have a place to put source code
files. So let’s set up a new Laravel project.

It’s a bit of a misnomer to say you're “Installing Laravel” because that’s not precisely what’s going
on. You're actually creating a project structure and downloading Laravel as one of the dependencies.

But if you tell me you're “Installing Laravel” I know what you mean.

Q‘ You need to have PHP 5.4 or greater, Composer? installed, and PHPUnit** installed.

p Try checking this from your terminal window?.

$ php --version
PHP 5.4.6-1ubuntul.4 (cli) (built: Sep 4 2013 19:36:09)
Copyright (c) 1997-2012 The PHP Group
Zend Engine v2.4.0, Copyright (c) 1998-2012 Zend Technologies
with Xdebug v2.2.1, Copyright (c) 2002-2012, by Derick Rethans
$ composer --version
Composer version 815f7687c5d58af2b31df680d2a715f7eb8dbf62
$ phpunit --version
PHPUnit 3.7.26 by Sebastian Bergmann.

As long as you have PHP 5.3 or above, most everything in this book should work. But since I'm
using PHP 5.4, I know it works with this version. I've successfully used Laravel 4 with version PHP
5.3.3, but I wasn’t using the Hash functions (they require PHP 5.3.7 or above).

If Composer isn’t installed on your machine, head down to Appendix I for the simple instructions
to get it installed. Likewise, refer to Appendix II if you need instructions for installing PHPUnit.

If you’re using phpunit and it’s version 3.6 then you may get errors when mocking objects. Upgrade
to the latest, following the instructions in the appendix.

#http://getcomposer.org/
**https://github.com/sebastianbergmann/phpunit/

**Whenever I mention terminal window in this book I'm referring to Gnome Terminal in Linux. You would use the equivalent in your Operating
System.

© 00 N O O b W N =

N S =S
O O b W N~ O

Chapter 19 - Installing Laravel 52

Creating the project

Unlike most of the other frameworks, Laravel uses composer which means the framework is installed
within your project’s vendor directory. This allows different projects to run with different versions
of Laravel.

Q’ To create a laravel project, issue the command below. (Note the gsd portion of the command
p is the destination folder ... where our project will live.)

$ composer create-project laravel/laravel --prefer-dist gsd
After a few minutes, all kinds of messages will scroll by:

Installing laravel/laravel (v4.0.6)
- Installing laravel/laravel (v4.0.6)
Downloading: 100%

Created project in gsd
Loading composer repositories with package information
Installing dependencies (including require-dev)
- Installing psr/log (1.0.0)
Downloading: 100%

[snip many, many lines]

Writing lock file

Generating autoload files

Generating optimized class loader

Application key [xW1cd5f4im7GiWNOLFAbir3GUnr51DeE] set successfully.

Of course, the specifics of what shows will be different for you.

(Your setup may not show the Application key assignment at the end. It’s not required for this
application, but if you’d like to set it simply issue aphp artisan key:generate command.)

The project hierarchy

Now, that you’ve successfully created a new project, you have a series of directories. Here’s a list
and what each is used for.

© 0 9 O O & W N =

[S T S T = S S G G i i U G G
N »~ © O 0 N O O b W N~ O

O b W N =

Chapter 19 - Installing Laravel

gsd : project directory

|- app : application directory

|---- commands : console commands

|---- config : configuration files

| ---- controllers : where controllers go

| ---- database : database stuff

[---a--- migrations : where migrations are stored
[------- seeds : where seeding logging is stored
|---- lang : language translations

|---- models : where models are stored

|---- start : application startup files

|---- storage : directories for disk storage
[------- cache : where cached data is stored
[------- logs : where logs are stored

[------- meta : meta information storage
[------- session : session storage area

[------- views : storage of assembled blade templates
|---- tests : unit tests

[---- views : blade templates

| - bootstrap : framework bootstrap files

|- public : document root for web applications
|- vendor : composer installed dependencies

We’re going to change this structure a bit and use PSR-0% structuring to organize our project.

Delete unneeded directories

o)’ Because we’re changing the structure to PSR-0, we can get rid of the directories that usually
s hold certain “types” of files. And since this application isn’t going to use a database, the

folder for migrations and seeds can be wiped out also.

~$ cd gsd/app

~/gsd/app$ rm -rf commands
~/gsd/app$ rm -rf controllers
~/gsd/app$ rm -rf database
~/gsd/app$ rm -rf models

All gone.

2https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

53

0 N O O b W N =

Chapter 19 - Installing Laravel 54

Create the Source directories

A% We'll put all of our source code in a new structure that will follow the namespacing of each

p class.

~$ cd gsd/app
~/gsd/app $ mkdir src

~/gsd/app $ mkdir src/GSD

~/gsd/app $ mkdir src/GSD/Commands
~/gsd/app $ mkdir src/GSD/Controllers
~/gsd/app $ mkdir src/GSD/Entities
~/gsd/app $ mkdir src/GSD/Repositories
~/gsd/app $ mkdir src/GSD/Providers

These are just the standard directories I set up. If I don’t need them then they’ll be deleted later.
Here’s a breakdown of what they’re used for.

Commands
Holds console commands.

Controllers
Holds web controllers.

Entities
Similar to the old models directory, this is the place to stash entities.

Repositories
Here’s where our data storage code will be stashed.

Providers
If this application ends up using any Service Providers, then I'll stash them here.

Update Composer

Q’ Now we’ll edit Composer’s configuration file to tell it about our new structure and then
p update our installation. So first, edit composer . json to match what’s below.

© 0 9 O O & W N =

[S =
O O b W N =~ O

Chapter 19 - Installing Laravel

"name": "gsd",
"description": "Getting Stuff Done with Laravel.",
"require": {
"laravel/framework": "4.0.*" (this may be 4.1 too, don't change it)

}I
"autoload": {
"psr-0": {
"GSD": "app/src"
}/
"classmap": |

"app/tests/TestCase.php"

]
b

** rest of file unchanged **

Q’ Next, you’ll want to update everything. You probably could get by just doing a composer
p dump-autoload but I like doing a composer update instead.

55

© 0 9 O O & W N =

N
()

~$ cd gsd

~/gsd$ composer update

Loading composer repositories with package information
Updating dependencies (including require-dev)

[you may have multiple package names listed]
Writing lock file

Generating autoload files
Generating optimized class loader

Test Your Installation

Q’ Although there’s no functionality yet, you can run artisan and phpunit to make sure all
p the pieces are in place.

© 0 9 O O & W N =

[=
W N~ O

Chapter 19 - Installing Laravel

~$ cd gsd

~/gsd$ php artisan --version

Laravel Framework version 4.0.6
~/gsd$ phpunit

PHPUnit 3.7.26 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/phpunit.xml

Time: @ seconds, Memory: 8.25Mb

OK (1 test, 1 assertion)

We’re done setting things up.

56

N O O b W N -

N =

Chapter 20 - Designing a Todo List

G In this Chapter

In this chapter we’ll start planning out what a todo list actually looks like.

The only thing I know about this application at this point is that it’s going to manage a list of todo
lists. And that I'll store the individual lists in files on my hard disk to allow direct editing if I want.

Configuration Data

Q‘ We need to know where the folder containing todo lists will be. This is a piece of
p configuration data to add in Laravel’s configuration.

Add the following values to the top of app/config/app.php.

return array(

'gsd' => array(
"folder' => '/home/chuck/Documents/gsd/', // use value appropriate for you
'extension' => '.txt',

),

// rest of file the same

Now Laraval’s Config facade could be used to access these configuration values.

$folder = Config::get('app.gsd. folder');
$extension = Config::get('app.gsd.extension');

About Facades

A common misconception about Laravel 4 is there are too many static classes. Nothing can be
further from the truth. Laravel 4 makes extensive use of static facades.

O b W N =

Chapter 20 - Designing a Todo List 58

// It looks like a static class

$x = Config: :get('some.config.value');

// But the above equates to

a & W N -

$x = Facade: :$app['config']->get('some.config.value');

The staticness is really just syntactical sugar. Doesn’t the simple Config: :get look prettier than
the alternative?

Laravel’s Configuration and Environments

You may have noticed there’s a number of files in the app/config directory. There’s even some
subdirectories. These files are where you store the configuration of your application.

The file itself is the configuration category. So if you're configuring the session, you’d find the
settings in app/config/session.php.

The subdirectories allow configuration settings to be overridden based on the environment you’re
working in. For example, in most of my Laravel projects, I have the following in my bootstrap/start.php

file.

$env = $app->detectEnvironment(array(

"chuck-dev' => array('babu'),
));

This is because the hostname of my development machine is babu and I have it set up to know chuck-
dev is my environment. Now, any time I want a configuration value within my application, Laravel
will first load all the settings in app/config/filename.php and merge in any settings if there’s a
app/config/chuck-dev/filename.php. (Note filename is whatever the top level configuration value

is.)
Let’s say I create two files app/config/stupid.php and app/config/chuck-dev/stupid.php with
the following:

© 0 9 O O & W N =

T S T S = S S G G G G
, O O 0 N O O b W N =~ O

© 0 9 O O & W N =

Chapter 20 - Designing a Todo List

<?7php
// app/config/stupid.php
return array(

'"test1' => false,

"test2' => array(

1
7

'el2' => 'two',

),

'ell' => 'one

)

2>

<?php
// app/config/chuck-dev/stupid.php
return array(
"test1' => true,
"test2' => array(
'ell' => 1,
'el3"'" => 3.0,
)
);

2>
Now, I could write the following code:

// Somewhere in your code
var_dump(Config: :get('stupid.testl'));
var_dump(Config: :get('stupid.test2'));

And expect the following output:

bool(true)
array(3) {
'ell' =
int(1)
'el2' =
string(3) "two"
'el3' =>
double(3)

59

The first line shows true, indicating the value from app/config/chuck-dev/stupid.php was picked
up. The rest of the lines show data as expected when the values are merged in.

Pretty slick, huh?

Chapter 20 - Designing a Todo List 60

What's our todo list look like

Okay, back from the Configuration tangent. My next thought, in designing this application, is what
will an actual todo list look like? I want to be able to edit them by hand if needed.

I'm thinking of a simple list that looks like this.

H#

Things To Do

Figure out what this app looks like.
Plan out the "models"

Change the oil in my truck

Finish this manual

<N O O BB W N =
* X ¥ X ¥

Learn to fly without mechanical aid

Okay, that’s a bit simplistic. 'm using Markdown?” format here. I like Markdown because it easily
can be edited, converted to html, displayed, etc.

But basically, I can see a list has two pieces of information: List Info and the Tasks.

Initial List and Task objects

In my head I've created a couple classes to store information about the lists. (The land inside my
head is a magical place where all code is perfect. And bugs ... nope. There’s this little guy in there,
chomping on a cigar who will tell you “We ain’t got no stinkin bugs.”)

No need to create these classes, 'm just explaining my thought process.

class TodolList

protected $file; // full path to the file

protected $isloaded; // has file been loaded into this object
protected $title; // title of list

protected $tasks; // array of TodoTask objects

class TodoTask {
protected $isComplete;
protected $description;

}

*"http://daringfireball.net/projects/markdown/

Chapter 20 - Designing a Todo List 61

Note that so far I am limiting my thinking to just the data associated with the todo items and not
the actual actions to be performed. There are immediate actions that jump to mind, like adding new
tasks, marking tasks complete, and so forth but I wanted to step back and examine these two classes,
think about them, before continuing.

Are these really the best representation of the data? Sure, there’s things we know we’ll probably
want to add like due dates, maybe even priorities or contexts, but at this initial level how is the
design looking.

Meh. Yeah, there’s a whole lot of boring there. Several problems jump out at me.

1. The TodoL ist is concerned with the implementation of the storage, namely the $file and the
$isLoaded values. Better to abstract those.

2. What if I want to track additional information on a list in the future? Like a subtitle, or last
modified date? Maybe I should track attributes, of which ‘$title’ is one?

3. Thave commented $tasks as an array of TodoTask objects, but shouldn’t that be a collection
of interfaces?

Now, what if we review these initial classes with SOLID Object Design in mind??

 TodoList breaks the Single Responsibility Principle because we’d have to change the class if
the storage changes or if we track additional attributes.

+ TodoList breaks the Open/Closed Principle because we’d have to modify the class itself if we
want anything other than $title.

« Liskov is likely ignored too (hard to tell only looking at data), but the implication from
comments is that we’re tracking TodoTask objects. How will our yet-to-be-defined methods
handle replacing TodoTask with a subclass?

+ The Interface Segregation Principle? What the ...? There aren’t any interfaces.

« Dependency Inversion? Again it’s tough to tell without actual code, but since there’s no
interfaces, we’re probably going to not do well here either.

That’s okay. No code has actually been written yet. It’ll be easy to fix these issues in the first version.

TodoRepositorylnterface

Q’ Let’s create an interface we’ll use when thinking of todo list storage. We already have the
p perfect place to put this interface, in the ‘Repositories’ directory.

© 0 9 O O & W N =

NN NN NN P R R Rl s o s
B W0 N 20 O 0N 0 O bk N~

Chapter 20 - Designing a Todo List 62

<?php namespace GSD\Repositories;

// File: app/src/GSD/Repositories/TodoRepositorylInterface.php
use GSD\Entities\TodoListInterface;

interface TodoRepositorylnterface {

Rk
* Load a TodolList from its id
* @param string $id ID of the list
* @return TodoListInterface The list
* @throws InvalidArgumentException If $id not found
*/

public function load($id);

Ve
* Save a Todol ist
* @param string $id ID of the list
* @param TodolListInterface $list The TODO List
*/
public function save($id, TodoListInterface $list);

?2>

Yea! The first file of our project. Finally, after what 60 pages or so? (Or 1000 pages if you’re viewing
this on an iPhone.) Still, it’s only a single interface, 23 lines of code and only two methods which are
only commented and not actually implemented. Heh, that’s okay. We’ll start creating things faster.

Chapter 21 - Thinking about the Tasks

0 In This Chapter

In this chapter we’ll start thinking of the tasks we want to track and build the interfaces
needed to track them. A discussion of Laravel Facades is also included.

TodoTasklInterface
My initial thinking about the TodoTask at the beginning of the last chapter was very basic.

class TodoTask {
protected $isComplete;
protected $description;

}

What do we want to track with the tasks?

« due date - Yes, I like this one.

« priority - Many people like assigning a priority to their tasks. I'm not going to do that here
(because I don’t roll that way), but feel free to add it in your version.

« context - Here’s another one people sometimes use. What’s the context in which you’ll
perform the task. Things like @home, @work, or @calls. 1 don’t use contexts personally. I'm
skipping contexts in this book.

+ next action - Is the task something which can be worked on next? I'm adding this in my
version because I like seeing a list of the next things I can immediately take action on.

Q’ With the above in mind, we can define the initial interface for a Todo Task. Create the
p following file.

O 00 I O O b wWw N =~

W oW W W W W W WA NNDNDNNNDNNDNDN B B s s s s s
[0 0O R WD RO O 0 N0 0 ®ON RO O 0N 0NN,

Chapter 21 - Thinking about the Tasks 64

<?php namespace GSD\Entities;
// File: app/src/GSD/Entities/TodoTaskInter face.php
interface TodoTaskInterface {

Rk
* Has the task been completed?
* @return boolean
*/

public function isComplete();

Vet
* What's the description of the task
* @return string
*/

public function description();

Vet
* When is the task due?
* @return mixed Either null if no due date set, or a Carbon object.
*/

public function dateDue();

Veis
* When was the task completed?
* @return mixed Either null if not complete, or a Carbon object
*/

public function dateCompleted();

Veis
* Is the task a Next Action?
* @return boolean
*/

public function isNextAction();

2>

Notice how the structure changed from the initial thinking of a TodoTask class to the TodoTaskInter face?
The first one was simply data, now there’s only methods. And I've only defined the getters at this
point. That’s okay. It’s enough to start with.

Chapter 21 - Thinking about the Tasks 65

Also, I got to thinking as I was writing the interface that it would be nice to know when a task
was complete, so I threw in the dateCompleted() method. And, speaking of dates, I decided while
writing the interface that dates would always be returned as a null or as a Carbon®® date. Carbon
is a dependency which Laravel automatically pulls in and it provides some nice extensions to the
standard PHP DateTime class.

Do your own thing

As you follow along, please don’t copy code exactly as I have created it. Instead, customize
the todo task to what works for you. I mentioned some examples earlier (like context and
priority).

Make this a project you want to use.

How about a ToDo facade

It occurs to me as ’'m writing this that it may be fun to work toward a ToDo facade. Then I could

do things like:

1 $items = Todo::list('waiting')->getAll();
2 Todo::list('next-actions')->add(Todo: :item('something new'));

Something to think about.

TaskCollectioninterface

Now that we have a TodoTask defined (or the interface, at least), let’s define an interface to manage
a collection of tasks. This TaskCollectionInter face is not the TodoList, but the tasks within the

TodoList.

I could use a built-in PHP type, maybe ArrayObject for this, but I really don’t know how this is
going to be used. I expect that the list of tasks will be sorted in some sort of standard format, and
that I’'ll want to be able to add to the collection, remove tasks from the collection, and maybe iterate
over the collection.

o)’ For now, Let’s just create an interface with what we know is needed. (It won’t surprise me

s if this changes as things become better defined.)

*$https://github.com/briannesbitt/Carbon

© 0 9 O O & W N =

W W W W W N NDNDDNDDNDNDDNDDNDNDND®SR=®S A~ 2 2 2~ 2 2 2 &
B W N 2P0 O 0N 0 0k WN B0 © 0 N0 0k N -~ o

Chapter 21 - Thinking about the Tasks 66

<?php namespace GSD\Entities;
// File: app/src/GSD/Entities/TaskCollectionInter face.php
interface TaskCollectionInterface {

kK
* Add a new task to the collection
* @param TodoTaskInterface $task
*/

public function add(TodoTaskInterface $task);

Vet
* Return task based on index
* @param integer $index O is first item in collection
* @return TodoTaskInterface The Todo Task
* @throws OutOfBoundsException If $index outside range
*/

public function get($index);

Rk
* Return array containing all tasks
* @return array Array of TodoTaskInterface objects
*/

public function getAll();

Rk
* Remove the specified task
* @param integer $index The task to remove
* @throws OutOfBoundsException If $index outside range
*/

public function remove($index);

}

?2>

Pretty straightforward. This will probably expand with another method or two. Right now I'm
thinking we may need to have some sort of find() method, but I'll wait until I need it to add it
to the definition.

Notice the comments?

These interfaces contain more documentation than code. If 'm working in a team, then
this is pretty much how things are documented. If 'm working by myself I still tend to
document the non-obvious things like exceptions and return values.

Chapter 21 - Thinking about the Tasks 67

The Wonderful World of Facades

I’ve mentioned facades a couple of times. Laravel makes heavy use of this pattern.
So what? What’s so great about facades?

I’'m so glad you asked. Facades allow you to write expressive code such as:

$user = User::find(1);

$isDebug = Config::get('app.debug');

$data = Cache: :get($key);

So what? It looks like static classes.

You're right. They do look like static classes, but they’re not. See, the facade pattern allows your
code to be decoupled from the actual implementation. This is crazy cool, so let me repeat it:

Code using facades is decoupled from the implementation.

Now if that doesn’t blow your mind, I don’t know what will.
So what? Why would I want to do that?

Hmmm. I can see you’re a skeptic here. Or maybe you just don’t like the cut of my jib. I'll give you
a few reasons.

Facade Reason #1 - Prettiness

Let’s face it. The default way of creating objects has a lot of housework involved. You must create
an object, using the new keyword. Then you might have to do some special setup. Finally, you have
a variable containing the object and you call the methods you want to call.

All that initial setup happens behind the scenes.
When you make the call:

$isDebug = Config::get('app.debug');

You’re really only concerned about getting that debug flag. But what happens behind the scenes is
Laravel looks at your call and thinks: Have I created a config object before? Nope. Then let me create
one. Now I'll read the app.php file and merge in settings from the environment overrides. Finally, I'll
return that value.

In my book, Config: :get() is just plain more elegant.

O 00 N O O b W N -~

N
()

O O b W N =

Chapter 21 - Thinking about the Tasks 68

Facade Reason #2 - Testing

Testing is the most obvious reason to use facades. And Laravel’s Facade class provides nice
integration with Mockery®” for object mocking. Consider the following:

For example:

public function addTwoNumbers($a, $b)

{

return Adder::addem($a, $b);
}
function addTwoNumbers($test)
{

Adder : :shouldReceive('addem')->once()->with(1, 2)->andReturn(3);
$result = addTwoNumbers(1, 2);
$test->assertEquals($result, 3);

Actually, that example is a bit contrived. I need to update it. But the shouldReceive() method thinks
“Okay, they want to test, so I'll return a mock object instead of the standard Adder object.”

Isn’t that cool? (At this point I'm realizing I'm using the word cool way too much. But, dang it. It is
cool.)

Facade Reason #3 - APl Versions

Here’s a common use case for facades. Let’s say your application uses the DOOGLE API V3.1.
Unfortunately V3.1 is going to be retired soon. You’re working on V3.2 to replace it.

Your application code using this API might be something like:

$user = DoogleAPI: :getUser($key);

if (! $user)

{
DoogleAPI: :createUser($key, $name, ...);
$user = DoogleAPI: :getUser($key);

So somewhere in your code (likely in the Doogle Service Provider) there’s a snippet of code that
binds the facade DoogleAPI to DoogleApiVer31.

*https://github.com/padraic/mockery

=N O O b W N =

Chapter 21 - Thinking about the Tasks 69

public function register()

{
$this->app['doogle-api'] = $this->app->share(function()
{
return new DoogleApiVer31;
1)
}

All you need to do is change the DoogleApiV31 to your new version and hopefully no more code
changes.

Obviously, there are more than three reasons to use facades. Those are just the first
three that came to mind.

Facades are powerful

Since earlier in this chapter I had the idea to implement a Todo facade, I wanted to give
you some background on why facades make sense.

© 00 N O O b W N =

10

Chapter 22 - Creating the
TaskListinterface

0 In This Chapter

In this chapter we’ll code the TodoListInterface and recap the source code created so far.

TaskListinterface

We’re creating another interface. Crazy huh?

Initially, I thought I'd just have a TodoL i st class, but I already defined the TodoRepositoryInterface
to expect a TodoListInterface. I could go back to the TodoRepositoryInter face and change it to
expect a TodoList, but let’s think things through:

« A repository needs to be able to return a todo list (with the 1oad() method).
« A todo list needs to save itself, or tell the repository to save().

And in both cases, I want to deal with abstractions and use interfaces. This best follows the SOLID
design principles.

Q‘ Solet’s get this interface defined. Create the app/src/GSD/Entities/TaskListInter face.php
s as follows

<?php namespace GSD\Entities;
// File: app/src/GSD/Entities/TasklListInter face.php
interface TaskListInterface {

Ve
* |oads the task list by id
*/

public function load($id);

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Chapter 22 - Creating the TaskListInterface

Rk
* Save the task list
*/

public function save();

Rk
* Return the id
*/

public function id();

Ve
* Is the list dirty?
*/

public function isDirty();

Rk
* Return a list attribute
*/

public function get($name);

kK
* Set a list attribute
*/

public function set($name, $value);

Rk
* Return the title (alias for get('title'))
*/

public function title();

kK
* Add a new task to the collection
* @param TodoTaskInterface $task
*/
public function addTask(TodoTaskInterface $task);

Ve
* Return a task
*/

public function getTask($index);

71

53
o4
55
56
o7
58
59
60
61
62
63

Chapter 22 - Creating the TaskListInterface 72

Rk
* Return all tasks as an array
*/

public function allTasks();

kK
* Remove the specified task
*/

public function removeTask($index);

}

2>

I threw in a isDirty() method, thinking that it might make sense to know if a Todo List is dirty and
needs to be saved. Dunno if that’ll stick around.

Criminy! This seems to be getting a bit long for an interface. Hmmm. It looks like most of these
methods are actually going to be wrappers. What does it look like if I group methods by category?

Wrappers on the Repository
the load() and save() methods could be implemented as skinny wrappers on top the
repository object.

Wrappers on the Task Collection
the getTask(), allTasks(), and removeTask() methods could be implemented as wrappers
on the task collection object.

Methods dealing with list properties
the rest of the methods would deal with properties of the list itself.

If I was paranoid I might be worried about the Interface Segregation Principle. We might be on
the edge with the principle and it probably wouldn’t hurt to break the interface apart into smaller
interfaces. But you know what? I'm not going to do it.

This is one of those thousand small level design decisions that are made when coding. Another
programmer could very well break things apart differently. I'm not too worried about the Inter face
Segregation Principle in this context.

Remember there’s no one right way.

A Mini-Recap
So far we’ve created four interfaces.

1. TodoRepositoryInterface - This interface defines our storage.

Chapter 22 - Creating the TaskListInterface 73

2. TaskCollectionInterface - This interface defines a collection of tasks.
3. TaskListInterface - This interface defines our Todo List
4. TodoTaskInterface - This interface defines a single task.

Maybe I'm being a bit inconsistent on naming and the TaskCollectionInterface should be
renamed to TodoTaskCollectionInterface and the TasklListInterface should be renamed to
TodoTaskListInterface, but I'll let it slide (for now).

So far I think we’re building a simple and solid foundation. Soon we’ll get to actually using these
interfaces, but first I want to think more about those text files that are going to hold our todo lists.

Chapter 23 - Format of the text file

0 In This Chapter

In this chapter we’ll decide what the text files holding individual todo lists look like, how
they’re formatted, and any rules associated with the format.

File formatting rules

We want to be able to edit lists with text editors. So the file itself must be in text format.

The first line of the file contains the title (prepended with a hash mark #).
After the title all the tasks are listed, each task takes a single line.

« Tasks are grouped with next actions first, followed by normal tasks, followed by completed
tasks.

Blank lines are skipped when the file is read.

Blank lines are inserted before each group of tasks when the file is written.

Example list

List Title

*

First Next action

*

Second Next action

- First item on the list :due:2013-09-04
Next item on the list
- Last item on the list

© 00 J O O b W N =

-
S

x 2013-09-03 Finish chapter two.
x 2013-09-02 Finish chapter one

-~
e

Chapter 23 - Format of the text file 75

Rules about the tasks in a list

Next actions begin with an *[space]

Completed tasks begin with x[space]date[space]

Normal list tasks begin with - [space] but if a line is missing that format, and doesn’t match
the other two formats, it is considered a normal task. (The “Next item on the list” in the above
example.)

Tasks are stored alphabetically within the task type (next action, normal), but completed items
are stored sorted by completion date (descending).

if a word in the task begins with :due: it represents the due date.

What else? The only other thing I can think of is that we’ll be using the name of the file (the base
filename) as the list id.

Add your own rules

Maybe you want contexts to appear within the task as @home or @work, or maybe you are
using priorities and not next actions and have the top priority appear with a 1 [space]
before it, second priority a 2[space]. However you're customizing the list, make notes on
the formatting.

How individual lists are sorted

Since we’ll be dealing with multiple todo lists, I want to define how they’re sorted when I list all my
todo lists. For example I'd like to issue a command similar to:

©O© 00 = O O b W N =

10
11

$ todo lists
Your todo lists

Inbox - O items
Actions - 4 items
Waiting - 1 item
Someday - @ items
Calendar - 12 items

Build Spaceship - 3 items
Defeat Death - 1 item

Chapter 23 - Format of the text file 76

So what do T have here? I've got the normal “buckets” of things at the top, and I've got them organized
how I like, in the order I like. Then all of my project lists follow these standard buckets in alphabetical
order.

Q‘ Let’s modify the configuration and add the standard buckets, knowing that in the future
p when I get to the command to list the lists, I'll make use of it. Modify the top of
app/config/app.php

return array(

'gsd' => array(

"folder' => '/home/chuck/Documents/gsd/"',

'extension' => '.txt',
"listOrder' => array(

"inbox', 'actions', 'waiting', 'someday', 'calendar',
),

'"defaultlList' => 'actions',

)
// rest of file the same

Now we have configuration data that not only lists the order of my lists, but defines the default list.
I figured the default list will very likely come into play later.

List Purpose or Subtitle

It occurs to me that I may forget what a particular list is used for. So, ’'m adding a rule ...
(The second line of my list’s text file, if it begins and ends with parentheses, then it’s a one
line description of the list)

(It’s tempting for me to go back to the top of this chapter and simply revise my existing set of rules
and example list to include subtitle. But I'm trying to illustrate how designing a system is an organic,
non-linear process.)

Now have a list that looks something like:

Chapter 23 - Format of the text file 77

Actions

(These are misc actions, I can work on)

* First Next action
* Second Next action :due:2013-09-04

- Something else to do

O 00 39 O O » W N =~

o]

2013-09-02 Finish chapter two
10 x 2013-09-01 Finish chapter one

Snazzy! 'm not exactly following the Markdown format now, but that was only a starting point
anyway.

Chapter 24 - Application Functions

0 In This Chapter

In this chapter we’ll list the functions we want our application to perform. And we’ll map
out what using a Todo facade could look like.

Time to figure out what this application is actually going to do. By the very nature of what a todo
list is (namely, a list of items, uh, to do), we’ve been able to do the planning so far, but now let’s get
to the nitty-gritty.

Laundry list of functions

Functions dealing with Lists

Create New List
We want to be able to easily create new todo lists for new projects.

List Lists
We want to list all our todo lists.

Edit List
We want to be able to edit the attributes of a list (such as title, subtitle)

Delete List
We want to delete lists, maybe archive them?

Functions dealing with Tasks

Add Task
We want to be able to add tasks to a specific (or default) list

List Tasks
We want to see all the tasks on a list. (Or even across all lists). And we’ll need the ability to
filter tasks to show only Next Actions, or completed.

Edit Task
We want to be able to edit details about the task. This includes marking a task complete,
toggling the “Next Action” state.

© 00 N O O b W N =

[U SV N
O b W N -~ O

Chapter 24 - Application Functions 79

Remove Task
We want to be able to delete a task from a list.

Move Task
We want to be able to move tasks from one list to another

Search for Task
We want to be able to search through the lists for a particular task.

Your Turn

How have you customized the list so far? Are there additional things you’d like to
accomplish? Additional functionality? Maybe you want to show all tasks with a certain
context? Or maybe move completed tasks to a monthly archive. Whatever it is, now’s the
time to think through what functions you want to add.

Using a Todo Facade

In an earlier chapter I mentioned it would be cool to create a Todo facade. I still think that’s a pretty
nifty idea.

How would this facade work? What would it look like if we already had it developed and wanted
to use it?

I’ll write some PHP code to perform the functions outlined above using a Todo facade. Obviously,
this code won’t work yet. It’s only to illustrate how the Todo facade should operate.

// Create a new list
Todo: :makelList('project-a', 'New List Title');

// Get list of all the lists
$lists = Todo::alllists();

// Edit list
Todo: :get('project-a')
->set('title', 'Tasks for Project A')

->save();

// Delete list (I'll archive it instead)
Todo: :get('project-a')
->archive();

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Chapter 24 - Application Functions 80

// Add task

Todo: :get('project-a');
->addTask('Another thing to do')
->save();

// List tasks
$tasks = Todo::get('project-a')->allTasks();

// Edit task
Todo: :get('project-a')
->setTask(1, 'New task description')

->save();

// Remove task
Todo: :get('project-a')
->removeTask(1)

->save();

// Move task
$listd = Todo::get('project-a');
$list2 = Todo::get('project-b');
$list2->addTask($listl->getTask(1))
->save();
$1list1->removeTask(1)
->save();

Now wouldn’t that be nifty if we could write code as stylish as that? We will.

One thing I'm noticing is the above code uses a lot of method chaining.

% Method Chaining

Method chaining is a technique where methods of an object return the object when
complete. This allows code to be structured like:

1 $obj->methodi('arg')->method2('arg')->method3();

It’s an important part of elegant coding.

I'll want to update the documentation of the interfaces to reflect the method chaining. I could do it
now, but I think I’ll wait until we revisit the individual methods.

Chapter 25 - Facade Planning

0 In This Chapter

In this chapter I'll discuss what’s involved in setting up a Facade in Laravel. We’ll create a
few classes and do a couple unit tests.

Facade Components

There are three components to creating a facade in Laravel.

1. The Facade class shell
2. The Facade implementation
3. The setup to tie things together

Let’s break these down.

The Todo Facade Class Shell

Laravel provides a base class for facades, I1luminate\Support\Facades\Facade. You can find
this in the vendor/laravel/framework/src/I1luminate/Support/Facades directory, in the file
Facade. php.

% Browse the Laravel Code

Since composer installs laravel in our vendor directory, it’s easy to browse
vendor/laravel/framework/src/ and view any of the classes. Do this! It’s an excellent
way to learn.

I call this a shell class because it is super-simple, you need only implement one method.

Let’s say we’re going to call our Facade Class Shell GSD\Providers\TodoFacade.php. (Using the
location GSD/Providers is a completely arbitrary decision. I know I'm going to stick some code to tie
things together in this folder, so I just decided to keep everything in that folder. If this application
has a lot of facades, I'd probably break things apart differently and stick this class in a GSD/Facades
folder.)

© 00 N O O b W N =

[N
N~ O

Chapter 25 - Facade Planning 82

A¥ Since the facade class shell is so small, let’s implement it now. Create the
p app/src/GSD/Providers/TodoFacade . php file as outlined below.

<?php namespace GSD\Providers;
use Illuminate\Support\Facades\Facade;
class TodoFacade extends Facade {

protected static function getFacadeAccessor()

{

return 'todo';

2>

Yep, that’s the full implementation of the class. See why I call it a shell class? The method
getFacadeAccessor () returns the name of the implementation class. Well, that’s not exactly true—
it’s not returning a class name, it’s returning the name of the binding in the IoC Container. This
way the parent Facade class knows how to make an instance of the implementation class.

Don’t worry if this doesn’t make perfect sense yet. It will by the time you reach the end of this
chapter.

This class is so simple, 'm not doing unit testing, but from this point forward we’ll start adding unit
tests where it makes sense.

The Todo Facade Implementation

The next thing we need to implement is the class that actually does the work. Remember, the facade
will automatically load the class bound to todo. This class needs to have a makelList() method that
gets called when we type Todo: :makelList().

Q’ Create the following file in app/src/GSD/Providers/TodoManager .php. Right now I'm
p going to create a single, stupid method which we can use in a test when we tie things
together to make sure they’re tied together correctly.

© 0 9 O O & W N =

NN
= o

Chapter 25 - Facade Planning 83

<?php namespace GSD\Providers;
class TodoManager
Rk
* A stupid method for testing
*/

public function imATeapot()
{

return "I'm a teapot.";
?2>

Testing the Todo Facade Implementation

o)’ Let’s set up a simple unit test for the TodoManager. You should already have phpunit
p installed from the beginning of Chapter 19. Let’s make sure it works.

~$ cd gsd
~/gsd$ phpunit
PHPUnit 3.7.26 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/phpunit.xml

Time: © seconds, Memory: 7.50Mb

OK (1 test, 1 assertion)

Laravel loves your code. It really does. That’s why it wants it to work. To help you it installs
phpunit.xml automatically, all configured and ready for you to use.

Q‘ Let’s create a unit test for the Todo Facade. Create the directory app/tests/GSD/Providers
p and within the directory create the file TodoManagerTest . php with the content below.

© 0 9 O O & W N =

I = U=
B W N,

© 00 N O O b W N =

RN
= O

Chapter 25 - Facade Planning 84

<?7php
// File: app/tests/GSD/Providers/TodoManagerTest.php

use GSD\Providers\TodoManager;
class TodoManagerTest extends TestCase {
public function testImATeapot()

{

$obj = new TodoManager;
$this->assertbEquals($obj->imATeapot(), "I'm a teapot.");

?2>

What we’re doing here is creating a new TodoManager object and making sure it thinks it’s a teapot.

¥ Run PHP Unit again to make sure you have two tests and two assertions.

4

~$ cd gsd
~/gsd$ phpunit
PHPUnit 3.7.26 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/phpunit.xml

Time: © seconds, Memory: 8.00Mb

OK (2 test, 2 assertions)

Q‘ I mostly use the --tap option of phpunit so I can see what’s happening better.

o

O O b W N =

© 00 N O O b W N =

AN
= o

Chapter 25 - Facade Planning

~$ cd gsd

~/gsd$ phpunit --tap

TAP version 13

ok 1 - ExampleTest::testBasicExample
ok 2 - TodoManagerTest: :testImATeapot
1..2

Q’ Some people prefer the - -testdox option of phpunit.

4

~$ cd gsd
~/gsd$ phpunit --testdox
PHPUnit 3.7.26 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/ch25/phpunit.xml

Example
[x] Basic example

TodoManager
[x] Im a teapot

We’re ready to move on to the third step implementing a our facade.

Tying things together

85

The final step on using facades is to tie everything together. This can be as simple as binding the

TodoManager to the IoC container. But Laravel Best Practices involves three distinct steps:

1. Creating a Service Provider to perform any bindings.
2. Configuring the application to use the Server Provider.
3. Aliasing the Facade

Q‘ Step 1 - Creating a Service Provider. Create the TodoServiceProvider.php file in the
p app/src/GSD/Providers directory with the following content.

© 0 9 O O & W N =

[T = S G N o = G S U
© ©O© 0O N O O b W N~ O

Chapter 25 - Facade Planning

<?php namespace GSD\Providers;

// File: app/src/GSD/Providers/TodoServiceProvider.php

use Illuminate\Support\ServiceProvider;

class TodoServiceProvider extends ServiceProvider ({

Vet
* Register the service provider
*/

public function register()

{
$this->app['todo'] = $this->app->share(function()

{

return new TodoManager;

});

}

?2>

86

What we're doing here is creating a service provider that will bind a TodoManager to the IoC

container with a key named todo.

% To Defer or Not To Defer. That is the question.

Whether ‘tis nobler in mind to suffer, uh. Okay. When the question arises whether to defer
service provider loading or not, ask yourself if the services provided are needed on every
(or most) requests. If so, don’t defer them. That’s what we did above. If you’d like to defer
loading the services to only when needed, then set the $defer flag and implement the

provides() method of your provider.

% Careful of register()

(Wow. Two tips in a row ... have we reached some sort of tipping point? Groan. Hey. I can
groan at my own puns. I do it all the time.) Never call services within the register () which
are provided by another service provider. If this is needed, do it in a boot () method of the

provider instead.

Now we have a simple little TodoServiceProvider, let’s make the app use it.

Y Step 2 - Configure the app to use the TodoServiceProvider. At the end of providers|]

array in app/config/app.php, add the following line.

O b W N -

O b W N =

1

Chapter 25 - Facade Planning 87

'providers' => array(

// end of array
'GSD\Providers\TodoServiceProvider"',

)/
Easy as pie, the next step is just as easy.

Q’ Step 3 - Alias the facade. In the same file (app/config/app.php) add the following line to
p the bottom of the aliases[] array.

'aliases' => array(

// end of array
'"Todo' => 'GSD\Providers\TodoFacade',
)

Q‘ Then run composer dump-auto

4

$ composer dump-auto

At this point, theoretically, we can use Todo: : imATeapot () in our code. So, why not test it?

Testing the Todo Facade

Normally, I like to structure unit tests using same directory hierarchy as the source code. This makes
it easy to know where your tests are. Plus you can do some other tricks like automatic testing when
your source code changes. (See Jeffery Way’s Laravel Testing Decoded™® for details.)

I suppose we could go in an create test files for the TodoServiceProvider, but I'm lazy and am just
going to add another test to our existing TodoManagerTest . php. Really, all I'm worried about is that
things are set up and tied together correctly for using the facade.

Q’ Add the following method to tests/GSD/Providers/TodoManagerTest . php

4

*http://leanpub.com/laravel-testing-decoded

Bsw N -

O O b W N =

Chapter 25 - Facade Planning

public function testFacade()

{

$this->assertEquals(Todo: :imATeapot(), "I'm a teapot.");

Q’ And now, let’s test it (fingers crossed)

o

~/gsd $ phpunit --tap

TAP version 13

ok 1 - ExampleTest::testBasicExample
ok 2 - TodoManagerTest: :testImATeapot
ok 3 - TodoManagerTest::testFacade
1..3

WOO HOO! Works first time. (Well, first time after I fixed a typo you’ll never know about.)

88

Chapter 26 - Midstream Refactoring

0 In This Chapter

In this chapter we're going to change some class and filenames for consistency.

Remember a few chapters back when I noted some of my naming was inconsistent? In places I used
TaskListInter face and then I used TodoTaskInter face. Why not TodoTaskListInter face?

Well, I started thinking, “Why even have the word ‘todo’ in class and interface names? I mean, this
whole stinkin application is a todo manager.”

How about the source organization? The Entities directory is fine, I've got interfaces for the
collection, the list, and the task. That seems to make sense. The only other directory in which
there’s source code is the Providers directory. It contains the provider, the todo facade, and the
todo manager. I'm not going to change anything there yet, but part of me wants to move the facade
and manager out of there. If you want to, then have at it.

Now’s a good point to clean this up because we don’t have lots of code yet.

It's Messy

If T was simply writing this application, I’d just go back, quickly refactor, change names, etc., and
be done. But part of my goal with this book is to illustrate how messy the process of design and
development can be. It’s much more work for me to explain these things, and why to do them,
than it is to go back and simply fix them.

But I'm keeping the process real. :)

In the foggy woods

This is how coding often is for me. I'll start a project and it’s like I'm in my car at night, traveling
through the woods. It’s foggy outside. I only see the woods in front of me illuminated by my
headlights. There are a few crystal clear sections of the woods lit by giant spotlights shining down
from the sky, but for the most part I'm traveling into the unknown, trying to make my way to one
of those brightly lit places.

© 00 N O O b W N =

N
()

Chapter 26 - Midstream Refactoring 90

Luckily, my car is equipped with magic headlights and once I light up part of the woods, it stays lit.
Very often I make my way to a clear place and discover there was a shortcut I missed, or a different
route that was paved when I just stumbled along a gravel road. So I'll back up and speed through
the new and better way. In other words, refactoring.

(I'm not saying this is how it is for everyone, remember “Every Programmer is Different”. This is how
it is for me.)

TaskListinterface

The first file I'm picking is the TaskListInter face. I'm starting here because it has all those methods
defined and that was kind of bugging me.

Here’s a list of the changes I made:

« Renamed file to ListInterface.php cause that’s cleaner ... it’s a todo list, and we already
know everything is todo related in this project.

« Renamed the interface to ListInterface too.

« Renamed addTask() method to taskAdd()

« Renamed getTask() method to just plain task(), allowing me to add the taskGet() for
returning a tasks attribute at the list level.

« Renamed allTasks() method to tasks()
« Renamed removeTask() method to taskRemove()
+ Ireorganized the methods, organizing them by category

The reason for those task renames is because now it’s very apparent that those methods are doing
something with tasks, not the list itself. I want to keep the method name reminding me of this fact.

I also threw in taskCount(), taskGet(), taskSet() and isArchived() and fleshed out the docu-
mentation.

The new version is below.

<?php namespace GSD\Entities;
interface ListInterface {
// List attributes ------------------~-~-~-~-~-~—-

Ve
* Return the id
*/
public function id();

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Chapter 26 - Midstream Refactoring

Rk
* Is the list archived?
* @return bool
*/
public function isArchived();

Rk
* Is the list dirty?
* @return bool
*/
public function isDirty();

Veis
* Return a list attribute
* @param string $name id|isArchived|isDirty|title
* @return mixed
* @throws InvalidArgumentException If $name is invalid
*/

public function get($name);

Rk
* Set a list attribute
* @param string $name id|isArchived|isDirty[title
* @param mixed $value Attribute value
* @return ListInterface for method chaining
* @throws InvalidArgumentException If $name is invalid
*/

public function set($name, $value);

/**
* Return the title (alias for get('title'))
*/

public function title();

// List operations ----------------—-~-~-~-~—---

Vers
* Archive the list. This makes the 1list only available from the archive.
* @return ListInterface For method chaining
*/

public function archive();

91

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
5
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Chapter 26 - Midstream Refactoring

Rk
* Loads the task list by id
* @param string $id The id (name) of the list
* @return ListInterface for method chaining
* @throws InvalidArgumentException If $id not found
*/

public function load($id);

/**
* Save the task list
* @return ListlInterface for method chaining
*/

public function save();

// Task operations -------------——-—-———~-~—~—---

Vet
* Add a new task to the collection
* @param string|TaskInterface $task Either a TaskInterface or a string we
* can construct one from.
* @return ListInterface for method chaining
*/

public function taskAdd($task);

Sk
* Return number of tasks
* @return integer
*/

public function taskCount();

Sk
* Return a task
* @param integer $index Task index #
* @return TaskInter face
* @throws OutOfBoundsException If $index outside range
*/

public function task($index);

Vet
* Return a task attribute
* @param integer $index Task index #

92

95

96

o7

98

99
100
101
102
1083
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Chapter 26 - Midstream Refactoring 93

* @param string $name Attribute name

* @return mixed

* @throws OutOfBoundsException If $index outside range
*/

public function taskGet($index, $name);

Rk
* Return all tasks as an array.
* @return array All the TaskInter face objects
*/

public function tasks();

Vet
* Set a task attribute
* @param integer $index Task index #
* @param string $name Attribute name
* @param mixed $value Attribute value
* @return ListInterface for method chaining
* @throws OutOfBoundsException If $index outside range
*/

public function taskSet($index, $name, $value);

Vet
* Remove the specified task
* @throws OutOfBoundsException If $index outside range
*/

public function taskRemove($index);

?2>

That was a pretty good chunk of restructuring, but I'm happy with it.

You may have noticed I changed the argument to the taskAdd() method. This is because I started
thinking about how we’re going to add tasks to the system. I like the idea of adding a task from
an object already built, the TaskInterface, but I'll probably also want to add a task just from the
string. (How to do that is a question I'm putting off as long as I can.)

With PHP we can have the argument work both ways.

Chapter 26 - Midstream Refactoring 94

* Types that Quack

We’ve had type hinting in PHP since version 5. This means the classname (or interface)
can be specified in the arguments to functions/methods and PHP will puke if the wrong
type variables is passed. Before this, all parameters were Duck Type. (If it looks like a duck
and quacks like a it’s a duck.)

Generally, it’s good to strongly type methods but occasionally, as in the taskAdd() method,
Duck Typing is a good thing.

TaskCollectioninterface

This interface isn’t too bad. Just rename the TodoTaskInter face argument in the add() method with
the new TaskInterface. Also, change any documentation to match.

I’'m not going to bother presenting this class to you.

TodoTaskInterface

« Rename the file to TaskInter face.php
« Rename the interface from TodoTaskInter face to TaskInter face

Currently there’s five getter methods. (In my version anyway, you may have different ones if you
decided to track contexts, or priorities, or pygmies, or whatever)

Getter methods:

isComplete() - is the task finished?

description() - description of task

dateDue() - due date (null or Carbon)

« dateCompleted() - date completed (null or Carbon)

« isNextAction() - is this a next action.
Since I'm in a refactoring mood, I'm adding four setter methods.

« setIsComplete($complete) - set from boolean
+ setDescription($description) - set from string
setDateDue($date) - set to null, or from string or Carbon

» setIsNextAction($nextAction) - set from boolean

Chapter 26 - Midstream Refactoring 95

Notice I skipped setDateCompleted(). That should automatically be set if setIsCompleted() is
called.

And finally I'm adding a generic get() and set() method.

» set($name, $value) - set a property
» get($name) - get a property

Oh man, am I rambling on this one? Here’s some stylistic notes I have about this class:

« The decision to use explicit getters/settings (ie. dueDate() or setDescription()) is because this
is an interface and I want the “data” to be somewhat visible (if that makes sense).

« I also want explicit getters/settings because there may be different actions occurring when
values are set (such as the isComplete() method). If I used a generic set() method with a
big switch statement implementing these attribute specific actions, it’s harder to see. This

becomes important when maintaining the code.

 Tadded the set()/get() methods because that will play nicely with the next interface to be

refactored.
Here’s the final version (to this point) of my refactored TaskInter face

<?php namespace GSD\Entities;
interface TaskInterface {

Rk
* Has the task been completed?
* @return boolean
*/

public function isComplete();

kK
* What's the description of the task
* @return string
*/

public function description();

kK
* When is the task due?
* @return mixed Either null if no due date set, or a Carbon
*/

public function dateDue();

object.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Chapter 26 - Midstream Refactoring

Rk
* When was the task completed?
* @return mixed Either null if not complete, or a Carbon object
*/

public function dateCompleted();

Rk
* Is the task a Next Action?
* @return boolean
*/

public function isNextAction();

Veis
* Set whether task is complete. Automatically updates dateCompleted.
* @param bool $complete
*/

public function setIsComplete($complete);

/**
* Set task description
* @param string $description
*/

public function setDescription($description);

kK
* Set date due
* @param null[string|Carbon $date null to clear, otherwise stores Carbon
* date internally.
*/

public function setDateDue($date);

Rk
* Set whether task is a next action
* @param bool $nextAction
*/

public function setIsNextAction($nextAction);

Vess
* Set a property. (Ends up calling specific setter)
* @param string $name isComplete|description|dateDue|isNextAction
* @param mixed $value The value to set

96

64
65
66
o7
68
69
70
71
T2
73
T4
75
76

O O > W N

Chapter 26 - Midstream Refactoring

* @throws InvalidArgumentException If $name is invalid
*/

public function set($name, $value);

Rk
* Get a property.
* @param string $name isComplete|description|/dateDue|isNextAction|dateCompleted
* @return mixed
* @throws InvalidArgumentException If $name is invalid
*/
public function get($name);

?2>

Finishing Up and Testing
The other source files (those three in the Providers folder) shouldn’t be affected.

Q’ It’s a good idea to run unit tests when you do something like this. There’s no unit test we
currently have that should be affected, but still ... I like to do it because it gives me a warm
and fuzzy feeling.

~/gsd $ phpunit --tap

TAP version 13

ok 1 - ExampleTest::testBasicExample
ok 2 - TodoManagerTest: :testImATeapot
ok 3 - TodoManagerTest: :testFacade
1..3

Heh, heh. Looks good. Feeling warm and fuzzy?

97

Chapter 27 - Starting the
TodoManager class

0 In This Chapter

In this chapter we’ll start coding TodoManager and testing it along the way:.

Looking back on Chapter 24, where I wrote the example Todo facade code, I realize there’s only
three methods to the facade.

1. makeList() which creates a new list.
2. get() which returns a ListInterface.

3. alllLists() which returns an array of all the lists.

So let’s code these.

TodoManager::makelList()
The goal is to be able to write the following code:
Todo: :makelist('project-a', 'New List Title');

Since we know that Todo is aliased to TodoFacade and the TodoFacade will create an instance of
TodoManager, we know we want makeList() to be a method of TodoManager.

Q‘ Edit the TodoManager . php file in app/src/GSD/Providers so it looks like the code below.

4

© 0 9 O O & W N =

W W W W W W W N NDNDNDDNDDNDDNDDNDDNDDNRS=S»~ 2 2 > 2 B2
O 01 O N~ O © 0 N O O & WOWN PO © 0O N O O Bk Ww N =~ O°o

Chapter 27 - Starting the TodoManager class 99

<?php namespace GSD\Providers;
use App;
class TodoManager

kK
* A stupid method for testing
*/

public function imATeapot()

{

return "I'm a teapot.";

Rk
* Create a new TODO List
* @param string $id The basename of the list
* @param string $title The title of the list
* @return ListInterface The newly created list
* @throws InvalidArgumentException If the list already exists
*/
public function makelList($id, $title)
{
$repository = App::make('TodoRepositoryInterface');
if ($repository-rexists($id))
{
throw new \InvalidArgumentException("A list with id=$id already exists");
}
$list = App::make('ListInterface');
$list->set('id', $id)
->set('title', $title)
->save();

return $list;

2>

Pretty straightforward. Let’s think about it.

It doesn’t make sense to create new ‘archived’ lists since before a list becomes archived it must first
exist as an active list. So I won’t worry about the whole archive thang. And I decided most of these
methods should just throw exceptions if there are problems. That makes using the methods easier.
(I don’t have to check the return of every method called. Instead, I can just assume methods return

O 00 N O O b W N

N NN DN DN DNDDNDDNDDNDDNRS »~ » BB
O© 00 N O O b W N~ O © 0 N O U b W N~ O

Chapter 27 - Starting the TodoManager class 100

correctly and catch the exceptions as, uh, exceptions.)

I'm using App: :make() to create new instances of both the repository and an actual list. Should I
move either of these to the constructor? Naw, there’s only three methods planned. Maybe I'll refactor
this later. I don’t know. I actually haven’t bound these interfaces to a concrete class yet. That’s okay,
because I plan on testing it with mock objects.

Hmm, I used an exists() method of the TodoRepositoryInterface which wasn’t defined, so let’s
fix that.

Q‘ Update the TodoRepositorylnterface.php file to match what’s below. (Dang, I didn’t
p rename this during the refactoring last chapter. Oh well. I think I actually like it with
the Todo. You may think ’'m contradicting myself. Pbbth! I like to call it being complex.)

<?php namespace GSD\Repositories;

// File: app/src/GSD/Repositories/TodoRepositorylInter face.php
use GSD\Entities\ListInterface;

interface TodoRepositorylnterface {

kK
* Does the todo list exist?
* @param string $id ID of the list
* @return boolean
*/

public function exists($id);

Vet
* Load a TodolList from it's id
* @param string $id ID of the list
* @return ListInterface The list
* @throws InvalidArgumentException If $id not found
*/

public function load($id);

/K
* Save a Todolist
* @param string $id ID of the list
* @param ListInterface $list The TODO List
*/
public function save($id, ListInterface $list);

30
31

© 00 N O O b W N =

N
()

Chapter 27 - Starting the TodoManager class 101

2>

(Oops, I found a few straggling TodoListInterface in the above that I didn’t catch during the
refactoring and fixed them.)

Now, let’s test this thing.

Installing Mockery

To test the TodoManager : :makelL ist () method, we’ll want to create mock objects for the TodoRepositoryInterfe
and ListInterface that makeList() creates. Keep in mind these are still interfaces and we have not
yet developed the concrete classes which implement the interface.

That’s okay. We can use the excellent Mockery®' package to create objects for the interface and fake
up the methods we want to hit.

Q’ First step to install Mockery is to edit the composer . json to require the dependency. Edit
s the file as specified below.

{
"name": "gsd",
"description": "Getting Stuff Done with Laravel.",
"require": {
"laravel/framework": "4.0.*"
},
"require-dev": {
"mockery/mockery": "dev-master"
},

// everything else is the same

o)’ Next run composer update to install the dependency.

4

*thttps://github.com/padraic/mockery

© 0 9 O O & W N =

© 00 9 O O & W N =

U S e
0o N O O b W N -~ O

Chapter 27 - Starting the TodoManager class 102

~$ cd gsd
~/gsd$ composer update
Loading composer repositories with package information
Updating dependencies (including require-dev)
- Installing mockery/mockery (dev-master b6fe7ic)
Loading from cache

Generating autoload files
Generating optimized class loader

That’s it, package installed. Ain’t composer great?

Testing TodoManager::makelist()

Now, we’ll update the TodoManagerTest . php to test thatmakel ist () throws an exception as expected
when the list id exists.

Q‘ Add the following method to tests/GSD/Providers/TodoManagerTest . php file, making it
p a new method within the TodoManagerTest class.

Rk
* @expectedException InvalidArgumentException
*/
public function testMakelListThrowsExceptionWhenExists()
{
// Mock the repository
App: :bind('TodoRepositoryInterface', function()
{
$mock = Mockery: :mock('GSD\Repositories\TodoRepositoryInterface');
$mock ->shouldReceive('exists"')
->once()
->andReturn(true);

return $mock;

});

// Should throw an error
Todo: :makelList('abc', 'test abc');

0w N O O B W N =

© 00 N O O b W N =

SR R) N s
N O O b W N =~ O

Chapter 27 - Starting the TodoManager class 103

What we’re doing here is first using the docblock to say this test should throw an error. Then, within
the test we’ll bind the TodoRepositoryInterface to return a mock object. The object is expected to
receive a call to exists() and when it does, return true.

o)’ Run phpunit to test it

4

~$ cd gsd

~/gsd$ phpunit --tap

TAP version 13

ok 1 - ExampleTest::testBasicExample

ok 2 - TodoManagerTest: :testImATeapot

ok 3 - TodoManagerTest::testFacade

ok 4 - TodoManagerTest: :testMakelListThrowsExceptionWhenExists
1..4

Perfect, now let’s test what should happen it the list doesn’t exist. This time we’ll need to create
another object, the ListInter face and mock up some expected calls.

0)‘ Add the following method to tests/GSD/Providers/TodoManagerTest . php file, making it
p a new method within the TodoManagerTest class.

public function testMakelist()
{
// Mock the repository
App: :bind('TodoRepositoryInterface', function()
{
$mock = Mockery: :mock('GSD\Repositories\TodoRepositoryInterface');
$mock->shouldReceive('exists')
->once()
->andReturn(false);
return $mock;

});

// Mock the list object
App::bind('ListInterface', function()

{
$mock = Mockery: :mock('GSD\Entities\ListInterface');
$mock->shouldReceive('set')->twice()->andReturn($mock, $mock);

18
19
20
21
22
23
24

O 00 N O O b W N -~

Chapter 27 - Starting the TodoManager class 104

$mock->shouldReceive('save')->once()->andReturn($mock);
return $mock;

});

$list = Todo::makelList('abc', 'test abc');
$this->assertInstanceOf('GSD\Entities\ListInterface', $list);

Q‘ Run phpunit to test it

4

~$ cd gsd
~/gsd$ phpunit --tap
TAP version 13

ok 1 - ExampleTest::testBasicExample

ok 2 - TodoManagerTest: :testImATeapot

ok 3 - TodoManagerTest: :testFacade

ok 4 - TodoManagerTest::testMakelListThrowsExceptionWhenExists
ok 5 - TodoManagerTest::testMakelList

1..5

Yes! (You can’t see this, but right now I'm pumping my fist in the air.) Our TodoManager : :makel ist()
method has been tested.

1
2

O© 00 N O O b W N =~

N
()

Chapter 28 - Finishing the
TodoManager class

0 In This Chapter

In this chapter we’ll finish coding and testing TodoManager.

Creating TodoManager::allLists()

Back when we planned out the facade, we wanted to be able to do something like:

// Get list of all the lists
$lists = Todo::alllists();

That wasn’t very well defined though. Should we get an array of ListInter face objects or just an
array of list ids? My vote is to just return the list of ids (which, remember, is the basename of the
todo list file).

Q‘ Add the following method to the file app/GSD/Providers/TodoManager .php, in the
p TodoManager class.

Vet
* Return a list of all lists
* @param boolean $archived Return archived lists?
* @return array of list ids
*/

public function alllLists($archived = false)

{
$repository = App: :make('TodoRepositoryInterface');
return $repository->getAll($archived);

}

© 0O 9 O O & W N =

W W W W N DN NDNDDNDDNDDNDDNDDNDDNS=S »~ 2 B > 2 B 2 =
W N0 O 0 N0 0 Pk WON A OO0 O N0 0k WwN -~ o

Chapter 28 - Finishing the TodoManager class 106

Pretty simple. We're just wrapping the repository code. You’ll notice that I added an optional
$archived flag. What if we want to get a list of all the lists that are archived?

You probably figured out the getA11() method doesn’t yet exist in the TodoRepositoryInterface
Let’s fix that and at the same time add $archive flags to the methods that need them.

Y Update your TodoRepositoryInterface.php to match what’s below.

<?php namespace GSD\Repositories;
use GSD\Entities\ListInterface;
interface TodoRepositorylnterface {

kK
* Does the todo list exist?
* @param string $id ID of the list
* @param boolean $archived Check for archived lists only?
* @return boolean
*/

public function exists($id, $archived = false);

Vet
* Return the ids of all the lists
* @param boolean $archived Return archived ids or unarchived?
* @return array of list ids
*/

public function getAll($archived = false);

Veis
* load a TodolList from it's id
* @param string $id ID of the list
* @param boolean $archived Load an archived list?
* @return ListInterface The TODO 1list
* @throws InvalidArgumentException If $id not found
*/

public function load($id, $archived = false);

Veis
* Save a TodolList
* @param string $id ID of the list

34
35
36
37
38
39

© 00 N O O b W N =

I U SN
O O b W N =~ O

Chapter 28 - Finishing the TodoManager class 107

* @param ListInterface $list The TODO List
* @param boolean $archived Save an archived list?
*/
public function save($id, ListInterface $list, $archived = false);
}
2>

Nothing drastic changed, but we did add the $archived parameter to every method. The only place
so far we're using the TodoRepositoryInterface is the TodoManager : :makelList () method, but since
we're providing a default parameter of false, there’s no changes needed there.

So let’s figure out how to test this thing.

Testing TodoManager::allLists()

Q’ Add the method below to your tests/GSD/Providers/TodoManagerTest . php.

o

public function testAlllListsReturnsArray()
{
// Mock the repository
App: :bind('TodoRepositoryInterface', function()
{
$mock = Mockery: :mock('GSD\Repositories\TodoRepositorylInterface');
$mock->shouldReceive('getAll"')
->once()
->andReturn(array());
return $mock;

});

$result = Todo::alllists();
$this->assertinternalType('array', $result);

Q‘ Run phpunit to test it

o

© 0 9 O O & W N =

N
()

O© 00 N O O b W N =~

SO S
O O b W N =~ O

Chapter 28 - Finishing the TodoManager class 108

~$ cd gsd
~/gsd$ phpunit --tap
TAP version 13

ok
ok
ok
ok
ok
ok

1..

1
2
3
4
5
6
6

- ExampleTest::testBasicExample

TodoManagerTest:
TodoManagerTest:
TodoManagerTest:
TodoManagerTest:
TodoManagerTest:

:testImATeapot

:testFacade
:testMakelListThrowsExceptionWhenExists
:testMakel ist
:testAllListsReturnsArray

Seems almost silly to test this, doesn’t it. I can’t tell you how many times I’ve had super simple unit
tests like this fail later in a project because I decided to change the internal logic of a method. As
soon as you do that, it forces it to rethink how you want to test the method. That said, I probably
wouldn’t normally test this particular method since it just wraps the repository object. I want this
chapter to really hammer home testing, though, so I'm going a bit overboard with my testing.

To be totally consistent, let’s add another test for archived lists. This is exactly the same except we’re
calling Todo: :alllLists() with a true argument.

d)’ Add the method below to your tests/GSD/Providers/TodoManagerTest . php.

4

public function testAllArchivedlListsReturnsArray()

{

// Mock the repository

App: :bind('TodoRepositorylnterface', function()

->once()

$mock = Mockery: :mock('GSD\Repositories\TodoRepositorylInterface');
$mock->shouldReceive('getAll"')

->andReturn(array());

return $mock;

});

$result = Todo::alllists(true);
$this->assertinternalType('array', $result);

Q’ Run phpunit to test it

o

© 0 9 O O & W N =

U S S
O O b WO N~ O

© 00 N O O b W N =~

I U Y
B W N~ O

Chapter 28 - Finishing the TodoManager class

~$ cd gsd
~/gsd$ phpunit --testdox
PHPUnit 3.7.26 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/ch28/phpunit.xml

Example
[x] Basic example

TodoManager
[x] Im a teapot

[x] Facade

[x] Make list throws exception when exists
[x] Make list

[x] All lists returns array

[x] All archived lists returns array

Heh, I ran phpunit differently ... just to mix things up.

Creating TodoManager::get()

Only one more function to add to TodoManager.

Q’ First add the method to app/src/GSD/Providers/TodoManager . php

4

Rk
* Get the list specified
* @param string $id The list id
* @param boolean $archived Return archived lists?
* @return ListInterface
* @throws RuntimeException If list is not found.
*/
public function get($id, $archived = false)
{
$repository = App::make('TodoRepositoryInterface');
if (! $repository-rexists($id, $archived))
{

throw new \RuntimeException("List id=$id not found");

109

15
16

O 0O = O U b W N =~

W W W W W N DNDNDDDDNDNDDNDDNDDNDNS=S A~ 2 2 >~ 2~ B2 » &
B W N 20 O 00N 0 O kN O O 0N O 0 kN =~

Chapter 28 - Finishing the TodoManager class 110

return $repository->load($id, $archived);

Q‘ Next add a couple test methods. One to test for the exception, the other to test
p without an exception. Remember this is in the file TodoManagerTest.php in the
app/tests/GSD/Providers directory

Rk
* @expectedException RuntimeException
*/
public function testGetlListThrowsExceptionWhenMissing()
{
// Mock the repository
App: :bind('TodoRepositoryInterface', function()
{
$mock = Mockery: :mock('GSD\Repositories\TodoRepositoryInterface');
$mock->shouldReceive('exists')
->once()
->andReturn(false);
return $mock;

});

// Should throw an error
$list = Todo::get('abc');

public function testGetlListReturnsCorrectType()
{
// Mock the repository
App: :bind('TodoRepositoryInterface', function()
{
$list = Mockery: :mock('GSD\Entities\ListInterface');
$mock = Mockery: :mock('GSD\Repositories\TodoRepositoryInterface');
$mock->shouldReceive('exists')->once()->andReturn(true);
$mock->shouldReceive('load')->once()->andReturn($list);
return $mock;

});

$list = Todo::get('abc');
$this->assertInstanceOf('GSD\Entities\ListInterface', $list);

© 00 N O O b W N =

I S
W N~ O

Chapter 28 - Finishing the TodoManager class 111

~$ cd gsd
~/gsd$ phpunit --tap
TAP version 13

ok
ok
ok
ok
ok
ok
ok
ok
ok

1..

O © 00 N O U b W N+~

Q‘ Run phpunit to test it

4

ExampleTest: :testBasicExample

TodoManagerTest:
TodoManagerTest:
TodoManagerTest:
TodoManagerTest : :
TodoManagerTest:
TodoManagerTest:
TodoManagerTest:
TodoManagerTest:

:testImATeapot
:testFacade
:testMakel istThrowsExceptionWhenExists

testMakelList

:testAllListsReturnsArray
:testAllArchivedlListsReturnsArray
:testGetListThrowsExceptionWhenMissing
:testGetlListReturnsCorrectType

All done with the TodoManager. And we’ve created unit tests to make sure it keeps working. Now
we can go on our merry way and forget the details, confident that it’ll all work as expected.

© 0 9 O O & W N =

(AN
[]

Chapter 29 - Implementing
Listinterface

0 In This Chapter

In this chapter we’ll start implementing the ListInterface

We still haven’t finished the Todo facade we laid out back in Chapter 24. We’ve wrapped up the
TodoManager class, and now, since most of the TodoManager methods returnListInterface I figured
it'd be a good time to start creating a concrete class behind it.

Creating a TodolList shell

First of all, what are we going to call the concrete class that will implement the ListInterface. I
think a class called List is just too vague. For a few moments I entertained calling it TheList, but

that makes it sound like super-important (as apposed to AList which doesn’t sound important at
all.)

Finally, I'm settling on calling it TodoList. Yeah, I know. I stripped out the word Todo from a bunch
of things a few chapters back. Oh well.

Q‘ Let’s create TodoList.php in the app/src/GSD/Entities directory with the following

p content.

<?php namespace GSD\Entities;
// File: app/src/GSD/Entities/TodolList.php
class TodoList implements ListInterface {
// List attributes ----------cc-mmmmooooo-
// List operations ------------cooomooo_--

// Task operations -------------------------

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

Chapter 29 - Implementing ListInterface

// Not yet implemented ---------------------

public function id()

{

throw new \Exception('not implemented');
}
public function isArchived()
{

throw new \Exception('not implemented');
}
public function isDirty()
{

throw new \Exception('not implemented');
}
public function get($name)
{

throw new \Exception('not implemented');
}

public function set($name, $value)

{

throw new \Exception('not implemented');

}
public function title()
{
throw new \Exception('not implemented');
}
public function archive()
{
throw new \Exception('not implemented');
}

public function load($id)
{

throw new \Exception('not implemented');

113

54
95
56
ST
58
59
60
61
62
63
64
65
66
o7
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Chapter 29 - Implementing ListInterface

2>

public function save()

{

throw new \Exception('not implemented');
}
public function taskAdd($task)
{

throw new \Exception('not implemented');
}
public function taskCount()
{

throw new \Exception('not implemented');
}
public function task($index)
{

throw new \Exception('not implemented');
}

public function taskGet($index, $name)

{

throw new \Exception('not implemented');

}
public function tasks()
{
throw new \Exception('not implemented');
}
public function taskSet($index, $name, $value)
{
throw new \Exception('not implemented');
}

public function taskRemove($index)

{

throw new \Exception('not implemented');

114

© 00 N O O b W N =

[T S T S T = S VG O Ui G G RN
N 0 © © 0 N O O b W N =~ O

Chapter 29 - Implementing ListInterface 115

Yeah, that class is a whole lot of ugly. I took every method from theListInter face and implemented
it with a “not implemented” exception. I kept the comments on the method categories (List attributes,
List operations, etc.) at the top with the plan to move each method up to it’s correct category when
implemented.

Binding the Listinterface

Now that we have a concrete class that implements the ListInterface, let’s bind the interface to
the class. The logical place to do this is in our service provider.

Q‘ Update TodoServiceProvider.php in app/src/GSD/Providers to match the following

s code.

<?php namespace GSD\Providers;

// File: app/src/GSD/Providers/TodoServiceProvider.php
use Illuminate\Support\ServiceProvider;

class TodoServiceProvider extends ServiceProvider ({

Vi
* Register the service provider
*/

public function register()

{
$this->app['todo'] = $this->app->share(function()

{

return new TodoManager;

});

$this->app->bind('GSD\Entities\ListInterface', 'GSD\Entities\TodolList');

2>

You may be asking yourself, what’s the difference between app->share() and app->bind() in
the above code? The difference is that app->share() implements the binding as a singleton. Man,
Laravel thinks of everything, doesn’t it?

O© 00 N O O b W N =~

NSNS
N~ O

© 00 N O O b W N =~

[= SN
B W N~ O

Chapter 29 - Implementing ListInterface 116

To give us that warm and fuzzy feeling, let’s write a unit test to make sure the ListInterface is
automagically bound to the TodoList.

Q’ Create the app/tests/GSD/Entities directory and create the file TodoListTest.php in
p that directory with the following code.

<?7php
// File: app/tests/GSD/Entities/Todol istTest.php

class TodoListTest extends TestCase

public function testBoundTolnterface()

{
$obj = App::make('GSD\Entities\ListInterface');
$this->assertInstanceOf('GSD\Entities\TodoList', $obj);

}

?2>

The test creates a new ListInter face object and then makes sure that object is an instance of the
TodoList.

Think it will work? Really? Have I steered you wrong yet? | mean besides all that getting rid of Todo
in class names, then deciding to use Todo again.

Q‘ Let’s find out.

4

~$ cd gsd
~/gsd$ phpunit --tap
TAP version 13

ok 1 - ExampleTest::testBasicExample

ok 2 - TodoListTest::testBoundTolnterface

ok 3 - TodoManagerTest: :testImATeapot

ok 4 - TodoManagerTest::testFacade

ok 5 - TodoManagerTest::testMakelListThrowsExceptionWhenExists
ok 6 - TodoManagerTest::testMakelList

ok 7 - TodoManagerTest::testAllListsReturnsArray

ok 8 - TodoManagerTest::testAllArchivedlListsReturnsArray

ok 9 - TodoManagerTest: :testGetListThrowsExceptionWhenMissing

ok 10 - TodoManagerTest::testGetListReturnsCorrectType
1..10

O© 00 N O O b W N =~

NN N NN P R R | N sy
B W N O O 00N 0 O b WO N -~ O

Chapter 29 - Implementing ListInterface

Hah! Test #2 shows it working.

The TodolList::__construct()

TodoL ist is going to need three other things to operate:

1. An object implementing TodoRepositoryInterface
2. An object implementing TaskCollectionInterface
3. An array to store the list’s attributes.

Let’s create a constructor to set that up.

Q’ Make the top of TodoList.php look like the following

4

<?php namespace GSD\Entities;
// File: app/src/GSD/Entities/TodolList.php
use GSD\Repositories\TodoRepositorylInterface;
class TodoList implements ListInterface {
protected $repository;
protected $tasks;

protected $attributes;

J Rk

* Inject the dependencies during construction

* @param TodoRepositorylInterface $repo The repository
* @param TaskCollectionInterface $collection The task collection

*/

public function __construct(TodoRepositorylnterface $repo,

TaskCollectionInterface $collection)

$this->repository = $repo;
$this->tasks = $collection;

$this->attributes = array();

117

25
26
27

© 00 N O O b W N =

10
11
12

Chapter 29 - Implementing ListInterface 118

// rest of the file as is
?2>

Nice, we're injecting dependencies in the constructor. Now, what do you think would happen if you
ran phpunit?

Go ahead and do it. I'll wait.

(Theme of Jeopardy plays ...)

You got errors. Heh. Know why?

Depending on how you ran phpunit, you might be able to figure it out. What’s going on is Laravel
realizes the GSD\Entities\ListInter face interface is now bound to GSD\Entities\TodolList, so
when the testBoundToInter face() test runs it tries to create an instance of the TodoList.

Earlier, this worked, but now we added a couple interfaces to the TodoList: : __construct().Laravel
tries. It really does. It tries to create default parameters for the _ _construct() method, but dang.
You cannot instantiate an interface.

Thus, the error.

Y Easy fix. Edit the TodoListTest.php file and add the following method at the top.

public function setup()

{
parent: :setup();
App: :bind('GSD\Repositories\TodoRepositoryInterface', function()
{
return Mockery: :mock('GSD\Repositories\TodoRepositorylnterface');
});
App::bind('GSD\Entities\TaskCollectionInterface', function()
{
return Mockery: :mock('GSD\Entities\TaskCollectionInterface');
1
}

Now, before the testBoundToInter face() method fires, this setup() method will bind mock objects
to the interfaces.

If you run phpunit again, it all will be well with the world again.

% Interface Binding is Powerful

‘nuff said.

© 0 9 O O & W N =

NN N R R R R S s
N »~ © O 0 J O O » W N~ O

Chapter 29 - Implementing ListInterface 119

Implementing TodoList::save()

Looking back over the example facade usage at the end of Chapter 24 the save() method is used in
most of the examples. So let’s get that one out of the way:.

Every Program is Different

I went on a bit in an earlier section how every programmer is different, but it’s also worth noting
every program is different. I'm not talking about what the program does, because duh, but how it
is developed. For instance I had no clue how much the facade planning of Chapter 24 would drive
the development of this app. On another application, it could be the User Interface that drives the
development. It’s always different.

Q’ Update TodoList.php in the app/src/Entities directory to match what’s below.

4

<?php namespace GSD\Entities;

// File: app/src/GSD/Entities/TodolList.php
use GSD\Repositories\TodoRepositoryInterface;
class TodoList implements ListInterface {

protected $repository;
protected $tasks;
protected $attributes;
protected $isDirty;

Vess
* Inject the dependencies during construction
* @param TodoRepositorylInterface $repo The repository
* @param TaskCollectionInterface $collection The task collection
*/

public function __construct(TodoRepositorylnterface $repo,
TaskCollectionInterface $collection)

$this->repository = $repo;

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7

Chapter 29 - Implementing ListInterface 120

$this->tasks = $collection;
$this->attributes = array();
$this->isDirty = false;

// List attributes ---------------—~-~-~—~-~—~—-~—-

// List operations ------------------—-------

J xRk

* Save the list

* @return $this For method chaining

* @throws RuntimeException If cannot save.

*/

public function save()

{

if ($this->isDirty)

{

}

$archived = lempty($this->attributes['archived']);
if (! array_key_exists('id', $this->attributes))
{
throw new \RuntimeException("Cannot save if id not set");
}
$id = $this->attributes['id'];
if (! $this->repository->save($id, $this, $archived))
{

throw new \RuntimeException("Repository could not save");

}

$this->isDirty = false;

return $this;

// Rest of the file is the same (except delete the other save() method)

?2>

To implement the save, I deleted the save() method further down in the code and put it under the

“List operations” category, but then I realized I only wanted to save the list if it’s dirty and I neglected

to have an $isDirty property. So I added the property and set it to false in the constructor.
Now, how can we test this method?

We can’t.

O© 00 N O O b W N =~

10

12
13
14
15
16
17
18
19

Chapter 29 - Implementing ListInterface 121

Why?

Because of that isDirty method. The class has no way to actually set the isDirty method to true.
If we were to write a test method at this point, it wouldn’t do a lot of good.

R The Simple Way to Unit Test

When writing unit tests, you should create a separate test for each possible execution path
in the code. If this seems too complicated, then perhaps the method you’re testing needs to
be refactored.

The isDirty flag will be set true any time an attribute or task within the list changes. Since it seems
easier right now to set a list attribute, let’s implement the set () method.

Implementing TodoList::set() and TodolList::get()

Since we’re going to implement TodoList: :set(), let’s do TodoList: :get() at the same time. This
allows us to write unit tests, testing set () with get().

Q‘ Update TodoList.php so the top portion of the file matches the code below. Also you’ll
p need to delete the set() and get() method elsewhere in the file.

<?php namespace GSD\Entities;
// File: app/src/GSD/Entities/TodolList.php
use GSD\Repositories\TodoRepositorylInterface;
class TodoList implements ListInterface {
protected static $validAttribs = array('id', 'archived',6 'subtitle', 'title');

protected $repository;
protected $tasks;
protected $attributes;
protected $isDirty;

Vet
* Inject the dependencies during construction
* @param TodoRepositorylInterface $repo The repository
* @param TaskCollectionInterface $collection The task collection

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Chapter 29 - Implementing ListInterface

*/
public function __construct(TodoRepositorylInterface $repo,
TaskCollectionInterface $collection)

$this->repository = $repo;
$this->tasks = $collection;
$this->attributes = array();
$this->isDirty = false;

// List attributes -------------—~-—~-~—~—~-~—~—-~-~--

Vet
* Return a list attribute
* @param string $name id|archived|subtitle/title
* @return mixed
* @throws InvalidArgumentException If $name is invalid
*/

public function get($name)

{
if (! in_array($name, static::$validAttribs))
{
throw new \InvalidArgumentException("Invalid attribute named $name");
}
if (array_key_exists($name, $this->attributes))
{
return $this->attributes[$name];
}
return null;
}
JHk

* Set a list attribute
* @param string $name id|archived|subtitle|title
* @param mixed $value Attribute value
* @return $this for method chaining
* @throws InvalidArgumentException If $name is invalid
*/
public function set($name, $value)
{
if (! in_array($name, static::$validAttribs))
{

122

62
63
64
65
66
67
68
69
70
71

Chapter 29 - Implementing ListInterface 123

throw new \InvalidArgumentException("Invalid attribute named $name");
}
if ($name == 'archived') $value = !! $value;
$this->attributes[$name] = $value;
$this->isDirty = true;
return $this;

// Rest of file is the same (except deleting get() and set())

Comments on the above code:

[added $validAttribs as a static property to have one place to define the valid list attributes
(DRY principle).

I changed the comments for both get() and set() slightly from what was defined in
ListInterface. (I'll leave it to you to update ListInterface to match these comments.)

+ The only specific attribute I'm doing anything special with is the archived flag. When setting
it I want to make sure it’s a truthy value.

« You may have noticed I removed isDirty from the list of attributes in the comments. Yes, it
is an attribute, but only when the list is loaded. The text file on the hard disk has no concept
of dirtiness. It seems cleaner this way.

Testing TodolList::set() and TodoList::get()

Q‘ Testing these functions is a snap. Add the following methods to the class in
app/tests/GSD/Entities/TodoListTest.php

<?php

Vess
* @expectedException InvalidArgumentException
*/
public function testGetInvalidNameThrowsException()

{
$list = App::make('GSD\Entities\TodoList');

$list->get('bogus');

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

© 0 9 O O & W N =

T U Y
N O O b W N =~ O

Chapter 29 - Implementing ListInterface

?2>

J Rk

* @expectedException InvalidArgumentException

*/

public function testSetInvalidNameThrowsException()

{

$list = App::make('GSD\Entities\TodolList");
$list->set('bogus', true);

public function testGetSetWorks()

{

$list = App::make('GSD\Entities\TodolList");
$result = $list->set('id', 'abc');
$this->assertSame($list, $result);

$result = $list->get('id');
$this->assertEquals($result, 'abc');

¥ And run your tests

o

~$ cd gsd
~/gsd$ phpunit --tap
TAP version 13

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
1.

© 0 N O O b W N -~

-~
(O]

11
12
13
.13

ExampleTest: :testBasicExample

TodoListTest: :testBoundToInter face

TodoListTest: :testGetInvalidNameThrowsException
TodoListTest: :testSetInvalidNameThrowsException
TodoListTest: :testGetSetWorks

TodoManagerTest: :testImATeapot

TodoManagerTest: :testFacade

TodoManagerTest: :testMakelListThrowsExceptionWhenExists
TodoManagerTest: :testMakelList

TodoManagerTest: :testAllListsReturnsArray
TodoManagerTest: :testAllArchivedlListsReturnsArray
TodoManagerTest: :testGetlListThrowsExceptionWhenMissing
TodoManagerTest: :testGetlListReturnsCorrectType

124

Almost done with this chapter. Just one last thing. We need to go back to that untested save()
method and do some testing.

©O© 0 I O O b wWw N =

W W W W N DN NDNDDNDDNDDNDDNDDNDDNS=S »~ 2 B > 2 B 2 =
W N0 O 0 N0 0 Pk WON A OO0 O N0 0k WwN -~ o

Chapter 29 - Implementing ListInterface 125

Testing TodolList::save()

Now that set() is done. We can set a value, forcing the isDirty flag on, and test all the paths
through the save() method.

d;’ Add the following tests to your TodoListTest.php file.

4

<7php
public function testSaveNotDirtyDoesNothing()
{
$list = App::make('GSD\Entities\TodoList');
//$list->set('id’', '123');
$result = $list->save();

Rk
* @expectedException RuntimeException
* @expectedExceptionMessage Cannot save i1f id not set
*/

public function testSaveNoIdThrowsException()

{
$list = App::make('GSD\Entities\TodoList');
$list->set('title', 'My Title');
$list->save();

Vet
* @expectedException RuntimeException
* @expectedExceptionMessage Repository could not save
*/

public function testSaveThrowsExceptionIfRepoFails()

{
App: :bind('GSD\Repositories\TodoRepositoryInterface', function()

{
$mock = Mockery: :mock('GSD\Repositories\TodoRepositoryInterface');
$mock->shouldReceive('save')->once()->andReturn(false);
return $mock;

});

$list = App::make('GSD\Entities\TodoList");

$list->set('id', 'listname');

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Chapter 29 - Implementing ListInterface 126

$list->save();

}

public function testSaveWorksAsExpected()

{
App: :bind('GSD\Repositories\TodoRepositoryInterface', function()

{
$mock = Mockery: :mock('GSD\Repositories\TodoRepositorylInterface');
$mock->shouldReceive('save')->once()->andReturn(true);
return $mock;

1

$list = App::make('GSD\Entities\TodolList");

$list->set('id', 'listname');

$result = $list->save();

$this->assertSame($list, $result);

}

2>
Let me explain each test ...

testSaveNotDirtyDoesNothing()

This test method is just checking that nothing really happens if the list is not dirty. Since no changes
to the list occur after construction, then it shouldn’t be dirty? How do you know it’s working? That’s
why I have that one line:

//$1ist->set('id', '123');

If you remove the comment, then it sets the id attribute, the side effect of which is flipping on
isDirty. If you run the test with this line active, there’ll be an error because our mock repository
(created in setup(), remember) has no save() method.

testSaveNoldThrowsException()

In this test I call set() on the list, but do not set the id attribute. This triggers the exception within
TodoList: :save() which makes sure id is always set. Since TodoList: :save() can return multiple
exceptions, the docblock above the test method also contains the expected exception method.

testSaveThrowsExceptionlfRepoFails()

Here I bind a new implementation of the mock object for the repository. This mock object expects
that save() will be called and returns false, triggering the exception within TodoList: :save().

Keep in mind that the setup() method already bound a mock object to TodoRepositoryInter face,
but the mock object there didn’t do anything. We're replacing it with a new binding.

© 00 N O O b W N =

[T S T S = S S G G i U G U
, O © 00 N O O b W N =~ O

Chapter 29 - Implementing ListInterface 127

testSaveWorksAsExpected()

This method is almost identical to the last one, but the mock repository will return true when save()
is called. Therefore no exception. All should be working smoothly.

oY Let’s test it

4

~$ cd gsd
~/gsd$ phpunit --tap
TAP version 13

ok 1 - ExampleTest::testBasicExample

ok 2 - TodoListTest::testBoundTolnterface

ok 3 - TodoListTest::testGetInvalidNameThrowsException
ok 4 - TodoListTest::testSetInvalidNameThrowsException
ok 5 - TodoListTest: :testGetSetWorks

ok 6 - TodoListTest::testSaveNotDirtyDoesNothing

ok 7 - TodoListTest::testSaveNoIdThrowsException

ok 8 - TodoListTest::testSaveThrowsExceptionIfRepoFails
ok 9 - TodoListTest: :testSaveWorksAsExpected

ok 10 - TodoManagerTest::testImATeapot

ok 11 - TodoManagerTest: :testFacade

ok 12 - TodoManagerTest::testMakelListThrowsExceptionWhenExists
ok 13 - TodoManagerTest: :testMakelList

ok 14 - TodoManagerTest::testAlllListsReturnsArray

ok 15 - TodoManagerTest: :testAllArchivedlListsReturnsArray

ok 16 - TodoManagerTest::testGetlListThrowsExceptionWhenMissing
ok 17 - TodoManagerTest: :testGetListReturnsCorrectType

1..17

Boo Ya! Who’s your daddy?
Whew! This chapter was a bit long. I need to take a break and go eat a sandwich.

Chapter 30 - Finishing the TodoList
class

0 In This Chapter

In this chapter we’ll finish implementing the TodoL ist class.

What's left to do? The TodoL ist class still has a long list of unimplemented methods. For a moment,
I couldn’t quite decide how to proceed. Should I continue following the facade mock-ups from back
in Chapter 24 or go through the list of unimplemented methods in TodoList?

Really, either approach would work at this point, but I'd kind of like to wrap up the TodoL ist class
and focus on other missing classes. So let’s finish it up.

Finishing the “List Attribute” methods

It looks like the unimplemented “List Attribute” methods will be easy to wrap up.

¥ Add the following four methods to the “List Attribute” section of your TodoList class. Be

sure and remove the existing, unimplemented versions.

<7php

JHk
* Return the list's id (base filename)
*/

public function id()

{
return $this->get('id');

}

Rk

* s the list archived?
* @return bool
*/

public function isArchived()

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Chapter 30 - Finishing the TodoList class 129

{

return !! $this->get('archived');

Vess
* Is the list dirty?
* @return bool

*/
public function isDirty()
{
return $this->isDirty;
}
kK
* Return the title (alias for get('title'))
*/
public function title()
{
return $this->get('title');
}
2>

You know what? 'm not even going to bother unit testing those methods. I mean they were all
one-liners.

Removing TodolList::load()

When thinking about implementing the TodoList: : load() I realize that this functionality is already
provided by the TodoRepositoryInterface. The TodoManager: :get() method calls the repository
version. Do I need to duplicate the load functionality here?

Of course not.

Q’ Remove the definition of the load() method from both the ListInterface and the
p TodoList class.

Implementing TodoList::archive()

Alrighty then. Let’s implement the archive(). How should an archive work? I'm thinking if the list is
not already archived, then archiving it will save it in an archived directory (overwriting it if already
there), then delete the original list.

O 00 N O O b W N -~

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Chapter 30 - Finishing the TodoList class

Q’ Add the following method to your TodoList in the “List Operations” section

4

<?php
J**

2>

* Archive the list. This makes the 1list only available from the archive.

* @return ListInterface For method chaining
* @throws RuntimeException If cannot save.

*/

public function archive()

{

// If already archived, then return this
if ($this->isArchived())
{

return $this;

if (! array_key_exists('id', $this->attributes))
{

throw new \RuntimeException('"Cannot archive if id not set");

}
$id = $this->attributes['id'];

// Delete existing, unarchived list if it exists
if ($this->repository->exists($id, false) and
I $this->repository->delete($id, false))

throw new \RuntimeException("Repository failed deleting unarchived list");

// Set archived and save
$this->set('archived', true);
return $this->save();

130

The comments should make the above logic easy to follow. The only point [wanted to make is that,
at the bottom of the method, I chose to call the set() method to set the archived flag instead of

doing it manually. This will force the isDirty flag on, thus making sure save() will save.

We'll test this in a moment, but the TodoRepositoryInterface doesn’t yet have a delete() method,
so let’s add that first.

Chapter 30 - Finishing the TodoList class

Q’ Add the following code to your TodoRepositorylInterface

4

Rk
* Delete the todo list
* @param string $id ID of the list
* @return boolean True 1f successful
*/

public function delete($id, $archived = false);

Okay, let’s do the unit tests.

d;’ Add the methods below to the TodoListTest . php file.

4

<7php
public function testArchiveWhenAlreadyArchivedDoesNothing()
{
$list = App::make('GSD\Entities\TodolList");
$list->set('archived', true);
$list->archive();

Rk
* @expectedException RuntimeException
* @expectedExceptionMessage Cannot archive if id not set
*/

public function testArchiveWithNoIdThrowsException()

{
$list = App::make('GSD\Entities\TodolList");
$list->archive();

Rk
* @expectedException RuntimeException
* @expectedExceptionMessage Repository failed deleting unarchived list
*/

public function testArchiveWhenRepoFailsOnDelete()

{
App: :bind('GSD\Repositories\TodoRepositoryInterface', function()

131

26
27
28
29
30
31
32
33
34
35
36

Chapter 30 - Finishing the TodoList class 132

$mock = Mockery: :mock('GSD\Repositories\TodoRepositoryInterface');
$mock ->shouldReceive('exists')->once()->andReturn(true);
$mock ->shouldReceive('delete')->once()->andReturn(false);
return $mock;
1
$list = App::make('GSD\Entities\TodolList");
$list->set('id', 'actions');
$list->archive();

2>

Those three tests will follow three of the four paths through our TodoList: :archive() method. I
decided not to test the final path, the one that hits the last two lines of the archive() method because
we've already tested both the set() and save() methods.

I'll leave it to you run phpunit to make sure the code is working. (It works for me at this point, so if
you have any issues check for typos.)

% Learning from Unit Tests

A great way to figure out how code operates that you didn’t write is to examine the unit
tests. This will give you insight into exactly how the initial developer believed his or her
code was working.

All that’s left with the TodoL ist class are the unimplemented “Task Operation” methods. I'm pretty
sure they’re going to be wrappers on the TaskInter face or the TaskCollectionInter face, let’s code
them and see.

Implementing TodoList::taskAdd()

Let’s see ... The TaskCollectionInterface has a add() method we can wrap.

&’ Update the TodoList.php, implementing the taskAdd() as follows.

© 0 9 O O & W N =

10
11
12

O O b W N =

Chapter 30 - Finishing the TodoList class 133

Rk
* Add a new task to the collection
* @param string|TaskInterface $task Either a TaskInterface or a string
we can construct one from.
* @return $this for method chaining
*/
public function taskAdd($task)
{
$this->tasks->add($task);
$this->isDirty = true;
return $this;

That’s simple enough I'm not going to bother with a unit test.

Did you notice the TaskCollectionInterface: :add() takes a different argument than this method?
Good eyes. Let’s fix it.

Q‘ Update the add() method in TaskCollectionInterface.php to match the code below.

4

Rk
* Add a new task to the collection
* @param string|TaskInterface $task Either a TaskInterface or a string
we can construct one from.
*/
public function add($task);

TodolList::taskCount(), TodoList::task(), and TodoList::taskGet()

I’'m kind of getting bored with this chapter and just want it to end. So let’s tackle three implemen-
tations at once.

&’ Update the three methods below in your TodoList.php

Chapter 30 - Finishing the TodoList class 134

<?7php
Rk

* Return number of tasks
* @return integer
*/
public function taskCount()
{

return count($this->tasks->getAll());

/**

* Return a task

*

@param integer $index Task index #

*

@return TaskInter face

*

@throws OutOfBoundsException If $index outside range
*/

public function task($index)

{

return $this->tasks->get($index);

Rk
Return a task attribute

@param integer $index Task index #

@param string $name Attribute name

@return mixed

@throws OutOfBoundsException If $index outside range

¥ ¥ ¥ %X %X %

@throws InvalidArgumentException If $name is invalid
*/
public function taskGet($index, $name)

{
$task = $this->tasks->get($index);
return $task->get($name);

?2>

Those were simple. That’s what happens when you design things organically, from the ground up
and use interfaces. You get to the point of implementation and very often it’s a breeze.

I’m almost tempted to do some unit testing, but since they’re wrapping other methods I figure when
I get to the underlying methods I can test them. (Plus, I'm still bored with this chapter?)

I did notice, when double-checking the methods I'm calling above that the taskGet() has the
potential of throwing two different types of exceptions. I updated the docblock here and in

Chapter 30 - Finishing the TodoList class

ListInterface to reflect this.

The final three TodolList::tasks(), TodoList::taskSet(),
and TodolList::taskRemove()

&’ Update the final three methods below in your TodoL ist . php file.

<?7php
Vet
* Return all tasks as an array.
* @return array All the TaskInter face objects

*/
public function tasks()
{
return $this->tasks->getAll();
}
Rk

* Set a task attribute

@param integer $index Task index #

@param string $name Attribute name

@param mixed $value Attribute value

@return $this for method chaining

@throws OutOfBoundsException If $index outside range

¥ ¥ ¥ X %X %

@throws InvalidArgumentException If $name is invalid
*/

public function taskSet($index, $name, $value)

{

$task = $this->tasks->get($index);

$task->set($name, $value);

return $this;

kK
* Remove the specified task
* @return $this for method chaining
* @throws OutOfBoundsException If $index outside range

*/

135

32
33
34
35
36
37

Chapter 30 - Finishing the TodoList class 136

public function taskRemove($index)

{

$this->tasks->remove($index);
return $this;

2>

Easy. And yeabh, still not adding the unit tests. Although I encourage you to add them.

Like the taskGet() method earlier, taskSet() was missing that second exception type in the
docblock. Also, The @return was missing from the taskRemove() method. I added both of these
both in the TodoList class and the ListInterface.

That’s it. Really, there’s only three more interfaces that need concrete classes behind them: the
TaskCollectionInter face, the TaskInterface, and the TodoRepositoryInter face. Which should
I do next?

I’ll use the time tested method programmers have used since caveman days to decide things: Eenie,
meenie, minie, moe. Catch a tiger by the toe. If it hollers ...

Chapter 31 - The TaskCollection and
Task classes

0 In This Chapter

In this chapter we’ll completely code both the TaskCollection class and the Task class and
hope they work.

I'm going to try something different with this chapter. I'm going to completely implement two of
the remaining interfaces. Yep, just coding the implementation blindly, without testing, just to get it
done. Then I'll go back and write tests for the implementations.

The TaskCollection class

O)’ Add the file TaskCollection.php to your app/src/GSD/Entities directory with the
ﬁ following content.

<?php namespace GSD\Entities;
// File: app/GSD/Entities/TaskCollection.php
class TaskCollection implements TaskCollectionInterface ({

protected $tasks; // Array of TaskInterfaces

Ve
* Constructor
*/
public function __construct()
{
$this->tasks = array();
}

J**

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59

Chapter 31 - The TaskCollection and Task classes 138

* Add a new task to the collection
* @param string|TaskInterface $task Either a TaskInterface or a string
* we can construct one from.
* @throws InvalidArgumentException If $task not string or TaskInterface
*/
public function add($task)
{
if (! ($task instanceof TasklInterface))
{
if (! is_string($task))
{
throw new \InvalidArgumentException(
'$task must be string or TaskInterface');
}
$newTask = App::make('GSD/Entities/TaskInterface');
if (! $newTask->setFromString($task))
{

throw new \InvalidArgumentException('Cannot parse task string');

}

$task = $newTask;
}
$this->tasks[] = $task;
$this->sortTasks();

kK
* Return task based on index
* @param integer $index O is first item in collection
* @return TaskInterface The Todo Task

* @throws OutOfBoundsException If $index outside range

*/
public function get($index)
{
if ($index < 0 || $index >= count($this->tasks))
{
throw new \OutOfBoundsException('$index is outside range');
}
return $this->tasks[$index];
}
JHk

* Return array containing all tasks

Chapter 31 - The TaskCollection and Task classes 139

60 * @return array

61 */

62 public function getAll()

63 {

64 return $this->tasks;

65 }

66

67 Rk

68 * Remove the specified task

69 * @param integer $index The task to remove
70 * @throws OutOfBoundsException If $index outside range
71 */

72 public function remove($index)

73 {

74 if ($index < 0 || $index >= count($this->tasks))
75 {

76 throw new \OutOfBoundsException('$index is outside range');
77 }

78 unset($this->tasks[$index]);

79 $this->sortTasks();

80 }

81

82 Rk

83 * Sort the tasks where:

84 * 1) Next actions are alphabetically first
85 * 2) Normal tasks are alphabetically next
86 * 3) Completed tasks are sorted by date completed, descending
87 */

88 protected function sortTasks()

89 {

20 $next = array();

91 $normal = array();

92 $completed = array();

93 foreach ($this->tasks as $task)

94 {

95 if ($task->isComplete())

96 {

o7 $completed[] = $task;

08 }

99 elseif ($task->isNextAction())

100 {

101 $next[] = $task;

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

Chapter 31 - The TaskCollection and Task classes 140

?2>

}

else

{
$normal[] = $task;

}

usort($next, 'TaskCollection::cmpDescription');
usort($normal, 'TaskCollection::cmpDescription');
usort($completed, 'TaskCollection::cmpCompleted');
$this->tasks = array_merge($next, $normal, $completed);

kK

* Compare two tasks by description

*/
public static function cmpDescription($a, $b)
{
return strnatcemp($a->description(), $b->description());
}
Rk

* Compare two tasks by completion date
*/

public static function cmpCompleted($a, $b)

{

$stamp1l = $a->dateCompleted()->timestamp;
$stamp2 = $b->dateCompleted()->timestamp;
if ($stamp1l == $stamp2)

{

return strnatcmp($a->description(), $b->description());

}
return $stampl - $stamp2;

Everything within the TaskCollection should be straightforward and easy to follow. I decided while
coding that I'd keep the list sorted. So when the add() method or remove() method are called, it hits
an internal sort() method to do it.

Also, I needed a setFromString() method on the TaskInter face to set all the task’s information
from a string. Let’s go add that to the interface. And while we’re at it, let’s add a method to return
the task as a string. I'll use the magic method __toString() to convert to a string because, well,

Chapter 31 - The TaskCollection and Task classes 141

anything with the word magic in it has got to be good.

(Um, as I'm checking for typos I realize the movie “Magic Mike” has the word magic in it. I didn’t
see the movie, but I cannot imagine I'd like it. So, I'll reverse my earlier statement ... not everything
with the word “magic” in it is necessarily good.)

¥ Add the method below to the TaskInter face.

4

<?php
kK
* Set all the tasks attributes from a string.
* @param string $info The task info
* @return bool True on success, false otherwise
*/
public function setFromString($info);

© 0O 9 O O & W N =

T ==Y
w N =~

Vet
* Return the task as a string
*/

public function __toString();
2>

Will it work? I really hope so. Let’s keep going though.

The Task class

I'm doing the same thing and completely coding the Task class. It’s almost like I'm attempting to
fail in public here because code is very seldom perfect the first time around. (My code, at least.)

Q’ Add the file Task . php to your app/src/GSD/Entities directory with the following content.

4

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 31 - The TaskCollection and Task classes

<?php namespace GSD\Entities;

// File: app/src/GSD/Entities/Task.php

use Carbon\Carbon;

class Task implements TaskInterface {

protected $complete;

protected $due;

protected $nextAction;

Rk
* Constructor
*/

public function __construct()

{
$this->clear();

Ve
* Clear all task attributes
*/

protected function clear()

{

$this->complete = false;
$this->description = '";
$this->due = null;
$this->whenCompleted = null;

$this->nextAction = false;

J Rk

* Has the task been completed?

* @return boolean
*/
public function isComplete()

{

return $this->complete;

// Is the task complete?
protected $description; // Task description

// null or Carbon
protected $whenCompleted; // null or Carbon

// Is this a next action?

142

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 31 - The TaskCollection and Task classes

Rk
* What's the description of the task
* @return string

*/
public function description()
{

return $this->description;
}
J**

* When is the task due?
* @return mixed Either null if no due date set, or a Carbon object.
*/

public function dateDue()

{

return $this->due;

Veis
* When was the task completed?
* @return mixed Either null if not complete, or a Carbon object
*/

public function dateCompleted()

{

return $this->whenCompleted;

Rk
* Is the task a Next Action?

* @return boolean

*/
public function isNextAction()
{
return $this->nextAction;
}
Rk

* Set whether task is complete. Automatically updates dateCompleted.
* @param bool $complete
*/

public function setIsComplete($complete)

143

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Chapter 31 - The TaskCollection and Task classes

$this->complete = || $complete;
if ($this->complete)
{

$this->whenCompleted = new Carbon;

}

else

{

$this->whenCompleted = null;

Vet
* Set task description
* @param string $description

*/
public function setDescription($description)
{
$this->description = $description;
}
/**

* Set date due
* @param null|[string|Carbon $date null to clear, otherwise stores Carbon
* date internally.
* @throws InvalidArgumentException If $date is not null or Carbon
*/
public function setDateDue($date)
{
if (! is_null($date) and ! ($date instanceof Carbon))
{

throw new \InvalidArgumentException('$date is not null or Carbon');

}
$this->due = $date;

Rk
* Set whether task is a next action
* @param bool $nextAction
*/

public function setIsNextAction($nextAction)

{

144

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Chapter 31 - The TaskCollection and Task classes

$this->nextAction = !l $nextAction;

JHk
* Set a property. (Ends up calling specific setter)

* @param string $name isComplete|description|dateDue/isNextAction

* @param mixed $value The value to set
* @throws InvalidArgumentException If $name is invalid
*/
public function set($name, $value)
{
switch ($name)
{
case 'isComplete':
$this->setIsComplete($value);
break;
case 'description':
$this->setDescription($value);
break;
case 'dateDue':
$this->setDateDue($value);
break;
case 'isNextAction':
$this->setIsNextAction($value);
break;
default:

throw new \InvalidArgumentException("Invalid attribute $name");

/**
* Get a property.

145

* @param string $name isComplete|description|/dateDue|isNextAction|dateCompleted

* @return mixed

* @throws InvalidArgumentException If $name is invalid
*/
public function get($name)
{

switch ($name)

{

case 'isComplete':
return $this->isComplete();

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Chapter 31 - The TaskCollection and Task classes

J Rk

* Set all the tasks attributes from a string.

case 'description':
return $this->description();
case 'dateDue':
return $this->dateDue();
case 'isNextAction':
return $this->isNextAction();
case 'dateCompleted’:
return $this->dateCompleted();
default:
throw new \InvalidArgumentException("Invalid attribute $name");

* @param string $info The task info

* @return bool True on success, false otherwise

*/

public function setFromString($info)

{

$this->clear();

// Remove dup spaces and split into words

$info = preg_replace('/\s\s+/', ' ', $info);

$words = explode(' ', trim($info));
if (count($words) == 0)

{

return false;

// Completed item
if ($words[0] == 'x")

{

$this->complete = true;
array_shift($words);
try
{
$this->whenCompleted = new Carbon(array_shift($words));
}
catch (\Exception $e)
{

return false;

146

Chapter 31 - The TaskCollection and Task classes 147

211 }

212 }

213

214 // Next action

215 else if ($words[0Q] == '*")

216 {

217 $this->nextAction = true;

218 array_shift($words);

219 }

220

221 // Normal item

222 else if ($words[0Q] == '-")

223 {

224 array_shift($words);

225 }

226

227 // Look for a due date

228 for ($i = 0; $i < count($words); $i++)
229 {

230 if (substr($words[$i], ©, 5) == ':due:')
231 {

232 $this->due = new Carbon(substr($words[$i], 5));
233 unset($words[$i]);

234 break;

235 }

236 }

237

238 $this->description = join(' ', $words);
239 return true;

240 }

241

242 Vit

243 * Return the task as a string

244 */

245 public function __toString()

246 {

247 $build = array();

248 if ($this->complete)

249 {

250 $build[] = 'x';

251 $build[] = $this->whenCompleted->format('Y-m-d');

252 }

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Chapter 31 - The TaskCollection and Task classes 148

elseif ($this->nextAction)
{
$build[] = '*';
}
else
{
$build[] o
}
$build[] = $this->description;
if ($this->due)

{
$build[] = ':due:' . $this->due->format('Y-m-d");
}
return join(' ', $build);
}
}
?>

Whew! That seems like a lot of code, but really it was easy to write. This is because most of the kinks
were worked out already using the TaskInter face and TaskCollectionInterface. So this chapter
really was just following a map to write code.

Binding the Interfaces

Since we’ve implemented the concrete classes behind TaskCollectionInter face and TaskInter face,
let’s bind the interfaces to them.

Where do you think this should happen? You are correct In the service provider.

Q’ Update the TodoServiceProvider.php file in your app/src/GSD/Providers directory to
p match the code below.

© 0 9 O O & W N =

NN N NN N R R L s s
O b W0 N »~» © O© 00 J O O b W N »~ O

Chapter 31 - The TaskCollection and Task classes 149

<?php namespace GSD\Providers;

// File: app/src/GSD/Providers/TodoServiceProvider.php
use Illuminate\Support\ServiceProvider;

class TodoServiceProvider extends ServiceProvider ({

Vet
* Register the service provider
*/

public function register()

{
$this->app['todo'] = $this->app->share(function()

{

return new TodoManager;

});

$this->app->bind('GSD\Entities\ListInterface', 'GSD\Entities\TodoList');

$this->app->bind('GSD\Entities\TaskInterface', 'GSD\Entities\Task');

$this->app->bind('GSD\Entities\TaskCollectionInterface',
'"GSD\Entities\TaskCollection');

2>

Now any time we do an App: :make(' TaskInterface') Laravel will automatically return an instance
Task class.

I am a wee bit nervous with all of this blind coding. I can almost guarantee you there’s going to be
something wrong. But who knows? Sometimes people get a hole-in-one and how impossible is that?

Let’s see what happens with testing in the next chapter.

© 0 9 O O & W N =

(AN
[]

Chapter 32 - Testing the
TaskCollection and Task classes

0 In This Chapter

In this chapter we’ll test those two classes we created in the last chapter.

Should Getters and Setters be Unit Tested

Sure, if you want to. Me? I often don’t unit test any getter or setter unless there’s some type of side
effect going on. Like setting the completed flag on a task with the side effect of the dateCompleted
also being set.

But again, every programmer’s different. Some people like the feeling of completeness of having
each and every method testing. I like that feeling too, but the feeling I like even more is the one you
have when it’s all done. And, honestly, sometimes in the spirit of Getting Stuff Done I'll forgo many
tests that I plan on coming back to. Yet, somehow, I never seem to have the time to come back and
do it.

Testing the Task class

Q’ Add the TaskTest.php file to your app/tests/GSD/Entities directory with the contents

p below.

<?php
// File: app/tests/GSD/Entities/TaskTest.php

class TaskTest extends TestCase {
protected function newTask()
{
return App::make('GSD\Entities\TaskInterface');

}

public function testGetters()

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

Chapter 32 - Testing the TaskCollection and Task classes

public function testSettingCompleteUpdatesWhenComplete()

{

$task = $this->newTask();

// Use specific getters

$this->assertFalse($task->isComplete());
$this->assertbEquals('', $task->description());
$this->assertNull($task->dateDue());
$this->assertNull($task->dateCompleted());
$this->assertFalse($task->isNextAction());

// Use generic getter

$this->assertFalse($task->get('isComplete'));
$this->assertbquals('', $task->get('description'));
$this->assertNull($task->get('dateDue'));
$this->assertNull($task->get('dateCompleted'));
$this->assertFalse($task->get('isNextAction'));

$task = $this->newTask();

$task->setIsComplete(true);

$this->assertInstanceOf('Carbon\Carbon', $task->dateCompleted());
$this->assertEquals(date('Y-m-d'), $task->dateCompleted()->format('Y-m-d'));

kK

public function testSetDueThrowsException()

{

public function testOtherSetters()

{

* @expectedException InvalidArgumentException

*/

$task = $this->newTask();
$task->setDateDue(123);

$task = $this->newTask();

$testl
$test2

'Test description’;
'Another test';

151

54
55
56
ST
58
59
60
61
62
63
64
65
66
o7
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Chapter 32 - Testing the TaskCollection and Task classes

$task->setDescription($testl);
$this->assertEquals($testl, $task->description());
$task->set('description', $test2);
$this->assertEquals($test2, $task->description());

$test1 = new Carbon\Carbon('1/1/2013');
$task->setDateDue($testl);
$this->assertEquals($testl, $task->dateDue());
$task->set('dateDue', null);
$this->assertNull($task->dateDue());

$task->setIsNextAction(true);
$this->assertTrue($task->isNextAction());
$task->set('isNextAction', false);
$this->assertFalse($task->isNextAction());

ok
* @expectedException InvalidArgumentException
*/

public function testGetWithBadNameThrowsError()

{
$task = $this->newTask();

$task->get('something');

Rk
* @expectedException InvalidArgumentException
*/

public function testSetWithBadNameThrowsError()

{
$task = $this->newTask();

$task->set('something', 'bla');

Rk
* @dataProvider stringTests
*/

public function testStringVariations($string, $valid, $stringSame)

{
$task = $this->newTask();

152

96

o7

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Chapter 32 - Testing the TaskCollection and Task classes 153

$result = $task->setFromString($string);
if ($valid)
{
$this->assertTrue($result);
if ($stringSame)
{
$this->assertbquals($string, (string)$task);
}

else

{
$this->assertNotEquals($string, (string)$task);

}

else

{

$this->assertFalse($result);

}

public function stringTests()
{
return array(

array('', false, false),
array('* Simple next action', true, true),
array('* Next with due date :due:2013-09-14', true, true),
array('- task with an extra space', true, false),
array('x bad', false, false),
array('- Due date :due:2013-09-14 in middle', true, false),
array('x 2013-08-03 Start Laravel Book: Getting Stuff Done', true, true),

2>

I’'m not going to attempt to pull the wool over your eyes and tell you I coded this entire test and it
worked first time. I didn’t and it didn’t. I wrote one test, ran phpunit, then moved to the next test
case. During this process I had to fix a few typos in TaskTest (I always type assertEqual() instead
of assertEquals() ... don’t ask me why).

And during this process something bad happened ...
I ran into a bug in the existing Task code.

Amazingly enough there was not a single typo. I consider that a huge win. (Although I did triple
check my code in the last chapter before moving on.)

~N O O & W N =

O 00 N O O b W N -~

T S O
0 I O O b W N -~ O

Chapter 32 - Testing the TaskCollection and Task classes 154

We'll fix the bug, that keeps the tests from operating is in the next section of this chapter.

Another note. Notice how I'm creating a new instance of class using the interface name in
newTask()? That tells us the interface binding is working.

Fixing the mistake in the Task class

In the setFromString() method I tried checking if the string was empty after I split it into words
with the logic:

// Remove dup spaces and split into words

$info = preg_replace('/\s\s+/', ' ', $info);
$words = explode(' ', trim($info));

if (count($words) == 0)

{

return false;

The problem, of course, is that if my string is empty, $words will be an array, 1 big, with an empty
string.

d)’ Update the Task class, replacing the setFromString() method with the following code

4

Vi
* Set all the tasks attributes from a string.
* @param string $info The task info
* @return bool True on success, false otherwise
*/
public function setFromString($info)

{
$this->clear();

// Remove dup spaces and split into words

$info = preg_replace('/\s\s+/', ' ', $info);
$words = explode(' ', trim($info));
if (count($words) == 1 && $words/0] == '")
{
return false;
}

// the rest of the method is unchanged

O b W N =

Chapter 32 - Testing the TaskCollection and Task classes 155

That will make all the TaskTest tests pass.

Do it. Run phpunit. Everything should be working before moving on.

Fixing Timezone in the Configuration

Another thing I discovered in creating the TaskTest class above is that I neglected to set the timezone
of my application.

Y Edit your app/config/app.php file and change the timezone as follows.

// change this
'timezone' => 'UTC',

// to this (actually, use your own timezone)
'"timezone' => 'America/Los_Angeles',

Testing the TaskCollection class

Before presenting the unit tests to you, let’s go fix a few of the errors. (I don’t know what to say.
I thought my code was perfect. Turns out I was wrong.) These errors keep the next set of unit tests
from working. So gotta fix ‘em now.

Or ...

If you want, create the unit tests yourself and trace down the following 3 errors to fix yourself.
1st problem
In the TaskCollection: :sortTasks() method, I had the following 3 lines:

usort($next, 'TaskCollection::cmpDescription');

usort($normal, 'TaskCollection::cmpDescription');

usort($completed, 'TaskCollection::cmpCompleted');

Well, those 2nd arguments aren’t valid callbacks.

¥ Change those lines to:

O b W N =

O b W N =

Chapter 32 - Testing the TaskCollection and Task classes 156

usort($next, 'static::cmpDescription');
usort($normal, 'static::cmpDescription');
usort($completed, 'static::cmpCompleted');

2nd problem

In the TaskCollection: :add() method, I use the App facade without namespacing it correctly.

¥ Fix it by adding a slash before the facade name.

4

// Change this
$newTask = App::make('GSD/Entities/TaskInterface');

// to this
$newTask = \App::make('GSD/Entities/TaskInterface');

3rd problem

In the same file, on the same exact line, I have the slashes wrong.

Q‘ Fix it by changing the slashes to backslashes.

o

// Change this
$newTask = \App::make('GSD/Entities/TaskInterface');

// to this
$newTask = \App: :make('GSD\Entities\TaskInterface');

That’s all the problems. Not perfect, but still not too awful.

Q‘ Create the TaskCollectionTest .php file in your app/tests/GSD/Entities directory with
s the following content.

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 32 - Testing the TaskCollection and Task classes 157

<?php
// File: app/tests/GSD/Entities/TaskCollectionTest.php

class TaskCollectionTest extends TestCase {

protected function newCollection()

{
return App::make('GSD\Entities\TaskCollectionInterface');

public function testAddFromClassWorks()
{

$tasks = $this->newCollection();

$task = App::make('GSD\Entities\Task');
$task->setDescription('a simple test');
$tasks->add($task);

Vet
* @expectedException InvalidArgumentException
* @expectedExceptionMessage $task must be string or TaskInterface
*/

public function testAddWithInvalidTypeThrowsError()

{
$tasks = $this->newCollection();

$tasks->add(3.0);

Vess
* @expectedException InvalidArgumentException
* @expectedExceptionMessage Cannot parse task string
*/

public function testAddWithEmptyStringThrowsError()

{

$tasks = $this->newCollection();
$tasks->add('"');

public function testAddWithValidString()

{
$tasks = $this->newCollection();

$description = 'Something todo';

43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 32 - Testing the TaskCollection and Task classes

$tasks->add($description);

$this->assertEquals($description, $tasks->get(0)->description());

Rk
* @expectedException OutOfBoundsException
*/
public function testGetWhenEmptyThrowsException()
{
$tasks = $this->newCollection();
$tasks->get(0);

public function testGetAll()

{
$tasks = $this->newCollection();
$result = $tasks->getAll();
$this->assertSame(array(), $result);
$tasks->add("Item 1");
$tasks->add("Item 2");
$result = $tasks->getAll();
$this->assertinternalType('array', $result);
$this->assertCount(2, $result);

kK
* @expectedException OutOfBoundsException
*/
public function testRemoveThrowsException()
{
$tasks = $this->newCollection();
$tasks->add('item 1');
$tasks->remove(1);

public function testAddSortRemove()

{
$tasks = $this->newCollection();
$tasks->add('Zebra painting');
$tasks->add('Alligator wrestling');
$tasks->add('Monkey business');

$this->assertEquals('Alligator wrestling', $tasks->get(Q)->description());

158

85
86
87
88
89
90
91
92
93

© 00 N O O & W N =

NN N NN NN P R R s sy
O O b WO N » O © 0 O O b O N -~ O

Chapter 32 - Testing the TaskCollection and Task classes

$tasks->remove(0);
$tasks->remove(1);

$result = $tasks->getAll();

$this->assertinternalType('array', $result);

$this->assertCount(1, $result);

$this->assertbEquals('Monkey business', $result[@]->description());

2>

159

Now if you run phpunit, it should generate that odor that we all love—the sweet smell of success!

Q‘ Run php unit

4

~$ cd gsd
~/gsd$ phpunit --testdox

PHPUnit 3.7.26 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/phpunit.xml

Example
[x] Basic example

TaskCollection

[x] Add from class works
Add with valid string
Get all

Remove throws exception
Add sort remove

Task
[x] Getters
[x] Setting complete updates
[x] Set due throws exception
[x] Other setters
[x] Get with bad name throws
[x] Set with bad name throws

Add with invalid type throws error
Add with empty string throws error

[x]
[x]
[x]
[x] Get when empty throws exception
[x]
[x]
[x]

when complete

error
error

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Chapter 32 - Testing the TaskCollection and Task classes

[x] String variations
TodoList
[x] Bound to interface
[x] Get invalid name throws exception
[x] Set invalid name throws exception
[x] Get set works
[x] Save not dirty does nothing
[x] Save no id throws exception
[x] Save throws exception if repo fails
[x] Save works as expected
[x] Archive when already archived does nothing
[x] Archive with no id throws exception
[x] Archive when repo fails on delete
TodoManager
[x] Im a teapot
[x] Facade
[x] Make list throws exception when exists
[x] Make list
[x] All lists returns array
[x] All archived lists returns array
[x] Get list throws exception when missing
[x] Get list returns correct type

All good. We’re up to 41 tests now with 70 assertions.

160

O O b W N =

Chapter 33 - Implementing the
TodoRepository

0 In This Chapter

In this chapter we’ll code the TodoRepository. This is the last concrete class needed to
support all of our interfaces.

A dab of Refactoring

As I started thinking about implementing the TodoRepository I realized that I don’t like the save()
method. It takes an $id and $archived parameter, both of which the list being saved can provide.

So let’s refactor those arguments away:.

¥ Change the save() method in TodoRepositoryInterface to what’s below.

kK
* Save a Todolist
* @param ListInterface $list The TODO List
* @return boolean True 1f successful
*/

public function save(ListInterface $list);

»&‘ Change the save() method in the TodoList class to what’s below.

© 0 9 O O & W N =

T S T S = S S G G G G
, O O 0 N O O b W N =~ O

Chapter 33 - Implementing the TodoRepository 162

kK
* Save the list
* @return $this For method chaining
* @throws RuntimeException If cannot save.
*/

public function save()

{
if ($this->isDirty)
{
if (! array_key_exists('id', $this->attributes))

{

throw new \RuntimeException("Cannot save if id not set");

1
if (! $this->repository->save($this))

{

throw new \RuntimeException("Repository could not save");

}
$this->isDirty = false;

}

return $this;

That kills a couple arguments and a couple lines of code. Excellent. Any time you’re able to remove
code without loss of functionality is good. If you run phpunit, tests should be passing.

TodoRepository

Okay, I'm going to implement the repository using the PHP file system methods.

d)’ Create the TodoRepository.php file in the app/src/Repositories directory with the
s following content.

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 33 - Implementing the TodoRepository

<?php namespace GSD\Repositories;
// File: app/src/GSD/Repositories/TodoRepository.php

use Config;
use GSD\Entities\ListInterface;

class TodoRepository implements TodoRepositorylnterface {

protected $path;
protected $extension;

Vet
* Constructor. We'll throw exceptions if the paths don't
*/

public function __construct()

{
$this->path = str_finish(Config: :get('app.gsd.folder'),
if (! is_dir($this->path))

{
throw new \RuntimeException("Directory doesn't exist:
}
if (! is_dir($this->path.'archived'))
{
throw new \RuntimeException("Directory doesn't exist:
'archived');
}
$this->extension = Config::get('app.gsd.extension');
if (! starts_with($this->extension, '.'))
{
$this->extension = '.' . $this->extension;
}
}
Veis

* Delete the todo list
* @param string $id ID of the list
* @return boolean True if successful
*/
public function delete($id, $archived = false)

{
$file = $this->fullpath($id, $archived);

exist

/)

$this->path");

$this->path".

163

43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 33 - Implementing the TodoRepository

if (file_exists($file))
{

return unlink($file);

}

return false;

Ve
* Does the todo list exist?
* @param string $id ID of the list
* @param boolean $archived Check for archived lists only?
* @return boolean
*/
public function exists($id, $archived = false)
{
$file = $this->fullpath($id, $archived);
return file_exists($file);

Veis
* Return the ids of all the lists
* @param boolean $archived Return archived ids or unarchived?
* @return array of list ids
*/
public function getAll($archived = false)
{
$match = $this->path;
if ($archived)

{
$match .= 'archived/';
}
$match .= "*' . $this->extension;

$files = glob($match);
$ids = array();

foreach ($files as $file)
{

$ids[] = basename($file, $this->extension);

}

return $ids;

/**

164

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Chapter 33 - Implementing the TodoRepository

¥ ¥ ¥ x x

*/

Load a TodolList from it's id

@param string $id ID of the list

@param boolean $archived Load an archived list?
@return ListInterface The list

@throws InvalidArgumentException If $id not found

public function load($id, $archived = false)

{

if (! $this->exists($id, $archived))

{

}

throw new \InvalidArgumentException(
"List with id=$id, archived=$archived not found");

$lines = file($this->fullpath($id, $archived));

// Pull title
$title = array_shift($lines);
$title = trim(substr($title, 1));

// Pull subtitle
if (count($lines) && $lines[0][0] == '(')

{

$subtitle = trim(array_shift($lines));
$subtitle ltrim($subtitle, '(');
$subtitle = rtrim($subtitle, ')');

// Setup the list

$list = \App::make('GSD\Entities\ListInterface');
$list->set('id', $id);

$list->set('title', $title);

if (! empty($subtitle))

{

}

$list->set('subtitle', $subtitle);

$list->set('archived', $archived);

// And add the tasks
foreach ($lines as $line)

{

$line = trim($line);
if ($line)

165

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Chapter 33 - Implementing the TodoRepository

$list->taskAdd($line);

return $list;

J Rk

* Save a Todolist

* @param ListInterface $list The TODO List
* @return boolean True if successful

*/

public function save(ListInterface $list)

{

$id = $list->get('id");
$archived = $list->get('archived');

$build = array();

$build[] = '"# ' . $list->get('title");
$subtitle = $list->get('subtitle');

if ($subtitle)

{

$build[] = "($subtitle)";
}

$lastType = '';

$tasks = $list->tasks();
foreach ($tasks as $task)

{

$task = (string)$task;

$type = $task[0];

if ($type !'= $lastType)

{
$build[] = '';

// Blank line between types of tasks

$lastType = $type;

}
$build[] = $task;

}

$content = join("\n", $build);
$filename = $this->fullpath($id, $archived);
$result = file_put_contents($filename, $content);

return $result !==

false;

166

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

Chapter 33 - Implementing the TodoRepository 167

}
JHk
* Return the path to the list file
*/
protected function fullpath($id, $archived)
{
$path = $this->path;
if ($archived)
{
$path .= 'archived/';
}
$path .= $id . $this->extension;
return $path;
}
}
?>

I didn’t write this blindly without testing. We found out what happens when I do that :)

Now let’s bind the interface.

Q‘ Edit your TodoServiceProvider and within the register() method add another binding
as specified below.

$this->app->bind('GSD\Repositories\TodoRepositoryInterface',
'GSD\Repositories\TodoRepository');

Now let’s start testing this puppy.

Creating Test data

The first step is to create some test data. The idea here is that we want to be able to control our
testing environment. So we’ll create a directory with some test lists. This way we can use the same
todo lists with every test. We’ll have a known state of data.

Q’ Create an app/config/testing/app.php file with the following content.

o

o N O O b W N =

O b W N =

=N O O b W N -

Chapter 33 - Implementing the TodoRepository

<?7php
// testing config
return array(
'gsd' => array(
'folder' => app_path().'/tests/GSD/Repositories/data’,
),
);

?2>

Now, for testing, our folder points to something safe.

Q‘ Create the directory app/tests/GSD/Repositories/data/archived and all needed subdi-

p rectories.

Now we’ll create a couple test files.

Q‘ Create the file testi.test in the newly created app/tests/GSD/Repositories/data
p directory with the following content.

Test List 1
- Something simple

x 2013-09-13 Something I finished

A% Create the file test2. test in the same directory with the following content.

4

Test List 2
(With a subtitle, yea!)

* What I want to do next

- something i'll do
- something that's due soon :due:2013-09-15

Alrighty, we have some lists to test with. Let’s get testing.

© 0 9 O O & W N =

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Chapter 33 - Implementing the TodoRepository 169

Testing the Repository

I threw together this test pretty quickly. The important thing to note within the test is that it clears
the *. txt files out of the data and data/archived directories. Then it copies our two text files over
to be usable. This way every test starts with the same set of data.

d)’ Create the TodoRepositoryTest.php in the tests/GSD/Repositories directory. Make it
ﬁ match the following:

<?7php
// File: app/tests/GSD/Repositories/TodoRepositoryTest.php

class TodoRepositoryTest extends TestCase {
protected $repo;

// Deletes any existing lists and copies the blank ones over
public function setup()
{
$path = __DIR__.'/data/';
$ext = Config::get('app.gsd.extension');
$files = array_merge(
glob($path. "*' $ext),
glob($path. "archived/*' . $ext)
);
foreach ($files as $file)
{
unlink($file);
}
copy($path. 'testl.test', $path. 'testl' . $ext);
copy($path. 'test2.test', $path. 'test2'.$ext);

$this->repo = App: :make('GSD\Repositories\TodoRepositoryInterface');

public function testDelete()

{
$result = $this->repo->delete('testl');
$this->assertTrue($result);

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
ST
58
59
60
61
62
63
64
65
66
o7
68
69
70
71
72
73
T4

Chapter 33 - Implementing the TodoRepository

public function testDeleteArchived()
{
// Save testl as archived
$list = $this->repo->load('testl');
$list->set('archived', true);
$list->set('id', 'test-archived');
$list->save();

// Delete it
$result = $this->repo->delete('test-archived', true);
$this->assertTrue($result);

public function testDeleteMissingReturnsFalse()
{
$result = $this->repo->delete('bogus’);
$this->assertFalse($result);

public function testExists()

{
$this->assertTrue($this->repo-rexists('test2'));
$this->assertFalse($this->repo->exists('bogus'));

public function testExistsArchived()
{
// Save testl as archived
$1ist = $this->repo->load('testl');
$list->set('archived', true);
$list->set('id', 'test-archived');
$list->save();

$this->assertTrue($this->repo->exists('test-archived', true));
$this->assertFalse($this->repo->exists('something-else', true));

public function testGetAll()

{
$result = $this->repo->getAll();
$this->assertCount(2, $result);
$result = $this->repo->getAll(true);

170

75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Chapter 33 - Implementing the TodoRepository

$this->assertSame(array(), $result);

Veis
* @expectedException InvalidArgumentException
*/

public function testlLoadMissingThrowsException()

{
$this->repo->load('bogus');

public function testloadedComponents()
{
$list = $this->repo->load('testl');
$this->assertEquals('Test List 1', $list->get('title'));
$this->assertNull($list->get('subtitle'));
$this->assertbEquals('Something simple', $list->taskGet(@, 'description'));
$this->assertEquals(
'2013-09-13",
$list->taskGet(1, 'dateCompleted')->format('Y-m-d')
)

public function testSaves()

{
$list = $this->repo->load('testl');
$list->set('id', 'test-one');
$list->save();
$filel = $this->loadAndTrim(__DIR__.'/data/testl.txt');
$file2 = $this->loadAndTrim(__DIR__.'/data/test-one.txt');
$this->assertEquals($filel, $file2);

$list = $this->repo->load('test2');

$list->set('archived', true);

$list->save();

$filel = $this->loadAndTrim(__DIR__.'/data/test2.txt');

$file2 = $this->loadAndTrim(_DIR__.'/data/archived/test2.txt');
$this->assertbquals($filel, $file2);

protected function loadAndTrim($filename)

{

171

117
118
119
120
121
122

O O b W N =

o

10
11

Chapter 33 - Implementing the TodoRepository

$content = file_get_contents($filename);
$content = str_replace("\r\n", "\n", $content);
return trim($content);
}
}
7>

Whew! Only one thing left to do.

A

4

~$ cd gsd

Run phpunit to test things

~/gsd$ phpunit
PHPUnit 3.7.26 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/phpunit.xml

Time: 233 ms, Memory: 22.75Mb

OK (50 tests, 86 assertions)

All good.

That's the end of Part 2

We have all the support work designed and completed. I kind of feel like I'm all dressed
up and have no place to go. That’s okay. Because the next part of this manual we’re going
places ... Part 3 we’ll use all this work and actually be able to create some, real live lists.

172

Part 3 - The Console Application

In this section of the book, we’re going to take the application and make it work from a console
window. You’ll be able to list the things you need to do, add tasks, edit tasks, and mark things
completed right from your console window.

Chapter 34 - Artisan Tightening

G In This Chapter

In this chapter we’ll discuss the artisan utility and tighten it up a bit by removing
commands our application won’t need.

Laravel provides a command line interface named artisan. I just love the name. It’s like Laravel
wants to remind you how great it thinks you are.

Artisan
A worker in a skilled trade, esp. one that involves making things by hand.

Yeah ... exactly.

Artisan in 30 Seconds

The cool thing about artisan is that it can be extended. You can tap into it’s structure and create
your own console utilities. Use it for reoccurring tasks, cron jobs, database imports/exports, batch
jobs, or anything else you can think of.

In your project’s root (gsd in this book’s examples) you can bring up the artisan commands either
by typing php artisan or ./artisan.

~$ cd gsd
~/gsd$./artisan
Laravel Framework version 4.0.7

Usage:
[options] command [arguments]

Options:
--help -h Display this help message.
--quiet -q Do not output any message.
--verbose -vlvv|lvvv Increase the verbosity of messages: 1 for

normal output, 2 for more verbose output and 3 for debug
--version -V Display this application version.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

Chapter 34 - Artisan Tightening

--ansi

--no-ansi

Force ANSI output.
Disable ANSI output.

--no-interaction -n Do not ask any interactive question.

--env

Available commands:

changes
clear-compiled
down
dump-autoload
help
list
migrate
optimize
routes
serve
tinker
up
workbench
asset
asset:publish
auth
auth:reminders
cache
cache:clear
command
command : make
config
config:publish
controller
controller:make
db
db:seed
key
key:generate
migrate
migrate:install
migrate:make
migrate:refresh
migrate:reset
migrate:rollback

queue

The environment the command should run under.

Display the framework change list

Remove the compiled class file

Put the application into maintenance mode
Regenerate framework autoload files

Displays help for a command

Lists commands

Run the database migrations

Optimize the framework for better performance
List all registered routes

Serve the application on the PHP development server
Interact with your application

Bring the application out of maintenance mode
Create a new package workbench

Publish a package's assets to the public directory
Create a migration for the password reminders table
Flush the application cache

Create a new Artisan command

Publish a package's configuration to the application
Create a new resourceful controller

Seed the database with records

Set the application key

Create the migration repository

Create a new migration file

Reset and re-run all migrations

Rollback all database migrations
Rollback the last database migration

175

56
o7
58
59
60

Chapter 34 - Artisan Tightening 176

queue:listen Listen to a given queue
queue:subscribe Subscribe a URL to an Iron.io push queue
queue :work Process the next job on a queue
session
session:table Create a migration for the session database table

Whew! That’s a lot of stuff you can do right out of the box.

Use an Alias

On Linux, I have the command alias art='php artisan' in my .bashrc. This allows me
to simply type art command instead of the longer path. Also, by using this shortcut, I'm
reminded that 'm creating art. (Believe me, sometimes I need to keep reminding myself.)
In Windows you can set up a batch file to do the same thing.

Where are these commands?

The commands in the above list are the ones that ship standard with Laravel. They’re provided by
service providers. Often the question is:

Where do I put commands?

Out of the box Laravel provides an app/commands directory, giving you a logical place to dump all
your commands. We changed that structure back in Chapter 19 and instead created app/src/GSD/Commands.
That’s where we’ll be placing all the console commands created in this book.

Another common question is:
Where do I register my commands?

Registering is the process of telling Laravel it can use the commands you’ve created. You can register
them in service providers, or you may register them in a special location Laravel provides to register
your commands (in app/start/artisan.php). We’ll use this second method a bit later in this part
of the book.

But first you might be wondering.
How do I get rid of the commands I don’t want.
Easy, let’s kill all the artisan commands that won’t be needed by our Getting Stuff Done application.

g b w N -

Chapter 34 - Artisan Tightening 177

Removing default commands

Most of the artisan commands that ship with Laravel are registered by service providers. Since we’re
not using many aspects of the framework in this book, let’s remove them.

When creating Laravel applications I try to make it a practice to remove every unused
service provider and alias before the application goes to production.

Removing session commands

Since we’re not using sessions in this application, let’s remove the artisan session:table
command.

Q’ In your app/config/app.php, comment out the Session Command Service provider by
p putting a double-slash (//) before the line. This is in the providers[] array.

// find the line that says
'Tlluminate\Session\CommandsServiceProvider',

// Change it to:

//"'"Illuminate\Session\CommandsServiceProvider',

When you finish issue the artisan command again (or art if you've aliased it) to make sure the
session section in the command list is gone.

Removing migrate and queue commands

Let’s get rid of all the migrate and queue commands in the same way.

Using Queues

Although we’re not using queues in this app, queues are one of the most powerful features of
Laravel. Learn them. Use them. You'll be glad you did.

Since we’re not using queues or migrations, let’s comment out those service providers.

~N O O & W N =

0 N O O &~ W N -

Chapter 34 - Artisan Tightening 178

Q’ Update your app/config/app.php file and find the two lines specified below, comment

p them out. These two lines are in the providers[] array, but probably not adjacent to each
other

// find these lines
'Tlluminate\Database\MigrationServiceProvider',
'Tlluminate\Queue\QueueServiceProvider',

// put comments before them
//"'"Il1luminate\Database\MigrationServiceProvider',

//"I1luminate\Queue \QueueServiceProvider ',

Run artisan when done to check progress.

Remove key:generate, other database and package commands

Let’s see what other commands won’t we be using?

We don’t need key:generate because we already have a key in our app (and we won’t be using
anything that even needs this key).

We don’t need the db:seed or auth:reminders commands, because we’re not using any database.

And, we’re not using packages, so let’s kick asset :publish and config:publish to the curb. What

else? I can’t imagine this application needs a cache, so we’ll get rid of the cache:clear command
too.

O)’ Update your app/config/app.php again.

4

// find these lines
'Tlluminate\Foundation\Providers\KeyGeneratorServiceProvider',
'Illuminate\Database\SeedServiceProvider',
'Illuminate\Auth\Reminders\ReminderServiceProvider',
'Tlluminate\Foundation\Providers\PublisherServiceProvider"',
'Tlluminate\Cache\CacheServiceProvider"',

// Comment them out. I don't really need to provide an example

Now, if you do an artisan command, the list is far smaller:

© 0 9 O O & W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Chapter 34 - Artisan Tightening

~$ cd gsd
~/gsd$./artisan
Laravel Framework version 4.0.7

Usage:
[options] command [arguments]

Options:
--help -h Display this help message.
--quiet -q Do not output any message.
--verbose -vlvv|vvv Increase the verbosity of messages: 1 for

normal output, 2 for more verbose output and 3 for debug

--version -V Display this application version.
--ansi Force ANSI output.
--no-ansi Disable ANSI output.

--no-interaction -n Do not ask any interactive question.
--env The environment the command should run under.

Available commands:

changes Display the framework change list
clear-compiled Remove the compiled class file
down Put the application into maintenance mode
dump-autoload Regenerate framework autoload files
help Displays help for a command
list Lists commands
optimize Optimize the framework for better performance
routes List all registered routes
serve Serve the application on the PHP development server
tinker Interact with your application
up Bring the application out of maintenance mode
workbench Create a new package workbench

command
command : make Create a new Artisan command

controller
controller:make Create a new resourceful controller

Removing the rest

That’s much better, but you know want? I think we can get it even smaller.

179

O b W N =

© 0 9 O O & W N =

10
11
12
13
14
15
16

Chapter 34 - Artisan Tightening 180

% You can always add them back

Feel free to remove whatever service providers you don’t think you’ll need. Worst case,
if you find you need them, just add them back in. That’s why I like to only comment the
service provider out and not actually delete them.

Since this is a personal project, not public on the web. I really don’t think we need a “maintenance
mode”. That will get rid of the down and up commands. I won’t be using the serve command here
(keep this if you're going to use it though). The tinker command is beyond the scope of this book.
As is the workbench command.

I'm keeping the changes command, because I like it even though it doesn’t help the Getting Stuff
Done application we’re building. I'm planning on using the command : make so we’ll keep that one too.
And I'm not sure about the controller:make, so I'll leave it for now.

A% Remove the rest

4

// Here's the remaining lines to comment out
'Tlluminate\Foundation\Providers\MaintenanceServiceProvider',
'Tlluminate\Foundation\Providers\ServerServiceProvider',
'Tlluminate\Foundation\Providers\TinkerServiceProvider"',
'T1luminate\Workbench\WorkbenchServiceProvider'

And now our artisan command output almost fits on one screen.

~$ cd gsd
~/gsd$./artisan
Laravel Framework version 4.0.7

Usage:
[options] command [arguments]

Options:
--help -h Display this help message.
--quiet -q Do not output any message.
--verbose -vlvv|vvv Increase the verbosity of messages: 1 for
normal output, 2 for more verbose output and 3 for debug
--version -V Display this application version.
--ansi Force ANSI output.
--no-ansi Disable ANSI output.

--no-interaction -n Do not ask any interactive question.

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Chapter 34 - Artisan Tightening

--env

Available commands:
changes
clear-compiled
dump-autoload
help
list
optimize
routes

command
command : make

controller
controller:make

Tight.

The environment the command should run under.

Display the framework change list

Remove the compiled class file

Regenerate framework autoload files

Displays help for a command

Lists commands

Optimize the framework for better performance
List all registered routes

Create a new Artisan command

Create a new resourceful controller

Chapter 35 - Planning Our Commands

0 In This Chapter

In this chapter we plan out, generally, the new commands artisan should supply to let us
Get Stuff Done.

Planning on Planning ... Let's Get Meta

“No Battle Plan Survives Contact With the Enemy”

—Helmuth von Moltke, German military strategist

Good ol’ Helmuth. That’s true but it’s not an excuse to not plan (even if the plan is only in your
head) because ...

“In preparing for battle I have always found that plans are useless, but planning is
indispensable.”

—-Dwight D. Eisenhower, 34th President of the United States

My take is that when reality hits your plan, the plan falls apart and you have to adapt and change
the plan.

Hmm. That’s been pretty much the whole book to this point.
So let’s plan to plan what the gsd commands will look like, but also plan on not using our plan.

I’'m good with that.

The List of commands in our application

I’'m cheating a bit here by going back to Chapter 24 (Where we mapped out the original Todo facade).
I’ll just take the comments. They were:

o Create a new list
o Get list of all the lists

1

Chapter 35 - Planning Our Commands 183

- Edit list

« Delete list (I'll archive it instead)
« Add task

o List tasks

« Edit task

« Remove task

« Move task

This will be the basis of our application commands, let’s go through them one-by-one.

Create a new list

We need a way from the console to create a new list. Remember a list is a filename and can have a
title and even a subtitle associated with it.

I'm thinking:
$ php artisan gsd:create +name --title="My title" --subtitle="My subtitle"

Seems pretty verbose doesn’t it? I'm not really liking that aspect, but Laravel provides the ability to
have short options. I could have it down to.

$ art gsd:create +name -t "My title"

Of course, what if T accidentally create a list and named it badly. If have my console window open,
I don’t want to have to navigate to my gsd directory (home/chuck/Documents/gsd in my case). Let’s
compliment the gsd:create command with an uncreate.

$ art gsd:uncreate +name

The reason I put a plus (+) in front of the name is I was thinking that it would be easy to pull
out a listname (aka project name, heh) from a string that way. Just like, if you were using
contexts in your lists you might be watching for the at symbol (@) for @home, @work,
etc.

List All Lists

I want to be able to list all the lists. Remember there’s going to be multiple todo lists here and it’d
be useful to see what they all are.

0 N O O b W N =

Chapter 35 - Planning Our Commands 184
$ art gsd:listall --tasks=alll|done|next|normal --archived

The 1istall command with no arguments would just list all the todo lists, but only the ones not
archived. If we add the - -archived flag then it would list just the archived lists.

What if [want to list all the tasks across the lists? That’s why I added the tasks option. The default
would be all, to list all the types of tasks. But I could list all the completed tasks (done), or all the
next actions (next) or even just the normal tasks (normal).

% Don’t Forget Your Customizations

As you’re going through these commands, if you’ve added features to your version of
Getting Stuff Done, be sure to update the commands. Maybe you added contexts and
want to add a - -context=XXX option.

After thinking about the gsd:listall command, there’s one thing I really don’t like. That’s how
long it is. I want to type as few keys as possible. The options can easily be shorted to -t for --tasks
and -a for archived, but the command itself ... I want to have a shorter version.

Ill just plan out short aliases and worry about how to implement them later. Here’s what I'm
thinking with the gsd:1listall

Full version
$ art gsd:listall --tasks=alll|done|next|normal --archived

Short version

$ art gsd:lsa -t type -a

Short version just to list all the next actions
$ art gsd:lsna

Yeah. I'm liking that better. I can type a short command and get a list of my lists or even everything
I can work on next.

Edit List

Editing a list should be straight forward. There’s only two “list” attributes we really want to change:
title and subtitle.

0 N O O b W N =

Chapter 35 - Planning Our Commands 185

Already Refactoring the Design ...

Hmmm. Now I'm second guessing what I did earlier. I mean creating a list (and if needed
uncreating) is not something that happens very frequently. Maybe I should have both processes
prompt for list id, title, subtitle.

(Smoke is coming out of my ears now as I try to imagine which way I like better. Uh. How about
both.)

Okay, here’s my new rules:

 gsd:create will prompt for arguments if none provided.
+ gsd:uncreate will show a list of lists having no tasks, allowing the user to select which one
to uncreate.

I like that. Now back to the regularly scheduled planning.

List editing can occur the same way as the create command. If no arguments are passed, then it will
prompt for each.

Normal version
$ art gsd:editlist +name --title="title" --subtitle="subtitle"

Shorter version
$ art gsd:editlist +name -t "title" -s "subtitle"

Vlersion that prompts user
$ art gsd:editlist

I’'m not worried about shortening the actual command gsd:editlist on this one because I'm not
going to be using it as often as gsd: 1sna, but if you want to have a short version ... please do.

Archive list

Since deciding earlier the gsd:uncreate command should show a list that the user can select from,
I'm starting to dig that idea for these one-off type tasks. I mean a gsd:create won’t happen too
often. A gsd:uncreate will happen almost never. A gsd:archive will happen more frequently than
the gsd:uncreate, but a gsd:unarchive won’t happen very often.

I want this designed so the things I don’t do very often don’t have to be remembered. The great
thing about hooking into Laravel’s artisan command is if you type in a command that doesn’t
have enough arguments it’ll tell you what the arguments are.

O b W N =

Chapter 35 - Planning Our Commands 186

I can picture myself, merrily programming away, when a new project hits my desk and deciding to
create gsd project file. I know the command is gsd:create. (Or maybe I don’t. Maybe I'm a senile
programmer now. So I type art to get a list of commands and then see the gsd:create command.)
Regardless of my senility I'd probably just type gsd: create with no arguments to see what happens.

Whew. That’s a lot of talking just to get to:

Archive a list, always prompts
$ art gsd:archive

Unarchive a list, always prompts
$ art gsd:unarchive

I don’t mind going through a couple, three prompts on these seldom performed commands.

Rename List

This wasn’t in my initial List of commands, but before moving onto the task specific commands I
tried thinking if there’d be any other list oriented commands. I can imagine a scenario where I want
to rename a list.

Rename a list, always prompts
$ art gsd:rename

Add a task

Adding a task should be the most often performed command. Following closely by marking a task
complete (which, of course, wasn’t in my initial List of commands.) So I want this to be eeeeaaasssy
to use.

Add a task
$ art gsd:add [+name] "something to do" --next

Short version

$ art gsd:a [+name] "something to do" -n

Super short version
$ gsd a "something to do"

Chapter 35 - Planning Our Commands 187

The first version is self-explanatory. The list or project is specified with +name. If not specified then
the default list will be used. The string specifying the task is passed. This string could have an
embedded :due:date tag in it. If the - -next option is used, it specifies the task can be flagged as a
next action.

The short version should be obvious too. So what’s up with the Super short version?

Well, I got to thinking. I'll wrap the artisan command with a shell script. (You Windows users will
have to use batch files.). The reasons I'm going to do this are:

« As much as I like typing art, it eliminating it does eliminate a wee bit of typing.
« I can put the gsd script in my path and access it from whatever directory I'm in.

« I'm not sure how tough it will be to make the artisan command accept aliases, such as
gsd:a for gsd:add. The Symfony Command class (which Laravel’s command is built on) takes
aliases, but I’'m not sure how to do it in Laravel.

I could figure the last point, but with the other reasons to use a shell script, I know I'm going to
doing it. I'll just handle any aliasing in the shell script.

Makes sense, doesn’t it?

I’'m tempted to allow multiple tasks to be added at once. Maybe a gsd a with no arguments? I'll
keep thinking about that. For now, I'll leave the add command as it is.

Another thing I'm tempted to do is have a prompted version of Add a task. Hmmm. Who knows?
By the time this part of the book is finished I may decide that would be a nice option.

Marking a task complete

Before I forget about marking a task complete, let me plan it out.
$ gsd do [+name] n

Where n is the task number. Where does that come from? The next command.

Listing Tasks

When I list the tasks I want to have a pretty little listing that shows something like:

© 0 9 O O & W N =

O b W N =

Chapter 35 - Planning Our Commands 188

R o . . +
| # | Next | Description | Extra |
R o . R +
| 1 | YES | Finish Chapter 36 | Due Sep-20 |
| 2 | YES | Balance Checkbook | |
| 3 | | Start project for world domination | |
| 4 | | Read Dr. Evil's Memoirs | |
| | done | Finish Chapter 35 | Done 9/19/13 |
R o e e e N S +

This would be a different listing that the one possibly created by gsd 1sa, because if we're listing
tasks with the listall command, then the name of the list would be displayed. Also, showing a #
doesn’t make sense if the list is archived because we don’t want to edit tasks on archived lists.

This version is to list tasks in a single todo list.

Here’s the command to do it:

Long version

$ gsd list [+name] --next --nodone

Short version

$ gsd 1ls [+name] -n -nd

If the - -next option is used, then it would only list next actions. If the - -nodone option is used, then
it wouldn’t list the completed items.

Notice the first column? That’s the n that is used to reference a particular list item.

G Typical Workflow

I’'m imagining the typical work flow using GSD would be:

+ Add items as they come up
+ Maybe move them to other lists
Use the gsd 1s command to list tasks.

o Use the gsd do # to mark them done.

Edit Task

Here’s a command I'd like to work two ways: totally from command arguments or prompted.

0 N O O B~ W N -

© 00 N O O b W N =

(RN
= O

12
13

Chapter 35 - Planning Our Commands 189

[ong version
$ gsd edit [+name] 1 "the description" --next[=off]

Short version
$ gsd ed [+name] 1 "the description" -n[=off]

Version that prompts
$ gsd ed [+name]

Again, any due dates would be embedded into the description.

With the prompting, it occurs to me that maybe I want the user to be able to select from a list of
projects when the name’s not specified. Yet, I also want the ability to just default to the default list
when not specified.

Maybe another configuration option?

Q‘ Edit the top of your app/config/app.php to match the following code. (Keep your folder
p relevant to your installation, though.)

<?7php
return array(
'gsd' => array(
'folder' => '/home/chuck/Documents/gsd/",
'extension' => '.txt',
"listOrder' => array(

"inbox', 'actions', 'waiting', 'someday', ‘'calendar',
),
'defaultList' => 'actions', // default list when not specified
'noListPrompt' => true, // true=prompt for list, false=use default
),
// rest of file is same
)7>

Remove task

The command to remove a task is easy. We’ll have it prompt if the list id is not specified.

o N O O b W N =

0 N O O & W N =

Chapter 35 - Planning Our Commands

[ong version

$ gsd:remove [+name]| 1 --force

Short version
$ gsd rm [+name] 1 -f

Version that prompts

$ gsd rm

I added the --force option to remove because be default the remove command ought to

190

ask

something like “This will permanently delete: The task description. Are you sure (yes/no)?”If - - force

is specified, this verification step will be skipped.

0 How about a -quiet option

Often console utilities will have a - -quiet option that means do not output anything. With
Laravel’s artisan command this is built in. As long as we output text in the correct manner,
our commands will automatically supress output when needed.

Move Tasks

Our final command will be one to move a task from one list to another.

[ong version
$ gsd move [+name] 1 +dest

Short version
$ gsd mv [+name] 1 +dest

Prompted version

$ gsd mv

Easy. No need to come up with a long explanation for this.

Final List of all Commands

Here’s the final list (to this point) of all the console commands

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 35 - Planning Our Commands

#

$
$
$

Create list

gsd create +name --title="My title" --subtitle="My subtitle"
gsd create +name -t "My title"

gsd create

Uncreate list

¥ H H H ¥ H H H# Rl

¥ H H H

gsd uncreate

List all lists (possibly tasks too)

gsd listall --tasks=all|donel|next|normal --archived
gsd lsa -t type -a

gsd lsna

Edit list

gsd editlist +name --title="title" --subtitle="subtitle"
gsd editlist +name -t "title" -s "subtitle"

gsd editlist

Archive/Unarchive/Rename a list
gsd archive

gsd unarchive

gsd rename

Adding tasks

&

gsd add [+name] "something to do" --next
gsd a [+name] "something to do" -n

Making a task complete

¥ &H

¥ H H H

gsd do [+name] n

Listing tasks
gsd list [+name] --next --nodone
gsd 1ls [+name] -n -nd

Edit task

gsd edit [+name] 1 "the description" --next[=off]
gsd ed [+name] 1 "the description" -n[=off]

gsd ed [+name]

Remove task

&

gsd:remove [+name| 1 --force
gsd rm [+name] 1 -f

191

43
44
45
46
47
48

Chapter 35 - Planning Our Commands

$ gsd rm

Move task
$ gsd move [+name] 1 +dest
$ gsd mv [+name] 1 +dest

$ gsd mv

Have I forgot anything? Probably. The only way to find out is to keep moving.

192

Chapter 36 - Pseudo-coding

0 In This Chapter

In this chapter we’ll write some quick psuedo-code for the commands we defined in the
last chapter

Normally, I don’t do much pseudo-coding. I tend to lean heavily toward the jumping in with both
feet, coding, and refactoring as I go methodology. But, because one of my beliefs is that Every
Programmer is Different, I figured it would be helpful to present a few different techniques. Thus,
this chapter is all about Pseudo-Coding.

Pseudo-code
a notation resembling a simplified programming languaged, used in program design.

There’s no gold standard in pseudo-code. I generally try to keep my pseudo-code kind of a
“comment” on what’s we’re doing. Then it becomes a very simple process to turn each line of
pseudo-code into a comment proceding the few lines of actual code that implement it.

% Pseduo-Coding Tip
Try to keep your pseduo-code describing what you’re doing, not how you’re doing it. In
other words, focus on the problem domain, not the implementation domain.

I’'m not going to comment much on the pseudo-code below, only where it seems important that my
meaning is clear.

Create List Pseudo-code

© 0 9 O O & W N =

[=
w N =~

© 00 N O O b W N =

NN
= o

Chapter 36 - Pseudo-coding

Get options and arguments

If no options or arguments
Prompt user for new list-id
Validate list-id
Prompt user for list-title
Prompt user for list-subtitle

Else
Validate list-id

EndIf

Create new list

Set list-title if needed

Set list-subtitle if need

Save list

Uncreate List Pseudo-code

Prompt user for list-id
Validate list-id has no tasks
Delete list

List all Lists Pseudo-code

Get/validate options
Get all list-ids (archived or non-archived)
Sort list-ids
Loop through list-ids
Load current list-id
If tasks option
Output tasks desired
Else
Ouput list-id, list-title, and task counts
EndIf
EndLoop

Edit List Pseudo-code

194

© 0 9 O O & W N =

N
()

0 N O O & W N =

o N O O b W N =

Chapter 36 - Pseudo-coding

Get options and arguments
Prompt for list-id if not specified
Load list
If no arguments
Prompt user for list-title
Prompt user for list-subtitle
EndIf
Set list-title if needed
Set list-subtitle if need
Save list

Archive List Pseudo-code

Prompt user for list-id

If archived version exists
Warn will overwrite

EndIlf

Ask if they're sure

Load existing list

Save list as archive

Delete existing list

Unarchive List Pseudo-code

Prompt user for archived list-id

If unarchived version exists
Warn will overwrite

EndIf

Ask if they're sure

Load existing list

Save list as unarchive

Delete existing archived list

Rename List Pseudo-code

195

O O b W N =

N =

0 N O O B~ W

O O b W N =

Chapter 36 - Pseudo-coding

Prompt user for archived or unarchived
Prompt user for appropriate list-id
Prompt user for new list-id

Load existing list

Save as new list-id

Delete existing list

Add Task Pseudo-code

Get options and arguments
Validate arguments

Prompt for list-id if needed
Load list

Create New task description
Set next action if needed
Add task to list

Save list

Do Task Pseudo-code

Get arguments

Prompt for list-id if needed
Load list

Prompt for task # if needed
Set task # completed

Save list

196

NOTE: I decided the gsd do command should be able to be called without any id which would then

prompt for the task #.

Listing Tasks Pseudo-code

o N O O b W N =

O 00 N O O b W N -~

NN
= o

=N O O b W N -

Chapter 36 - Pseudo-coding 197

Get arguments and options
Prompt for list-id if needed
Load list
Loop through tasks
If task not filtered by option
show task
EndIf
EndLoop

Edit Task Pseudo-code

Get arguments and options
Prompt for list-id if needed
Load list
If no task # specified
Prompt for task #
Prompt for new description
Prompt for Is Next Action
End
Save Task Description
Save NextAction if needed
Save list

Remove Task Pseudo-code

Get arguments and options
Prompt for list-id if needed
Load list

Prompt for task # if needed
Show warning if not forced
Delete task from list

Save list

Move Task Pseudo-code

© 0 9 O O & W N =

(AN
[l]

Chapter 36 - Pseudo-coding 198

Get arguments and options

Prompt for list-id if needed

Load source list

Prompt for task # if needed
Prompt for dest list-id if needed
Ask if they're sure if not forced
Load task # from source list

Save task in dest list

Save dest list

Delete task # from source list
Save source list

NOTE: I decided the gsd mv command should also have a --force option. This way there’s that
final “Are you sure?” question if - - force is ommitted.

Final Thoughts on Pseudo-coding

I know developers that love to pseudo-code. I do it on occassion, but like I said at the beginning of
this chapter, it’s not my preferred method.

One of the nice benefits of pseudo-coding is that you can see common functionality earlier in the
coding process. This allows you to keep your code DRY without excessive refactoring.

And that’s the subject of the next chapter ...

Chapter 37 - Using Helper Functions

0 In This Chapter

In this chapter we’ll implement some of the common functions identified during the
psuedo-coding of the last chapter. We’ll create helper functions to do this.

The Most Frequent Functions

I scanned through the pseudo-code from last chapter, trying to determine which functions are
called most frequently. Ignoring the functionality that will easily be implemented by existing Todo
methods, there’re three that jump out at me:

1. Prompt for list-id. This is the most used method. Suprisingly, it’s used more than the next
function.

2. Get options and arguments. Since artisan handles this quite, uh, handily, I'll ignore it.

3. Prompt for task #. This function is used frequently enough to warrant not repeating ourself.

Since I'm ignoring #2, that means there’s two functions to think about.

Creating Helper Functions

So where should these functions go? I can see several possibilities:

1. Expand the Todo facade with additional methods

2. Create a BaseCommand class which implements these methods. Then our Command classes
would extend this class.

3. Stick them in a new class, as static methods.
4. Use helper functions.

Honestly, if T was doing this project just for myself, I'd choose #1 because facades are just so gosh-
durn awesome. Without Laravel, I'd choose #2 or maybe #3. But this chapter is supposed to be about
#4.

<N O O b W N -

Chapter 37 - Using Helper Functions 200

I'd really like to explain how to implement helper functions and thought a few helper functions
would shake loose at this point. Yes, I could implement a prompt_user_for_list() and prompt_-
user_for_task() helper function but that doesn’t seem perfect. (I'm really hung up on implementing
thse as part of the Todo facade. A Todo: : getListFromUser () and Todo: : getTaskFromUser () method
seems more elegant to me.

FEureka!

(What happened late last night, before [wrote “Eureka!”, is that I went to bed thinking I'd scratch this
chapter, end it with the explanation that sometimes I go down one direction, realize I was wrong and
back up to start over in a different direction. I planned on either doing that or implement those two
functions as helper functions and be done with it. But when I awoke, I realized something obvious.)

Both these functions have a common task: presenting a list of choices to the user and
having the user pick one.

The choices are “which list” or “which task”.

Nice, now I can continue on without looking like an idiot. Although, I did tell you what happened
so you can draw your own conclusion on my idiotricity.

helper function
a helper function in Laravel is a support function always available to other functions or
methods.

There are three simple steps to implement helpers in your Laravel app.

k Step 1 - Create the file app/src/GSD/helpers. php with the following content.

<?php

function gsd_helper()
{

return "booyah";

}

2>

This is just a stupid function we can call to make sure our helpers are loaded.

&t Step 2 - Update composer . json, so it matches what’s below.

© 0 9 O O & W N =

N = =Y
O© 0 N O O & W N =~ O

Chapter 37 - Using Helper Functions

{
"name": "gsd",
"description": "Getting Stuff Done with Laravel.",
"require": {
"laravel/framework": "4.0.%*",
"mockery/mockery": "dev-master"
1,
"autoload": ({
"psr-0": {
"GSD": "app/src"
1
"classmap": [
"app/tests/TestCase.php"
1,
"files": [
"app/src/GSD/helpers.php"
]
1,

// rest of file is the same

The files section of autoload tells composer which files to always load.

vk’ Step 3 - Regenerate the autoload files.

This is the composer dump-autoload command.

~$ cd gsd
~/gsd$ composer dump-autoload
Generating autoload files

201

That’s it. All done. Now any function we put in the app/src/GSD/helpers.php file will always be

loaded and available.

Don’t believe me? Hmmm. Well, let’s unit test that bad boy then.

0 Forgetting to do the whole composer dump-autoload thing has bitten me in the posterior
a few times. I cannot tell you the number of times I can’t figure out why something’s not
working, only to finally realize I neglected to do this step. This is why way back in Chapter
19 I removed all those app/commands, app/controllers, ... directories and opted to use the

PSR-0°? standard instead. PSR-0 does not require a classmap to find your classes.

*2https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md

0 N O O & W N =

O b W N =

Chapter 37 - Using Helper Functions 202

Unit Testing Our Helper Functions

Ah. Now maybe it makes sense why I put such a ludicrous function named gsd_helper() in the
helpers.php. I wanted to be able to quickly set up a unit test to prove the helper functions are

indeed loaded.

Q‘ Create the file HelpersTest.php in your app/tests/GSD directory with the following

p content.

<?php
class HelpersTest extends TestCase ({
public function testGsdHelper()

{
$this->assertbquals('booyah', gsd_helper());
}
}
7>
A% Now, run phpunit to make sure it works
~$ cd gsd

~/gsd$ phpunit --tap --filter HelpersTest
TAP version 13

ok 1 - HelpersTest: :testGsdHelper

1..1

Our test suite is getting a little long, so I filtered it to only run the tests in the HelpersTest class.
Notice that it worked. Now we can get around to creating our functions and testing them.

Creating pick_from_list()

The two facade methods we’ll eventually implement will both will present a list of options to the
user and ask for them to pick one. Let’s create a basic function that will let the user pick from a list
of choices.

Q‘ Edit helpers.php in app/src/GSD, delete the existing gsd_helper() function and add the
p between() and pick_from_list() functions below.

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 37 - Using Helper Functions 203

<?php
use Illuminate\Console\Command;

Veis
* Return TRUE if a value is between two other values
*/
function between($value, $min, $max, $inclusive = true)
{
if ($inclusive)
{
return ($value >= $min and $value <= $max);

}

return ($value > $min and $value < $max);

Veis

Present a list of choices to user, return choice

@param Command $command The command requesting input

@param array $choices List of choices

@param int $default Default choice (1-array size)

@param string $abort String to tag on end for aborting selection

¥ %X ¥ *x x %

@throws InvalidArgumentException If argument is invalid

*/

function pick_from_list(Command $command, $title, array $choices,
$default = 0, $abort = null)

{
if ($abort)
{
$choices[] = $abort;
}

$numChoices = count($choices);
if (! $numChoices)
{

throw new \InvalidArgumentException("Must have at least one choice");

}
if ($default > $numChoices || $default < 0)

{
throw new \InvalidArgumentException("Invalid value, default=$default");
}
$question = "Please select 1 to $numChoices";
if ($default > 0)
{

43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
o7
68
69
70
71
T2

Chapter 37 - Using Helper Functions 204

$question .= " (default is $default)";
}
elseif ($default < 0)
{
$question .= " (enter to abort)";
}
$question .= '?';
while(1)
{
$command->info($title);
for ($i = 0; $i < $numChoices; $i++)
{
$command->1line(($i + 1).". ".$choices[$i]);
}
$answer = $command->ask($question);
if ($answer == '")
{
$answer = $default;

}

if (between($answer, 1, $numChoices))

{

if ($abort and $answer == $numChoices)

{

$answer = -1;

}

return (int)$answer;

}

2>
I use the between() function all the time. The pick_from_list() function is a simple menu picker.
Nothing too fancy. Very retro.

The only thing mildly interesting is the usage of the class I11uminate\Console\Command. This is the
base class of the commands we’ll be creating. The class provides methods for getting input from the
user and presenting information to them. The $command->info() method displays the line in green.
The $command->1ine() method outputs the text in normal black and white.

Testing pick_from_list()

¥ Update HelpersTest . php, remove the existing test and make the file look like below.

Chapter 37 - Using Helper Functions

<?7php
class HelpersTest extends TestCase

Rk
* @expectedException InvalidArgumentException
*/

public function testPickFromListEmptyArrayThrowsError()

{
$command = Mockery: :mock('Illuminate\Console\Command');
pick_from_list($command, 'title', array());

Vet
* @expectedException InvalidArgumentException
*/

public function testPickFromlListBadDefaultThrowsError()

{
$command = Mockery: :mock('Illuminate\Console\Command');
pick_from_list($command, 'title', array('option 1'), -1);

Ve
* @expectedException InvalidArgumentException
*/

public function testPickFromListBadDefaultThrowsError2()

{
$command = Mockery: :mock('Illuminate\Console\Command');
pick_from_list($command, 'title', array('option 1'), 2);

public function testPickFromListWorksExamplel ()

{
$command = Mockery: :mock('Illuminate\Console\Command');
$command->shouldReceive('info')->once();
$command->shouldReceive('line')->times(2);
$command->shouldReceive('ask')->once()->andReturn(1);
$choice = pick_from_list($command, 'title', array('option'));
$this->assertEquals(1, $choice);

public function testPickFromListWorksExample2()

205

43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 37 - Using Helper Functions

2>

$command = Mockery: :mock('Illuminate\Console\Command');
$command->shouldReceive('info')->once();
$command->shouldReceive('line')->times(3);

$command->shouldReceive('ask')->once()->andReturn(2);

$choice = pick_from_list($command, 'title', array('option 1', 'opt2'));
$this->assertEquals(2, $choice);

// First time through loop user selects bad choice, causing a second loop

public function testPickFromListWorksExample3()

{
$command = Mockery: :mock('Illuminate\Console\Command');
$command->shouldReceive('info')->times(2);
$command->shouldReceive('line')->times(4);
$command->shouldReceive('ask')->times(2)->andReturn('x", 1);
$choice = pick_from_list($command, 'title', array('option'));
$this->assertEquals(1, $choice);

public function testPickFromListWorksWithDefault()

{
$command = Mockery: :mock('Illuminate\Console\Command');
$command->shouldReceive('info')->once();
$command->shouldReceive('line')->times(3);
$command->shouldReceive('ask')->once()->andReturn('");
$choice = pick_from_list($command, 'title', array('option 1', 'opt2'), 2);
$this->assertEquals(2, $choice);

public function testPickFromListWorksWithAbort()

{
$command = Mockery: :mock('Illuminate\Console\Command');
$command->shouldReceive('info')->once();
$command->shouldReceive('line')->times(3);
$command->shouldReceive('ask')->once()->andReturn(2);
$choice = pick_from_list($command, 'title', array('option'), @, "Abort");
$this->assertbquals(-1, $choice);

206

O 00 N O O b W N

RSN E
N =~ O

Chapter 37 - Using Helper Functions 207

I didn’t put a unit test for between() because, well, it’s only three lines of code and I know it works.
¥ Run phpunit to test this.

~$ cd gsd
~/gsd$ phpunit --tap --filter HelpersTest
TAP version 13

ok
ok
ok
ok
ok
ok
ok
ok

1..

W 00 N O O b W N~

HelpersTest:
HelpersTest:
HelpersTest:
HelpersTest:
HelpersTest:
HelpersTest:
HelpersTest:
HelpersTest: :

:testPickFromListEmptyArrayThrowsError
:testPickFromListBadDefaultThrowsError
:testPickFromListBadDefaultThrowsError2
:testPickFromListWorksExamplel
:testPickFromListWorksExample?2
:testPickFromListWorksExample3
:testPickFromListWorksWithDefault

testPickFromListWorksWithAbort

Nice. We're getting close to actually implementing our first console command.

O© 0 N O O & W N =

NN
[l \N]

Chapter 38 - The ListAllCommand

0 In This Chapter

In this chapter we’ll implement part of the gsd:l1istall command.

Hold onto your hats folks, this chapter is gonna be fun!

The Plan

Back in Chapter 35, we planned the gsd:1istall command. Our variations were:

$ gsd listall --tasks=alll|donel|next|normal --archived
$ gsd lsa -t type -a
$ gsd 1sn

I’'m not going to worry about the --tasks option yet. Let’s just get the command done so we can
list out any lists we have.

The pseudo-code we came up with in Chapter 36 was:

Get/validate options
Get all list-ids (archived or non-archived)
Sort list-ids
Loop through list-ids
Load current list-id
If tasks option
Output tasks desired
Else
OQuput list-id, list-title, and task counts
EndIf
EndLoop

© 00 N O O b W N =

AN
= O

12
13
14
15
16
17
18
19
20

Chapter 38 - The ListAllCommand 209

Creating the ListAllCommand

I know [went on earlier about how much Laravel wants you to succeed, about how Laravel likes
you. Creating commands is another area where Laravel looks out for you and tries to make your life
easier. One simple artisan command will create a new console command for you.

o)’ Create the ListAl1Command with the line below.

I4

~/gsd$ art command:make ListAllCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

This creates a new file in app/src/GSD/Commands named ListAl1lCommand.php. It’s the skeleton for
the command we’re building.

o)’ Edit the newly created ListAl1lCommand.php to make it match what’s below.

4

<?php namespace GSD\Commands;

use Illuminate\Console\Command;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;

class ListAllCommand extends Command {

Veis
* The console command name.
*

* @var string
*/
protected $name = 'gsd:listall’;

Rk
* The console command description.
*

* @var string

*/

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Chapter 38 - The ListAllCommand

protected $description = 'Lists all todo lists (and possibly tasks).';

J Rk

* Create a new command instance.
*

* @return void
*/
public function __construct()

{

parent::__construct();

Vet
* Execute the console command.
*

* @return void

*/
public function fire()
{
$this->1line('Stick em up, pardner!');
}
Rk
* Get the console command arguments.
*

* @return array
*/
protected function getArguments()

{

return array();

Rk
* Get the console command options.
*

* @return array

*/
protected function getOptions()
{

return array(

array('archived', 'a', InputOption::VALUE_NONE,

'use archived lists?'),

210

63
64
65
66

1

1

Chapter 38 - The ListAllCommand 211

);

72>

You should have only had to change a few lines from the shell that Laravel created for you.

Just a few notes on this:

+ The $name and $description are self explanatory.
« The fire() method is what gets executed when you issue the command from the console.
Here we’re using the 1ine() method to output a line to the console.

+ The only option we’re worried about right now is the --archived option. The second array
element is the short version (-a). For the third element we used the InputOption: : VALUE_NONE
constant to indicate this option has no additional expected value. (Options like - -option=bla
expect values).

¥ Issue the artisan command to see your list of commands

4

~/gsd$ art

Do you see the new gsd:listall command? Hah! Gotcha. You won’t see it yet because artisan
doesn’t know about it ... yet.

Telling Artisan About the ListAllCommand

k Edit the artisan.php file in your app/start directory and add the following line.

Artisan: :add(new GSD\Commands\ListAllCommand);

Now if you issue the artisan command again it’ll show something like:

© 0 9 O O & W N =

N = =Y
O© 0 N O O & W N =~ O

Chapter 38 - The ListAllCommand 212

~/gsd$ art
Laravel Framework version 4.0.7

[I snipped a few lines]

Available commands:

changes Display the framework change list
clear-compiled Remove the compiled class file
dump-autoload Regenerate framework autoload files
help Displays help for a command
list Lists commands
optimize Optimize the framework for better performance
routes List all registered routes
command
command : make Create a new Artisan command

controller
controller:make Create a new resourceful controller
gsd
gsd:listall Lists all todo lists (and possibly tasks).

Right there on the bottom. Awesome. Try running it.

~/gsd$ art gsd:listall
Stick em up, pardner!

He he he, ha, ho, heh, heh. Sometimes all this power makes me giddy.

Fleshing out the fire() method a bit

¥ Update the ListAl1Command.php file and make the fire() method look like what’s below.

© 0 9 O O & W N =

10
11

=N O O b W N =

Chapter 38 - The ListAllCommand 213

public function fire()

{
$archived = $this->option('archived');
$title = 'Listing all ';
if ($archived) $title .= 'archived ';
$title .= 'lists';

$this->info($title);

$lists = \Todo::alllists($archived);
print_r($lists);

}

Here we're setting the $archived variable to true or false, depending on whether the --archived
option is used. Next we’re outputting a title that will say either “Listing all lists” or “Listing all
archived lists”. Using the command’s info() method will make this appear a nice pretty green.

Next, we're fetching all the lists using the Todo facade. (Note the backslash, that’s needed because

we’re namespaced. You could also put a use Todo; at the top of the file and get by without the
backslash.)

Finally, we dump the list out using print_r(). I figured there was enough to discuss with those few
lines of code.

¥ Let’s give it a try. Run the command.

~/gsd$ art gsd:listall
Listing all lists

[ReflectionException]
Class TodoRepositoryInterface does not exist

gsd:listall [-al--archived]

What the ...? Crap. There’s a bug that made it through the last part of the book. Uggh. I'm not feeling
so giddy now. Sheesh. You start to feel pretty good, like you’re invincible and WHAM! Laravel brings
you back down to earth. Not that I blame Laravel. I know [was getting a big head there for a moment
and Laravel only wants what’s best for me and thought it was time for a reality check.

The bug is in the TodoManager . php code. I forgot some namespacing.

Q‘ Edit the TodoManager . php file as follows

4

© 0 9 O O & W N =

N =Y
g b W N -~ O

Chapter 38 - The ListAllCommand 214

1. Search for all instances of App: :make(' TodoRepositoryInterface')
2. Replace that with App: :make('GSD\Repositories\TodoRepositoryInterface')

There should be three replacements.

Q‘ In the same file, make the following replacement.

4

1. Search for App: :make('ListInterface')
2. Replace it with App: :make('GSD\Entities\ListInterface')

There should only be one replacement

To be safe, let’s run phpunit.

~/gsd$ phpunit --tap

TAP version 13

ok 1 - ExampleTest::testBasicExample

ok 2 - TaskCollectionTest::testAddFromClassWorks

[snipped about 40 lines]

ok 43 - TodoManagerTest: :testFacade

not ok 44 - Failure: TodoManagerTest: :testMakelListThrowsExceptionWhenExists
message: 'Failed asserting that exception of type "ReflectionException™
matches expected exception "InvalidArgumentException". Message was: "Class

ListInterface does not exist".
severity: fail

ok 45 - TodoManagerTest::testMakelList
[snipped the rest]

Dang this still isn’t working. What’s going on? At this point I'm going to need to dig into the code
and do some serious debugging. Why don’t you go out. Grab a bite to eat. Maybe catch a movie.
When you get back I'll have it figured out.

Back so soon? Well, I found a couple problems.

The first is more of the namespacing issue.

Q’ Make the following changes to TodoManagerTest . php

o

B W N -

Chapter 38 - The ListAllCommand 215

1. Search for all instances of App: :bind(' TodoRepositoryInter face
2. Replace with App: :bind('GSD\Repositories\TodoRepositoryInterface

There should be 6 replacements.

Q‘ In the same file TodoManagerTest . php make the following changes.

4

1. Search for all instances of App: :bind('ListInterface'
2. Replace with App: :bind('GSD\Entities\ListInterface'

Only one replacement this time.

Q’ Finally, in the same file TodoManagerTest . php, add the following method at the top of the

s class

public function tearDown()
{
$this->refreshApplication();

}

This last change hacks in a fix that’s a bit more insidious than forgetting the namespacing. The
problem is that some of the unit tests bind() interfaces to mock objects. Well, what happens is that
from test to test, the IoC container is not rebuilt, the result is when we create new instances of bound
names, we get the mock objects. So using the refreshApplication() method will rebuild the IoC
container (setting $app back to the defaults).

I say this is a hack, because I only fixed it this one place. Ideally, the application’s state should be
the same after the test as it was before.Everywhere a test does a bind() it should undo what it did
at the end. Even though the unit tests pass now, let’s fix it completely through the unit tests.

o)’ To make sure the IoC container is refreshed any time we do a bind() add the same
p tearDown() method to the top of the TodoList class in TodoListTest.php

This is still a bit hacky, because we’re not complementing each and every bind() with a correspond-
ing reset. But it’s good enough for now.

® 9 O U W N e PR

© 00 N O O b W N =~

[= SN
B W N~ O

Chapter 38 - The ListAllCommand 216

public function tearDown()

{

$this->refreshApplication();

G Sorry about that side track. I'm really not feeling the least bit giddy now. Thanks Laravel.

Q‘ Let’s try the command again

4

~/gsd$ art gsd:listall
Listing all lists

[RuntimeException]
Directory doesn't exist: /home/chuck/Documents/gsd/

gsd:listall [-al--archived]

Okay, that error makes sense because I don’t have my folder for lists set up. That’s fine. Let’s use
the data in the directory we set up for unit tests.

Y Try the command with --env=testing

~/gsd$ art gsd:listall --env=testing
Listing all lists

Array

(
[@] => test-one
[1] => test1
[2] => test2

)

~/gsd$ art gsd:listall --env=testing --archived
Listing all archived lists

Array

(
[@0] => test2

Chapter 38 - The ListAllCommand 217

Looks like it’s working. That - -env command is automatically built into every artisan command is
nice.

Let’s make the output better than print_r().

Using Symfony's Table Helper

Since the Laravel I11uminate\Console\Command class is built from the Symfony\Component \Console\Command
class, we can tap into the power of Symfony. One of the features Symfony provides is command
helpers. Let’s use the table helper to output what we want.

Q‘ Update your fire() method of ListAl1Command.php to match what’s below. Also, add the
o sortListIds() stub method.

© 0 9 O O & W N =

NN NN NN NN P R R S s
N O O b WO N~ O © 0 N O O b 0w N -~ O

<?7php
public function fire()

{

$archived = $this->option('archived');
$title = 'Listing all ';
if ($archived) $title .= 'archived ';
$title .= 'lists';

$this->info($title);

$lists = \Todo::alllLists($archived);
$lists = $this->sortlListIds($lists);
$headers = array('list', 'next', 'todos', 'completed');

$rows = array();
foreach ($lists as $listlId)
{
$list = \Todo::get($listld, $archived);
$rows[] = array(
$listld,
$list->taskCount('next'),
$list->taskCount('todo'),
$list->taskCount('done'),

// Output a pretty table

$table = $this->getHelperSet()->get('table');

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

© 0 9 O O & W N =

I S =Y
O O b W N =~ O

Chapter 38 - The ListAllCommand 218

$table
->setHeaders($headers)
->setRows($rows)
->render ($this->getOutput());

JHk
* Sort the list ids
*/
protected function sortListIds(array $listlds)
{

return $listlids;

}

2>

We're loading each list, tallying up the data, stashing the data in a $rows[] array. Then where getting
Symfony’s table helper, telling it the headers and rows and to render the table.

How does it look?

Q’ Test the gsd:1istall command from the console.

4

~/gsd$ art gsd:listall --env=testing
Listing all lists

R oo TR oo +
| list | next | todos | completed |
R SR ER R +
| test-one | 2 | 2 | 2 |
| test1 | 2 | 2 | 2 |
| test2 | 3 | 3 | 3 |
S oo SO o +

~/gsd$ art gsd:listall --env=testing --archived
Listing all archived lists

oo Fommaan oo o +
| 1list | next | todos | completed |
Fommeooo Foomoon Foomoooo Fommmmeoo oo +
| test2 | 3 | 3 3 |
Fommeo oo Fommaoo Fommeooo Fom e +

I’m still using the testing data which is left over from the last time we perform unit tests. The output
looks great. There’s only two problems:

O O b W N =~

Chapter 38 - The ListAllCommand 219

1. All the numbers for next, todos, and completed are the same. That’s because the taskCount()
method always returns the total number of tasks in the list.

2. The lists aren’t sorted. Yeah, we haven’t implemented the sortListIds() method yet.

Let’s fix those issues and wrap up this chapter.

Refactoring taskCount()

The goal here is to add an option argument to this method that will count certain types of tasks. We
want to do this in such a way that any existing code won’t break, so we’ll have the default be all.

& Update the ListInterface: :taskCount() method’s definition.

Vi
* Return number of tasks
* @param string $type Either 'all', 'done', 'todo', or 'next'
* @return integer
*/

public function taskCount($type = 'all');

d)’ And update the implementation in TodoList . php.

I4

<7php
Vi
* Return number of tasks
* @param string $type Either 'all', 'done', 'todo', or 'next'

* @return integer

*/
public function taskCount($type = 'all')
{
$count = 0;
foreach ($this->tasks->getAll() as $task)
{
switch($type)
{

case 'done':

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Chapter 38 - The ListAllCommand 220

if ($task->isComplete())
{

$count++;
}
break;
case 'todo':
if (! $task->isComplete() and ! $task->isNextAction())
{
$count++;
}
break;
case 'next':
if (! $task->isComplete() and $task->isNextAction())
{

$count++;

}

break;
default:
$count++;

}

return $count;

}

?2>

Okay, maybe not the greatest feat of software engineering, but hey, it’s getting the job done.

Sorting the List ids

Remember way back in Chapter 23 when we added the gsd.listOrder array to the config? Let’s
use that now to sort the list.

Basically, if any of the list ids match an entry in the array, it will be sorted in the order of the array,
anything else will come afterward alphabetically.

Y Update the sortListIds() method in ListAllCommand.php to match below.

Chapter 38 - The ListAllCommand 221

<?7php
Ve
* Sort the list ids
*/
protected function sortListIds(array $listlds)
{
// Pull the names
$special = array();
foreach (\Config::get('app.gsd.listOrder') as $name)
{

$special [$name] = false;

// Peel off the specials
$tosort = array();
foreach ($listlds as $1listlId)

{
if (array_key_exists($listId, $special))
{
$special [$listId] = true;
}
else
{
$tosort[] = $listiq;
}
}

// Put the specials first then sort the remaining and add them in
$return = array();
foreach ($special as $listId => $flag)

{
if ($flag)
{
$return[] = $listid;
}
}

natcasesort($tosort);
return array_merge($return, $tosort);

}

?2>

I’'m not going to bore you with an explanation because I told you before the code what my intention
was. Hopefully, it’ll work.

© 0 9 O O & W N =

N U =
O O b W N =~ O

Chapter 38 - The ListAllCommand 222

I’ll leave it to you to create a unit test it if you want. (Hint: to unit test this method you’ll probably
want to make it public instead of protected.)

K Run the gsd:1listall command again to see if it looks like it’s working.

~/gsd$ art gsd:listall --env=testing
Listing all lists

Fommm oo Foomoon Fommemo Fommmm e +
| list | next | todos | completed |
Fome oo Foooo R O +
| test-one | © | | |
| test1 | | | |
| test2 | 1 | | |
Fommmm oo Foomoon Fommemon Fommmm oo +

~/gsd$ art gsd:listall --env=testing --archived
Listing all archived lists

oo Fommeae oo oo +
| 1list | next | todos | completed |
Fommeooo Foomaon Foomeoon Fommmmeeoo +
| test2 | 1 2 | @ |
Fommeo oo Foemooo Fommoooo oo oo +

Seems okay to me.

Sorry I got sidetracked on finding a bug in this chapter. That wasn’t the intention at the chapter’s
beginning.

Sometimes programming is all about the bug hunt.

© 00 N O O b W N =

I S
W N~ O

Chapter 39 - The CreateCommand

0 In This Chapter

In this chapter we’ll implement the gsd:create command.

I’'m not going to declare this chapter is going to be fun. I did that last chapter and what happened?-I
uncovered some ugly bugs.

I will say this chapter should be fun. But at the moment I'm a bit gun-shy about being overly
exuberant.

The Plan

Back in Chapter 35, we planned the gsd:create command. Our variations were:

$ gsd create +hame --title="My title" --subtitle="My subtitle"
$ gsd create +hame -t "My title" -s "My subtitle"
$ gsd create

The last option will prompt for name, title and subtitle.

The pseudo-code we came up with in Chapter 36 was:

Get options and arguments

If no options or arguments
Prompt user for new list-id
Validate list-id
Prompt user for list-title
Prompt user for list-subtitle

Else
Validate list-id

EndIf

Create new list

Set list-title if needed

Set list-subtitle if need

Save list

Chapter 39 - The CreateCommand 224

Creating the CreateCommand

A% Let’s create the command shell with artisan

4

1 ~/gsd$ art command:make CreateCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

Q‘ Edit the newly created CreateCommand.php in your app/src/GSD/Commands directory and
p make it match what’s below.

1 <?php namespace GSD\Commands;

2

3 use Illuminate\Console\Command;

4 use Symfony\Component\Console\Input\InputOption;
5 use Symfony\Component\Console\Input\InputArgument;
6 use Todo;

.

8 class CreateCommand extends CommandBase ({

9

10 Vi

11 * The console command name.

12 *

13 * @var string

14 */

15 protected $name = 'gsd:create';

16

17 Ve

18 * The console command description.

19 *

20 * @var string

21 */

22 protected $description = 'Create new list.';
23

24 Veis

25 * Create a new command instance.

26 *

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68

Chapter 39 - The CreateCommand

* @return void

*/
public function __construct()
{
parent::__construct();
}
JHk

* Execute the console command.

*

* @return void

*/

public function fire()

{

//

J Rk

* Get the console command arguments.

*

* @return array

*/

protected function getArguments()

{

return array(

);

J Rk

* Get the console command options.

*

array('+name', InputArgument::OPTIONAL, 'List name to create'),

* @return array

*/

protected function getOptions()

{

return array(

);

array('title', 't', InputOption::VALUE REQUIRED,
'Title of list.', null),

array('subtitle', 's', InputOption::VALUE REQUIRED,
'Subtitle of list.', null),

225

69
70
71

0 N O O & W N =

O O b W N =

Chapter 39 - The CreateCommand 226

}

2>

Did you catch that CommandBase that we're extending this class from? I want to be able to add
routines to a common parent, so we're setting the structure up right off to allow that.

I know, I talked about implementing things in the Todo facade. But I realized this is a perfectly fine
way to Get Stuff Done and it’s a method I haven’t used in this book.

Also, I added the use Todo at the top. It’s not being used, but I know I'm going to use our cool Todo
facade in this implementation.

Q‘ Create CommandBase.php in your app/src/GSD/Commands directory with the following
p content.
<?php namespace GSD\Commands;
use Illuminate\Console\Command;

class CommandBase extends Command {

}

2>
Nothing in it yet. But we know it’s there.

Q‘ Finally, link the command in by editing app/start/artisan.php to match what’s below.

4

<?php

Artisan: :add(new GSD\Commands\ListAllCommand);
Artisan::add(new GSD\Commands\CreateCommand);

?2>
Here we removed the comments, left the ListAl1Command, and added the CreateCommand.

Q‘ Now let’s check that the command’s available.

I4

o N O O b W N =

Chapter 39 - The CreateCommand 227

~/gsd$ art
Laravel Framework version 4.0.7

[snipping everything until the gsd commands]

gsd
gsd:create Create new list.
gsd:listall Lists all todo lists (and possibly tasks).

Great! The skeleton’s in place, let’s implement it.

.)’ Please Note

p From this point forward I'm going to be working with live todo lists. So set up whatever
folder that is specified in your app/config/app.php. (Don’t forget th archived subdirec-

tory.)
In my case, I'm doing the following.

~/gsd$ mkdir /home/chuck/Documents/gsd
~/gsd$ mkdir /home/chuck/Documents/gsd/archived

(Change the path above to be relevant for your installation.)

Adding the all_null() Helper

As I started coding the implementation, I realized there would be a handy function that could check
multiple arguments and return true if they’re all null. So let’s implement the helper and write a unit
test for it.

4;‘ Add the following function to the top of your helpers.php. Remember, this file is in
p src/GSD and is always loaded.

© 0 9 O O & W N =

U S S
O O b WO N~ O

O 00 N O O b W N =~

Chapter 39 - The CreateCommand

J Rk
* Return TRUE if every arg is null.
* @usage all_null(argl, arg2, ...)
* @return bool
*/

function all_null()

{

foreach (func_get_args() as $arg)
{

if (! is_null($arg))

{

return false;

}

return true;

d;’ Add the following method to the end of the class in HelpersTest.php

4

public function testAlINull()

{
$this->assertTrue(all_null());
$this->assertTrue(all_null(null));
$this->assertTrue(all_null(null, null, null, null));
$this->assertFalse(all_null(Q));
$this->assertFalse(all_null(null, null, '', null));
$this->assertFalse(all_null(null, null, null, 33));

Q‘ Do the unit tests

o

228

Chapter 39 - The CreateCommand 229

1 ~/gsd: phpunit --tap --filter HelpersTest
2 TAP version 13
3 ok 1 - HelpersTest::testPickFromListEmptyArrayThrowsError
4 ok 2 - HelpersTest::testPickFromListBadDefaultThrowsError
5 ok 3 - HelpersTest: :testPickFromListBadDefaultThrowsError2
6 ok 4 - HelpersTest::testPickFromListWorksExamplel
7 ok 5 - HelpersTest::testPickFromListWorksExample2
8 ok 6 - HelpersTest::testPickFromListWorksExample3
9 ok 7 - HelpersTest::testPickFromListWorksWithDefault
10 ok 8 - HelpersTest::testPickFromListWorksWithAbort
11 ok 9 - HelpersTest::testAllNull
12 1..9
Okay, it works. If you do phpunit without any options you’ll see we’re up to 100 assertions. Yeah.
Expanding CommandBase
Now, let’s flesh out CommandBase
»&‘ Update CommandBase . php to match what’s below.
1 <?php namespace GSD\Commands;
2
3 use App;
4 use Illuminate\Console\Command;
5
6 class CommandBase extends Command {
7
8 protected $repository;
9
10 Rk
11 * Constructor
12 */
13 public function __construct()
14 {
15 parent::__construct();
16 $this->repository = App::make('GSD\Repositories\TodoRepositorylnterface');
17 }

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Chapter 39 - The CreateCommand

/**

* Prompt the user for a list id

* @param bool $existing Prompt for existing list or new list?
* @param bool $allowCancel Allow user to cancel

* @param bool $archived Use archived list?

* @return mixed string list id or null if user cancels

*/

public function askForlListId($existing = true, $allowCancel = true,

$archived = false)

if ($existing)

{
throw new \Exception('existing not done');
}
$prompt = 'Enter name of new list';
if ($allowCancel) $prompt .= ' (enter to cancel)';
$prompt .= '?";
while(true)
{
if (! ($result = $this->ask($prompt)))
{
if ($allowCancel)
{
return null;
}
$this->outputErrorBox('You must enter something');
}

else if ($this->repository->exists($result, $archived))

{

$this->outputErrorBox("You already have a list named '$result'");

}

else

{

return $result;

J Rk

* Qutput an error box
* @param string $message The message

230

61
62
63
64
65
66
67
68
69
70
71

© 0O 9 O O & W N =

(AU
N =~ O

Chapter 39 - The CreateCommand 231

*/

protected function outputErrorBox($message)

{
$formatter = $this->getHelperSet()->get (' formatter');
$block = $formatter->formatBlock($message, 'error', true);
$this->1line('");
$this->1ine($block);
$this->1line('');

2>

Okay, let’s go over this real quick.

Constructor - we inject the $repository into the class using whatever the binding is for the
interface. This is done because the repository will be useful to classes built upon CommandBase.

askForListId() - this method can be used when we want to prompt the user for a list id. If $existing
is set, then we’ll prompt for an existing list (but this isn’t yet implemented). If the $existing flag is
false, then we’ll get a list id that doesn’t yet exist.

outputErrorBox() - this is used by askForListId() for outputting a big fat red box to make the
error very apparent to the user. I'm hooking into Symfony’s Format Helper to build the box.

Implementing fire()

k Update CreateCommand. php and replace the fire() method with what’s below.

<?7php

kK
* Execute the console command.
*
* @return void
*/

public function fire()

{
// Get options and arguments
$name = $this->argument('+name');
$title = $this->option('title');
$subtitle = $this->option('subtitle');

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Chapter 39 - The CreateCommand

// Prompt for everything
if (all_null($name, $title, $subtitle))

{
if (! ($name = $this->askForlListId(false, true)))
{
$this->outputErrorBox('*aborted*"');
exit;
}
$title = $this->ask("Enter list title (enter to skip)?");
$subtitle = $this->ask("Enter list subtitle (enter to skip)?");
}

// Validate arguments
else if (is_null($name))
{
throw new \InvalidArgumentException(
'"Must specify +hame if title or subtitle used');
}
else if ($name[0Q] !'= '+")
{
throw new \InvalidArgumentException(
'"The list name must begin with a plus (+)');

}

else
{
$name = substr($name, 1);
if ($this->repository->exists($name))
{
throw new \InvalidArgumentException(
"The list '$name' already exists");

// Create the list, defaulting title 1f needed
$title = ($title) ? : ucfirst($name);
$list = Todo: :makelist($name, $title);

// Set the subtitle if needed
if ($subtitle)

{
$list->set('subtitle', $subtitle)->save();

232

55
56
o7
58
59

Chapter 39 - The CreateCommand 233

$this->info("List '$name' successfully created");

?2>

Yeah! I'm not going to explain the implementation because it’s well documented, it follows our
pseudo-code fairly close, and there’s no magic there.

What about unit tests?

You could set up unit tests for this, but I'm not going to. Many of the underlying classes
have been unit tested. And at this level, we’ve moved up the testing spectrum from Unit
Tests to Integration Tests. Unfortunately, Integration Testing is outside the scope of this

book.

w N

Chapter 40 - The UncreateCommand

0 In This Chapter

In this chapter we’ll implement the gsd:uncreate command.

I’ve been looking forward to this chapter since Chapter 37. Not because uncreating a list is going to
be such a fantastic bit of coding. No, I've been looking forward to it because finally we’ll get to use
that pick_from_list() helper function we created.

The Plan

Back in Chapter 35, we planned the gsd:uncreate command. It was simple.
$ gsd uncreate

Uncreate would be used so seldom that I decided to always let the user pick from a list to uncreate.

The pseudo-code we came up with in Chapter 36 was:

Prompt user for list-id
Validate list-id has no tasks
Delete list

Should be a snap to implement.

Creating the UncreateCommand

v&‘ Let’s create the command shell with artisan

4

O 00 N O O b W N

-~
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Chapter 40 - The UncreateCommand

~/gsd$ art command:make UncreateCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

d)’ Edit the newly created UncreateCommand.php in your app/src/GSD/Commands directory
p and make it match what’s below.

<?php namespace GSD\Commands;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Todo;

class UncreateCommand extends CommandBase {

kK
* The console command name.
*

* @var string

*/
protected $name = 'gsd:uncreate';
Vet
* The console command description.
*

* @var string

*/
protected $description = 'Destroy an empty list.';
Vs

* Execute the console command.

*

* @return void
*/
public function fire()
{
// Prompt user for list-id
if (! ($name = $this->askForListId(true, true)))
{

$this->outputErrorBox('*aborted*');

235

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
o7
68
69
70
71
72
73

Chapter 40 - The UncreateCommand

}

?2>

exit;

// Validate list

has no tasks

$list = Todo: :get($name);
if ($list->taskCount() > 0)

{

throw new \UnexpectedValueException(
'Cannot uncreate a list with tasks');

// Delete list

if (! $this->repository->delete($name))

{

throw new \RuntimeException("Repository couldn't delete list '$name'");

}

$this->info("The list '$name' is now in the big bitbucket in the sky");

J Rk

* Get the console command arguments.

*
* @return array
*/

protected function

{

return array();

J Rk

* Get the console command options.

*
* @return array
*/

protected function

{

return array();

getArguments()

getOptions()

236

Pretty simple implementation. We're extending CommandBase. There’s no options or arguments to
this command. And check out the comments in the fire() method. Hey, they’re pretty much the

N O O b W N =

O© 00 N O O b W N -~

Chapter 40 - The UncreateCommand 237

pseudo-code we started with.

Also, I deleted the constructor because it wasn’t doing anything.

Q’ In fact. Go into CreateCommand.php and ListAl1Command.php and delete the constructors.
r s They aren’t needed.

I used to work with this guy ... he was in sales and didn’t understand much about software. Yet,
somehow he sold it. Often we’d be talking about the work that needed to be done, integrating one
part of the system with another, and he’d say “Just bolt ‘em together.” APIs? He didn’t care about
that stuff, “Just bolt ‘em together.” I'd roll my eyes thinking this guy has no clue.

Anyway, artistan needs to know about our new gsd:uncreate command so let’s “Just bolt ‘em
together”

Q’ Edit app/start/artisan.php to match what’s below.

4

<?php
Artisan: :add(new GSD\Commands\ListAllCommand);
Artisan: :add(new GSD\Commands\CreateCommand);

Artisan: :add(new GSD\Commands\UncreateCommand);

2>

A% Now let’s check that the command’s available.

4

~/gsd$ art
Laravel Framework version 4.0.7

[snipping everything until the gsd commands]

gsd
gsd:create Create new list.
gsd:listall Lists all todo lists (and possibly tasks).
gsd:uncreate Destroy an empty list.

Of course the commands there. You knew it would be, didn’t you?

O O b W N =

© 00 N O O b W N =

T = S G G U U G S U N
© © 0O N O O b W N =~ O

Chapter 40 - The UncreateCommand

Getting Stack Traces on Your Command

»&’ Try to run our new command.

~/gsd$ art gsd:uncreate

[Exception]
existing not done

gsd:uncreate

Of course. The CommandBase: :askForListId() was not finished. But what if we couldn’t remember

that? Easy ... use the -v option with the artisan command.

Y Try to run the command with -v

~/gsd$ art gsd:uncreate -v

[Exception]
existing not done

Exception trace:
() at .../app/src/GSD/Commands/CommandBase.php:30
GSD\Commands \CommandBase->askForListId() at
.../app/src/GSD/Commands/UncreateCommand. php: 31
GSD\Commands\UncreateCommand->fire() at
.../ framework/src/I11luminate/Console/Command.php:108
I1luminate\Console\Command->execute() at
.../Symfony/Component/Console/Command/Command. php:244
Symfony\Component\Console\Command\Command->run() at
.../ framework/src/I1luminate/Console/Command.php:96
I1luminate\Console\Command->run() at
.../Symfony/Component/Console/Application.php:897
Symfony\Component\Console\Application->doRunCommand() at
.../Symfony/Component/Console/Application.php:191
Symfony\Component\Console\Application->doRun() at

21
22
23
24
25

O© 00 N O O b W N =~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Chapter 40 - The UncreateCommand 239

.../console/Symfony/Component/Console/Application.php:121
Symfony\Component\Console\Application->run() at
/home/chuck/gsd/artisan:59

gsd:uncreate

Nice. Now I know to look at line 30 of CommandBase . php to figure out why the exception was thrown.

(I cleaned up the stack trace above, shortening paths, adding the ... because I wanted the text to fit
better on smaller screens.)

Implementing askForListld() for existing lists

Q’ Add use Todo; in the top area of CommandBase.php, then update the fire() method to
p match what’s below.

<?php
J xRk

*

Prompt the user for a list id

* @param bool $existing Prompt for existing list or new list?

* @param bool $allowCancel Allow user to cancel

* @return mixed string list id or null if user cancels

*/
public function askForListId($existing = true, $allowCancel = true,
$archived = false)

{
if ($existing)
{
$title = 'Choose which list to destroy:';
$abort = 'cancel - do not destroy a list';

$choices = Todo::alllists();
if (count($choices) == 0)

{
throw new \RuntimeException('No lists to choose from');
}
$result = pick_from_list($this, $title, $choices, 0, $abort);
if ($result == -1)
{

return null;

25
26
27
28

0 N O O b W N =

Chapter 40 - The UncreateCommand 240

return $choices[$result-1];

}

// rest of file unchanged
2>

Now what happens when you run the gsd:uncreate command?

~/gsd$ art gsd:uncreate
Choose which list to destroy:
. test-1

. test-10

test-2

. waiting

g b W N -

cancel - do not destroy a list
Please select 1 to 57

(Obvoiusly, your choices will appear different.)

It actually works! Nice. Play around with it and create lists, then uncreate them. Test out some of
the possibilities.

Everything’s working great for me ... but, there’s a couple things I want to clean up.

A Little Cleanup

First, a housekeeping task. When I was implementing the code above in askForListId() I thought
pick_from_list() would return null if the abort choice was selected. Nope. It returns -1. That’s
fine, but it’s not documented in the docblock. Let’s fix that.

Also, a few cosmetic changes. I want a blank line after the menu’s title and a blank line before the
prompt. And instead of the prompt ‘Please select 1 to X?’, I want it to say ‘Please enter a number
between 1 and x:’. Finally, if the wrong value is entered I want a message saying so.

Q‘ Edit helpers.php and update the pick_from_list() function to match what’s below.

o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 40 - The UncreateCommand

<?7php
J Rk
* Present a list of choices to user, return choice
* @param Command $command The command requesting input
* @param array $choices List of choices
* @param int $default Default choice (1-array size), -1 to abort
* @param string $abort String to tag on end for aborting selection
* @return int -1 if abort selected, otherwise one greater than $choice index
* (in other words, choosing $choice[0O] returns 1)
*

@throws InvalidArgumentException If argument is invalid

*/
function pick_from_list(Command $command, $title, array $choices,
$default = 0, $abort = null)

i

{

}

f ($abort)

$choices[] = $abort;

$numChoices = count($choices);

i

{

}
i

{

}

1

{

}

f (! $numChoices)

throw new \InvalidArgumentException("Must have at least one choice");

f ($default == -1 &_& empty($abort))

throw new \InvalidArgumentException(
'Cannot use default=-1 without $abort option');

if (! between($default, -1, $numChoices))

throw new \InvalidArgumentException("Invalid value, default=$default");

$question = "Please enter a number between 1-$numChoices";

i

{

}

f ($default > 0)

$question .= " (default is $default)";

elseif ($default < 0)

{

$question .= " (enter to abort)";
$default = $numChoices;

241

43
44
45
46
47
48
49
50
51
52
53
54
95
56
o7
58
59
60
61
62
63
64
65
66
o7
68
69
70
71
T2
73
T4
75

Chapter 40 - The UncreateCommand

}

2>

$question .= ':';
while(1)

{

$command->1line('"');
$command->info($title);
$command->1line('"');
for ($i = 0; $i < $numChoices; $i++)
{
$command->1line(($i + 1).". ".$choices[$i]);
}
$command->1line('"');
$answer = $command->ask($question);
if ($answer == '")
{
$answer = $default;
}
if (between($answer, 1, $numChoices))
{
if ($abort and $answer == $numChoices)
{
$answer = -1;

}

return (int)S$answer;

// Output wrong choice
$command->1line('"');
$formatter = $command->getHelperSet()->get(' formatter');

$block = $formatter->formatBlock('Invalid entry!', 'error',6 true);

$command->1line($block);

I also tweaked the code a bit from the previous version.

Fixing the unit tests

242

Wouldn’t you know it. I broke the unit tests. Let’s fix that real quick before wrapping up this chapter.

The issue isHelpersTest: : testPickFromListWorksExampled. That’s the test where the first time we
mock a wrong selection. With the new code above, now it’s wanting to call $command->getHelperSet ()
which doesn’t exist on our mock object.

O 00 I O O B W N =~

U S U
0 I O O b 0w N =~ O

Chapter 40 - The UncreateCommand

243

Fine. I don’t usually like to do unit tests and create mock objects which return mock objects which
return other values. But it’s easy to do with Mockery.

Q’ Edit HelpersTest.php and update testPickFromListWorksExample3 to match the code

p below.

<?php
// First time through loop user selects bad choice, causing a second loop

?2>

public function testPickFromListWorksExample3()

{

$formatter = Mockery: :mock('stdClass');

$formatter->shouldReceive(' formatBlock')->once()->andReturn('"');
$helperset = Mockery: :mock('stdClass');
$helperset->shouldReceive('get')->once()->andReturn($formatter);
$command = Mockery: :mock('Illuminate\Console\Command');
$command->shouldReceive('info')->times(2);
$command->shouldReceive('line')->times(4);

$command->shouldReceive('getHelperSet')->once()->andReturn($helperset);
$command->shouldReceive('ask')->times(2)->andReturn('x"', 1);

$choice = pick_from_list($command, 'title', array('option'));
$this->assertbquals(1, $choice);

Now if you run phpunit, everything should pass with flying colors.

© 00 N O O b W N =

N
()

Chapter 41 - The EditListCommand

0 In This Chapter

In this chapter we’ll implement the gsd:editlist command.

The Plan

The ‘gsd:editlist’ command, as planned back in Chapter 35, looked like the following:

$ gsd editlist +name --title="title" --subtitle="subtitle"
$ gsd editlist +name -t "title" -s "subtitle"
$ gsd editlist

The last usage would prompt for everything. In fact, if the user omits the name then we have a
programming decision to make ... do we use the default list defined in the configuration or prompt
the user for the list?

Remember we already have the configuration option noListPrompt to tell us what to do.

Hmmm. It provides more flexibility to throw in an additional option. Maybe 1istname=prompt |config.
That way the noListPrompt config setting can be overridden. This allows the default behavior to be
specified by our configuration, yet the user has the power to override the default behavior.

I like having the power.

In Chapter 36 we determine the pseudo-code would be something like:

Get options and arguments
Prompt for list-id if not specified
Load list
If no arguments
Prompt user for list-title
Prompt user for list-subtitle
EndIf
Set list-title if needed
Set list-subtitle if need
Save list

© 00 9 O O & W N =

(AN
[l]

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Chapter 41 - The EditListCommand 245

The logic must change slightly to handle the different methods of determining the list name. In fact,
this functionality will be used by other console commands we’ll be creating. Let’s create a method in
CommandBase that’s smart enough to pick the correct list name when omitted, either from the config
default or user selected.

Updating CommandBase

Since where updating CommandBase, let’s add a couple other useful bits to the class.

& Edit your CommandBase . php file, replace the contents with what’s below.

<?php namespace GSD\Commands;

use App;

use Config;

use Illuminate\Console\Command;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Todo;

class CommandBase extends Command ({

protected $repository;
protected $nameArgumentDescription = 'List name.';

Vi
* Constructor
*/

// NO CHANGES

J**

*

Prompt the user for a list id

*

@param bool $existing Prompt for existing list or new list?

*

@param bool $allowCancel Allow user to cancel

*

@return mixed string list id or null if user cancels
*/
// NO CHANGES

kK

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
ST
58
59
60
61
62
63
64
65
66
67
68
69
70

Chapter 41 - The EditListCommand 246

* Qutput an error box
* @param string $message The message
*/

// NO CHANGES

Sk
* The console command arguments. Derived classes could replace this
* method entirely, or merge its own arguments with these.

*
* @return array
*/
protected function getArguments()
{
return array(
array('+name', InputArgument::OPTIONAL,
$this->nameArgumentDescription),

);

Veis
* The console command options. Derived classes could replace this
* method entirely, or merge its own options with these
*

* @return array
*/
protected function getOptions()
{
return array(
array('listname', 'l', InputOption::VALUE_REQUIRED,
"Source of list name, 'prompt' or 'default'"),

)

Rk
* Get the list id (of existing lists).

This can happen in a variety of ways. If specified as an argument, then
it's returned (without the + of course). Otherwise, look to see if the
“--listname® argument is used and determine the list accordingly.
Finally, we fallback to the method specified by Config's

¥ ¥ ¥ ¥ X% %

'app.gsd.nolListPrompt' setting

Chapter 41 - The EditListCommand 247

1 *

72 * @return $string Existing list id (or null if user aborts)
73 * @throws InvalidArgumentException If something's not right
T4 */

75 protected function getListId()

76 {

77 $archived = $this->input->hasOption('archived') and

78 $this->option('archived"');

79 $name = $this->argument('+name');

80 $listnameOption = $this->option('listname');

81 if ($name)

82 {

83 $name = substr($name, 1);

84 if (! is_null($listnameOption))

85 {

86 throw new \InvalidArgumentException(

87 'Cannot specify +name and --listname together');
88 }

89 }

90 else

91 {

92 if (is_null($listnameOption))

93 {

94 $listnameOption = Config::get('app.gsd.nolListPrompt"')
95 ? 'prompt' : 'config';

2 }

o7 if ($listnameOption == 'prompt')

08 {

99 $name = $this->askForListId(true, true, $archived);
100 if (is_null($name))

101 {
102 return null;
103 }
104 }
105 else
106 {
107 $name = Config::get('app.gsd.defaultlist');
108 }
109 }
110
111 // Throw error if list doesn't exist

112 if (! $this->repository->exists($name, $archived))

Chapter 41 - The EditListCommand 248

113 {

114 $archived = ($archived) ? '(archived) ' : "'
115 throw new \InvalidArgumentException(

116 "List $archived'$name' not found");

117 }

118 return $name;

119 }

120 }

121 2>

Here’s a rundown of the changes made to CommandBase:

1. There’s a couple more use statements.

2. A new $nameArgumentDescription property was added. It’s used in the getArguments()
method.

3. There’s no changes in the existing three methods of CommandBase.

4. The getArguments() method is implemented here. As the comments state, subclasses can
override or use. Here we use that new property, $nameArgumentDescription.

5. Same deal with getOptions(), derived classes can use it or ignore it.
6. The new getlListId(), I'll explain this in more detail in a few minutes.

Let’s create the EditListCommand to use this new functionality.

Creating the EditListCommand

Q‘ Create the command shell with artisan

4

1 ~/gsd$ art command:make EditListCommand --path=app/src/GSD/Commands \
2 > --namespace="GSD\Commands"
Command created successfully.

Q’ Edit the newly created EditListCommand.php in your app/src/GSD/Commands directory
p and make it match what’s below.

© 0 9 O O & W N =

W oW W W W W W WA NNDNDNNNNDNDN B s s s s s s s
[0 0O R WD RO O 0 N0 0 ®ON RO O 0N 0NN,

Chapter 41 - The EditListCommand 249

<?php namespace GSD\Commands;

use Illuminate\Console\Command;
use Symfony\Component\Console\Input\InputOption;
use Todo;

class EditListCommand extends CommandBase {

protected $name = 'gsd:editlist';
protected $description = "Edit a list's title or subtitle.";
protected $nameArgumentDescription = 'List name to edit.';

J Rk

* Execute the console command.
*

* @return void
*/
public function fire()

{
$name = $this->getlistId();
var_dump($name) ;

}

Vet
* Get the console command options.
*/

protected function getOptions()

{

return array_merge(parent: :getOptions(), array(
array('title', 't', InputOption::VALUE REQUIRED,
'Title of list.', null),
array('subtitle', 's', InputOption::VALUE_REQUIRED,
'Subtitle of list.', null),
));

2>

Right now I'm just dumping out the name, so I can test a few choices. Sort of a pretest.

(I'm right on the verge of creating a unit test for this, but since I have a feeling this chapter’s going to
run long, I decided no unit tests. That may come as a shock to some testing purists out there. Please,
if you feel the need to do some unit testing, then have at it.)

Chapter 41 - The EditListCommand 250

Telling Artisan About EditListCommand

Q‘ Edit start/artisan.php so artisan knows about our new command

=N O O b W N =

© 0 9 O O & W N =

N N = =Y
O© 0O N O O = W N =~ O

4

<?php

Artisan::add(new GSD\Commands\CreateCommand);
Artisan::add(new GSD\Commands\EditListCommand);
Artisan::add(new GSD\Commands\ListAllCommand);
Artisan: :add(new GSD\Commands\UncreateCommand);
?2>

Notice I decided to keep the commands alphabetically.

Pretesting EditListCommand

Here’s what I tested.

Testing a non-existent list name
~/gsd$ art gsd:editlist +baddie
Result: error message as expected

Testing an existing list

~/gsd$ art gsd:editlist +waiting
string(7) "waiting"

Tests with no list specified config nolListPrompt=true

~/gsd$ art gsd:editlist

Result: yes,

I get the prompt

~/gsd$ art gsd:editlist --listname=default
string(7) "actions"

~/gsd$ art gsd:editlist --listname=prompt

Result: yes,

Tests with no list specified config nolListPrompt=false

I get the prompt

20
21
22
23
24
25
26
27

Chapter 41 - The EditListCommand

~/gsd$ art gsd:editlist
string(7) "actions"

~/gsd$ art gsd:editlist --listname=default
string(7) "actions"

~/gsd$ art gsd:editlist --listname=prompt
Result: yes, I get the prompt

Okay. Good enough, let’s finish this command. (For those of you keeping track, I changed the
config/app.php back to 'noListPrompt' = true.)

Finishing EditListCommand::fire()

One line of code in the existing fire() implementation and we’ve handled getting the list name in
a myriad of ways. Nice.

Q‘ Let’s finish the gsd:editlist command by updating EditListCommand.php and replacing

© 00 N O O b W N =

T = S = G G U U G S U N
S © 0 N O O b W N =~ O

p the current fire() method with what’s below.
<?php
Rk
* Execute the console command.
*

* @return void
*/
public function fire()
{
$name = $this->getlListId();
if (is_null($name))
{

$this->outputErrorBox("EditList aborted");

return;

}
$list = Todo: :get($name);

$title = $this->option('title");
$subtitle = $this->option('subtitle’);

if (all_null($title, $subtitle))

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Chapter 41 - The EditListCommand 252

$this->info(sprintf("Editing '%s'", $name));
$this->1line('"');
$title = $this->ask("Enter list title (enter to skip)?");
$subtitle = $this->ask("Enter list subtitle (enter to skip)?");
$this->1line('");
if (all_null($title, $subtitle))
{
$this->comment('Nothing changed. List not udpated.');

return;

}
}
if ($title)
{

$list->set('title', $title);
}
if ($subtitle)
{

$list->set('subtitle', $subtitle);
}

$list->save();
$this->info(sprintf("List '%s' updated", $name));

2>

I don’t really need to explain this. The logic almost matches the original pseudo-code. It’s just a bit
cleaner with that call to $this->getListId()

a Is it list-id or name?

I’ve been using these terms interchangeably. That’s not likely to change soon. In my mind,
when I’'m thinking of it from the database or repository perspective, it’s an id. But when I
think of it from the context of list, it’s the name of the list, the base filename of the list.

What can I say? Programming is a messy sport. You try to achieve that pristine ideal, but it often
falls short. It’s all about keeping it as clean as you can. Which is a perfect segue into the next chapter.

Chapter 42 - Refactoring Files and
Config

0 In This Chapter

In this chapter we’ll do some more refactoring.

Yes, more refactoring in this chapter. 'm just trying to keep things in as good as shape as I can. You
think this book has lots of code refactoring? It’s nothing like how I refactor in real life. It’s just part
of the process. Write some code, refactor it, write more, refactor. You should see me ... on the other
hand, maybe you shouldn’t. Often I'm sporting three days worth beard stubble, a grungy tee-shirt,
and hair like Yahoo Serious.

Refactoring the Config

So far, our configuration has been stored in the app/config/app.php file, in the gsd section.
I'm starting to feel a bit like an unwanted house guest in that file, so 'm going to create an
app/config/todo.php file that stores all those settings.

Why didn’t you set it up like that at first?
I thought about it, but then thought “Nah. There’ll only be one or two config options.”

o)’ Cut the whole gsd section from your app/config/app.php and paste it into a new file
p app/config/todo.php. Then clean up todo.php to match what’s below.

<?7php
// Config for our awesome getting stuff done application
return array(

'folder' => '/home/chuck/Documents/gsd/"',

'extension' => ' .txt',

'listOrder' => array(

"inbox', 'actions', 'waiting', 'someday', 'calendar',
),
'"defaultlList' => 'actions', // default list when not specified
'noListPrompt' => true, // true=prompt for list, false=use default
);
?>

O O b W N =~

Chapter 42 - Refactoring Files and Config 254

Remember your folder should be specific to your installation.

Q‘ Now rename the app/config/testing/app.php file to app/config/testing/todo.php and
p clean it up, too. It should match what’s below.

<?php
// testing config
return array(
'folder' => app_path().'/tests/GSD/Repositories/data’,
)i

?2>

Q‘ Now, change everywhere in the system that has Config::get('app.gsd. to
p Config: :get('todo.

Here’s a list of files and lines to change:
File: src/GSD/Repositories/TodoRepository.php
$this->path = str_finish(Config:get(‘app.gsd.folder’), /°);

File: src/GSD/Repositories/TodoRepository.php
$this->extension = Config:get(‘app.gsd.extension’);

File: src/GSD/Commands/ListAl1lCommand. php
foreach (Config::get(‘app.gsd.listOrder’) as $name)

File: src/GSD/Commands/CommandBase. php
$listnameOption = Config::get(‘app.gsd.noListPrompt’) ...

File: src/GSD/Commands/CommandBase. php
$name = Config:get(‘app.gsd.defaultList’);

File: tests/GSD/Repositories/TodoRepositoryTest.php
$ext = Config::get(‘app.gsd.extension’);

That’s it! It’s gratifying to discover while doing this that all five of our configuration options are
actually used.

Y It’s a good idea to run phpunit after doing something like this.

O b W N -

o N O

10

Chapter

~/gsd$

42 - Refactoring Files and Config

phpunit

PHPUnit 3.7.27 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/phpunit.xml

Time: 196 ms, Memory: 24.25Mb

0K (59

tests, 100 assertions)

All good.

Refactoring to use Laravel’s File class

255

A reader pointed out ... or, more accurately, a reader asked “Why don’t you use Laravel’s Filesystem
methods?”

I didn’t think of it at the time. I still think of file_exists() instead of File: :exists(). But this is
supposed to be a book on Laravel, right? So let’s use Laravel’s class.

Easy. All file access methods should be located in the TodoRepository implementation.

Here’s a list of what we’re changing:

« all references to is_dir() toFile::isDirectory()
« all references to file_exists() toFile: :exists()

+ TodoRepository: :delete() made simpler by using File: :delete()

« changing call glob() toFile::glob()
+ changing call to file() toexplode("\n", File::get())
« changing call to file_put_contents() toFile: :put()

After making those changes and running the unit tests, a weird bug popped up. The file TodoRepository . php

contained the line below which started puking.

if (count($lines) && $lines[@][0] == "(")

Hmmm. Well, I changed it as below and it passes unit tests:

if (count($lines) && starts_with($lines[0], '('))

Strange how that line wasn’t failing before.

o

4)‘ You’re updated TodoRepository.php should match what’s below.

O 00 I O O b wWw N =~

(SN
[l]

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 42 - Refactoring Files and Config

<?php namespace GSD\Repositories;

/7

File: app/src/GSD/Repositories/TodoRespository.php

use Config;

use File;
use GSD\Entities\ListInterface;

class TodoRepository implements TodoRepositorylnterface {

protected $path;
protected $extension;

J Rk

* Constructor. We'll throw exceptions if the paths don't exist

*/

public function __construct()

{

$this->path = str_finish(Config::get('todo.folder'), '/');
if (! File::isDirectory($this->path))

{
throw new \RuntimeException("Directory doesn't exist: $this->path");
}
if (! File::isDirectory($this->path. 'archived'))
{
throw new \RuntimeException("Directory doesn't exist: $this->path".
'archived');
}
$this->extension = Config::get('todo.extension');
if (! starts_with($this->extension, '.'))
{
$this->extension = '.' . $this->extension;
}
}
Vs

* Delete the todo list
* @param string $id ID of the list
* @return boolean True if successful

*/

public function delete($id, $archived = false)

{

256

43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 42 - Refactoring Files and Config

return File::delete($this->fullpath($id, $archived));

Vi
* Does the todo list exist?
* @param string $id ID of the list
* @param boolean $archived Check for archived lists only?
* @return boolean
*/
public function exists($id, $archived = false)
{
$file = $this->fullpath($id, $archived);
return File::exists($file);

/**
* Return the ids of all the lists

* @param boolean $archived Return archived ids or unarchived?

* @return array of list ids
*/
public function getAll($archived = false)
{
$match = $this->path;
if ($archived)

{
$match .= 'archived/';
}
$match .= '"*¥' . $this->extension;

$files = File::glob($match);
$ids = array();
foreach ($files as $file)
{
$ids[] = basename($file, $this->extension);

}

return $ids;

Rk
* Load a TodolList from it's id
* @param string $id ID of the list
* @param boolean $archived Load an archived list?
* @return ListInterface The list

257

Chapter 42 - Refactoring Files and Config 258

85 * @throws InvalidArgumentException If $id not found
86 */

87 public function load($id, $archived = false)

88 {

89 if (! $this->exists($id, $archived))

20 {

91 throw new \InvalidArgumentException(

92 "List with id=$id, archived=$archived not found");
93 }

94 $lines = explode("\n", File::get($this->fullpath($id, $archived)));
95

96 // Pull title

o7 $title = array_shift($lines);

98 $title = trim(substr($title, 1));

99

100 // Pull subtitle

101 if (count($lines) && starts_with($lines[0], '('))
102 {

103 $subtitle = trim(array_shift($lines));

104 $subtitle = ltrim($subtitle, '(');

105 $subtitle = rtrim($subtitle, ')');

106 }

107

108 // Setup the list

109 $list = \App::make('GSD\Entities\ListInterface');
110 $list->set('id', $id);

111 $list->set('title', $title);

112 if (! empty($subtitle))

113 {

114 $list->set('subtitle', $subtitle);

115 }

116 $list->set('archived', $archived);

117

118 // And add the tasks

119 foreach ($lines as $line)

120 {

121 $line = trim($line);

122 if ($line)

123 {

124 $list->taskAdd($line);

125 }

126 }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Chapter 42 - Refactoring Files and Config

return $list;

Rk
* Save a Todolist
* @param ListInterface $l1ist The TODO List
* @return boolean True if successful
*/
public function save(ListInterface $list)
{
$id = $list->get('id");
$archived = $list->get('archived');
$build = array();
$build[] = '# ' . $list->get('title');
$subtitle = $list->get('subtitle');
if ($subtitle)
{
$build[] = "($subtitle)";
}
$lastType = 'z';
$tasks = $list->tasks();
foreach ($tasks as $task)

{

$task = (string)$task;
$type = $task[0];
if ($type = $lastType)
{
$build[] = ''; // Blank line between types of tasks
$lastType = $type;
}
$build[] = $task;
}
$content = join("\n", $build);
$filename = $this->fullpath($id, $archived);
$result = File::put($filename, $content);

return $result !== false;

Veis
* Return the path to the list file

259

169
170
171
172
173
174
175
176
177
178
179
180
181

Chapter 42 - Refactoring Files and Config

*/

protected function fullpath($id, $archived)

{
$path = $this->path;
if ($archived)
{
$path .= 'archived/';
}

$path .= $id . $this->extension;

return $path;

?2>

We’re all done refactoring. (For now :)

Let’s get back to the regularly scheduled coding.

260

o N O O b W N =

Chapter 43 - The AddTaskCommand

0 In This Chapter

In this chapter we’ll create the add task command

If I follow the list of commands from the end of Chapter 35, next up would be the Archive List,
Unarchive List, and Rename List commands. But I can’t wait to actually add task to our lists. So let’s
work on that first.

The Plan

In Chapter 35 we planned on having the console command work like what’s below for adding tasks.

$ gsd add [+name] "something to do" --next
$ gsd a [+name] "something to do" -n

And the pseudo-code from the following chapter was:

Get options and arguments
Validate arguments

Prompt for list-id if needed
Load list

Create New task description
Set next action if needed
Add task to list

Save list

We’ll mostly follow the pseudo-code, but definitely use the CommandBase: : getListId() method to
fetch the list’s name. Should be simple to implement.

Creating the AddTaskCommand

Q’ The first step, as always when creating new commands, is to use artisan to create the

p skeleton.

O 00 N O O b W N

W W W W N DN DNDNDDNDNDNDDNDDNDNDNS= A~ 2 B 2 2 B » 2
W N O O 0N 0 0k W N O O 0N O O bk N =~ o

Chapter 43 - The AddTaskCommand 262

~/gsd$ art command:make AddTaskCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

d;’ Edit the newly created AddTaskCommand. php in to match what’s below.

4

<?php namespace GSD\Commands;

use App;

use Illuminate\Console\Command;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Todo;

class AddTaskCommand extends CommandBase {

protected $name = 'gsd:addtask';

protected $description = 'Add a new task to a list.';
protected $nameArgumentDescription = 'List name to add the task to.';
Vess

* Execute the console command.
*

* @return void
*/
public function fire()

{
$this->info('do it');

Rk
* Get the console command arguments.
*/
protected function getArguments()
{
return array_merge(array(
array('task', InputArgument::REQUIRED,
"The task's description."),
), parent::getArguments());

34
35
36
37
38
39
40
41
42
43
44
45
46
47

0 N O O & W N =

Chapter 43 - The AddTaskCommand

J Rk

* Get the console command options.

*/

protected function getOptions()

{

return array_merge(parent: :getOptions(), array(

array('action',
'Make task a Next Action.'),

));

?2>

a', InputOption::VALUE_NONE,

263

The $name and $description properties are standard. The $nameArgumentDescription is set so if
you do a art help gsd:addtask then +name option will output something more meaningful that
the description that CommandBase provides.

Let’s ask artisan for help on this command.

Q’ First we need to add the needed line to start/artisan.php.

4

<?php

Artisan:
Artisan:
Artisan:
Artisan:
Artisan:

2>

:add(new
:add(new
:add(new
radd(new
:add(new

GSD\Commands \AddTaskCommand) ;
GSD\Commands \CreateCommand) ;

GSD\Commands\EditListCommand);
GSD\Commands\ListAl1Command);
GSD\Commands \UncreateCommand) ;

(I'm still keeping the commands alphabetical. That’s just how I roll.)

Q‘ Now get help on the command we just added

4

© 0 9 O O & W N =

[T = S G N o = G S U
© ©O© 0O N O O b W N~ O

Chapter 43 - The AddTaskCommand 264

~/gsd$ art help gsd:addtask

Usage:
gsd:addtask [-1|--listname="..."] [-al--action] task [+name]
Arguments:
task The task's description.
+name List name to add the task to.
Options:
--listname (-1) Source of list name, 'prompt' or 'config'
--action (-a) Make task a Next Action.
--help (-h) Display this help message.
--quiet (-q) Do not output any message.

--verbose (-v|vv|vvv) Increase the verbosity of messages: 1 for normal
output, 2 for more verbose output and 3 for debug

--version (-V) Display this application version.
--ansi Force ANSI output.
--no-ansi Disable ANSI output.

--no-interaction (-n) Do not ask any interactive question.
--env The environment the command should run under.

Pretty slick, huh? You’ll notice I had to change the order of the arguments from our original plan so
that task comes before +name. This is because required arguments must always come before optional
arguments and +name is optional.

Let’s make the rule, for consistency, that the +name will always come last.

Also, I changed the - -next option to --action. This is because a short option can only be a single
character and -n was already taken so I decided the short version should be -a for next Action. Then
it made more sense for the long version of the option to be --action.

Adding the code to the fire() method

Q’ Edit AddTaskCommand.php and update the fire() method to match what’s below.

I4

Chapter 43 - The AddTaskCommand 265

<?7php
Rk

* Execute the console command.
*

* @return void
*/
public function fire()

{
$name = $this->getlistId();
if (is_null($name))
{
$this->outputErrorBox("AddTask aborted");
return;

}
$list = Todo: :get($name);

$task = App::make('GSD\Entities\TaskInterface');
if (! $task->setFromString($this->argument('task')))
{
throw new \InvalidArgumentException('Cannot parse task string');
}

$type = 'Todo';
if ($this->option('action'))

{
$task->setIsNextAction(true);

$type = 'Next Action';

}
$list->taskAdd($task);

$list->save();

$this->info("$type successfully added to $name");
}

72>

We followed the pseudo-code fairly close. I didn’t comment the code because what’s happening is
self-explanatory.

Should the task argument be an option instead?

Hmmm.

Or maybe the task should be optional and we could prompt for it if missing?

Hmmm, again.

I don’t think I'll change it at this point. It’d be easy to change in the future should we want to.

No unit tests, but 'm going to go through a quick, manual test of the command.

O 00 N O O b W N =~

[= S =Y
B W N~

Chapter 43 - The AddTaskCommand 266

Manually testing

Most of the underlying components have been unit tested. This includes the following:

The Todo facade’s get () method.
Creating a task from the interface.

Calling setFromString() on a Task object.

Calling setIsNextAction() on a Task object.
Calling taskAdd() and save() on a TodoList object.

Likewise, we've already manually tested the getListId() method of CommandBase. As I see it there’s
really only a couple things to test:

« Adding a task to a list.
+ Adding a task and a next action to a list.

Q’ I have a list called actions, so I tested this with the following. (Be sure to change your
p listname and path to your list as needed).

~\gsd$ art gsd:addtask "Test add task" +actions

Todo successfully added to actions

~\gsd$ art gsd:addtask "Test add default" -1 config

Todo successfully added to actions

~\gsd$ art gsd:addtask "Test add next action" +actions -a
Next Action successfully added to actions

~\gsd$ cat /home/chuck/Documents/gsd/actions.txt

Next Actions

(Things to do next)

* Test add next action

- Test add default
- Test add task

Looks good to me. Now lets go mark something complete.

O O b W N =

Chapter 44 - The DoTaskCommand

0 In This Chapter

In this chapter we’ll create the complete task command

Now that we can add tasks to our todo lists, let’s add the ability to mark things complete.

The Plan

Our plan from Chapter 35 was pretty basic.
$ gsd do [+nhame] n

But there is a problem with this plan. Last chapter we discovered that optional arguments must come
after required arguments. So we made the executive decision to always have the +name argument
last.

Also, I want to have the n, er, task-number argument also optional. We have that nifty pick_from_-
list() helper function we can use to preset a list to the user to choose from.

The new version should look like this.
$ gsd do [task-number] [+name]
The pseudo-code for marking tasks complete was:

Get arguments

Prompt for list-id if needed
Load list

Prompt for task # if needed
Set task # completed

Save list

Interesting, the pseudo-code already had the “prompt for task # if needed” step. I had forgot all about
that. What I really need is some application that I could use to keep track of lists of things I want to
remember.

© 00 N O O & W N =

NN NN NN R R R Rl ol
O O B W N A O O 00 0 B WD

Chapter 44 - The DoTaskCommand 268

Creating the DoTaskCommand

A% The first step is to use artisan to create the skeleton.

4

~/gsd$ art command:make DoTaskCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

Q‘ Edit the newly created DoTaskCommand . php to match the following.

4

<?php namespace GSD\Commands;
use Todo;
class DoTaskCommand extends CommandBase {

protected $name = 'gsd:do’;

protected $description = 'Mark a task as complete.';

protected $nameArgumentDescription = 'List name with completed task.';
protected $taskNoDescription = 'Task # to mark complete.';

Vess

* Execute the console command.
*

* @return void
*/
public function fire()

{
$name = $this->getlistId();
if (is_null($name))
{
$this->outputErrorBox("DoTask aborted");
return;

}
$list = Todo::get($name);

27
28
29
30
31
32
33
34
35
36
37
38
39
40

Chapter 44 - The DoTaskCommand 269

$taskNo = $this->getTaskNo($list, true, true, false);
if (is_null($taskNo))

{
$this->outputErrorBox("DoTask aborted");

return;

$description = $list->taskCGet($taskNo, 'description');
$list->taskSet($taskNo, 'isComplete', true)

->save();
$this->info("Task '$description' marked complete.");

?2>

This was quick and fun to code. Will it work? I hope so and expect it to, but I'm not able to tell you
absolutely 100% that the code is flawless ... yet.

Let me explain things, using the line numbers as reference (Dang. I probably should have done this

all along.)

Line 3
No real need for the other use statements.

Lines 5-9
Almost the same as the last command we developed. We're building on CommandBase, setting
up the command and description and what we’re going to call the +name option.

Line 10
Here I got to thinking that CommandBase should be smart enough to check if this property is
present. Then it could automatically set up the task-number argument.

Lines 19 - 25
This is just like the last command. We figure the list name and abort if the user was prompted
and chose to abort.

Lines 27 - 32
This is similar to getting the +name argument, but we’ll be getting the task-number. This
method doesn’t exist yet, but the arguments will be $1ist, $showNext, $showNormal, and
$showComplete.

Lines 34 - 37
Here we mark the task complete, save the list, and output the message.

©O© 00 N O O b W N =~

N
()

O© 00 N O O b W N =~

N
()

Chapter 44 - The DoTaskCommand 270

Q‘ Next, update start/artisan.php so artisan knows about the command.

4

<?php

Artisan: :add(new GSD\Commands\AddTaskCommand);
Artisan::add(new GSD\Commands\CreateCommand);
Artisan::add(new GSD\Commands\DoTaskCommand);
Artisan::add(new GSD\Commands\EditListCommand);
Artisan::add(new GSD\Commands\ListAllCommand);
Artisan: :add(new GSD\Commands\UncreateCommand);

2>

You could run artisan and see from the list of commands, that gsd:do is there, but we need to add
the code to CommandBase before it will work.

Updating CommandBase

Q‘ Make the top of CommandBase . php match the snippet below.

I4

<?php
// above this point is the same
class CommandBase extends Command ({

protected $repository;
protected $nameArgumentDescription = 'List name.';

protected $taskNoDescription = null;

// below this point is the same
?2>

This adds the property $taskNoDescription, which we’ll use next.

x‘ Replace the getArguments() method in CommandBase . php with the following.

Chapter 44 - The DoTaskCommand

<?7php
Rk

* The console command arguments. Derived classes could replace this
* method entirely, or merge its own arguments with them

*

* @return array of argument definitions
*/
protected function getArguments()
{
$args = array();
if (! is_null($this->taskNoDescription))
{
$args[] = array(
"task-number',
InputArgument: : OPTIONAL,
$this->taskNoDescription
);
}
$args[] = array(
"+name’,
InputArgument: :OPTIONAL,
$this->nameArgumentDescription
);

return $args;

2>

271

All we’re doing here is checking if the $taskNoDescription is set and, if it is, then adding the

task-number argument before the +name argument.

Q’ Finally, add the getTaskNo() method to the CommandBase class.

I4

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 44 - The DoTaskCommand 272

<?7php

Vet
Get the task # of a list, either from the argument or prompt the user.
Keep in mind the # present to the user always begins with 1, but the
number we return is always one less (starting with 0)

@param ListInterface $1ist The Todo List

@param bool $showNext Show next actions in prompt list

@param bool $showNormal Show normal tasks in prompt list
@param bool $showComplete Show completed tasks in prompt list

¥ ¥ ¥ X X X ¥ * %

@return mixed NULL if user aborts, otherwise integer of task number
*/

protected function getTaskNo(\GSD\Entities\ListInterface $list,

$showNext, $showNormal, $showComplete)

// Return the # if provided on command line
$taskNo = $this->argument('task-number');
if (! is_null($taskNo))
{

return (int)$taskNo - 1;

// Build list of tasks
$tasks = array();
foreach ($list->tasks() as $task)
{
if ($task->isComplete())
{
if ($showComplete)
$tasks[] = (string)S$task;
}
elseif ($task->isNextAction())
{
if ($showNext)
$tasks[] = (string)$task;
}

elseif ($showNormal)

{
$tasks[] = (string)$task;

43
44
45
46
47
48
49
50
51
52

W N -

© 00 N O O b W N =

[V
N =~ O

Chapter 44 - The DoTaskCommand 273

// Let user pick from list, return result

$result = pick_from_list($this, $this->taskNoDescription,
$tasks, 0, "cancel, do not perform action");

if ($result == -1)

{
return null;

}

return $result - 1;

}
2>

The code seems pretty simple. It even has comments. I don’t think I need to explain it.

Testing DoTaskCommand

Let’s test it. Again, much of the underlying support classes and methods have been unit tested. So
I'm just going to manually test things.

~/gsd$ art gsd:do 33 +actions

[OutOfBoundsException]
$index is outside range

Good this is what we wanted.

~/gsd$ art gsd:do -1 config

Task # to mark complete.

1. * Test add next action

2. - Test add default

3. - Test add task

4. cancel, do not perform action

Please enter a number between 1-4:4

DoTask aborted

Again, what was expected, let’s mark #2 as complete.

© 0 9 O O & W N =

(AN
[l]

© 00 N O O b W N =

Chapter 44 - The DoTaskCommand 274

~/gsd$ art gsd:do -1 config
Task # to mark complete.

. * Test add next action

- Test add default

- Test add task

. cancel, do not perform action

B W N -

Please enter a number between 1-4:2
Task 'Test add default' marked complete.

Yes! Man are we good or what? Let’s check the file, see how it looks.

~/gsd$ cat /home/chuck/Documents/gsd/actions.txt
Next Actions
(Things to do next)

* Test add next action
X 2013-09-28 Test add default
- Test add task

What the heck? It marked the task complete, but it’s not at the end of the file. Invariably, I start to
think things are all good and a bug jumps out of nowhere.

Killing the Bug

Upon examining how the list is sorted, I realize sorting occurs within the TaskCollection whenever
items are added to or removed from the list. We could fix this a number of ways:

1. Force the list to be sorted before saving.

2. Change our DoTaskCommand to remove the task when marking it complete, then add it back.
3. Have the TaskCollection always return a sorted list.

4. Have the tasks automatically sort the list whenever they change.

Hmmm. So which one is best? The answer is #3.

The first choice requires the TodoRepository to have knowledge of the TaskCollection. Likewise,
#2 requires us to have knowledge in the DoTaskCommand. #4 is very problematic because there’s no
way for a task to know what collection it belongs to.

O 00 N O O b W N -~

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25

Chapter 44 - The DoTaskCommand

275

Don’t spread the knowledge

Unlike real life, where it’s good to share knowledge and learn and help others to learn, when
programming a good goal is to keep things as stupid as possible. It’s the KISS principle? but more.
Yes, it’s about keeping things decoupled.

*http://en.wikipedia.org/wiki/KISS_principle

Because any solution other than #3 requires our classes to be smarter than they need to be, let’s just
have the TaskCollection take care of this.

Q’ Edit TaskCollection and change the get() method and the getAl1() method as below.

4

<?7php
/**

* Return task based on index
* @param integer $index O is first item in collection
* @return TaskInterface The Todo Task

*

@throws OutOfBoundsException If $index outside range

*/

public function get($index)

{

$this->sortTasks();
if ($index < © || $index >= count($this->tasks))
{

throw new \OutOfBoundsException('$index is outside range');

}

return $this->tasks[$index];

/**

* Return array containing all tasks
* @return array

*/

public function getAll()

{

$this->sortTasks();
return $this->tasks;

26
27

Chapter 44 - The DoTaskCommand 276

2>

This is adding that $this->sortTasks() at the beginning of each method, thus making sure the list
is always sorted.

I'll leave it to you to test and make sure it works. I did and it does.

O 00 N O O b W N -~

Chapter 45 - The ListTasksCommand

0 In This Chapter

In this chapter we’ll create the list tasks command

Finally, after pages and pages of me blabbing away we’ll start being able to see what we need to get
done.

Remember this list we mocked up about 10 chapters ago?

R o . oo +
| # | Next | Description | Extra |
R o . b _ +
| 1 | YES | Finish Chapter 36 | Due Sep-20 |
| 2 | YES | Balance Checkbook | |
[3 | | Start project for world domination | |
| 4 | | Read Dr. Evil's Memoirs | |
| | done | Finish Chapter 35 | Done 9/19/13 |
R o . oo +

Now that’s a nice looking list. Very pretty for a console application. I really can’t wait to start #3 on
the list. But I may have to do #4 first. We'll see.

The Plan

Back in Chapter 35, we came up with the following:

$ gsd list [+name] --next --nodone
$ gsd 1ls [$name] -n -nd

But to keep consistent with other commands we’ve created, 'm changing the - -next command to
--action. Also, I'm not liking the - -nodone option. I don’t know, it’s just ... yegh. I read it as ‘nod
one’. So let’s implement the command as below.

Chapter 45 - The ListTasksCommand 278

1§ gsd list [+name] --action --skip-done
2 $ gsd 1s [$name] -a -x

The peudo-code we had was:

Get arguments and options
Prompt for list-id if needed
Load list
Loop through tasks
If task not filtered by option
show task
EndIf
EndLoop

0 N O O & W N =

Pretty simple.

Creating the ListTasksCommand

A% Create the command skeleton.

4

1 ~/gsd$ art command:make ListTasksCommand --path=app/src/GSD/Commands \
2 > --namespace="GSD\Commands"
3 Command created successfully.

Q‘ Update ListTasksCommand.php to match what’s below.

4

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 45 - The ListTasksCommand

<?php namespace GSD\Commands;

use Symfony\Component\Console\Input\InputOption;
use Todo;

class ListTasksCommand extends CommandBase {

protected $name = 'gsd:list’';
protected $description = 'List tasks.';
protected $nameArgumentDescription = 'List name to display tasks.';

Ve
* Execute the console command.
*
* @return void
*/
public function fire()
{
$name = $this->getlListId();
if (is_null($name))
{
$this->outputErrorBox("ListTasks aborted");
return;

}
$list = Todo::get($name);

$nextOnly = $this->option('action');
$skipDone = $this->option('skip-done');
if ($nextOnly and $skipDone)

{
$this->outputErrorBox(
"Options --action and --skip-done can't be used together."
)i
return;
}

// Gather rows to display

$rows = array();

$rowNo = 1;

foreach ($list->tasks() as $task)

{
if ($task->isComplete())

279

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 45 - The ListTasksCommand

if ($skipDone or $nextOnly) continue;

$rows[] = array(

[}
!

'done’,
$task->description(),

'Done '.$task->dateCompleted()->format('n/j/y"),

)
}

elseif ($task->isNextAction() or ! $nextOnly)

{

$next = ($task->isNextAction()) ? 'YES' : "'

$due = ($task->dateDue()) ?

'Due '.$task->dateDue()->format('M-j') : '

$rows[] = array(
$rowNo++,
$next,
$task->description(),
$due,

)

// Output a pretty table

$title = ($nextOnly) ? "Next Actions"

(($skipDone) ? "Active Tasks"

"All Tasks");

$this->info("$title in list '+$name'\n");

if (count($rows) == 0)

{
$this->error("Nothing found");
return;

}

$table = $this->getHelperSet()->get('table');

$table
->setHeaders(array('#', 'Next',

->setRows($rows)

->render ($this->getOutput());

Vet
* Get the console command options.
*

'Description’,

4

"Extra'))

280

85
86
87
88
89
90
91
92
93
94
95
96
o7

Chapter 45 - The ListTasksCommand

* @return array

*/

protected function getOptions()

{

return array_merge(array(

array('action’',

a', InputOption::VALUE_NONE,

7

"Show only next actions.', null),
array('skip-done', 'x', InputOption::VALUE_NONE,
'Skip completed actions.', null),

)/

?2>

parent: :getOptions());

What the code does

Lines 1 - 25
All pretty standard stuff that doesn’t need explanation.

Lines 27 - 35
Here we pull the options and if both --action and --skip-done are present, an error is
displayed. It doesn’t really make sense to allow both of those.

Lines 37 - 64

This loop is building an array of arrays. The data that will be displayed in our table.

Lines 66 - 80
We output the title and the pretty table

Lines 87 - 95
We return the options this command takes.

4

Q‘ Edit start/artisan.php and tell artisan about the new command.

281

© 0 9 O O & W N =

(AN
[l]

O 00 N O O b W N =~

[T ST ST S T S G G N i G U U G|
W N, OV 0N 0 0w N~

Chapter 45 - The ListTasksCommand

<?7php

Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:

2>

radd(new
:add(new
:add(new
:add(new
radd(new
:add(new
:add(new

GSD\Commands \AddTaskCommand) ;
GSD\Commands \CreateCommand) ;
GSD\Commands \DoTaskCommand) ;
GSD\Commands\EditListCommand);
GSD\Commands\ListAl1Command);
GSD\Commands\ListTasksCommand);
GSD\Commands\UncreateCommand) ;

That’s it. Run it. It works.

Testing the ListTasksCommand

Here’s some examples of me just listing tasks. Your output may look different.

~/gsd$ art gsd:list +actions

All Tasks in list '+actions'

oo
[# | Nex
R
| 1 | YES
[2 |
| 3 |
[4 |
| | don
R

~/gsd$ art gsd:list +actions --action

Next Actions in list '+actions'

N
| # | Nex
oo
| 1 | YES
+oo—+

o Fommm e +

t | Description | Extra |

o e Fommm o +

| Test add next action | |
______ s

~/gsd$ art gsd:list +actions -x

Active Tasks in list '+actions'

. oo +
t | Description | Extra |

e e o +

| Test add next action | |

| Another test | |

| Something | Due Oct-1 I

| Test add task | |

e | Test add default | Done 9/28/13 |
______ o ¥

282

24
25
26
27
28
29
30
31

Chapter 45 - The ListTasksCommand

R . oo +
| # | Next | Description | Extra |
R . oo +
| 1 | YES | Test add next action | |
[2 | | Another test | |
| 3 | | Something | Due Oct-1 |
| 4 | | Test add task | |
R . oo +

Hey! This thing is starting to become usable.

283

1
2
3

Chapter 46 - Eating Our Own Dog Food

G In This Chapter

In this chapter we’ll start using our application to track what to do.

What is Eating Your Own Dog Food

Eating one’s own dogfood basically means using the product being developed. It’s also called
dogfooding. Here’s a few examples.

In the early 1990s, Microsoft forced the Windows NT teams to use the OS they were developing.
Even though it was a painful, crash-prone time eventually they worked out the kinks (well, most of
them).

Apple supposedly got rid of all typewriters back in 1980, forcing all in-house typing to occur on their
own products.

I most often use it in systems I build by consuming the system’s own API. In other words if a function
is exposed to a user (via web interface or console) and the functionality is also exposed via API, I
build the web interface or console app to use the API.

So let’s use the Getting Stuff Done application, as it is now, to start tracking what needs to happen
within the Getting Stuff Done application.

Setting up the gsd todo list

A® First create a new list named gsd

4

~/gsd$ art gsd:create +gsd -t "Getting Stuff Done" \
> -s "Things to do in the gsd app"
List 'gsd' successfully create

o)’ Now add the following tasks to it.

4

© 0 9 O O & W N =

N O N T ==Y
N O O b W N =~ O

© 0 9 O O & W N =

I S U =
O O b W N =~ O

Chapter 46 - Eating Our Own Dog Food 285

~/gsd$ art gsd:addtask "List tasks in ListAllCommand" +gsd
Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create ArchivelListCommand" +gsd
Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create UnarchivelListCommand" +gsd
Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create RenamelListCommand" +gsd
Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create EditTaskCommand" +gsd

Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create RemoveTaskCommand" +gsd
Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create MoveTaskCommand" +gsd

Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create shell gsd script" +gsd

Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create web application wireframe" +gsd

Q‘ What'’s our todo list look like now?

4

~/gsd$ art gsd:list +gsd
All Tasks in list '+gsd'

+
|

+

| Create Archivel istCommand

| Create EditTaskCommand

| Create MoveTaskCommand

| Create RemoveTaskCommand

| Create Renamel istCommand

| Create Unarchivel istCommand

| Create shell gsd script

| Create web application wireframe
| List tasks in ListAllCommand

+

+ - - - - — — — — — + — +
+ - — - - — — — — — + — +

Looking good. I want to work on the Archive/Unarchive next and there’s something that’s bugging
me about the output. It’s that blank line after it displays the title All Tasks in list ‘“+gsd’. Let’s
remove that blank line so it matches out the art gsd:listall command looks.

© 0 9 O O & W N =

N = =Y
O© 0 N O O » W N =~ O

Chapter 46 - Eating Our Own Dog Food 286

Hmmm. Dang it. We can’t edit a task yet. Well, that will be the next chapter. After I can edit the list
then I'll move to the Archive/Unarchive.

o)’ For now, lets just add the blank line task. And see our list of tasks.

4

~/gsd$ art gsd:addtask "Remove blank line after gsd:list title" -a +gsd
Next Action successfully added to gsd.

~/gsd$ art gsd:list +gsd

All Tasks in list '+gsd'

+
I

+

| Remove blank line after gsd:list title
| Create ArchivelistCommand

| Create EditTaskCommand

| Create MoveTaskCommand

| Create RemoveTaskCommand

| Create RenamelistCommand

| Create Unarchivel istCommand

| Create shell gsd script

| Create web application wireframe

| List tasks in ListAllCommand

+

- — — - — — — — — — + — %

Cool. We’re now dogfooding.

O© 0 N O O & W N =

(AN
[]

Chapter 47 - The EditTaskCommand

0 In This Chapter

In this chapter we’ll created the EditTaskCommand

The Plan

The original thoughts on the console command were.

$ gsd edit [+name] 1 "the description" --next[=off]
$ gsd ed [+name] 1 "the description" -n[=off]
$ gsd ed [+name]

But, to be consistent I want to make it this:

$ gsd edit [task-number] [+name] --desc="the description" --action[=off]
$ gsd ed

I’'m changing the description to be an option instead of an argument. The list name will be prompted
if not provided, likewise the task-number will be prompted. And, if nothing’s provided, then both
the description and action will be prompted.

The pseudo-code was.

Get arguments and options
Prompt for list-id if needed
Load list
If no task # specified
Prompt for task #
Prompt for new description
Prompt for Is Next Action
End
Save Task Description
Save NextAction if needed
Save list

© 0 9 O O & W N =

O© 00 N O O b W N =~

B R R R)
O b W0 N =~

Chapter 47 - The EditTaskCommand 288

Adding a str2bool() helper

Since the --action option will take a on, off, yes, no, true, false, type value. Let’s start by adding a
helper that makes this easy.

Q’ Edit helpers.php and add the following function.

I4

<?php

Jkk

* Returns TRUE if the string is a true value
*/

function str2bool($value)

{
return filter_var($value, FILTER_VALIDATE_BOOLEAN);

?2>

This function uses the PHP built in boolean validator.

A% Edit HelpersTest . php and add the following test method.

4

<?7php

public function testStr2Bool()

{
$this->assertTrue(str2bool('yes'));
$this->assertTrue(str2bool (' True'));
$this->assertTrue(str2bool('1'));
$this->assertTrue(str2bool('oN'));
$this->assertFalse(str2bool('x"));
$this->assertFalse(str2bool(''));
$this->assertFalse(str2bool('0'));
$this->assertFalse(str2bool('no'));
$this->assertFalse(str2bool (' false'));
$this->assertFalse(str2bool('off'));

2>

O b W N =

N O

10

1
2
3

Chapter 47 - The EditTaskCommand

Q’ Run phpunit to test

4

~/gsd$ phpunit
PHPUnit 3.7.27 by Sebastian Bergmann.

Configuration read from /home/chuck/gsd/phpunit.xml

Time: 208 ms, Memory: 25.25Mb

OK (60 tests, 110 assertions)

Okay, all good.

Creating the EditTaskCommand

A¥ First, create the command skeleton.

4

~/gsd$ art command:make EditTaskCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

¥ Update EditTaskCommand . php to match what’s below.

289

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 47 - The EditTaskCommand

<7p

use
use
use

use

cla

hp namespace GSD\Commands;

I1luminate\Console\Command;
Symfony\Component\Console\Input\InputOption;
Symfony\Component\Console\Input\InputArgument;
Todo;

ss EditTaskCommand extends CommandBase {

protected $name = 'gsd:edit’;

protected $description = 'Edit a task.';

protected $nameArgumentDescription = 'List name with task to

protected $taskNoDescription = 'Task # to edit.';

J Rk

p
{

* Execute the console command.
*

* @return void

*/

ublic function fire()

// Should we prompt for everything?

$promptAll = all_null(
$this->argument('+name'),
$this->argument('task-number'),
$this->option('descript'),
$this->option('action')

);

// Get list

$name = $this->getlListId();

if (is_null($name))

{
$this->outputErrorBox("EditTask aborted");
return;

}
$list = Todo: :get($name);

// Get task-number

$taskNo = $this->getTaskNo($list, true, true,
if (is_null($taskNo))

{

false);

edit.';

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 47 - The EditTaskCommand 291

$this->outputErrorBox("EditTask aborted");

return;

$currDescript = $list->taskGet($taskNo, 'description');
$currAction = $list->taskGet($taskNo, 'isNextAction');

// Prompt for description and next action
if ($promptAll)

{
$currActionState = ($currAction) ? 'is' : 'is not';
$this->1line("Current description: $currDescript");
$descript = $this->ask("New description (enter to skip)?");
$this->1line("Task $currActionState currently a Next Action.");
$next = $this->ask("Is Next Action (enter skip, yes or no)?");

}

// Pull description and next action from command

else

{

$descript = $this->option('descript');
$next = $this->option('action');
}
$action = is_null($next) ? null : str2bool($next);

if ((is_null($descript) || $descript == $currDescript) &%

(is_null($action) || $action == $currAction))
{
$this->outputErrorBox("Nothing changed");
return;
}

// Make changes and save the list
$task = $list->task($taskNo);
if (! is_null($action))

{
$task->setIsNextAction($action);
}
if (! is_null($descript))
{

$task->setDescription($descript);

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
1083
104
105

Chapter 47 - The EditTaskCommand 292

$list->save(true);

$this->info("Task in $name updated to: ".(string)$task);

Rk
* Get the console command options.
*
* @return array
*/
protected function getOptions()
{
return array_merge(array(
array('descript', 'd', InputOption::VALUE REQUIRED,
"New description for task.'),
a', InputOption::VALUE REQUIRED,
'Is task a next action (yes|no).'),

array('action’',

), parent::getOptions());

2>

Lines 1 - 20
All standard stuff we’ve been doing

Lines 22 - 28
We want to know if no options or arguments were passed. This will trigger prompting for the
description and next action.

Lines 30 - 45
Again, stuff we’ve did before in other commands.

Lines 47 - 48
We’re stashing the task’s current description and next action status.

Lines 50 - 65
Here we're either prompting for the description and next action, or pulling the values from
any options passed.

Line 66
$action will either be null, true, or false

Lines 68 - 73
If nothing was changed, then output a big red box saying so

O© 00 N O O b W N -~

N
()

Chapter 47 - The EditTaskCommand 293

Lines 75 - 84
Here we pull the task object and update it as needed. Since PHP uses references for objects,
the task still is in the list’s collection. We do this because referencing it by a number is likely
to change if we change the description or the next action status.

Line 85
Since we changed the task outside the list, the list doesn’t know about the change and didn’t
mark itself dirty. Thus, we’ll refactor the save() method to take an optional $force flag to force
saving even if not dirty.

Lines 87 - 105
The rest of the file is pretty standard stuff

Q‘ Make artisan aware of EditTaskCommand by making your start/artisan.php match
s what’s below

<?php

Artisan: :add(new GSD\Commands\AddTaskCommand);
Artisan::add(new GSD\Commands\CreateCommand);
Artisan::add(new GSD\Commands\DoTaskCommand);
Artisan::add(new GSD\Commands\EditListCommand);
Artisan: :add(new GSD\Commands\EditTaskCommand);
Artisan::add(new GSD\Commands\ListAllCommand);
Artisan: :add(new GSD\Commands\ListTasksCommand);

Artisan::add(new GSD\Commands\UncreateCommand);
2>

Refactoring TodoList save()

Before actually testing this, we need to go and refactor that save() method to allow a new, optional
option. Easy and quick to do.

Q’ Edit ListInter face.php and change the save() definition like below.

4

0 N O O & W N =

© 00 N O O & W N =

I SV E
W N~ O

Chapter 47 - The EditTaskCommand 294

<?7php
Vet
* Save the task list
* @param bool $force Force saving, even if list isn't dirty
* @return ListInterface for method chaining
*/
public function save($force = false);
?>

Q‘ Edit TodoL ist . php and change the implementation of save() as specified below.

4

<?7php

Vet
* Save the list
* @param bool $force Force saving, even if list isn't dirty
* @return $this For method chaining
* @throws RuntimeException If cannot save.
*/

public function save($force = false)

{
if ($this->isDirty || $force)

// rest of file is the same
?2>

Now, wasn’t that a painless refactoring? I could have done this when the TodoL i st class was created,
back in Chapter 29. I wasn’t aware that I'd need to force a list to save.

In some ways I don’t like doing this. It forces us to know the implementation details of the TodoList
and we must use this knowledge to code the implementation how it was coded.

So what’s the alternative? To keep this detail totally within the TodoList itself. One way to do this
would be to keep the starting state of all tasks (the position, the description, etc.) and whenever the
TodoList wants to save itself it could check all the starting states with the existing states of the
classes. That’s a perfectly acceptable alternative. But I'm not going back to change the code now.

Testing EditTask

To test ... just play around with the edit task. Try going through all the possible permutations of
usage.

O 00 N O O b W N =~

NN NN NN NN N PR R N s sy oy
0 N O O & W N = O O© 03 0O O b W DN~ O

Chapter 47 - The EditTaskCommand 295

It seems to work fine for me (notice the wishy washy way I said this ... “seems to work fine” that’s
standard programmer speak. It’s used because although I'm confident it is working, I'm not 100%,
bet-my-life-on-it positive. If you find a bug, let me know.)

Dogfooding

Let’s mark the EditTaskCommand as done. And now we can move the ArchiveListCommand and
UnarchiveListCommand as next actions.

Q‘ Below is how I did it. Note if your list is different the numbers may be different.

o

~/gsd$ art gsd:list +gsd
All Tasks in list '+gsd’

Fo oo o . N +
| # | Next | Description | Extra |
oo U U +
| 1 | YES | Remove blank line after gsd:list title | |
[2 | | Create Archivel istCommand | I
[3 | | Create EditTaskCommand | |
| 4 | | Create MoveTaskCommand | |
| 5 | | Create RemoveTaskCommand | |
| 6 | | Create RenamelistCommand | |
[7 | | Create Unarchivel istCommand | I
| 8 | | Create shell gsd script | |
[9 | | Create web application wireframe | |
| 10 | | List tasks in ListAllCommand | |
R U N +
~/gsd$ art gsd:edit 2 +gsd --action=yes

Task in gsd updated to: * Create ArchivelistCommand

~/gsd$ art gsd:edit 7 +gsd --action=yes

Task in gsd updated to: * Create UnarchivelistCommand

~/gsd$ art gsd:list +gsd

All Tasks in list '+gsd'

Fo oo o . N +
| # | Next | Description | Extra |
oo U U +
| 1 | YES | Create ArchivelistCommand | |

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
o2
53
54
55
56
o7

Chapter 47 - The EditTaskCommand

| 2 | YES | Create Unarchivel istCommand

| 3 | YES | Remove blank line after gsd:list title
| 4 | | Create EditTaskCommand

| 5 | | Create MoveTaskCommand

| 6 | | Create RemoveTaskCommand

[7 | | Create RenamelistCommand

| 8 | | Create shell gsd script

[9 | | Create web application wireframe

| 10 | | List tasks in ListAllCommand
R N
~/gsd$ art gsd:do 4 +gsd

Task 'Create EditTaskCommand' marked complete.

~/gsd$ art gsd:list +gsd

All Tasks in list '+gsd'

R o . +
| # | Next | Description |
R o . +
| 1 | YES | Create ArchivelistCommand |
| 2 | YES | Create UnarchivelistCommand |
| 3 | YES | Remove blank line after gsd:list title |
[4 | | Create MoveTaskCommand I
| 5 | | Create RemoveTaskCommand |
| 6 | | Create RenamelistCommand |
[7 | | Create shell gsd script |
| 8 | | Create web application wireframe

[9 | | List tasks in ListAllCommand |
| | done | Create EditTaskCommand |
R o . +

+ —_——_—— —_— —_— —_— —_— — —

_______ +
______________ +
Extra |
______________ +
|
|
|
|
|
|
|
|
|
Done 9/29/13 |
______________ +

296

And I'm reminded to remove that blank line after gsd:list title by doing this. I had totally forgot

about that, but since it’s on the list now I know it’ll get done.

o N O O b W N =

Chapter 48 - ArchiveListCommand
and UnarchivelListCommand

G In This Chapter

In this chapter we’ll created the ArchiveListCommand and its complement, the Unar-
chiveListCommand.

The Plan

The original thoughts on the console commands were.

$ gsd archive
$ gsd unarchive

Pretty simple. The goal of archiving lists is to move it into the archived directory. Remember,
archived lists cannot be edited—no new tasks, no task editing, and no list editing. Let’s say you have
a project you want to put on hold to maybe, someday get back to. Archive it away. You can always
unarchive it when the project becomes active again.

The Pseudo-code for archiving a list was:

Prompt user for list-id

If archived version exists
Warn will overwrite

EndIf

Ask if they're sure

Load existing list

Save list as archive

Delete existing list

As I'm writing this I had the thought “Chuck, should there be a —force option”. I answered myself
“Nope.” The reason I don’t have a —force option when archiving a list is because archiving isn’t
something set up to be automated. If later I change my mind, then I'd need to add the +name argument
for - - force to make any sense.

o N O O b W N =

O O b W N =

Chapter 48 - ArchiveListCommand and UnarchiveListCommand 298

Hmmm. I’'m rereading that paragraph and wondering how clear my meaning is. The primary
purpose of a --force option is to eliminate prompting because it’s a command you want to call
automatically, like in a shell script or batch file. If I provided a - - force option without the +name
argument, you’d still be prompted for the list’s name.

Anyway ... not gonna do a force option right now.

The Pseudo-code for unarchiving a list was:

Prompt user for archived list-id

If unarchived version exists
Warn will overwrite

EndIf

Ask if they're sure

Load existing list

Save list as unarchive

Delete existing archived list

The unarchive logic is pretty much the same logic as archiving logic. The difference is the list’s
location. You see why we’re doing these two commands together?

Creating the Commands

o)’ First, create the command skeleton for each command.

4

~/gsd$ art command:make ArchivelistCommand --path=app/src/GSD/Commands \

> --namespace="GSD\Commands"

Command created successfully.

~/gsd$ art command:make UnarchivelListCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"

Command created successfully.

¥ Then add the commands to start/artisan.php

© 0 9 O O & W N =

I = U=
B W N,

© 00 N O O b W N =

10

12
13
14
15
16
17
18
19

Chapter 48 - ArchiveListCommand and UnarchiveListCommand

<?7php

Artisan::add(new GSD\Commands\AddTaskCommand);
Artisan::add(new GSD\Commands\ArchivelListCommand);
Artisan::add(new GSD\Commands\CreateCommand);
Artisan: :add(new GSD\Commands\DoTaskCommand);
Artisan::add(new GSD\Commands\EditListCommand);
Artisan::add(new GSD\Commands\EditTaskCommand);
Artisan::add(new GSD\Commands\ListAllCommand);
Artisan::add(new GSD\Commands\ListTasksCommand);
Artisan: :add(new GSD\Commands\UnarchivelListCommand);
Artisan: :add(new GSD\Commands\UncreateCommand);

?2>

Updating ArchiveListCommand

Q’ Edit the newly created Archivel istCommand.php file to match the following.

I

<?php namespace GSD\Commands;

use Config;
use Todo;

class ArchivelListCommand extends CommandBase {

protected $name = 'gsd:archive';
protected $description = 'Archive a todo list.';
Vers

* Execute the console command.
*

* @return void
*/
public function fire()

{

// Get list name to archive
$name = $this->askForlListId();

299

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Chapter 48 - ArchiveListCommand and UnarchiveListCommand 300

if (is_null($name))
{
$this->outputErrorBox('*Archive aborted*');

return;

}
if (Config::get('todo.defaultList') == $name)

{

$this->outputErrorBox('Cannot archive default list');
return;

// Warn if list exists

if ($this->repository->exists($name, true))

{
$msg = "WARNING!\n\n"
" An archived version of the list '$name' exists.\n"
" This action will destroy the old archived version.";
$this->outputErrorBox($msg);
}

$result = $this->ask(

"Are you sure you want to archive '$name' (yes/no)?");
if (! str2bool($result))
{

$this->outputErrorBox('*Archive aborted*');

return;

// Archive the list
$list = Todo::get($name);
$list->archive();

$this->info("List '$name' has been archived");

J Rk

* No arguments.

*/

protected function getArguments()

{

return array();

/**

62
63
64
65
66
67
68
69

Chapter 48 - ArchiveListCommand and UnarchiveListCommand 301

* No options.

*/
protected function getOptions()
{

return array();

}
}

?2>

Lines 1-9
Standard setup stuff

Lines 18 - 29
Here we use the CommandBase method askForListId() to get the name of the list. This will
prompt the user. If they choose cancel we catch it. Also, if they try to archive the default list,
we don’t let them.

Lines 31 - 45
If a list of the same name already exists, then we output a big, red warning box. Regardless,
we ask if they’re sure. If they don’t type ‘yes’ (or some string equivalent) then we abort.

Lines 47 - 50
Since the ListInterface has an archive() method, we use that to archive the list instead of
following our pseudo-code.

Lines 56 to the end
The rest of the file returns empty arrays for arguments and options. We're not taking any
arguments or options for this utility.
Give it a try
Create a list, archive it. Create a list of the same name and archive it. It all seems to work great ...
.. but ...
There’s a stinking bug in CommandBase. Uggh.

Fixing the CommandBase bug

The problem is with the askForListId().If the method prompts for a list, it uses the prompt: “Choose
which list to destroy:” and the cancel option says “cancel - do not destroy a list”

We don’t want that. So let’s fix it in such a way that existing code won’t break.

¥ Update CommandBase . php and make the top of the file match what’s below:

O 00 I O O b wWw N =~

DWW oW W W W W W W WA NNDNDDNNDN NN N F R S L L L s s L
S © ® I O O & W N RO O W I 0 U & WX O © W 3 0 U & Wi~

Chapter 48 - ArchiveListCommand and UnarchiveListCommand

<?php namespace GSD\Commands;

use App;

use Config;

use Illuminate\Console\Command;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;

use Todo;

cl

ass CommandBase extends Command {

protected $repository;

protected $nameArgumentDescription = 'List name.';
protected $taskNoDescription = null;

protected $askForListAction = 'destroy';

Rk
* Constructor
*/
public function __construct()
{
parent::_ construct();

$this->repository = App::make('GSD\Repositories\TodoRepositorylnterface');

Vi
* Prompt the user for a list id
* @param bool $existing Prompt for existing list or new list?
* @param bool $allowCancel Allow user to cancel
* @return mixed string list id or null if user cancels
*/
public function askForlListId($existing = true, $allowCancel = true,
$archived = false)

{
if ($existing)
{
$title = "Choose which list to $this->askForListAction:";
$abort = "cancel - do not $this->askForListAction a list";
$choices = Todo::alllLists($archived);
2>
Line 15

302

We’re adding a new property ... the action when we ask the user for a list. The default is

Chapter 48 - ArchiveListCommand and UnarchiveListCommand 303

‘destroy’ so the askForListId() method will present the same prompt as before.

Lines 37 and 38
Here we’re using that new property.

Line 39
Another bug I noticed. We haven’t ran into this yet. But when we’re getting the list of all lists,
what happens if we want to pick a list that’s been archived? It wouldn’t have worked. Now

we pass the $archived value as I'm sure I meant to do initially.

Q‘ Now edit ArchivelListCommand.php and add the following property to the top of the class.

o

1 protected $askForListAction = 'archive';

If you test the art gsd:archive command, it will prompt you correctly.

Is this the best bug fix?

Nope. The better solution would have been to provide an additional argument to the
askForListId() method. The problem with the solution we implemented is that it’s not imme-
diately clear when we call the method what all the options (aka arguments) to the method are.

But it’s an example of real-life code. I'm tempted to go back and do it right, but for now it’s good

enough and it works.

Updating UnarchiveListCommand

Unarchived will be slightly different than our archive implementation because the ListInterface
does not have an unarchive() method to complement the archive() method. We could implement
this within ListInterface, but I'll just add the logic to the Unarchivel istCommand, following the

pseudo-code.

Q‘ Update the UnarchivelistCommand.php to match what’s below.

4

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 48 - ArchiveListCommand and UnarchiveListCommand

<?php namespace GSD\Commands;

use App;
use Todo;

class UnarchivelListCommand extends CommandBase {

protected $name = 'gsd:unarchive';
protected $description = 'Unarchive a todo list.';
protected $askForListAction = 'unarchive';

Rk
* Execute the console command.
*

* @return void

*/

public function fire()

{

// Prompt user for list name
$name = $this->askForlListId(true, true, true);
if (is_null($name))
{
$this->outputErrorBox('*Unarchive aborted*');
return;

// Warn if unarchived version exists
if ($this->repository->exists($name, false))

{
$msg = "WARNING!\n\n"
" An active version of the list '$name' exists.\n"
" This action will destroy the active version,\n"
" replacing it with the archived version.";
$this->outputErrorBox($msg);
}

// Ask 1f user is sure?
$result = $this->ask(
"Are you sure you want to unarchive '$name' (yes/no)?");
if (! str2bool($result))
{

$this->outputErrorBox('*Unarchive aborted*');

304

43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76

Chapter 48 - ArchiveListCommand and UnarchiveListCommand 305

return;
}
// Load existing list and save as unarchived
$list = Todo: :get($name, true);
$list->set('archived', false);
$list->save();
// Delete existing archived list
if (! $this->repository->delete($name, true))
{
$this->outputErrorBox('ERROR deleting archived version.');
return;
}
$this->info("List '$name' has been unarchived");
}
Rk
* No arguments.
*/
protected function getArguments()
{
return array();
}
V23
* No options.
*/
protected function getOptions()
{
return array();
}
}
?2>
Lines 1 - 44
These lines are almost identical to those of the ArchiveListCommand. We don’t need to use
Config, but we do need App. And the words and methods that deal with archive are reversed.
Lines 46 - 49

Here we follow the pseudo-code, loading the archived list, changing the archive flag and
saving it.

O© 00 N O O b W N =~

NN NN N P R R L sy v)
B W0 N B~ 0O O 0N O O b W N =~ O

Chapter 48 - ArchiveListCommand and UnarchiveListCommand

Lines 51 - 56
We use the repository to do the deleting.

Lines 59 to end

The rest of the file returns empty arrays for arguments and options. There aren’t any

arguments or options for this utility.

Give it a shot, unarchive and archive work now.

Dogfooding

Let’s mark the tasks complete which we finished and decide what our next actions could be.

Q’ Below is how I did it. Your list numbers may be different if you’ve made any modifications

p to the gsd todo list.

~/gsd$ art gsd:list +gsd
All Tasks in list '+gsd'

R o .
| # | Next | Description

R o .
| 1 | YES | Create ArchivelListCommand

| 2 | YES | Create UnarchivelListCommand

| 3 | YES | Remove blank line after gsd:list title
| 4 | | Create MoveTaskCommand

| 5 | | Create RemoveTaskCommand

| 6 | | Create Renamel istCommand

[7 | | Create shell gsd script

| 8 | | Create web application wireframe

[9 | | List tasks in ListAllCommand

I | done | Create EditTaskCommand

O e e e e

~/gsd$ art gsd:do 2 +gsd

Task 'Create UnarchivelListCommand' marked complete.
~/gsd$ art gsd:do 1 +gsd

Task 'Create ArchivelListCommand' marked complete.
~/gsd$ art gsd:list +gsd

All Tasks in list '+gsd'

+ - - - - — — — — — — + — %

______________ +
Extra |
______________ +
|
|
|
|
|
|
|
|
|
Done 9/29/13 |
______________ +

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
)
56
o7
58
59
60
61
62
63
64
65
66

Chapter 48 - ArchiveListCommand and UnarchiveListCommand

Create
Create
Create
Create
done Create

done Create

done Create

S o e e e e e

~/gsd$ art gsd:edit
Task in gsd updated
~/gsd$ art gsd:edit
Task in gsd updated
~/gsd$ art gsd:edit
Task in gsd updated
~/gsd$ art gsd:list

blank line after gsd:list title
MoveTaskCommand
RemoveTaskCommand

RenamelL istCommand

shell gsd script

web application wireframe

List tasks in ListAllCommand

EditTaskCommand
Archivel istCommand
Unarchivel istCommand

2 +gsd -a yes

to: * Create MoveTaskCommand

3 +gsd --action=yes

to: * Create RemoveTaskCommand
4 +gsd --action=yes

to: * Create Renamel istCommand
+gsd -x

Active Tasks in list '+gsd'

MoveTaskCommand
RemoveTaskCommand

Renamel istCommand

blank line after gsd:list title
shell gsd script

web application wireframe

List tasks in ListAllCommand

+ - - - - — — — — — — + — %

Done 9/29/13
Done 10/4/13
Done 10/4/13

______________ +

~/gsd$ art gsd:addtask "Create Appendix for Apache install" +gsd

Todo successfully added to gsd
~/gsd$ art gsd:addtask "Create Appendix for nginx install" +gsd

Todo successfully added to gsd

~/gsd$ art gsd:addtask "Create Chapter on setting up webserver and hostname" +gsd

Todo successfully added to gsd

~/gsd$ art gsd:list

+gsd -x

Active Tasks in list '+gsd'

307

67
68
69
70
71
72
73
T4
75
76
7
78
79
80

Chapter 48 - ArchiveListCommand and UnarchiveListCommand 308

b4 . R +
| # | Next | Description | Extra |
oo o . Fo - +
| 1 | YES | Create MoveTaskCommand | |
| 2 | YES | Create RemoveTaskCommand | |
| 3 | YES | Create RenamelListCommand I I
| 4 | YES | Remove blank line after gsd:list title | |
| 5 | | Create Appendix for Apache install | |
| 6 | | Create Appendix for nginx install | |
[7 | | Create Chapter on setting up webserver and hostname | |
| 8 | | Create shell gsd script I I
[9 | | Create web application wireframe | |
| 10 | | List tasks in ListAllCommand I I
oo U S +
Line 1

I listed out the current tasks to see the numbers

Lines 18 and 20
I marked the two tasks we finished as complete. Notice I did them in reverse order. Since I
know how the list is sorted, I felt safe doing it this way.

Line 22
Then I listed the tasks to see those marked complete.

Line 39, 41, and 43
Here I marked the three tasks as Next Actions that I know we’re going to do next. Maybe not
the very next chapter, but soon.

Line 45
Again I listed the tasks, the next actions are all nicely on the top.

Line 59, 61, and 63
Here I added three tasks [know will need to be done, not next, but early into the Part 4 of this
book.

Line 66
And one final listing of the tasks

Ain’t dogfooding fun? Still plenty to do, but the console application is getting closed to being
finished.

© 00 N O O b W N =~

10
11
12
13
14

Chapter 49 - The
RenamelListCommand

In This Chapter

0 In this chapter we’ll implement the RenameListCommand and, take care of the blank line
after gsd:list title

Blank line after gsd:list title

The goal is to remove that single carriage return in the ListTasksCommand that puts a blank line
after the title so the output is consistent with other commands. Only, I really hate doing such a little
dinky change. I takes all of 30 seconds to do, but there was something I was thinking about back
when the ListTasksCommand was first built: formatting of dates.

ListTasksCommand outputs dates in two places: the due date of a task and the completed date. Let’s
make the format of these dates configuration options.

&t Update config/todo.php to match what’s below.

<?php
// Config for our awesome getting stuff done application
return array(

'folder' => '/home/chuck/Documents/gsd/",

'extension' => '.txt',

"listOrder' => array(

"inbox', 'actions', ‘'waiting', 'someday', ‘'calendar',

),
"defaultList' => 'actions', // default list when not specified
'noListPrompt' => true, // true=prompt for list, false=use default
'dateCompleteFormat' => 'n/j/y', // date format for completed tasks
'dateDueFormat' => 'M-j', // date format for due tasks

);

?>

© 00 N O O b W N =

W W W W W N DNDNDDNDDNDNDNDDNDDNDNDNDND®S=S&A~ 2 2> 2>~ 2~ » » &
B W N PO O 0 N0 0k WON PO © 00N O 0k N =S~

Chapter 49 - The RenameListCommand 310

If you want to change these two formats for your locale, have at it. I only use the Month and Day for
due tasks because I don’t usually schedule things out more than a month or two in advance. (Heck,
look at this book. I only plan things out a chapter or two at a time.)

Q’ Update ListTasksCommand.php to match what’s below.

I4

<?php namespace GSD\Commands;

use Config;
use Symfony\Component\Console\Input\InputOption;
use Todo;

class ListTasksCommand extends CommandBase

protected $name = 'gsd:list’';
protected $description = 'List tasks.';
protected $nameArgumentDescription = 'List name to display tasks.';

Vet
* Execute the console command.
*

* @return void
*/
public function fire()

{
$name = $this->getlListId();
if (is_null($name))
{
$this->outputErrorBox("ListTasks aborted");
return;

}
$list = Todo: :get($name);

$nextOnly = $this->option('action');

$skipDone = $this->option('skip-done');
if ($nextOnly and $skipDone)
{
$this->outputErrorBox(
"Options --action and --skip-done can't be used together."

);

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76

Chapter 49 - The RenameListCommand

return;

// Gather rows to display

$completeFmt = Config: :get('todo.dateCompleteFormat');

$dueFmt = Config: :get('todo.dateDueFormat');
$rows = array();

$rowNo = 1;

foreach ($list->tasks() as $task)

{

if ($task->isComplete())
{

if ($skipDone or $nextOnly) continue;

$rows[] = array(

[}
!

'done’,
$task->description(),

'Done '.$task->dateCompleted()->format($completeFmt),

)i
}

elseif ($task->isNextAction() or ! $nextOnly)

{

$next = ($task->isNextAction()) ? 'YES' :

$due = ($task->dateDue()) ?

'Due '.$task->dateDue()->format($dueFmt)

$rows[] = array(
$rowNo++,
$next,
$task->description(),
$due,

// Output a pretty table
$title = ($nextOnly) ? "Next Actions"

(($skipDone) ? "Active Tasks"

"All Tasks");

$this->info("$title in list '+$name'");
if (count($rows) == 0)

{

$this->error("Nothing found");
return;

7

!

311

T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Chapter 49 - The RenameListCommand 312

}

$table = $this->getHelperSet()->get('table');

$table
->setHeaders(array('#', 'Next', 'Description', 'Extra'))
->setRows($rows)
->render ($this->getOutput());

Rk
* Get the console command options.
*
* @return array
*/
protected function getOptions()
{
return array_merge(array(
array('action', 'a', InputOption::VALUE_NONE,
"Show only next actions.', null),
x', InputOption: :VALUE_NONE,

I

array('skip-done',
'Skip completed actions.', null),
), parent::getOptions());

?2>

The newline was removed from the string on line #72. On lines #39 and #40 we pull the date formats
and use them later in the loop.

Small changes, but we did something significant enough to warrant changing the source code ... the
addition of the date formats. Yes, removing the line feed was the only requirement (from our list of
todo tasks), but doesn’t it give you a good feeling to go beyond and make things better?

The Plan for RenameListCommand

The original thought on the console command was simple.
$ gsd rename

And the pseudo-code shows that we planned on prompting for everything.

O O b W N =

1
2
3

© 00 N O O b W N =

N SV
W N~ O

14
15

Chapter 49 - The RenameListCommand 313

Prompt user for archived or unarchived
Prompt user for appropriate list-id
Prompt user for new list-id

Load existing list

Save as new list-id

Delete existing list

I’'m going to skip the first prompt in the pseudo-code. The only way for a user to rename an archived
list will be to use a command line option - -archived.

Creating the RenameListCommand

Q‘ First, create the command skeleton.

4

~/gsd$ art command:make RenamelListCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

Q’ Update RenameL istCommand. php to match what’s below.

4

<?php namespace GSD\Commands;

use Config;
use Symfony\Component\Console\Input\InputOption;
use Todo;

class RenamelListCommand extends CommandBase {

protected $name = 'gsd:rename';
protected $description = 'Rename a list.';
protected $askForListAction = 'rename’;

Veis
* Execute the console command.
*

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Chapter 49 - The RenameListCommand 314

* @return void

*/

public function fire()

{

// Get archived flag and list to rename
$archived = $this->option('archived');
$name = $this->askForlListId(true, true, $archived);
if (is_null($name))
{
$this->outputErrorBox('*aborted*"');
return;
}
if (! $archived && Config::get('todo.defaultlList') == $name)
{
$this->outputErrorBox('Cannot rename default list');
return;

// Prompt for new list name
$newName = $this->askForlListId(false, true, $archived);
if (is_null($name))
{
$this->outputErrorBox (' *aborted*');

return;

// Load existing list, save with new name
$list = Todo::get($name, $archived);
$newList = clone $list;
$newList->set('id', $newName);
$newList->save();

// Delete existing list and we're done
$list->delete();

$listType = ($archived) ? 'Archived list' : 'List';
$this->info($listType . " '$name' renamed to '$newName'");
}
Rk

* No arguments.

*/

protected function getArguments()

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Chapter 49 - The RenameListCommand 315

{

return array();

Ve s
* Just the --archived option
*/

protected function getOptions()

{

return array(

array('archived', 'a', InputOption::VALUE_NONE,

'Use archived lists?', null),

);

2>

Lines 1-11
All standard stuff.

Lines 20 - 32
Let the user select which list to rename, abort if they cancel, and if we’re not renaming an
archived list then make sure it’s not the default list.

Lines 34 - 40
Ask for the new name and abort if the user changes their mind.

Lines 42 - 46
Pull the list object, clone it because we’ll want to use it shortly without modification, change
the list’s name and save it.

Lines 48 - 51
Delete the original list and output a success message. Note that the ListInter face doesn’t
have a delete() method ... yet.

Lines 57 - the end
No arguments and only the one --archived option.

Q‘ Edit start/artisan.php to make artisan aware of the new command

o

© 0 9 O O & W N =

[=
w N =~

=N O O b W N =

Chapter 49 - The RenameListCommand 316

<?7php

Artisan: :add(new GSD\Commands\AddTaskCommand);
Artisan::add(new GSD\Commands\ArchivelListCommand);
Artisan::add(new GSD\Commands\CreateCommand);
Artisan::add(new GSD\Commands\DoTaskCommand);
Artisan::add(new GSD\Commands\EditListCommand);
Artisan::add(new GSD\Commands\EditTaskCommand);
Artisan::add(new GSD\Commands\ListAllCommand);
Artisan::add(new GSD\Commands\ListTasksCommand);
Artisan::add(new GSD\Commands\RenamelListCommand);
Artisan::add(new GSD\Commands\Unarchivel istCommand);

Artisan: :add(new GSD\Commands\UncreateCommand);
?2>

We could attempt running this new command now, but first let’s implement theListInter face: :delete()

method.

Implementing Listinterface::delete()

I probably should have added this during the last chapter when I made use of the repository within
the UnarchivelistCommand, but at the time I quickly scanned ahead to see what was left to do and
didn’t think we’d need to delete a list again.

I was wrong.

But again, one of the nice things about programming is when you make a mistake, you can quietly
fix it so nobody’s the wiser.

o)’ Modify the ListInterface.php file and add the following within the List operations
p section of the class

<?php
Veis
* Delete the task list
* @return boolean TRUE on success
*/
public function delete();
?2>

Q‘ Modify the TodoList.php file and add the following method within the List operations
p section of the class

O 00 N O O b W N -~

= = =Y
0 I O O b W N -~ O

Chapter 49 - The RenameListCommand 317

<?7php
/**
* Delete the task list
* @return boolean TRUE on success

*/
public function delete()
{
return $this->repository->delete($this->id(), $this->isArchived());
}
7>

Wow. That was amazingly trivial to implement.

Give it a shot. Rename some lists. Everything seems to be working great.

Dogfooding

Let’s mark the tasks completed that we’ve finished. And, of course, I thought of a few more things
to do.

Q’ Below is how I did it. Your list numbers may be different if you’ve made any modifications

s to the list.

~/gsd$ art gsd:list +gsd -x
Active Tasks in list '+gsd'

b4 . R +
| # | Next | Description | Extra |
oo o . Fo - +
| 1 | YES | Create MoveTaskCommand | |
| 2 | YES | Create RemoveTaskCommand | |
| 3 | YES | Create RenamelListCommand I I
| 4 | YES | Remove blank line after gsd:list title | |
| 5 | | Create Appendix for Apache install | |
| 6 | | Create Appendix for nginx install | |
[7 | | Create Chapter on setting up webserver and hostname | |
| 8 | | Create shell gsd script I I
[9 | | Create web application wireframe | |
| 10 | | List tasks in ListAllCommand I I

~/gsd$ art gsd:do 4 +gsd
Task 'Remove blank line after gsd:list title' marked complete.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60

Chapter 49 - The RenameListCommand

~/gsd$ art gsd:do 3 +gsd

Task 'Create RenamelListCommand' marked complete.
~/gsd$ art gsd:list +gsd

All Tasks in list '+gsd’

Too wide to display so I'm editing a task
~/gsd$ art gsd:edit 5 +gsd \

>-d "Chapter on setting up webserver"

Task in gsd updated to: - Chapter on setting up webserver

~/gsd$ art gsd:list +gsd
All Tasks in list '+gsd'

R o . o +
| # | Next | Description | Extra |
R o . oo +
| 1 | YES | Create MoveTaskCommand | |
| 2 | YES | Create RemoveTaskCommand | |
[3 | | Chapter on setting up webserver | |
| 4 | | Create Appendix for Apache install | |
| 5 | | Create Appendix for nginx install | |
| 6 | | Create shell gsd script | |
[7 | | Create web application wireframe | |
| 8 | | List tasks in ListAllCommand | |
I | done | Create EditTaskCommand | Done 9/29/13 |
| | done | Create ArchivelistCommand | Done 10/4/13 |
I | done | Create Unarchivel istCommand | Done 10/4/13 |
| | done | Create RenamelistCommand | Done 10/5/13 |
| | done | Remove blank line after gsd:list title | Done 10/5/13 |
R o . o +

~/gsd$ art gsd:addtask "Add CommandBase: :abort()" +gsd

Todo successfully added to gsd
~/gsd$ art gsd:addtask "Check gsd help consistency
Todo successfully added to gsd

" +gsd

~/gsd$ art gsd:addtask "Add $prompt to askForListId()" +gsd

Todo successfully added to gsd

~/gsd$ art gsd:addtask "Use ListInterface::delete(
Todo successfully added to gsd

~/gsd$ art gsd:list +gsd -x

Active Tasks in list '+gsd'

oo o . +
| # | Next | Description |
oo o e e e +
| 1 | YES | Create MoveTaskCommand |
| 2 | YES | Create RemoveTaskCommand |

)" +gsd

61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Chapter

~/gsd$

49 - The RenameListCommand

Create Appendix
Create Appendix

art gsd:edit 3 +gsd -a

Task in gsd updated to: * Add

~/gsd$

art gsd:edit 4 +gsd -a

Task in gsd updated to: * Add

~/gsd$

art gsd:edit 6 +gsd -a

Add CommandBase:
Add to askForListId()

Chapter on setting up webserver
Check gsd help consistency

Create shell gsd script

Create web application wireframe
List tasks in ListAllCommand

Use ListInterface::delete()

rabort()

for Apache install
for nginx install

CommandBase: :abort()

yes
to askForListId()

yes

Task in gsd updated to: * Check gsd help consistency

~/gsd$

~/gsd$

art gsd:edit 11 +gsd -a "yes"
Task in gsd updated to: * List tasks in ListAllCommand

art gsd:edit 12 +gsd -a "yes"

Task in gsd updated to: * Use ListInterface::delete()

~/gsd$
Active
oo+
| # |

4o+

-~

O 0 = O O b W N

%]
1

12
—

(RGN

art gsd:list +gsd -x
Tasks in list '+gsd'

Next
YES
YES
YES

YES
YES
YES

Chapter on setting up webserver

Create Appendix
Create Appendix

Create shell gsd script
Create web application wireframe

Add CommandBase:
Add to askForListId()
Check gsd help consistency

Create RemoveTaskCommand
List tasks in ListAllCommand

+
I
+
I
I
I
YES | Create MoveTaskCommand
I
I
| Use ListInterface::delete()
I
I
I
I
I
+

I
;abort() I
I
I
I
I
I
I
I
for Apache install |
for nginx install |
I
I

319

Chapter 49 - The RenameListCommand 320

Explanation of above

Lines 1 - 20
I listed our tasks and marked the two things on the list that we completed as done.

Line 21
I listed the tasks again, this time with the completed items showing and the list was too wide
to fit in this book. Not a problem in the console window, and usually if this happens I just edit
away some extra spaces. (Of course, if you're looking at this on an iPhone there’s still lots of
wrapping going on.)

Lines 24 - 25
Instead I shorted the “Create Chapter on setting up webserver and hostname” task description
to be shorter.

Lines 27 - 45
Now the list of everything, todo and done, in this project fits nicely.

Lines 46 - 53
Added several more things to do. Looks like some refactoring is coming up.

Lines 54 - 71
I relisted the tasks not complete. Dang, I should have added those last ones as Next Actions

Lines 72 - 81
No matter. I edited each of the tasks that should be finished soon as Next Actions.

Lines 82 - 99
And the final list of things to do.

I’'m Getting Stuff Done, knocking things off the list, yet somehow the todo list is still growing.

Chapter 50 - Refactoring again

0 In This Chapter

In this chapter we’ll knock all the refactoring items off our gsd todo list.

Will this be the last time we refactor in this book? I can’t say for sure, but if [was a betting man I'd
put money on there being more refactoring in the future. It’s part of the process—well, my process
anyway.

I'm going to not show all the source code modified until after all the modifications have occurred.
Instead, on each task I'll note what was changed where and why.

Adding CommandBase::abort()

There seems to be an awful lot of instances within the commands where the outputErrorBox()
method is called with some type of error message and the program execution ends. Since this happens
so frequently, it makes sense to implement an abort () method in CommandBase.

But, will adding an abort () method break something? CommandBase is a subclass of I11uminate\Console\Commar
which is a subclass of something else. You can dig through Laravel’s source, then Symfony’s source

code, tracing your way up the class hierarchy to see if there’s any abort() method implemented,

but there’s an easier way.

Just call abort() and see what happens.

v&‘ Modify AddTaskCommand . php and place the following code at the top of the fire() method.

$this->abort();
dd('abort exists');

If we get an exception, Method Not Found or something similar, then we’re good. If “abort exists”
outputs, then not good.

Q’ Now try running the add task command

4

O b W N -

© 0 N O O & W N =

Chapter 50 - Refactoring again 322

~/gsd$ art gsd:addtask x

PHP Fatal error: Call to undefined method
GSD\Commands\AddTaskCommand: :abort() in
/home/chuck/gsd/app/src/GSD/Commands/AddTaskCommand.php on line 22

[snip]
Cool. The method abort() is safe to add. Remove those two lines from AddTaskCommand.php.

Q’ Add the new method to CommandBase . php

4

Rk
* Qutput an error message and die
* @param string $message Optional message to output
*/

protected function abort($message = '*aborted*')

{

$this->outputErrorBox($message);

exit;

I’ve went through every command and every place that followed the pattern of outputting the error
box and exiting, I've replaced with a call to abort (). If any exceptions are thrown within the fire()
method, then those have been replaced with a call to abort (), also.

Here’s a list of the files and number of changes.

+ AddTaskCommand.php - 2 changes

+ ArchivelistCommand.php - 3 changes

+ CreateCommand.php - 4 changes

« DoTaskCommand.php - 2 changes

+ EditListCommand.php - 1 change

+ EditTaskCommand.php - 3 changes

+ ListTasksCommand.php - 3 changes (Also changed a call toerror())
. RenameListCommand.php-3Changes

. UnarchiveListCommand.php-3Changes

. UncreateCommand.php-3Changes

Dang. I should have counted lines of code before that and after. Oh well, that probably saves about
30 lines of code. And it makes things more consistent.

Chapter 50 - Refactoring again 323

Add to askForListld()

Instead of using the property $askForListAction I'm going to add a fourth option to askForListId().
You knew I was going to change that, didn’t you?

‘ Careful of too many options

The askForListId() is getting dangerously close to too many options. This can be a sign
that the method’s getting too complicated and needs to be refactored.

CommandBase’s getArguments() method to provide the optional task-number argument.
This property kills two birds with one stone. Perhaps, ideally, the getTaskNo() should take
a title and the property should only indicate if the argument’s used. But I'm not changing
that at the moment.

ﬂ I’'m not changing the property $taskNoDescription because its existence tells the

Here’s a list of what changed in each file.

CommandBase.php
Remove the $askForListAction property. Add $selectTitle argument to askForListId()
and use it. Add a$selectTitle argument togetListId() and use it when calling askForListId().

AddTaskCommand.php
Provide a title on the getListId() call.

ArchiveListCommand.php
Remove the $askForListAction property. Add title to askForListId() call.

DoTaskCommand.php
Add title on the getListId() call.

EditListCommand.php
Add title on the getListId() call.

EditTaskCommand.php
Add title on the getListId() call.

ListTasksCommand.php
Add title on the getListId() call.

RenameListCommand.php
Remove $askForlListActon property. Add title to askForListId() call.

Chapter 50 - Refactoring again 324

UnarchiveListCommand.php
Remove $askForListActon property. Add title to askForListId() call

UncreateListCommand.php
Add title to askForListId() call.

Check gsd help consistency

[want to do two things here.

1. Make sure the help on all the commands is consistent. This means capitalization and
punctuation usage.

2. Make sure every method has an appropriate docblock with all arguments (unless the function
doesn’t really need them.)

This second item is what I call a code trace.

Code Trace

The term code trace can mean several things. For me, it is examining every line of code with
a specific intention in mind. If the intent is to follow the logic, then the code is examined and
followed as it would execute. My intent is to trace the docblocks. So that’s all ’'m focusing on.

Here’s a list of the files and what changed in each.

TodoRepositoryInterface.php
Added to docblocks for delete().

TodoRepository.php
Added to docblocks for delete() and fullpath().

UncreateCommand.php
Removed docblock for common properties.

ListAllCommand.php
Derived from CommandBase instead of Command. Removed docblock for common proper-
ties. Capitalized help for —archived.

CreateCommand.php
Added $nameArgumentDescription property. Remove docblocks for common properties.
Remove getArguments() method to use CommandBase’s default.

O 00 N O O b W N =~

= = =Y
0 I O O b W N -~ O

Chapter 50 - Refactoring again 325

CommandBase.php
Added to docblock for askForListld() and getListld(). Added period to - -1istname option help,
updated getTaskNo() to replace ending period with a colon when list is selected.

Whew! Lots of little, bitty things.

Use Listinterface::delete()

I've changed my mind on this one. There’s two places we could use a ListInterface: :delete():
the UncreateCommand and UnarchiveListCommand. But after doing the code trace, it doesn’t really
seem that important to keep the command code from using the repository. I mean, it’s a property
set up by CommandBase for gosh sakes. I'm not sure what was going through my head with wanting
to implement this one.

Unfortunately, we can’t delete tasks yet. Which means the gsd todo list will still keep this task. (Next
chapter we’ll delete this task.)

The Changed Files

The next umpteen pages are source code dumps of each file changed in this chapter.

AddTaskCommand.php

<?php namespace GSD\Commands;

use App;

use Illuminate\Console\Command;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Todo;

class AddTaskCommand extends CommandBase {

protected $name = 'gsd:addtask';

protected $description = 'Add a new task to a list.';

protected $nameArgumentDescription = 'List name to add the task to.';
Vet

* Execute the console command.

*

* @return void

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Chapter 50 - Refactoring again

*/

public function fire()

{

$name = $this->getlListId('Select list to add the task to:');
if (is_null($name))

{
$this->abort();
}
$list = Todo: :get($name);

$task = App::make('GSD\Entities\TaskInterface');
if (! $task->setFromString($this->argument('task')))
{
$this->abort('Cannot parse task string');
}
$type = 'Todo';
if ($this->option('action'))
{
$task->setIsNextAction(true);
$type = 'Next Action';
}
$list->taskAdd($task);
$1list->save();
$this->info("$type successfully added to $name");

/**

* Get the console command arguments.

*/

protected function getArguments()

{

return array_merge(array(
array('task', InputArgument::REQUIRED,
"The task's description."),
), parent::getArguments());

kK

* Get the console command options.

*/

protected function getOptions()

{

326

61
62
63
64
65
66
67

© 0 N O O b W N =~

WoWwoWNNNNDNNDNDNNDNR B R R R))
N~ © © ® 9 0 O & W N~ O O W 3 0 U & WM =

Chapter 50 - Refactoring again

2>

return array_merge(parent: :getOptions(), array(
array('action', 'a', InputOption::VALUE_NONE,
'Make task a Next Action.'),

));

ArchiveListCommand.php

<?php namespace GSD\Commands;

use Config;

use Todo;

class ArchivelListCommand extends CommandBase {

protected $name = 'gsd:archive';
protected $description = 'Archive a todo list.';
Rk

* Execute the console command.
*

* @return void

*/

public function fire()

{

// Get list name to archive

$selectTitle = 'Select list to archive:';

$name = $this->askForlListId(true, true, false, $selectTitle);
if (is_null($name))

{

$this->abort();
}
if (Config::get('todo.defaultList') == $name)
{

$this->abort('Cannot archive default list');
}

// Warn if list exists
if ($this->repository->exists($name, true))

{

327

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
56
ST
58
59
60
61
62
63
64
65
66
o7

Chapter 50 - Refactoring again

?2>

"WARNING!\n\n"
An archived version of the list '$name' exists.\n"

$msg

$this->outputErrorBox($msg);

}
$result = $this->ask(

"Are you sure you want to archive '$name' (yes/no)?");
if (! str2bool($result))

{
$this->abort();

// Archive the list
$list = Todo::get($name);
$list->archive();

$this->info("List '$name' has been archived");

J Rk

* No arguments.

*/
protected function getArguments()
{
return array();
}
Rk
* No options.
*/
protected function getOptions()
{
return array();
}

CommandBase.php

This action will destroy the old archived version.";

328

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 50 - Refactoring again

<?php namespace GSD\Commands;

use
use
use
use
use
use

App;
Config;

I

1luminate\Console\Command;

Symfony\Component\Console\Input\InputOption;
Symfony\Component\Console\Input\InputArgument;
Todo;

class CommandBase extends Command ({

protected $repository;

protected $nameArgumentDescription = 'List name.';

protected $taskNoDescription = null;

/**

{

J Rk

*

Constructor

*/

public function __construct()

parent::__ construct();

$this->repository = App::make('GSD\Repositories\TodoRepositoryInterface');

¥ % ¥ X X% %

Prompt the user for a list id

@param bool $existing Prompt for existing list or new list?
@param bool $allowCancel Allow user to cancel

@param bool $archived Prompt for archived list?

@param string $selectTitle Title to use if list selection occurs.
@return mixed string list id or null if user cancels

*/
public function askForlListId($existing = true, $allowCancel = true,
$archived = false, $selectTitle = 'Select a list:"')

i

{

f ($existing)

$abort = "Cancel";

$choices = Todo::alllLists($archived);
if (count($choices) == 0)

{

throw new \RuntimeException('No lists to choose from');

43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 50 - Refactoring again

}

$result = pick_from_list($this, $selectTitle, $choices, 0, $abort);
if ($result == -1)

{

return null;

}

return $choices[$result-1];

$prompt = 'Enter name of new';

if ($archived) $prompt .= ' archived';

$prompt .= ' list';

if ($allowCancel) $prompt .= ' (enter to cancel)';

$prompt .= '?';

while(true)

{

J**

if (! ($result = $this->ask($prompt)))

{
if ($allowCancel)

{

return null;

}

$this->outputErrorBox('You must enter something');

}

else if ($this->repository->exists($result, $archived))

{

$this->outputErrorBox("You already have a list named '$result'");

}

else

{

return $result;

* Qutput an error box

* @param string $message The message

*/

protected function outputErrorBox($message)

{

$formatter = $this->getHelperSet()->get(' formatter');

330

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Chapter 50 - Refactoring again

$block = $formatter->formatBlock($message, 'error', true);
$this->line('");

$this->1line($block);

$this->1line('");

kK

* The console command arguments. Derived classes could replace this
* method entirely, or merge its own arguments with them

*

* @return array of argument definitions

*/

protected function getArguments()

{

$args = array();
if (! is_null($this->taskNoDescription))
{
$args[] = array(
"task-number',
InputArgument: :OPTIONAL,
$this->taskNoDescription
);
}
$args[] = array(
"+name’,
InputArgument: :OPTIONAL,
$this->nameArgumentDescription
);

return $args;

/**

* The console command options. Derived classes could replace this
* method entirely, or merge their own options with these.

*

* @return array

*/

protected function getOptions()

{

return array(
array('listname', '1', InputOption::VALUE _REQUIRED,
"Source of list name, 'prompt' or 'default'."),

331

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Chapter 50 - Refactoring again

);

J Rk

* Get the list id (of existing lists).

This can happen in a variety of ways. If specified as an argument, then
it's returned (without the + of course). Otherwise, look to see if the
“--listname® argument is used and determine the list accordingly.
Finally, we fallback to the method specified by Config's
'app.gsd.nolListPrompt' setting

@param string $selectTitle Title to use if list selection occurs
@return $string Existing list id (or null if user aborts)

¥ ¥ ¥ X X X ¥ ¥ X *x

@throws InvalidArgumentException If something's not right

*/

protected function getListId($selectTitle = 'Select a list:')

{

$archived = $this->input->hasOption('archived') and
$this->option('archived');

$name = $this->argument(' +name');
$listnameOption = $this->option('listname"');
if ($name)
{

$name = substr($name, 1);

if (! is_null($listnameOption))

{

throw new \InvalidArgumentException(
'Cannot specify $name and --listname together');

}

else

{
if (is_null($listnameOption))

{
$listnameOption = Config::get('todo.noListPrompt') ?

'prompt' : 'config';
}
if ($listnameOption == 'prompt')
{

$name = $this->askForlListId(true, true, $archived, $selectTitle);
if (is_null($name))

332

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Chapter 50 - Refactoring again

{
return null;

}
}
else
{

$name = Config::get('todo.defaultlList"');
}

// Throw error if list doesn't exist

i

{

}

r

/**

¥ ¥ ¥ X X X ¥ x %

f (! $this->repository->exists($name, $archived))
$archived = ($archived) ? '(archived) ' : '';
throw new \InvalidArgumentException(

"List $archived'$name' not found");

eturn $name;

Get the task # of a list, either from the argument or prompt the user.
Keep in mind the # present to the user always begins with 1, but the
number we return is always one less (starting with 0)

@param ListInterface $1ist The Todo List

@param bool $showNext Show next actions in prompt list

@param bool $showNormal Show normal tasks in prompt list

@param bool $showComplete Show completed tasks in prompt list
@return mixed NULL if user aborts, otherwise integer of task number

*/

protected function getTaskNo(\GSD\Entities\ListInterface $list, $showNext,

$

/
$
i

{

showNormal, $showComplete)
/ Return the # if provided on command line
taskNo = $this->argument('task-number');

f (! is_null($taskNo))

return (int)$taskNo - 1;

333

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

Chapter 50 - Refactoring again

2>

// Build list of tasks
$tasks = array();
foreach ($list->tasks() as $task)
{
if ($task->isComplete())
{
if ($showComplete)
$tasks[] = (string)$task;
}
elseif ($task->isNextAction())
{
if ($showNext)
$tasks[] = (string)$task;
}

elseif ($showNormal)

{
$tasks[] = (string)$task;

// Let user pick from list, return result

$selectTitle = rtrim($this->taskNoDescription, '.') . ':';
$result = pick_from_list($this, $selectTitle, $tasks, 0, "Cancel");
if ($result == -1)

{

return null;

}

return $result - 1;

J xRk

* Qutput an error message and die
* @param string $message Optional message to output
*/

protected function abort($message = '*aborted*')

{

$this->outputErrorBox($message);
exit;

334

O 0O I O U » W N =~

BW W W W W WwWwwWwwWwWNDNDNDDDDNDDNDDNDNDDNDDN-S S, sS s s, ss e
S © 0 N O O & W N -~ O © 0 N O O bk N = O © 0 N O O Pk WwN =~ O

Chapter 50 - Refactoring again

CreateCommand.php

<?php namespace GSD\Commands;

use
use
use
use

I1luminate\Console\Command;
Symfony\Component\Console\Input\InputOption;
Symfony\Component\Console\Input\InputArgument;
Todo;

class CreateCommand extends CommandBase {

protected $name = 'gsd:create';

protected $description = 'Create new list.';

protected $nameArgumentDescription = 'List name to create.';
Rk

* Execute the console command.
*

* @return void

*/

public function fire()

{

// Get options and arguments

$name = $this->argument('+name');
$title = $this->option('title');
$subtitle = $this->option('subtitle');

// Prompt for everything
if (all_null($name, $title, $subtitle))

{

if (! ($name = $this->askForlListId(false, true)))

{

$this->abort();

}

$title = $this->ask("Enter list title (enter to skip)?");

$subtitle = $this->ask("Enter list subtitle (enter to skip)?");
}

// Validate arguments
else if (is_null($name))

{

$this->abort('Must specify +name if title or subtitle used');

335

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82

Chapter 50 - Refactoring again

}

else if ($name[0] != '+')

{

}

$this->abort('The list name must begin with a plus (+)');

else

{

$name = substr($name, 1);
if ($this->repository->exists($name))

{

$this->abort("The list '$name' already exists");

// Create the list, defaulting title 1f needed
$title = ($title) ? : ucfirst($name);
$list = Todo: :makelist($name, $title);

// Set the subtitle if needed
if ($subtitle)

{

$list->set('subtitle’, $subtitle)->save();

$this->info("List '$name' successfully created");

kK

* Get the console command options.

*

* @return array

*/

protected function getOptions()

{

return array(

);

array('title', 't', InputOption::VALUE REQUIRED,
'Title of list.', null),

array('subtitle', 's', InputOption::VALUE_REQUIRED,
'Subtitle of list.', null),

336

83

O 0O 9 O U B W N =~

W W W W W W W w W N NDDNDDNDDNDNDDNDDNDNDDN-=S-S P~ = 2 2
W N O O b WO N~ OO O 00 N O U & W N~~~ OO O 0 N O U b W N~ O

Chapter 50 - Refactoring again

2>

DoTaskCommand.php

<?php namespace GSD\Commands;
use Todo;
class DoTaskCommand extends CommandBase {

protected $name = 'gsd:do’;

protected $description = 'Mark a task as complete.';

protected $nameArgumentDescription = 'List name with completed task.';
protected $taskNoDescription = 'Task # to mark complete.';

Veis
* Execute the console command.
*

* @return void
*/
public function fire()

{
$name = $this->getlListId('Select list with task to mark complete:');

if (is_null($name))
{
$this->abort();

}
$list = Todo: :get($name);

$taskNo = $this->getTaskNo($list, true, true, false);
if (is_null($taskNo))

{
$this->abort();

$description = $list->taskGet($taskNo, 'description');
$list->taskSet($taskNo, 'isComplete', true)

->save();
$this->info("Task '$description' marked complete.");

7>

337

Chapter 50 - Refactoring again 338

EditListCommand.php

<?php namespace GSD\Commands;
use Illuminate\Console\Command;
use Symfony\Component\Console\Input\InputOption;

use Todo;

class EditListCommand extends CommandBase {

O 0O I O U » W N =~

BW W W W W WwWwwWwwWwWNDNDNDDDDNDDNDDNDNDDNDDN-S S, sS s s, ss e
S © 0 N O O & W N -~ O © 0 N O O bk N = O © 0 N O O Pk WwN =~ O

protected $name = 'gsd:editlist’;
protected $description = "Edit a list's title or subtitle.";

protected $nameArgumentDescription = "List name to edit.";
Vi

* Execute the console command.

*

* @return void
*/
public function fire()
{
$name = $this->getlistId('Select list to edit:');
if (is_null($name))
{
$this->abort();

}
$list = Todo: :get($name);

$title = $this->option('title’);
$subtitle = $this->option('subtitle');

if (all_null($title, $subtitle))
{
$this->info(sprintf("Editing '%s'", $name));
$this->1line('");
$title = $this->ask("Enter list title (enter to skip)?");
$subtitle = $this->ask("Enter list subtitle (enter to skip)?");
$this->line('");
if (all_null($title, $subtitle))
{
$this->comment('Nothing changed. List not udpated.');
return;

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Chapter 50 - Refactoring again

}
}
if ($title)
{
$list->set('title', $title);
}
if ($subtitle)
{
$list->set('subtitle', $subtitle);
}

$list->save();
$this->info(sprintf("List '%s' updated", $name));

JHk
* Get the console command options.
*/
protected function getOptions()
{
return array_merge(parent: :getOptions(), array(
array('title', 't', InputOption::VALUE_REQUIRED,
'Title of list.', null),
array('subtitle', 's', InputOption::VALUE REQUIRED,
'Subtitle of list.', null),
));

?2>

EditTaskCommand.php

339

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 50 - Refactoring again

<?php namespace GSD\Commands;

use
use
use

use

I1luminate\Console\Command;

Symfony\Component\Console\Input\InputOption;

Symfony\Component\Console\Input\InputArgument;
Todo;

class EditTaskCommand extends CommandBase {

protected $name = 'gsd:edit’;

protected $description = 'Edit a task.';

protected $nameArgumentDescription = 'List name with task to edit.';

protected $taskNoDescription = 'Task # to edit.';

/

KK

* Execute the console command.

*

* @return void

*/

public function fire()

{

// Should we prompt for everything?
$promptAll = all_null(

);

$this->argument('+name'),
$this->argument('task-number'),
$this->option('descript'),
$this->option('action')

// Get list
$name = $this->getlListId('Select list with task to edit:');
if (is_null($name))

{

}

$this->abort();

$list = Todo::get($name);

// Get task-number
$taskNo = $this->getTaskNo($list, true, true, false);
if (is_null($taskNo))

{

$this->abort();

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 50 - Refactoring again

$currDescript = $list->taskGet($taskNo, 'description');
$currAction = $list->taskGet($taskNo, 'isNextAction');

// Prompt for description and next action
if ($promptAll)

{
$currActionState = ($currAction) ? 'is' : 'is not';
$this->1line("Current description: $currDescript");
$descript = $this->ask("New description (enter to skip)?");
$this->1line("Task $currActionState currently a Next Aciton.");
$next = $this->ask("Is Next Action (enter skip, yes or no)?");

}

// Pull description and next action from command

else

{

$descript = $this->option('descript');
$next = $this->option('action');

}
$action = is_null($next) ? null : str2bool($next);

if ((is_null($descript) || $descript == $currDescript) &&
(is_null($action) || $action == $currAction))

$this->abort("Nothing changed");

// Make changes and save the list
$task = $list->task($taskNo);
if (! is_null($action))
{
$task->setIsNextAction($action);
}
if (! is_null($descript))
{
$task->setDescription($descript);

}

$list->save(true);

$this->info("Task in $name updated to: ".(string)$task);

341

Chapter 50 - Refactoring again 342

85 }
86
87 Rk
88 * Get the console command options.
89 */
90 protected function getOptions()
91 {
92 return array_merge(array(
93 array('descript', 'd', InputOption::VALUE REQUIRED,
94 "New description for task.'),
95 array('action', 'a', InputOption::VALUE_REQUIRED,
96 'Is task a next action (yes|no).'),
o7), parent::getOptions());
98 }
99 }
100 2>
ListAllCommand.php
1 <?php namespace GSD\Commands;
2
3 use Symfony\Component\Console\Input\InputOption;
4 use Symfony\Component\Console\Input\InputArgument;
5
6 class ListAllCommand extends CommandBase {
7
8 protected $name = 'gsd:listall’;
9 protected $description = 'Lists all todo lists (and possibly tasks).';
10
11 Rk
12 * Execute the console command.
13 *
14 * @return void
15 */
16 public function fire()
17 {
18 $archived = $this->option('archived');
19 $title = 'Listing all ';
20 if ($archived) $title .= 'archived ';
21 $title .= 'lists’';
22 $this->info($title);

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
o2
53
54
55
56
o7
58
59
60
61
62
63
64
65

Chapter 50 - Refactoring again

$lists
$lists

\Todo: :alllLists($archived);
$this->sortlListIds($lists);

$headers = array('list', 'next', 'todos',
$rows = array();
foreach ($lists as $listId)
{
$list = \Todo::get($listld, $archived);
$rows[] = array(
$1istld,
$list->taskCount('next'),
$list->taskCount('todo"'),
$list->taskCount('done'),

);

// Output a pretty table

'completed');

$table = $this->getHelperSet()->get('table"');

$table
->setHeaders($headers)
->setRows($rows)
->render ($this->getOutput());
}
JHk

* Sort the list ids
*/

protected function sortListIds(array $listlds)

{

// Pull the names
$special = array();

foreach (\Config::get('todo.listOrder') as $name)

{

$special [$name] = false;

// Peel off the specials
$tosort = array();
foreach ($listlds as $1listlId)

{

if (array_key_exists($listId, $special))

{

343

66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

Chapter 50 - Refactoring again

2>

$special [$listId] = true;
}

else

{
$tosort[] = $listid;

// Put the specials first then sort the remaining and add them in

$return = array();
foreach ($special as $listId => $flag)

{

if ($flag)
{

$return[] = $listid;
}

}

natcasesort($tosort);
return array_merge($return, $tosort);

Rk
* No arguments.
*/

protected function getArguments()

{

return array();

/**
* Just the “--archived® option
*/
protected function getOptions()
{

return array(

array('archived', 'a', InputOption::VALUE_NONE,

'Use archived lists?'),

);

344

O 0O I O U » W N =~

BW W W W W WwWwwWwwWwWNDNDNDDDDNDDNDDNDNDDNDDN-S S, sS s s, ss e
S © 0 N O O & W N -~ O © 0 N O O bk N = O © 0 N O O Pk WwN =~ O

Chapter 50 - Refactoring again 345

ListTasksCommand.php

<?php namespace GSD\Commands;

use Config;
use Symfony\Component\Console\Input\InputOption;
use Todo;

class ListTasksCommand extends CommandBase {

protected $name = 'gsd:list’;
protected $description = 'List tasks.';
protected $nameArgumentDescription = 'List name to display tasks.';

Vs
* Execute the console command.
*
* @return void
*/
public function fire()
{
$name = $this->getlListId('Select list to show tasks:');
if (is_null($name))
{
$this->abort();

}
$list = Todo: :get($name);

$nextOnly = $this->option('action');
$skipDone = $this->option('skip-done');
if ($nextOnly and $skipDone)
{
$this->abort(
"Options --action and --skip-done can't be used together."

);

// Gather rows to display

$completeFmt = Config::get('todo.dateCompleteFormat');
$dueFmt = Config: :get('todo.dateDueFormat');

$rows = array();

$rowNo = 1;

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82

Chapter 50 - Refactoring again

foreach ($list->tasks() as $task)

{
if ($task->isComplete())
{
if ($skipDone or $nextOnly) continue;
$rows[] = array(

(]
I

'done’,
$task->description(),

'Done '.$task->dateCompleted()->format($completeFmt),

);
}
elseif ($task->isNextAction() or ! $nextOnly)
{
$next = ($task->isNextAction()) ? 'YES' : '';
$due = ($task->dateDue()) ?
'Due '.$task->dateDue()->format($dueFmt)
$rows[] = array(
$rowNo++,
$next,
$task->description(),
$due,
);

// Output a pretty table

$title = ($nextOnly) ? "Next Actions"
(($skipDone) ? "Active Tasks" : "All Tasks");

$this->info("$title in list '+$name'");

if (count($rows) == 0)

{
$this->abort("No tasks in list");
}
$table = $this->getHelperSet()->get('table');
$table

->setHeaders(array('#', 'Next', 'Description',
->setRows($rows)
->render ($this->getOutput());

/**

'Extra'))

346

83
84
85
86
87
88
89
90
91
92
93
94
95

O 0 N O O b wWw N =~

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Chapter 50 - Refactoring again

* Get the console command options.

*/
protected function getOptions()
{

return array_merge(array(
a', InputOption::VALUE_NONE,
'Show only next actions.', null),
x', InputOption::VALUE_NONE,
'Skip completed actions.', null),

array('action’',

array('skip-done',

), parent::getOptions());

?2>

RenamelListCommand.php

<?php namespace GSD\Commands;

use Config;
use Symfony\Component\Console\Input\InputOption;
use Todo;

class RenamelListCommand extends CommandBase ({

protected $name = 'gsd:rename';
protected $description = 'Rename a list.';

kK
* Execute the console command.
*
* @return void
*/
public function fire()
{
// Get archived flag and list to rename
$archived = $this->option('archived');
$selectTitle = 'Select list to rename:';
$name = $this->askForlListId(true, true, $archived, $selectTitle);
if (is_null($name))
{
$this->abort();

347

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68

Chapter 50 - Refactoring again

if (! $archived && Config::get('todo.defaultList') == $name)

{

$this->abort('Cannot rename default list');

// Prompt for new list

$newName = $this->askForListId(false, true, $archived);

if (is_null($name))

{
$this->abort();

// Load existing list, save with new name
$list = Todo::get($name, $archived);
$newList = clone $list;
$newList->set('id', $newName);
$newlList->save();

// Delete existing list and we're done
$list->delete();
$listType = ($archived) ? 'Archived list' : 'List';

$this->info($1listType . " '$name' renamed to '$newName'");

J Rk

* No arguments.

*/

protected function getArguments()

{

return array();

kK

* Just the --archived option

*/

protected function getOptions()

{

return array(
array('archived', 'a', InputOption::VALUE_NONE,
'Use archived lists?', null),

);

348

Chapter 50 - Refactoring again 349

69 }
0 7

TodoRepository.php and TodoRepositorylnterface.php

This chapter has a boatload of source code. Since only the docblocks changed in these two files, 'm
going to skip displaying the source here.

UnarchiveListCommand.php

1 <?php namespace GSD\Commands;

2

3 use App;

4 use Todo;

5

6 class UnarchivelListCommand extends CommandBase {

-

8 protected $name = 'gsd:unarchive';

9 protected $description = 'Unarchive a todo list.';
10

11 Vet

12 * Execute the console command.

13 *

14 * @return void

15 */

16 public function fire()

17 {

18 // Prompt user for list name

19 $selectTitle = 'Select list to unarchive:';

20 $name = $this->askForlListId(true, true, true, $selectTitle);
21 if (is_null($name))

22 {

23 $this->abort();

24 }

25

26 // Warn if unarchived version exists

27 if ($this->repository->exists($name, false))

28 {

29 $msg = "WARNING!\n\n"

30 . " An active version of the list '$name' exists.\n"
31 . " This action will destroy the active version,\n"

32 . " replacing it with the archived version.";

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
ST
58
59
60
61
62
63
64
65
66
o7
68
69
70
71
72
73

Chapter 50 - Refactoring again

2>

$this->outputErrorBox($msg);

// Ask i1f user is sure?
$result = $this->ask(

"Are you sure you want to unarchive '$name' (yes/no)?");

if (! str2bool($result))

{
$this->abort();

// Load existing list and save as unarchived
$list = Todo::get($name, true);
$list->set('archived', false);
$list->save();

// Delete existing archived list
if (! $this->repository->delete($name, true))

{
$this->abort('ERROR deleting archived version.');

}

$this->info("List '$name' has been unarchived");

/**
* No arguments.
*/
protected function getArguments()

{

return array();

Ve
* No options.
*/
protected function getOptions()
{

return array();

350

O 0O I O U » W N =~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Chapter 50 - Refactoring again

UncreateCommand.php

<?php namespace GSD\Commands;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Todo;

class UncreateCommand extends CommandBase {

protected $name = 'gsd:uncreate';
protected $description = 'Destroy an empty list.';

Rk
* Execute the console command.
*
* @return void
*/
public function fire()
{
// Prompt user for list-id
$selectTitle = 'Select list to uncreate:';
$name = $this->askForlListId(true, true, false, $selectTitle);
if (is_null($name))
{
$this->abort();

// Validate list has no tasks
$list = Todo::get($name);

if ($list->taskCount() >)

{

$this->abort('Cannot uncreate a list with tasks');

// Delete list
if (! $this->repository->delete($name))

{
$this->abort("Repository couldn't delete list '$name'");

}
$this->info("The list '$name' is now in the big bitbucket in the

sky");

351

41
42
43
44
45
46
47
48
49
50
o1
52
o3
54
55
56
o7
58

© 0 9 O O & W N =

I N S =S
O O b W N =~ O

Chapter 50 - Refactoring again

?2>

kK

* No arguments.

*/

protected function getArguments()

{

return array();

J xRk

* No options.

*/

protected function getOptions()

{

return array();

Man. My head hurts after all the code.

Dogfooding

Let’s mark the tasks completed that we’ve finished.

~/gsd$
Active

O 0 = O O b W N~

(RGN
= o

art gsd:list +gsd -x

Tasks in list '+gsd'

+
|

+

| Add CommandBase: :abort()

| Add to askForListId()

| Check gsd help consistency

| Create MoveTaskCommand

| Create RemoveTaskCommand

| List tasks in ListAllCommand

| Use ListInterface::delete()

| Chapter on setting up webserver

| Create Appendix for Apache install
| Create Appendix for nginx install
| Create shell gsd script

—_—_—— — — - — — — — — + — %

352

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Chapter 50 - Refactoring again

| 12 | | Create web application wireframe
oo g e +
~/gsd$ art gsd:do 3 +gsd

Task 'Check gsd help consistency' marked complete.

~/gsd$ art gsd:do 2 +gsd

Task 'Add to askForListId()' marked complete.

~/gsd$ art gsd:do 1 +gsd

Task 'Add CommandBase: :abort()' marked complete.

~/gsd$ art gsd:list +gsd

All Tasks in list '+gsd'

9/29/183
10/4/13
10/4/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13

R o . +
| # | Next | Description | Extra
R o . +

| 1 | YES | Create MoveTaskCommand |

| 2 | YES | Create RemoveTaskCommand |

| 3 | YES | List tasks in ListAllCommand |

| 4 | YES | Use ListInterface::delete() I

| 5 | | Chapter on setting up webserver |

| 6 | | Create Appendix for Apache install |

[7 | | Create Appendix for nginx install |

| 8 | | Create shell gsd script |

[9 | | Create web application wireframe |

| | done | Create EditTaskCommand | Done
| | done | Create Archivel istCommand | Done
| | done | Create Unarchivel istCommand | Done
| | done | Add CommandBase: :abort() | Done
| | done | Add to askForListId() | Done
| | done | Check gsd help consistency | Done
| | done | Create Renamel istCommand | Done
| | done | Remove blank line after gsd:list title | Done
R o o e +

To bad we can’t delete task #4. Let’s hurry and implement the RemoveTask command in the next

chapter before I change my mind back and decide to implement #4.

W N =

=N O O b W N =

Chapter 51 - The
RemoveTaskCommand

G In This Chapter

In this chapter we’ll implement the remove task command.

After all that source code in the last chapter, I want to keep this chapter short and sweet.
The Plan

The original thoughts on the console command were.

$ gsd:remove [+hame] 1 --force
$ gsd rm [+name] 1 -f
$ gsd rm

Since we now have the rule that the list name comes last, then we’re modifying this somewhat, but
the basic idea’s the same.

How about the pseudo-code?

Get arguments and options
Prompt for list-id if needed
Load list

Prompt for task # if needed
Show warning if not forced
Delete task from list

Save list

Pretty good. We should match that closely. The “Show warning if not forced” ought to be followed
with a “Ask user if they’re sure” but besides that the logic will match.

Creating the RemoveTaskCommand

Q’ As always, use artisan to create the skeleton.

4

O 00 N O O b W N

W W W W N DN DNDNDDNDNDNDDNDDNDNDNS= A~ 2 B 2 2 B » 2
W N O O 0N 0 0k W N O O 0N O O bk N =~ o

Chapter 51 - The RemoveTaskCommand

~/gsd$ art command:make RemoveTaskCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

d;’ Update the newly created RemoveTaskCommand. php to match what’s below.

4

<?php namespace GSD\Commands;

use Symfony\Component\Console\Input\InputOption;
use Todo;

class RemoveTaskCommand extends CommandBase {

protected $name = 'gsd:remove';
protected $description = 'Remove a task from a list.';
protected $taskNoDescription = 'Task # to remove.';

Vi
* Execute the console command.
*
* @return void
*/
public function fire()
{
// Load list, prompting if needed
$name = $this->getlistId('Select list with task to remove:');
if (is_null($name))
{
$this->abort();

}
$list = Todo: :get($name);

// Prompt for task # if needed
$taskNo = $this->getTaskNo($list, true, true, false);
if (is_null($taskNo))

{
$this->abort();

355

Chapter 51 - The RemoveTaskCommand 356

34 // Show warning, get prompt if needed

35 $description = $list->taskGet($taskNo, 'description');
36 if (! $this->option(' force'))

37 {

38 $this->outputErrorBox(

39 "WARNING! This will remove the task '$description'."
40);

41 $result = $this->ask("Are you sure (yes/no)?");
42 if (! str2bool($result))

43 {

44 $this->abort();

45 }

46 }

47

48 // Delete task from list and save

49 $list->taskRemove($taskNo)

50 ->save();

51 $this->info("Task '$description' removed from '+$name'");
52 }

53

54 JHk

55 * Return the options.

56 */

57 protected function getOptions()

58 {

59 return array_merge(parent: :getOptions(), array(
60 array('force', 'f', InputOption::VALUE_NONE,

61 'Force the removal, no prompting.'),

62));

63 }

64 }

65 7>

No big explanations needed here. The logic in the fire() method follows the pseudo-code almost
exactly.

Q’ Make artisan aware of the new command, editing start/artisan.php.

4

© 0 9 O O & W N =

N = ==Y
B W N,

O© 00 N O O b W N =~

N
()

Chapter 51 - The RemoveTaskCommand

<?7php
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
2>

radd(new
radd(new
:add(new
:add(new
:add(new
radd(new
:add(new
:add(new
:add(new
:add(new
radd(new
:add(new

GSD\Commands \AddTaskCommand) ;
GSD\Commands\ArchivelL istCommand);
GSD\Commands \CreateCommand) ;
GSD\Commands \DoTaskCommand) ;
GSD\Commands\EditListCommand);
GSD\Commands \EditTaskCommand);
GSD\Commands\ListAl1lCommand);
GSD\Commands\ListTasksCommand) ;
GSD\Commands \RemoveTaskCommand) ;
GSD\Commands \Renamel istCommand) ;

GSD\Commands\Unarchivel istCommand);

GSD\Commands \UncreateCommand) ;

All done coding for this chapter.

Dogfooding

357

Now we can mark the the Create RemoveTaskCommand complete and remove the Use ListInter-
face::delete() task from our gsd todo list.

Wait. Maybe we should use ListInterface: :delete() in the commands that could use it. I mean,
it’d be simple to do, right?

Hah! Scared you didn’t I? Nope, let’s remove that task from the todo list and hopefully that will
remove the temptation to implement it.

Q’ Below is how I did it. Your list numbers may be different if you’ve made any modifications

4

to the gsd todo list.

~/gsd$ art gsd:list +gsd -x

Active Tasks in list '+gsd'

R o . oo +
| # | Next | Description | Extra |
R o . oo +
| 1 | YES | Create MoveTaskCommand | |
| 2 | YES | Create RemoveTaskCommand | |
| 3 | YES | List tasks in ListAllCommand | |
| 4 | YES | Use ListInterface::delete() [[
| 5 | | Chapter on setting up webserver | |

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Chapter 51 - The RemoveTaskCommand

Create
Create
Create
Create

Appendix for Apache install
Appendix for nginx install
shell gsd script

web application wireframe

~/gsd$ art gsd:remove 4 +gsd

WARNING! This will remove the task 'Use ListInterface::delete()'.

Are you sure (yes/no)?yes

Task 'Use ListlInterface::delete()' removed from '+gsd'

~/gsd$ art gsd:do 2 +gsd

Task 'Create RemoveTaskCommand' marked complete.

~/gsd$ art gsd:list +gsd
All Tasks in list '+gsd’

oo
| # | Next

o e e e e e e e e e e

Description

Create

MoveTaskCommand

List tasks in ListAllCommand
Chapter on setting up webserver

Create
Create
Create
Create
Create
Create
Create

Appendix for Apache install
Appendix for nginx install
shell gsd script

web application wireframe
EditTaskCommand

Archivel istCommand
Unarchivel istCommand

Add CommandBase: :abort()

Add to

askForListId()

Check gsd help consistency

Create
Create

Remove blank line after gsd:list title

RemoveTaskCommand
Renamel i stCommand

9/29/183
10/4/13
10/4/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13

358

No need to explain this line-by-line. You should be getting pretty familiar with these commands by

now.

© 00 N O O b W N =

AN
= O

Chapter 52 - The MoveTaskCommand

0 In This Chapter

In this chapter we’ll implement moving tasks between lists

The Plan

The original plan for the command was:

$ gsd move [+name] 1 +dest
$ gsd mv [+name] 1 +dest

$ gsd mv

Of course, now the listname must come last and the task numbers comes before it. Also, I think the
destination should be implemented as an option instead of an argument. And, we’ll add the force
option This makes the plan:

$ gsd move [task-number] [+name] --dest=destname --force
$ gsd move

The second option would prompt for everything.

The psuedo-code was:

Get arguments and options

Prompt for list-id if needed

Load source list

Prompt for task # if needed
Prompt for dest list-id if needed
Ask if they're sure if not forced
Load task # from source list

Save task in dest list

Save dest list

Delete task # from source list
Save source list

The implementation should be very close to this.

© 00 N O O & W N =

NN NN NN R R R Rl ol
O O B W N A O O 00 0 B WD

Chapter 52 - The MoveTaskCommand 360

Creating the MoveTaskCommand

A¥ Create the skeleton

4

~/gsd$ art command:make MoveTaskCommand --path=app/src/GSD/Commands \
> --namespace="GSD\Commands"
Command created successfully.

Q‘ Update the newly created MoveTaskCommand. php to match what’s below.

4

<?php namespace GSD\Commands;

use Symfony\Component\Console\Input\InputOption;
use Todo;

class MoveTaskCommand extends CommandBase {

protected $name = 'gsd:move';

protected $description = 'Move a task between lists.';

protected $nameArgumentDescription = 'Source list name.';
protected $taskNoDescription = 'Task # to move from source list.';

Vet
* Execute the console command.
*
* @return void
*/
public function fire()
{
// Get source list
$sourceName = $this->getlistId('Select list with task to move:');
if (is_null($sourceName))
{
$this->abort();
}

$sourcelList = Todo: :get($sourceName);

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68

Chapter 52 - The MoveTaskCommand

// Get task to move
$taskNo = $this->getTaskNo($sourcelList, true, true, false);
if (is_null($taskNo))

{
$this->abort();

// Get dest list
$destName = $this->option('dest');
if (is_null($destName))

{
$destName = $this->askForlListId(
true,
true,
false,
'Select destination list:'
)i
if (is_null($destName))
{
$this->abort();
}
}
if ($destName == $sourceName)
{
$this->abort('Source and destination cannot be the same');
}

$destList = Todo: :get($destName);

// Verify
$task = $sourcelList->task($taskNo);
$description = $task->description();

$fromTo = sprintf("from '+%s' to '+%s'", $sourceName, $destName);

if (! $this->option(' force'))

{
$this->outputErrorBox("Moving '$description' $fromTo");
$result = $this->ask("Are you sure (yes/no)?");
if (! str2bool($result))

{
$this->abort();

361

69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Chapter 52 - The MoveTaskCommand 362

// Remove from source, add to dest, save both
$sourcelList->taskRemove($taskNo);
$destlList->taskAdd($task)

->save();
$sourcelList->save();
$this->info("'$description’ moved $fromTo");

Rk
* Get the console command options.
*
* @return array
*/
protected function getOptions()
{
return array_merge(array(
array('dest', 'd', InputOption::VALUE_REQUIRED,
'Destination list name.', null),
array('force', 'f', InputOption::VALUE_NONE,
'"Force the move, no prompting.'),
), parent::getOptions());

7>

Although the fire() method is slightly longer than others we’ve implemented, the logic is very
straightforward. No need to explain each step.

Q’ And add it to start/artisan.php

4

© 0 9 O O & W N =

N Y
O b W N -~ O

Chapter 52 - The MoveTaskCommand 363

<?7php

Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:
Artisan:

2>

radd(new
radd(new
:add(new
:add(new
:add(new
radd(new
:add(new
:add(new
:add(new
:add(new
radd(new
:add(new
:add(new

GSD\Commands \AddTaskCommand) ;
GSD\Commands\ArchivelL istCommand);
GSD\Commands \CreateCommand) ;
GSD\Commands \DoTaskCommand) ;
GSD\Commands\EditListCommand);
GSD\Commands \EditTaskCommand);
GSD\Commands\ListAl1lCommand);
GSD\Commands\ListTasksCommand) ;
GSD\Commands \MoveTaskCommand) ;
GSD\Commands \RemoveTaskCommand) ;
GSD\Commands \RenameL i stCommand) ;
GSD\Commands\Unarchivel istCommand);
GSD\Commands\UncreateCommand) ;

It should work. Practice moving tasks between lists. Everything is working great! (Knock on wood).

Knocking on wood

Although this phrase has different origins in different cultures, with programming I believe the
phrase came about from the days when wooden gears were used in computers. These gears were
prone to termites. Knocking on the wooden gears helped shake loose any bugs in the gears. Thus a
programmer’s project was more likely to run bug free.

Dogfooding

Let’s mark the task complete that we’ve finished.

Q’ Below is how I did it. Yes, your list may look slightly different if it has been modified at

4

all.

© 0 9 O O & W N =

BB DWW W W W W WWWWNDNDDNDDDNDDNDDNDDNDNDNDN-S -SSR,
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 52 - The MoveTaskCommand

~/gsd$ art gsd:list +gsd -x
Active Tasks in list '+gsd'

9/29/183
10/4/13
10/4/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13

R o . R +
| # | Next | Description | Extra |
R o . oo +
| 1 | YES | Create MoveTaskCommand I I

| 2 | YES | List tasks in ListAllCommand | |

| 31 | Chapter on setting up webserver | |

| 4 | | Create Appendix for Apache install | |

| 5 | | Create Appendix for nginx install | |

| 6 | | Create shell gsd script I I

[7 | | Create web application wireframe | |
R o el oo +
~/gsd$ art gsd:do 1 +gsd

Task 'Create MoveTaskCommand' marked complete.

~/gsd$ art gsd:list +gsd

All Tasks in list '+gsd’

R o . +

| # | Next | Description | Extra
O o e e e +

| 1 | YES | List tasks in ListAllCommand |

[2 | | Chapter on setting up webserver I

| 3 | | Create Appendix for Apache install |

| 4 | | Create Appendix for nginx install |

| 5 | | Create shell gsd script |

| 6 | | Create web application wireframe

I | done | Create EditTaskCommand | Done
| | done | Create ArchivelistCommand | Done
| | done | Create Unarchivel istCommand | Done
| | done | Add CommandBase: :abort() | Done
| | done | Add to askForListId() | Done
I | done | Check gsd help consistency | Done
| | done | Create MoveTaskCommand | Done
I | done | Create RemoveTaskCommand | Done
| | done | Create RenamelistCommand | Done
| | done | Remove blank line after gsd:list title | Done
R o . o +
~/gsd$ art gsd:edit 5 +gsd -a on

Task in gsd updated to: * Create shell gsd script

~/gsd$ art gsd:list +gsd -a

Next Actions in list '+gsd'

364

43
44
45
46
47

Chapter 52 - The MoveTaskCommand

| # | Next | Description | Extra |
oo o o oo +
| 1 | YES | Create shell gsd script | |
| 2 | YES | List tasks in ListAllCommand | |
oo o . Fooooooo +

Just a couple more chapters left in this part of the book.

365

Chapter 53 - Listing Tasks Across Lists

0 In This Chapter

In this chapter we’ll expand the ListAllCommand to optionally list tasks.

The Plan

Back in Chapter 38 we created the gsd: 1istall command without implementing the option to show
tasks. Remember the original command plan from Chapter 35? It was:

$ gsd listall --tasks=all|donel|next|normal --archived
$ gsd 1lsa -t type -a
$ gsd 1sna

The last one is supposed to be a short cut to list all next actions which we’ll implement when creating
the shell gsd script so we won’t worry about that one yet. The second to last one is a shortcut version
with the actual command aliased to something shorter so let’s not worry about that version yet
either.

So, basically, we just need to modify the existing command to watch for a new - -tasks option and,
if used, output the tasks too.

Update ListAllCommand

Q’ Modify ListAllCommand.php to match what’s below

/4

O 00 I O O b wWw N =~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 53 - Listing Tasks Across Lists

<?php namespace GSD\Commands;

use Config;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;

class ListAllCommand extends CommandBase {

protected $name = 'gsd:listall’;

protected $description = 'Lists all todo lists (and possibly tasks).';

Rk
* Execute the console command.
*
* @return void
*/
public function fire()
{
$archived = $this->option('archived');
$tasks = $this->option('tasks');
if (! is_null($tasks))

{
$validTasks = array('all', 'next', 'normal',
if (! in_array($tasks, $validTasks))
{
$msg = sprintf(
"Invalid --tasks=%s. Must be one of '%s'.",
$tasks,
join("", '", $validTasks)
);
$this->abort($msg);
}
if ($tasks == 'next') $tasks = 'next action';
$completeFmt = Config: :get('todo.dateCompleteFormat');
$dueFmt = Config: :get('todo.dateDueFormat');
}

// Get lists
$lists = \Todo::alllLists($archived);
$lists = $this->sortlListIds($lists);

// Ouput title

"done');

367

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 53

$lis
$lis
$thi

// D
if (
{

$h
}
else
{

$h
}
$row
fore
{

$1

- Listing Tasks Across Lists

tType = ($archived) ? 'archived lists' : 'lists';

tWhat = is_null($tasks) ? 'all' : "$tasks tasks in all";
s->info("Listing $listWhat $1listType");

ifferent headers based on tasks usage

is_null($tasks))

eaders = array('List', 'Next', 'Normal', 'Completed');
eaders = array('List', 'Next', 'Description', 'Extra');

s = array();
ach ($lists as $1listId)

ist = \Todo::get($listld, $archived);

// We're just outputing the lists

if
{

(is_null($tasks))

$rows[] = array(
$listld,
$list->taskCount('next'),
$list->taskCount('todo"),
$list->taskCount('done'),

)

else
{
// Loop through tasks to figure which to output
foreach ($list->tasks() as $task)
{
if ($task->isComplete())
{
if ($tasks == 'done' || $tasks == 'all')
{
$done = $task->dateCompleted()
->format($completeFmt);
$rows[] = array(
$1listld,

368

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Chapter 53 - Listing Tasks Across Lists 369

[}
I’

$task->description(),
"Done $done"

)

// Other, unfinished tasks
else
{
$next = ($task->isNextAction()) ? 'YES' : '';
$due = ($task->dateDue()) ?
'Due '.$task->dateDue()->format($dueFmt) : '';

if (($tasks == 'all') or
($tasks == 'next action' && $next == 'YES') or
($tasks == 'normal' && $next == ''))
{
$rows[] = array(
$listid,
$next,
$task->description(),
$due
)i
}

// Output a pretty table
$table = $this->getHelperSet()->get('table');
$table

->setHeaders($headers)

->setRows($rows)
->render ($this->getOutput());
}
Rk
* Sort the list ids
*/

protected function sortlListIds(array $listlds)
{

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Chapter 53 - Listing Tasks Across Lists

// Pull the names
$special = array();

foreach (\Config::get('todo.listOrder') as $name)
{

$special [$name] = false;

// Peel off the specials
$tosort = array();
foreach ($listlds as $listid)

{
if (array_key_exists($listId, $special))
{
$special [$listId] = true;
}
else
{
$tosort[] = $listid;
}
}

// Put the specials first then sort the remaining and add them in
$return = array();
foreach ($special as $listId => $flag)

{
if ($flag)
{
$return[] = $listid;
}
}

natcasesort($tosort);
return array_merge($return, $tosort);

J Rk

* No arguments.

*/

protected function getArguments()

{

return array();

370

169
170
171
172
173
174
175
176
177
178
179
180
181
182

Chapter 53 - Listing Tasks Across Lists 371

Rk
* Just the “--archived® option
*/

protected function getOptions()

{

return array(
array('archived', 'a', InputOption::VALUE_NONE,
'Use archived lists?'),
array('tasks', 't', InputOption::VALUE REQUIRED,
'Output (alllnext|normal|done) tasks?'),

);

?2>

Below I'm only discussing the items in the above code that have changed.

Lines 20 - 36
We pull in the new —tasks option, validate it and since it’s used we also load the date formatting
from the configuration.

Lines 42 - 45
The output of the title will also be dependent on the —tasks option.

Lines 47 - 55
The rows output will be different depending on the —tasks option, so the headers will be
different too.

Lines 61 - 70
This is the same as the previous version when outputting just the lists, but now it’s wrapped
in an if block.

Lines 75 - 110
The tasks are looped through. We only add to the $rows[] array if the task matches what’s
specified in the —tasks option.

Lines 177 - 178

The new —tasks option is also returned.

Give it a shot. Try running art gsd:listall in a variety of ways. Now you can list all the next
actions across all projects.

© 0 9 O O & W N =

© 00 N O O & W N =

NN DN NN DN DN R R R S N sy
<N O O b W N OO O 03O0 O b w N =~ O

Chapter 53 - Listing Tasks Across Lists

~/gsd$ art gsd:listall -t next

Listing next action

R oo o . +
| List | Next | Description |
SR ER o . +
| actions | YES | Test2 add next action I
| gsd | YES | Create shell gsd script |
| gsd | YES | List tasks in ListAllCommand |
SO — RO o e +
Dogfooding

Let’s mark the task completed that we’ve finished.
~/gsd$ art gsd:list +gsd -x

Active Tasks in list '+gsd'

R o e e e +
| # | Next | Description |
R o . +
| 1 | YES | Create shell gsd script |
| 2 | YES | List tasks in ListAllCommand |
| 3| | Chapter on setting up webserver |
[4 | | Create Appendix for Apache install |
| 5 | | Create Appendix for nginx install |
| 6 | | Create web application wireframe |
R o el +

~/gsd$ art gsd:do 2

tasks in all lists

+gsd

Task 'List tasks in ListAllCommand' marked complete.

~/gsd$ art gsd:list

+gsd

All Tasks in list '+gsd’

R o . +
| # | Next | Description |
O o e e e +
| 1 | YES | Create shell gsd script |
[2 | | Chapter on setting up webserver I
[3 | | Create Appendix for Apache install |
| 4 | | Create Appendix for nginx install |
| 5 | | Create web application wireframe

| | done | Create EditTaskCommand |
I | done | Create Archivel istCommand |
| | done | Create Unarchivel istCommand |

Done 9/29/13
Done 10/4/13
Done 10/4/13

372

28
29
30
31
32
33
34
35
36

Chapter 53 - Listing Tasks Across Lists

I | done | Add CommandBase: :abort() | Done
| | done | Add to askForListId() | Done
| | done | Check gsd help consistency | Done
| | done | Create MoveTaskCommand | Done
| | done | Create RemoveTaskCommand | Done
I | done | Create RenamelistCommand | Done
| | done | Remove blank line after gsd:list title | Done
| | done | List tasks in ListAllCommand | Done
R e e e R

Only one thing left in this part of the book. But really, our console
point. We just want to make them easier to run.

373

10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/6/13

_________ +

commands are finished at this

© 00 N O O b W N =~

[N
N~ O

Chapter 54 - Command Aliases and
the gsd shell script

0 In This Chapter

In this chapter we’ll add in command aliases and build a shell script to make using the
console command even easier.

Command Aliases

Our commands are built upon Laravel’s Command class. Actually, it’s I11uminate\Console\Command.
There’s no direct support for command aliasing in that command, but if we dig deeper we discover
Laravel’s Command class is built on Symfony’s Console Command class.

Guess what? Symfony provides command aliasing.

Here’s the docblock from the Symfony’s setAliases() method.

<7php
Vet

* Sets the aliases for the command.

*

* @param array $aliases An array of aliases for the command

*

* @return Command The current instance

*

*

@ap1

*/

public function setAliases($aliases)
2>

This sounds like what we need, let’s test it.

4)‘ Add a constructor the the ListTasksCommand.php file as follows.

4

© 0 9 O O & W N =

NN NN NN DN N P R R S s sy oy
<N O O b W N~ O O 03 0O O b 0w N~ O

Chapter 54 - Command Aliases and the gsd shell script

<?7php
Rk

* Constructor

*/
public function __construct()
{

parent::_construct();

$this->setAliases(array('ls'));

2>

A% Now check to see what artisan’s list of commands looks like.

I4

~/gsd$ art
Laravel Framework version 4.0.7

Usage:
[options] command [arguments]

Options:
--help -h Display this help message.
--quiet -q Do not output any message.
--verbose -vlvv|lvvv Increase the verbosity of messages: 1 for

normal output, 2 for more verbose output and 3 for debug

--version -V Display this application version.
--ansi Force ANSI output.
--no-ansi Disable ANSI output.

--no-interaction -n Do not ask any interactive question.
--env The environment the command should run under.

Available commands:

changes Display the framework change list
clear-compiled Remove the compiled class file

dump-autoload Regenerate framework autoload files

env Display the current framework environment
help Displays help for a command

list Lists commands

1s List tasks.

optimize Optimize the framework for better performance

routes List all registered routes

375

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Chapter 54 - Command Aliases and the gsd shell script 376

command

command : make Create a new Artisan command
controller

controller:make Create a new resourceful controller

gsd
gsd:addtask Add a new task to a list.
gsd:archive Archive a todo list.
gsd:create Create new list.
gsd:do Mark a task as complete.
gsd:edit Edit a task.
gsd:editlist Edit a list's title or subtitle.
gsd:list List tasks.
gsd:listall Lists all todo lists (and possibly tasks).
gsd:move Move a task between lists.
gsd:remove Remove a task from a list.
gsd:rename Rename a list.
gsd:unarchive Unarchive a todo list.
gsd:uncreate Destroy an empty list.

[didn’t see it at first, but it’s up there under Available commands:. Nice, I guess we need to alias it
as gsd: 1s instead of just plain 1s.

Play around with it. It seems to work slick. Now we know how to alias our commands. Excellent!

o)’ Remove the constructor added to ListTasksCommand.php file.

4

Planning the aliases and macros

I went through all the console commands, and the list of commands we originally came up with
in Chapter 35 and generated the following tables. The rows of the Command Aliases table show
commands we’ll” use the setAliases() method to accomplish. The Macro table shows commands
we want to translate into other commands and options.

Chapter 54 - Command Aliases and the gsd shell script 377

Command Aliases

Alias Command
gsd:lsa gsd:listall
gsd:add gsd:addtask
gsd:a gsd:addtask
gsd:ls gsd:list
gsd:ed gsd:edit
gsd:rm gsd:remove
gsd:mv gsd:move
Command Macros
Macro Expands To
gsd:lsna gsd:listall ~tasks=next

Even though there’s only one macro at this point, I want to remain aware that new macros
could be added in the future.

Implementing the aliases

One way to do this would be to edit each of the source files for the commands that take an alias and
add the constructor, having it set the alias as we did in the test earlier. But 'm lazy. How could I
implement the aliases with the least amount of work?

Heh, easy. I'll put them in our configuration and let CommandBase deal with them. After all, every
command uses CommandBase as their parent class.

Q’ Update your config/todo.php adding the section below // Command aliases.

4

O 00 I O O b wWw N =~

NN NN N R R R N s
AW N, 0 O 0 N0 0 Bk WwN s

Chapter 54 - Command Aliases and the gsd shell script

<?7php

// Config for our awesome getting stuff done application

return array(

'folder'

'listOrder' => array(
"inbox',

)I

=> '/home/chuck/Documents/gsd/ ",
'extension' => '.txt',

'actions’',

'"defaultlList' => 'actions',

'noListPrompt' => true,

'dateCompleteFormat' => 'n/j/y',

'dateDueFormat' =>

// Command aliases

'aliases'

Q’ Edit CommandBase. php’s constructor to match what’s below.

gsd:
gsd:
gsd:
gsd:
gsd:
gsd:

=> array/(

addtask' =>
edit' =>
list' =>
listall' =>
move' =>
remove' =>

M-3,

array('gsd:
array('gsd:
array('gsd:
array('gsd:
array('gsd:
array('gsd:

2>
<7php
kK
* Constructor
*/
public function __construct()
{
parent::__construct();

$this->repository = App: :make('GSD\Repositories\TodoRepositorylnterface');

$aliases

'waiting', 'someday', 'calendar',

// default list when not specified

378

// true=prompt for list, false=use default

// date format for completed tasks
// date format for due tasks

a','gsd:add'),
ed'),

1s'),

lsa'),

mv'),

rm'),

= Config::get('todo.aliases');

if (array_key_exists($this->name, $aliases))

{

$this->setAliases($aliases[$this->name]);

14
15

O b W N =

Chapter 54 - Command Aliases and the gsd shell script 379

2>

Simple, beautiful, just a tiny bit code to implement all those aliases.
Try it out.

Gah. It didn’t work as I thought it would. The very first command I tried created a big red error.

~/gsd$ art gsd:a

[InvalidArgumentException]
Command "gsd:a" is ambiguous (gsd:addtask, gsd:archive).

Just when I thought everything was great, ran into something else. Sheesh.

Okay, after thinking about it for a bit, testing a few things, I came up with the following compromises:

1. Skip the gsd:a and change the gsd:addtask to be gsd:add instead.
2. Don’t worry about the gsd:ed alias, gsd:edit is short enough.
3. Change the gsd:1sa alias to gsd: la.

Q’ Edit the top of AddTaskCommand.php and change the $name property to what’s below.

I4

protected $name = 'gsd:add’';

Q’ Change the \\ Command aliases section of config/todo.php to match what’s below.

4

~N O O & W N =

© 00 N O O b W N =

T S S G U G G G g
© O© 00 1 O O b W N ~ O

Chapter 54 - Command Aliases and the gsd shell script 380

// Command aliases

'aliases' => array(

'gsd:list'’ => array('gsd:1s'),
'gsd:listall' => array('gsd:la'),
'gsd:move'’ => array('gsd:mv'),
'gsd:remove' => array('gsd:rm'),

)I

Okay, now everything works.

The Bash Script

Now, finally, I want to put a little bash script somewhere in my path that will shorten what I need
to type even more.

Q‘ Create a file named gsd and put it in your path. I'm placing my copy in home/chuck/bin,
p but your setup may differ.

NOTE This is not for Windows users. Sorry, but you could create a batch file to do the
same.

#!/bin/bash

#

Simple bash script to call artisan gsd:COMMAND

#

ARTISAN=/home/chuck/gsd/artisan

MACROS="1sna"

COMMANDS="add archive create do edit editlist la list listall 1s move \

mv remove rename rm unarchive uncreate"

Process Macros
for cmd in $MACROS

do
if ["$cmd" == "$1"]; then
Only the one macro
$ARTISAN gsd:listall --tasks=next
exit
fi
done

Process Commands

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Chapter 54 - Command Aliases and the gsd shell script 381

for cmd in $COMMANDS

do
if ["$cmd" == "$1"]; then
$ARTISAN "gsd:$e"
exit
fi
done

Qutput usage

echo "Usage: gsd command [options]"
echo

echo "Where command is"

echo " add Add a new task to a list."

echo " archive Archive a todo list."

echo " create Create new todo list."

echo " do Mark a task as complete."

echo " edit Edit a task."

echo " editlist Edit a list's title or subtitle."
echo " list List tasks."

echo " listall|la List all todo lists (and possibly tasks)."
echo " 1s List tasks."

echo " lsna List Next Actions in all todo lists."
echo " move | mv Move a task between todo lists."

echo " remove|rm Remove a task from a todo list."

echo " rename Rename a todo list."

echo " unarchive Unarchive a todo list."

echo " uncreate Destroy an empty list."

echo

echo "Use gsd command -h for help on a command";

Line 5
Make sure to use the path to where you have been building this project.

Q‘ You may also have to make this file executable.

4

~$ cd bin
~/bin$ chmod +x gsd

Now you can use this short script to call the console commands. Best of all, you can call this script
no matter which directory you are in.

© 00 N O O b W N =

W W oW W W W W W W wWwNNDNDNDDNDNDNDNDNDN B B s s s s s s s
© © 4 O O & W N =~ 0 © 0 90 0 & 0NRF OO © ® 1 0 O b w4~

Chapter 54 - Command Aliases and the gsd shell script

Play around with it see how it works.

Here’s me doing just that.

~$ gsd
Usage: gsd command [options]

Where command is

add Add a new task to a list.
archive Archive a todo list.
create Create new todo list.

do Mark a task as complete.
edit Edit a task.

editlist Edit a list's title or subtitle.
list List tasks.

listall|la List all todo lists (and possibly tasks).

1s List tasks.
lsna List Next Actions in all todo lists.
move | mv Move a task between todo lists.

remove|rm Remove a task from a todo list.
rename Rename a todo list.

unarchive Unarchive a todo list.

uncreate Destroy an empty list.

Use gsd command -h for help on a command

~$ gsd lsna

Listing next action tasks in all lists

Fom - S —— e S +
| List | Next | Description | Extra |
Fomm o —— oo S +
| actions | YES | Test2 add next action | I
| gsd | YES | Create shell gsd script | |
oo S —— i Fomo - +
~$ gsd do -h

Usage:

gsd:do [-1|--listname="..."] [task-number] [+nhame]
Arguments:

task-number Task # to mark complete.
+name List name with completed task.
Options:

--listname (-1) Source of list name, 'prompt' or 'default'.

382

40
41
42
43
44
45
46
47
48

© 0 9 O O & W N =

NN DN NN N K R N R s syl s
O b W N » O O 0 O O b W N~ O

Chapter 54 - Command Aliases and the gsd shell script

--help (-h)

--quiet (-q)
--verbose (-v|vv|vvv) Increase the verbosity of messages: 1 for normal

Display this help message.
Do not output any message.

output, 2 for more verbose output and 3 for debug

--version (-V)

--ans

i

--no-ansi

Force ANSI output.
Disable ANSI output.

Display this application version.

--no-interaction (-n) Do not ask any interactive question.

--env

The environment the command should run under.

Dogfooding

383

From now on I'll just use our super, duper, nifty, little gsd script to manage my lists. (Well, that is,
until the web application is done.)

Let’s mark this last task complete.

~$ gsd 1s +gsd -x
Active Tasks in list '+gsd'

R o el oo +
| # | Next | Description | Extra |
R o . N . +

| 1 | YES | Create shell gsd script | |

| 2 | | Chapter on setting up webserver | |

| 3 | | Create Appendix for Apache install | |

| 4 | | Create Appendix for nginx install | |

[5 | | Create web application wireframe | |
R o . oo +

~$ gsd do 1 +gsd

Task 'Create shell gsd script' marked complete.

~$ gsd 1s +gsd

All Tasks in list '+gsd’

R S +
| # | Next | Description Extra
e S +
[1 Chapter on setting up webserver

done
done
done

Create Appendix for Apache install
Create Appendix for nginx install
Create web application wireframe
Create EditTaskCommand

Create ArchivelistCommand

Create UnarchivelListCommand

Done 9/29/13
Done 10/4/13
Done 10/4/13

26
27
28
29
30
31
32
33
34
35

Chapter 54 - Command Aliases and the gsd shell script

done
done
done
done
done
done
done
done
done

+ — —_— — —_— —_— —_— —_— — =

Add CommandBase: :abort()

Add to

askForListId()

Check gsd help consistency

Create
Create
Create
Remove
Create

MoveTaskCommand
RemoveTaskCommand

RenamelL istCommand

blank line after gsd:list title
shell gsd script

List tasks in ListAllCommand

Yea! We're finished with the console application.

+ —_ — — —- — —_- — — —

Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/6/13 |
Done 10/6/13 |

384

Chapter 55 - What's Next with the
Console Application

The console application is complete as far as this book is concerned, but that doesn’t mean it’s
complete for you.

How does the console application work for you? In what ways could it be improved to fit within
your own workflow?

Here’s a list of ideas on ways to improve the app. This list is by no means exhaustive.

« Track contexts like @home, @work, @backpacking-across-europe.
+ Add a monthly archive to automatically move completed tasks elsewhere.
« Track priority tasks.

+ Add activity logs, tracking whenever changes are made to the list.
« Expand due dates to include time.

« Add time tracking, gsd:startwork/stopwork on projects.

+ Add backup/restore feature.

+ Add additional task states, in-progress, waiting.

+ Add subtasks

+ Create a DbRepository to store tasks

+ Add people tracking on tasks, maybe %chuck, %bob, %sally.

+ Add encryption/decryption to todo lists.

See. All kinds of things you could do. I came up with a dozen features in just a couple minutes.

My point in all this is I really hope you make this project something you can use. And if you expand
the feature in some interesting way, please shoot me an email. I'd love to hear from you.

Part 4 - The Web Application

In this last part of the book, we’ll make the todo application work from the web. Or, more specifically,
one that works from your browser and is hosted by your own machine. Sure, you could put this app
on the web. But do you want to share your todo lists with everyone in the world?

Chapter 56 - Setting up the Web
Server

0 In This Chapter

In this chapter we’ll set up your web server to be able to serve pages for the Getting Stuff
Done web application.

There are many ways you can set up a server on your machine to host web pages. I'll be using apache
through this book, but wanted to present a few different alternatives.

Web server permissions

Okay, I'm going to advocate something that is generally frowned upon by the community. Since
you’re running a web server on your own machine, why not just let the web server act like you? By
this I mean use your username and group for writing files?

As long as your firewall doesn’t allow access to your machine on port 80, there’s no issue.

I would never suggest this on a production machine. The www-data user (or whatever apache’s using),
should be managed separately from any user accounts on the machine.

So, in the two web server set ups below I suggest using your username and group. In my case it’s
chuck and chuck.

Using Apache
Apache is the number one web server on the net.

Q’ Follow the instructions in Appendix III to set up a host named ‘gsd.localhost.com’,

p pointing it to your public folder of the laravel project you're creating in this book.

(/home/chuck/gsd/public is what I'm using.) Be sure to set your permissions to use your
username/group.

=N O O b W N =

Chapter 56 - Setting up the Web Server 388
Using Nginx

Nginx is a very popular, high-performance web server. I actually like Nginx more than Apapche,
but use Apache mostly so I can keep my work and home configurations as similar as possible.

Q‘ Follow the instructions in Appendix IV to set up a host named ‘gsd.localhost.com’,
p pointing it to your public folder, and using your username/group.

Using PHP’s built in server

Another option is to use PHP’s built in web server. I don’t like doing this because it’s not an optimized
server and you must issue the command every time you want to start it (yes, I know you could set
it up to automatically, but it’s just not as clean in my opinion.).

The advantage? It’s super easy to use. So, in a pinch, this is always a quick alternative.
Q‘ First we have to re-enable the service provider that we commented out back in Chapter 34
p when we locked down artisan. Edit app/config/app.php as specified below.
// Find the line below
// "' Il1luminate\Foundation\Providers\ServerServiceProvider',
// And remove the comment

'Tlluminate\Foundation\Providers\ServerServiceProvider"',

A% To start the server, just issue the art serve command.

4

~/gsd$ art serve
Laravel development server started on http://localhost:8000

Notice two things:

1. The server is on port 8000
2. You have to leave the command running until you are done with it.

Exit the server with Ctr1+C.

Chapter 56 - Setting up the Web Server 389

You have arrived

Regardless of the web server method you use, bring up the web page http://gsd.localhost.com
in your browser (or http://localhost:8000 if you're using PHP’s built in server). You should see
the Laravel Logo in a page similar to the one below:

<

\
N\

d.

You

Your Browser’s Screen

Chapter 57 - Planning the Web
Application

0 In This Chapter

In this chapter we’ll plan out what to do with the web application.

Initial Ideas

Here are, in no particular order, my initial thoughts for the web application.

A Single Page Application
This is a pretty simple application, so let’s just have everything on one web page. All the Todo
Lists displayed on the left edge of the window, and all the tasks displayed in a larger pane to
the right. Any input should happen as modal dialog boxes to the user.

Bootstrap
I’ll use Bootstrap®® for the front end framework. I'm familiar with it and Bootstrap provides an
easy-to-use grid for laying out the application. It also has methods for modal boxes built-in.

AJAX
Since there’s only a single page that all the actions will occur from, we’ll need to make some
AJAX calls to the load the lists and perform the actions.

Single User
Since this list is for personal use, let’s keep it single user. In other words, no worries about lists
changing elsewhere while they’re displayed within the browser.

Sounds pretty straight forward.

Planning the AJAX calls

Let’s create a list of API endpoints for the web application to use.

*http://getbootstrap.com/

Chapter 57 - Planning the Web Application 391

Method Path Description

POST /lists Create a new list
DELETE /lists/{name} Uncreate a list

GET Nists Returns a list of lists
GET /ists?archive=1 Returns the archived lists
GET /Nists/{name} Return the list

GET Nists/{name}?archived=1 Return the archived list
PUT /lists/{name} Update the list named {name}
POST /Nists/{name}/archive Archive the list

POST /lists/{name}/unarchive Unarchive the list

POST /lists/{source}/rename/{dest} Rename {source} to {dest}

What about adding tasks, marking tasks complete, etc? Well, in thinking about this single page
application I figured it would be quicker to have a “list” be both the the list information (title, name,
subtitle, archive status) and all the tasks associated with the list. Any time an action causes a call to
the server, then the web page will redraw the data. Note, it’s not going to redraw all the HTML, but
simply refresh the data.

If we add a task, it updates the data internally, makes a call to ‘PUT /lists/{name}’, displays any
success or failure message, and redraws the tasks.

0 This is not how a large, multi-user task list would be designed. In that case I'd definitely
break things down to the task level and minimize the payload between client and server. A
true multi-user task list, where multiple people could be editing the same list at the same

time would be better served using web sockets.

Are we missing anything in the above table? Let’s see:

+ Adding tasks would add to current list, update the list on the server, and refresh.

+ Marking a task complete would update task in current list, update the list on the server, and
refresh.

« Editing task (the task description or next action) would follow the same pattern of updating
the current list, updating the list on the server, and refreshing.

+ Deleting a task, same pattern.

» Moving a task to a different list. Uggh. We could do an add task on the new list, then a delete
task on the current list.

This will work.

Designing the Javascript Objects

When we’re dealing with a list of lists, let’s use the following structure:

O 00 I O O b wWw N =~

(RN
N »~ O

O 00 I O O » wWw N =~

I U SN
O O b WO N =~ O

Chapter 57 - Planning the Web Application 392

var lists = [
{
name: "name",
title: "Title",
subtitle: null,
numNextActions: 1,
numNormal: 2,

numCompleted: 5
oA

}
1;

And when we’re dealing with lists, we’ll use the following structure:

var list = {
name: "name",
title: "Title",
subtitle: "Subtitle",
tasks: [
{
isNext: true,
isCompleted: false,
descript: "Task description",
dateDue: null, // Or javascript timestamp
dateCompleted: null, // or javascript timestamp

And, to be consistent with our REST return values, let’s always have the entity as part of a return
object, but if there’s an error, then the object has an error property.

© 0 9 O O & W N =

[=
w N =~

Chapter 57 - Planning the Web Application 393

var successReturn = {

[

]

b
var successReturn2 = {
{
}
b

var errorReturn = {

"Error message"

};

Usually, T do all this planning in my head. My goal here was to get a general “feel” of how the
web page is going to operate and for the underlying data structures. But I wanted to step back for a
moment and analyze how closely I followed that old school steps I learned years ago.

+ Design the Output - we did that in a very rough way at the top of this chapter in the A Single
Page Application topic.

+ Design the Input - that’s going to be user input, the functions they can perform. This seems
pretty straight forward. Yes, there are a couple of questions, like “should the user be able to
drag and drop tasks”, but 'm not worried about the input.

« Design the Database - well, the database has already been defined the the repository, but
really, to the web app, the database is going to be the REST API and the structures defined to
hold the data.

+ Design the Functionality - the functionality is pretty well defined. We’ll be implementing
everything the Console Application could do.

I would never normally think “How close am I following a design methodology?” The
method, my method anyway, is to just do the next logical step. When there are multiple
next steps then pick one, carry it forward, then back up, pick up another step and follow it
forward. Rinse and repeat until the application is done.

Dogfooding

Since I skipped dogfooding in the last chapter, let’s see what’s currently in the list.

© 0 9 O O & W N =

[S T S T = S S G G i i U G G
N »~ © O 0 N O O b W N~ O

© 0 N O O & W N =

N S Y
O b W N -~ O

16
17

Chapter 57 - Planning the Web Application

~/gsd$ gsd 1s +gsd
All Tasks in list '+gsd'

F-o- - R i eI e

| # | Next

Description

Chapter on setting up webserver

Create
Create
Create
Create
Create
Create

Appendix for Apache install
Appendix for nginx install
web application wireframe
EditTaskCommand
ArchivelListCommand
UnarchivelListCommand

Add CommandBase: :abort()

Add to

askForListId()

Check gsd help consistency

Create
Create
Create
Remove
Create

MoveTaskCommand
RemoveTaskCommand

Renamel istCommand

blank line after gsd:list title
shell gsd script

List tasks in ListAllCommand

- — - - — - — — — — — — — — — + — 4

|

|

|

|
Done 9/29/13 |
Done 10/4/13 |
Done 10/4/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/6/13 |
Done 10/6/13 |
______________ +

Nice, Items 1-3 are done. Let’s mark those done and add a few more tasks.

~/gsd$ gsd do 3 +gsd

Task 'Create Appendix for nginx install' marked complete.

~/gsd$ gsd do 2 +gsd

Task 'Create Appendix for Apache install' marked complete.

~/gsd$ gsd do 1 +gsd

Task 'Chapter on setting up webserver' marked complete.

~/gsd$ gsd add "Setup Routes" +gsd -a

Next Action successfully added to gsd
~/gsd$ gsd add "Implement GET /lists" +gsd -a
Next Action successfully added to gsd
~/gsd$ gsd 1s +gsd
All Tasks in list '+gsd'

F-o- - Fo e e -

| 1 | YES
| 2 | YES

Description

Implement GET /lists
Setup Routes

394

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter 57 - Planning the Web Application

| 3 | | Create web application wireframe

| | done | Create EditTaskCommand

| | done | Create Archivel istCommand

| | done | Create Unarchivel istCommand

| | done | Add CommandBase: :abort()

I | done | Add to askForListId()

| | done | Check gsd help consistency

| | done | Create MoveTaskCommand

| | done | Create RemoveTaskCommand

| | done | Create RenamelistCommand

I | done | Remove blank line after gsd:list title
| | done | Create shell gsd script

I | done | List tasks in ListAllCommand

| | done | Chapter on setting up webserver

| | done | Create Appendix for Apache install

I | done | Create Appendix for nginx install
R o .

Everything above should be self explanatory.

+ —_ — — —- — —_— — —_— —_— —_— —_— — —_ — — —

|
Done 9/29/13 |
Done 10/4/13 |
Done 10/4/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/5/13 |
Done 10/6/13 |
Done 10/6/13 |
Done 10/12/13 |
Done 10/12/13 |
Done 10/12/13 |
_______________ +

395

© 00 N O O b W N =

= = =Y
0 I O O b W N -~ O

Chapter 58 - Mocking Up the Web
Page

0 In This Chapter

In this chapter we’ll mock up the web page.

Setting Up Bootstrap

The first thing we need to do is download bootstrap and set it up in our project so we can use it. In
a way, we're bootstrapping bootstrap. (Ugh, yeah that was a groaner.)

Downloading and unzipping

Q’ The instructions below are for Ubuntu/Mint Linux to download and unzip bootstrap into
p a temporary directory in our gsd project.

Download it
~/gsd$ wget https://github.com/twbs/bootstrap/archive/v3.0.0.zip
. many lines scroll by
2013-10-13 09:22:38 (1.19 MB/s) - “v3.0.0.zip' saved [1523090/1523090]

Unzip it
~/gsd$ unzip v3.0.0.zip

. many lines scroll by
inflating: bootstrap-3.0.0/less/variables.less
inflating: bootstrap-3.0.0/less/wells.less

inflating: bootstrap-3.0.0/package. json

Delete the zip file
~/gsd$ rm v3.0.0.zip

0 N O O b W N =

Chapter 58 - Mocking Up the Web Page 397

Moving what we need into our project

A¥ Follow the instructions to move what we need into our public directory.

I4

First the bootstrap core files
~/gsd$ mv bootstrap-3.0.0/dist/* public/

Then move jquery
~/gsd$ mv bootstrap-3.0.0/assets/js/jquery.js public/js/

Then wipe out the rest of bootstrap
~/gsd$ rm -r bootstrap-3.0.0

Build a basic template

Now, we’ll edit the existing “hello” page that Laravel provides out of the box, and turn it into a basic
bootstrap template.

Q‘ First rename the view, magically turning into a Blade Template
~/gsd$ mv app/views/hello.php app/views/hello.blade.php

Heh. That was pretty easy. Blade templates are just PHP files, but the filenames end with .blade.php
instead of . php.

Blade is the templating engine provided by Laravel. It is simple, yet powerful. And best of all, it
has a clean syntax that lets you embed functionality in HTML files without all those ugly starting
and ending php tags.

Q‘ Edit the app/views/hello.blade.php file to match what’s below.

o

© 0 9 O O & W N =

N Y
O b W N -~ O

Chapter 58 - Mocking Up the Web Page 398

<IDOCTYPE html>
<html>
<head>
<title>Getting Stuff Done with Laravel</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
{{ HTML: :style('/css/bootstrap.min.css') }}
</head>
<body>
<h1>Hello, world!</h1>

<I-- Javascript at the end of the page -->
{{ HTML: :script('/js/jquery.js') }}
{{ HTML: :script('/js/bootstrap.min.js') }}
</body>
</html>

Line 1
This is HTML 5

Line 5
Bootstrap is built for mobile first. This line specifies the width and how the zoom factor of the
screen.

Line 6
Here we use a bit of Blade syntax (the opening and closing {{ }}). This will output the PHP
value between the curly braces. What we’re outputting is a Laravel HTML helper (it’s actually
a facade) that will output the HTML for the style sheet we’re specifying.

Lines 12 and 13
Here we’re using a different helper to output the HTML to load the two javascript files we
need.

That’s it! Bring up http://gsd.localhost.com in your browser or if you're using the PHP built-in
server, localhost on the appropriate port. (You know what? I'm not going to mention the alternative
methods again. If you’re using an alternative server or domain name, you know what to do.)

Expand template to our mockup

Q’ Edit the app/views/hello.blade.php file to match what’s below.

4

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 58 - Mocking Up the Web Page

<IDOCTYPE html>
<html>
<head>
<title>Getting Stuff Done with Laravel</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
{{ HTML: :style('/css/bootstrap.min.css') }}
{{ HTML: :style('/css/bootstrap-theme.min.css') }}
<style type="text/css">
body {
margin-top: TOpx;
}
</style>
</head>
<body>

{{-- Top Navbar --}}
<div class="navbar navbar-inverse navbar-fixed-top">
<div class="container"»
<div class="navbar-header">
Getting Stuff Done
</div>
<ul class="nav navbar-nav">
<li class="active">
Actions list
</1li>

<form class="navbar-form navbar-right">
<button type="submit" class="btn btn-success">

Add Task
</button>
</form>
</div>
</div>

<div class="container">
<div class="row">

<div class="col-md-3">

{{-- Active Lists --}}
<div class="panel panel-info">

399

43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

Chapter 58 - Mocking Up the Web Page 400

<div class="panel-heading">Active Lists</div>
<div class="panel-body">
<ul class="nav nav-pills nav-stacked">
Inbox 8</1li>
<li class="active">
Actions 2
</1i>
Waiting For</1i>

Someday/Maybe 3
</1i>

Calendar 16
</1i>
GSD 7</1i>

</div>
</div>

{{-- Archived Lists --}}
<div class="panel panel-default">
<div class="panel-heading">Archived Lists</div>
<div class="panel-body">
<ul class="nav nav-stacked">
01d Stuff</1li>
More 0l1d Stuff

</div>
</div>

</div>

<div class="col-md-9">

{{-- Open Tasks --}}
<div class="panel panel-primary">
<div class="panel-heading">0Open Tasks</div>
<div class="panel-body">
<table class="table table-hover"»>
<tbody>
<tr>
<td>next</td>
<td>Learn to fly without mechanical aid</td>

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Chapter 58 - Mocking Up the Web Page 401

<td>
<a href="#" class="btn btn-success btn-xs"
title="Mark complete">

<a href="#" class="btn btn-info btn-xs"
title="Edit task">

<a href="#" class="btn btn-warning btn-xs"
title="Move task">

<a href="#" class="btn btn-danger btn-xs"
title="Delete task">

</td>
</tr>
<tr>
<td></td>
<td>
Make a million dollars playing poker
due Oct-1
</td>
<td>
<a href="#" class="btn btn-success btn-xs"
title="Mark complete">

<a href="#" class="btn btn-info btn-xs"
title="Edit task">

<a href="#" class="btn btn-warning btn-xs"
title="Move task">

<a href="#" class="btn btn-danger btn-xs"
title="Delete task">

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Chapter 58 - Mocking Up the Web Page

</td>
</tr>
</tbody>
</table>
</div>
</div>

{{-- Completed Tasks --}}
<div class="panel panel-default">
<div class="panel-heading">Completed Tasks</div>
<div class="panel-body">
<table class="table table-hover"»>
<tbody>
<tr>
<td>
finished 9/22/13<¢/span>
</td>
<td>
Watch Dr. Who Marathon
due Sep-22
</td>
<td>
<a href="#" class="btn btn-default btn-xs"
title="Mark not completed">

<a href="#" class="btn btn-danger btn-xs"
title="Delete task">

</td>
</tr>
</tbody>
</table>
</div>
</div>

</div>
</div>

</div>

402

169
170
171
172
173
174

Chapter 58 - Mocking Up the Web Page 403

<I-- Javascript at the end of the page -->
{{ HTML: :script('/js/jquery.js') }}
{{ HTML: :script('/js/bootstrap.min.js') }}
</body>
</html>

I’'m not going to explain every line of HTML. This is just a mock up. Save it and bring up your web
browser and you should see a page similar to the one below.

Getting Stuff Done with Laravel - Mozilla Firefox =i 5o
File Edit View History Bookmarks Tools Help
] Getting Stuff Done with Laravel |[+]
< [@ gsd localhost.com/# v 0| Bv poogle Q @ ® » v
Actions list © Add Task
Active Lists Open Tasks
Inbox @ = Learn to fly without mechanical aid 8 ﬂ
Make a million dollars playing poker [EXEEl E_] ﬂ
Waiting For
Someday/Maybe € Completed Tasks
Calendar @
finished 9/22/13 Watch Dr. Who Marathon [T v E
GsD @

Archived Lists

Old Stuff

More Old Stuff

Our Mock Up

Now, that’s a pretty todo list ain’t it?

Dogfooding

Q’ Time to wrap this chapter and update our todo list.

4

© 0 9 O O & W N =

BB WW W W W W W W W WNDNDNDNDDNDNDDNDDNDDNDDND -SSR,
, O © 0O N O O b W N O © 0N O 0 »x WwWN=»H O © 0 N O O » Ww N =~ O°o

Chapter 58 - Mocking Up the Web Page

~/gsd$ gsd 1s +gsd -x
Active Tasks in list '+gsd'

R o . b +
| # | Next | Description | Extra |
R o o oo +
| 41 | YES | Implement GET /lists | I
| 2 | YES | Setup Routes | |
| 31 | Create web application wireframe |

R e e e oo +

~/gsd$ gsd do 3 +gsd

Task 'Create web application wireframe' marked complete.
~/gsd$ gsd add "Add error/success box" +gsd -a

Next Action successfully added to gsd

~/gsd$ gsd add "Fill Active Lists using REST" +gsd -a
Next Action successfully added to gsd

~/gsd$ gsd 1s +gsd

All Tasks in list '+gsd’

R o . +
| # | Next | Description | Extra
O o e e e +

| 14 | YES | Add error/success box |

| 2 | YES | Fill Active Lists using REST |

| 3 1 YES | Implement GET /lists |

| 4 | YES | Setup Routes |

| | done | Create EditTaskCommand | Done
| | done | Create ArchivelistCommand | Done
I | done | Create Unarchivel istCommand | Done
| | done | Add CommandBase: :abort() | Done
| | done | Add to askForListId() | Done
| | done | Check gsd help consistency | Done
| | done | Create MoveTaskCommand | Done
I | done | Create RemoveTaskCommand | Done
| | done | Create Renamel istCommand | Done
I | done | Remove blank line after gsd:list title | Done
| | done | Create shell gsd script | Done
| | done | List tasks in ListAllCommand | Done
I | done | Chapter on setting up webserver | Done
| | done | Create Appendix for Apache install | Done
| | done | Create Appendix for nginx install | Done
| | done | Create web application wireframe | Done
O o e e e +

9/29/13
10/4/13
10/4/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/5/13
10/6/13
10/6/13
10/12/13
10/12/13
10/12/13
10/13/13

_______________ +

Chapter 58 - Mocking Up the Web Page 405

The wireframe in our todo list was actually this mockup. Earlier, I thought we’d do a wireframe for
it first, but a mockup was quicker. Besides that [added a couple other tasks that came to mind.

O© 0 N O O & W N =

10
11

Chapter 59 - Adding Feedback to the
User

0 In This Chapter

In this chapter we’ll start working on the live web page, using the mocked up web page as
a model, and added notification boxes to display messages to the user.

Structuring the Views

There’s only one view in our project, hello.blade.php, and since this is going to be a single page
web application we could get by with a single view, but I thought it’d be informative to organize the
views as if there would be multiple web pages in the application. The means using layouts, including
sub-views, using view namespacing, etc. All standard Laravel stuff.

The Plan of Attack

The plan is to build up the live web page, using our mockup as the the model to pull from.
We'll develop the page iteratively, each iteration bringing us closer to the goal.

Q‘ Edit the routes. php file to contain what’s below.

P

<?7php

Route: :get('/', function()

{

return View: :make('live');
1)
Route: :get('mock', funection()
{

return View: :make('mockup');
1)
7>

N =

(G2 O]

Chapter 59 - Adding Feedback to the User 407

This will give us two web pages, our mockup, and the live one we’re building.

Q‘ Rename the existing views/hello.blade.php to views/mockup.blade.php

/4

~/gsd$ cd app/views
~/gsd/app/views$ mv hello.blade.php mockup.blade.php

k Bring up http://gsd. localhost.com/mock in your browser. You should see the mockup
page.

If you don’t see the mockup page we built in the last chapter, make sure the mod-rewrite is enabled
in your apache configuration.

Since this is more of a process book than a reference book, I thought I'd share how I started working
on this chapter. I haven’t touched this book or project for a week. Saturday morning I said to
myself, “Chuck, it’s time to write another half-dozen chapters.” So I looked at the todo list with
that trusty little gsd 1s +gsd utility, saw several next actions, and picked one. For me, todo lists
are all-important, especially when dealing with multiple projects.

A¥ Finish cleaning up the directories and starting our live view.

4

~/gsd$ cd app/views

~/gsd/app/views$ rm -rf emails
~/gsd/app/views$ mkdir layouts
~/gsd/app/views$ mkdir partials
~/gsd/app/views$ echo "LIVE" > live.blade.php

Line 2
We’'re not sending emails with this application, so kill the default email templates Laravel
provides.

Line 3 and 4
We’re structuring the views to allow for a 1ayouts namespace and a partials namespace.

<N O O b W DN =

Chapter 59 - Adding Feedback to the User 408

Line 5
And just a simple live view with the word “LIVE” in it.

Views don’t really have namespacing in the traditional sense. But we can access them using
periods to separate folders. This allows us to do things like View: :make('users.addform')
or @include ("partials.sidebar").

o)’ Bring uphttp://gsd. localhost.com in your browser. You should see a page with the word
s “LIVE” on it.

Building the Skeleton

Now let’s build up a very basic live web page.

Q’ Edit views/1live/blade.php to match what’s below.

o

@extends("layouts.default")
@section("content")
Heeere's Johnnny!

@stop

Very simple at this point. The first line says we’re going to extend another blade template. Which
we’ll create shortly. Then it starts a section, naming the section content. The section will contain
the Heeere’s Johnnny! line. Basically, everything from the start of the section until the @stop will be
stored in an internal variable called content.

It’s important to note that nothing is output to the browser here. This is because nothing is outside
a @section block other than the blade command @extends.

k Now create views/layouts/default.blade.php with the content below.

4

Chapter 59 - Adding Feedback to the User 409

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>
@section('title")
Getting Stuff Done
@show
</title>
@section('styles')
{{ HTML: :style('/css/bootstrap.min.css"') }}
{{ HTML: :style('/css/bootstrap-theme.min.css') }}
{{ HTML: :style('/css/gsd.css') }}
@show
@section('scripts')
{{ HTML: :script('/js/jquery.js') }}
{{ HTML: :script('/js/bootstrap.min.js"') }}
{{ HTML: :script('/js/gsd.js') }}
@show
</head>
<body>
@yield('content")
</body>
</html>

This is the beginning of our default layout. I took the <head> section from our mockup and added
the scripts from the bottom of the page. This way all the global scripts and css are right there at
the top Don’t worry about the @section and @show sections yet. I'll explain why they’re there in
a bit. The @yield statement will simply output any section named content. (Which we set up in
live.blade.php as “Heeere’s Johnnny!”

Here we’re actually outputting the web page. The sections end with @show so instead of just storing
the section block internally, it outputs the section to the browser.

Q‘ Reload your browser page http://gsd.localhost.com. You should see a page that says
r s “Heeere’s Johnnny!”

Adding gsd style and javascript

I added two additional files in the last step, a gsd.css and gsd. js. Let’s create them.

W N -

© 00 N O O & W N =

NN NN NN R R R Rl ol
O O B W N A O O 00 0 B WD

Chapter 59 - Adding Feedback to the User 410
Q’ Create public/css/gsd.css with the following content.

4

/* Getting Stuff Done specific styling */
body {
margin-top: 70px;

Here we just copied the body margin styling from the mockup. Not much to warrant an entire file,
but at least now there’s a place to stick any additional styles we want.
Q‘ Create public/js/gsd. js with the following content.

4

/* Getting Stuff Done Javascript */

Veis
* fFire after page loads
*/
$(function()
{
gsd.initialize();
1)
Rk
* gsd object
*/
var gsd = (function()
{

// Private vars and functions -------------——-—————~—~—~—~—~—~—~—~—~~—~~~~~~—~~—~—-
return {
// PUbIIC VArS -------mmmmmmm oo
// Public functions -----------------m o
Vet

* Initialization

*/

27
28
29
30
31
32

Chapter 59 - Adding Feedback to the User 411

initialize: function()

{

console.log("I'm initialized");
}
b
IDIQF

Lines 6 - 9
This is jquery notation to call a function after the page loads. In our case, we’ll call the
initialize() method of the gsd object.

Line 14
Here we immediately execute a function and store the result in the gsd variable.

Line 16
If the gsd global variable needs any private vars or functions, then we’ll stick them here.

Line 18
The immediate function we’re executing and assigning to gsd will return an object, which
may have variables (properties) and functions (methods).

Line 20
If the gsd object needs any public properties, we’ll stick them here.

Line 27 - 30
We’re saying the gsd object has a public method named initialize() which will output
something to the javascript console. (Well, technically we’re returning an object with an
initialize property which happens to be a function.)

Q’ Load (or reload) http://gsd. localhost.com and see what happens.

o

The only visible change is the “Heeere’s Johnnny!” line moved down on the screen (that’s the gsd.css
working). If you have a console window on your browser then you’ll see an “I'm initialized” message
in it.

Now we’ve got a nice structure to build on.

Adding a message box

So now let’s add a little message box to our template.

B W N -

O b W N =

Chapter 59 - Adding Feedback to the User 412

Q‘ Edit views/layouts.default.php to add the line before the @yield statement below

4

<body>
@include('partials.notifications')
@yield('content')

</body>

This will include the contents of the notifications.blade.php file, found in views/partials. Of
course, this file doesn’t exist yet.

Q‘ So create it

4

<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert"> </button>
<div class="glyphicon glyphicon-ok"></div>
Here's some success message.

</div>

Q‘ Reload http://gsd.localhost.com and you should have a success message.

4

There’s not much on the page, but that’s okay. We're going to make it so we can display success or
failure messages, and have them appear right before the content. (Which will be where the Open
Tasks box appears on our mocked up page.).

Making message box a function

Q’ Edit notifications.blade.php, updating it to what’s below.

4

© 0 9 O O & W N =

U S S
O O b WO N~ O

Chapter 59 - Adding Feedback to the User 413

<div id="message-area"></div>

<div id="success-message" style="display:none">
<div class="alert alert-success" id="success-message-id">
<button type="button" class="close" data-dismiss="alert">×</button>
<div class="glyphicon glyphicon-ok"></div>
success-message-text
</div>
</div>

<div>
<button class="btn btn-primary btn-app"
onclick="gsd.successMessage('Test message from button click')">
Test Message
</button>
</div>

Line 1
Here’s the area we're going to display any alert type messages

Lines 3 to 9
Here we wrap the alert message we had earlier with a hidden div with the id “success-
message”. We add an id to the alert itself. And have the message text something easily searched
for.

Lines 11 to 16
Here’s a button to test it. The button calls the not-yet-created gsd. successMessage () function.

Let’s create the javascript function.

Q‘ Edit gsd. js, updating it to what’s below.

4

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 59 - Adding Feedback to the User

/* Getting Stuff Done Javascript */

SRk

* Fire after page loads

*/

$(function()

{

}

)

Jkk
* gsd object

*/

gsd.

initialize();

var gsd = (function()

{

// Private vars and functions

var

J ¥

alertTimer = null;

* Display a message or error box

* @param string msgType Either "success" or "error"

* @param string message The message

*/

function commonBox(msgType, message)

{

clearTimeout(alertTimer);

$("#message-area").html(

$("#" + msgType + "-message")
htm1()

.replace(msgType +

-message-text', message)
-message-id', ‘'alert-id')

.replace(msgType +
);
alertTimer = setTimeout(function()
{
$("#alert-id").alert("close");
alertTimer = null;
}, 8000);

414

43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66

Chapter 59 - Adding Feedback to the User 415

return {
// PUbliC VaArs ------cmmm oo
// Public functions --------cmm oo

Rk
* Initialization
*/

initialize: function()

{

console.log("I'm initialized");

},

J*k
* Display a success message box
* @param string message The message to display
*/

successMessage: function(message)

{

commonBox("success", message);

};
NO;

I'll explain the new stuff

Line 18
Here’s private variable to track the alert timer. We want any messages to only display for eight
seconds, so we’ll set a timer on it to close the box. This keeps track of the timer.

Lines 20 - 26
Since a success alert and error alert will be almost identical. Here I coded the commonality
between the two. The type of message is passed as the first argument.

Line 27
If there’s a timer still going

Lines 29 - 34
What we’re doing here is loading the HTML from the hidden #success-message box, replacing
a couple strings, then inserting this HTML into the message display area (#message-area).

Lines 35 - 39
Then we set an 8 second timer to automatically close the box.

© 00 N O O b W N =

N N = ==
N O O b W N~

Chapter 59 - Adding Feedback to the User 416

Line 55
Don’t forget that trailing comma. We're returning an object and the functions are simply
properties of that object.

Lines 61 - 64
Implementing the successMessage() method is super easy, just call the private commonBox ()
method.

Give it a shot. Reload http://gsd.localhost.com and click the button to test things. You should
get a “Test message from button click” alert that lingers around for 8 seconds before disappearing.
And you can hit the close “X” in the box and it works.

Implementing the Error Message function

&’ Update views/partials/notifications.blade.php to match what’s below.

<div id="message-area"></div>

<div id="success-message" style="display:none">
<div class="alert alert-success" id="success-message-id">
<button type="button" class="close" data-dismiss="alert"> </button>
<div class="glyphicon glyphicon-ok"></div>
success-message-text
</div>
</div>

<div id="error-message" style="display:none">
<div class="alert alert-danger" id="error-message-id">
<button type="button" class="close" data-dismiss="alert"> </button>
<div class="glyphicon glyphicon-remove"></div>
error -message-text
</div>
</div>

Just added the #error-message hidden div with the message just like the success, but formatted for
an error.

Q‘ Update the tail end of your gsd. js to match what’s below.

4

© 0 9 O O & W N =

[=
W N~ O

O© 00 N O O b W N =~

N N SO ==
O O b W N~ O

Chapter 59 - Adding Feedback to the User

// above here is exactly the same

}I

J ¥

* Display an error message box

* @param string message The message to display

*/
errorMessage: function(message)
{
commonBox("error", message);
}
b
IDIQK

Just a few lines of javascript to implement the errorMessage() method.

417

Looking good. Of course, I stripped out the test button. It works. You can add it back yourself to test

the error functionality if you'd like.

Dogfooding

I manually edited the gsd.txt file and removed everything completed earlier than Part 4 of this book.

Then, here’s what I did.

$ gsd 1s +gsd
All Tasks in list '+gsd’

R o o
| # | Next | Description

R o .
| 1 | YES | Add error/success box

| 2 | YES | Fill Active Lists using REST

| 3 1 YES | Implement GET /lists

| 4 | YES | Setup Routes

| | done | Create web application wireframe
R o .

$ gsd do 1 +gsd

Task 'Add error/success box' marked complete.
$ gsd add "Finish Top NavBar" +gsd -a

Next Action successfully added to gsd

$ gsd 1s +gsd

All Tasks in list '+gsd’

+ — — — — — 4+ — +

_______________ +
Extra |
_______________ +
|
|
|
|
Done 10/13/13 |
_______________ +

18
19
20
21
22
23
24
25
26
27

Chapter 59 - Adding Feedback to the User

R o . . +
| # | Next | Description | Extra
R o . R +
| 1 | YES | Fill Active Lists using REST |

| 2 | YES | Finish Top NavBar |

| 3 1 YES | Implement GET /lists |

| 4 | YES | Setup Routes |

| | done | Create web application wireframe | Done 10/13/13

| | done | Add error/success box | Done 10/19/13
R o o N S +

Marked something off the list. Added something to the list. It’s progress.

418

Chapter 60 - Setting up the AJAX
routes

0 In This Chapter

In this chapter we’ll set up the routing to match the AJAX calls defined in chapter 57.

Using a Resource Controller

Laravel provides a neat trick it let’s you set up Resource Controllers. These controllers take the
pain out of setting up RESTful controllers around resources.

The best way to learn about this is just to do it.

Q’ Look at your current routes, using artisan

4

~/gsd$ art route

Fooo - oo oo oo o _ R +
| Domain | URI | Name | Action | Before Filters | After Filters |
R R R RO oo oo +
| | GET / | | Closure | | |
| | GET /mock | | Closure | | |
Foooo - oo oo R o R +

Pretty much what’s expected, right? The main page and the mockup page we set up inapp/routes. php

Q’ Add the following line to app/routes. php

4

Route: :resource('lists', 'ListController');

v&’ Now look at the routes.

© 0 9 O O & W N =

N Y
O b W N -~ O

Chapter 60 - Setting up the AJAX routes

~/gsd$ art route

o . oo
| URI | Name

e e e -
| GET / I

| GET /mock I

| GET /lists | lists.index

| GET /lists/create | lists.create

| POST /lists | lists.store

| GET /lists/{lists} | lists.show

| GET /lists/{lists}/edit | lists.edit

| PUT /lists/{lists} | lists.update

| PATCH /lists/{lists} |

| DELETE /lists/{lists} | lists.destroy
o e

Closure

Closure
ListController@index
ListController@create
ListController@store
ListController@show
ListController@edit
ListController@update
ListController@update
ListController@destroy

420

(I edited the output above, removing several columns to only show what’s relevant.)

Pretty cool, huh? That one Route: :resource() command set up all kinds of routes for us. It also
named the routes. Nice.

It did add a couple extra routes which we’re not implementing. So let’s get rid of those.

Q‘ Update the line just added to app/routes.php to match what’s below.

4

Route: :resource('lists', 'ListController', array(

'except' => array('create', 'edit')));

A¥ Now look at the routes again.

4

© 0 9 O O & W N =

[=
w N =~

O 00 N O O b W N -~

(AU
N =~ O

Chapter 60 - Setting up the AJAX routes

~/gsd$ art route

o . oo
| URI | Name

e e e -
| GET / I

| GET /mock I

| GET /lists | lists.index

| POST /lists | lists.store

| GET /lists/{lists} | lists.show

| PUT /lists/{lists} | lists.update

| PATCH /lists/{lists} I

| DELETE /lists/{lists} | lists.destroy
o . S

That’s over half our RESTful routes set up with one Route command. Ain’t Laravel grand?

Don’t worry about the PUT and PATCH duplication. This provides two different HTTP
verbes (PUT and PATCH) that are used to do the same thing. We’ll use the PUT verb in

our application.

Finish the routes

There’s only three routes left to add. The ones to archive, unarchive, and rename the list.

Closure

Closure
ListController@index
ListController@store
ListController@show
ListController@update
ListController@update
ListController@destroy

vk’ Update your app/routes.php file to match what’s below.

<?php

Route::get('/", function()

{

return View: :make('live');
1)
Route: :get('mock', function()
{

return View: :make('mockup');
1)

Route: :resource('lists', 'GSD\Controllers\ListController', array(

421

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Chapter 60 - Setting up the AJAX routes 422

'except' => array('create', 'edit')));
Route: :post('lists/{lists}/archive', array(

'as' => 'lists.archive',

'uses' => 'GSD\Controllers\ListController@archive',
));
Route: :post('lists/{lists}/unarchive', array(

'as' => 'lists.unarchive',

'uses' => 'GSD\Controllers\ListController@unarchive',
));
Route: :post('lists/{source}/rename/{dest}', array(

'as' => 'lists.rename',

'uses' => 'GSD\Controllers\ListController@rename',
));
2>

In addition to adding the three routes (lists.archive, lists.unarchive, and lists.rename) I also expanded
the controller name to be fully namespaced.

Creating the Controller

Okay, let’s create the controller to handle the routes we just added.

Guess what the quickest way to do it is? To use Laravel to help us, of course.

A¥ Issue the artisan command below.

o

~/gsd$ art controller:make ListController --except=create,edit \
> --path=app/src/GSD/Controllers
Controller created successfully!

That one command creates a nice skeleton for us. Check out the file created in yourapp/src/GSD/Controllers

directory.

Finishing the ListController skeleton

At the time of this writing, I'm using Laravel 4.0 and the namespace option doesn’t exist on the
artisan controller:make command. So we need to do some extra editing.

© 0 9 O O b W N =~

W oW W W W W W W WWANNNDNDNDNNNND N B s s s s s
© 0 N O 0O & W N = O © 0 O 0 &8 OGN~ © 0 1 0 U b Ww N =~

Chapter 60 - Setting up the AJAX routes

Q’ Below is the edited version of ListController. Update your copy to match it.

4

<?php namespace GSD\Controllers;

use Response;
use Todo;

class ListController extends \Controller {

Kk
* Returns a list of lists
*/
public function index()
{
return Response: : json(array('error' => 'index not done'));
}
Vs
* Create a new list
*/
public function store()
{
return Response: : json(array('error' =>
}
Kk
* Return the list
*

* @param string $id The list name
*/

public function show($id)

{

return Response: : json(array('error' =>

%k
* Update the specified list.
*

* @param string $id The list name
*/
public function update($id)

'store not done'));

'show not done'));

423

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81

Chapter 60 - Setting up the AJAX routes

{
return Response: : json(array('error' => 'update not done'));
}
K
* Uncreate the specified list
*

* @param string $id The list name
*/

public function destroy($id)

{

return Response: : json(array('error' => 'destroy not done'));

Vess
* Archive the specified list
*

* @param string $id The list name
*/
public function archive($id)

{

return Response: : json(array('error' => 'archive not done'));

J*k
* Unarchive the specified list
*

* @param string $id The list name
*/
public function unarchive($id)

{

return Response: : json(array('error' => 'unarchive not done'));

%k
* Rename $source list to $dest
*
* @param string $source The source list name
* @param string $dest The destination list name
*/
public function rename($source, $dest)

{

424

82
83
84
85

O© 00 N O O b W N =~

N = =V
© 00 N O O b W N =~ O

Chapter 60 - Setting up the AJAX routes 425

return Response: : json(array('error' => 'rename not done'));

?2>

I’'m not going to go over every line because this is just a skeleton. Each method returns a json response
with an error message.

Testing a ListController method

Q’ To make sure our method and routes are all tied together correctly, pull up
s http://gsd.localhost.com/lists in your browser.

This should execute the ListController::index() method and you should see the following line
in your browser.

"error":"index not done"}

Dogfooding

~/gsd$ gsd ls +gsd -x
Active Tasks in list '+gsd'

R o . R +
| # | Next | Description | Extra |

R o . oo +

| 1 | YES | Fill Active Lists using REST | |

| 2 | YES | Finish Top NavBar | |

| 3 | YES | Implement GET /lists | |

| 4 | YES | Setup Routes | |

R o . R +

~/gsd$ gsd do 4 +gsd

Task 'Setup Routes' marked complete.

~/gsd$ gsd 1s +gsd

All Tasks in list '+gsd’

R o . b __ +
| # | Next | Description | Extra |
O e e e o +
| 1 | YES | Fill Active Lists using REST | |
| 2 | YES | Finish Top NavBar | |

20
21
22
23
24

Chapter 60 - Setting up the AJAX routes

| 3 | YES | Implement GET /lists | I
| | done | Create web application wireframe | Done 10/13/13 |
I | done | Add error/success box | Done 10/19/13 |
| | done | Setup Routes | Done 10/20/13 |
R o o oo +

I just marked as finished the ‘Setup Routes’ item. Good enough. This chapter is wrapped.

426

<N O O b W N -

Chapter 61 - Adding the Top Nav Bar

0 In This Chapter

In this chapter we’ll start setting up the navigation bar on the top of the screen.

Creating the partial

First let’s pull the HTML code from our mockup and add it to the layout. To keep things nice and
organized, we'll just stick it in another partial.

O)’ Edit default.blade.php in app/views/layouts as specified below.

I4

<!-- every above here is the same -->
<body>
@include('partials.topnavbar')
@include('partials.notifications')
@yield('content')
</body>
</html>

The line we added will include a new partial, named ‘topnavbar’, right after the body is opened.

Q’ Create topnavbar.blade.php in the app/views/partials directory with the content

s below.

17
18

w N O O B~ W N

Chapter 61 - Adding the Top Nav Bar 428

<div class="navbar navbar-inverse navbar-fixed-top">
<div class="container">
<div class="navbar-header">
Getting Stuff Done
</div>
<ul class="nav navbar-nav">
<li class="active">
Actions list
</1i>

<form class="navbar-form navbar-right">
<button type="submit" class="btn btn-success">

Add Task
</button>
</form>
</div>
</div>

Reload http://gsd.localhost.com and you should see the navbar.

Loading the default list

When the web page first loads it should display the default list. So let’s put in the hooks to make
that happen.

Q‘ Edit app/routes. php and change the route for the live page to match what’s below.
<?php

Route: :get('/', function()

{
return View: :make('live")
->withDefaultlList(Config: :get('todo.defaultlList'));
1)
2>

Here we'’re still returning the view named live, but now we’re also assigning a variable to it
containing the default list. The name of this variable will be $default_list.

<N O O b W N -

0 N O O & W N =

Chapter 61 - Adding the Top Nav Bar 429

Laravel provides multiple ways to set view variables.

We could have used the two alternatives below and achieved the same thing.

// Variables as an array to make()
return View: :make('live', array(
'default_list' => Config::get('tododefaultlList'));

// Using a generic with()
return View: :make('live')
->with('default_list', Config::get('todo.defaultlList'));

For a single variable assignment, I like the withVariableName() technique because it is concise and
expressive.

d)’ Edit default.base.php in app/views/partials. We’re only updating the scripts section.

o

@section('scripts')
{{ HTML: :script('/js/jquery.js') }}
{{ HTML: :script('/js/bootstrap.min.js') }}
{{ HTML: :script('/js/gsd.js') }}
<script type="text/javascript">

gsd.defaultList = "{{ $default_list }}";

</script>

@show

Easy. Here it’s just a matter of assigning the value of $default_list to a property of the gsd
javascript object.

Notice the opening double braces ({{) and closing double braces (}})? This tells Laravel’s Blade
compiler to replace everything between the braces with the value of the variable. Using triple braces
will also escape the value for HTML. (Like using htmlentities() on the value.)

Q’ Now, let’s edit the gsd. js file to show the property.

I

© 0 9 O O & W N =

N O N T ==Y
N O O b W N =~ O

Chapter 61 - Adding the Top Nav Bar 430

// Everything above here's the same

// PUbliC VArs ------cmmm oo -
defaultlList: null,

// Public funCtions ---------- oo

kK
* Initialization
*/

initialize: function()

{

this.successMessage("defaultList = " + this.defaultlList);

}/

// Everything below here's the same

We’re adding the defaultList as a public property. This isn’t absolutely needed, but it is a good
practice. Then, in the initialize() function, we're outputting a message showing the value.

Reload http://gsd.localhost.com in your browser. You should see a green alert telling you the
assignment worked.

Structuring the Nav Bar

When examining the mocked up web page I realize that a few things are missing.

+ There’s no way to archive or unarchive a list
« There’s no way to rename a list
+ There’s no way to create new lists

No problem. The name of the list (where it currently says “Actions list” in the navbar) can become
a pulldown menu to add those functions. So we’ll do that.

O)‘ Edit partials/topnavbar.blade.php to match what’s below.

4

O 00 I O O b wWw N =~

NN NN NN N NN P R S s s L
0w N O O b W N~ O O 0N O O b W N =~ O

Chapter 61 - Adding the Top Nav Bar 431

<div class="navbar navbar-inverse navbar-fixed-top">
<div class="container"»
<div class="navbar-header">
Getting Stuff Done
</div>
<ul class="nav navbar-nav">
<li class="active">

Actions list

<ul class="dropdown-menu">

Archive list

Rename list</1i>
<li class="divider"></1i>
Create new list</1li>

</1li>

<form class="navbar-form navbar-right">
<button type="submit" class="btn btn-success" id="button-add">

Add Task
</button>
</form>
</div>
</div>

Here we added the dropdown to handle the missing actions and added an id attribute on several
items.

Making our first AJAX call

Now let’s set up the javascript gsd.initialize() method to load the default list.

ﬁ Update gsd. js and change initialize() to match what’s below.

~N O O & W N =

© 00 N O O & W N =

NN NN NN R R R Rl ol
O O B W N A O O 00 0 B WD

Chapter 61 - Adding the Top Nav Bar

Rk
* Initialization
*/
initialize: function()
{

this.loadlList(this.defaultlList, false);
1,

432

Pretty simple. The initialize function is going to call a loadList() function to load the default list.
The false tells the 1oadList() method that the list is not archived.

Now we need to create that loadList () method.

& Update gsd. js and add the new function below.

errorMessage: function(message)

{
commonBox("error", message);
},
J Rk
* load a list via AJAX and display it
* @param string name The 1ist name

* @param boolean archive Is it an archived list?

*/
loadList: function(name, archived)

{

var url = "/lists/" + name;
if (archived) url += "?archived=1";
$.ajax({

url: url,

error: function(hdr, status, error)

{

gsd.errorMessage("loadlList " + status + " - " + error);
},
success: function(data)
{

if (data && data.error)
{

gsd.errorMessage("loadlList error:
return;

"

+ data.error);

27
28
29
30
31
32

Chapter 61 - Adding the Top Nav Bar 433

}

gsd.successMessage("Cool");
console.log(data.list);

}
1);
}
Line 4
Don’t forget to add that trailing comma to the end of errorMessage().
Line 13 - 14
Build the url to call. Add a query argument to specify whether the list is archived or not.
Line 15
We’re using jQuery’s ajax() method to make the call. The arguments we’re passing are the
url and two functions. One to handle HTTP errors and the other to handle a successful call.
Note that this happens asynchronously. Meaning execution in our code continues past the
ajax() call and the error or success method is not called until a response is received from
our server.
Lines 17 - 20
The reason we’re providing an error callback is in case something goes horribly wrong calling
our method. What if the URL had a typo? This method will catch those type errors.
Lines 21 - 30

If the AJAX call is successful, we still check if we had an error object and if so, then display
the error. Otherwise, just present a green alert saying “Cool”.

Give it a shot. Reload http://gsd. localhost .com. You should be receiving an error saying “loadList
error: show not done”.

Doing the server side of the REST

Now we’ll edit our controller to load the list successfully.

Q’ First make sure the top of ListController.php matches what’s below.

I4

0 N O O B~ W N -

© 00 N O O & W N =

ST ST S T S T S = S G G Qi G i G G
W N, O © 00 N O O b W N~ 0O

Chapter 61 - Adding the Top Nav Bar 434

<?php namespace GSD\Controllers;

use GSD\Entities\ListInterface;
use Input;

use Response;

use Todo;

2>
A couple other use statements were added.

Q’ Next update the show() method in ListController to match what’s below.

4

<?7php

Vess

* Return the list
*

* @param string $id The list name

*/
public function show($id)
{
$archived = !! Input::get('archived');
try
{

$list = Todo::get($id, $archived);
$result = $this->toAssoc($list);
}
catch (\RuntimeException $e)
{
$result = array(
'error' => $e->getMessage()
);
}

return Response: : json($result);

}

2>
This should be pretty self-explanatory. Just a couple notes.

« The list is loaded in a try/catch block in case it doesn’t exist. If there’s an error then we return
an error object with the error’s description.

O 0O = O U b W N =~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter 61 - Adding the Top Nav Bar
« Once the list is loaded, we pass it to toAssoc() to convert to an associative array.

The toAssoc() method doesn’t exist yet, so let’s add it.

%’ Add the new toAssoc() method to the bottom of the ListController class.

<7php
JHk
* Convert a TodoList to an associative array
* @param ListInterface $list The List
* @return array The associative array
*/
protected function toAssoc(ListInterface $list)
{
$return = array(
"list' => array(
‘name' => $list->get('id"),
"title' => $list->get('title'),
'subtitle' => $list->get('subtitle'),
'archived' => $list->get('archived'),
"tasks' => array(),
)
);
foreach ($list->tasks() as $task)
{
$array = array(
"isNext' => $task->isNextAction(),
"isCompleted' => $task->isComplete(),
"descript' => $task->description(),
"dateDue' => $task->dateDue(),
"dateCompleted' => $task->dateCompleted(),
),
if ($array['dateDue'])

{
$array['dateDue'] = $array|['dateDue']->timestamp * 1000;
}
if ($array['dateCompleted'])
{

$array['dateCompleted'] = $array['dateCompleted']->timestamp * 1000;

435

35
36
37
38
39

Chapter 61 - Adding the Top Nav Bar 436

$return['list']['tasks'][] = $array;
}

return $return;

}

?2>

No real magic here either. Just creating the structure the javascript on the web page is expecting.
If any dates exist, then they’re converted to Javascript timestamps. These are the same as PHP
timestamps, but can track microseconds, so we multiple the PHP timestamp by 1000 to make the
value something Javascript can use.

Reload http://gsd.localhost.com and you should now receive a green alert that says “Cool”.

Dogfooding

After reviewing our +gsd todo list, I've realized there’s nothing we can mark off the list. Bummer. I
really like knocking things off that list. Oh well. Next chapter we’ll mark something off.

© 00 9 O O & W N =

O S T = S G G G N i G G G
O O© 0 N O O b W N =~ O

Chapter 62 - Finishing the Top Nav Bar

0 In This Chapter

In this chapter we’ll finish the functionality of the top nav bar.

Assigning javascript functions to the navbar

First thing we’re doing is going through all the possible actions that can occur on the top nav bar
and assigning functions to them.

o)’ Add the following javascript functions to gsd. js. Put them right after the commonBox()
p function. This way they’re private to the object.

J Rk
* Handle click on the top nav menu archive/unarchive option
*/

function menuArchiveClick()

{

gsd.errorMessage("gsd.menuArchiveClick() not done");
return false;

J*k
* Handle click on the top nav menu rename option
*/

function menuRenameClick()

{

gsd.errorMessage("gsd.menuRenameClick() not done");

return false;

}

Rk
* Handle click on the top nav menu create option
*/

22
23
24
25
26
27
28
29
30
31
32
33
34
35

© 00 N O O & W N =

I U U S
B W N~

Chapter 62 - Finishing the Top Nav Bar 438

function menuCreateClick()

{
gsd.errorMessage("gsd.menuCreateClick() not done");
return false;

Rk
* Handle click on the add task button
*/

function buttonAddClick()

{
gsd.errorMessage("gsd.buttonAddClick() not done");
return false;

These funtions will be the handlers to the various actions that can happen in the top navbar.

Q’ Next, modify the initialize() method in gsd. js to match what’s below.

o

/**
* Initialization
*/

initialize: function()

{
// Assign various handlers
$("#menu-archive").click(menuArchiveClick);
$("#menu-rename").click(menuRenameClick);
$("#menu-create").click(menuCreateClick);
$("#button-add").click(buttonAddClick);

// Load the default list
this.loadList(this.defaultlList, false);

}/

We're using jQuery to assign the click handlers to every action the top navbar can perform.

Reload http://gsd.localhost.com and test the various actions. They should all show error
messages that the handler’s not done yet.

O 00 N O O b W N =~

NN
= o

Chapter 62 - Finishing the Top Nav Bar 439

Loading the result into the navbar

Q’ Edit gsd. js and add the following line after the var alertTimer = null; line.

4

var currentList = null;

This is where we’re going to store the list data loaded by the AJAX call.

Q’ Edit gsd. js and add the following function after the buttonAddClick() function

4

Veis
* Update the navbar for the current list
*/

function updateNavBar()

{

$("#list-name") .html("+" + currentlList.name);
$("#menu-archive-text").html(

currentlList.archived ? "Unarchive" : "Archive"
)
$("#button-add") .prop("disabled", currentlList.archived);

This is a private function of the gsd object which will be used to update the Nav bar from
currentList. It’s doing three things:

1. Updating the list name for the pulldown menu, placing a plus (+) in front of it.

2. Updating the first pulldown menu item to say either “Archive list” or “Unarchive list”,
depending on whether the current list is archived or not.

3. Disabling the “Add Task” button if the list is archived. We can’t add tasks to archived lists.

Q‘ Update the loadList() method in gsd. js to match what’s below.

4

© 0 9 O O & W N =

NN NN NN N R R Rl s o s
N O O b WO N =~ O O 0 N O O b 0w N =~ O

Chapter 62 - Finishing the Top Nav Bar 440

J Rk
* Load a list via AJAX and display it
* @param string name The 1list name

* @param boolean archive Is it an archived list?
*/
loadList: function(name, archived)
{
var url = "/lists/" + name;
if (archived) url += "?archived=1";
$.ajax({
url: url,
error: function(hdr, status, error)

{

1 1

gsd.errorMessage("loadlList " + status + - + error);

}/

success: function(data)

{
if (data && data.error)

{

gsd.errorMessage("loadlList error:

"

+ data.error);
return;

}

currentList = data.list;
updateNavBar();

});

The only change here is the last two lines of the success callback. We assign the data returned by
the function to the private currentList variable and then call the private updateNavBar () function.

Give it a go. Reload http://gsd.localhost.com

[want to wait to implement these four click handlers. It makes more sense to see more of the list on
the screen so when we implement the handlers we can visually see what happened.

Dogfooding

© 0 9 O O & W N =

W W W W W W N NDDNDDNDDNDDNDDNDDNDNDDN-=S~=A = 2 2 B = B 2
g & O N~ 0 O 0 N O O b W N~ 0 O 0 N O O b WuwN -~ 0o

Chapter 62 - Finishing the Top Nav Bar

$ gsd 1s +gsd -x

Active Tasks in list '+gsd'

R o . fo oo +
| # | Next | Description | Extra |

R o . R +

| 1 | YES | Fill Active Lists using REST | |

| 2 | YES | Finish Top NavBar | |

| 3 1 YES | Implement GET /lists | |

R o e e SR +

$ gsd do 2 +gsd

Task 'Finish Top NavBar' marked complete.

$ gsd add "Finish gsd.menuArchiveClick()" +gsd

Todo successfully added to gsd

$ gsd add "Finish gsd.menuRenameClick()" +gsd

Todo successfully added to gsd

$ gsd add "Finish gsd.menuCreateClick()" +gsd

Todo successfully added to gsd

$ gsd add "Finish gsd.buttonAddClick()" +gsd

Todo successfully added to gsd

$ gsd 1s +gsd

All Tasks in list '+gsd’

R o . . +
| # | Next | Description | Extra |
R o . R +
| 1 | YES | Fill Active Lists using REST | |
| 2 | YES | Implement GET /lists | |
| 3 | | Finish gsd.buttonAddClick() | |
| 4 | | Finish gsd.menuArchiveClick() | |
| 5 | | Finish gsd.menuCreateClick() | |
| 6 | | Finish gsd.menuRenameClick() | |
| | done | Create web application wireframe | Done 10/13/13 |
I | done | Add error/success box | Done 10/19/13 |
| | done | Finish Top NavBar | Done 10/20/13 |
| | done | Setup Routes | Done 10/20/13 |
O e e e o +

441

One task was marked off the list, but four were added. Seems like we’re moving backwards. That’s
okay. I didn’t want to forget to do all those handlers. They’ll be quick and easy once we get to them.

17

Chapter 63 - The Side Navigation

0 In This Chapter

In this chapter we’ll build the side navigation for our web application.

Updating the layout
First let’s update the layout to have the final structure.

Q‘ Edit default.blade.php in views/layouts. The section within the <body> tag should
p match what’s below

<body>
@include('partials.topnavbar')
@include('partials.notifications")

<div class="container">
<div class="row">

<div class="col-md-3">
@include('partials.sidebar')

</div>
<div class="col-md-9">
@yield('content")
</div>
</div>
</div>
</body>

Line 5 and 6
Here we add a couple divs to start a container, and a row within the container.

© 00 N O O b W N =

N = VU Y
© 00 N O O b W N =~ O

Chapter 63 - The Side Navigation 443

Lines 7 - 11
This adds a three-wide column to the row and pulls in the yet-to-be-created sidebar into that
column.

Lines 12 - 14
Next we add a nine-wide column and have the content from the l1ive.blade.php template
show in it.

Creating the sidebar

The sidebar will contain two lists: Active lists and Archived lists.

Q‘ Create a new file sidebar .blade.php in the views/partials directory. Make the contents
p match what’s below.

{{-- Active Lists --}}
<div class="panel panel-info">
<div class="panel-heading">Active Lists</div>
<div class="panel-body">
<ul class="nav nav-pills nav-stacked" id="active-lists">
Not Done</1li>

</div>
</div>

{{-- Archived Lists --}}
<div class="panel panel-default">
<div class="panel-heading">Archived Lists</div>
<div class="panel-body">
<ul class="nav nav-pills nav-stacked" id="archived-lists">
Not Done</1li>

</div>
</div>

Pretty straight-forward html.

Finishing the AJAX call.

Next let’s finish out the AJAX call that returns the list of lists.

© 0O 9 O O & W N =

I E Uy
B W NS,

15
16
17
18
19
20
21
22
23
24
25
26
27
28

Chapter 63 - The Side Navigation 444

Q’ Edit ListController.php and update the index() method to match the following code.

4

<?php
Rk
* Returns a list of lists
*/
public function index()
{
$archived = !'! Input::get('archived');
$lists = Todo::alllists($archived);

$return = array(
"lists' => array(),

)

foreach ($lists as $listId)

{
$list = Todo::get($listld, $archived);
$return['lists'][] = array(

"name’ => $listid,
"title' => $list->title(),
'subtitle’ => $list->get('subtitle"),
"isArchived' => $list->isArchived(),
"numNextActions' => $list->taskCount('next'),
"numNormal' => $list->taskCount('todo'),
"numCompleted’ => $list->taskCount('done'),
);
}
return Response: : json($return);
}
7>

Simple, huh? We use the Todo facade to retrieve the lists, then build a return object containing
additional details for each list.

Bring up http://gsd.localhost.com/lists in your browser and you should see the JSON return.

If you’re using FireFox, I suggest installing the JSONovich plugin. It makes JSON render in
the browser in an easy-to-view way.

© 00 N O O b W N =

© 0 9 O O & W N =

I N S =
O O b W N =~ O

Chapter 63 - The Side Navigation 445

Updating the Javascript

Now that we have a place to display the lists (the sidebar) and an AJAX method to fetch the lists,
let’s tie everything together with some javascript.

Q’ Edit the top of gsd. js to match what’s below.

4

[snip]
// Private vars and functions -------------------- -

var alertTimer = null;

var currentList = null;

var activelists null;

var archivedlLists = null;
[snip]
Lines 6 and 7 were added to provide a place to store the lists.

Q‘ Add the two functions below to gsd. js. Put these functions after the updateNavBar()
p function.

K
* Show one of the list of lists on the sidebar
*/

function showSidebarList(archived)

{

var list = archived ? archivedlLists : activelists;
var ul = archived ? $("#archived-lists") : $("#active-lists");
var build = [];

// No items in list of lists?

if (list.length == 0)

{
ul.html('No archived lists</1i>"');
return;

Chapter 63 - The Side Navigation 446

17 // Loop through each item, building html for the LI

18 for (var i = ©0; i < list.length; i++)

19 {

20 var html = '<1i"';

21 var 1 = list[i];

22 var numTasks = 1.numNextActions + 1.numNormal;

23 if (archived == currentlList.archived && 1.name == currentlList.name)
24 html += ' class="active"';

25 html += '><a href="javascript:gsd.loadList(\'' + l.name + "\',"';
26 html += archived + ")">';

27 html += 1.title;

28 if (! archived && numTasks > Q)

29 {

30 html += ' ' + numTasks + '';
31 }

32 html += '"</1i>"';

33 build.push(html);

34 }

35 ul.html(build. join("\n"));

36}

37

38 /¥*

39 * Load the list of lists
40 * @param bool archived Load the archived lists?

41 */

42 function loadlLists(archived)

43 |

44 var url = "/lists";

45 if (archived) url += "?archived=1";

46 $.ajax({

47 url: url,

48 error: function(hdr, status, error)

49 {

50 gsd.errorMessage("loadlLists " + status + ' - ' + error);
51 },

52 success: function(data)

53 {

54 if (data && data.error)

55 {

56 gsd.errorMessage("loadlList error: " + data.error);
57 return;

58 }

59
60
61
62
63
64
65
66
o7
68
69
70

© 0 9 O O & W N =

I O S =Y
O O b W N =~ O

Chapter 63 - The Side Navigation 447

if (archived)
{

archivedLists = data.lists;

}

else

{

activelists = data.lists;

}

showSidebarList(archived);

});

showSidebarList()
This function builds the HTML for the sidebar navigation and stuffs it into either Active Lists
or Archived Lists

loadLists()
This function makes the Ajax callback, assigns the data to the object’s private data storage
(archivedLists or activelists) and calls the showSidebarList() function.

Q‘ Finally, update the loadList function in gsd. js to match what’s below.

4

loadList: function(name, archived)
{
var url = "/lists/" + name;
if (archived) url += "?archived=1";
$.ajax({
url: url,
error: function(hdr, status, error)

{

gsd.errorMessage("loadlList " + status + ' - ' + error);

},

success: function(data)

{
if (data && data.error)

{

gsd.errorMessage("loadlList error: " + data.error);
return;

17
18
19
20
21
22
23
24
25
26

© 00 9 O O & W N =

[T = S G N o S G S U U
© © 0O N O O b W N~ O

Chapter 63 - The Side Navigation 448

}

currentList = data.list;
updateNavBar();

// Reload the lists
loadLists(false);
loadLists(true);

});

Lines 21 - 23
These are the only new lines. What happens is after a list is loaded successfully, the data’s
stored in currentList, the navbar is updated, and finally these two functions are called to
reload the active and archived list.

Reload http://gsd.localhost.com in your browser and test it out. You can now switch lists. No
tasks are yet displayed. We’ll do that in the next chapter.

Dogfooding

$ gsd 1s +gsd -x
Active Tasks in list '+gsd'

| Fill Active Lists using REST
| Implement GET /lists

| Finish gsd.buttonAddClick()

| Finish gsd.menuArchiveClick()
| Finish gsd.menuCreateClick()
| Finish gsd.menuRenameClick()

+ - — — — — — + — +

oo o e
$ gsd do 2 +gsd

Task 'Implement GET /lists' marked complete.

$ gsd do 1 +gsd

Task 'Fill Active Lists using REST' marked complete.
$ gsd add "Do Open Tasks" +gsd -a

Next Action successfully added to gsd

$ gsd add "Do Completed Tasks" +gsd -a

Next Action successfully added to gsd

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Chapter 63 - The Side Navigation

$ gsd 1s +gsd
All Tasks in list '+gsd'

R o . +
| # | Next | Description |
R o o +
| 1 | YES | Do Completed Tasks |
| 2 | YES | Do Open Tasks |
| 31 | Finish gsd.buttonAddClick() |
| 4 | | Finish gsd.menuArchiveClick() |
| 5 | | Finish gsd.menuCreateClick() |
| 6 | | Finish gsd.menuRenameClick() [
| | done | Create web application wireframe |
| | done | Add error/success box I
| | done | Finish Top NavBar |
| | done | Setup Routes |
| | done | Fill Active Lists using REST |
| | done | Implement GET /lists I
R o . +

Nice. Our web page is really taking shape.

Done 10/13/13
Done 10/19/13
Done 10/20/13
Done 10/20/13
Done 10/26/13
Done 10/26/13

449

Chapter 64 - The Tasks

0 In This Chapter

In this chapter we’ll build the Open Tasks and Completed Tasks section of the web page.

We’ll do this in a few iterations.

Iteration #1 - Basic structure

Q‘ Edit 1ive.blade.php so that it matches what’s below.

o

@extends("layouts.default")
@section("content")

{{-- Open Tasks --}}
<div class="panel panel-primary">
<div class="panel-heading">0Open Tasks</div>
<div class="panel-body">
<table class="table table-hover"»>
<tbody id="open-tasks">
<tr><td colspan="3">todo</td></tr>
</tbody>
</table>
</div>
</div>

{{-- Completed Tasks --}}
<div class="panel panel-default">
<div class="panel-heading">Completed Tasks</div>
<div class="panel-body">
<table class="table table-hover">
<tbody id="completed-tasks">

23
24
25
26
27
28
29

O 00 N O O b W N -~

NN NN R R R R sl s s
W N, O O 00N 0 O b WN -~ O

Chapter 64 - The Tasks 451

<tr><td colspan="3">done</td></tr>
</tbody>
</table>
</div>
</div>
@stop
Pretty simple. The code displaying tasks was taken from the mock up and placed here. The individual
tasks were stripped out, but the structure is identical. The two task lists are identified by the
open-tasks id and the completed-tasks id. We’ll stuff the rows of the table into these two locations
using javascript.
You can refresh http://gsd. localhost.com and even though it’s not complete, the screen looks
pretty.
9Q~ Edit gsd. js and add the three new functions below after the loadLists() function.

Rk

* Build table row html for complete task

* @param object task Task object

* @param int index Index of task within currentlList.tasks

* @return string HTML for a table row representing the task

*/

function buildCompletedTask(task, index)

{

return '<tr><td colspan="3">completed...</td></tr>";

}
Rk

* Build table row html for open task

* @param object task Task object

* @param int index Index of task within currentlList.tasks

* @return string HTML for a table row representing the task

*/

function buildOpenTask(task, index)

{

return '<tr><td colspan="3">open...</td></tr>";

}
Rk

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Chapter 64 - The Tasks 452

* Show the Open Tasks and Completed Tasks
*/
function showTasks()
{
var open = [];
var completed = [];
for (var i = ©Q; i < currentlList.tasks.length; i++)

{
var task = currentlList.tasks[i];
if (task.isCompleted)
{
completed.push(buildCompletedTask(task, i));
}
else
{
open.push(buildOpenTask(task, i));
}
}
if (open.length === 0)
open.push('<tr><td colspan="3">No open tasks</td></tr>");
if (completed.length === 0)

completed.push(' <tr><td colspan="3">No completed tasks</td></tr>");
$("#open-tasks").html(open. join("\n"));
$("#completed-tasks").html(completed. join("\n"));

buildCompletedTask
This function will return HTML code to represent a single task in the Completed Tasks box.
Right now it’s just a stub.

buildOpenTask
Returns HTML code for a task in the Open Tasks box. Just a stub for now.

showTasks
This function loops through all the tasks in the current list, formats the task depending on the
completion status, and stashes the result. At the end it updates the appropriate tables with the
HTML.

Q’ Now edit the loadList method in gsd. js to match what’s below.

4

© 0 9 O O & W N =

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Chapter 64 - The Tasks 453

loadList: function(name, archived)
{
var url = "/lists/" + name;
if (archived) url += "?archived=1";
$.ajax({
url: url,
error: function(hdr, status, error)

{
gsd.errorMessage("loadlList " + status + ' - ' + error);
3,
success: function(data)
{

if (data && data.error)
{

gsd.errorMessage("loadlList error:

"

+ data.error);
return;

}

currentList = data.list;
updateNavBar();
showTasks();

// Reload the lists

loadLists(false);
loadLists(true);

});

The only change is the addition of the showTasks() function call. Save everything and reload
http://gsd.localhost.com. You should be able to switch lists and see where the tasks will display.
Even though the detail isn’t displaying, you can see how it works.

Iteration #2 - Showing Open Tasks

Now, let’s have the open tasks display like they did in the mockup.

Q’ Edit the buildOpenTask() method in gsd. js to match what’s below.

4

Chapter 64 - The Tasks 454

J Rk
* Build table row html for open task
* @param object task Task object
* @param int index Index of task within currentlList.tasks
* @return string HTML for a table row representing the task
*/

function buildOpenTask(task, index)

{

var html = [];

html.push('<tr>"');

html.push('<td>");

if (task.isNext)

html.push('next');

html.push('</td>"');

html.push('<td>"');

html.push($('<div/>").text(task.descript).html());

if (task.dateDue)

{
var d = new Date(task.dateDue);
html.push(' "');
html.push('due ' + d.toDateString());
html.push('"');

}

html.push('</td>");

html.push('<td>"');

if (! currentlList.archived)

{
html .push('<a href="javascript:void(@)" onclick="gsd.doDone(' + index);
html.push(')" class="btn btn-success btn-xs" title="Mark complete">');
html.push('");
html.push(' <a href="javascript:void(@)" onclick="gsd.doEdit("' + index);
html.push(')" class="btn btn-info btn-xs" title="Edit task">');
html .push('");
html.push(' <a href="javascript:void(@)" onclick="gsd.doMove(' + index);
html.push(')" class="btn btn-warning btn-xs" title="Move task">");
html.push('"');
html .push(' <a href="javascript:void(@)" onclick="gsd.doDelete(' + index);
html.push(')" class="btn btn-danger btn-xs" title="Delete task">");
html.push('"');

html.push('</td>");

43
44
45
46

© 0O 9 O O & W N =

NN N NN NN P R N s sy
O O b WO N » O © 0 O O b 0O N »~ O

Chapter 64 - The Tasks 455

html.push('</tr>");

return html.join('");

This is just a bunch of simple javascript grunting out the work. There are more elegent ways to do
this, but since this isn’t a book on cool javascript tools, I stuck to the basics.

One trick that is interesting is on line 16. Here we’re using jQuery’s text() method to assign an
unnamed div a value, then we’re taking the html and using that to add to our html array. This will
escape any html in the task description.

Q’ Edit the bottom of gsd. js, adding the 4 methods after the loadL ist method.

4

Y, // need the trailing comma at end of loadlList now

/**
* Mark
*/
doDone:
{
var
gsd
3,

Ve
* Edit
*/
doEdit:

{
gsd

}I

Vet
* Move
*/

doMove:

gsd

a task as completed

function(index)

task = currentList.tasks[index].descript;

.errorMessage("gsd.doDone() not done " + task);

a task

function(index)

.errorMessage("gsd.doEdit() not done");

a task

function(index)

.errorMessage("gsd.doMove() not done");

27
28
29
30
31
32
33
34
35
36
37

© 0 9 O O & W N =

T U Y
N O O b W N =~ O

Chapter 64 - The Tasks 456

/**
* Delete a task
*/
doDelete: function(index)

{

gsd.errorMessage("gsd.doDelete() not done");

b
NO;

These are shell methods that each button clicks to. I made doDone display the task description just
to check it works correctly.

Save your files, reload http://gsd.localhost.com and play around with it. All the buttons should
function correctly. (Meaning, they display an appropriate error notice.)

Iteration #3 - Showing completed tasks.

&’ Update the buildCompletedTask() function in gsd. js to match below.

J*k
* Build table row html for complete task
* @param object task Task object
* @param int index Index of task within currentlList.tasks
* @return string HTML for a table row representing the task

*/
function buildCompletedTask(task, index)
{

var html = [];

html.push('<tr>");

html.push('<td>finished ');
var d = new Date(task.dateCompleted);

html .push(d.toDateString() + '</td><td>');
html.push($('<div/>").text(task.descript).html());

if (task.dateDue)

{
d = new Date(task.dateDue);

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

© 0 9 O O & W N =

(RN
N =~ O

Chapter 64 - The Tasks

}

html.
html.
html.

push(' ');
push('due ' + d.toDateString());
push('"');

html .push('</td><td>");

if (

{

html
html
html
html
html
html

! currentlList.archived)

.push('<a href="javascript:void(@)" onclick="gsd.doDone(' + index);
.push(')" class="btn btn-default btn-xs" title="Mark not complete">');
.push('");

.push(' <a href="javascript:void(Q)" onclick="gsd.doDelete(' + index);
.push(')" class="btn btn-danger btn-xs" title="Delete task">');
.push('"');

html.push('</td>");
html.push('</tr>");

return html.join('");

457

The code is very similar to bui 1dOpenTask(). The one note I have is that we’re calling gsd . doDone()
to mark a task not complete here. This means the doDone() function will need to toggle between
complete and non-complete.

That’s it for this chapter. Let’s eat some dog food.

Dogfooding

$ gsd 1s +gsd -x

Active Tasks in list '+gsd'

Do Completed Tasks

Do Open Tasks

Finish gsd.buttonAddClick()
Finish gsd.menuArchiveClick()

Finish gsd.menuRenameClick()

+ - — — — — — + — +

|
|
|
|
| Finish gsd.menuCreateClick()
|
+

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Chapter 64 - The Tasks

$ gsd do 2 +gsd

Task 'Do Open Tasks' marked complete.

$ gsd do 1 +gsd

Task 'Do Completed Tasks' marked complete.

$ gsd add "Finish
Todo successfully
$ gsd add "Finish
Todo successfully
$ gsd add "Finish
Todo successfully
$ gsd add "Finish
Todo successfully
$ gsd 1s +gsd

All Tasks in list '+gsd'

R o oo
| # | Next | Description

R o .
[1 | | Finish gsd.buttonAddClick()

| 2 | | Finish gsd.doDelete()

[3 | | Finish gsd.doDone()

| 4 | | Finish gsd.doEdit()

| 5 | | Finish gsd.doMove()

| 6 | | Finish gsd.menuArchiveClick()

| 7| | Finish gsd.menuCreateClick()

| 8 | | Finish gsd.menuRenameClick()

| | done | Create web application wireframe
I | done | Add error/success box

| | done | Finish Top NavBar

| | done | Setup Routes

| | done | Do Completed Tasks

| | done | Do Open Tasks

| | done | Fill Active Lists using REST

| | done | Implement GET /lists

R o .

Marked two tasks finished and added 4 more to do.

gsd.doDone()" +gsd

added

to gsd

gsd.doEdit()" +gsd

added

to gsd

gsd.doMove()" +gsd

added

to gsd

gsd.doDelete()" +gsd

added

to gsd

+ — - - - — — — — — — — — — — — — + — %

Done 10/19/13
Done 10/20/13
Done 10/20/13
Done 10/26/13
Done 10/26/13
Done 10/26/13
Done 10/26/13
_______________ +

|
|
|
|
|
|
|
|
Done 10/13/13 |
|
|
|
|
|
|
|

458

O 00 N O O b W N -~

Chapter 65 - Deleting a Task

0 In This Chapter

In this chapter we’ll add the functionality to delete a task from a list in the web page
application.

Deleting a task is trivial. We'll simply delete it from the loaded list (currentList). Then we’ll save
the list using the PUT /lists/{name} AJAX call. Creating that AJAX call will be the bulk of this
chapter.

Refactoring Taskinterface

Let’s do a quick refactor of the TaskInterface: :setIsComplete() method. We're going to need to
set the date completed, which has automatically been set in the past.

¥ Edit TaskInter face.php and change the function definition as below.

<7php
J*k
* Set whether task is complete.
* @param bool $complete
* @param mixed $when If null then uses current date/time, otherwise

* a Carbon object or date/time string
*/
public function setIsComplete($complete, $when = null);
?>

Q’ Edit Task . php and update the method to implement this change.

4

© 0 9 O O & W N =

NN NN NN NN N R R R Lyl s
0o N O O b W N~ OO0 O 0N O O b W N~ 0O

Chapter 65 - Deleting a Task

<?7php
J Rk

* Set whether task is complete.
* @param bool $complete

* @param mixed $when If non-null then uses current date/time, otherwise
a Carbon object or date/time string

*/
public function setIsComplete($complete, $when
{
$this->complete = !'! $complete;
if ($this->complete)
{
if ($when == null)
{
$when = new Carbon;
}
else if (is_string($when))
{
$when = new Carbon($when);
}
$this->whenCompleted = $when;
}
else
{
$this->whenCompleted = null;
}
}
?2>

Updating the Controller

Q‘ Edit the top of ListController.php, make sure it matches what’s below.

4

null)

460

O 00 I O O b wWw N =~

-
(]

O 0O N O O » wWw N =

NN NN NN R R R Nl s
O b WO N - © O 00 1 O O b W N~ O

Chapter 65 - Deleting a Task

<?p

use
use
use
use
use
use

2>

hp namespace GSD\Controllers;

App;

Carbon\Carbon;
GSD\Entities\ListInter face;
Input;

Response;

Todo;

Here we just added a couple use statements.

<7p

V Update the update() method of ListController.php to match below.

hp

J Rk

p
{

* Update the specified list.

*

* @param string $id The list name
*/

ublic function update($id)

if ($id !'= Input::get('name'))
{

return Response:: json(array('error' => 'List id/name mismatch'));

// Build new list with values

$list = App::make('GSD\Entities\ListInterface');
$list->set('id', $id);

$list->set('title', Input::get('title'));
$list->set('subtitle', Input::get('subtitle'));
$list->set('archived', str2bool(Input::get('archived')));

// Add tasks to list from values passed
$tasks = Input::get('tasks');

if (! is_array($tasks)) $tasks = array();
foreach ($tasks as $task)

{

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

Chapter 65 - Deleting a Task 462

$newTask = App::make('GSD\Entities\TaskInterface');
$descript = $task['descript'];
if ($task['dateDue'])

{
$d = Carbon: :createFromTimestamp($task['dateDue'] / 1000);
$descript .= ' :due:' . $d->format('Y-m-d');
}
$newTask->setDescription($descript);
if (str2bool($task['isCompleted']))
{
$newTask->setIsComplete(
true,
Carbon: :createFromTimestamp($task|['dateCompleted'] / 1000)
)i
}
if (str2bool($task['isNext']))
{

$newTask->setIsNextAction(true);

1
$list->taskAdd($newTask);

// Save and return success
$list->save();

return Response: : json(array('success' => true));

2>

Lines 9 - 12
A quick check to make sure the id passed in the URL is the same as the name passed in as post
data.

Lines 14 - 19
We make a new list and assign it values from the data passed to update(). Notice how we’re
calling setIsComplete()? That’s why we needed to refactor that method.

Lines 21 - 42
Next we loop through the tasks, building new ones and adding them to the list we're building.

Lines 44 - 46
Finally we save the list, overwriting what was there before and return a non-error response.

O 00 N O O b W N -~

I S Y
O O b WO N~ O

© 00 N O O b W N =

(RN
= O

Chapter 65 - Deleting a Task

Update the doDelete() javascript method.

Q’ Edit gsd. js and update the doDelete() method to match what’s below.

4

kK

* Delete a task

*/
doDelete: function(index)
{

if (! confirm("This will permanently destroy the task. Are you sure?"))

{

return;
// Remove the item from currentlList
currentlList.tasks.splice(index, 1);

// And save the list
saveCurrentlList("Task successfully removed.", "doDelete");

Simple javascript code. There’s no saveCurrentList() method yet, so let’s create it.

Q’ Edit gsd. js and add the function below after the showTasks() function.

I4

Vess
* Save the current list, then reload everything
* @param string success_msg The message to show on success

* @param string from Name of method we're called from, for errors
*/
function saveCurrentlList(success_msg, from)
{
$.ajax({

url: "/lists/" + currentlList.name,
method: "PUT",
data: currentlist,

463

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Chapter 65 - Deleting a Task 464

error: function(hdr, status, error)

{

gsd.errorMessage("saveCurrentlList " + status + ' - ' +

"

error + ", from " + from);

}I

success: function(data)

{
if (data && data.error)
{

gsd.errorMessage("saveCurrentlList error: " +

data.error + ", from

n

+ from);

return;

gsd.loadlList(currentlList.name, currentlList.archived);
gsd.successMessage(success_msg);

}
});

Again, this isn’t a javascript book, so I'm not going into detail. We're just making a PUT request
to the AJAX update method, when it finishes successfully, then we're calling gsd.loadList() to
reload the data on the page.

Give it a shot. Reload http://gsd.localhost.com/ in your browser. Delete a few items. You may
have to use the command line utility created in the last section to add lists, tasks, etc., in order to
see the delete method working.

Toggling the Completed Flag

This chapter didn’t end up being as long as I thought it would, so let’s implement the doDone()
method, too.

vk‘ Update the doDone() method in gsd. js to what’s below.

© 0 9 O O & W N =

N N T = =Y
o N O O b W N =~ O

O© 00 N O O b W N =~

N = =V
© 00 N O O b W N =~ O

Chapter 65 - Deleting a Task

J Rk
* Toggle task completion
*/

doDone: function(index)

{

// Toggle completion status
if (currentlList.tasks[index].isCompleted)

{

currentlList.tasks[index].isCompleted = false;

}

else

{

var d = new Date();

currentlList.tasks[index].isCompleted = true;

currentlList.tasks[index].dateCompleted =

}

saveCurrentlList("Task completion updated.

}I

"

That was easy.

Dogfooding

$ gsd 1s +gsd -x
Active Tasks in list '+gsd'
oo oo SR

| # | Next | Description

|

A o e e
| Finish gsd.buttonAddClick()

| Finish gsd.doDelete()

| Finish gsd.doDone()

| Finish gsd.doEdit()

| Finish gsd.doMove()

| Finish gsd.menuArchiveClick()
| Finish gsd.menuCreateClick()

| Finish gsd.menuRenameClick()

+ - — — — — — — — + — +

oot e e
$ gsd do 3 +gsd
Task 'Finish gsd.doDone()' marked complete.
$ gsd do 2 +gsd

d.valueOf();

, "doDone");

Task 'Finish gsd.doDelete()' marked complete.

$ gsd 1s +gsd

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Chapter 65 - Deleting a Task

All Tasks in list '+gsd'

Finish gsd.buttonAddClick()
Finish gsd.doEdit()

Finish gsd.doMove()

Finish gsd.menuArchiveClick()
Finish gsd.menuCreateClick()
Finish gsd.menuRenameClick()
Create web application wireframe

Finish Top NavBar

Setup Routes

Do Completed Tasks

Do Open Tasks

Fill Active Lists using REST
Finish gsd.doDelete()

Finish gsd.doDone()
Implement GET /lists

| |
+ +
| |
| |
| |
| |
| |
| |
| |
| done | Add error/success box
| |
| |
| |
| |
| |
| |
| |
| |
+ +

Nice, we knocked a couple things off the list and didn’t add anything new.

+ - - - - — — - — — — — — — — — — + — +

|
|
|
|
|
|
Done 10/13/13 |
Done 10/19/13 |
Done 10/20/13 |
Done 10/20/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
_______________ +

466

© 00 N O O b W N =

10

Chapter 66 - Adding and Editing Tasks

G In This Chapter

In this chapter we’ll add the functionality to create new tasks and edit existing tasks.

The Modal Task Form

The first thing we need is a modal form we can use to add new tasks, or edit existing tasks.

o)’ Edit views/layouts/default.blade.php and change the bottom of the file as specified

s below.

@include('partials.taskmodal')
</body>
</html>

We’ll build the modal form in its own view. So line #1 here is a new line telling Blade to include that
partial we’ll create.

Q‘ Create taskmodal .blade.php in views/partials with the following content.

o

<div class="modal fade" id="taskbox">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<button type="button" class="close" data-dismiss="modal">

</button>

<h4 class="modal-title" id="taskbox-title">title</h4>
</div>
<div class="modal-body">

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Chapter 66 - Adding and Editing Tasks

<form class="form-horizontal">
<input type="hidden" id="task-index" value="-1">
<div class="form-group">
<div class="col-1g-offset-2 col-1g-10">
<div class="checkbox">
<label>
<input type="checkbox" id="task-next"> Next Action
</label>
</div>
</div>
</div>
<div class="form-group">
<label class="col-1g-2 control-label" for="task-descript">
Description
</label>
<div class="col-1g-10">
<input type="text" class="form-control" id="task-descript">
</div>
</div>
<div class="form-group">
<label class="col-1g-2 control-label" for="task-due">
Due
</label>
<div class="col-1g-10">
<input type="text" class="form-control" id="task-due">
</div>
</div>
</form>
</div>

<div class="modal- footer">»

<button type="button" class="btn btn-default" data-dismiss="modal">

Close

</button>

<button type="button" class="btn btn-primary"
onclick="gsd.taskboxSave()">Save</button>

</div>
</div>
</div>
</div>

This is straight, bootstrap flavored HTML. Just a few notes:

« The taskbox id will let us access this modal.

468

© 00 9 O O & W N =

NN NN NN N P R R N sy
O O b WO N » O © 0 O O b WO N -~ O

Chapter 66 - Adding and Editing Tasks 469

The hidden task-index attribute will specify the task’s index. For Add Task this will always
be -1.

+ The taskbox-title id will let us change the title depending if this is an Add Task or Edit task
function.

The data elements have their own id for accessing via javascript.

The Save button calls gsd. taskboxSave(), which doesn’t exist yet.

The Javascript

0)‘ Add the following taskboxShow() function to gsd. js. Put it after the menuCreateClick()
p function. (This way, the function appears before any functions that call it. Maybe this isn’t
required, but this is a habit I started in the early days of Javascript.)

J Rk
* Display the task modal box
* @param string title Title of the modal box
* @param integer index Task index, -1 for new task

*/
function taskboxShow(title, index)
{
var task = (index == -1) ? {} : currentlList.tasks[index];

$("#task-index").val(index);
$("#taskbox-title"). . text(title);
$("#task-next").prop("checked", (task.isNext === true));
$("#task-descript").val(task.descript);
if (task.dateDue)
{
var d = new Date(task.dateDue);
$("#task-due").val(d.toDateString());
}
else
{
$("#task-due").val("");
}
$("#taskbox")
.modal("show")
.on("shown.bs.modal", function()

{
$("#task-descript"). focus().select();

27
28

Chapter 66 - Adding and Editing Tasks

});

o N O O b W N =

=N O O b W N =

Line 8
We assign the task variable either an empty object (if we're adding a task) or the task from
the current list.

Lines 9 - 21
Assigning various values within the modal task form.

Lines 22 - 27
Here we use the bootstrap function to show the modal box. Then, when the modal is displayed
we set the input focus to the description field.

¥ Modify the buttonAddClick() function in gsd. js

o

Vers
* Handle click on the add task button
*/

function buttonAddClick()

{
taskboxShow("Add New Task", -1);

return false;

}
Then modify the doEdit method in gsd. js.

Vi zs
* Edit a task
*/

doEdit: function(index)

{
taskboxShow("Edit Task", index);

}/

Q’ And, to be complete, add a new public method to gsd. js, the taskboxSave() method.

4

© 0 9 O O & W N =

-
(]

O 00 N O O b W N -~

N R R R 1 | s
O O 0 N O O b W N =~ O

Chapter 66 - Adding and Editing Tasks 471

Y, // remember the trailing comma of the last function

Vet
* Handle adding new tasks or updating existin tasks
*/

taskboxSave: function()

{

$("#taskbox").modal("hide");
gsd.errorMessage("gsd.taskboxSave not done");

If you save everything and reload your browser you can play around with it a bit. Everything should
work except when you hit save. Let’s fix that.

Finishing taskboxSave

Q’ Edit gsd. js and update the taskboxSave() function to the code below.

4

Veis
* Handle adding new tasks or updating existing tasks
*/

taskboxSave: function()

{

var index = parselnt($("#task-index").val());
var dueDate = $("#task-due").val();
var task = {
isNext: $("#task-next").prop("checked"),
isCompleted: false,
dateCompleted: null,
descript: $("#task-descript").val()

¥
if (dueDate ——r— l|n)
{
dueDate = null;
}
else
{

try

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Chapter 66 - Adding and Editing Tasks

dueDate = Date.parse(dueDate);
} catch (err) {
dueDate = null;
}
if (isNaN(dueDate))
dueDate = null;
}
task.dateDue = dueDate;
if (index < 0)

472

{
currentlList.tasks.push(task);
}
else
{
currentlList.tasks[index] = task;
}
$("#taskbox").modal("hide");
saveCurrentlList("Task successfully saved.", "taskboxSave");
Lines 5 - 13

Read the values in, build a task object.

Lines 14 - 28
Handle the due date, parsing it, watching for errors, and finally assigning it to the task object.

Line 29 - 36
Either append the task to the current list or replace the existing task in the current list.

Line 38 and 39
Hide the modal and save the current list.

As always, play with it. See how it’s working.

Dogfooding

© 0 9 O O & W N =

W W W W W W W W WA NNNDNNNNNDN B s s s s s
® 9 0 O & O NS O O ® T 0 O & WNAROO O W10 U & W =

Chapter 66 - Adding and Editing Tasks

$ gsd 1s +gsd -x
Active Tasks in list '+gsd'

473

R o . TR +
| # | Next | Description | Extra |
R o . ER +

[1 | | Finish gsd.buttonAddClick() | |

| 2 | | Finish gsd.doEdit() | I

| 3| | Finish gsd.doMove() | |

| 4 | | Finish gsd.menuArchiveClick() | |

| 5 | | Finish gsd.menuCreateClick() | |

| 6 | | Finish gsd.menuRenameClick() | |
R o . TR +

$ gsd do 2 +gsd

Task 'Finish gsd.doEdit()' marked complete.

$ gsd do 1 +gsd

Task 'Finish gsd.buttonAddClick()' marked complete.

$ gsd 1s +gsd

All Tasks in list '+gsd'

Fo oo o . oo +
| # | Next | Description | Extra
R o . . +
| 1 | | Finish gsd.doMove() I

[2 | | Finish gsd.menuArchiveClick() |

| 3 | | Finish gsd.menuCreateClick() |

| 4 | | Finish gsd.menuRenameClick() |

| | done | Create web application wireframe | Done 10/13/13

I | done | Add error/success box | Done 10/19/13

| | done | Finish Top NavBar | Done 10/20/13

| | done | Setup Routes | Done 10/20/13

| | done | Do Completed Tasks | Done 10/26/13

| | done | Do Open Tasks | Done 10/26/13

| | done | Fill Active Lists using REST | Done 10/26/13

| | done | Finish gsd.buttonAddClick() | Done 10/26/13

| | done | Finish gsd.doDelete() | Done 10/26/13

| | done | Finish gsd.doDone() | Done 10/26/13

| | done | Finish gsd.doEdit() | Done 10/26/13

I | done | Implement GET /lists | Done 10/26/13
R o . . +

Only 4 things left to do. And here’s a little teaser. When we get to the gsd.

going to be a surprise.

doMove() function, there’s

O 00 N O O b W N -~

NN NN RS R R R 1 1Ny vy
W N 2O O 0N 0 0w N~

Chapter 67 - Archiving and
Unarchiving Lists

0 In This Chapter

In this chapter we’ll add the ability to archive and unarchive lists in the web application.

Implementing the AJAX archive method

Q’ Edit ListController.php, have the top of the file match what’s below.

o

<?php namespace GSD\Controllers;

use App;

use Carbon\Carbon;

use Config;

use GSD\Entities\ListInterface;

use GSD\Repositories\TodoRepositoryInter face;
use Input;

use Response;

use Todo;

class ListController extends \Controller {

protected $repository;

Rk
* Constructor
*/
public function __construct(TodoRepositorylInterface $repository)
{
$this->repository = $repository;
}

?>

O 0 I O O B wWw N =~

W oW oW NN NN NDNDNDNNDN R S R R R sl
N - © © ® 9 0 O & W N~ O O W 3 0 0 & WM = O

Chapter 67 - Archiving and Unarchiving Lists

We changed two things here:

<

1. Additional use statements.
2. Added the __construct() to inject our repository.

Q‘ Edit the archive() method of ListController.php to match the following.

4

’php

Jkk

* Archive the specified list
*

* @param string $id The list name

*/
public function archive($id)
{
try
{
// Throws error if list doesn't exist
$list = Todo::get($id);
// Can't archive default list
if ($id == Config::get('todo.defaultlList'))
{
throw new \RuntimeException("Cannot archive default list");
}
// Throw error if archived list exists
if ($this->repository->exists($id, true))
{
throw new \RuntimeException(
"Archive list '$id' exists. Try renaming first."
),
}
}
catch (\Exception $e)
{

return Response: : json(array('error' => $e->getMessage()));

475

33
34
35
36
37

© 00 N O O b W N =

NN NN NN R R R Nl s
O b 0 N - © © 00 J O O b W N »~ O

Chapter 67 - Archiving and Unarchiving Lists

$list->archive();

return Response: : json(array('success' => true));

2>

The code above should be easy to follow.

476

We’re running the code in the try/catch block and throwing exceptions if something isn’t correct.

Calling the AJAX archive() method

Q‘ Edit the menuArchiveClick() method in gsd. js to match the following.

4

SRk

* Handle click on the top nav menu archive/unarchive option

*/

function menuArchiveClick()

{

var

url = "/lists/" + currentlList.name;

if (currentlList.archived)

{

gsd.errorMessage('not implemented');

return false;

// The archive version

url += '/archive';
$.ajax({
url: url,

method: "POST",
error: function(hdr, status, error)

{

}I

gsd.errorMessage("menuArchiveClick " + status +

success: function(data)

{

if (data && data.error)
{

1

+ error);

26
27
28
29
30
31
32
33
34

© 0O 9 O O & W N =

N N N P R Rl s
N »~, © O 00 1 O O b W N~ O

Chapter 67 - Archiving and Unarchiving Lists

gsd.errorMessage(data.error);

return;

}

gsd.loadList(currentlList.name, true);
gsd.successMessage("List successfully archived.");

}
});

return false;

That’s it. The Archive List method is implemented!

Implementing the AJAX unarchive method

Q’ Edit the unarchive() method of ListController.php to match the code below.

4

<?php
kK
* Unarchive the specified list
*
* @param string $id The list name
*/
public function unarchive($id)
{
try
{
// Throws error if list doesn't exist
$list = Todo::get($id, true);

// Throw error if active list exists
if ($this->repository->exists($id, false))
{
throw new \RuntimeException(
"Active list '$id' exists. Try renaming first."

)

// Save as unarchived

477

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

O© 00 N O O b W N =~

RGN
= o

Chapter 67 - Archiving and Unarchiving Lists 478

$list->set('archived', false);
$list->save();

// Delete existing archived list
if (! $this->repository->delete($id, true))
{

throw new \RuntimeException(
"ERROR deleting archived version.'

)

}
catch (\Exception $e)

{

return Response: : json(array('error' => $e->getMessage()));

return Response: : json(array('success' => true));

?2>

This code is very similar to the archive() method we just updated, but the list is manually deleted
using the repository.

Calling the AJAX unarchive() method

d)’ Edit the menuArchiveClick() method in gsd. js. The top of the method should match
s what’s below.

Vess
* Handle click on the top nav menu archive/unarchive option
*/
function menuArchiveClick()
{
var url = "/lists/" + currentList.name;
if (currentlList.archived)
{
url += '/unarchive';
$.ajax({
url: url,

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Chapter 67 - Archiving and Unarchiving Lists 479

method: "POST",
error: function(hdr, status, error)

{
gsd.errorMessage("menuArchiveClick " + status + ' - ' + error);
4,
success: function(data)
{
if (data && data.error)
{
gsd.errorMessage(data.error);
return;
}
gsd.loadlList(currentlList.name, false);
gsd.successMessage("List successfully unarchived.");
}
1)

return false;

// Rest of method is the same

This, too, is very similar to how the AJAX archive call is implemented. No need to repeat the
explanation.

% Time to Refactor?
Actually, I would normally refactor the javascript at this point. There’s a bit of duplication
with how the AJAX calls are made. It’d be nice to Keep it DRY. But since there’s only a
couple chapters left, I'll leave it to you to refactor.

Try archiving and unarchiving lists. Works good for me.

Dogfooding

© 0 9 O O & W N =

W W W W WM N NN NN NN N N K R L L L L L
A0 N RE O © MO0 O & ONR OO ©O© ® 1 0 O b whh e~

Chapter 67 - Archiving and Unarchiving Lists

$ gsd 1s +gsd -x

Active Tasks in list '+gsd'

| # | Next |
oot

[11 |
[2 | |
[31 |
[4 | |
oot

Finish gsd.doMove()

Finish gsd.menuArchiveClick()
Finish gsd.menuCreateClick()
Finish gsd.menuRenameClick()

$ gsd do 2 +gsd
Task 'Finish gsd.menuArchiveClick()' marked complete.
$ gsd 1s +gsd

All Tasks in list '+gsd'

Finish gsd.doMove()
Finish gsd.menuCreateClick()
Finish gsd.menuRenameClick()

Create web application wireframe

Add error/success box

Finish Top NavBar

Setup Routes

Do Completed Tasks

Do Open Tasks

Fill Active Lists using REST
Finish gsd.buttonAddClick()
Finish gsd.doDelete()

Finish gsd.doDone()

Finish gsd.doEdit()

Finish gsd.menuArchiveClick()
Implement GET /lists

Only three things left to do.

+ — - - - — — — — — — — — — — — — + — %

|

|

|
Done 10/13/13 |
Done 10/19/13 |
Done 10/20/13 |
Done 10/20/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
Done 10/26/13 |
_______________ +

480

Chapter 68 - Creating and Renaming
Lists

0 In This Chapter

In this chapter we’ll add the ability to create new lists and rename existing lists.

Adding List Modal

Just like we did with the Task Editing, let’s create a new modal box for Creating new lists.

¥ Edit default.blade.php in app/views/layouts. Below is just a snippet of the bottom of
s the file.

</div>

@include('partials.taskmodal')
@include('partials.listmodal')
</body>
</html>

We added the @include line right before the closing body tag.

¥ Create listmodal.blade.php in the app/views/partials directory.

O 00 I O O b wWw N =~

BB DWW W W WWWWWWNDNDNDDNDDNDDNDDNDDNDNDDND S S S s sSsssse
N A~ O O 00 N O O & WON A~ O O 0 N O O bk W N~ © 0 N O O bk WuwNnN -~

Chapter 68 - Creating and Renaming Lists

<div class="modal fade" id="listbox">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<button type="button" class="close" data-dismiss="modal">
×
</button>
<h4 class="modal-title" id="listbox-title">title</h4>
</div>
<div class="modal-body">
<form class="form-horizontal">
<div class="form-group">
<label class="col-1g-3 control-label" for="list-id">»
List Name
</label>
<div class="col-1g-9">
<input type="text" class="form-control" id="list-id">
</div>
</div>
<div class="form-group">
<label class="col-1g-3 control-label"” for="list-title">
List Title
</label>
<div class="col-1g-9">
<input type="text" class="form-control" id="list-title">
</div>
</div>
<div class="form-group">
<label class="col-1g-3 control-label" for="list-subtitle">
List Subtitle
</label>
<div class="col-1g-9">
<input type="text" class="form-control" id="list-subtitle">
</div>
</div>
</form>
</div>

<div class="modal-footer">

<button type="button" class="btn btn-default" data-dismiss="modal">

Close
</button>
<button type="button" class="btn btn-primary"

482

43
44
45
46
47

O© 00 N O O b W N =~

o = = =Y
0 N O O b W N =~ O

Chapter 68 - Creating and Renaming Lists

onclick="gsd.listboxSave()">Save</button>
</div>
</div>
</div>
</div>

The HTML above is similar to what we did with taskmodal .blade.php.

Adding Create List Javascript

Now we’ll create the javascript to use the modal we just created.

Q’ Edit gsd. js and update the menuCreateClick() function to match what’s below.

4

Vet
* Handle click on the top nav menu create option
*/

function menuCreateClick()

{

$(".dropdown-menu") .dropdown("toggle");
$("#listbox-title").html("Create New List");
$("#1ist-id").val("");
$("#list-title").val("");
$("#list-subtitle").val("");
$("#1listbox")

.modal("show")

.on("shown.bs.modal", function()

{

$("#1list-1id").focus().select();
1)

return false;

The code clears the dropdown menu, sets up the listbox modal, and shows it.

d)’ Edit gsd. js and create a new listboxSave() method after taskboxSave().

4

483

© 0 9 O O & W N =

W W W W W W N NDDNDDNDDNDDNDDNDDNDNDDN-=S~=A = 2 2 B = B 2
g & O N~ 0 O 0 N O O b W N~ 0 O 0 N O O b WuwN -~ 0o

Chapter 68 - Creating and Renaming Lists

}, // as always, the trailing comma of the previous function

Vet
* Handle creating new list
*/

listboxSave: function()

{

var data = {
name: $("#list-id").val(),
title: $("#list-title").val(),
subtitle: $("#list-subtitle").val()

b
$.ajax({
url: "/lists",
method: "POST",
data: data,
error: function(hdr, status, error)
{
gsd.errorMessage("listboxSave " + status + ' - ' + error);
$("#1listbox").modal("hide");
1,
success: function(data)
{
$("#1listbox").modal("hide");
if (data && data.error)
{
gsd.errorMessage(data.error);
return;
}
gsd.loadlList(data.name, false);
gsd.successMessage("List successfully created.");
}
});

484

This is almost identical to the taskboxSave () method. (I had to slap myself in the face to keep from
refactoring.)

© 0O 9 O O & W N =

W W W W N DN NDNDDNDDNDDNDDNDDNDDNS=S »~ 2 B > 2 B 2 =
W N0 O 0 N0 0 Pk WON A OO0 O N0 0k WwN -~ o

Chapter 68 - Creating and Renaming Lists

Implenting AJAX store call

The last thing we need to make creating a new list work is the store() method on the server side

fully implemented.

¥ Update store() in ListController.php to match what’s below.

<?php
JHk
* Create a new list
*/
public function store()
{
try
{
$name = strtolower(Input::get("name"));
$title = Input::get("title");
if (!$title) $title = ucfirst($name);
$subtitle = Input::get("subtitle");

if (empty($name))

throw new \RuntimeException("List Name $name is required");

if ($this->repository->exists($name, false))

throw new \RuntimeException("List '$name' already exists");

$list = Todo::makel ist($name, $title);
if ($subtitle)

{
$list->set('subtitle', $subtitle)->save();

$result = array(
'success' => true,
"name' => $name,
)i
}
catch (\Exception $e)
{
$result = array(
'error' => $e->getMessage()

34
35
36
37
38
39

O 00 N O O b W N -~

= = =Y
0 I O O b W N -~ O

Chapter 68 - Creating and Renaming Lists 486

);

return Response: : json($result);

2>

All done! Reload http://gsd. localhost.com in your browser and give it a shot. Try creating a list
without a name. Try creating one with a name that already exists. Everything should work great.

You may notice I've started going light on the line-by-line explanation of what the code
does. That’s because we’'ve been over most everything at least a couple times at this point.
I'll continue pointing out new things, though.

Implementing Rename Javascript

Now let’s add the javascript to implement the Rename List function.

Q’ Edit the menuRenameClick() function in gsd. js to match the code below.

4

J*k
* Handle click on the top nav menu rename option
*/

function menuRenameClick()

{
$(".dropdown-menu") .dropdown("toggle");

var dest = prompt("New name for list + currentlList.name + "'?"
if (!dest)
{

gsd.errorMessage("Rename canceled");

7

return false;
}
var url = '/lists/' + currentList.name + '/rename/' + dest;
if (currentlList.archived) url += '?archived=1';
$.ajax({
url: url,
method: "POST",
error: function(hdr, status, error)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

O 00 N O O b W N =~

[N Y
W N =~ O

Chapter 68 - Creating and Renaming Lists

}

1 1

gsd.errorMessage("menuRenameClick " + status + - + error);

},

success: function(data)
{
if (data && data.error)

{

gsd.errorMessage(data.error);
return;

}

gsd.loadlList(dest, currentList.archived);
gsd.successMessage("Rename successful.");

);

return false;

487

Simple. We use the javascript prompt() function to ask the user for the new list name. Then we
make a POST call to the AJAX method to perform the rename.

Implementing AJAX rename call

Q‘ Edit the rename() method in ListController.php to match below.

4

<?php
J xRk

* Rename $source list to $dest

*

* @param string $source The source list name

* @param string $dest The destination list name

*/

public function rename($source, $dest)

{

$archived = !! Input::get('archived');
$source = trim($source);

$dest = trim($dest);

try

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Chapter 68 - Creating and Renaming Lists 488

{
if (empty($source))
throw new \RuntimeException("Source list name is required");
if (empty($dest))
throw new \RuntimeException('"Destination list name required");
if ($source == Config::get('todo.defaultList') && ! $archived)
throw new \RuntimeException("Cannot rename default list");
if ($this->repository->exists($dest, $archived))
throw new \RuntimeException("Destination list exists");
// Load existing list, save with new name, then delete old one
$list = Todo::get($source, $archived);
$newList = clone $list;
$newList->set('id', $dest);
$newList->save();
$list->delete();
$return = array('success' => true);
}
catch (\Exception $e)
{
$return = array('error' => $e->getMessage());
}
return Response: : json($return);
}
2>

This code was easy to implement. After a few checks in the try/catch block, the code to do the
rename is almost identical to the code in Renamel istCommand. php

Test it out. See how it works.

Dogfooding

© 0 9 O O & W N =

W W W W W W N NDDNDDNDDNDDNDDNDDNDNDDN-=S~=A = 2 2 B = B 2
g & O N~ 0 O 0 N O O b W N~ 0 O 0 N O O b WuwN -~ 0o

Chapter 68 - Creating and Renaming Lists

$ gsd 1s +gsd -x
Active Tasks in list '+gsd'

R o . fo oo +
| # | Next | Description | Extra |
R o . R +
| 1 | | Finish gsd.doMove() | I
[2 | | Finish gsd.menuCreateClick() | |
| 3| | Finish gsd.menuRenameClick() | |
R o e e SR +

$ gsd do 3 +gsd

Task 'Finish gsd.menuRenameClick()' marked complete.
$ gsd do 2 +gsd

Task 'Finish gsd.menuCreateClick()' marked complete.
$ gsd 1s +gsd

All Tasks in list '+gsd'

R o . +
| # | Next | Description | Extra
R o . +

[1] | Finish gsd.doMove() |

| | done | Create web application wireframe | Done
| | done | Add error/success box | Done
| | done | Finish Top NavBar | Done
| | done | Setup Routes | Done
| | done | Do Completed Tasks | Done
| | done | Do Open Tasks | Done
| | done | Fill Active Lists using REST | Done
I | done | Finish gsd.buttonAddClick() | Done
| | done | Finish gsd.doDelete() | Done
| | done | Finish gsd.doDone() | Done
| | done | Finish gsd.doEdit() | Done
| | done | Finish gsd.menuArchiveClick() | Done
I | done | Implement GET /lists | Done
| | done | Finish gsd.menuCreateClick() | Done
| | done | Finish gsd.menuRenameClick() | Done
O e e e +

One item left to do. Yeah! That works out because there’s one chapter left in the book.

10/13/13
10/19/13
10/20/13
10/20/13
10/26/13
10/26/13
10/26/13
10/26/13
10/26/13
10/26/13
10/26/13
10/26/13
10/26/13
10/27/13
10/27/13

_______________ +

489

Chapter 69 - Move and Beyond

0 In This Chapter

In this chapter we’ll discuss the move task command and other places you can take the web
application.

The Move Task Command
The last item on our todo list (gsd Is +gsd) is to finish the gsd.doMove () function. Here’s the surprise:
I’'m leaving it for you to finish

The logic is straightforward. Here’s one approach to implementing it.

Routes
+ Set up a new route for the move command in routes.php.

« Suggest route: lists/{source}/{name}/move/{dest}
+ Set up a skeleton destination method for move in ListController.php

Javascript - gsd.js

« Prompt the user for the destination list
o Make the AJAX call to 1ists/{source}/{name}/move/{dest}
« Upon success load the destination list.

PHP - ListController.php

« Use a try/catch block like we’ve been doing with the other methods
« Follow a similar logic to MoveTaskCommand. php

See. It’s really pretty simple. You could just use the javascript prompt () method to get the destination
list. Or you could get ambitious. Present the user with a popup menu for the destination. Your call.

Chapter 69 - Move and Beyond 491

Where to go next

Even though this book is done, there’s no reason to quit development of your personal version of
the web application.

Try to think how it could better work for you.

Here’s a list of suggestions. You could think of dozens of other ways to improve it.

+ Add some basic authentication so nobody but you can see the web page.

« Implement a “delete list” function. (Yes, the destroy() method in ListController was never
used.)

+ Add contexts like @home or @work to your tasks.

« Refactor javascript to remove duplication in AJAX calls.

+ Refactor AJAX methods to return 1ist instead of success to eliminate a followup call to load
the list.

« Implement backups through the web interface. Maybe a “utility” menu option?

« Track priorities on tasks.

+ Use better date formatting.

+ Add activity logs to track changes to all your todo lists.

+ Add a date picker for the date due field.

+ Expand due dates to include time.

+ Add time tracking. Maybe a whole new section of your list has start/stop tracking times.

+ Add sub tasks.

« Add additional task states. Instead of just complete or not complete, maybe an “in-progress”
or a “deploying”.

« Add people tracking on tasks. %Chuck, %Bob, or %Sally.

«+ Use a Database instead of text files to store your lists.

This list could go on and on.

I really hope you make this application something you can use. And if you expand the application
in some interesting way, please shoot me an email. I’d love to hear from you.

A Final Thank You

I sincerely hope you enjoyed this journey. We spent a lot of time on design and philosophies and
almost as much time building the console application. The web application went pretty quickly, but
I think it was because of the time spent in the other areas.

This book covered a lot of information about Laravel, but like I said way back at the beginning, it
barely scratches the surface of what you can do with this framework. There’s so much to learn ... so
much more to do.

Chapter 69 - Move and Beyond 492

I hesitate to compile an exhaustive list of resources for further Laravel learning because they’ll be
obsolete soon after this book is in print. I mentioned a few at the beginning of this book, but new ones
pop up all the time. Your best bet is to check out laravel.com®*. In addition to the documentation there
is a link to the forums at the top of the page. There’s a whole forum devoted to Laravel Resources.

Again, thank you.
Keep Coding!
— Chuck Heintzelman

October 27, 2013

**http://laravel.com

Appendices

Or is it Appendixes? Or maybe like the plural form of octopus, the word should be Appendi? I can
never remember.

Appendix | - Composer

Composer®® is the dependency manager for PHP. A dependency manager is different that a package
manager. Composer uses packages, yes, but the magic of composer is that it lets you define what
packages your project depends on. Then Composer downloads those packages, stuffs them in your
project’s vendor directory, and you’re golden.

PHP has needed something like Composer for quite a while. Yeah, there’s PEAR*® and there’s lots
of great packages in PEAR. But PEAR installs packages globally on your machine.

Composer keeps packages bundled with your project. You can have different versions of the same
package within different projects on the same machine!

Very nice.

I hesitate to mention this because I don’t want to put down PEAR, because for years that’s all us
PHP programmers had. And it did a great job. The only problem is ... well ... sometimes some of the
PEAR code seemed a little trashy.

(Wow! Now I really feel like a programming snob. I still like you PEAR, I do. But some of your kids,
well, I don’t like dealing with them.)

Installing Composer on Unix

It takes two lines of code:

$ curl -sS https://getcomposer.org/installer | php
$ mv composer.phar /usr/local/bin/composer

If the second line fails, put a sudo before the mv command.

You can test if it’s installed cool by checking the version.

$ composer --version
Composer version 815f7687c5d58af2b31df680d2a715f7eb8dbf62

*>http://getcomposer.org
*Shttp://pear.php.net/

Appendix Il - PHP Unit

PHP Unit* is the standard in PHP Unit testing.

I could go on about the benefits of unit testing, why you want to do it, bla bla bla, but I won’t. Let’s
just get it installed.

Installing Composer on Unix

It takes three lines of code:

$ wget https://phar.phpunit.de/phpunit.phar
$ chmod +x phpunit.phar
$ mv phpunit.phar /usr/local/bin/phpunit

If the last line fails, put a sudo before the mv command.

You can test if it’s installed cool by checking the version.

$ phpunit --version
PHPUnit 3.7.26 by Sebastian Bergmann.

Wasn’t that easy. Hardly seems worth taking a whole appendix up to do it.

*"http://phpunit.de/manual/current/en/index.html

© 0 9 O O & W N =

[T = S G N N o N S G S S U
© O© 0O N O O » W N =~ O

Appendix Il - Apache Setup

Apache is ubiquitous these days. Not only on the web, but in the various operating systems people
use for their desktop (or laptop). Unfortunately, there’s so many versions, different installation
locations, and different ways Apache can be set up, that there’s no absolute do this and it will
work rule for configuration.

That said, I'll present how my machine is configured and provide notes for common alternatives but
in the end always consult the Apache Documentation® as the authoritative source.

Installing Apache

If apache needs to be installed on your machine, I suggest using whatever package manager comes
with your operating system.

With Ubuntu and Linux Mint, this is apt-get.

$ sudo apt-get install apache2 libapache2-mod-php5

[sudo] password for chuck:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:
apache2-mpm-prefork apache2-utils apache2.2-bin apache2.2-common libapr1
libaprutild libaprutili1-dbd-sqlite3 libaprutili-1ldap

Suggested packages:
apache2-doc apache2-suexec apache2-suexec-custom php-pear

The following NEW packages will be installed:
apache2 apacheZ-mpm-prefork apache2-utils apache2.2-bin apache2.2-common
libapache2-mod-php5 libaprl libaprutild libaprutill-dbd-sqlite3
libaprutild-1ldap

@ upgraded, 10 newly installed, © to remove and 2 not upgraded.

Need to get 6,379 kB of archives.

After this operation, 20.0 MB of additional disk space will be used.

Do you want to continue [Y/n]?

lots of stuff scrolls by ...

**http://httpd.apache.org/docs/

21
22
23
24

0 N O O & W N =

Appendix III - Apache Setup 497

Processing triggers for libc-bin ...
ldconfig deferred processing now taking place

$

To test this is working, point your browser to http://localhost. You should get a It works! page or
something similar.

For Windows

For windows I set up WampServer®. This gives you Apache, PHP, and MySQL. The nice
thing about WampServer is that it let’s you run multiple versions so you could run PHP
5.4 and PHP 5.3 side-by-side.

Fixing Permissions

o)’ To change the User and Group apache uses, edit /etc/apache2/envvars and change it to
p what you need.

Using VIM
$ sudo vim /etc/apache2/envvars

Using Nano
$ sudo nano /etc/apache2/envvars

Using Sublime Text 2
$ sudo subl /etc/apache2/envvars

4;‘ Edit the APACHE_RUN_USER and APACHE_RUN_GROUP settings to what you need, I'm using
p chuck below.

export APACHE_RUN_USER=chuck
export APACHE_RUN_GROUP=chuck

Using Named Virtual Hosts

By default Ubuntu/Mint now installs apache with NameVirtualHost enabled. You shouldn’t have to
do anything. This is configured in /etc/apache2/ports.conf

**http://www.wampserver.com/en/

0 N O O b W N =

Appendix III - Apache Setup 498

NameVirtualHost *:80
List 80

These two lines tell apache to listen on port 80 (the standard web port) and allow virtual hosts to be
set up based on the hostname.

You may need to search through all your apache configuration files (all those files in the
apache folder ending with .conf) and make sure those two lines exist.

Adding an entry to /etc/hosts

If you don’t have a domain name registered, you can “fake” one by editing your hosts file.
Q‘ You’ll need to edit this file as root using an editor.

4

Using VIM
$ sudo vim /etc/hosts

Using Nano

$ sudo nano /etc/hosts

Using Sublime Text 2
$ sudo subl /etc/hosts

Q‘ Add the entry. In this case we’ll say ‘myhost.localhost.com’. I personally use the
p ‘name.localhost.com’, but have seen others use ‘name.dev’, or some other variation.

somewhere in the file
myhost . localhost.com 127.0.0.1

Setup up a VirtualHost on UbuntuMint

Q‘ You’ll need to create this file as root using an editor.

4

0 N O O & W N =

0 N O O b W N =

W N -

Appendix III - Apache Setup 499

Using VIM
$ sudo vim /etc/apache2/sites-available/filename

Using Nano
$ sudo nano /etc/apache2/sites-available/filename

Using Sublime Text 2
$ sudo subl /etc/apache2/sites-available/filename

o)’ Edit the filename (for example, I use gsd for the project in this book) to match what’s below.
p Change the paths and hostname as appropriate.

<VirtualHost *:80>
DocumentRoot "/laravel/project/path/public”
ServerName myhost.localhost.com
<Directory "/laravel/project/path/public">
Options Indexes FollowSymLinks MultiViews
AllowOverride all
</Directory>
</VirtualHost>

Q’ Create a symbolic link to this configuration, enable mod-rewrite and restart apache

4

cd /etc/apache2/sites-enabled
sudo 1In -s /etc/apache2/sites-available/filename
sudo aZ2enmod rewrite

@ H H H

sudo service apache restart

If there are no errors then your virtual host should be set up cool. You can test it by pointing your
browser to it.

© 00 9 O O & W N =

[N T N T S S S N S = S A
, O © 00 N O O b W N =~ O

Appendix IV - Nginx Setup

Nginx (pronounced engine-x) is rapidly becoming the favorite web server for techies everywhere.
It’s fast, easy to configure, and doesn’t use as much memory as Apache.

I actually prefer Nginx to Apache, but tend to use Apache since that’s how the production servers
at my work are configured.

Installing Nginx

Use whatever package manager your operating system provides. With Ubuntu/Mint Linux this is
apt-get

$ sudo apt-get install nginx php5-fpm
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
nginx-common nginx-full
Suggested packages:
php-pear
The following NEW packages will be installed:
nginx nginx-common nginx-full php5-fpm
@ upgraded, 4 newly installed, © to remove and 2 not upgraded.
Need to get 3,068 kB of archives.
After this operation, 9,626 kB of additional disk space will be used.
Do you want to continue [Y/n]?

lots of stuff scrolls by ...

Processing triggers for ureadahead

Setting up nginx-full (1.2.1-2.2ubuntu@.1)
Setting up nginx (1.2.1-2.2ubuntu@.1) ...
$ sudo service nginx start

To test this is working, point your browser to http://localhost. You should get a Welcome to nginx!
page or something similar.

0 N O O b W N =

Appendix IV - Nginx Setup 501

Fixing Permissions

Q‘ To change the User and Group nginx uses, you need to change the values in the fast cgi
p process nginx uses. Edit /etc/php5/fpm/pool .d/www.conf and change it to what you need.

Using VIM
$ sudo vim /etc/php5/fpm/pool.d/www.conf

Using Nano
$ sudo nano /etc/php5/fpm/pool.d/www.conf

Using Sublime Text 2
$ sudo subl /etc/php5/fpm/pool.d/www.conf

A% Edit the “user” and “group” settings to what you need, I'm using chuck below.

4

user = chuck
group = chuck

o)’ To have changes take effect you must restart the php-fpm process.

4

$ sudo service php5-fpm restart
* Restarting PHPS FastCGI Process Manager php5-fpm

Adding an entry to /etc/hosts

If you don’t have a domain name registered, you can “fake” one by editing your hosts file.

¥ You'll need to edit this file as root using an editor.

4

o N O O b W N =

0 N O O b W N =

Appendix IV - Nginx Setup

#

$

#

$

#

$

#

Using VIM
sudo vim /etc/hosts

Using Nano
sudo nano /etc/hosts

Using Sublime Text 2
sudo subl /etc/hosts

Q’ Add the entry. In this case we’ll say ‘myhost.localhost.com’. T personally use the pattern
p ‘name.localhost.com’, but have seen other use ‘name.dev’, or some other variation.

somewhere in the file

myhost . localhost.com 127.0.0.1

Setup up a VirtualHost on UbuntuMint

A% You'll need to create this file as root using an editor.

4

Using VIM

sudo vim /etc/nginx/sites-available/filename

Using Nano

sudo nano /etc/nginx/sites-available/filename
Using Sublime Text 2

sudo subl /etc/nginx/sites-available/filename

o)’ Edit the filename (for example, I use gsd for the project in this book) to match what’s below.
p Change the paths and hostname as appropriate.

502

W N -

Appendix IV - Nginx Setup 503

server {
listen 80;
server_name myhost.localhost.com;
root /laravel/project/path/public;

location / {
index index.php;
try_files $uri $uri/ /index.php?q=$uri$args;

error_page 404 /index.php;

location ~ \.php$ {
include fastcgi_params;
fastcgi_index index.php;
fastcgi_pass unix:/var/run/php5-fpm.sock;
fastegi_split_path_info "(.+\.php)(/.+)$;
fastcgi_param PATH_INFO $fastcgi_path_info;
fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

A% Create a symbolic link to this configuration and restart nginx

4

$ cd /etc/nginx/sites-enabled

$ sudo 1n -s /etc/nginx/sites-available/filename
$ sudo service nginx restart

Restarting nginx: nginx.

If there are no errors then your virtual host should be set up cool. You can test it by pointing your
browser to it.

