

Magento 2 Development
Essentials

Get up and running with Magento 2 to create custom
solutions, themes, and extensions effectively

Fernando J. Miguel

BIRMINGHAM - MUMBAI

Magento 2 Development Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Production reference: 1220216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-989-7

www.packtpub.com

www.packtpub.com

Credits

Author
Fernando J. Miguel

Reviewers
Michel Arteta

Miguel I. Balparda

Clive Walkden

Commissioning Editor
Veena Pagare

Acquisition Editor
Larissa Pinto

Content Development Editor
Sanjeet Rao

Technical Editor
Anushree Arun Tendulkar

Copy Editor
Shruti Iyer

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Tejal Soni Daruwale

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Fernando J. Miguel is a certified professional scrum master at the Scrum
Alliance, with experience in analysis and web application development since
2003. He has been working in project development using design patterns, MVC,
object-oriented programming, and Agile. He also has experience with content
management systems (CMS), WordPress, Joomla, Magento 2, PHP, Java, Node.js,
Android, SQL, NoSQL, and cloud computing.

Fernando has a bachelor's degree in information systems from Centro Universitário
Módulo, Brazil. He specializes in project management / PMI-PMBOK from
Universidade Cruzeiro do Sul, Brazil. He also specializes in health informatics
from Universidade Federal de São Paulo, Brazil, and he is currently pursuing a
master's degree in electronic engineering and computer informatics from Instituto
de Tecnologia e Aeronáutica (ITA), one of the best technology institutes in Brazil.

I'd like to thank my great professors, masters, and references Adilson
Marques da Cunha, Flávio Marques Azevedo, and Renato Vercesi
Mader for the valuable teachings and professional experience
contribution, which enabled the building of this project.

About the Reviewers

Michel Arteta is a Magento-certified frontend developer, currently working
as a frontend developer at Dow Jones (Innovation Department, Web and Mobile
Development), New York. With more than 5 years of experience in web development,
Michel has a strong background in modern web application development. He
currently lives in New York and can be contacted on Twitter at @michelarteta.

Previously, he has worked for Faro Group, Founder (Magento Development) and
Nano Web Group (Magento Development) in New York.

I would love to thank to my father, mother, and the woman I love,
for her unconditional love and support.

Miguel I. Balparda is a Magento developer, speaker, Linux aficionado, and
full-time traveler.

Clive Walkden is a PHP developer with a passion for learning, constantly looking at
open source frameworks to improve his knowledge of coding. His favorite frameworks
currently are Magento and Laravel.

Clive has over 15 years of programming experience. For the last 5 years, he has been
the lead developer at SOZO Design, an agency in Cheltenham, UK, that focuses on
PHP/SQL websites of all sizes from brochures to international e-commerce websites.

I'd like to thank the author for taking the time to write a book on
how to get started building a website using Magento. It's not an
easy task, and this book accomplishes this very well. Packt, for their
confidence in my knowledge and experience to approach me as a
technical reviewer. I would finally also like to thank my family and
friends for their support and encouragement.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

To my grandmother, Mildes, and my mother, Edneia, wherever they are,
I'm sure they are very happy with my work. To my beloved wife, Elizabete,

for the countless hours of patience with my work.
Love you.

[i]

Table of Contents
Preface	 vii
Chapter 1: Magento Fundamentals	 1

XAMPP PHP development environment	 2
XAMPP installation	 3

XAMPP for Windows installation	 3
XAMPP for Linux installation	 6
XAMPP for OS X installation	 7

Magento	 7
Magento installation	 9
Magento MVC architecture	 13

Summary	 14
Chapter 2: Magento 2.0 Features	 15

The revolution of Magento 2.0	 16
An introduction to the Magento order management system	 19

Sales operations	 20
A simplified checkout process	 21

Orders	 21
Payments	 22
Promotions	 22

Magento 2.0 command-line configuration	 22
The command-line utility	 22
Summary	 26

Chapter 3: Working with Search Engine Optimization	 27
Magento SEO management	 28
Store configuration	 28
SEO and searching	 29
SEO catalog configuration	 32

XML sitemap manager	 33

Table of Contents

[ii]

Google Analytics tracking code	 34
Optimizing Magento pages	 34

CMS pages	 34
Product pages	 36
Category pages	 37

Summary	 39
Chapter 4: Magento 2.0 Theme Development – the Developers'
Holy Grail	 41

The basic concepts of Magento themes	 42
Magento 2.0 theme structure	 42
The Magento Luma theme	 44
Magento theme inheritance	 45
CMS blocks and pages	 47
Custom variables	 47
Creating a basic Magento 2.0 theme	 50

Creating and declaring a theme	 51
Simple product image configuration	 52
Creating static files' directories	 53
Creating a theme logo	 53
Applying the theme	 55

Summary	 57
Chapter 5: Creating a Responsive Magento 2.0 Theme	 59

The CompStore theme	 59
Composer – the PHP dependency manager	 60

Installing Composer on Unix-like operating systems	 61
Installing Composer on Windows	 62

Building the CompStore theme	 62
CSS preprocessing with LESS	 64
Applying new CSS to the CompStore theme	 65
Creating the CompStore logo	 67
Applying the theme	 68
Creating CompStore content	 69
Customizing Magento 2.0 templates	 74
Summary	 75

Chapter 6: Write Magento 2.0 Extensions – a Great Place to Go	 77
Magento development overview	 78
Using the Zend framework	 78
Magento 2.0 extension structure	 78
Developing your first Magento extension	 80

Table of Contents

[iii]

The Twitter REST API	 80
The TweetsAbout module structure	 82
Using TwitterOAuth to authenticate our extension	 83
Developing the module	 84

Controllers	 87
Blocks	 90
Observer	 91
Views	 93
CSS	 97
Deploying the module	 97
Magento Connect	 100
Packaging and publishing your module	 100

Summary	 100
Chapter 7: Go Mobile with Magento 2.0!	 101

Testing the website on different devices	 102
The Google Chrome DevTools device mode	 102

Changing the device preset	 105
Network connectivity	 105
Inspecting media queries	 106
Viewing CSS	 106
Adding custom devices	 107

Responsive Web Designer tester	 108
Adjusting the CompStore theme for mobile devices	 110
The Magento 2.0 responsive design	 110
The Magento UI	 111
Implementing a new CSS mixin media query	 113
Adjusting tweets about extensions for mobile devices	 118
Summary	 122

Chapter 8: Speeding up Your Magento 2.0	 123
Magento Entity-Attribute-Value	 124
Indexing and caching Magento	 125
Indexing and re-indexing data	 125
The Magento cron job	 127
Caching	 128
Fine-tuning the Magento hosting server	 130
Selecting the right Magento hosting service	 130
Apache web server deflation	 131
Enabling the expires header	 132

PHP memory configuration	 133
Optimizing the MySQL server	 133

Table of Contents

[iv]

Minifying scripts	 136
CDN for Magento	 137

Summary	 137
Chapter 9: Improving Your Magento Skills	 139

Magento Connect extensions	 139
Installing a Magento extension	 140
Debugging styles with the Grunt task runner	 141

Magento knowledge center	 145
Improving your Magento skills	 146
Summary	 147

Index	 149

[v]

Preface
Digital buyers are improving economies around the world, and information
technology (IT) provides the necessary subsides to allow customers to buy services
and products over the Internet. According to the research conducted by Statista
(http://goo.gl/BSCiuO), in 2016, 1.12 billion people worldwide are expected to
buy goods and services online.

Since the launch of Amazon.com, the first commercial-free 24-hour e-commerce
website, the universe of software development techniques has evolved, and new
approaches are emerging, such as cloud computing—previously no more than an
embryonic idea, today a concrete application.

The Magento Commerce company, recognized as the leading e-commerce platform
in the 2015 Internet Retailer Top 1000, B2B 300, and Hot 100 lists, is in constant
evolution since the first Magento Community Edition (CE) system version in 2008.
Launched recently, Magento CE 2.0 has great features and takes advantage of the
newest client-server techniques providing a mature e-commerce system and a
promising professional area to explore.

Magento, used by thousands of merchants for their transactions worth billions,
provides the flexibility to customize the content and functionality of your website.
By strengthening your fundamentals in Magento development, you can develop the
best solutions and take advantage of the growing market.

This fast-paced tutorial will provide you with skills you need to successfully create
themes, extensions, and solutions to Magento 2 projects.

This book begins by showing you how to set up Magento 2 before gradually moving
onto setting the basic options of the Sell System. You will take advantage of Search
Engine Optimization aspects, create design and customize theme layout, develop
new extensions, and adjust the Magento System to achieve great performance. By
the end of the book, you will have quickly explored all the features of Magento 2 to
create a great solution.

http://goo.gl/BSCiuO
Amazon.com

Preface

[vi]

With ample examples and a practical approach, this book will ensure your success
with this astonishing e-commerce management system.

Enjoy the read.

What this book covers
Chapter 1, Magento Fundamentals, teaches you how to create a basic environment,
install Magento 2.0, and study some Magento concepts.

Chapter 2, Magento 2.0 Features, helps you discover the features of Magento 2.0 and
configure some basic Magento options.

Chapter 3, Working with Search Engine Optimization, provides you with some
configuration tips to tweak the Magento options for SEO purposes.

Chapter 4, Magento 2.0 Theme Development – the Developers' Holy Grail, gives you an
overview of theme development and techniques of customizing Magento 2.0.

Chapter 5, Creating a Responsive Magento 2.0 Theme, implements a practical project to
create your custom theme.

Chapter 6, Write Magento 2.0 Extensions – a Great Place to Go, provides you with
development techniques by implementing a practical project to create your own
Magento extension.

Chapter 7, Go Mobile with Magento 2.0!, covers techniques of working with Magento
on mobile devices.

Chapter 8, Speeding up Your Magento 2.0, explains good practices to fine-tune your
Magento system and environment to gain performance.

Chapter 9, Improving Your Magento Skills, explores the tools and ways to improve your
skills in the Magento universe.

What you need for this book
You need the following for the projects in this book:

Operating Systems:

•	 Linux, OSX or Windows (7, 8 or 10);

Preface

[vii]

Software:

•	 XAMPP
•	 Browser (Google Chrome or Firefox)
•	 Code editor (Sublime Text, Notepad++ or Atom.io)

Who this book is for
If you are a PHP developer who wants to improve your skills in e-commerce
development by creating themes and extensions for Magento 2, then this book
is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In order to start XAMPP for Windows, you can execute xampp-control.exe."

A block of code is set as follows:

<theme xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNam
espaceSchemaLocation="urn:magento:framework:Config/etc/theme.xsd">
 <title>Magento Luma</title>
 <parent>Magento/blank</parent>
 <media>
 <preview_image>media/preview.jpg</preview_image>
 </media>
</theme>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<Magento root directory>/app/design/frontend/Packt

Any command-line input or output is written as follows:

<Magento root directory>/app/design/frontend/Packt/basic

Preface

[viii]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Complete the installation by pressing the Finish button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.
com/sites/default/files/downloads/Magento_Development_By_Example_
ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/sites/default/files/downloads/Magento_Development_By_Example_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Magento_Development_By_Example_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Magento_Development_By_Example_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Magento Fundamentals
Magento is a highly customizable e-commerce platform and content management
system. Magento is one of the most used e-commerce systems to create online
stores around the world by providing management of inventory, orders, customers,
payments, and much more. It has a powerful scalable architecture.

Are you ready to start on the world of Magento development?

First of all, we will need to set up our environment. In this book, we will cover
how to set up a local environment. It is very important to have this local ecosystem
development to work smoothly and in an agile way.

In every chapter of this book, we will work with a mini project. It's kind of a sprint
to learn the path. In this chapter, our mission is to create a work environment and
understand the basic concepts of Magento (http://magento.com/).

After setting up the environment, you'll study the Magento folder structure and
work on a basic Model View Controller (MVC) software architecture pattern and
Magento basic setup.

Basically, we will work on this chapter with the following topics:

•	 XAMPP PHP development environment
•	 Magento e-commerce system
•	 Magento system structure
•	 Magento basic setup

Are you ready for fun some? Let's go!

http://magento.com/

Magento Fundamentals

[2]

XAMPP PHP development environment
The XAMPP is a complete web development environment. On its install package,
we can find Apache, MySQL, PHP, and Perl. This is everything that you will want
to develop your solutions!

At this time, you can imagine the meaning of XAMPP, but the X before the AMPP
has the meaning of cross or cross-platform. So, we have XAMMP: (X) Cross-platform,
Apache, Maria DB, PHP, and Perl.

The goal of XAMPP is to build an easy-to-install distribution for developers to get
into the world of Apache. XAMPP is a project of Apache Friends (Apache Friends
is a non-profit project to promote the Apache web server).

Why we are working with this software? Let's find out:

•	 Apache (http://httpd.apache.org/): This has been the most popular
web server on the Internet since April 1995 providing secure, efficient,
and extensible HTTP services in sync with the current HTTP standards

•	 MariaDB (https://mariadb.org/): This strives to be the logical choice for
database professionals looking for a robust, scalable, and reliable SQL server

•	 PHP (http://php.net/): This is a popular general-purpose scripting language
that is especially suited to web development; and, most importantly, it is the
main language of Magento

•	 Perl (https://www.perl.org/): This is a highly capable, feature-rich
programming language with over 27 years of development

So far so good, but how about doing some action?

http://httpd.apache.org/
https://mariadb.org/
http://php.net/
https://www.perl.org/

Chapter 1

[3]

XAMPP installation
First of all, let's access the XAMPP website on https://www.apachefriends.org/.

XAMPP has three distinct versions for different operating systems (OS): Windows,
Linux, and OS X. Choose your preferred version to download, and start the
installation process.

XAMPP for Windows installation
XAMPP for Windows has three different kinds of installation files:

•	 Installer: This is a classic Windows installation method
•	 Zip: This method uses compressed files to install manually
•	 7zip: This method uses compressed files to install manually

https://www.apachefriends.org/

Magento Fundamentals

[4]

The (.exe) installer is the most popular process to install. Download it and execute to
start the installation process, shown as follows:

1.	 You can skip FileZilla FTP Server, Mercury Mail Server, and Tomcat for our
installation purposes but feel free to consult Apache Friends Support Forum
for further information at https://community.apachefriends.org.

2.	 On XAMPP, we have the option to use Bitnami (https://bitnami.com/
xampp), but for learning purposes, we will install Magento in a classic way.

https://community.apachefriends.org
https://bitnami.com/xampp
https://bitnami.com/xampp

Chapter 1

[5]

3.	 Complete the installation by pressing the Finish button.

4.	 In order to start XAMPP for Windows, you can execute xampp-control.exe
and start the Apache web server.

5.	 To test if everything is working, type http://localhosturl in your favorite
web browser. You will see the XAMPP start page:

Magento Fundamentals

[6]

XAMPP for Linux installation
XAMPP for Linux has two main versions of installation files:

•	 32-bit version
•	 64-bit version

Choose the file according to your architecture and follow these steps:

1.	 Change the permissions to the installer:
chmod 755 xampp-linux-*-installer.run

2.	 Run the installer:
sudo ./xampp-linux-*-installer.run

XAMPP is now installed below the /opt/lampp directory.

3.	 To start XAMPP, execute this command on terminal:
sudo /opt/lampp/lampp start

4.	 To test if everything is working, type the http://localhost URL in your
favorite web browser. You will see the XAMPP start page:

Chapter 1

[7]

XAMPP for OS X installation
To install XAMPP for OS X, you simply need to follow these steps:

1.	 Download the DMG image file.
2.	 Open the image file to start the installation process.
3.	 The steps are pretty much the same as Windows installation.
4.	 To test if everything is working, type the http://localhost URL in your

favorite web browser. You will see the XAMPP start page:

The XAMPP htdocs folder is the docroot folder of your server. Everything
that you save on htdocs can be accessed via any browser. For example, if you
save index.php inside the htdocs root, you can access this script by entering
http://localhost/index.php. If you save your file in the packt folder, you
can access it by http://localhost/packt/index.php. Piece of cake!

Magento
Magento is an open source content management system for e-commerce websites.
It's one of the most important e-commerce systems, which has grown fast since its
launch in 2008.

Basically, Magento works with two different types of Magento: Community Edition
(CE) and Enterprise Edition (EE). In this book, we will cover CE.

Magento Fundamentals

[8]

On a study provided by aheadWorks (https://aheadworks.com/) in October 2014,
Magento CE has taken the leading position among examined e-commerce platforms.

Now, we have solid concepts about "where we are going". It's very important to
have solids concepts about every aspect that you are working on in this moment.
Globally, e-commerce shows a remarkable potential market and Magento
professionals are welcome.

https://aheadworks.com/

Chapter 1

[9]

Magento installation
First of all, we need to create a user account on the Magento website (http://www.
magento.com) to download Magento CE. Click on the top-menu link My Account
and after clicking the button labeled Register, fill out the form and confirm your
registration.

Once registered, you gain access to download Magento CE. You can access the
Products | Open Source/CE and VIEW AVAILABLE DOWNLOADS menus.

On this page, we have three important options:

•	 Full Release (ZIP with no sample data): This is a complete download of the
last and stable Magento version

•	 Full Release with Sample Data (ZIP with sample data): This is important
to create example products to our store for testing.

•	 Download with Composer: This is the dependency management
installation tool

http://www.magento.com
http://www.magento.com

Magento Fundamentals

[10]

Choose the Full Release with Sample Data (ZIP with sample data) option for
downloading Magento. Extract the compressed files in the XAMPP htdocsfolder
and rename the folder to packt.

Remember to start Apache and MySQL services on the XAMPP
panel before the installation.

Before starting the Magento installation, we'll need to create a new MySQL database
instance to store the Magento data. phpMyAdmin is a MySQL web app to manage
your database and can be accessed at http://localhost/phpmyadmin/.

Click on the Databases menu and the Create database option to create the
packt database.

Now, let's start our Magento installation. On your browser, access
http://localhost/packt/setup.

Chapter 1

[11]

By now, you will see this installation page on your browser:

Let's start the Magento installation by following these steps:

1.	 Readiness Check: Check the environment for the correct PHP version,
PHP extensions, file permissions, and compatibility.

2.	 Add a Database: Fill the database form with your connection information.
By default, you can follow the suggestions given here:

Magento Fundamentals

[12]

3.	 Web Configuration: Enter you store address and admin address here:

4.	 Customize Your Store: In this step you provide the time zone, currency,
and language information:

5.	 Create an Admin Account: Enter with personal login information and set the
admin address to packt-admin.

After all these steps, we are done! Congratulations! We have our first
Magento installation!

You can access your new site by accessing the URL at http://localhost/packt:

Chapter 1

[13]

And you can access the admin area by accessing the URL at http://localhost/
packt/admin-packt:

For more information about Magento installation, access http://devdocs.
magento.com/guides/v2.0/install-gde/bk-install-guide.html.

Magento MVC architecture
MVC is an architectural software pattern that works with three different but
interconnected parts. Its principal mission is to abstract the development work
into interdependent layers providing the best practices to documentation and
organization of software projects.

The Magento e-commerce solution is written with the PHP Zend framework,
which is one of the most powerful PHP frameworks. For more information,
access http://framework.zend.com/.

http://devdocs.magento.com/guides/v2.0/install-gde/bk-install-guide.html
http://devdocs.magento.com/guides/v2.0/install-gde/bk-install-guide.html
http://framework.zend.com/

Magento Fundamentals

[14]

Magento is a configuration-based MVC System. For example, when you develop a
module (we will check this in the next chapters), besides creating new files and
classes to your module, you need to also create a config.xml file. This file contains
all the configuration data for Magento module. These practices abstract some
important information that you can easily edit to set the module as you need.

In this book, we will cover only the very basic Magento software architecture
concepts, but it's highly recommended that you to study more software design
patterns, especially in our case MVC software architecture needs to be understood
well to best experience the field of software development.

Summary
You've now seen what Magento can do; you have installed Magento too. You started
to understand the basic concepts of Magento, and certainly, you'll get more experience
in developing your own Magento solutions by working in the projects of this book.

In the next chapter, we'll work with some Magento Sell System features.

[15]

Magento 2.0 Features
Magento has many features to provide a great experience to the users and developers.
Understanding what Magento can provide is the key to success in the development of
Magento. All Magento developers seek for improvements in this area.

On the Magento Connect site (https://www.magentocommerce.com/magento-
connect/), you can search for uncountable extensions to improve your Magento
solution: Checkout, Cart, Order Management, Gifting, Pricing, and Promotion, and
a lot more. At this point, it is crucial to understand that Magento has a native solution
and how its features can help you think of some great solutions for development.

In the previous chapter, you learned the fundamentals to create a basic local Magento
environment to work with book projects. In this chapter, you will learn how Magento
manages and improves system sell processes.

The following topics will be covered in this chapter:

•	 Magento features
•	 Magento architecture
•	 Magento order management
•	 Magento command-line utility configurations

Have fun!

https://www.magentocommerce.com/magento-connect/
https://www.magentocommerce.com/magento-connect/

Magento 2.0 Features

[16]

The revolution of Magento 2.0
Magento Commerce has promoted important changes between its 1.x and 2.0
versions. Some usual problems of the Magento 1.x version were fixed in this
new version. The following processes/modules have received improvements
in Magento 2.0:

•	 Performance
•	 Payment method
•	 Checkout
•	 Catalog
•	 CMS
•	 Web API
•	 Framework
•	 Setup

All good software or systems pass through incremental improvements for evolving
according to its production environment; it couldn't be different with a commerce
platform that powers over 250,000 online stores worldwide.

Magento 2.0 CE has a flexible architecture and a modular code base; it has a modern
theming and an extensive Application Programming Interface (API). To get a better
performance, Magento 2.0 compresses JavaScript files and images and gives support
to Apache Varnish integration on the server side to enable faster performance.

Security is another subject treated in the Magento 2.0 system. According to its
official documentation (http://goo.gl/E7sPm3), Magento 2.0 has had substantial
enhancements in its security layer:

•	 Enhanced password management
•	 An improved prevention of cross-site scripting (XSS)
•	 Restricted permissions for file access
•	 An improved prevention of click jacking exploits
•	 The use of non-default admin URL

Extensibility and modularity allow Magento to be highly customizable. As an
objected-oriented solution, Magento follows good architectural principles and
coding standards that provide high cohesion and loose coupling.

http://goo.gl/E7sPm3

Chapter 2

[17]

The following diagram illustrates Magento's architecture and how the components
are integrated:

Presentation Layer

Service Layer

Domain Layer

Persistence Layer

Web API
Endpoints

Layouts

Templates

Blocks

Controllers
CSS LESS

JQUERY

REQUIRE.JS

Magento UI Lib

Service Consumers

Data
interfacesService Contracts

Service
interfaces

Models

Resource
Models

MySQL

Web Users
In

cl
ud

es
:

M
ag

en
to

 F
ra

m
ew

or
k

D
ep

en
ds

 o
n/

ca
lls

:

M
ag

en
to

PH
P

co
de

M
ag

en
to

 li
br

ar
ie

s
(L

ES
S

, .
JS

, e
tc

.)
D

ev
el

op
er

D
ep

en
de

nc
ie

s
Ze

nd
,

S
ym

fo
ny

3
Pa

rt
y

Li
br

ar
ie

s

rd

PH
P/

S
ta

nd
ar

ds
PH

P
ex

te
ns

io
ns

PS
R

-0
PS

R
-1

PS
R

-2
PS

R
-3

PS
R

-4

Magento works with PHP Standards Recommendations (PSR). The PSR establishes
the following good programming practices:

•	 PHP extensions: This allows Magento to work with some PHP extension
solutions that are required by Magento, for example, PDO and Memcache.

•	 PSR-0—Autoloading Standard: This enables class autoloading on the PHP
code. It's highly recommended to use PSR-4 instead of PSR-0, but the PSR-0
standard illustrates only the Magento architecture standards.

•	 PSR-1—Basic Coding Standard: These are some good practices to write
the PHP code.

•	 PSR-2—Coding Style Guide: This extends PSR-1, adding the layout
code presentation.

Magento 2.0 Features

[18]

•	 PSR-3—Logger Interface: This exposes eight methods to write logs to the
eight RFC 5424 levels (debug, info, notice, warning, error, critical,
alert, and emergency).

•	 PSR-4—Autoloading Standard: This describes a specification for
autoloading classes from file paths.

To know more about this, access http://www.php-fig.org/psr/.

On Magento Framework, we have some libraries and dependencies of this
architecture. Zend Framework (ZF) is a very important layer of this architecture;
once Magento was written in ZF; as we saw earlier.

Finally, we have Web Users (frontend/backend), Service Consumers
(API and endpoints), Service Layers (interfaces/contracts), and Models
(resources and database).

On the Web Users layer, we can define Magento's main processes as:

•	 Products: This manages the configuration of products in Magento, such as
catalogs, inventory, categories, and attributes

•	 Marketing: This manages promotions, communications, and SEO
•	 Content: This manages the pages content
•	 Customers: This manages and gets information about customers
•	 Sales: This manages cart process, checkout, orders, shipping, and payments
•	 Reports: This generates reports and statics of e-commerce

http://www.php-fig.org/psr/

Chapter 2

[19]

We will discuss these topics in the coming chapters, but now, I'd like to introduce
to you one of the most important processes of any kind of e-commerce: the Sales
layer or Magento Order Management. This is one of the most important things to
understand the Magento development core.

An introduction to the Magento order
management system

On the e-commerce systems, the sell process is one of the most important features of
every online business, providing a good e-commerce life cycle.

Some processes will be triggered when a customer confirms his order. Magento
collects all the customer data and processes the request turning it into an order.
This book will only cover the basic concepts of this process, but it's very important
to understand them to develop consistent Magento extension solutions (we will see
about this in Chapter 6, Write Magento 2.0 Extensions – a Great Place to Go).

Let's take a look at the Magento sales operations basics.

Magento 2.0 Features

[20]

Sales operations
Let's play with the Magento admin area. In your favorite browser, enter the URL
http://localhost/packt/admin-packt. Now, enter with your login credentials
to access the admin area:

In Magento 2.0, you can manage sales operations by accessing the Sales menu in the
admin area. Magento gives you the possibility to configure the following Sales options:

Chapter 2

[21]

These options give you the power to manage your sales system as you want. Though
it's, it's important to explore some Magento tools, extensions, and techniques to take
full advantage and make improvements on your sales system to gather techniques to
develop your own solution:

We have many options to make improvements on sales operations. You can
configure up-sells and cross-sells features, for example, to give your customer
more ways to order on your store. To do so, take advantage of a search engine
optimization, work with a multilingual store, a geo-targeting, responsive design,
and a simplified checkout process.

A simplified checkout process
In this section, we'll see how to implement a simplified checkout process on
our store.

Orders
As a system administrator, you can access the admin area (http://localhost/
mymagento/admin) to get all the customer order information, generate the product
tracking code, invoices, and send a message to your customer. Magento stores all
the order data on the admin area | Sales | Orders.

As an admin, Magento gives you the option to order products directly for your
customer. On Magento, we have a persistent cart, print invoices, credit memo,
and transactions.

Magento 2.0 Features

[22]

Payments
You have a few options of payment methods in Magento. Magento has a native
support to Google Checkout and PayPal. They both are payment gateways that
provide the entire sell transaction environment to your store.

Basically, you choose your payment method and choose how you will pay for
your product: credit card or deposit.

Promotions
With the products prices defined, you can set up promotions in advance. Promotion
systems are very useful to establish a solid relationship with the customer.

In Magento, it is possible to define catalog price rules and shopping cart rules.
Basically, you can define price behavior according to your promotions and customer
defined rules, such as postal code, and certain value of discount.

You can provide coupon codes for your customers to raise Magento sells.

Magento 2.0 command-line configuration
Once you have installed Magento 2.0 CE, you will need to configure some options
and manage the system life cycle according to your specific needs. You can start
your Magento configuration and administration using the command-line utility.

Let's see how this feature works.

The command-line utility
Magento 2.0 has a command-line utility to help developers manage installation and
configuration tasks. The new command-line interface can do the following:

•	 Install Magento
•	 Manage the cache
•	 Manage indexers
•	 Configure and run cron
•	 Compile code
•	 Set the Magento mode
•	 Set the URN highlighter

Chapter 2

[23]

•	 Create dependency reports
•	 Translate dictionaries and language packages
•	 Deploy static view files
•	 Create symlinks to LESS files
•	 Run unit tests
•	 Convert layout into XML files
•	 Generate data for performance testing
•	 Create CSS from LESS (CSS real-time compilation)

To work with this tool, you will need to open a terminal (Linux, OS X) or command
prompt (Windows) and access the <your Magento install dir>/bin directory.
Then, enter with the php magento command to see all the available commands of
the command-line utility:

Remember to configure the PHP path to the system environment
variable to execute the command. For further information, access
http://php.net/manual/en/faq.installation.php.

http://php.net/manual/en/faq.installation.php

Magento 2.0 Features

[24]

Let's play a little bit with the utility by disabling your Magento system cache:

•	 Run the php magento cache:status command. The cache will probably
be enabled.

•	 Run the php magento cache:disable command to disable any cache system.

To know more about cache management in command-utility tools,
access http://goo.gl/c5ivCY.http://goo.gl/c5ivCY.

http://goo.gl/c5ivCY.http://goo.gl/c5ivCY

Chapter 2

[25]

Now let's try to manage Magento indexing. Magento indexing transforms the data
to improve the performance of your system by executing the following commands.
Indexing technique optimizes the price calculations process, for example, and it has
an important role to play in the Magento performance:

•	 Run the php magento indexer:info command to view the lists of indexers
•	 Run the php magento indexer:status command to view the real-time status
•	 Run the php magento indexer:reindex command to rebuild the indexation

Magento indexing was successfully rebuilt, thanks to the command-line utility actions!

You can build cron jobs in a remote server to automate some Magento actions.
For example, create an automation routine to re-index Magento periodically.

I strongly advise you to play more with the command-line utility. You can consult
the online documentation available at http://goo.gl/iVnQSn.

http://goo.gl/iVnQSn

Magento 2.0 Features

[26]

Summary
We started this chapter to get the real bases of Magento power. It's important to get
solid concepts, before you eagerly jump and begin developing Magento solutions.
Take a moment to understand the scope of your project. This will make Magento
development a much more rewarding experience.

Magento has a solid structure to develop your own solutions. You can automate some
tasks using the Magento command-line utility and optimize Magento resources to get
better results.

In the next chapter, we will work with Magento search engine optimization.

[27]

Working with Search
Engine Optimization

Search Engine Optimization (SEO) is a technique to build your site following good
practices established by W3C Consortium and search engines, such as Google, to
increase your site's visitation and ranking. On Magento, we need to configure the
system properly to take advantage of this feature. Nowadays, SEO is a prerequisite
on every website on the Internet.

Magento has a great variety of tools to configure the store of SEO and allows SEO
adjustment for products, categories and CMS page titles, metainformation, and
headings.

SEO application is a constant job; it never ends. Basically, you need to know how
Magento SEO works and what options you have to optimize its working. Magento
is a search engine-friendly e-commerce platform, and you will discover its main
concepts in this chapter.

In this book, you will learn some good techniques and apply them by configuring
the default installation.

The following topics will be covered in this chapter:

•	 Magento SEO management
•	 SEO catalog configuration
•	 XML sitemap manager
•	 Google Analytics tracking code
•	 Optimizing Magento pages, products, and categories

Working with Search Engine Optimization

[28]

Magento SEO management
SEO is the technique of developing a site according to the high standards defined
by the World Wide Web Consortium and search engine companies, such as Google,
in order to provide good content visualization to the users and rank the site in
organic searches.

Magento provides the user with some significant tools for SEO. Let's take a look at
some of these techniques and tools.

Store configuration
By default, Magento's basic installation has the title Magento Commerce on the
header settings. It is very important to choose a strong main title to get the right
amount of traffic on your site. For example, if you are working on the SEO of a
sports store, you can set the main title as My Sports Store to increase the traffic
through the title. When people search for something, they always notice the
earlier words first.

Chapter 3

[29]

To adjust your store settings, you need to navigate to Stores | Configuration |
Design | HTML Head in the Magento admin area (http://localhost/packt/
admin-packt).

Choose a good descriptive title for your Magento commerce. It is possible and
recommended to name all your page titles, including categories and products,
by entering the site title in the Title Suffix field. To give density to the content for
SEO engines by configuring the SEO on CMS pages and products, keep Default
Description and Default Keywords empty.

For a local and nonproduction environment, prevent the indexing of the site by
setting Default Robots to NOINDEX, NOFOLLOW. Otherwise, it is recommended
to set it to INDEX, FOLLOW.

By working on this configuration, you will find that the main SEO parameters
of the <head> tag are automatically fulfilled to be run on Magento commerce.

SEO and searching
Magento has a specific SEO configuration panel for multiple sections. To access
the main Magento SEO configuration, enter in the Magento admin area (http://
localhost/packt/admin-packt), and you will find the panel by clicking on the
menu at Marketing | SEO & Search:

Working with Search Engine Optimization

[30]

Magento 2.0 changed some functionality in comparison with its previous version.
For example, in the URL Rewrites menu, you can manage and define all the URL
addresses of Magento in order to increase the SEO's friendly URLs.

Here, you can simply choose Request Path to edit and enter a description for each of
them, as shown in the following screenshot:

Chapter 3

[31]

In Search Terms, you can define and redirect the URL according to the search made
by the user by adding a new search term:

Finally, in the New Site Map section, you can generate Sitemap of your Magento
installation as shown in the following screenshot:

Working with Search Engine Optimization

[32]

SEO catalog configuration
Magento has a special panel to take care of the catalog categories of SEO. To
access this panel, navigate to Stores | Configuration | Catalog | Search Engine
Optimization, as follows:

This panel has the following options:

•	 Popular Search Terms: This allows pages to display your most popular
search phrases. Set this to Yes.

•	 Product URL Suffix: This is the suffix that is added to the end of your
product URLs.

•	 Category URL Suffix: This is the suffix that is added to the end of your
category URLs.

•	 Use Categories Path for Product URLs: This includes the category URL
in your URL string.

•	 Create Permanent Redirect for URLs if URL Key Changed: This
automatically creates a redirect via the URL Rewrites' module in
Magento if the URL key is changed in any page on your website.

•	 Page Title Separator: This separates the page titles on the frontend of
your store.

Chapter 3

[33]

•	 Use Canonical Link Meta Tag For Categories: This displays the main
version of the category page. This is picked up by search engines to avoid
duplicate content.

•	 Use Canonical Link Meta Tag For Products: This has the same functionality
as the previous item, but it works on the products layer.

Source: http://slpxya.appspot.com/moz.com/ugc/
setting-up-magento-for-the-search-engines.

With these options, you can choose the best strategy for SEO on catalog's default
options. Magenta gives the administrator the opportunity to tune these options on
catalog pages. We will work this out later in this chapter.

XML sitemap manager
Magento automatically generates an XML sitemap for your store and also keeps it up
to date. In order to enable this, navigate to Stores | Configuration | Catalog | XML
Sitemap. Magento has the following options for this section:

Basically, with these options, it is possible to choose the frequency and priority
of updates. You may set additional options, such as Start Time and Error
Notifications, only in the GENERAL settings tab. It's important to configure
the cron job functionality in your web server to enable this feature.

http://slpxya.appspot.com/moz.com/ugc/setting-up-magento-for-the-search-engines
http://slpxya.appspot.com/moz.com/ugc/setting-up-magento-for-the-search-engines

Working with Search Engine Optimization

[34]

Google Analytics tracking code
Google Analytics helps track all the statistics for your site. To add Google Analytics
on Magento, generate a tracking code on your Google Analytics account (http://
analytics.google.com) first of all. After this, navigate to System | Configuration |
Google API.

This option works only on hosted Magento sites (that is, the remote server). Take note
of this for when you work on a remote production Magento site. For the purposes of
this book, it isn't necessary, but you need to keep this option in mind when you start
to work on remote projects.

Optimizing Magento pages
Once you make Magento SEO system configurations, it's time to set specific options
directly on Magento pages. This Magento SEO flow gives the user the flexibility to
focus on content and page ranking.

CMS pages
The Magento Content Management System (CMS) manager is a very simple but
powerful tool that provides us with control over each aspect of the Magento page.
To access Magento CMS pages configuration in the admin area, go to Content |
Pages, as shown in the following screenshot:

http://analytics.google.com
http://analytics.google.com

Chapter 3

[35]

Magento's default installation provides some demo content to test CMS pages.
Check the Home Page content by selecting the Edit option.

For the purpose of SEO, Magento's CMS page administration has two main SEO side
menus: Page Information and Meta Data.

In Page Information, you can set the following options:

•	 Page Title: This should correspond to the main title of the page
•	 URL Key: This is very important to set a great Search Engine Friendly (SEF)

URL identifier to increase SEO ranking
•	 Store View: Here, you can choose the views on the page
•	 Status: This has simple Enabled and Disabled options.

In Meta Data, you can set the following options:

•	 Keywords: Here, enter the keywords that correspond to your site's scope.
•	 Description: Make sure to use this field the right way. A good description

means a good chance of increasing access and sales.

The content of your page must be aligned with the metadata for a good
SEO implementation.

Working with Search Engine Optimization

[36]

Product pages
This is the most important layer in a Magento store. Besides providing a lot of
options to configure the product to be sold, this also makes it possible to tune the
SEO configuration to increase sales through the search engine page ranking system.
In order to access Product options, navigate to Products | Catalog, as shown in the
following screenshot:

Click on the first product of the list to take a look at the SEO options. For the purpose
of SEO, Product Details has the following options:

•	 Name: You need to make this descriptive; think about what people might
search for

•	 Description: Here, you must detail the product as much as possible to make
your content unique and helpful to users

•	 Categories: This is the category of the product.

Chapter 3

[37]

Search Engine Optimization has the following options:

•	 URL Key: This is the URL that the product will be visible on. If the product
has a version number or some specific detail, try to put this on the URL.

•	 Meta Information: Choose the best Meta Title, Meta Keywords, and Meta
Description input for your product.

Every single product gives the administrator these options to tune SEO on a
Magento website.

Category pages
Magento category pages have great SEO options. As you can note, all the content
pages on Magento give us administration options to manage SEO. Every aspect on
Magento configuration is integrated to provide the user with the best experience.

Working with Search Engine Optimization

[38]

To access the Categories configuration, navigate to Products | Categories on the
admin dashboard, as shown in the following screenshot:

This will provide an option to create a new category, and in the side menu, it is
possible to check all the categories registered on Magento. For the purpose of SEO,
Magento has the following options in this section:

•	 Name: This is the category name.
•	 Description: This is the description of the category. Focus on using keywords

strategically for SEO.
•	 Page Title: This refers to the metatitle. Enter your keyword with a few words

to describe the page.
•	 Meta Keywords: Here, enter the keywords separated by commas.
•	 Meta Description: This is a very important option, so make sure that your

description covers the products that you're selling and reinforces your brand.

Make sure to follow a pattern in your content referring to SEO.

Chapter 3

[39]

Summary
Magento SEO is a powerful tool to increase sales. As a developer, it is very important
to keep these options and techniques in mind to create mechanisms that would get
better results for Magento users through new extensions and customizations.

In this chapter, we discussed the following:

•	 Magento SEO management
•	 SEO catalog configuration
•	 XML sitemap manager
•	 Google Analytics tracking code
•	 Optimizing Magento pages, products, and categories

In the next chapter, we will cover Magento theme development and customization.
We have a lot of work coming up!

[41]

Magento 2.0 Theme
Development – the

Developers' Holy Grail
Magento 2.0 has a complex control of its themes. It works with multiple directories to
generate the final result for the user on its frontend.

In this chapter we will consolidate the basic concepts that you need to create your
very first example of Magento theme and activate it.

At the end of this chapter, you will be able to create the basic structure of your own
theme. The following topics are covered in this chapter:

•	 The basic concepts of Magento themes
•	 Magento 2.0 theme structure
•	 The Magento Luma theme
•	 Magento theme inheritance
•	 CMS blocks and pages
•	 Custom variables
•	 Creating a basic Magento 2.0 theme

Magento 2.0 Theme Development – the Developers' Holy Grail

[42]

The basic concepts of Magento themes
According to the official documentation available at http://goo.gl/D4oxO1,
a Magento theme is a component that provides the visual design for an entire
application area using a combination of custom templates, layouts, styles, or
images. Themes are implemented by different vendors (frontend developers)
and intended to be distributed as additional packages for Magento systems
similar to other components.

Magento has its own particularities because it is based on Zend Framework and
consequently adopts the MVC architecture as a software design pattern. When the
Magento theme process flow becomes a subject, you have some concerns to worry
about when you plan to create your own theme. Let's focus on these concepts to
create our own theme by the end of this chapter.

Magento 2.0 theme structure
Magento 2.0 has a new approach toward managing its themes. Generally,
the Magento 2.0 themes are located in the app/design/frontend/<Vendor>/
directory. This location differs according to the built-in themes, such as the
Luma theme, which is located in vendor/magento/theme-frontend-luma.

The different themes are stored in separate directories, as in the following screenshot:

Each vendor can have one or more themes attached to it. So, you can develop
different themes inside the same vendor.

http://goo.gl/D4oxO1

Chapter 4

[43]

The theme structure of Magento 2.0 is illustrated as follows:

How the Magento theme structure works is quite simple to understand: each
<Vendor>_<Module> directory corresponds to a specific module or functionality
of your theme. For example, Magento_Customer has specific .css and .html files to
handle the Customer module of the Magento vendor. Magento handles a significant
number of modules. So, I strongly suggest that you navigate to the vendor/magento/
theme-frontend-luma folder to take a look at the available modules for the default
theme.

In the Magento 2.0 structure, we have three main files that manage the theme
behavior, which are as follows:

•	 composer.json: This file describes the dependencies and meta information
•	 registration.php: This file registers your theme in the system
•	 theme.xml: This file declares the theme in system and is used by the

Magento system to recognize the theme

All the theme files inside the structure explained previously can be divided into
static view files and dynamic view files. The static view files have no processing by
the server (images, fonts, and .js files), and the dynamic view files are processed by
the server before delivering the content to the user (template and layout files).

Magento 2.0 Theme Development – the Developers' Holy Grail

[44]

Static files are generally published in the following folders:

•	 /pub/static/frontend/<Vendor>/<theme>/<language>

•	 <theme_dir>/media/

•	 <theme_dir>/web

For further information, please access the official Magento theme
structure documentation at http://goo.gl/ov3IUJ.

The Magento Luma theme
The Magento CE 2.0 version comes with a new theme named Luma that implements
Responsive Web Design (RWD) practices.

The Luma theme style is based on the Magento user interface (UI) library and uses
CSS3 media queries to work with screen width, adapting the layout according to
device access.

http://goo.gl/ov3IUJ

Chapter 4

[45]

The Magento UI is a great toolbox for theme development in Magento 2.0 and
provides the following components to customize and reuse user interface elements:

•	 The actions toolbar
•	 Breadcrumbs
•	 Buttons
•	 Drop-down menus
•	 Forms
•	 Icons
•	 Layout
•	 Loaders
•	 Messages
•	 Pagination
•	 Popups
•	 Ratings
•	 Sections
•	 Tabs and accordions
•	 Tables
•	 Tooltips
•	 Typography
•	 A list of theme variables

The Luma theme uses some of the blank theme features to be functional. The Magento
2.0 blank theme, available in the vendor/magento/theme-frontend-blank folder,
is the basic Magento theme and is declared as the parent theme of Luma. How is this
possible? Logically, Magento has distinct folders for every theme, but Magento is too
smart to reuse code; it takes advantage of theme inheritance. Let's take a look at how
this works.

Magento theme inheritance
The frontend of Magento allows designers to create new themes based on the basic
blank theme, reusing the main code without changing its structure. The fallback
system is a theme's inheritance mechanism and allows developers to create only
the files that are necessary for customization.

Magento 2.0 Theme Development – the Developers' Holy Grail

[46]

The Luma theme, for example, uses the fallback system by inheriting the blank
theme basic structure. The Luma theme parent is declared in its theme.xml file
as follows:

<theme xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNam
espaceSchemaLocation="urn:magento:framework:Config/etc/theme.xsd">
 <title>Magento Luma</title>
 <parent>Magento/blank</parent>
 <media>
 <preview_image>media/preview.jpg</preview_image>
 </media>
</theme>

Inheritance works similar to an override system. You can create new themes using
the existent ones (parents) and by replacing (that is, overriding) an existing file with
the same name but in your specific theme folder (child).

For example, if you create a new theme in the app/design/
frontend/<Vendor>/<theme>/ folder and declare Magento/blank as a parent
theme, the theme.xml file and registration.php, you have the entire blank theme
structure ready to work in your new theme, including RWD layouts and styles.

Let's say that you have a specific .css file available in the <theme_dir>/web/css
folder. If you delete this file, the fallback system will search the file in the <parent_
theme_dir>/web/css folder, as shown in the following figure:

Chapter 4

[47]

CMS blocks and pages
Magento has a flexible theme system. Beyond Magento code customization, the
admin can create blocks and content on the Magento admin panel, such as Home
Page, About us, or any static page that you want to create. CMS pages and blocks
on Magento give you the power to embed HTML code in your page.

You can create or edit pages and blocks by accessing the Admin area
(http://localhost/packt/admin_packt) by navigating to Content | Pages.

Custom variables
Custom variables are pieces of HTML code that contain specific values as
programming variables. By creating a custom variable, you can apply it to multiple
areas on your site. An example of the custom variable structure is shown here:

{{config path="web/unsecure/base_url"}}

This variable shows the URL of the store.

http://localhost/packt/admin_packt

Magento 2.0 Theme Development – the Developers' Holy Grail

[48]

Now, let's create a custom variable to see how it works. Perform the following steps:

1.	 Open your favorite browser and access the admin area through
http://localhost/packt/admin_packt.

2.	 Navigate to System | Custom Variables
3.	 Then, click on the Add New Variable button.

4.	 In the Variable Code field, enter the variable in lowercase with no
spaces—for example, dev_name.

5.	 Enter the variable name, which explains the variable purpose.
6.	 Enter the HTML and plain text values of the custom variable in the

Variable HTML Value and Variable Plain Value fields and save it.

Chapter 4

[49]

Now, we have a custom variable that stores the developer's name. Let's use this
variable inside the CMS About Us page via the following steps:

1.	 In the Admin area, navigate to Content | Pages.
2.	 Click to edit the About Us item.
3.	 Then, click on the Content side menu.
4.	 Click on the Show / Hide Editor button to hide the HTML editor.
5.	 Put the following code at the end of the content:

{{CustomVar code="dev_name"}}

6.	 Finally, save the content.

Magento 2.0 Theme Development – the Developers' Holy Grail

[50]

Let's take a look at the result in the following screenshot:

Creating a basic Magento 2.0 theme
After understanding the basic Magento 2.0 theme structure, you have the right
credentials to go to the next level: creating your own theme. In this chapter, we will
develop a simple theme and activate it on the Magento Admin panel. The basic idea is
to give you the right directions to Magento theme development and provide you with
the tools to let your imagination fly around the creation of various Magento themes!

Before starting the creation, let's disable Magento cache management. It is important
when you work with Magento development to get updates in real time. You learned
about cache management in Chapter 2, Magento 2.0 Features:

1.	 Open the terminal (Linux, OS X) or command prompt (Windows) and access
the <your Magento install dir>/bin directory.

2.	 Then, run the php magento cache:disable command to disable all the
cache systems.

Chapter 4

[51]

Creating and declaring a theme
To create a basic theme structure, follow these steps:

1.	 Create a new vendor directory named Packt at the following path:
<Magento root directory>/app/design/frontend/Packt

2.	 Under the Packt directory, create the theme directory named basic by
executing the following:
<Magento root directory>/app/design/frontend/Packt/basic

The next step is to declare the theme information for Magento to recognize it as a
new theme. Perform the following:

1.	 Open your preferred code editor (Sublime Text2, TextMate, Atom.io).
2.	 Create a new file named theme.xml under your theme directory

(app/design/frontend/Packt/basic/theme.xml).
3.	 Use the following code in the theme.xml file and save the file:

<theme xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:n
oNamespaceSchemaLocation="urn:magento:framework:Config/etc/theme.
xsd">
 <title>Basic theme</title>
 <parent>Magento/blank</parent>
 <!-- <media>
 <preview_image>media/preview.jpg</preview_image>
 </media>-->
</theme>

Magento 2.0 Theme Development – the Developers' Holy Grail

[52]

This is a basic declaration for the Magento system to recognize our theme as an
official theme. This code configures the theme name, parent, and preview image.
The preview image is a preview for basic visualization purposes. We don't have
a preview image right now, which is the why the code is commented; avoid
unnecessary errors.

Once we have the basic configurations, we need to register the theme in the
Magento system:

1.	 Open your preferred code editor (Sublime Text2, TextMate, or Atom.io).
2.	 Create new file named registration.php under your theme directory

(app/design/frontend/Packt/basic/registration.php).
3.	 Use the following code in registration.php and save the file:

<?php
/**
 * Copyright © 2016 Magento. All rights reserved.
 * See COPYING.txt for license details.
 */
\Magento\Framework\Component\ComponentRegistrar::register(
 \Magento\Framework\Component\ComponentRegistrar::THEME,
 'frontend/Packt/basic',
 __DIR__
);

This code simply registers our theme in the Magento system by passing a parameter
of your new theme's structure directory.

Simple product image configuration
In your theme, you can configure the image properties of the products in the
Magento Catalog module by creating the view.xml file. You can control this
specific configuration using the id attribute of every product's HTML5 element:

1.	 Open your preferred code editor (Sublime Text2, TextMate, or Atom.io).
2.	 Create a new directory named etc under your theme directory (app/

design/frontend/Packt/basic/etc).
3.	 Create a new file named view.xml under your etc directory (app/design/

frontend/Packt/basic/etc/view.xml).
4.	 Then, use the following code in view.xml and save the file:

<image id="category_page_grid" type="small_image">
 <width>250</width>

Chapter 4

[53]

 <height>250</height>
</image>

In the view.xml file, we declared the values of the width and height of the product
image. The id and type attributes specified the kind of image that this rule will be
applied to.

For further information, visit http://goo.gl/73IQSz.

Creating static files' directories
The static files (images, .js files, .css files, and fonts) will be stored in the web
directory. Inside the web directory, we will organize our static files according to its
scope. Create a new directory named web under your directory app/design/
frontend/Packt/basic/web theme and create the following directory structure:

With this simple structure, you can manage all the static files of your custom theme.

Creating a theme logo
By default in Magento 2.0, the theme logo is always recognized by the system by
the name logo.svg. Magento 2.0 also recognizes the logo's default directory as
<theme_dir>/web/images/logo.svg. So, if you have a logo.svg file, you can
simply put the file in the right directory.

However, if you want to work with a different logo's name with a different format,
you have to declare it in the Magento system. We will make a declaration with this
new logo in the Magento_Theme directory because the new logo is a customization
of the Magento_Theme module. We will override this module by taking advantage
of the fallback system. As you may note, Magento has a specific pattern of declaring
elements. This is the way in which Magento organizes its life cycle.

http://goo.gl/73IQSz

Magento 2.0 Theme Development – the Developers' Holy Grail

[54]

Let's declare a new theme logo by performing the following steps:

1.	 Choose one logo for the example and save the file as logo.png in the app/
design/frontend/Packt/basic/Magento_Theme/web/images directory.

2.	 Open your preferred code editor (Sublime Text2, TextMate, or Atom.io).
3.	 Create new file named default.xml under your layout directory (app/

design/frontend/Packt/basic/Magento_Theme/layout).
4.	 Use the following code in default.xml and save the file:

<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:n
oNamespaceSchemaLocation="urn:magento:framework:View/Layout/etc/
page_configuration.xsd">
 <body>
 <referenceBlock name="logo">
 <arguments>
 <argument name="logo_file" xsi:type="string">
Magento_Theme/images/logo.png
</argument>
 <argument name="logo_img_width" xsi:type="number">
your_logo_width
</argument>
<argument name="logo_img_height" xsi:type="number">
your_logo_height
</argument>
 </arguments>
 </referenceBlock>
 </body>
</page>

This declaration has three different arguments to manage three attributes of your
new logo: filename, width, and height. Don't forget to replace the your_logo_width
and your_logo_height attributes with the correct size of the logo that you choose.

The logo_file argument seems to be wrong because we created our image in the
Magento_Theme/web/images directory; however, thank God this is not true. I'll
explain: when we activate the new theme, Magento processes the static files and
copies them to the pub/static directory. This occurs because static files can be
cached by Magento, and the correct directory for this is pub. So, we need to create
the web directory for Magento to recognize the files as static files.

Chapter 4

[55]

The final theme directory structure is illustrated as follows:

Applying the theme
Once we have the theme ready to launch, we need to activate it in the Magento
admin dashboard:

1.	 First, access the Magento admin area URL (http://localhost/packt/
admin_packt) in your favorite browser.

2.	 Navigate to Stores | Configuration | Design.

Magento 2.0 Theme Development – the Developers' Holy Grail

[56]

3.	 Then, select the Basic theme option as your Design Theme value and save
the configuration.

Navigate to the home page of your site by accessing the http://localhost/packt
URL to see the final result:

Chapter 4

[57]

Summary
Now, you have all the basic concepts to create a custom theme for Magento and all
the information to think in terms of the Magento structure when an idea for your
new design comes to mind.

In this chapter, you learned the basic concepts of Magento 2.0 themes, how theme
inheritance (that is, the fallback system) works, and which directories Magento uses
to create its themes according to the admin area configurations. Finally, you created
your own basic theme with these examples.

However, what about creating a quality theme? Is it possible with the knowledge
acquired in this chapter? Of course! We will go to the next level in the next chapter
and create a responsive theme by example.

[59]

Creating a Responsive
Magento 2.0 Theme

In the previous chapter, you learned the fundamentals of creating a custom Magento
2.0 theme, and we created the basic structure by example. In this chapter, we will
create our own theme project called the CompStore theme.

The following topics will be covered in this chapter:

•	 Developing the CompStore theme
•	 Introduction to Composer Dependency Manager
•	 CSS preprocessing with LESS
•	 Creating new content for the CompStore theme
•	 Developing a custom CompStore theme using CSS
•	 Creating a custom template

The CompStore theme
The CompStore theme project is the new Magento 2.0 theme that you will
develop for a hypothetical computer store client or for a theme marketplace
such as http://themeforest.net/. I strongly suggest you to take a look at
the Become an author page at http://themeforest.net/become_an_author
in order to explore the options to monetize your Magento theme development
expertise. Logically, you have to work harder before publishing and selling your
own theme solution, but it will be worth it!

http://themeforest.net/
http://themeforest.net/become_an_author

Creating a Responsive Magento 2.0 Theme

[60]

Magento 2.0 themes and modules work with the Composer (https://getcomposer.
org/) dependency manager for PHP to generate a reliable deployment of Magento
components. This is a great evolution in the Magento universe because this
management can provide a powerful environment for the deployment of modules
and themes. So, we will create a composer file for our new theme solution.

Before we start the theme development, let's take a look at Composer.

Composer – the PHP dependency
manager
Inspired by npm (https://www.npmjs.com/) and bundler (http://bundler.io/),
Composer (https://getcomposer.org/) manages the dependencies of your project
and installs packages in predetermined directories (for example, vendor) using the
composer.json file in the Magento module or theme. This kind of management is
very useful once each library has your specific dependency. Composer doesn't let
you waste your time by connecting the dependencies to every deployment that you
want to do.

https://getcomposer.org/
https://getcomposer.org/
https://www.npmjs.com/
http://bundler.io/
https://getcomposer.org/

Chapter 5

[61]

In the next chapters, we will use Composer to install components on Magento.
However, first, we will start the development of our theme; it is necessary to declare
our composer.json file. For now, let's install Composer on the operating system.

Installing Composer on Unix-like operating
systems
To install Composer on Unix-like systems (such as Unix, Linux, and OS X), you
simply need to run these two commands in the terminal:

$ curl -s https://getcomposer.org/installer | php

$ sudo mv composer.phar /usr/local/bin/composer

The first command downloads the composer.phar installation file. The second
command moves the file to the bin directory to install Composer globally on
your computer.

Run the following command to check whether Composer was successfully installed:

$ composer

The $ composer command lists all the available Composer commands and
their descriptions:

Creating a Responsive Magento 2.0 Theme

[62]

Installing Composer on Windows
To install Composer on Windows, you simply have to download and execute
Composer-Setup.exe, which is available on https://getcomposer.org/Composer-
Setup.exe.

This executable file will install the latest Composer version and set up your path to
use the composer command in the command prompt window. Open the command
prompt window and run command composer to get the list of available commands
of Composer.

Building the CompStore theme
As you noted in the previous chapter, Magento can store different themes inside the
same vendor scope. The proposal project called CompStore will be a template of the
Packt vendor. This is the same vendor created in the previous chapter.

First of all, it is important to build the theme directory in the Packt vendor directory
(<Magento root directory>/app/design/frontend/Packt/compstore). Create
this folder as the following image suggests:

The etc directory usually handles the XML configuration of some components.
The Magento_Theme directory will override the native Magento_Theme module by
adding new functionalities. The media directory will store the preview image of the
CompStore theme. Meanwhile, the web directory would have store CSS and image
files by now.

The Compstore theme will have Luma as the parent theme. This example shows you
the power of the abstraction used in Magento theme projects. Create the theme.xml
file in the Packt/compstore directory with the following code:

<theme xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNam
espaceSchemaLocation="urn:magento:framework:Config/etc/theme.xsd">
 <title>CompStore Electronics</title>

https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/Composer-Setup.exe

Chapter 5

[63]

 <parent>Magento/luma</parent>
 <media>
 <preview_image>media/preview.jpg</preview_image>
 </media>
</theme>

The theme.xml file declares the title and parent of the CompStore theme. Create
a simple preview.jpg image with a size of 800 x 800 and save it in the Packt/
compstore/media directory. For example, the Magento logo is centered at the
image size of 800 x 800.

This image shows the preview of the new theme, but as you don't have a preview
yet, you can create a placeholder for now.

The next step is creating the registration.php file in the Packt/compstore
directory with the following code:

<?php

\Magento\Framework\Component\ComponentRegistrar::register(
 \Magento\Framework\Component\ComponentRegistrar::THEME,
 'frontend/Packt/compstore',
 __DIR__
);

In the registration.php file, the CompStore theme of the Packt vendor registers
the new theme of the Magento system.

The theme.xml and registration.php files were created earlier. By now, I think
you are very comfortable with the structure of these files because you worked with
them in the basic theme and now in the CompStore theme. This point forward, you
will be introduced to some new concepts of theme development in Magento 2.0,
starting with the creation of the composer.json file. Create the composer.json file
in the Packt/compstore directory with the following code:

{
 "name": "packt/compstore",
 "description": "CompStore electronics theme",
 "require": {
 "php": "~5.5.0|~5.6.0|~7.0.0",
 "magento/theme-frontend-luma": "~100.0",
 "magento/framework": "~100.0"
 },
 "type": "magento2-theme",
 "version": "1.0.0",
 "license": [

Creating a Responsive Magento 2.0 Theme

[64]

 "OSL-3.0",
 "AFL-3.0"
],
 "autoload": {
 "files": ["registration.php"]
 }
}

This file has the .json (http://www.json.org/) format and handles important
information of the project and its dependencies. As we discussed earlier, this
kind of control is crucial because it generates more organization for your project.
Let's navigate to the principal parameters of the composer.json file:

•	 Name: This refers to the name of the component
•	 Description: This provides the description of the component
•	 Require: These are the dependencies of the project (the PHP version and the

Magento libraries)
•	 Type: This describes the type of component (the theme or module)
•	 Version: This describes the version of the component
•	 License: This parameter describes the licenses applied on a component

(Open Source License or Academic Free License)
•	 Autoload: This parameter defines the files and classes that will be autoloaded

upon component activation.

CSS preprocessing with LESS
Before applying CSS in the CompStore Magento theme, it is important to study CSS
behavior in the Magento system. The stylesheets in Magento 2.0 are preprocessed
and compiled to CSS using the LESS technology. LESS (http://lesscss.org/) is
a CSS preprocessor that extends the CSS traditional features by including variables
and functions to generate a powerful CSS code and saves the time in maintaining
the code.

All the .less files that you will save in your theme are compiled by the LESS engine
but you will always declare .css in the Magento theme frontend. Here are a couple
of examples:

•	 Frontend declaration: <css src="css/styles.css" />
•	 Root source file: <Magento _theme_dir>/web/css/styles.less

For further information, access the Magento 2.0 official documentation at
http://goo.gl/XLkOcQ.

http://www.json.org/
http://lesscss.org/
http://goo.gl/XLkOcQ

Chapter 5

[65]

Applying new CSS to the CompStore
theme
A CompStore theme inherits the Luma theme, which in turn inherits a blank theme,
as shown here:

Once you have to make changes in CompStore in order to customize the new theme,
you can think about the functionalities already available in the other themes to apply
your changes.

The vendor directory under the Magento 2.0 root directory handles all the native
Magento modules and themes. The Magento blank and Luma themes, which you
have been working on until now, are available in vendor/magento/theme-frontend-
blank and vendor/magento/theme-frontend-luma, respectively. So, the CompStore
theme "receives" all the features of the themes under these folders. It's important to fix
these basic concepts to understand the context that you inserted when you developed a
Magento theme solution.

Once you have a solid concept about the behavior, let's create a custom .css file for
the CompStore theme:

1.	 Copy the packt/vendor/magento/theme-frontend-blank/web/css/_
styles.less file to the packt/app/design/frontend/Packt/compstore/
web/css location

Creating a Responsive Magento 2.0 Theme

[66]

2.	 Open the copied file and insert an import command as the following example:
@import 'source/lib/_lib.less';
@import 'source/_sources.less';
@import 'source/_components.less';
@import 'source/compstore.less';

3.	 Save the file.
4.	 Now, open your favorite code editor and create the compstore.less file

under the packt/app/design/frontend/compstore/web/css/source
directory and type this code:
@color-compstore: #F6F6F6;

body{
background: @color-compstore;
}

5.	 Using override, let's change the product page color schema by creating the
_theme.less file under the packt/app/design/frontend/compstore/web/
css/source directory. Execute the following:
//Change color of elements in Product Page
@color-catalog: #4A96AD;
@page__background-color: @color-catalog;
@sidebar__background-color: @color-gray40;
@primary__color: @color-gray80;
@border-color__base: @color-gray76;
@link__color: @color-gray56;
@link__hover__color: @color-gray60;
@button__color: @color-gray20;
@button__background: @color-gray80;
@button__border: 1px solid @border-color__base;
@button-primary__background: @color-orange-red1;
@button-primary__border: 1px solid @color-orange-red2;
@button-primary__color: @color-white;
@button-primary__hover__background: darken(@color-orange-red1,
5%);
@button-primary__hover__border: 1px solid @color-orange-red2;
@button-primary__hover__color: @color-white;
@navigation-level0-item__color: @color-gray80;
@submenu-item__color: @color-gray80;
@navigation__background: @color-gray40;
@navigation-desktop-level0-item__color: @color-gray80;
@navigation-desktop-level0-item__hover__color: @color-gray34;

Chapter 5

[67]

@navigation-desktop-level0-item__active__color: @navigation-
desktop-level0-item__color;
@tab-control__background-color: @page__background-color;
@form-element-input__background: @color-gray89;
@form-element-input-placeholder__color: @color-gray60;
@header-icons-color: @color-gray89;
@header-icons-color-hover: @color-gray60;

With the compstore.less and _theme.less files, the background and product page
colors will change according to the new proposal of the CompStore theme.

Creating the CompStore logo
You can create a new logo for learning purposes using the Logomakr free online
service (http://logomakr.com/). It's a pretty easy tool.

I created this logo for the CompStore theme using Logomakr:

http://logomakr.com/

Creating a Responsive Magento 2.0 Theme

[68]

My CompStore proposal of the logo was made in Logomakr, which is a solution
developed by Webalys (http://www.streamlineicons.com) and FlatIcon
(http://www.flaticon.com) and licensed under Creative Commons by 3.0
(http://creativecommons.org/licenses/by/3.0). If you use this solution
for other projects, don't forget to give the due credit to Logomakr.

After finishing the logo, save it under the app/design/frontend/Packt/
compstore/Magento_Theme/web/images/logo.png path.

You can feel free to use your own solution for logo instead of using Logomakr.

Applying the theme
As you learned in the previous chapter, it's time to activate the new theme. Activate
the CompStore Electronics theme in the Admin area (http://localhost/packt/
admin_packt) to see the following result:

Sometimes, when you update in the Magento structure or activate a new theme, you
need to deploy the theme and module changes. If you want to deploy your changes,
follow these steps:

1.	 Open the terminal or command prompt.
2.	 Delete the packt/pub/static/frontend/<Vendor>/<theme>/<locale>

directory.
3.	 Delete the var/cache directory.
4.	 Delete the var/view_preprocessed directory.
5.	 Then, access the packt/bin directory.
6.	 Run the php magento setup:static-content:deploy command.

http://www.streamlineicons.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0
http://localhost/packt/admin_packt
http://localhost/packt/admin_packt

Chapter 5

[69]

7.	 In some cases, it is necessary to give write permissions again to
the directories.

Creating CompStore content
Once the new theme is activated, it's time to handle the content by creating some
options and configuring the products and categories.

To create new categories, you will need access the Admin area (http://localhost/
packt/admin_packt) and follow this recipe:

1.	 Navigate to the Products | Categories menu.
2.	 Delete all the subcategories of Default Category by clicking on them and

pressing the Delete Category button.
3.	 Create three new subcategories of Default Category named Notebook,

Desktops, and Peripherals. Be sure to set to Yes the Include in Navigation
Menu option for each category.

In the Add Category option, you have option to fill the Description, Page Title, and
Meta Information areas for SEO purposes, as shown in the following screenshot:

Creating a Responsive Magento 2.0 Theme

[70]

To create new products, you will need access to the Admin area
(http://localhost/packt/admin_packt) and follow this recipe:

1.	 Access the Admin area (http://localhost/packt/admin_packt) and
navigate to Products | Catalog.

2.	 Click on the Add Product button.
3.	 In the New Product page, enter all the required Product Information input.
4.	 Set the values of Price and Quantity categories.
5.	 Choose an image to upload.
6.	 Choose In Stock for the Stock Availability field.
7.	 Choose Main Website in the Websites tab.
8.	 Save your new product.
9.	 You can add three to nine products for testing purposes.

Magento has a widget management system that allows the flexibility of the content.
The widget helps create a specific list of new products in the home page. To create a
new widget, follow these steps:

1.	 Navigate to Content | Widgets
2.	 Click on the Add Widget button
3.	 Then, in the StoreFront properties, perform the following:

1.	 Select CMS Static Block as Type and Compstore Electronics as
Design Theme.

2.	 Type Home Page in the Widget title field.

Chapter 5

[71]

3.	 Select the All Store Views option.

4.	 In Layout Updates, select the following options:
°° For the Display on field, select the Specified Page option
°° In the Page field, select the CMS Home Page option
°° In the Container field, select the Main Content Area option
°° The Template field should be CMS Static Block Default Template

Creating a Responsive Magento 2.0 Theme

[72]

4.	 In Widget Options, perform the following:
1.	 Select Home Page Block.
2.	 Then, click on the Save button.

The default block configuration contains the images and products of the Luma
theme. Let's change it via the following steps:

1.	 Navigate to Content | Blocks.
2.	 Click to edit Home Page Block
3.	 In the Content field, enter the following HTML code:

<div class="blocks-promo">
<a class="block-promo home-main" href="{{store url=""}}notebook.
html">

New Desktop
available!
<strong class="title">New Brands
Shop New Desktop

</div>
<div class="content-heading">
<h2 class="title">New Products</h2>
<p class="info">Here is what`s trending on CompStore now</p>

4.	 Position the cursor under the last line of the HTML code and click on the
Insert Widget icon, as shown in the following screenshot:

5.	 Select Catalog Products List as Widget Type.

Chapter 5

[73]

6.	 Select all the categories created earlier in the Conditions field.

7.	 Click on the Insert Widget button.
8.	 If you prefer, you can change the image of the block.
9.	 Finally, click on the Save Block button.

Go to the Home page to see the final result:

Creating a Responsive Magento 2.0 Theme

[74]

Customizing Magento 2.0 templates
Magento works with .phtml template files to generate the view layer for the users.
The modules and themes in Magento have its specific group of .phtml files to show
data to the users. Let's create a custom template example in the CompStore theme to
see how it works:

1.	 Create the Magento_Catalog directory under the compstore theme directory.
2.	 Copy the contents of vendor/magento/module_catalog/view/frontend/

templates to app/design/frontend/Packt/compstore.
3.	 Then, open the app/design/frontend/Packt/compstore/Magento_

Catalog/templates/product/view/addto.phtml file in your favorite
code editor.

4.	 Go to Line 17 and enter the following code:
<div><h2>Buy in CompStore!!!</h2></div>

5.	 Save the file.
6.	 Delete the var/view_preprocessed/ and pub/static/frontend/Packt/

compstore/ directories.
7.	 Deploy static content files by running the php magento setup:static-

content:deploy command.
8.	 If necessary, give write permission to the pub directory.

Navigate to the product page to see the result, as in the following screenshot:

Chapter 5

[75]

Summary
With the content learned in this chapter, you can now develop your own themes
and customize solutions. The modern developer creates tools that can maximize
the quality and minimize the effort to develop.

As a suggestion, try to read Chapter 4, Magento 2.0 Theme Development – the Developers'
Holy Grail, again to create specific Magento pages and layout rules for the CompStore
theme. You have uncountable possibilities to develop quality themes for Magento
e-commerce and a great solid path to specialize more and more.

Now that you have all the tools to develop a theme for Magento, we will start
discovering how to write Magento extensions by programming specific solutions
in the next chapter.

[77]

Write Magento 2.0
Extensions – a Great

Place to Go
In the previous chapter, we created a custom Magento 2.0 theme called CompStore.
However, what do you think about extending our Magento expertise by creating our
own extension? In this chapter, we will create a new extension called TweetsAbout,
add a brand new functionality in our theme, learn the main concepts of Magento
extension development, and take a look at how the extension packaging process works.

The following topics will be covered in this chapter:

•	 Magento development overview
•	 The Zend framework basics
•	 The Magento 2.0 extension structure
•	 The Twitter REST API
•	 Twitter OAuth
•	 Magento extension project – TweetsAbout

Write Magento 2.0 Extensions – a Great Place to Go

[78]

Magento development overview
Magento is an MVC-based application divided into modules. Each module has
a specific job inside Magento, following a mature software pattern. For example,
Magento has a specific module to control product shipping. This kind of approach is
very important to create new functionalities and have the flexibility and modularity
to extend its power.

Using the Zend framework
According to Zend Framework Case Study available at https://www.zend.com/
topics/Magento-CS.pdf, the Magento project chose to go with industry-standard
PHP and the Zend framework because of the extremely simple, object-oriented, and
flexible solution that encapsulates best practices and agile testing methodologies and
that would result in a very rapid development of enterprise-grade web applications.

Using the Zend framework as the main pillar in the Magento project definitely
includes the following advantages:

•	 Magento contributors around the world know the Zend framework
•	 There is great web services support to integrate Magento with different

software solutions in order to share data
•	 The MVC design pattern helps organize project development

With the Zend framework, Magento has great flexibility in creating and customizing
modules, developing new features for the system, and maintaining the core code.

A basic understanding of Zend components could be interesting for developers to
take advantage of this great MVC framework.

You can learn more about Zend framework at http://framework.zend.com/.

Magento 2.0 extension structure
Magento 2.0 is a modular system as you can see. That is why it is important
to maintain all the code organized, and it couldn't be different with Magento
extensions. In previous chapters you saw all the directory structure of Magento,
but now let's give special attention to the basic Magento module file structure:

https://www.zend.com/topics/Magento-CS.pdf
https://www.zend.com/topics/Magento-CS.pdf
http://framework.zend.com/

Chapter 6

[79]

In order to create a new extension according to the preceding image, we must
create the same directory structure. However, how will they interact with the
Magento system?

Some of these directories have an important role to play in the Magento system.
They are directories that are responsible for providing basic functionalities and
coupling between modules and the Magento system:

•	 Block: Blocks are View classes that are responsible for providing
visualization layers between the logical and frontend layer.

•	 Controller: These control all the actions of the Magento. Web servers
process the requests and Controller redirects them to specific modules
according to the URL.

•	 etc: This stores all the module XML configuration files.
•	 Helper: This stores auxiliary classes that provide forms, validators,

and formatters, which are commonly used in business logic.
•	 Model: This stores all business logic and the access layer to the data.
•	 Setup: Setup classes are classes that control installation and

upgrading functionalities.

Write Magento 2.0 Extensions – a Great Place to Go

[80]

The other directories support additional configurations and implementations of the
module; these are as follows:

•	 Api: This directory contains classes to control the API's layers
•	 i18n: This directory contains files responsible for translating

(internationalization) the module view layer
•	 Plugin: This directory handles plugins if necessary
•	 view: This directory handles all the template and layout files

The files presented in the root directory are files on which you worked before. The
LICENSES and README files are those available for extension distribution purposes.

Developing your first Magento extension
Now, you have a general concept of creating a new extension for Magento. As a
scenario to our development, we will create a simple extension called TweetsAbout
to communicate with Twitter via the API and get the latest tweets with the #magento,
#packtpub, and #php hashtags.

We will have two simple pages; the first will show a link to the results, and the
second will show the tweets.

Let's get to work!

The Twitter REST API
Representational State Transfer (REST) is an architecture created to provide a
simple communication channel between different applications over the Internet
using mainly the HTTP protocol. It is the hottest data technology nowadays.
Facebook, Google, Twitter, and a lot of huge companies have adopted REST
applications. With REST APIs, you can read, post, and delete data.

Twitter has a specific format to spread its data on the Web in order to create great
integration with different kinds of applications that consume its service. According
to Twitter Developers Documentation available at https://dev.twitter.com/
rest/public, Twitter REST APIs provide programmatic access to read and write
Twitter data. You can author a new Tweet, read an author profile or follower data,
and more. The REST API identifies Twitter applications and users using Oauth,
and the responses are available in JSON.

Before beginning to code the Magento extension, let's create an account on Twitter
Developer to authenticate our new application on the Twitter platform.

https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public

Chapter 6

[81]

Create a new account in Twitter (https://twitter.com/) if you don't have one
and access the Twitter Developer page (https://dev.twitter.com/), as in the
following screenshot:

We have a lot of options on the developer's website, such as gathering real-time
data, crashlytics, and mopub. I strongly suggest that you take a good look at these
tools later.

So, let's create a new application to consume Twitter services. Access the URL
https://apps.twitter.com/ to create a new Twitter application. In order to use
Twitter's public API services, you need to identify your application by generating
a token and a secret key.

You can create a new application by clicking on the Create New App button and
filling in the form with the following required fields:

•	 Name: Choose a unique name for your app
•	 Description: Describe your app
•	 Website: Provide a personal website/URL

https://twitter.com/
https://dev.twitter.com/
https://apps.twitter.com/

Write Magento 2.0 Extensions – a Great Place to Go

[82]

Accept the Developer Agreement to finish your app registration and click on the
Create your Twitter Application button.

You can access your application's configurations by clicking on the name of your
application. Later on in this chapter, we will discuss how to get the right credentials
to integrate our application with Twitter.

Now, we can finally start our Magento 2.0 extension solution.

The TweetsAbout module structure
Create the following basic directory structure for the project:

Chapter 6

[83]

Using TwitterOAuth to authenticate our
extension
The TwitterOAuth (https://twitteroauth.com/) library provides communication
with Twitter via an API. In the TweetsAbout project, this kind of communication is
essential for the final proposal of our extension solution. TwitterOAuth is the most
popular PHP library to use with the TwitterOAuth REST API.

This project is also available on GitHub (https://github.com/abraham/
twitteroauth), as shown in the following screenshot:

To install TwitterOAuth on the TweetsAbout extension, follow this recipe:

1.	 Open the terminal or command prompt.
2.	 Under the packt/app/code/Packt/TweetsAbout/Api directory, run the

composer require abraham/twitteroauth command.

https://twitteroauth.com/
https://github.com/abraham/twitteroauth
https://github.com/abraham/twitteroauth

Write Magento 2.0 Extensions – a Great Place to Go

[84]

3.	 Access https://apps.twitter.com/, click on your application, and click on
the Keys and Access Tokens tab to get the following:

°° Consumer Key (API Key)
°° Consumer Secret (API Secret)
°° Access Token
°° Access Token Secret

We'll need these credentials to use on our extension later.

Developing the module
To start the module development, we will declare the basic module configurations.
Open your favorite code editor, create a new file called module.xml, and save the
file in app/code/Packt/TweetsAbout/etc. Enter this code in the file:

<?xml version="1.0"?>
 <config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:no
NamespaceSchemaLocation="urn:magento:framework:Module/etc/module.xsd">
 <module name="Packt_TweetsAbout" setup_version="2.0.0"/>
 </config>

Magento 2.0 works with Uniform Resource Names (URN) schema validation to
reference XML declarations, as you can observe in the <config> tag. The module.
xsd file works by validating whether your module declaration follows the module
declaration schema.

The <module> tag contains the vendor and module name. Always follow this
example of module name declaration: Vendor_Module.

Under app/code/Packt/TweetsAbout/etc/frontend, create two new files,
as follows:

•	 routes.xml

•	 events.xml

The routes.xml file contains the following code:

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNa
mespaceSchemaLocation="urn:magento:framework:App/etc/routes.xsd">
 <router id="standard">
 <route id="tweetsabout" frontName="tweetsabout">
 <module name="Packt_TweetsAbout" />

https://apps.twitter.com/

Chapter 6

[85]

 </route>
 </router>
</config>

The routes.xml file tells Magento where to look for the controllers (TweetsAbout/
Controller) when the URL http://localhost/packt/tweetsabout is accessed
(MVC).

The events.xml file contains the following code:

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNa
mespaceSchemaLocation="urn:magento:framework:Event/etc/events.xsd">
 <event name="page_block_html_topmenu_gethtml_before">
 <observer name="Packt_TweetsAbout_observer" instance="Packt\
TweetsAbout\Observer\Topmenu" />
 </event>
</config>

The events.xml file declares an Observer event handler in the module, and this
file has the mission of configuring a new TweetsAbout top menu link to access the
module in the frontend. Observer listens to events triggered by the user or system.
The <event> tag gets basic information of the top menu Block to be handled later in
the PHP code, and the <observer> tag declares the Topmenu observer class. In this
chapter, we will take a look at how the Topmenu class works. For now, it's important
to declare this option.

For further information about Observer, access the Magento official documentation
at http://goo.gl/0CTzmn.

Now, it is time to create the registration.php file under the root directory of
TweetsAbout. Run the following code:

<?php
\Magento\Framework\Component\ComponentRegistrar::register(
 \Magento\Framework\Component\ComponentRegistrar::MODULE,
 'Packt_TweetsAbout',
 __DIR__
);

The registration.php file has the same role as that of theme registration in
Magento System.

http://goo.gl/0CTzmn

Write Magento 2.0 Extensions – a Great Place to Go

[86]

Create the composer.json file under the root directory of TweetsAbout via the
following code:

{
 "name": "packt/tweets-about",
 "description": "Example of Magento Module - Packt Publishing",
 "type": "magento2-module",
 "version": "1.0.0",
 "license": [
 "OSL-3.0",
 "AFL-3.0"
],
 "require": {
 "php": "~5.5.0|~5.6.0|~7.0.0",
 "magento/framework": "~100.0",
 "abraham/twitteroauth": "^0.6.2"
 },
 "autoload": {
 "files": ["registration.php"],
 "psr-4": {
 "Packt\\TweetsAbout\\": ""
 }
 },
 "extra": {
 "installer-paths": {
 "app/code/Packt/TweetsAbout/Api": ["abraham/twitteroauth"]
 }
 }
}

You can observe in the composer.json file the declaration of the TwitterOAuth
project as a required package to our extension. Also, the file defines the installation
directory.

For further information about Composer packages, refer to
the link https://packagist.org/.

You can copy the LICENSE.txt and LICENSE_AFL.txt files from the Magento root
directory to your Packt/TweetsAbout directory. The README.md file is responsible
for storing information about the module's scope and some considerations for the
purposes of publishing on GitHub (http://github.com/). You can feel free to
create the README.md file as you wish.

For now, we have the module declaration and registration files. It's time to create the
controllers to start giving some life to the TweetsAbout module.

https://packagist.org/
http://github.com/

Chapter 6

[87]

Controllers
First, let's create a new file named Index.php. This file will control the access to
the initial page of the module. Save it under app/code/Packt/TweetsAbout/
Controller/Index/ with the following code:

<?php

 namespace Packt\TweetsAbout\Controller\Index;

 class Index extends \Magento\Framework\App\Action\Action{

 protected $resultPageFactory;

 public function __construct(
 \Magento\Framework\App\Action\Context $context,
 \Magento\Framework\View\Result\PageFactory
$resultPageFactory
) {
 $this->resultPageFactory = $resultPageFactory;
 parent::__construct($context);
 }

 public function execute(){
 return $this->resultPageFactory->create();
 }
 }

Create another file named Index.php under app/code/Packt/TweetsAbout/
Controller/Magento/. This file will control the access to the Magento Tweets
page of the module. Save it with the following code:

<?php

 namespace Packt\TweetsAbout\Controller\Magento;

 class Index extends \Magento\Framework\App\Action\Action{

 protected $resultPageFactory;

 public function __construct(
 \Magento\Framework\App\Action\Context $context,
 \Magento\Framework\View\Result\PageFactory
$resultPageFactory

Write Magento 2.0 Extensions – a Great Place to Go

[88]

) {
 $this->resultPageFactory = $resultPageFactory;
 parent::__construct($context);
 }

 public function execute(){
 return $this->resultPageFactory->create();
 }
 }

Create another file named Index.php under app/code/Packt/TweetsAbout/
Controller/Packt/. This file will control the access to the Packt tweets page
of the module. Save it with the following code:

<?php

 namespace Packt\TweetsAbout\Controller\Packt;

 class Index extends \Magento\Framework\App\Action\Action{

 protected $resultPageFactory;

 public function __construct(
 \Magento\Framework\App\Action\Context $context,
 \Magento\Framework\View\Result\PageFactory
$resultPageFactory
) {
 $this->resultPageFactory = $resultPageFactory;
 parent::__construct($context);
 }

 public function execute(){
 return $this->resultPageFactory->create();
 }
 }

Create another file named Index.php under app/code/Packt/TweetsAbout/
Controller/Php/. This file will control the access to the PHP tweets page of the
module. Save it with the following code:

<?php

 namespace Packt\TweetsAbout\Controller\Php;

 class Index extends \Magento\Framework\App\Action\Action{

Chapter 6

[89]

 protected $resultPageFactory;

 public function __construct(
 \Magento\Framework\App\Action\Context $context,
 \Magento\Framework\View\Result\PageFactory
$resultPageFactory
) {
 $this->resultPageFactory = $resultPageFactory;
 parent::__construct($context);
 }

 public function execute()
 {
 return $this->resultPageFactory->create();
 }
 }

Magento 2.0 uses namespaces as a PHP standard recommendation (http://www.
php-fig.org/psr/) to avoid name collisions between classes and to improve the
readability of the code. So, in the namespace instruction, we will declare the class
path to follow the PSR-4 pattern (http://www.php-fig.org/psr/psr-4/).

The extends functionality (inheritance) of \Magento\Framework\App\Action\
Action provides a functionality to handle actions triggered by the URL access.
For example, when the user enters the URL http://<magento_url>/tweetsabout,
the routes.xml file redirects to the Index/Index.php controller to treat the user
request made by accessing the URL.

The dependency injection of the __construct() method—\Magento\Framework\
App\Action\Context $context and \Magento\Framework\View\Result\
PageFactory $resultPageFactory—declares the initial construct of the Action
class and the view layer to work with the template file.

For further information about the dependency injection, access the
Magento official documentation at http://goo.gl/jHFPTr.

Finally, the execute() method renders the layout. We will declare the layout files
later on.

At this point, it's important to be familiar with PHP object-oriented programming
(http://php.net/manual/en/language.oop5.php). I strongly suggest that you
study the main concepts to increase the understanding of the book.

http://www.php-fig.org/psr/
http://www.php-fig.org/psr/
http://www.php-fig.org/psr/psr-4/
http://goo.gl/jHFPTr
http://php.net/manual/en/language.oop5.php

Write Magento 2.0 Extensions – a Great Place to Go

[90]

Blocks
Blocks in Magento 2.0 provide presentation logic for your view templates. In the
TweetsAbout project, we will use two blocks to process the view template files.

Under the app/code/Packt/TweetsAbout/Block directory, create a file named
Index.php with the following code:

<?php

 namespace Packt\TweetsAbout\Block;

 class Index extends \Magento\Framework\View\Element\Template{

 public function getMagentoUrl(){
 return $this->getData('urlMagento');
 }

 public function getPHPUrl(){
 return $this->getData('urlPHP');
 }

 public function getPacktUrl(){
 return $this->getData('urlPackt');
 }
 }

The three methods, getMagentoUrl(), getPHPUrl(), and getPacktUrl(), get data
from layout declaration files to define a URL for each kind of controller and give it to
the initial layout of the module.

Now, under the app/code/Packt/TweetsAbout/Block directory, create a file named
Tweets.php with the following code:

<?php
 namespace Packt\TweetsAbout\Block;

 require $_SERVER['DOCUMENT_ROOT'] . "/packt/app/code/Packt/
TweetsAbout/Api/vendor/autoload.php";
 use Abraham\TwitterOAuth\TwitterOAuth;

 class Tweets extends \Magento\Framework\View\Element\Template{

 private $consumerKey;
 private $consumerSecret;

Chapter 6

[91]

 private $accessToken;
 private $accessTokenSecret;

 public function searchTweets(){
 $connection = $this->twitterDevAuth();
 $result = $connection->get("search/tweets", array("q" =>$this-
>getData('hashtag'), "result_type"=>"recent", "count" => 10));

 return $result->statuses;
 }

 private function twitterDevAuth(){
 $this->consumerKey = YOUR_CONSUMER_KEY;
 $this->consumerSecret = YOUR_CONSUMER_SECRET;
 $this->accessToken = YOUR_ACCESS_TOKEN;
 $this->accessTokenSecret = YOUR_ACCESS_TOKEN_SECRET;

 return new TwitterOAuth($this->consumerKey, $this-
>consumerSecret, $this->accessToken, $this->accessTokenSecret);
 }
 }

Here are some things to consider about the Tweets.php code:

•	 The required instruction is to call the autoload, and the use is to append the
namespace of the TwitterOAuth library to work on our extension

•	 In the twitterDevAuth() method, you must enter the Twitter API credentials
•	 In the searchTweets() method, the $connection->get("search/tweets",

array("q" =>$this->getData('hashtag'), "result_type"=>"recent",
"count" => 10)) instruction works with the Twitter search API, getting the
last 10 results of Twitter posts

Observer
Under the app/code/Packt/TweetsAbout/Observer directory, create the Topmenu.
php file with the following code:

<?php
namespace Packt\TweetsAbout\Observer;
use Magento\Framework\Event\Observer as EventObserver;
use Magento\Framework\Data\Tree\Node;
use Magento\Framework\Event\ObserverInterface;

Write Magento 2.0 Extensions – a Great Place to Go

[92]

class Topmenu implements ObserverInterface{

 /**
 * @param EventObserver $observer
 * @return $this
 */
 public function execute(EventObserver $observer)
 {

 $urlInterface = \Magento\Framework\App\
ObjectManager::getInstance()->get('Magento\Framework\UrlInterface');

 $active = strpos($urlInterface->getCurrentUrl(), "tweetsabout");

 /** @var \Magento\Framework\Data\Tree\Node $menu */
 $menu = $observer->getMenu();
 $tree = $menu->getTree();
 $data = [
 'name' => __("TweetsAbout"),
 'id' => 'tweetsmenu',
 'url' => $urlInterface->getBaseUrl() .
'tweetsabout',
 'is_active' => $active
];
 $node = new Node($data, 'id', $tree, $menu);
 $menu->addChild($node);
 return $this;
 }
}

The Topmenu.php file dynamically creates a new top menu item for the TweetsAbout
module by adding a node in the top menu link schema. The \Magento\
Framework\App\ObjectManager::getInstance()->get('Magento\Framework\
UrlInterface') instruction gets the base URL and the current URL to create a
specific link to the TweetsAbout module. The Topmenu observer works with the
Document Object Model (DOM) concept of nodes and trees dynamically.

Chapter 6

[93]

Views
It's time to handle the presentation layer of the project. First, we will create the
layout files (.xml) to handle template behavior and to pass arguments to the
template via blocks. Every layout file is assigned by following this pattern: <module_
name>_<controller>_<controller_file>.xml. This pattern allows the Magento
system to assign the correct files according to its controller automatically.

Under the app/code/Packt/TweetsAbout/view/frontend/layout path, create the
tweetsabout_index_index.xml file with the following code:

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
layout="1column" xsi:noNamespaceSchemaLocation="urn:magento:framework:
View/Layout/etc/page_configuration.xsd">
 <head>
 <title>
 TweetsAbout Module
 </title>
 </head>
 <body>
 <referenceContainer name="content">
 <block class="Packt\TweetsAbout\Block\Index"
template="Packt_TweetsAbout::index.phtml">
 <arguments>
 <argument name="urlMagento" xsi:type="url"
path="tweetsabout/magento" />
 <argument name="urlPHP" xsi:type="url"
path="tweetsabout/php" />
 <argument name="urlPackt" xsi:type="url"
path="tweetsabout/packt" />
 </arguments>
 </block>
 </referenceContainer>
 </body>
</page>

The <block> tag binds the Index.php Block to the index.phtml template, and the
<arguments> tag transports three URL parameters to the Block. These parameters
will be used in the index.phtml file.

Write Magento 2.0 Extensions – a Great Place to Go

[94]

Under the app/code/Packt/TweetsAbout/view/frontend/layout path, create the
tweetsabout_magento_index.xml file with the following code:

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
layout="1column" xsi:noNamespaceSchemaLocation="urn:magento:framework:
View/Layout/etc/page_configuration.xsd">
 <head>
 <title>
 TweetsAbout #Magento
 </title>
 <css src="Packt_TweetsAbout::css/source/module.css"/>
 </head>
 <body>
 <referenceContainer name="content">
 <block class="Packt\TweetsAbout\Block\Tweets"
template="Packt_TweetsAbout::tweets.phtml">
 <arguments>
 <argument name="hashtag"
xsi:type="string">#magento</argument>
 </arguments>
 </block>
 </referenceContainer>
 </body>
</page>

Under the app/code/Packt/TweetsAbout/view/frontend/layout path, create the
tweetsabout_packt_index.xml file with the following code:

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
layout="1column" xsi:noNamespaceSchemaLocation="urn:magento:framework:
View/Layout/etc/page_configuration.xsd">
 <head>
 <title>
 TweetsAbout #Packtpub
 </title>
 <css src="Packt_TweetsAbout::css/source/module.css"/>
 </head>
 <body>
 <referenceContainer name="content">

Chapter 6

[95]

 <block class="Packt\TweetsAbout\Block\Tweets"
template="Packt_TweetsAbout::tweets.phtml">
 <arguments>
 <argument name="hashtag"
xsi:type="string">#packtpub</argument>
 </arguments>
 </block>
 </referenceContainer>
 </body>
</page>

Under the app/code/Packt/TweetsAbout/view/frontend/layout path, create the
tweetsabout_php_index.xml file with the following code:

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
layout="1column" xsi:noNamespaceSchemaLocation="urn:magento:framework:
View/Layout/etc/page_configuration.xsd">
 <head>
 <title>
 TweetsAbout #PHP
 </title>
 <css src="Packt_TweetsAbout::css/source/module.css"/>
 </head>
 <body>
 <referenceContainer name="content">
 <block class="Packt\TweetsAbout\Block\Tweets"
template="Packt_TweetsAbout::tweets.phtml">
 <arguments>
 <argument name="hashtag" xsi:type="string">#php</
argument>
 </arguments>
 </block>
 </referenceContainer>
 </body>
</page>

The <css> tag loads the CSS rules of the template. The <block> tag binds the
Tweets.php Block to the tweets.phtml file. The <argument name="hashtag">
tag transports the hashtag parameter to the Tweets.php Block to search the latest
mentions of the specific hashtag in the Twitter database.

Write Magento 2.0 Extensions – a Great Place to Go

[96]

Now, let's create the template files.

Under the app/code/Packt/TweetsAbout/view/frontend/templates path, create
the index.phtml file with the following code:

<h2>Recent TweetsAbout: </h2>

 <a href="<?php echo $block->escapeHtml($block->getMagentoUrl())
?>">
 <?php echo __('Magento')?>

 <a href="<?php echo $block->escapeHtml($block->getPacktUrl()) ?>">
 <?php echo __('Packtpub')?>

 <a href="<?php echo $block->escapeHtml($block->getPHPUrl()) ?>">
 <?php echo __('PHP')?>

The $block object has access to the methods of Block/Index.php, and the URL
of the pages build dynamically.

Under the app/code/Packt/TweetsAbout/view/frontend/templates path,
create the tweets.phtml file with the following code:

<?php
 $tweets = $block->searchTweets();
?>

<?php foreach ($tweets as $tweet){ ?>
 <p class="tweet">
 <a href="<?php echo $tweet->user->url; ?>">
 <img src="<?php echo $tweet->user->profile_image_url; ?>"
alt="profile">

Chapter 6

[97]

 Created: <?php echo $tweet->created_at; ?>

 <a href="<?php echo isset($tweet->entities->urls[0]->url) ?
$tweet->entities->urls[0]->url : "#"; ?>" target="_blank"><?php echo
$tweet->text;?>

 </p>
 <hr />
<?php } ?>

The searchTweets() method loads tweets according to the URL accessed, and PHP
processes the data to show the results to the user.

CSS
Under the app/code/Packt/TweetsAbout/view/frontend/web/css/source path,
create the module.less file with the following code:

 .tweet {background-color: #878787; padding:15px; border:1px dotted}
.tweet a {color: #ffffff}
.tweet a:hover {text-decoration: underline;}

Deploying the module
To deploy the module, follow this recipe:

1.	 Open the terminal or command prompt.
2.	 Access the packt/bin directory.
3.	 Then, run the php magento module:enable --clear-static-content

Packt_TweetsAbout command.
4.	 Run the php magento setup:upgrade command.
5.	 Next, run the php magento setup:static-content:deploy command.
6.	 In some cases, it is necessary to give write permissions again to

the directories.

Write Magento 2.0 Extensions – a Great Place to Go

[98]

If everything goes alright, when you access the URL http://localhost/packt, you
will see one link for the TweetsAbout extension in the topmost menu. Just click on it
to see how the extension works. Take a look at the following screenshot:

You can navigate to the links to see how the pages work, as in the
following screenshot:

Chapter 6

[99]

The extension gets the ten last tweets in real time with the date, picture, and post.
It's really awesome to watch our work running!

For sure, this extension can get a lot better, but it is only a starting point for
big achievements.

Write Magento 2.0 Extensions – a Great Place to Go

[100]

Magento Connect
Once you have your extension ready to work, you can publish it in the Magento
Connect service (http://www.magentocommerce.com/magento-connect).
Magento Connect is a service in which Magento members can share their
open source or commercial extensions with Magento Community. The main
contributions are generally based on the following:

•	 Modules
•	 Language packs
•	 Design interfaces
•	 Themes

Packaging and publishing your module
Once you have the composer.json file configured, you can package your module by
compacting it as a .zip file in the vendor-name_package-name-1.0.0.zip format.

Upload the module in your personal account in GitHub, and Magento can retrieve it
to publish.

For further information, it's strongly recommended that you to access the official
documentation available on the Magento Developers official site at http://devdocs.
magento.com/guides/v2.0/extension-dev-guide/package_module.html.

Summary
You worked on a lot in this chapter! Congratulations. Now, you have solid grasp
of the concept in Magento 2.0 extension development. You can note that Magento
development has strict rules, but once you learn the basics, you can master Magento
with hard work and study. Keep the good work going!

As a suggestion, try to read the official documentation and do projects that demand
more user interaction, such as the admin panel and development of dynamic
formularies. You can even increase the power of TweetsAbout. The sky is the limit!

In the next chapter, we will start to work with Magento mobile by testing and
configuring some great options. See you!

http://www.magentocommerce.com/magento-connect
http://devdocs.magento.com/guides/v2.0/extension-dev-guide/package_module.html
http://devdocs.magento.com/guides/v2.0/extension-dev-guide/package_module.html

[101]

Go Mobile with Magento 2.0!
Nowadays e-commerce stores must be responsive and mobile friendly to increase
sales according to the huge number of people using mobile devices to buy products
and services. It's very important to know the right tools to provide a mobile-friendly
Magento theme for your project. Let's go mobile with Magento!

The following topics will be covered in this chapter:

•	 Why mobile and responsive?
•	 Testing the website on different devices
•	 The Google Chrome DevTools device mode
•	 Responsive web designer tester extension
•	 Adjusting the CompStore theme for mobile devices
•	 Adjusting tweets for mobile devices

According to a research called State of Mobile Commerce Growing like a weed Q1
2015 conducted by Criteo (http://www.criteo.com/), a digital marketing company,
mobile accounts for 29% of e-commerce transactions in the US and 34% globally.
By the end of 2015, mobile share is forecast to reach 33% in the US and 40% globally.
This research is available at http://www.criteo.com/media/1894/criteo-state-
of-mobile-commerce-q1-2015-ppt.pdf.

This is one of the main reasons for which all Magento developers must create
responsive designs. We started this process indirectly by creating a new theme
with Webcomm Magento Boilerplate. Despite its basic mobile support, we have
to make some adjustments to create a completely responsive Magento theme.
Let's return to work!

http://www.criteo.com/
http://www.criteo.com/media/1894/criteo-state-of-mobile-commerce-q1-2015-ppt.pdf
http://www.criteo.com/media/1894/criteo-state-of-mobile-commerce-q1-2015-ppt.pdf

Go Mobile with Magento 2.0!

[102]

Testing the website on different devices
In order to test your website in different devices and, consequently, different screen
sizes, it is recommended to use a specific software or service to simulate the screen
sizes of devices. If you perform a search on the web, you may find a great number
of online test tools, but these tools work only with published websites. Our Magento
site works, for now, on our local development environment.

To take advantage of our local development environment, let's work with the
Google Chrome DevTools Device Mode and the Responsive Web Designer
Tester extensions. In this book, we'll have two options to work with mobile
theme development. You choose both of them!

If you don't have Google Chrome installed, download it from the URL
https://www.google.com/intl/en/chrome/browser/desktop/ to install it
on your operating system.

The Google Chrome DevTools device mode
Google Chrome DevTools is a native tool of Google Chrome that provides a bunch
of tools for web developers. By working with DevTools, you can optimize your
frontend code, including HTML, CSS, and JavaScript.

Before accessing the DevTools extensions, access your Magento CompStore website
at the http://localhost/packt URL.

To access DevTools, in the Google Chrome browser, follow these steps:

1.	 Click on the Google Chrome menu.
2.	 Click on the More Tools option.

https://www.google.com/intl/en/chrome/browser/desktop/

Chapter 7

[103]

3.	 Click on the Developer Tools option.

Now, you can see the DevTools window, as in the preceding screenshot.

Go Mobile with Magento 2.0!

[104]

To activate Device Mode, click on the smartphone icon next to the Elements
menu item. Now, you can see the page rendering with different options, as in
the following screenshot:

According to the Google DevTools official page available at https://developers.
google.com/web/tools/chrome-devtools/iterate/device-mode/, you can use
the DevTools device mode to do the following:

•	 Test your responsive designs
•	 Visualize and inspect CSS queries
•	 Use a network emulator to evaluate site performance
•	 Enhance your debugging workflow

https://developers.google.com/web/tools/chrome-devtools/iterate/device-mode/
https://developers.google.com/web/tools/chrome-devtools/iterate/device-mode/

Chapter 7

[105]

The DevTools extension has the following options to enhance developer experience:

•	 Device preset
•	 Network connectivity
•	 Inspecting media queries
•	 View CSS
•	 Add custom devices

Changing the device preset
To change the device preset, click on the Device options:

You can choose from among iPhone, Google Nexus, Samsung Galaxy, and
Blackberry, and you can create custom devices to test the screen size.

Network connectivity
This option emulates various network conditions of your website access.

Go Mobile with Magento 2.0!

[106]

Inspecting media queries
The media queries are responsible for defining the CSS rule for each screen size.
You can access all of these using DevTools. To access media queries, click on the
icon in the upper-left corner:

Viewing CSS
Right-click on a bar to view the CSS media query rule. You can make adjustments in
the CSS code:

Chapter 7

[107]

Adding custom devices
To create custom devices, follow these steps:

1.	 In the Developer Tools topmost menu, click on Settings.
2.	 Click on the Devices tab.
3.	 Then, click on the Add Custom Device button.
4.	 Fill the form according your need.
5.	 Next, click on the Add Device button.

Now, you have your own device to test your code.

Go Mobile with Magento 2.0!

[108]

Responsive Web Designer tester
Now, open the Google Chrome browser and navigate to the address
https://chrome.google.com/webstore/category/apps to access
Chrome Web Store. Conduct a search to find the Responsive Web Designer
Tester extension and then add the extension to Google Chrome, as follows:

Great work! Now, let's take a look at how this extension works. On your browser,
go to your Magento local site, also known as CompStore, by accessing http://
localhost/packt. Remember that you have to turn on Apache Service in XAMMP
to test the local website.

Click on the button of the Responsive Web Designer Tester extension shown on the
right-hand side of your screen (generally near the end of the browser address bar)
and select the iPhone 5—Portrait option for the first test:

https://chrome.google.com/webstore/category/apps

Chapter 7

[109]

After you select the device, you will see a pop-up window having the size of iPhone 5
screen. Navigating on the page, you will see also that the layout is not fully responsive.
We have some issues in the home page presentation:

Go Mobile with Magento 2.0!

[110]

Now we have a tool to test site behavior between the different devices. It is time to
make our CompStore theme 100% compatible with multiple devices!

Adjusting the CompStore theme for
mobile devices
Both the Magento 2.0 native themes, Blank and Luma, use Responsive Web Design
(RWD) to provide good visualization in different devices, such as desktops, tablets,
and mobiles.

In spite of the fact that the CompStore theme inherited the Luma theme, you can
customize the template and CSS codes, as we discussed in Chapter 6, Write Magento 2.0
Extensions – a Great Place to Go. So, what do you think about improving the CompStore
theme to make it more user friendly?

The actual mobile version of CompStore has some differences in the desktop version,
including colors, elements positioning, and image size. Before creating some mobile
standards for the CompStore theme, it's important to fix some CSS responsive design
concepts of Magento. Let's get to work!

The Magento 2.0 responsive design
To handle accessibility for different devices, the Magento 2.0 native themes (Blank
and Luma) work with an RWD engine, as we discussed in the Chapter 4, Magento 2.0
Theme Development – the Developers' Holy Grail, and Chapter 5, Creating a Responsive
Magento 2.0 Theme. The stylesheets engine provided by the LESS preprocessor is the
main utility responsible for this design approach.

The Magento 2.0 native themes were built based on the Magento UI library.
The Magento UI library works with CSS 3 media queries to render a page with
predefined rules according to the device, which requests the page. An example of
media queries would be one that applies a specific rule for screens with a maximum
width of 640 px; take a look at the following code:

@media only screen and (max-width: 640px) {
…
}

Chapter 7

[111]

With media queries, the themes apply breakpoints to handle different screen-width
rules for different screen sizes of devices in a progression scale of pixels, as follows:

•	 320 px (mobile)
•	 480 px (mobile)
•	 640 px (tablet)
•	 768 px (tablet to desktop)
•	 1024 px (desktop)
•	 1440 px (desktop)

For further information about media queries, refer to the W3C official documentation
available at https://www.w3.org/TR/css3-mediaqueries/.

The Magento UI
The Magento 2.0 system works with the LESS CSS preprocessor to extend the
features of CSS and enable the opportunity to create theme inheritance with
minimal and organized effort. With this premise, to help theme developers,
we have the Magento UI library in Magento 2.0.

The Magento UI library is based on LESS and provides a set of components to
develop themes and frontend solutions:

•	 Actions toolbar
•	 Breadcrumbs
•	 Buttons
•	 Drop-down menus
•	 Forms
•	 Icons
•	 Layout
•	 Loaders
•	 Messages
•	 Pagination
•	 Popups
•	 Ratings
•	 Sections
•	 Tabs and accordions

https://www.w3.org/TR/css3-mediaqueries/

Go Mobile with Magento 2.0!

[112]

•	 Tables
•	 Tooltips
•	 Typography
•	 A list of theme variables

Another important resource of the Magento UI and of LESS is the mixin capability.
The mixin allows developers to group style rules to work with different devices.

For example, consider that you declared the following CSS code in one determined file:

.media-width(@extremum, @break) when (@extremum = 'max') and (@break =
@screen__m) {
 .example-responsive-block {
 background: #ffc;
 }
 .example-responsive-block:before {
 content: 'Mobile styles ';
 font-weight: bold;
 }
}

Then, you executed this CSS code in a different file:

.media-width(@extremum, @break) when (@extremum = 'min') and (@break =
@screen__m) {
 .example-responsive-block {
 background: #ccf;
 }
 .example-responsive-block:before {
 content: 'Desktop styles ';
 font-weight: bold;
 }
}

In spite of the two files declaring a mixin named .media-width to the .example-
responsive-block class in different files, the mixin allows LESS to make a single
query, grouping the rules instead of making multiple calls according to the device
rule applied.

You can access the local Magento UI documentation by accessing the URL
http://<magento_local_url>/pub/static/frontend/Magento/blank/en_US/
css/docs/responsive.html.

Chapter 7

[113]

For further information about the Magento UI, take a look at the
Magento official readme.md file available at https://github.
com/magento/magento2/blob/2.0.0/lib/web/css/docs/
source/README.md.

Implementing a new CSS mixin
media query
First of all, let's take a look at the current mobile version of the CompStore theme.
Using Chrome DevTools or Responsive Web Designer Tester, select an Apple iPhone
5 (portrait) device to test the site. You will probably be redirected to home page:

https://github.com/magento/magento2/blob/2.0.0/lib/web/css/docs/source/README.md
https://github.com/magento/magento2/blob/2.0.0/lib/web/css/docs/source/README.md
https://github.com/magento/magento2/blob/2.0.0/lib/web/css/docs/source/README.md

Go Mobile with Magento 2.0!

[114]

In spite of the previous adjustment in the CompStore theme, when a mobile device
accesses a theme, CSS rules don't apply some important features, such as colors and
the positioning of elements. As a suggestion, let's create a standard declaration of
color approach and configure CSS to show only one product when the mobile device
accesses the site. How can we implement these new features? Using media queries,
of course!

In your favorite code editor, open the compstore.less file available under the
app/design/frontend/Packt/compstore/web/css/source directory and use
the following CSS 3 code:

@color-compstore: #F6F6F6;

body{
 background: @color-compstore;

Chapter 7

[115]

}

.media-width(@extremum, @break) when (@extremum = 'max') and (@break =
@screen__s) {
 body{
 background: @color-compstore;
 }
 .widget .block-promo img{
 height: 600px;
 }

 .products-grid .product-item {
 width: 100%;
 display: inline-block;
 }
}

.media-width(@extremum, @break) when (@extremum = 'min') and (@break =
@screen__s) {
 body{
 background: @color-compstore;
 }
 .widget .block-promo img{
 height: 600px;
 }
 .products-grid .product-item {
 width: 100%;
 display: inline-block;
 }
}

The Magento UI break points predefined variables to identify the scope of media
queries, which are as follows:

•	 @screen__xxs: 320 px
•	 @screen__xs: 480 px
•	 @screen__s: 640 px
•	 @screen__m: 768 px
•	 @screen__l: 1024 px
•	 @screen__xl: 1440 px

So, in the CSS 3 new proposal, the media queries use the @screen_s variable
to define the application of new rules. We will propose via mixin to change the
background color, promo image size, and product size inside mobile rules for
portrait and landscape purposes.

Go Mobile with Magento 2.0!

[116]

To apply the changes, follow this recipe:

1.	 Save the file.
2.	 Open the terminal or command prompt.
3.	 Delete the packt/pub/static/frontend/<Vendor>/<theme>/<locale>

directory.
4.	 Delete the var/cache directory.
5.	 Then, delete the var/view_preprocessed directory.
6.	 Access the packt/bin directory.
7.	 Next, run the php magento setup:static-content:deploy command.
8.	 In some cases, it is necessary to give write permissions again to the directories.

Test the site again to get the new home page, as in the following screenshot:

Chapter 7

[117]

Go Mobile with Magento 2.0!

[118]

Adjusting tweets about extensions for
mobile devices
The extension that we created in Chapter 6, Write Magento 2.0 Extensions – a Great
Place to Go, tweets about extension and has the following appearance:

Let's improve the CSS extension rules to turn it into a mobile-friendly one.

Using Chrome DevTools or Responsive Web Designer Tester, select an Apple iPhone
5—portrait device to test our code optimization.

Open the module.less file available under the packt/app/code/Packt/
TweetsAbout/view/frontend/web/css/source directory and add the
following code:

/*Tweets About Style*/

@media (min-width: 960px){
#wrapper {
width: 90%;
max-width: 1100px;

Chapter 7

[119]

min-width: 800px;
margin: 50px auto;
 }

 #columns {
 -webkit-column-count: 3;
 -webkit-column-gap: 10px;
 -webkit-column-fill: auto;
 -moz-column-count: 3;
 -moz-column-gap: 10px;
 -moz-column-fill: auto;
 column-count: 3;
 column-gap: 15px;
 column-fill: auto;
 }
}

.tweet {
 display: inline-block;
 background: #FEFEFE;
 border: 2px solid #FAFAFA;
 box-shadow: 0 1px 2px rgba(34, 25, 25, 0.4);
 margin: 0 2px 15px;
 -webkit-column-break-inside: avoid;
 -moz-column-break-inside: avoid;
 column-break-inside: avoid;
 padding: 15px;
 padding-bottom: 5px;
 background: -webkit-linear-gradient(45deg, #FFF, #F9F9F9);
 opacity: 1;

 -webkit-transition: all .2s ease;
 -moz-transition: all .2s ease;
 -o-transition: all .2s ease;
 transition: all .2s ease;
}

.tweetimg {
 width: 15%;
 display:block;
 float:left;
 margin: 0px 5px 0px 0px;
}

.tweet p {
 font: 12px/18px Arial, sans-serif;

Go Mobile with Magento 2.0!

[120]

 color: #333;
 margin: 0;
}

#columns:hover .img:not(:hover) {
 opacity: 0.4;
}

After saving the module.less file, change the tweets.phtml code available under
packt/app/code/Packt/TweetsAbout/view/frontend/templates, change the file
with this new code, and save it, as follows:

<?php
 $tweets = $block->searchTweets();
?>

<div id="wrapper">
 <div id="columns">
 <?php foreach ($tweets as $tweet){ ?>
 <div class="tweet">
 <p>
 <a href="https://twitter.com/intent/user?user_id=<?php echo
$tweet->user->id; ?>" target="_blank">
 <img src="<?php echo $tweets->user->profile_image_url; ?>"
alt="profile">
 <?php echo $tweet->user->name; ?>

 Created: <?php echo $tweets->created_at; ?>

 <a href="<?php echo isset($tweet->entities->urls[0]->url) ?
$tweet->entities->urls[0]->url : "#"; ?>" target="_blank"><?php echo
$tweet->text;?>
 <?php echo $tweets->text;?>

 </p>
 </div>
 <?php } ?>
 </div>
</div>

To deploy the module update, follow this recipe:

1.	 Open the terminal or command prompt.
2.	 Access the packt/bin directory.

Chapter 7

[121]

3.	 Then, run the php magento module:enable --clear-static-content
Packt_TweetsAbout command.

4.	 Run the php magento setup:upgrade command.
5.	 Next, run the php magento setup:static-content:deploy command.
6.	 In some cases, it is necessary to give write permissions again to the

directories (var and pub).

Now, test the tweets about extension by accessing http://localhost/packt/
tweetsabout to see the new responsive look, as shown in the following screenshot:

Go Mobile with Magento 2.0!

[122]

If you activate DevTools and choose an iPhone 5 device, you will see a result similar
to the following screenshot:

Summary
In this chapter, you learned about tools that provide you with a great environment
to develop Magento frontend themes.

You also increased the power of CompStore CSS to handle access from specific
mobile devices. Of course, you can modify the code constantly to have a better
experience by fine-tuning in your code. However, this is only the beginning.

In the next chapter, we will start configuring our Magento software, on which we
have been working until now, to improve its speed. We will installing solutions
and configure the already native Magento options.

[123]

Speeding up Your
Magento 2.0

Despite the existence of a great solution such as Zend Framework for its system,
Magento 2.0 needs some fine tuning to get the best performance in order to provide
the users with a better shopping experience. As you noted in the previous chapters,
it is very important to focus on every aspect for successful e-commerce.

The following topics will be covered in this chapter:

•	 Magento Entity-Attribute-Value
•	 Indexing and re-indexing data
•	 Caching
•	 Selecting the right Magento hosting service
•	 Apache web server deflation
•	 Enabling the expires header
•	 PHP memory configuration
•	 Optimizing the MySQL server
•	 Cleaning the database log
•	 Minifying scripts
•	 CDN for Magento

Speeding up Your Magento 2.0

[124]

Magento Entity-Attribute-Value
With a complex system architecture, Magento developers realized that a traditional
development approach could be counterproductive for a scalable idea to implement
an e-commerce solution.

Developers, therefore, decided to adopt the Entity-Attribute-Value (EAV)
architecture approach.

This database structure embraces the Magento 2.0 complexity processes and variables
and allows an unlimited numbers of attributes to any item, such as categories,
products, costumers, addresses, and more.

The three main points of EAV can be described as follows:

•	 Entity: Data items are represented as entities. In the database, each entity has
a record.

•	 Attribute: Many attributes could belong to a specific entity; for example, the
customer entity has name, birth date, phone, and so on. In Magento, all the
attributes are listed in a single table.

•	 Value: This is the value of each attribute. For example, customer is an entity
that has an attribute called name with the value Fernando Miguel.

This book is a hands–on guide to Magento, but I strongly suggest you to read more
about EAV in the Magento official documentation at http://devdocs.magento.
com/guides/v2.0/extension-dev-guide/attributes.html.

http://devdocs.magento.com/guides/v2.0/extension-dev-guide/attributes.html
http://devdocs.magento.com/guides/v2.0/extension-dev-guide/attributes.html

Chapter 8

[125]

Indexing and caching Magento
With the increase in content, images, and script demands for a better experience in
e-commerce, we have to handle network consumption in order to provide fast access
to our system. Search engines measure some technical points with their algorithms,
and fast access is, of course, one of the requisites validated.

Magento has a complex architecture and works with MySQL database constant
queries to show specific products information, render pages, and process checkouts.
This high process volume demand can slow the download speed when your
Magento 2.0 solution is in a production environment.

To improve the Magento 2.0 performance, we can use two important tools: indexing
and caching.

Indexing and re-indexing data
In the Magento 2.0 life cycle, at a determined point, we will have considerable
megabytes of data on the MySQL database, including information regarding
products, orders, customers, and payments. To improve its performance,
Magento uses indexed tables to provide faster lookups.

However, as your Magento 2.0 e-commerce grows, the indexation feature starts to
lose performance too.

In order to correct this issue, you can precompile database relationships using the flat
table option in Magento. This technique combines EAV relationships for categories
and products in one table to increase the speed of queries. To enable this feature,
you can follow these instructions:

1.	 Log in to your Magento backend (http://localhost/packt/admin_packt).
2.	 Go to Stores | Configuration | Catalog.
3.	 Expand the Storefront option and select Yes for both Use Flat Category and

Use Flat Catalog Product.
4.	 Next, click on Save Config.

Speeding up Your Magento 2.0

[126]

5.	 After the activation of the flat resource, you will probably get this
Magento message:

If you make changes to your catalog, product, or some page that has a relationship
with indexers, the Magento system needs to re-index the information to keep the flat
table schema working. You can manage the indexers with the Magento command-
line tool, as follows:

1.	 Open the terminal or command prompt.
2.	 Access the packt/bin directory. Then, run the php magento

indexer:reindex command.
3.	 In some cases, it is necessary to give write permissions again to

the directories.

The reindex command rebuilds all the product, catalog, customer, and stock
information. The index feature enables a fast return of data once the system has
no need to process any basic data, such as product price, every single time that
the user accesses the store.

Did you notice in the preceding system message one issue about Magento cron job?
Cron job allows you to automate this task and others to improve your efficiency.
Let's take a look at how cron job works.

For further information about Magento indexing, take a look at the
official Magento documentation at http://devdocs.magento.
com/guides/v2.0/extension-dev-guide/indexing.html.

http://devdocs.magento.com/guides/v2.0/extension-dev-guide/indexing.html
http://devdocs.magento.com/guides/v2.0/extension-dev-guide/indexing.html

Chapter 8

[127]

The Magento cron job
Magento has important system processes that are very important to maintain the
system's working at its full potential. These processes need automated executions to
handle the updates made by the user and administrator. That is the why this feature
is critical to Magento.

Cron job works with UNIX systems and can schedule specific tasks to be executed
in a predetermined time on the server. The following activities can be scheduled to
execute on the Magento 2.0 system:

•	 The updating of currency rates
•	 Customer notifications
•	 The generation of Google sitemap
•	 Price rules
•	 Sending e-mails
•	 Re-indexing

To configure the cron job, follow this recipe.

Find the php.ini file path.

If you use XAMPP, as was suggested for a web server solution at the beginning of
the book, you simply can use the XAMPP/xamppfiles/etc/php.ini path. If you use
a Unix-based terminal, you can use the command to find the PHP configuration file.
Perform the following steps:

1.	 Open the terminal.
2.	 Run the sudo crontab -u magento_user –e command; here,

magento_user refers to your system's owner.
3.	 Enter with the following instructions in the text editor that will show up:

*/1 * * * * php -c <php-ini-file-path> <your Magento install dir>/
bin/magento cron:run
*/1 * * * * php -c <php-ini-file-path> <your Magento install dir>/
update/cron.php
*/1 * * * * php -c <php-file-path> <your Magento install dir>/bin/
magento setup:cron:run

Here's an example:
*/1 * * * * php -c /Applications/XAMPP/xamppfiles/etc/php.ini /
Applications/XAMPP/xamppfiles/etc/php.ini /Applications/XAMPP/
htdocs/packt/bin/magento cron:run

Speeding up Your Magento 2.0

[128]

*/1 * * * * php -c /Applications/XAMPP/xamppfiles/etc/php.ini /
Applications/XAMPP/xamppfiles/etc/php.ini /Applications/XAMPP/
htdocs/packt/update/cron.php
*/1 * * * * php -c /Applications/XAMPP/xamppfiles/etc/php.ini /
Applications/XAMPP/htdocs/packt/bin/magento setup:cron:run

4.	 Run the sudo crontab -u fjmiguel –l command to take a look at your
new cron job configuration.

5.	 Save the changes and exit the text editor.

In some cases, it is necessary to give write permissions again to the directories.

The */1 * * * * configuration specifies that the cron job will be executed every
minute. The cron job will now run in the background every minute. To manually
execute the cron job, you can run the php magento cron:run command on the
Magento command-line tool, as shown in the following figure:

For further information about the cron job, follow the link at https://help.ubuntu.
com/community/CronHowto.

For Magento cron, take a look at the official Magento documentation http://
devdocs.magento.com/guides/v2.0/config-guide/cli/config-cli-
subcommands-cron.html.

Caching
While the indexing technique works on database layer, the caching feature does
the same for the HTML page components to increase fast access to the frontend.
Caching stores this kind of data in order to provide the visitors with access to
faster download.

https://help.ubuntu.com/community/CronHowto
https://help.ubuntu.com/community/CronHowto
http://devdocs.magento.com/guides/v2.0/config-guide/cli/config-cli-subcommands-cron.html
http://devdocs.magento.com/guides/v2.0/config-guide/cli/config-cli-subcommands-cron.html
http://devdocs.magento.com/guides/v2.0/config-guide/cli/config-cli-subcommands-cron.html

Chapter 8

[129]

To enable caching, you need to perform the following steps:

1.	 Open the terminal or command prompt.
2.	 Access the packt/bin directory.
3.	 Run the php magento cache:enable command.

For further information about cache configuration, follow the link at http://
devdocs.magento.com/guides/v2.0/config-guide/cli/config-cli-
subcommands-cache.html.

http://devdocs.magento.com/guides/v2.0/config-guide/cli/config-cli-subcommands-cache.html
http://devdocs.magento.com/guides/v2.0/config-guide/cli/config-cli-subcommands-cache.html
http://devdocs.magento.com/guides/v2.0/config-guide/cli/config-cli-subcommands-cache.html

Speeding up Your Magento 2.0

[130]

You can work with third-party cache solutions to provide a better performance.
Some of this solution has support and works very well with the Magento 2.0
solution. This book doesn't cover server configurations, but I strongly suggest
you to take a look at the following:

•	 Redis can be found at http://devdocs.magento.com/guides/v2.0/
config-guide/redis/config-redis.html

•	 Memcached session storage can be found at http://devdocs.magento.
com/guides/v2.0/config-guide/memcache/memcache.html

•	 Varnish cache can be found at http://devdocs.magento.com/guides/
v2.0/config-guide/varnish/config-varnish.html

Fine-tuning the Magento hosting server
Magento 2.0 has a complex structure, but it follows the good practices of software
development, which gives the administrators and the developers of this fantastic
e-commerce solution the real possibility to implement a scalable system to conquer
a great site traffic and constantly increase the sales.

Despite this advantage, all the scalable systems need a great server infrastructure
to provide fast content access through the Internet.

As a developer, you need to always think about all the stages that a successful
software needs to go through in an order to aggregate the real value to its
administrator and to its users. Try to always see the big picture of your project.

Let's take a look at some techniques and tips to increase your Magento server's
capability.

Selecting the right Magento hosting
service
First of all, we need to conduct a deep research on the existent solutions. We will try
to gather information about clients of these solutions and test Magento's performance
by accessing the Magento website as a visitor.

The Magento official project website provides you with an online tool to search for
Magento. You can use this tool by accessing the URL at http://partners.magento.
com/partner_locator/search.aspx.

http://devdocs.magento.com/guides/v2.0/config-guide/redis/config-redis.html
http://devdocs.magento.com/guides/v2.0/config-guide/redis/config-redis.html
http://devdocs.magento.com/guides/v2.0/config-guide/memcache/memcache.html
http://devdocs.magento.com/guides/v2.0/config-guide/memcache/memcache.html
http://devdocs.magento.com/guides/v2.0/config-guide/varnish/config-varnish.html
http://devdocs.magento.com/guides/v2.0/config-guide/varnish/config-varnish.html
http://partners.magento.com/partner_locator/search.aspx
http://partners.magento.com/partner_locator/search.aspx

Chapter 8

[131]

Apache web server deflation
Magento hosting services generally use Apache as a web server solution. Magento is
written in PHP, and Apache has a mature environment to handle PHP processes.

In order to give fast response to visitors' requests, we will use Apache's mod_deflate
to speed up server response.

According to Apache's official documentation (http://httpd.apache.org/
docs/2.2/mod/mod_deflate.html), this module provides the deflate output filter
that allows output from your server to be compressed before being sent to the client
over the network.

To enable this feature on your server, you need to create the .htaccess file and enter
the following code:

<IfModule mod_deflate.c>

##
enable apache served files compression
http://developer.yahoo.com/performance/rules.html#gzip

 # Insert filter on all content
 SetOutputFilter DEFLATE
 # Insert filter on selected content types only

http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html

Speeding up Your Magento 2.0

[132]

 AddOutputFilterByType DEFLATE text/html text/plain text/xml text/
css text/javascript

 # Netscape 4.x has some problems...
 BrowserMatch ^Mozilla/4 gzip-only-text/html

 # Netscape 4.06-4.08 have some more problems
 BrowserMatch ^Mozilla/4\.0[678] no-gzip

 # MSIE masquerades as Netscape, but it is fine
 BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

 # Don't compress images
 SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary

 # Make sure proxies don't deliver the wrong content
 Header append Vary User-Agent env=!dont-vary

</IfModule>

This adjustment reduces about 70% of the amount of data delivered.

For further information about the .htaccess and mod_deflate configurations, take
a look at the links at http://httpd.apache.org/docs/current/howto/htaccess.
html and http://httpd.apache.org/docs/2.2/mod/mod_deflate.html.

Enabling the expires header
Continuing to take advantage of the Apache web server, we will activate the
mod_expires module. This module sends a message to the client machine about
the document's validity, and the client can store a cache of the site until the client
receives a new message from the server expiration of data. This technique increases
the speed of download.

To activate this feature, you can open the .htaccess file available in the Magento
root directory and enter this block of code:

<IfModule mod_expires.c>

##
Add default Expires header
http://developer.yahoo.com/performance/rules.html#expires

 ExpiresActive On

http://httpd.apache.org/docs/current/howto/htaccess.html
http://httpd.apache.org/docs/current/howto/htaccess.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html

Chapter 8

[133]

 ExpiresDefault "access plus 1 year"

</IfModule>

For further information about the .htaccess configuration, follow the link at
http://httpd.apache.org/docs/2.2/mod/mod_expires.html.

PHP memory configuration
Increasing PHP memory by host configuration has a direct relationship with your
contracted hosting service. Some shared hosting services do not give this option
to the developers. This is one of the main reasons to choose a specialized Magento
hosting service.

Generally, this configuration can be done by adding the following code to the
.htaccess file available in the Magento root directory:

<IfModule mod_php5.c>

##
adjust memory limit

php_value memory_limit 256M
php_value max_execution_time 18000

</IfModule>

Optimizing the MySQL server
MySQL has the query cache feature to provide fast queries on a database.
Once again, you need to conduct deep research on your possible hosting services
before contracting any to make sure you have all the services you need for a great
production environment.

Before starting the optimization, refer to the PHP and MySQL documentations of
your hosting service to check the availability of these changes.

Open the php.ini hosting service file and place these configurations:

;;;;;;;;;;;;;;;;;;;
; Resource Limits ;
;;;;;;;;;;;;;;;;;;;

max_execution_time = 30 ; Maximum execution time of each script,
in seconds

http://httpd.apache.org/docs/2.2/mod/mod_expires.html

Speeding up Your Magento 2.0

[134]

max_input_time = 60	 ; Maximum amount of time each script may spend
parsing request data
memory_limit = 512M ; Maximum amount of memory a script may
consume (8MB)
query_cache_size = 64M

[MySQLi]
; Please refer to http://php.net/manual/en/mysqli.configuration.php
for further information

; Maximum number of persistent links. -1 means no limit.
mysqli.max_persistent = -1

; Allow accessing, from PHP's perspective, local files with LOAD DATA
statements
;mysqli.allow_local_infile = On

; Allow or prevent persistent links.
mysqli.allow_persistent = On

; Maximum number of links. -1 means no limit.
mysqli.max_links = -1

; If mysqlnd is used: Number of cache slots for the internal result
set cache
mysqli.cache_size = 2000

; Default port number for mysqli_connect(). If unset, mysqli_
connect() will use
; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the
; compile-time value defined MYSQL_PORT (in that order). Win32 will
only look
; at MYSQL_PORT.
mysqli.default_port = 3306

; Default socket name for local MySQL connects. If empty, uses the
built-in
; MySQL defaults.
mysqli.default_socket =

; Default host for mysql_connect() (doesn't apply in safe mode).
mysqli.default_host =

; Default user for mysql_connect() (doesn't apply in safe mode).
mysqli.default_user =

; Default password for mysqli_connect() (doesn't apply in safe mode).
; Note that this is generally a *bad* idea to store passwords in this
file.

Chapter 8

[135]

; *Any* user with PHP access can run 'echo get_cfg_var("mysqli.
default_pw")
; and reveal this password! And of course, any users with read access
to this
; file will be able to reveal the password as well.
mysqli.default_pw =

; Allow or prevent reconnect
mysqli.reconnect = Off

Now, let's configure the query_cache_size variable directly on the MySQL database.

Open the phpMyAdmin web SQL console, and execute the SHOW VARIABLES LIKE
'query_cache_size'; query without selecting a database. The query will probably
return the 0 value for the query_cache_size variable.

Execute the SET GLOBAL query_cache_size = 1048576; query and execute SHOW
VARIABLES LIKE 'query_cache_size'; again.

The query will probably return the following information:

The query_cache_size variable was activated with success!

For further information about the MySQL cache size configuration, follow the link at
https://dev.mysql.com/doc/refman/5.0/en/query-cache-configuration.html.

Even by testing these configurations in your localhost environment, you can feel the
huge positive difference between the first access in your Magento installation and the
last access after the configuration. This is really awesome!

https://dev.mysql.com/doc/refman/5.0/en/query-cache-configuration.html

Speeding up Your Magento 2.0

[136]

Minifying scripts
Code minification is a technique to remove unnecessary characters from the source
code. Minify your JavaScript (.js) and stylesheets (.css) files and improve the load
time of your site by compressing the files.

In order to activate this process in Magento, navigate to the admin area
(http://localhost/packt/admin_packt) and follow these instructions:

1.	 First, navigate to Stores | Configuration | Advanced | Developer.
2.	 Expand the JavaScript Settings options and select the Yes option for Merge

JavaScript Files and Minify JavaScript Files.
3.	 Expand the CSS Settings options and select the Yes option for Merge CSS

Files and Minify CSS Files.
4.	 Finally, click on the Save Config button.

Chapter 8

[137]

CDN for Magento
Content Delivery Networks, also known as CDN, are servers of fast access for
your static or non-dynamic content. JavaScript files and images are examples of
files hosted on CDN servers.

The main idea behind the use of CDN is saving the process time of your Magento
server using a CDN solution.

I suggest you to conduct research on hosting services that provide this integration.
For example, Nexcess as a Magento partner company provides specific
documentation about CDN integration on the URL https://docs.nexcess.net/
article/how-to-configure-cdn-access-for-magento.html.

For JavaScript CDN, we have a free-of-charge service available on the Internet!
This is thanks to Google for providing us with this amazing feature at
https://developers.google.com/speed/libraries/.

Summary
In this chapter, you learned important lessons about how to improve Magento
performance and pay attention to all the aspects that can make a positive difference
in Magento development, including how to create a full-speed environment for
Magento System.

I invite you to think in this very for now. We are progressing and walking through
all the aspects of Magento: design, development, marketing, and performance.
I feel comfortable to say to you, dear reader, that you have the tools to elevate
your Magento professional career. Just keep continuing to study hard.

In this chapter, you learned how to:

•	 Increase Magento performance in different aspects and technologies
•	 Use the power of indexation and caching
•	 Develop solutions to create a better Magento user experience through

fast download techniques

In the final chapter, we will explore some tools and ways to improve your Magento
skills. See you!

https://docs.nexcess.net/article/how-to-configure-cdn-access-for-magento.html
https://docs.nexcess.net/article/how-to-configure-cdn-access-for-magento.html
https://developers.google.com/speed/libraries/

[139]

Improving Your
Magento Skills

We are at the end of the book, but this only the beginning of your walk through the
Magento training. It's important to know some Magento extension options, but it
is more important to build your own path in the Magento world by studying for a
certification and achieving a new professional level.

The following topics will be covered in this chapter:

•	 Magento Connect extensions
•	 Installing a Magento extension
•	 Debugging Grunt.js styles
•	 Magento knowledge center
•	 Improving your Magento skills

Magento Connect extensions
The Magento 2.0 architecture allows a natural improvement of native resources
and the addition of new ones. Magento 2.0 is built based on the best software
development practices. Its architecture is modular, which allows the development
of extensions, as we discussed in an earlier chapter.

Magento Commerce maintains a marketplace to provide Magento extensions known
as Magento Connect (https://www.magentocommerce.com/magento-connect).
Magento Connect includes extensions that provide new functionalities, such as
modules, add-ons, language packs, design interfaces, and themes to extend the
power of your store.

https://www.magentocommerce.com/magento-connect

Improving Your Magento Skills

[140]

I strongly suggest that you visit Magento Connect to get some ideas for personal
projects and follow the extension development tendency in the marketplace.

Installing a Magento extension
Besides the Magento Connect marketplace, to search for Magento extension
solutions, you can access the extension options through your admin area. To access
Magento extension options in your admin area, perform the following steps:

1.	 Access your admin area at http://localhost/admin_packt.
2.	 Navigate to Find Partners and Extensions | Visit Magento Marketplaces.

3.	 Once you choose the extension to install, Magento 2.0 offers two options for
extension installation:

°° Installation via Composer
°° Manual installation

Chapter 9

[141]

To install the extensions via Composer, you need to configure composer.json
to work with the Magento 2 Composer repository (http://packages.magento.
com/) as a repository solution for Magento Core extensions. The composer already
has the Packagist (https://packagist.org/) configuration. To proceed with this
configuration, perform the following:

1.	 Open the terminal or command prompt.
2.	 Go to the root directory of your Magento installation.
3.	 Run the composer config repositories.magento composer

http://packages.magento.com command.

To install a Magento extension via composer, do the following:

1.	 Open the terminal or command prompt.
2.	 Go to the root directory of your Magento installation.
3.	 Run the composer require <vendor>/<module> command.
4.	 An example of this is composer require Packt/TweetsAbout.
5.	 Run the composer update command.
6.	 Then, run the php bin/magento setup:upgrade command.
7.	 In some cases, it is necessary to give write permissions again to the directories.

To install a Magento extension manually, perform the following steps:

1.	 Download the .zip file of the module.
2.	 Extract it and move it under the <magento_root_directory>/app/code

directory.
3.	 Run the php bin/magento setup:upgrade command.
4.	 In some cases, it is necessary to give write permissions again to the

directories (for example, the var directory)

Debugging styles with the Grunt task runner
As you noted in the previous chapters, for every change that you apply in a Magento
extension or theme styles, you need to clean the static files directory and deploy it to
see the effect. This process takes time and unnecessary effort. So, what if you have a
tool to automate this process?

http://packages.magento.com/
http://packages.magento.com/
https://packagist.org/

Improving Your Magento Skills

[142]

Grunt.js (http://gruntjs.com/) is a task runner to automate tasks; for example,
it provides productivity in Magento development by automating CSS changes.
To install Grunt, follow these steps:

1.	 Install Node.js (https://nodejs.org) in your machine.
2.	 Open the terminal or command prompt.
3.	 Run the npm install -g grunt-cli command to install the Grunt

command-line interface.
4.	 Go to the packt/ Magento root directory and run the npm install grunt

--save-dev command.
5.	 Still under the packt directory, run the npm install command.
6.	 Then, run the npm update command.
7.	 In your favorite code editor open, the packt/dev/tools/grunt/configs/

theme.js file, add the following code, and save it:
'use strict';

module.exports = {
 blank: {
 area: 'frontend',
 name: 'Magento/blank',
 locale: 'en_US',
 files: [
 'css/styles-m',
 'css/styles-l',
 'css/email',
 'css/email-inline'
],
 dsl: 'less'
 },
 luma: {
 area: 'frontend',
 name: 'Magento/luma',
 locale: 'en_US',
 files: [
 'css/styles-m',
 'css/styles-l'
],

http://gruntjs.com/
https://nodejs.org

Chapter 9

[143]

 dsl: 'less'
 },
 backend: {
 area: 'adminhtml',
 name: 'Magento/backend',
 locale: 'en_US',
 files: [
 'css/styles-old',
 'css/styles'
],
 dsl: 'less'
 },

 compstore: {
 area: 'frontend',
 name: 'Packt/compstore',
 locale: 'en_US',
 files: [
 'css/styles-m',
 'css/styles-l',
 'css/source/compstore'
],
 dsl: 'less'
 }
};

Once the Grunt environment is configured, it's time to test Grunt. Perform the
following steps:

1.	 Open the terminal or command prompt.
2.	 Run the grunt exec:compstore command.
3.	 Then, run the grunt less:compstore command.

Improving Your Magento Skills

[144]

4.	 Run the grunt watch command.

These commands will create a direct channel with the possibility to edit your .CSS
files on the fly. The grunt watch command shows you the update in real time. With
"grunt watch" still active in your terminal/prompt window, try to edit and save the
body's background color in the app/design/frontend/Packt/compstore/web/
css/source/compstore.less file to see the result in the browser by accessing your
base URL:

Chapter 9

[145]

Magento knowledge center
The Magento team provides great resources of documentation in order to increase
the Magento developer's knowledge.

In the Magento documentation (http://magento.com/help/documentation),
the user can access the USER GUIDES section for ENTERPRISE EDITION,
COMMUNITY EDITION, DESIGNER'S GUIDE, and DEVELOPER
DOCUMENTATION.

http://magento.com/help/documentation

Improving Your Magento Skills

[146]

I strongly suggest that you, dear reader, study Magento's COMMUNITY EDITION,
DESIGNER'S GUIDE, and DEVELOPER DOCUMENTATION in the first instance.
These three documentations have solid concepts, and you can certainly take advantage
by building your Magento concepts.

Improving your Magento skills
Welcome to the world of information technology! The professionals of this area
need to study harder every single day. It's totally crazy how technology is always
in mutation. New technologies and solutions come in a short period of time, and
professionals must be prepared all the time to keep an open mind, absorbing this
situation assertively.

Magento provides an official training program available at http://magento.com/
training/overview. You can access information about courses, and I strongly suggest
that you think about Magento certification. Certifications can boost your career.

To learn more about Magento certification, refer to http://magento.com/
training/catalog/certification. You can download a free Magento study
guide by visiting http://magento.com/training/free-study-guide.

You have a lot of options, such as books, articles, and blogs, to train and improve
your Magento skills. Be persistent on your objectives!

http://magento.com/training/overview
http://magento.com/training/overview
http://magento.com/training/catalog/certification
http://magento.com/training/catalog/certification
http://magento.com/training/free-study-guide

Chapter 9

[147]

Summary
Congratulations! You won one more challenge; first, you acquired this great book,
and then you completed the reading with merits. It was not easy, but I'm certain it
was worth it.

In this chapter, you learned how to:

•	 Manage Magento extensions
•	 Test some Magento extension options
•	 Build your own path to become a Magento success professional

Thank you so much. I know you can climb the highest mountains; never lose faith in
yourself. Good luck!

[149]

Index
Symbols
.htaccess configuration

reference link 132
.json format

reference link 64

A
aheadWorks

URL 8
Apache

about 2
URL 2

Apache Friends 2
Apache Friends Support Forum

URL 4
Apache Varnish 16
Apache Web server deflation

about 131, 132
reference link 131

Application Programming Interface
(API) 16

Atom.io 51, 52

B
basic Magento 2.0 theme

creating 50
Bitnami

URL 4
blank theme features 45
blocks 90, 91
bundler

URL 60

C
cache configuration

reference link 129
cache management

about 50
reference link 24

caching
about 125
enabling 128, 129

CDN 137
CDN for Magento 137
Chrome Web Store

URL 108
CMS blocks 47
CMS pages 47
command-line configuration,

Magento 2.0 22
command-line utility 22-24
Community Edition (CE) 7
Composer

about 60, 61
installing, on Unix-like operating

systems 61
URL 60

composer.json file, parameters
autoload 64
description 64
license 64
name 64
require 64
type 64
version 64

Composer packages
reference link 86

[150]

Composer-Setup.exe
reference link 62

CompStore content
creating 69-73

CompStore Electronics theme
activating 68

CompStore logo
creating 67, 68

CompStore theme
about 59
adjusting, for mobile devices 110
building 62-64
new CSS, applying to 65-67

Content Delivery Networks. See CDN
Content Management System (CMS) 34
controllers 87-89
crashlytics 81
Creative Commons by 3.0

URL 68
Criteo

URL 101
cron jobs 25
CSS 97
CSS 3 media queries 110
CSS preprocessing, with LESS 64
custom variables

about 47
creating 48
working 49

D
data

indexing 125, 126
re-indexing 125, 126

dependency injection
about 89
reference link 89

DevTools extension, options
about 105
CSS, viewing 106
custom devices, creating 107
device preset, modifying 105
media queries, inspecting 106
network connectivity 105

Document Object Model (DOM) 92
dynamic view files 43

E
Enterprise Edition (EE) 7
Entity-Attribute-Value (EAV)

about 124
attribute 124
entity 124
value 124

expires header
enabling 132

extension
authenticating, TwitterOAuth used 83

extension structure, Magento 2.0 78-80

F
Facebook 80
FlatIcon

URL 68

G
GitHub

URL 86
Google 80
Google Analytics

tracking code 34
URL 34

Google Checkout 22
Google Chrome

download link 102
Google Chrome DevTools

about 102
accessing 102-104
URL, for official page 104

Grunt.js
about 142
URL 142

Grunt task runner
styles, debugging with 141-144

H
hashtag parameter 95
hosted libraries

reference link 137

[151]

I
indexers 126
indexing 125
installation files, XAMPP for Windows

7zip 3
Installer 3
Zip 3

installing
Composer, on Unix-like operating

systems 61
Composer, on Windows 62
Magento 9-13
Magento extension 140
Magento extension, manually 141
Magento extension, via composer 141
XAMPP 3
XAMPP, for Linux 6
XAMPP, for OS X 7
XAMPP, for Windows 3-5

L
LESS

about 64
reference link 64

Linux
XAMPP, installing for 6

Logomakr
URL 67

Luma theme 42-45

M
Magento

about 1, 7, 8
development overview 78
installing 9-13
reference link, for installation 13
reference link, for official project

website 130
URL 1
URL, for documentation 145
URL, for official training program 146

Magento 2.0
command-line configuration 22
enhancements, in security layer 16

extension structure 78-80
responsive design 110
templates, customizing 74
theme structure 42, 43
URL, for official documentation 64

Magento 2 Composer repository
reference link 141

Magento certification
about 146
reference link 146

Magento Commerce 16
Magento Connect

about 100
extensions 139
URL 15

Magento Core extensions 141
Magento cron job

about 126-128
reference link 128

Magento EAV 124
Magento extension

creating 80
installing 140
installing, manually 141
installing, via composer 141

Magento Framework 18
Magento hosting server

fine tuning 130
Magento hosting service

selecting 130
Magento indexing

managing 25
reference link 126

Magento knowledge center 145, 146
Magento MVC architecture 13, 14
Magento order management system

about 19
sales operations 20, 21
simplified checkout process 21

Magento pages
category pages 37, 38
CMS pages 34, 35
optimizing 34
product pages 36, 37

Magento SEO management 28
Magento skills

improving 146

[152]

Magento theme
about 42
URL, for official documentation 42

Magento UI
about 111, 112
URL 113

MariaDB
about 2
URL 2

Memcache 17
Memcached session storage

reference link 130
mobile devices

CompStore theme, adjusting for 110
mod_deflate configuration

reference link 132
Models 18
Model View Controller (MVC) 1
module

deploying 97-99
developing 84-86
packaging 100
publishing 100

mopub 81
MySQL cache size configuration

reference link 135
MySQL server

optimizing 133-135

N
namespaces 89
new CSS

applying, to CompStore theme 65-67
new CSS mixin media query

implementing 113-116
Nexcess 137
Node.js

URL 142
npm

URL 60

O
observer 91, 92
Observer event handler

about 85

reference link 85
OS X

XAMPP, installing for 7

P
Packagist

URL 141
parent theme 45
PayPal 22
PDO 17
Perl

about 2
URL 2

PHP
about 2
URL 2

PHP memory configuration 133
phpMyAdmin 10
PHP object-oriented programming

reference link 89
PHP Standards Recommendations (PSR)

about 17
reference link 18

practices, PHP Standards
Recommendations (PSR)

PHP extensions 17
PSR-0-Autoloading Standard 17
PSR-1-Basic Coding Standard 17
PSR-2-Coding Style Guide 17
PSR-3-Logger Interface 18
PSR-4-Autoloading Standard 18

processes/modules, Magento 2.0
improvements 16

PSR-4 pattern
URL 89

Q
query cache feature 133

R
Redis

reference link 130
Representational State Transfer (REST) 80
responsive design, Magento 2.0 110

[153]

Responsive Web Designer Tester
extension 108-110

Responsive Web Design (RWD) 44, 110

S
Sales layer 19
scripts

minifying 136
Search Engine Optimization (SEO) 27
SEO catalog configuration

about 32
options 32, 33
XML sitemap manager 33

SEO configuration 29-31
Service Consumers 18
Service Layer 18
simple product image configuration 52, 53
simplified checkout process, Magento order

management system
about 21
orders 21
payments 22
promotions 22

static files' directories
creating 53

static view files 43
store configuration 28, 29
styles

debugging, with Grunt task runner 141-144
Sublime Text2 51, 52

T
TextMate 51, 52
theme

applying 55, 56
creating 51, 52
declaring 51, 52

theme inheritance 45, 46
theme logo

creating 53, 54
tweets

adjusting, about extensions for mobile
devices 118-121

TweetsAbout extension
TwitterOAuth, installing on 83

TweetsAbout module
about 77
structure 82

Twitter
about 80
URL 81

Twitter Developer page
URL 81

TwitterOAuth
installing, on TweetsAbout extension 83
URL 83
used, for authenticating extension 83

Twitter REST API 80-82

U
Uniform Resource Names (URN) 84
Unix-like operating systems

Composer, installing on 61

V
Varnish cache

reference link 130
views 93-97

W
Webalys

URL 68
Webcomm Magento Boilerplate 101
website

testing, on different devices 102
Web Users 18
Web Users layer, processes

Content 18
Customer 18
Marketing 18
Products 18
Report 18
Sales 18

widget management system 70
Windows

XAMPP, installing for 3-5

[154]

X
XAMPP

about 2
installing 3
installing, for Linux 6
installing, for OS X 7
installing, for Windows 3-5
URL 3

XAMPP PHP development environment 2

Z
Zend framework

URL 13
using 78

Zend framework Case Study
reference link 78

Thank you for buying
Magento 2 Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Magento 2 Developer's Guide
ISBN: 978-1-78588-658-4 Paperback: 412 pages

Harness the power of Magento 2, the most recent
version of the world's favorite e-commerce platform,
for your online store

1.	 Set up, configure, and power up your Magento
environment from development to production.

2.	 Master the use of Web API to communicate
with the Magento system and create custom
services .

3.	 Create custom modules from scratch to extend
the core functionality of the Magento system.

Magento 2 Development
Cookbook
ISBN: 978-1-78588-219-7 Paperback: 304 pages

Over 60 recipes that will tailor and customize your
experience with Magento 2

1.	 Solve common problems encountered while
extending your Magento 2 store to fit your
business needs.

2.	 Delve into the exciting and enhanced features
of Magento 2 such as customizing security
permissions, intelligent filtered search options,
easy third-party integration, among others.

3.	 Learn to build and maintain a Magento 2 shop
via a visual-based page editor and customize
the look and feel using Magento 2's offerings on
the go.

Please check www.PacktPub.com for information on our titles

Mastering Magento Theme Design
ISBN: 978-1-78328-823-6 Paperback: 310 pages

Create responsive Magento themes using Bootstrap,
the most widely used frontend framework

1.	 Create an advanced responsive Magento theme
based on the framework Bootstrap 3.

2.	 Create a powerful admin theme options panel.

3.	 Loaded with practical live coding example to
create the theme from scratch.

Learning Magento
Theme Development
ISBN: 978-1-78328-061-2 Paperback: 182 pages

Create visually stunning and responsive themes to
customize the appearance of your Magento store

1.	 Create a custom theme from scratch for your
Magento store.

2.	 Change the basics of your Magento theme from
the logo of your store to the color scheme of
your theme.

3.	 Easy-to-follow step-by-step guide on how to
get up and running with Magento themes.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Magento Fundamentals
	XAMPP PHP development environment
	XAMPP installation
	XAMPP for Windows installation
	XAMPP for Linux installation
	XAMPP for OS X installation

	Magento
	Magento installation
	Magento MVC architecture

	Summary

	Chapter 2: Magento 2.0 Features
	The revolution of Magento 2.0
	An introduction to the Magento order management system
	Sales operations
	A simplified checkout process
	Orders
	Payments
	Promotions

	Magento 2.0 command-line configuration
	The command-line utility
	Summary

	Chapter 3: Working with Search
Engine Optimization
	Magento SEO management
	Store configuration
	SEO and searching
	SEO catalog configuration
	XML sitemap manager

	Google Analytics tracking code
	Optimizing Magento pages
	CMS pages
	Product pages
	Category pages

	Summary

	Chapter 4: Magento 2.0 Theme Development – the Developers' Holy Grail
	The basic concepts of Magento themes
	Magento 2.0 theme structure
	The Magento Luma theme
	Magento theme inheritance
	CMS blocks and pages
	Custom variables
	Creating a basic Magento 2.0 theme
	Creating and declaring a theme
	Simple product image configuration
	Creating static files' directories
	Creating a theme logo
	Applying the theme

	Summary

	Chapter 5: Creating a Responsive Magento 2.0 Theme
	The CompStore theme
	Composer – the PHP dependency manager
	Installing Composer on Unix-like operating systems
	Installing Composer on Windows

	Building the CompStore theme
	CSS preprocessing with LESS
	Applying new CSS to the CompStore theme
	Creating the CompStore logo
	Applying the theme
	Creating CompStore content
	Customizing Magento 2.0 templates
	Summary

	Chapter 6: Write Magento 2.0 Extensions – a Great
Place to Go
	Magento development overview
	Using the Zend framework
	Magento 2.0 extension structure
	Developing your first Magento extension
	The Twitter REST API
	The TweetsAbout module structure
	Using TwitterOAuth to authenticate our extension
	Developing the module
	Controllers
	Blocks
	Observer
	Views
	CSS
	Deploying the module
	Magento Connect
	Packaging and publishing your module

	Summary

	Chapter 7: Go Mobile with Magento 2.0!
	Testing the website on different devices
	The Google Chrome DevTools device mode
	Changing the device preset
	Network connectivity
	Inspecting media queries
	Viewing CSS
	Adding custom devices

	Responsive Web Designer tester

	Adjusting the CompStore theme for mobile devices
	The Magento 2.0 responsive design
	The Magento UI
	Implementing a new CSS mixin
media query
	Adjusting tweets about extensions for mobile devices
	Summary

	Chapter 8: Speeding up Your
Magento 2.0
	Magento Entity-Attribute-Value
	Indexing and caching Magento
	Indexing and re-indexing data
	The Magento cron job
	Caching
	Fine-tuning the Magento hosting server
	Selecting the right Magento hosting service
	Apache web server deflation
	Enabling the expires header
	PHP memory configuration
	Optimizing the MySQL server

	Minifying scripts
	CDN for Magento

	Summary

	Chapter 9: Improving Your
Magento Skills
	Magento Connect extensions
	Installing a Magento extension
	Debugging styles with the Grunt task runner

	Magento knowledge center
	Improving your Magento skills
	Summary

	Index

