

Extending Symfony2
Web Application Framework

Optimize, audit, and customize web applications
with Symfony

Sébastien Armand

 BIRMINGHAM - MUMBAI

Extending Symfony2 Web Application Framework

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1180314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-719-2

www.packtpub.com

Cover Image by Suman Kumar (sumankumarsinha@yahoo.com)

Credits

Author
Sébastien Armand

Reviewers
Vincent Composieux

Boris Guéry

Eric Pidoux

Adam Prager

Acquisition Editors
Rebecca Pedley

Antony Lowe

Content Development Editor
Rebecca Pedley

Technical Editors
Menza Mathew

Shali Sasidharan

Copy Editors
Alfida Paiva

Karuna Narayanan

Project Coordinator
Jomin Varghese

Proofreaders
Simran Bhogal

Maria Gould

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Graphics
Yuvraj Mannari

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Sébastien Armand is a software developer based in Beijing, China. He spent
most of the past five years working with Symfony, building internal IT systems.
He co-founded mashupsports.com, a social website for sports enthusiasts based
on Symfony2. He contributed to Symfony and the Symfony documentation on
many occasions.

I would like to thank my ever-loving and understanding wife for all
her support. If it weren't for her, I would have never started this book.
Thank you. I'll be home for breakfast from now on! Also my parents
and sister for just being awesome. Of course, I also extend my thanks
to the whole Symfony community. It feels great being a part of it!

www.mashupsports.com

About the Reviewers

Vincent Composieux is a French PHP developer based in Paris and working
at Ekino. Previously, he worked for e-commerce companies and web agencies on
multiple great web projects with high traffic.

He loves web technologies and frameworks and has experience in using Zend
Framework, Magento, and now Symfony.

He has had great experience in Symfony because he has used it since the very first
version and is actively involved in the Symfony community. He has even developed
some bundles such as FeedBundle for managing the RSS and Atom feeds and some
others. He is also a contributor on the Sonata bundles suite.

You can learn more about him and contact him on his personal website via
http://vincent.composieux.fr.

Boris Guéry is the CTO of Azurgate SA. He is a French startup editor and has
edited the well-known French mobile application: Se Coucher Moins Bête. He is
also a proud member of The Big Brains Company. He has been active on the Web
since 1997, and has been using computers since he was four; he likes beer as well
as software architecture and best practices. He is passionate of R&D yet pragmatic.
He works mainly in PHP using Symfony2, but still picks anything that does the job
(Python, Bash, C, and Ruby). He has developed a real expertise in implementing
scalable applications on high-load applications.

I would like to thank all my friends, with a special mention to all the
members of The Big Brains Company. My deep gratitude goes to my
parents as well.

Eric Pidoux has a master's degree in Computer Science from Miage Aix-Marseille and
is currently working as a Lead Web Developer at Createur.ch (Lausanne, Switzerland),
working especially on Symfony2 framework and PHP5 websites.

He started working as a Java and PHP developer and dropped the Java skill to learn
Symfony and then become a Symfony2 expert.

He already worked as a technical reviewer on GitLab Repository Management,
J.M. Hethey, Packt Publishing.

Adam Prager is a full stack web application developer who has created many
data-heavy business management applications in the areas of Customer Relationship
Management, Enterprise Resource Planning, and Laboratory Information
Management.

He is a firm believer in the value and power of open source software, and contributes
to projects such as Doctrine and Symfony regularly on GitHub. He has published
numerous Symfony bundles and jQuery plugins of his own. Adam currently works
for Netlife in Hungary.

Netlife is a consulting and IT services company that provides web application
development services using the latest technologies, and complete business solutions
based on SAP consulting.

As a diverse end-to-end IT solutions provider, Netlife offers a range of expertise
aimed at assisting customers to compete successfully in the ever-changing IT
industry. It provides long-term solutions with a focus on quality. They have
excellent domain expertise in SAP CRM, custom web application development,
and user experience design.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Services and Listeners 5

Services 5
A geolocation service 6
Testing services and testing with services 12
Tagging services 14

Listeners 18
Updating user preferences using custom events 20
Improving user performance 24

Code that works after the response 24
Summary 26

Chapter 2: Commands and Templates 27
Commands 27

The initial situation 27
Resizing user pictures 28
Testing a command 31
Commands as an interface to services 32

Twig 35
Managing our scripts 36
Testing a Twig extension 38
The time difference filter 40

Summary 40
Chapter 3: Forms 41

An input for geographical coordinates 41
Setting up the basics 43
Using the map 46

Data transformers 48
Forms based on user data 51

Table of Contents

[ii]

Going further 53
The initial setup 53
Adding and removing fields 55

Summary 58
Chapter 4: Security 59

Authentication 59
Simple OAuth with GitHub 60

The firewall 61
The security factory 64

Authorization 71
Voters 72
Annotations 77

Defining an annotation 78
Securing controllers with custom annotations 81

Securing an API – an example 84
Summary 86

Chapter 5: Doctrine 87
Creating your own data types 87

User and meetup locations 87
Testing 90

Custom DQL functions 92
Versioning 96

Setting a version on all entities 98
Using and updating versions 100
Testing 101

Creating a Doctrine filter 102
Summary 106

Chapter 6: Sharing Your Extensions 107
Creating the bundle 107

Exposing the configuration 110
Getting ready to share 117

Research 117
Documentation 117
Testing 118
Distribution and licensing 119
Is it just a bundle? 120

Summary 121
Index 123

Preface
The first stable version of Symfony2 was released more than two years back. Coming
from all the experience acquired from Symfony1, the promise was to remove all
the magic and provide a solid and modular basis to build web applications. The
trade-off's inconvenience was justified in order for developers to regain full control
and knowledge of the working of their application. To achieve this, it was decided
that everything would be a bundle. The core framework itself is just a collection of
bundles, which is everything you need to get started.

This great architecture being at the heart of Symfony2 and the promise of greater
modularity and control over the whole framework enables any developer to create
their own extensions. It is easy to implement these extensions; everything is prepared
so that these extensions can be shared and their configuration can be disclosed for
other developers to use them.

From the basics of creating a simple service to a custom authentication, this book will
guide you through everything you need to create amazing bundles for Symfony2 and
share them with the community.

What this book covers
Chapter 1, Services and Listeners, talks about the services and listeners that are the basis
of nearly all extension techniques used in Symfony. This covers the fundamentals that
will be reused throughout the book.

Chapter 2, Commands and Templates, helps you make your templates smarter and
augment them with your own tailored functions and filters. This chapter helps you
wrap common actions in commands so that you can perform them easily and reliably.

Chapter 3, Forms, helps you create your own form types and widgets and use them
inside of dynamic forms that change based on the user information or even their
own input.

Preface

[2]

Chapter 4, Security, discusses how to write custom authentication methods, use voters
to restrict access, and add additional security layers to Symfony2.

Chapter 5, Doctrine, describes how to make your database fit your data and not the
opposite. This chapter also describes how to write custom database types and extend
Doctrine to easily share common domain logic between models.

Chapter 6, Sharing Your Extensions, helps you to create a great extension that others
could benefit from. It contains everything you need to know about publishing a
self-contained reusable bundle.

What you need for this book
You will need a working Symfony environment behind a web server (Apache, Nginx,
and so on) and a relational database server such as MySQL or PostgreSQL. Some
examples are based on using MongoDB but can be applied to other databases as well.

The book makes use of features available in Symfony 2.3 and higher. The examples
might have to be adapted a bit if you are using an older version.

Some code also makes use of features available only in PHP 5.4 or higher, so they
will need to be adapted to work with older versions of PHP.

Who this book is for
This book is for you if you fulfill the following conditions:

• You are already using Symfony2 and PHP
• You want to understand more about how it works under the hood
• You need to replicate some of the Symfony2 core features but ones that

are tailored to your specific needs
• Your controllers and models are growing out of control
• You need a better way to structure and organize your application logic

and code

This book is not for you if you are just getting started with Symfony2. It will confuse
you more than it will help you. Keep it on your night stand for a while and come
back to it later.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "The php app/console container:debug
<service_name> command will provide information about a specific service."

A block of code is set as follows:

use Geocoder\HttpAdapter\CurlHttpAdapter;
use Geocoder\Geocoder;
use Geocoder\Provider\FreeGeoIpProvider;

public function indexAction()
 {

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If you
have enabled colored output in your console, the line saying Success! should
appear in green."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Services and Listeners
This chapter will explain the basis of services in the Symfony2 framework. A service
is an essential and core concept in Symfony2. In fact, most of the framework itself
is just a big set of predefined services that are ready to use. As an example, if you
just set up a new installation of Symfony2, from your project root, you can type php
app/console container:debug to see the full list of services currently defined
in your application. As you can see, even before we start writing anything for our
application, we already have almost 200 services defined. The php app/console
container:debug <service_name> command will provide information about a
specific service and will be a useful command to refer to throughout the book.

Services
A service is just a specific instance of a given class. For example, whenever you access
doctrine such as $this->get('doctrine'); in a controller, it implies that you are
accessing a service. This service is an instance of the Doctrine EntityManager class,
but you never have to create this instance yourself. The code needed to create this
entity manager is actually not that simple since it requires a connection to the database,
some other configurations, and so on. Without this service already being defined, you
would have to create this instance in your own code. Maybe you will have to repeat
this initialization in each controller, thus making your application messier and harder
to maintain.

Some of the default services present in Symfony2 are as follows:

• The annotation reader
• Assetic—the asset management library
• The event dispatcher
• The form widgets and form factory

Services and Listeners

[6]

• The Symfony2 Kernel and HttpKernel
• Monolog—the logging library
• The router
• Twig—the templating engine

It is very easy to create new services because of the Symfony2 framework. If we have
a controller that has started to become quite messy with long code, a good way to
refactor it and make it simpler will be to move some of the code to services. We have
described all these services starting with "the" and a singular noun. This is because
most of the time, services will be singleton objects where a single instance is needed.

A geolocation service
In this example, we imagine an application for listing events, which we will call
"meetups". The controller makes it so that we can first retrieve the current user's IP
address, use it as basic information to retrieve the user's location, and only display
meetups within 50 kms of distance to the user's current location. Currently, the code
is all set up in the controller. As it is, the controller is not actually that long yet, it has
a single method and the whole class is around 50 lines of code. However, when you
start to add more code, to only list the type of meetups that are the user's favorites or
the ones they attended the most. When you want to mix that information and have
complex calculations as to which meetups might be the most relevant to this specific
user, the code could easily grow out of control!

There are many ways to refactor this simple example. The geocoding logic can just
be put in a separate method for now, and this will be a good step, but let's plan for
the future and move some of the logic to the services where it belongs. Our current
code is as follows:

use Geocoder\HttpAdapter\CurlHttpAdapter;
use Geocoder\Geocoder;
use Geocoder\Provider\FreeGeoIpProvider;

public function indexAction()
 {

Initialize our geocoding tools (based on the excellent geocoding library at http://
geocoder-php.org/) using the following code:

 $adapter = new CurlHttpAdapter();
 $geocoder = new Geocoder();
 $geocoder->registerProviders(array(
 new FreeGeoIpProvider($adapter),
));

Chapter 1

[7]

Retrieve our user's IP address using the following code:

 $ip = $this->get('request')->getClientIp();
 // Or use a default one
 if ($ip == '127.0.0.1') {
 $ip = '114.247.144.250';
 }

Get the coordinates and adapt them using the following code so that they are
roughly a square of 50 kms on each side:

 $result = $geocoder->geocode($ip);
 $lat = $result->getLatitude();
 $long = $result->getLongitude();
 $lat_max = $lat + 0.25; // (Roughly 25km)
 $lat_min = $lat - 0.25;
 $long_max = $long + 0.3; // (Roughly 25km)
 $long_min = $long - 0.3;

Create a query based on all this information using the following code:

 $em = $this->getDoctrine()->getManager();
 $qb = $em->createQueryBuilder();
 $qb->select('e')
 ->from('KhepinBookBundle:Meetup, 'e')
 ->where('e.latitude < :lat_max')
 ->andWhere('e.latitude > :lat_min')
 ->andWhere('e.longitude < :long_max')
 ->andWhere('e.longitude > :long_min')
 ->setParameters([
 'lat_max' => $lat_max,
 'lat_min' => $lat_min,
 'long_max' => $long_max,
 'long_min' => $long_min
]);

Retrieve the results and pass them to the template using the following code:

 $meetups = $qb->getQuery()->execute();
 return ['ip' => $ip, 'result' => $result,
 'meetups' => $meetups];
 }

The first thing we want to do is get rid of the geocoding initialization. It would be
great to have all of this taken care of automatically and we would just access the
geocoder with: $this->get('geocoder');.

Services and Listeners

[8]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can define your services directly in the config.yml file of Symfony under the
services key, as follows:

 services:
 geocoder:
 class: Geocoder\Geocoder

That is it! We defined a service that can now be accessed in any of our controllers.
Our code now looks as follows:

// Create the geocoding class
$adapter = new \Geocoder\HttpAdapter\CurlHttpAdapter();
$geocoder = $this->get('geocoder');
$geocoder->registerProviders(array(
 new \Geocoder\Provider\FreeGeoIpProvider($adapter),
));

Well, I can see you rolling your eyes, thinking that it is not really helping so far.
That's because initializing the geocoder is a bit more complex than just using the
new \Geocoder\Geocoder() code. It needs another class to be instantiated and
then passed as a parameter to a method. The good news is that we can do all of
this in our service definition by modifying it as follows:

services:
 # Defines the adapter class
 geocoder_adapter:
 class: Geocoder\HttpAdapter\CurlHttpAdapter
 public: false
 # Defines the provider class
 geocoder_provider:
 class: Geocoder\Provider\FreeGeoIpProvider
 public: false
 # The provider class is passed the adapter as an argument
 arguments: [@geocoder_adapter]
 geocoder:
 class: Geocoder\Geocoder

Chapter 1

[9]

 # We call a method on the geocoder after initialization to
 set up the
 # right parameters
 calls:
 - [registerProviders, [[@geocoder_provider]]]

It's a bit longer than this, but it is the code that we never have to write anywhere else
ever again. A few things to notice are as follows:

• We actually defined three services, as our geocoder requires two other classes
to be instantiated.

• We used @+service_name to pass a reference to a service as an argument to
another service.

• We can do more than just defining new Class($argument); we can also
call a method on the class after it is instantiated. It is even possible to set
properties directly when they are declared as public.

• We marked the first two services as private. This means that they won't be
accessible in our controllers. They can, however, be used by the Dependency
Injection Container (DIC) to be injected into other services.

Our code now looks as follows:

// Retrieve current user's IP address
$ip = $this->get('request')->getClientIp();

// Or use a default one
if ($ip == '127.0.0.1') {
 $ip = '114.247.144.250';
}
// Find the user's coordinates
$result = $this->get('geocoder')->geocode($ip);
$lat = $result->getLatitude();
// ... Remaining code is unchanged

Here, our controllers are extending the BaseController class,
which has access to DIC since it implements the ContainerAware
interface. All calls to $this->get('service_name') are proxied
to the container that constructs (if needed) and returns the service.

Services and Listeners

[10]

Let's go one step further and define our own class that will directly get the user's
IP address and return an array of maximum and minimum longitude and latitudes.
We will create the following class:

namespace Khepin\BookBundle\Geo;

use Geocoder\Geocoder;
use Symfony\Component\HttpFoundation\Request;

class UserLocator {

 protected $geocoder;

 protected $user_ip;

 public function __construct(Geocoder $geocoder, Request
 $request) {
 $this->geocoder = $geocoder;
 $this->user_ip = $request->getClientIp();
 if ($this->user_ip == '127.0.0.1') {
 $this->user_ip = '114.247.144.250';
 }
 }

 public function getUserGeoBoundaries($precision = 0.3) {
 // Find the user's coordinates
 $result = $this->geocoder->geocode($this->user_ip);
 $lat = $result->getLatitude();
 $long = $result->getLongitude();
 $lat_max = $lat + 0.25; // (Roughly 25km)
 $lat_min = $lat - 0.25;
 $long_max = $long + 0.3; // (Roughly 25km)
 $long_min = $long - 0.3;
 return ['lat_max' => $lat_max, 'lat_min' => $lat_min,
 'long_max' => $long_max, 'long_min' => $long_min];
 }
}

It takes our geocoder and request variables as arguments, and then does all the
heavy work we were doing in the controller at the beginning of the chapter. Just as
we did before, we will define this class as a service, as follows, so that it becomes
very easy to access from within the controllers:

config.yml
services:
 #...

Chapter 1

[11]

 user_locator:
 class: Khepin\BookBundle\Geo\UserLocator
 scope: request
 arguments: [@geocoder, @request]

Notice that we have defined the scope here. The DIC has two scopes by default:
container and prototype, to which the framework also adds a third one named
request. The following table shows their differences:

Scope Differences
Container All calls to $this->get('service_name') return the same

instance of the service.
Prototype Each call to $this->get('service_name') returns a new

instance of the service.
Request Each call to $this->get('service_name') returns the

same instance of the service within a request. Symfony can
have subrequests (such as including a controller in Twig).

Now, the advantage is that the service knows everything it needs by itself, but it also
becomes unusable in contexts where there are no requests. If we wanted to create a
command that gets all users' last-connected IP address and sends them a newsletter
of the meetups around them on the weekend, this design would prevent us from
using the Khepin\BookBundle\Geo\UserLocator class to do so.

As we see, by default, the services are in the container scope,
which means they will only be instantiated once and then reused,
therefore implementing the singleton pattern. It is also important
to note that the DIC does not create all the services immediately,
but only on demand. If your code in a different controller never
tries to access the user_locator service, then that service
and all the other ones it depends on (geocoder, geocoder_
provider, and geocoder_adapter) will never be created.
Also, remember that the configuration from the config.yml is
cached when on a production environment, so there is also little
to no overhead in defining these services.

Our controller looks a lot simpler now and is as follows:

$boundaries = $this->get('user_locator')->getUserGeoBoundaries();
// Create our database query
$em = $this->getDoctrine()->getManager();
$qb = $em->createQueryBuilder();
$qb->select('e')
 ->from('KhepinBookBundle:Meetup', 'e')

Services and Listeners

[12]

 ->where('e.latitude < :lat_max')
 ->andWhere('e.latitude > :lat_min')
 ->andWhere('e.longitude < :long_max')
 ->andWhere('e.longitude > :long_min')
 ->setParameters($boundaries);
// Retrieve interesting meetups
$meetups = $qb->getQuery()->execute();
return ['meetups' => $meetups];

The longest part here is the doctrine query, which we could easily put on the
repository class to further simplify our controller.

As we just saw, defining and creating services in Symfony2 is fairly easy and
inexpensive. We created our own UserLocator class, made it a service, and saw that
it can depend on our other services such as @geocoder service. We are not finished
with services or the DIC as they are the underlying part of almost everything related
to extending Symfony2. We will keep seeing them throughout this book; therefore,
it is important to have a good understanding of them before continuing.

Testing services and testing with services
One of the great advantages of putting your code in a service is that a service is just
a simple PHP class. This makes it very easy to unit test. You don't actually need the
controller or the DIC. All you need is to create mocks of a geocoder and request class.

In the test folder of the bundle, we can add a Geo folder where we test our
UserLocator class. Since we are only testing a simple PHP class, we don't need
to use WebTestCase. The standard PHPUnit_Framework_TestCase will suffice.
Our class has only one method that geocodes an IP address and returns a set of
coordinates based on the required precision. We can mock the geocoder to return
fixed numbers and therefore avoid a network call that would slow down our tests.
A simple test case looks as follows:

 class UserLocatorTest extends PHPUnit_Framework_TestCase
 {
 public function testGetBoundaries()
 {
 $geocoder = $this->getMock('Geocoder\Geocoder');
 $result = $this->getMock('Geocoder\Result\Geocoded');

 $geocoder->expects($this->any())->method('geocode')-
 >will($this->returnValue($result));
 $result->expects($this->any())->method('getLatitude')-
 >will($this->returnValue(3));

Chapter 1

[13]

 $result->expects($this->any())->method('getLongitude')
 ->will($this->returnValue(7));

 $request = $this->getMock
 ('Symfony\Component\HttpFoundation\Request',
 ['getUserIp']);
 $locator = new UserLocator($geocoder, $request);

 $boundaries = $locator->getUserGeoBoundaries(0);

 $this->assertTrue($boundaries['lat_min'] == 3);
 }
 }

We can now simply verify that our class itself is working, but what about the whole
controller logic?

We can write a simple integration test for this controller and test for the presence
and absence of some meetups on the rendered page. However, in some cases, for
performance, convenience, or because it is simply not possible, we don't want to
actually call the external services while testing. In that case, it is also possible to
mock the services that will be used in the controller. In your tests, you will need
to do the following:

public function testIndexMock()
{
 $client = static::createClient();
 $locator = $this->getMockBuilder
 ('Khepin\BookBundle\Geo\UserLocator')
 ->disableOriginalConstructor()->getMock();
 $boundaries = ["lat_max" => 40.2289, "lat_min" => 39.6289,
 "long_max" => 116.6883, "long_min" => 116.0883];
 $locator->expects($this->any())->method
 ('getUserGeoBoundaries')->will($this-
 >returnValue($boundaries));
 $client->getContainer()->set('user_locator', $locator);
 $crawler = $client->request('GET', '/');
 // Verify that the page contains the meetups we expect

}

Here, we mock the UserLocator class so that it will always return the same
coordinates. This way, we can better control what we are testing and avoid
waiting for a long call to the geolocation server.

Services and Listeners

[14]

Tagging services
You have most likely already encountered tagged services when using Symfony, for
example, if you have defined custom form widgets or security voters. Event listeners,
which we will talk about in the second part of this chapter, are also tagged services.

In our previous examples, we created a user_locator service that relies on
a geocoder service. However, there are many possible ways to locate a user.
We can have their address information in their profile, which will be faster
and more accurate than getting it from a user's IP address. We can use different
online providers such as FreeGeoIp as we did in the previous code, or have a
local geoip database. We can even have all of these in our application at the
same time, and try them one after the other from most to least accurate.

Let's define the interface for this new type of geocoder as follows:

namespace Khepin\BookBundle\Geo;

interface Geocoder
{
 public function getAccuracy();

 public function geocode($ip);
}

We will then define two geocoders using the following code; the first one just wraps
our existing one in a new class that implements our Geocoder interface:

namespace Khepin\BookBundle\Geo;
use Geocoder\Geocoder as IpGeocoder;

class FreeGeoIpGeocoder implements Geocoder
{
 public function __construct(IpGeocoder $geocoder)
 {
 $this->geocoder = $geocoder;
 }

 public function geocode($ip)
 {
 return $this->geocoder->geocode($ip);
 }

 public function getAccuracy()
 {
 return 100;
 }
}

Chapter 1

[15]

The first type of geocoder is configured as follows:

freegeoip_geocoder:
 class: Khepin\BookBundle\Geo\FreeGeoIpGeocoder
 arguments: [@geocoder]

The second geocoder returns a random location every time, as follows:

namespace Khepin\BookBundle\Geo;

class RandomLocationGeocoder implements Geocoder
{
 public function geocode($ip)
 {
 return new Result();
 }

 public function getAccuracy()
 {
 return 0;
 }
}

class Result
{
 public function getLatitude()
 {
 return rand(-85, 85);
 }

 public function getLongitude()
 {
 return rand(-180, 180);
 }

 public function getCountryCode()
 {
 return 'CN';
 }
}

The second geocoder is configured as follows:

random_geocoder:
 class: Khepin\BookBundle\Geo\RandomLocationGeocoder

Services and Listeners

[16]

Now, if we change the configuration of our user_locator service to use any of these
geocoders, things will work correctly. However, what we really want is that it has
access to all the available geolocation methods and then picks the most accurate one,
even when we add new ones without changing the user_locator service.

Let's tag our services by modifying their configuration to add a tag as follows:

freegeoip_geocoder:
 class: Khepin\BookBundle\Geo\FreeGeoIpGeocoder
 arguments: [@geocoder]
 tags:
 - { name: khepin_book.geocoder }
random_geocoder:
 class: Khepin\BookBundle\Geo\RandomLocationGeocoder
 tags:
 - { name: khepin_book.geocoder }

We cannot pass all of these in the constructor of our class directly, so we'll modify
our UserLocator class to have an addGeocoder method as follows:

class UserLocator
{ protected $geocoders = [];

 protected $user_ip;

 // Removed the geocoder from here
 public function __construct(Request $request)
 {
 $this->user_ip = $request->getClientIp();
 }

 public function addGeocoder(Geocoder $geocoder)
 {
 $this->geocoders[] = $geocoder;
 }

 // Picks the most accurate geocoder
 public function getBestGeocoder(){/* ... */}

 // ...
}

Informing the DIC that we want to add tagged services cannot be done only
through configuration. This is instead done through a compiler pass when the
DIC is being compiled.

Chapter 1

[17]

Compiler passes allow you to dynamically modify service definitions. They can be
used for tagged services and for creating bundles that enable extra functionalities
whenever another bundle is also present and configured. The compiler pass can be
used as follows:

namespace Khepin\BookBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler
 \CompilerPassInterface;
use Symfony\Component\DependencyInjection\Reference;

class UserLocatorPass implements CompilerPassInterface
{
 public function process(ContainerBuilder $container)
 {
 if (!$container->hasDefinition('khepin_book.user_locator'))
 {
 return;
 }

 $service_definition = $container->getDefinition
 ('khepin_book.user_locator');
 $tagged = $container->findTaggedServiceIds
 ('khepin_book.geocoder');

 foreach ($tagged as $id => $attrs) {
 $service_definition->addMethodCall(
 'addGeocoder',
 [new Reference($id)]
);
 }
 }
}

After we have confirmed that the user_locator (renamed here as khepin_book.
user_locator) service exists, we find all the services with the corresponding tag
and modify the service definition for khepin_book.user_locator so that it loads
these services.

You can define custom attributes on a tag. So, we could have moved
the accuracy of each geocoder to the configuration as follows, and
then used the compiler pass to only provide the most accurate
geocoder to the user locator:

tags:

 - { name: khepin_book.geocoder, accuracy: 69 }

Services and Listeners

[18]

Whenever we define the YAML configuration for services, Symfony will internally
create service definitions based on that information. By adding a compiler pass, we
can modify these service definitions dynamically. The service definitions are then
all cached so that we don't have to compile the container again.

Listeners
Listeners are a way of implementing the observer's design pattern. In this pattern, a
particular piece of code does not try to start the execution of all the code that should
happen at a given time. Instead, it notifies all of its observers that it has reached a
given point in execution and lets these observers to take over the control flow if they
have to.

In Symfony, we use the observer's pattern through events. Any class or function
can trigger an event whenever it sees the event fit. The event itself can be defined
in a class. This allows the passing of more information to the code observing this
event. The framework itself will trigger events at different points in the process
of handling the requests. These events are as follows:

• kernel.request: This event happens before reaching a controller. It is used
internally to populate the request object.

• kernel.controller: This event happens immediately before executing the
controller. It can be used to change the controller being executed.

• kernel.view: This event happens after executing the controller and if the
controller did not return a response object. For example, this will be used
to let Twig handle the rendering of a view by default.

• kernel.response: This event happens before the response is sent out.
It can be used to modify the response before it is sent out.

• kernel.terminate: This event happens after the response has been sent
out. It can be used to perform any time-consuming operations that are not
necessary to generate the response.

• kernel.exception: This event happens whenever the framework catches
an exception that was not handled.

Doctrine will also trigger events during an object's lifecycle
(such as before or after persisting it to the database), but they
are a whole different topic. You can learn everything about
Doctrine LifeCycle Events at http://docs.doctrine-
project.org/en/latest/reference/events.html.

Chapter 1

[19]

Events are very powerful and we will use them in many places throughout this
book. When you begin sharing your Symfony extensions with others, it is always
a good idea to define and trigger custom events as these can be used as your own
extension points.

We will build on the example provided in the Services section to see what use we
could make of the listeners.

In the first part, we made our site that only shows a user the meetups that are
happening around him or her. We now want to show meetups also taking into
account a user's preferences (most joined meetups).

We have updated the schema to have a many-to-many relationship between users
and the meetups as follows:

// Entity/User.php
/**
 * @ORM\ManyToMany(targetEntity="Meetup", mappedBy="attendees")
 */
protected $meetups;

// Entity/Meetup.php
/**
 * @ORM\ManyToMany(targetEntity="User", inversedBy="meetups")
 */
protected $attendees;

In our controller, we have a simple action to join a meetup, which is as follows:

/**
 * @Route("/meetups/{meetup_id}/join")
 * @Template()
 */
public function joinAction($meetup_id) {
 $em = $this->getDoctrine()->getManager();
 $meetup = $em->getRepository('KhepinBookBundle:Meetup')
 ->find($meetup_id);

 $form = $this->createForm(
 new JoinMeetupType(),
 $meetup,
 ['action' => '', 'method' => 'POST']
);
 $form->add('submit', 'submit', array('label' => 'Join'));

Services and Listeners

[20]

 $form->handleRequest($this->get('request'));

 $user = $this->get('security.context')->getToken()->getUser();

 if ($form->isValid()) {
 $meetup->addAttendee($user);
 $em->flush();
 }

 $form = $form->createView();
 return ['meetup' => $meetup, 'user' => $user,
 'form' => $form];
}

We use a form even for such a simple action because getting all
our information from the URL in order to update the database and
register this user as an attendee would enable many vulnerability
issues such as CSRF attacks.

Updating user preferences using custom
events
We want to add some code to generate the new list of favorite meetups of our user.
This will allow us to change the logic for displaying the frontpage. Now, we can
not only show users all the meetups happening around them, but also data will
be filtered as to how likely they are to enjoy this kind of meetup. Our users will
view the frontpage often, making the cost of calculating their favorite meetups on
each page load very high. Therefore, we prefer to have a pre-calculated list of their
favorite meetup types. We will update this list whenever a user joins or resigns
from a meetup. In the future, we can also update it based on the pages they browse,
even without actually joining the meetup.

The problem now is to decide where this code should live. The easy and immediate
answer could be to add it right here in our controller. But, we can see that this logic
doesn't really belong here. The controller makes sure that a user can join a meetup.
It should limit its own logic to just doing that.

What is possible though is to let the controller call an event, warning all observers
that a user has joined a meetup and letting these observers decide what is best to do
with this information.

Chapter 1

[21]

For this event to be useful, it needs to hold information about the user and the meetup.
Let's create a simple class using the following code to hold that information:

// Bundle/Event/MeetupEvent.php
namespace Khepin\BookBundle\Event;

use Symfony\Component\EventDispatcher\Event;
use Khepin\BookBundle\Entity\User;
use Khepin\BookBundle\Entity\Meetup;

class MeetupEvent extends Event
{
 protected $user;
 protected $event;

 public function __construct(User $user, Meetup $meetup) {
 $this->user = $user;
 $this->meetup= $meetup;
 }

 public function getUser() {
 return $this->user;
 }

 public function getMeetup() {
 return $this->meetup;
 }
}

This class is very simple and is only here to hold data about an event regarding a
meetup and a user. Now let's trigger that event whenever a user joins a meetup.
In our controller, use the following code after validating the form:

if ($form->isValid()) {
 $meetup->addAttendee($user);
 // This is the new line
 $this->get('event_dispatcher')->dispatch(
 'meetup.join',
 new MeetupEvent($user, $meetup)
);
 $em->flush();
}

Services and Listeners

[22]

All we did was find the event_dispatcher service and dispatch the meetup.join
event associated with some data. Dispatching an event is nothing more than just
sending a message under a name, meetup.join in our case, potentially with some
data. Before the code keeps on executing to the next line, all the classes and objects
that listen to that event will be given the opportunity to run some code as well.

It is a good practice to namespace your events to avoid event
name collisions. The dot (.) notation is usually preferred to
separate event namespaces. So, it's very common to find events
such as acme.user.authentication.success, acme.
user.authentication.fail, and so on.

Another good practice is to catalog and document your events. We can see that if
we keep on adding many events, since they are so easy to trigger because it's only
a name, we will have a hard time keeping track of what events we have and what
their purpose is. It is even more important to catalog your events if you intend to
share your code with other people at some point. To do that, we create a static
events class as follows:

namespace Khepin\BookBundle\Event;

final class MeetupEvents
{
 /**
 * The meetup.join event is triggered every time a user
 * registers for a meetup.
 *
 * Listeners receive an instance of:
 * Khepin\BookBundle\Event\MeetupEvent
 */
 const MEETUP_JOIN = 'meetup.join';
}

As we said, this class is much more for documentation purposes than anything else.
Your code can now be changed in the controller as follows:

$container->get('event_dispatcher')->dispatch(
 MeetupEvents::MEETUP_JOIN,
 new MeetupEvent($user, $meetup)
);

Chapter 1

[23]

We now know how to trigger an event, but we can't say that it has helped us to
achieve anything interesting so far! Let's add a little bit of logic based on that. We
will first create a listener class using the following code that will be responsible for
generating the user's new list of preferred meetups:

namespace Khepin\BookBundle\Event\Listener;
use Khepin\BookBundle\Event\MeetupEvent;

class JoinMeetupListener
{
 public function generatePreferences(MeetupEvent $event) {
 $user = $event->getUser();
 $meetup = $event->getMeetup();
 // Logic to generate the user's new preferences
 }
}

Our class is a plain PHP class; it doesn't need to extend anything special. Therefore,
it doesn't need to have any specific name. All it needs is to have at least one method
that accepts a MeetupEvent argument. If we were to execute the code now, nothing
would happen as we never said that this class should listen to a specific event. This
is done by making this class a service again. This means that our listener could also
be passed an instance of our geolocation service that we defined in the first part of
this chapter, or any other existing Symfony service. The definition of our listener
as a service, however, shows us some more advanced use of services:

join_meetup_listener:
 class: Khepin\BookBundle\Event\Listener\JoinMeetupListener
 tags:
 - { name: kernel.event_listener, event: meetup.join,
 method: generatePreferences }

What the tags section means is that when the event_dispatcher service is first
created, it will also look for other services that were given a specific tag (kernel.
event_listener in this case) and remember them. This is used by other Symfony
components too, such as the form framework (which we'll see in Chapter 3, Forms).

Services and Listeners

[24]

Improving user performance
We have achieved something great by using events and listeners. All the logic related
to calculating a user's meetup preferences is now isolated in its own listener class. We
didn't detail the implementation of that logic, but we already know from this chapter
that it would be a good idea to not keep it in the controller, but as an independent
service that could be called from the listener. The more you use Symfony, the more this
idea will seem clear and obvious; all the code that can be moved to a service should
be moved to a service. Some Symfony core developers even advocate that controllers
themselves should be services. Following this practice will make your code simpler
and more testable.

Code that works after the response
Now, when our site grows in complexity and usage, our calculation of users' preferred
event types could take quite a while. Maybe the users can now have friends on our site,
and we want a user's choice to also affect his or her friend's preferences.

There are many cases in modern web applications where very long operations are not
essential in order to return a response to the user. Some of the cases are as follows:

• After uploading a video, a user shouldn't wait until the conversion of the
video to another format is finished before seeing a page that tells him or
her that the upload was successful

• A few seconds could maybe be saved if we don't resize the user's profile
picture before showing that the update went through

• In our case, the user shouldn't wait until we have propagated to all his or
her friends the news of him or her joining a meetup, to see that he or she
is now accepted and taking part in the meetup

There are many ways to deal with such situations and to remove unnecessary work
from the process of generating a response. You can use batch processes that will
recalculate all user preferences every day, but this will cause a lag in response time
as the updates will be only once a day, and can be a waste of resources. You can also
use a setup with a message queue and workers, where the queue notifies the workers
that they should do something. This is somewhat similar to what we just did with
events, but the code taking care of the calculation will now run in a different process,
or maybe even on a different machine. Also, we won't wait for it to complete in order
to proceed.

Symfony offers a simple way to achieve this while keeping everything inside the
framework. By listening to the kernel.terminate event, we can run our listener's
method after the response has been sent to the client.

Chapter 1

[25]

We will update our code to take advantage of this. Our new listener will now behave
as explained in the following table:

Event Listener
meetup.join Remembers the user and meetup involved for later

use. No calculation happens.
kernel.terminate Actually generates the user preferences. The heavy

calculation takes place.

Our code should then look as follows:

class JoinMeetupListener
{
 protected $event;

 public function onUserJoinsMeetup(MeetupEvent $event) {
 $this->event = $event;
 }

 public function generatePreferences() {
 if ($this->event) {
 // Generate the new preferences for the user
 }
 }
}

We then need to also update the configuration to call generatePreferences on the
kernel.terminate event, as follows:

join_meetup_listener:
 class: Khepin\BookBundle\Event\Listener\JoinMeetupListener
 tags:
 - { name: kernel.event_listener, event: meetup.join,
 method: onUserJoinsMeetup }
 - { name: kernel.event_listener, event:
 kernel.terminate, method: generatePreferences }

This is done very simply by only adding a tag to our existing listener. If you were
thinking about creating a new service of the same class but listening on a different
event, you will have two different instances of the service. So, the service that
remembered the event will never be called to generate the preferences, and the
service called to generate the preferences will never have an event to work with.
Through this new setup, our heavy calculation code is now out of the way for
sending a response to the user, and he or she can now enjoy a faster browsing
experience.

Services and Listeners

[26]

Summary
This chapter introduced two of the most important concepts in Symfony, especially
when it comes to extending the framework. By creating our geocoding service, we
saw how easy it is to add a service that is just like any of the other Symfony services.
We also reviewed how to use events to keep your code logic where it belongs and
avoid cluttering your controllers with unwanted code. Then finally, we used them
to make your site faster and more responsive to your users.

Believe it or not, if you really understand services and events, you know almost
everything about extending Symfony. You will see throughout this book that we
will constantly keep referring to both of these concepts, so, it is important that
you have a good understanding of them.

In the next chapter, we will augment Symfony by adding new commands to the
console tool and customize the templating engine. We will see that the services
can be really helpful there as well.

Commands and Templates
In this chapter, we will review two of the most common kinds of extensions that you
will encounter while working on a Symfony project:

• Commands: They are similar to the ones that Symfony brings you, such as the
ones already in the framework (cache:clear, doctrine:database:create,
and so on)

• Twig: It's relatively easy to extend the templating language of Symfony as well

Commands
Symfony ships with a powerful console component. Just like many components
in Symfony, it can also be used as a standalone component to create command-line
programs. In fact, Composer (http://getcomposer.org), the dependency manager
that you use every day with Symfony, has its command line-based on the Symfony
Console component.

Let's find out how to create commands and what they are good for.

The initial situation
Our site users have a profile on the website. On their profile, they can upload their
own picture (in any avatar). They can upload any kind of picture with different sizes
and ratios, and the system will crop it and/or resize it to a square picture of 150 x
150 pixels. We always keep the higher resolution uploaded picture but pregenerate
the 150-pixel one to improve the load speed of our site. Now that so many people
are browsing our site from very high resolution tablets, we need to make that profile
picture also available in 300 pixels size.

Commands and Templates

[28]

This is a relatively heavy task as it must apply to all of our users in one pass and
involves image processing. This is also not something that should be available to
our users, but only to the tech people; therefore, a controller doesn't seem like the
right place for this functionality. Furthermore, this is probably a one-time thing,
unless the process crashes in the middle or we need to have images of 600 pixels
in a couple of months when even higher resolution displays appear! In this case,
 a Console command seems the appropriate place.

Resizing user pictures
We'll write our first command that just works on a single image and resizes it.
To simplify the process of manipulating images, we will rely on the Imagine library
(https://imagine.readthedocs.org/en/latest/). A command should extend
the Symfony base command class. Within the framework, if you want to be able to
use other services, it is easier to directly extend from Symfony. The two important
functions in this class that you must define are configure() and execute(). Enter
the following lines of code in the configure() function:

class ResizePictureCommand extends ContainerAwareCommand
{
 protected function configure()
 {
 $this
 ->setName('picture:resize')
 ->setDescription('Resize a single picture')
 ->addArgument('path', InputArgument::REQUIRED,'Path to
 the picture you want to resize')
 ->addOption('size', null, InputOption::VALUE_OPTIONAL,
 'Size of the output picture (default 300 pixels)')
 ->addOption('out', 'o', InputOption::VALUE_OPTIONAL,
 'Folder which to output the picture (default same as
 original picture)')
 ;

 }

In the preceding configure() function, we choose a command name, define the
arguments (picture path), and some optional parameters. Now, our command can
be invoked using the following command statement:

$./app/console picture:resize <path> (--size=) (--out|-o=)

Chapter 2

[29]

Now, enter the following lines of code in the execute() function:

 protected function execute(InputInterface $input,
 OutputInterface $output)
 {
 // Command line info
 $path = $input->getArgument('path');
 $size = $input->getOption('size') ?: 300;
 $out = $input->getOption('out');

 // Prepare image and resize tool
 $imagine = new \Imagine\Gd\Imagine();
 $image = $imagine->open($path);
 $box = new \Imagine\Image\Box($size, $size);

 $filename = basename($path);

 // Resize image
 $image->resize($box)->save($out.'/'.$filename);

 $output->writeln(sprintf('%s --> %s', $path, $out));
 }

}

In the execute() method, we receive an $input and $output argument
representing the following:

• The command-line arguments we passed in as the input
• The console to which we can write information for the user

We get this information or replace it with the default ones using the Imagine image
manipulation library and resize our picture. Finally, we output some information
that tells us all went well.

Nothing extraordinary here, but this shows how we can create a simple command.
Let's now try to apply that to all our users. We will create a command that browses
through the list of our users and executes this command for each of them. To make
things nice and simple, we won't ask the user to remember the order of arguments
but display a series of questions on the console. We'll also add a progress bar,
shown as follows, so the person using it knows how much is done or left to do:

class UpdateProfilePicsCommand extends ContainerAwareCommand
{
 protected function configure()

Commands and Templates

[30]

 {
 $this
 ->setName('picture:profile:update')
 ->setDescription('Resizes all user\'s pictures to a new
 size');
 }

 protected function execute(InputInterface $input,
 OutputInterface $output)
 {
 $dialog = $this
 ->getHelperSet()
 ->get('dialog');
 $size = $dialog->ask($output, 'Size of the final pictures
 (300): ', '300');
 $out = $dialog->ask($output, 'Output folder: ');
We use the dialog helper to display questions to the command-line user
and get the necessary information.
 $command = $this->getApplication()->find('picture:resize');
 $arguments = array(
 'command' => 'picture:resize',
 '--size' => $size,
 '--out' => $out

);

We get the command that we previously defined for resizing a single picture and
prepare the arguments for calling the command. This is shown in the following
code snippet:

 // Get list of all users
 $users = $this
 ->getContainer()->get('fos_user.user_manager')
 ->findUsers();
 $progress = $this->getHelperSet()->get('progress');

 $progress->start($output, count($users));

Here, we use the progress helper that we saw earlier and set its maximum value as
the total number of users in our database. You don't need to calculate percentages
by yourself; just provide the total number of unit steps that will be processed and
the helper will do the rest.

 foreach($users as $user) {
 // Run the picutre:resize command

Chapter 2

[31]

 $arguments['path'] = $user->getPicture();
 $input = new ArrayInput($arguments);
 $command->run($input, $output);

 // Advance progress
 $progress->advance();
 }

 // Show that the whole process was successful
 $output->writeln('');
 $output->writeln('<info>Success!</info>');
 }

}

The output in our terminal should look like the following:

The command runs successfully, and if you have enabled colored output in your
console, the line saying Success! should appear in green. We should now test our
command to ensure it behaves correctly.

Testing a command
As with everything in our application, we would feel more confident knowing that
there are tests that ensure it runs smoothly. We can see that our picture:resize
command will be, in a way, hard to test. We cannot really mock anything it's going
to use as it doesn't take any PHP objects as a parameter; it only takes input strings.
It looks like we'll need to actually resize a picture to test it in its current stage.
Let's try that using the following lines of code:

use Symfony\Bundle\FrameworkBundle\Console\Application as App;
use Symfony\Component\Console\Tester\CommandTester;
use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
use Khepin\BookBundle\Command\ResizePictureCommand;

class ResizePictureCommandTest extends WebTestCase
{

Commands and Templates

[32]

 public function testCommand()
 {
 $kernel = $this->createKernel();
 $kernel->boot();

 $application = new App($kernel);
 $application->add(new ResizePictureCommand());

 $command = $application->find('picture:resize');
 $commandTester = new CommandTester($command);
 $commandTester->execute([
 'command' => $command->getName(),
 'path' => __DIR__.'/fixtures/pic.png',
 '-o' => __DIR__.'/fixtures/resized/'
]);

 $this
 ->assertTrue(file_exists(__DIR__.'/fixtures/
 resized/pic.png'));
 }

}

It might seem weird to some of you that we extend this
test class from WebTestCase and not from a standard
PHPUnit_Framework_TestCase. This is mostly for
convenience as the WebTestCase class gives us methods
to directly access an initialized kernel. Otherwise, you
would have to mock or create the kernel yourself.

To avoid messing with our whole application, we only test on a picture file that is
inside our test folder in a fixtures subfolder.

Commands as an interface to services
We saw that our test is a bit special as it needs to actually resize a picture so that we
can say it performed correctly. We can't pass it a mocked version of Imagine and check
if the right calls to the library are made as we could have done if it were a service.

However, we saw that it is possible to call services from within a command, like when
we used the fos_user.user_manager service to retrieve our list of users. We could,
therefore, actually move all the core tasks performed by our command to a service
and then have that command act only as an interface to input some arguments.

Chapter 2

[33]

There are tremendous advantages in doing this, and we can only hope that more
developers in the Symfony community start adopting this practice. It doesn't stop
with testing. Opening a terminal is already a technical operation for many people.
If this operation of resizing pictures becomes more frequent, why not have a web
interface for starting the process that the site admins could use?

Loading fixture data in your database is something most developers would think
of using, but again, you could benefit from having this defined as a service. It will be
available from a controller when you want to prepopulate a new user's demo account.

I strongly encourage everyone to follow this practice of having very thin commands
that are actually only an interface to something else. Let's do it right now and
refactor our commands a bit.

We start with the picture:resize command and extract its logic to a service class.

namespace Khepin\BookBundle\Command;

class Shrinker
{
 protected $imagine;

 public function __construct($imagine)
 {
 $this->imagine = $imagine;
 }

 public function shrinkImage($path, $out, $size)
 {
 $image = $this->imagine->open($path);
 $box = new \Imagine\Image\Box($size, $size);
 $filename = basename($path);
 $image->resize($box)->save($out.'/'.$filename);
 }
}

The configuration for that new service is the following:

imagine:
 class: Imagine\Gd\Imagine
khepin_book.shrinker:
 class: Khepin\BookBundle\Command\Shrinker
 arguments: [@imagine]

Commands and Templates

[34]

Our command then becomes as follows:

$path = $input->getArgument('path');
$size = $input->getOption('size') ?: 300;
$out = $input->getOption('out');

$this->getContainer()->get('khepin_book.shrinker')->shrinkImage($path,
$out, $size);

$output->writeln(sprintf('%s --> %s', $path, $out));

As you can see, it is now only a very thin wrapper around our service. So thin
indeed, that it starts feeling weird having all this complexity in our command
that resizes all the user's pictures. It doesn't matter if we keep our command to
resize only one picture; the picture:profile:update command directly calls
the shrinker service. This is shown in the following code snippet:

protected function execute(InputInterface $input,
 OutputInterface $output)
{
 $dialog = $this->getHelperSet()->get('dialog');
 $size = $dialog->ask($output, 'Size of the final pictures
 (300): ', '300');
 $out = $dialog->ask($output, 'Output folder: ');

 // start shrinking
 $users = $this
 ->getContainer()
 ->get('fos_user.user_manager')->findUsers();

 $progress = $this->getHelperSet()->get('progress');
 $progress->start($output, count($users));

 foreach($users as $user) {
 $path = $user->getPicture();
 $this
 ->getContainer()
 ->get('khepin_book.shrinker')
 ->shrinkImage($path, $out, $size);

 // Advance progress
 $progress->advance();
 }
 // finish shrinking

Chapter 2

[35]

 // Show that the whole process was successful
 $output->writeln('');
 $output->writeln('<info>Success!</info>');
}

As an added benefit, services are only created once and then reused. We no longer
create an instance of Imagine for each picture resize or for one instance of the simple
command. We always have access to the same one. In fact, we could again reduce the
size of our command and move more logic to a service that would then be reusable.
All the code between the // start shrinking and // finish shrinking comments
should be as follows:

$this
 ->getContainer()
 ->get('khepin_book.user_manager')
 ->resizeAllPictures($size, $out);

If this service was sending events, as we saw in the previous chapter, you could still
get the progress information, and it could now be used directly outside of a command.

Twig
By default, Symfony ships with the Twig templating system. Twig is incredibly
powerful and out of the box. The possibilities offered by blocks, extending templates,
including templates, and macros are huge and will be enough for most cases. There
are cases where you still need something more though, and an extension for Twig is
the only elegant way of doing so.

Twig offers five different ways to create extensions:

• Globals: This lets you define some global variables that are available in all
templates. You could access them like any other variable.

• Functions: This will let you write {{my_function(var)}}.
• Tests: These are specific functions that return Boolean values and can be

used after the is keyword in templates.
• Filters: They modify the output of an output tag.
• Tags: This will let you define custom Twig tags.

Some of the pages on our website will require some JavaScript in them to make them
a bit more dynamic or simple to use. The form to create a meetup for organizers will
definitely use a datepicker. The events page might display a map from Google or
Bing's APIs. We are not creating a complete JavaScript application, just adding the
bits we need here and there.

Commands and Templates

[36]

Managing our scripts
To improve the perceived page-load speed, it's usually good to load all our scripts
at the end of the page. However, if we output the tag for the datepicker files to be
loaded in the same template where we have the datepicker, things become more
manageable. This is because when we decide to remove or change it, we don't need
to remember it.

So, while rendering the templates, we'd prefer if there was a way to write a tag for
the JavaScript to be loaded, but actually have the output of that tag be somewhere at
the bottom of our generated HTML page. As Twig cannot deal with this, we'll create
an extension for it.

class KhepinExtension extends \Twig_Extension
{
 protected $javascripts = [];

 public function getFunctions()
 {
 return [
 new \Twig_SimpleFunction('jslater', [$this, 'jslater'])
];
 }

 public function jslater($src)
 {
 $this->javascripts[] = $src;
 }

 public function getName()
 {
 return 'khepin_extension';
 }

}

We start with this simple extension. It declares a Twig function that will remember
the source path for any JavaScript tag that is passed to it. In our templates, we use
it as follows:

{{jslater('web/scripts/datepicker.js')}}

Chapter 2

[37]

We now need Twig to be aware of the existence of this extension. How is this done?
You guessed it, by making our extension a service and giving it the proper tag.
To do so, use the following lines of code:

khepin.twig.khepin_extension:
 class: Khepin\BookBundle\Twig\KhepinExtension
 tags:
 - { name: twig.extension }

The first part of our extension is working, so now we need to be able to output a
<script> tag for each of the scripts that we collected using the following lines of code:

public function getFunctions()
{
 return [
 new \Twig_SimpleFunction('jslater', [$this, 'jslater']),
 new \Twig_SimpleFunction('jsnow', [$this, 'jsnow'])
];
}
public function jsnow()
{
 //...

}

In here, we would like to use the power of Twig to render a template that outputs
all the <script> tags. Whenever Twig initializes an extension, if it is declared with
the right methods, Twig will inject itself in the extension.

{% for script in scripts %}
<script type="text/javascript" src="{{script}}" />
{% endfor %}

class KhepinExtension extends \Twig_Extension
{
 protected $javascripts = [];

 public function initRuntime(\Twig_Environment $environment)
 {
 $this->environment = $environment;
 }

 public function getFunctions()
 {
 return [

Commands and Templates

[38]

 new \Twig_SimpleFunction('jslater', [$this, 'jslater']),
 new \Twig_SimpleFunction('jsnow', [$this, 'jsnow'])
];
 }

 public function jslater($src)
 {
 $this->javascripts[] = $src;
 }

 public function jsnow()
 {
 $template = 'KhepinBookBundle:Twig:javascripts.html.twig';
 return $this->environment->render($template, ['scripts' =>
$this->javascripts]);
 }

 public function getName()
 {
 return 'khepin_extension';
 }

}

The second part of our extension is now used as follows:

{{ jsnow() | raw }}

Testing a Twig extension
The format for testing a Twig extension is quite specific; you declare a test case that
loads all your extensions and then define fixture files under a specific format.

use Khepin\BookBundle\Twig\KhepinExtension;
use Twig_Test_IntegrationTestCase;

class KhepinExtensionTest extends Twig_Test_IntegrationTestCase
{
 public function getExtensions()
 {
 return array(
 new KhepinExtension()
);
 }

 public function getFixturesDir()
 {

Chapter 2

[39]

 return __DIR__.'/Fixtures/';
 }

}

The fixtures then look as follows:

--TEST--
"jslater / jsnow" filter
--TEMPLATE--
{{jslater(script)}}
{{jslater(script)}}{{jsnow()|raw}}
--DATA--
return ['script' => 'jquery.js'];
--EXPECT--

<script type="text/javascript" src="jquery.js" />

This file defines the following:

• The test title
• A series of templates to be rendered
• The data to be passed to each template
• The expected results

However, running it will give us an error. Symfony, by default, loads templates from
the filesystem based on a given convention—the Bundle:Controller:template
format. This is fine, but during the tests, Twig doesn't know how to load this format.
We'll refactor our class so that it can load the template directly as a string.

public function __construct()
{
 $this->environment = new \Twig_Environment(new \Twig_Loader_
String());
}

public function jsnow()
{
 $template = '{% for script in scripts %}<script type="text/
javascript" src="{{script}}" />{% endfor %}';

 $scripts = array_unique($this->javascripts);
 return $this->environment->render($template, compact('scripts'));

}

As we now create our own Twig environment to load templates as strings, we no
longer need to call initRuntime and can use our own constructor.

Commands and Templates

[40]

The time difference filter
As an exercise, try to define a Twig extension for the following case:

On the home page, we want to display the activity of the website by showing who recently
joined a meetup. Instead of showing "Molly joined Yoga Teachers Training on Nov 29 at
16:15", we'd like to show "Molly joined Yoga Teachers Training 5 minutes ago".

What we are trying to do is take an existing date, compare it to the current date, and
format the output accordingly. Therefore, a filter seems to be the perfect extension
type we need. Therefore, this time, we will be using the \Twig_SimpleFilter class.

Summary
With commands, we can now easily create tools for the developers who work on
our application. We know that commands have access to the whole service container.
We also know how to make them rely as much as possible on services, making the
code for the command available to the whole application, if we need it later.

We only saw one form of extensions for templates but know that all other extension
types (with the exception of custom tags) are just as easy and straightforward to
implement. Custom tags are quite complex, and they are also very rarely needed.
You can learn the basics of creating a new tag at http://twig.sensiolabs.org/
doc/advanced.html#tags.

Forms
Symfony ships with a powerful form component. Building forms based on your
classes, keeping the data in sync between a form and an object or any data structure,
is a complicated topic. There are a few abstractions to understand how the form
component works in order to enable its full power and make complete use of it.

One of the good things about it is that almost everything, once defined, is easily
reusable. In the previous chapters, we were building a website that allows users to
publish or join meetups. We stated at the outset that we wanted to show users only
those meetups that are happening with a certain distance from them. For this, we
had to know the actual location of each meetup and user. For users, we relied on
their IP address, but for meetups, we should probably let the organizer define the
exact address—maybe even on a map. There is no map input predefined in the form
framework, so we will define one. It should be easy enough to reuse the same input in
the user profile to know exactly where our user lives rather than relying on their IP.

An input for geographical coordinates
Our special field will use Google Maps and this will be the only part visible to the
user. To achieve all this, since this is a rather complex widget, we will need all of
the following four elements:

• A Coordinate class to hold our information
• A form type
• A Twig template
• A data transformer

In most cases, you will not need all of these. You have probably already defined form
types without any of the other elements.

Forms

[42]

The Google Maps integration will be done by an external bundle available at
https://github.com/egeloen/IvoryGoogleMapBundle.

The Coordinate class is quite straightforward and will not change much, so let's
have a quick look at it in the following code:

namespace Khepin\BookBundle\Geo;

use Ivory\GoogleMapBundle\Entity\Coordinate as GMapsCoordinate;

class Coordinate
{
 private $latitude;

 private $longitude;

 public function __construct($latitude = null, $longitude =
 null)
 {
 $this->latitude = $latitude;
 $this->longitude = $longitude;
 }

 public function getLatitude()
 {
 return $this->latitude;
 }

 public function setLatitude($latitude)
 {
 $this->latitude = $latitude;
 }

 public function getLongitude()
 {
 return $this->longitude;
 }

 public function setLongitude($longitude)
 {
 $this->longitude = $longitude;
 }

Chapter 3

[43]

The default representation as a string should be latitude, longitude, as shown in
the following code:

public function __toString()
{
 return '('.$this->latitude.', '.$this->longitude.')';

Based on the string representation (latitude, longitude), we will want to be able to
create a new Coordinate instance using the following code:

public static function createFromString($string)
{
 if(strlen($string) < 1){
 return new self;
 }
 $string = str_replace(['(', ')', ' '], '', $string);
 $data = explode(',', $string);
 if($data[0] === "" || $data[1] === ""){
 return new self;
 }
 return new self($data[0], $data[1]);
}

We will need to convert this coordinate to the Google Maps version from the bundle
using the following code. The reason we are not using it directly is that with our own
Coordinate class, we can control and decide how to map it to a database later.

public function toGmaps()
{
 return new GMapsCoordinate($this->latitude, $this->longitude);
}
}

Setting up the basics
If you have ever built a form type, based on one of your entities for example,
it probably looked like the one in the following code:

class CoordinateType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array
 $options)
 {
 // Build the form, add fields etc
 }

Forms

[44]

 public function getName()
 {
 return 'coordinate';
 }

 public function setDefaultOptions(OptionsResolverInterface
 $resolver)
 {
 $resolver->setDefaults(['widget' => 'coordinate', 'compound'
 => false, 'data_class' =>
 'Khepin\BookBundle\Geo\Coordinate']);
 }
}

We will keep the form like this for now and refer to this again whenever we need it.
We have just done two simple things:

• We gave our form a name.
• We stated that the form should render using a special widget, coordinate.

By default, you already have access to a certain number of widgets in
Symfony. They are text fields, select boxes, checkboxes, and so on.
We must set the compound option as it is true by default. The compound
option should only be set to true when our field represents a collection
that could contain any number of elements.

Our widget will display a map, and it already includes a hidden field. For now,
we will define it in a very simple way at Bundle/Resources/views/Form/widgets.
html.twig. Alternately, later on if you want to see what's happening in the hidden
field, use form_widget_simple instead of hidden_widget in the template to replace
the hidden field with a standard text field, as shown in the following code:

{% block coordinate_widget %}
 <div>Display the map here</div>
 {{ block('hidden_widget') }}
{% endblock %}

For Symfony (and Twig) to know about this widget, it needs to be added in the
configuration under the twig section:

Twig Configuration
twig:
 debug: %kernel.debug%
 strict_variables: %kernel.debug%
 form:
 resources:
 - 'KhepinBookBundle:Form:widgets.html.twig'

Chapter 3

[45]

Now that we have defined a coordinate type and its widget, we would like to try it.
For trying this, we will have a simple controller and template in which we will use it
as follows:

// Controller
public function mapAction()
{
 $form = $this->createFormBuilder()
 ->add('location', 'coordinate')
 ->add('submit', 'submit')
 ->getForm();
 $form = $form->createView();

 return compact('form');
}

{# Template #}
{% extends "::base.html.twig"%}

{% block body %}
 {{form(form)}}
{% endblock %}

If we were to try that though, we would get an exception informing us that the
coordinate type is not defined. Indeed, we defined the class, but we tried to use it by
referencing its name. What you normally do when you create a type class for your
entities is that you define $this->createForm(new TaskType(),$task);, and you
are in charge of instantiating the Type class yourself. For the types that are built in
Symfony, you can just use their name. We aim to completely integrate our type into
the framework, so this is what we want.

We need to tell the form framework that we have a special class somewhere that
should be recognized as a form type. This is done in the exact same way as we
previously told Twig that we had a special class that needed to be loaded as an
extension through services and tags. Let's define a service for our form type and
tag it properly using the following code:

khepin.form.type.coordinate:
 class: Khepin\BookBundle\Form\CoordinateType
 scope: prototype
 tags:
 - { name: form.type, alias: coordinate }

Forms

[46]

This is the first time we encounter the prototype scope. If you remember Chapter
1, Services and Listeners, we saw that the default scope is container, which always
returns to you the same instance of a given class. But here, if we want to use that
coordinate field more than once in a form (or per request), we need a new instance
each time.

Now, loading our page will show our widget, although it doesn't do much yet.

Using the map
Our type class should prepare a map object and pass it on to the template. The
template then has all the required logic to display it. In our controller, we see that to
get the form in a way that can be used by the template, we call getForm() and then
createView(). So, we need to get into that view creation process and add our map
there. The map bundle we are using defines a service named ivory_google_map.
map for creating maps from PHP. We inject this in our Type class and start adding
the map to the view using the following code:

khepin.form.type.coordinate:
 class: Khepin\BookBundle\Form\CoordinateType
 scope: prototype
 arguments: [@ivory_google_map.map]
 tags:
 - { name: form.type, alias: coordinate }

class CoordinateType extends AbstractType
{
 protected $map;

 public function __construct($map)
 {
 $this->map = $map;
 }

 // Other methods unchanged omitted here

 public function buildView(FormView $view, FormInterface $form,
 array $options)
 {
 $center = new GMapsCoordinate(39.91311850372953,
 116.4002054820312);
 $this->map->setCenter($center);
 $this->map->setMapOption('zoom', 10);

Chapter 3

[47]

 $view->vars['map'] = $this->map;
 }
}

We create the map and set the center to some sensible coordinates. We can also
use the user_locator service we previously defined to set it to where the user is
connecting from, or their exact address if we acquire it later. Also, when we are
using this form to update an existing value, we will center the map on the existing
coordinate. For now, we will change our widget as shown in the following code:

{% block coordinate_widget %}
 {{ google_map_container(map) }}
 {{ google_map_js(map) }}
 {% set read_only = true %}
 {{ block('form_widget_simple') }}
{% endblock %}

Now when we display the form, we can see our map!

We need a little bit of JavaScript so that our field will update every time we click
on a point on the map. So, in the end, our widget could look as follows:

{% block coordinate_widget %}
 {{ google_map_container(map) }}
 {{ google_map_js(map) }}
 <script type="text/javascript">
 google.maps.event.addListener(
 {{map.javascriptVariable}}, {# The {{}} here is from
 Twig #}
 'click',
 setValue
);
 function setValue(event) {
 var input = document.getElementById('{{id}}'); {# The
 {{}} here is from Twig #}
 input.value = event.latLng;
 }
 </script>
 {% set read_only = true %}
 {{ block('form_widget_simple') }}
{% endblock %}

Forms

[48]

Now, let's use our form and see what we get. We will display a map and the values
from the last form submission, if any, using the following code:

/**
 * @Route("/map")
 * @Template()
 */
public function mapAction(Request $request)
{
 $form = $this->createFormBuilder()
 ->add('location', 'coordinate')
 ->getForm();
 $location = null;

 if ($request->getMethod() === 'POST') {
 $form->handleRequest($request);
 $location = $form->getData()['location'];
 }
 $form = $form->createView();
 return compact('form', 'location');
}

{% extends "::base.html.twig"%}

{% block body %}
Latitude: {{location.latitude}} - Longitude: {{location.longitude}}

{{form_start(form)}}
 {{form_row(form.location)}}
 {{form_rest(form)}}
 <button type="submit">Submit</button>
{{form_end(form)}}
{% endblock %}

So far, it all works, except that the data we retrieve for the location is a string, and we
would like to actually have it as a Coordinate object instead.

Data transformers
By using data transformers, the form components in Symfony offer a powerful
way of dealing with this scenario. The form component allows three distinct
representations of the same data, which are as follows:

• The one in the view (in the HTML)
• The one in the model
• The one in the form itself (if necessary)

Chapter 3

[49]

In most cases, this is overkill. For our current case, only one transformer will be
enough to go from a string (such as 42.0321650 and 115.032160513) to the PHP
object representation. However, if you think about date and time, it can be that
your form offers the choice that the view shows three select boxes for the year,
month, and day; a datepicker; or a timestamp-based value. At the same time,
you can expect that your PHP model object always needs it as a string based on a
certain format. If you want to create a form type that offers this kind of flexibility,
it's better if the form internally keeps everything as a DateTime object, and then
transforms it for the view or the model.

Data transformers have only two methods: transform and reverseTransform.
The transform method goes from the model to the form and from the form to the
view. The reverseTransform method goes from the view to the form and from the
form to the model. The following diagram represents the flow of two methods:

Model

Form

View

transform reverseTransform

transform reverseTransform

<html>

Consider the following code snippet:

namespace Khepin\BookBundle\Form\Transformer;

use Symfony\Component\Form\DataTransformerInterface;
use Symfony\Component\Form\Exception\TransformationFailedException;
use Khepin\BookBundle\Geo\Coordinate;

class GeoTransformer implements DataTransformerInterface
{
 public function transform($geo)
 {
 return $geo;
 }

 public function reverseTransform($latlong)

Forms

[50]

 {
 return Coordinate::createFromString($latlong);
 }
}

The transform method will not do anything as our class already implements a
toString() method that will directly render the view value. The reverseTransform
method does the opposite by creating a Coordinate object from a string.

Now, we will add our transformer to the coordinate form type, update the view, and
build the map using the data from the form instead of a predefined location so that
while editing the form, the map will be centered on the previously chosen coordinates:

public function buildForm(FormBuilderInterface $builder, array
 $options)
{
 $builder->addViewTransformer(new GeoTransformer);
}

public function buildView(FormView $view, FormInterface $form, array
 $options)
{
 $center = new GMapsCoordinate($form->getData()->getLatitude(),
 $form->getData()->getLongitude());
 $this->map->setCenter($center);
 $this->map->setMapOption('zoom', 10);

 $view->vars['map'] = $this->map;
}

Since Coordinate implements a __toString() method, there will be no difference
on the template. However, if you try to dump the object that we get from the form,
you can see that it is actually a Coordinate object.

One last thing we would like to improve is that currently we have set the default
location to something predefined. However, in Chapter 1, Services and Listeners, we
created a service that helps us determine where a user is located based on their IP
address. It would be nicer to use this and set the default map location to the one
the user is likely connecting from instead of setting it to a predefined value.

Chapter 3

[51]

Forms based on user data
We had previously defined our form type as a service, so now we will change
its configuration for it to take the user_locator service as the second argument,
as shown in the following code:

khepin.form.type.coordinate:
 class: Khepin\BookBundle\Form\CoordinateType
 scope: prototype
 arguments: [@ivory_google_map.map, @user_locator]
 tags:
 - { name: form.type, alias: coordinate }

If you recall correctly, the user_locator service was in the request scope, but our
form type is in the prototype scope. Since the prototype scope is more restrictive
than the request scope, we don't have any issues here.

We will also update the default values of CoordinateType using the following code
so that it always has a default value, which will be an empty coordinate:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults([
 'widget' => 'coordinate',
 'compound' => false,
 'data_class' => 'Khepin\BookBundle\Geo\Coordinate',
 'data' => new Coordinate(),
]);
}

There are many places where we can change that default value to a new value before
displaying the form. We can change the way in which we build GMapsCoordinate in
the buildView function. This will work technically, but it will be better to have the
form to display its value normally.

The form framework in Symfony uses events. They're not sent through the Symfony
kernel though, and are specific to each form. Each class or function that wants to
listen to an event on the form has to be declared in that form or form type. We can
declare them as event subscribers or as anonymous functions, which we will be
using here.

Forms

[52]

There are five possible events described as follows:

• PRE_SET_DATA: This event is triggered before the data is bound to the form
and allows you to change the data. If you are editing an object, it is likely
that there will be some data to be set. When you are using a blank form,
the data will usually be empty or will only contain default values.

• POST_SET_DATA: This event allows you to perform some actions after the
data has been set in the form.

• PRE_SUBMIT: This event lets you modify the form before submission.
• SUBMIT: This event allows you to perform some actions on form submission.
• POST_SUBMIT: This event lets you perform actions after the form has

been submitted.

In our case, of course, we can only use PRE_SET_DATA since anything after that would
be too late! The following code shows exactly how to do this in the Form class:

public function buildForm(FormBuilderInterface $builder, array
 $options)
{
 $builder->addModelTransformer(new GeoTransformer);

 $builder->addEventListener(FormEvents::PRE_SET_DATA,
 function(FormEvent $event) use ($builder) {
 $data = $event->getData();

 if (null === $data->getLatitude()) {
 $geocoded = $this->locator->getUserCoordinates();
 $value = new Coordinate($geocoded->getLatitude();
 $geocoded->getLongitude());
 $event->setData($value);
 }
 });
}

The getUserCoordinates method of the user_locator service was
not implemented in Chapter 1, Services and Listeners. The implementation
shouldn't be a problem for you at this point of the book.

If the data has latitude that is not null, it is not coming from our default value,
so we don't need to modify it in any way. If it is empty, however, we replace it
with the coordinates of the current user.

Chapter 3

[53]

Going further
For the last part of this chapter, we will go a bit further with the customization
of forms.

A part of our meetups website requires a user to enter their house address so that
they can receive a membership card that will be directly sent out to them. Since we
already have a relatively good idea where that user is coming from, we will preset
the country for them in the form. Here, we only differentiate between users coming
from within or outside the USA to decide if they must fill in the state they are
coming from.

The initial setup
Our Address class is very simple and contains only a few attributes as well as getters
and setters, as shown in the following code snippet:

class Address
{
 protected $id;

 protected $street;

 protected $number;

 protected $country;

 protected $state;

 protected $zip;

 // public function getXxx();
 // public function setXxx($x);
}

The basic form class will be as shown in the following code:

class AddressType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array
 $options)
 {
 $state_options = [
 'AL' => 'Alabama',

Forms

[54]

 // ...
 'WY' => 'Wyoming'
];
 $builder
 ->add('street')
 ->add('number')
 ->add('country', 'choice', [
 'choices' => [
 'US' => 'USA',
 'OTHER' => 'Not USA'
]
])
 ->add('state', 'choice', [
 'choices' => $state_options
])
 ->add('zip')
 ;
 }

 public function setDefaultOptions(OptionsResolverInterface
 $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'Khepin\BookBundle\Entity\Address'
));
 }

 public function getName()
 {
 return 'address';
 }
}

In the controller, we only set a default value for the country while displaying an empty
form. If it is a POST request, the user will have picked a country when using the form;
therefore, we can avoid this step and a long network call to a GeoIP provider. We have,
of course, created a controller to display this form, as shown in the following code:

/**
 * @Route("/address")
 * @Template()
 */
public function addressAction(Request $request)
{

Chapter 3

[55]

 $message = '';
 $form = null;

 $address = new \Khepin\BookBundle\Entity\Address;

 if ($request->getMethod() === 'GET') {
 $country = $this->get('user_locator')
 ->getCountryCode();
 $address->setCountry($country);
 }

 $form = $this->createForm(new AddressType, $address, [
 'action' => '',
 'method' => 'POST',
]);

 if ($request->getMethod() === 'POST') {
 $form->handleRequest($request);
 if ($form->isValid()) {
 $message = 'The form is valid';
 }
 }

 $form = $form->createView();
 return compact('form', 'message');
}

We have also included a message in the template to know if the form is valid
or not. This will be important very soon. So far, everything should look pretty
straightforward to anyone having worked with Symfony.

Adding and removing fields
We will now customize the form based on its own data. If we already know that the
country is the USA, we add a field for the state; otherwise, we don't.

In a more realistic scenario, you would probably want to always
have the field and decide in the frontend if you want to show it
or not, as this would allow the user to directly decide this.

Forms

[56]

Modifying a form based on its current data is actually a very common scenario. The
most common use is to allow different actions when a record is created from when it
is only edited. If the user already has an ID, we add or remove certain fields. Every
form where you pass in a hidden field with the ID of another object, such as a form
to subscribe to a specific event or a form to message a given friend, can be a good
case for this.

We will update our form, as follows, to have the state field added or not depending
on the country:

public function buildForm(FormBuilderInterface $builder, array
 $options)
{
 $state_options = [
 'choices' => [
 'AL' => 'Alabama',
 // ...
 'WY' => 'Wyoming',
]
];

 $builder
 ->add('street')
 ->add('number')
 ->add('country', 'choice', [
 'choices' => [
 'US' => 'USA',
 'OTHER' => 'Not USA'
]
])
 ->add('zip')
 ;

 $builder->addEventListener(FormEvents::PRE_SET_DATA,
 function(FormEvent $event) use ($state_options){
 $address = $event->getData();
 if ($address === null) {
 return;
 }

 if ($address->getCountry() == 'US') {
 $event->getForm()->add('state', 'choice',
 $state_options);
 }
 });
}

Chapter 3

[57]

This seems to be good; however, if you were to actually try it with an IP address
coming from the USA, you will realize that after submitting the form, it is not valid.
Let's dig a bit into what happens during the first request (showing the empty form)
and the second one (sending data to the form):

Display Submit
Creates an address with country as the USA. Creates an address with no specified

country.
Builds the form. Builds the form.
On PRE_SET_DATA, we have an address with
country as the US, so we add a field to pick a
state.

On PRE_SET_DATA, we have an
empty address. This is the data that
we passed while instantiating the
form. The data submitted by the user
is sent on BIND. We don't add the
state field.

Done The form is bound to the submitted
data.

Done The form is validated, but the
submitted data has one additional
field named state, so it is invalid.

Whenever we modify a form based on its own values, we must make sure to modify
it at two points in time:

• Before we set the initial data in the form
• Before we bind the form to actual user-submitted data

This way, we can ensure that the user's data will be validated against the right
representation of our form.

We'll add a second listener to our form, as shown in the following code snippet,
so that if the data submitted by the user has the USA as a country, we will also
allow the list of states on the form:

$builder->addEventListener(FormEvents::PRE_SUBMIT, function(FormEvent
$event) use ($state_options){
 $address = $event->getData();

 if ($address['country'] == 'US') {
 $event->getForm()->add('state', 'choice', $state_options);
 }
});

Forms

[58]

The event data is an array and not an object. It will be available as
an object only after the form has been bound. However, after that,
we cannot modify the structure of the form anymore and wouldn't
be able to add the state field.

Now, our form can be displayed and submitted as we expect!

Summary
This chapter presented an in-depth view of the possibilities offered to you by the
form framework within Symfony. It might seem a complex thing at first, but if you
understand the basic parts, it's easy to find your way around.

You can now create your own form widgets that can be used just as any of the base
widgets, treating a map as a new type of input field. You also know how to use a
data transformer in order to have different representations of the same information
that fit within the model, the form, or the view. If you want to practice your form
skills, you can try some of the following:

• Create a form for messaging that includes an AJAX field for friend selection
• Create a form that accepts a collection of our coordinate type

Now that we have a good hold on many extension possibilities in Symfony, it is time
to get into one of the most technical and difficult topics: Security. There is a lot to be
said since security can be understood in many ways and touches many areas of your
application, from the forms to how you store records in your database.

Security
Security is a very broad topic, and in general, it means restricting access to resources
depending on who tries to access them. This chapter will not be going into the theory
but will be a hands-on approach on how you can customize the security layer of
Symfony to meet your needs.

Security is usually split into two parts:

• Authentication: This identifies who is trying to access our app and is a
prerequisite to authorization

• Authorization: It decides if a user has the right to access specific parts
of the app/data

In other words, authentication answers the question "Who are you?" (Luke SkyWalker)
and authorization decides what you are allowed to do (for example, Use the force: yes;
Pilot the Death Star: no).

We'll first go through both the topics in order, and then see a practical application of
these techniques to protect an API against CSRF attacks.

Authentication
There are many ways to authenticate a user. The most common pattern nowadays
is through the username and password, but we also have the third-party sites'
authentication (Facebook login, Twitter login, GitHub, and so on), which sometimes
uses OAuth or their custom method. LDAP is also a popular option in the enterprise.

Symfony's documentation already contains everything you need to know about
creating a custom authentication. However, it is hard to understand why you are
doing things in a particular way when following the official guide. This part guides
you through the same process, while detailing the reasons why things are done in
such a way, and how each part connects with each other.

Security

[60]

Simple OAuth with GitHub
In this part, we'll add authentication through GitHub's API; GitHub implements
OAuth. How this works in practice is that your app will contain a link to send users
to a GitHub page asking them if they want to allow your app to connect to their
GitHub account (only if they haven't yet) and then redirect them to a given URL.
From this URL, we need to retrieve information about the user and log them in.
We'll make a simple controller do this first and ensure things are working correctly.
As we need to communicate to the GitHub servers over HTTP, we included the
Guzzle library (http://guzzle.readthedocs.org/en/latest/) that helps deal
with HTTP communication.

If you are unfamiliar with OAuth, you might want to learn about the
basics (http://en.wikipedia.org/wiki/OAuth) before diving
into this chapter so that you get a better understanding of how the
process is happening.

Before you start, you need to create an app on GitHub, which will give you a
client_id and a secret_token. Then, we will create our simple controller as follows:

/**
 * @Route("/github")
 */
public function ghloginAction(Request $request)
{
 $client = new \Guzzle\Http\Client(
 'https://github.com/login/oauth/access_token');
 $req = $client->post('', null, [
 'client_id' => 'your app client_id',
 'client_secret' => 'your app secret_token',
 'code' => $request->query->get('code')
])->setHeader('Accept', 'application/json');

 $res = $req->send()->json();
 $token = $res['access_token'];

 $client = new \Guzzle\Http\Client(
 'https://api.github.com');
 $req = $client->get('/user');
 $req->getQuery()->set('access_token', $token);
 $username = $req->send()->json()['login'];

 return new Response($username);
}

Chapter 4

[61]

Then, if you point the URL to https://github.com/login/oauth/
authorize?client_id=<client_id>&redirect_uri=http://your-project.
local/github, you will be on GitHub and will be asked if you want to allow this
application (your project) to use your GitHub account. After you allow it, you are
redirected to http://your-project.local/github.

You only allow the app once. After that, GitHub will
automatically redirect you to the right page.

When GitHub redirects you, it adds a code query string to the URL so that it actually
looks like http://your-project.local/github?code=<some code>.

With that code, we ask GitHub for an access_token token specific to this user. This
token now allows us to browse GitHub's API as if we were that user. We request
the special URL https://api.github.com/user, which returns the current user
information (username, ID, and so on).

If everything worked correctly, you will see your GitHub username on the screen.
Great! Now, we need to hook this process inside Symfony's security layer. Now that
we understood the basic principle inside, let's make it work with the actual Symfony
authentication mechanisms, starting with Symfony's firewall.

The firewall
Firewalls in Symfony are configured so that they know which parts of the application
are free to visit and which require a user to be authenticated (defined by a URL
pattern). The firewall only cares about authentication. Whenever a request arrives to
a URL, the firewall checks if this URL can be visited by anonymous users (in which
case, the request flows through). If the URL requires authenticated users, the request
either flows through (the user is already authenticated), or the firewall interrupts it
and initiates the authentication process.

To authenticate users, you declare a special URL in Symfony's firewall. This URL
does not map to a controller. The firewall catches it, finds which class is listening for
it, and asks it to authenticate the user. Our firewall configuration now looks like the
following code snippet:

firewalls:
 main:
 pattern: ^/.*
 form_login:
 provider: fos_userbundle
 csrf_provider: form.csrf_provider
 github:

Security

[62]

 check_path: /github_login
 logout: true
 anonymous: true

The /github_login part, although not mapped to a controller, is quite important here.
We will use it as the redirect_url parameter when we go to log in from GitHub. If
you start to have multiple OAuth providers, you can then clearly separate them to
implement a login for each of them.

At the same time, we need to declare this route in routing.yml, but again, it does
not need to be tied to a controller:

routing.yml
github_login:
 pattern: /github_login

Next, we need to create an authentication listener that will listen on this
special URL and tell Symfony about it. Symfony provides an abstract class for
AuthenticationListener, which means we won't have to implement all the
methods. All we have to do is implement the attemptAuthentication method.
For this, we'll reuse the code that is placed in the controller:

namespace Khepin\BookBundle\Security\Github;

use Symfony\Component\Security\Http\Firewall\
AbstractAuthenticationListener;
use Khepin\BookBundle\Security\Github\GithubUserToken;
use Symfony\Component\HttpFoundation\Request;

class AuthenticationListener extends AbstractAuthenticationListener
{
 protected function attemptAuthentication(Request $request)
 {
 $client = new \Guzzle\Http\Client(
 'https://github.com/login/oauth/access_token');
 $req = $client->post('', null, [
 'client_id' => 'xxx',
 'client_secret' => 'xxx',
 'code' => $request->query->get('code')
])->setHeader('Accept', 'application/json');

 $res = $req->send()->json();
 $access_token = $res['access_token'];

 $client = new \Guzzle\Http\Client(
 'https://api.github.com');

Chapter 4

[63]

 $req = $client->get('/user');
 $req->getQuery()
 ->set('access_token', $access_token);
 $email = $req->send()->json()['email'];

 $token = new GithubUserToken();
 $token->setCredentials($email)

 return $this->authenticationManager
 ->authenticate($token);
 }
}

One more class again! The code is exactly what we had before, except that this time,
instead of returning the response, we return a token. The token now only holds the
user's credentials. In this case, we have retrieved the user's e-mail address and set
it in the token.

By using GitHub or any other third party, we no longer need a password. We trust
that when GitHub says user@example.com is trying to connect, it has already verified
this. We can then create a simplified Token class that only contains the e-mail and
no password.

The token itself is fairly simple:

namespace Khepin\BookBundle\Security\Github;
use Symfony\Component\Security\Core\Authentication\Token\
AbstractToken;

class GithubUserToken extends AbstractToken
{
 private $credentials;

 public function setCredentials($email)
 {
 $this->credentials = $email;
 }

 public function getCredentials()
 {
 return $this->credentials;
 }
}

Security

[64]

We use the user's e-mail because if we find the same user
e-mail from GitHub and Twitter logins, we know it is
actually the same user. But finding the same username
doesn't mean much; it could be two different people who
registered the same name for different services.

The security factory
We already wrote two new classes and a bit of configuration, and yet, if you try to
load your application right now, all you will see is an error stating that "GitHub" is
not a recognized option for the firewall. So we need to keep working on this for a
bit longer before we can see anything. That's why we tried things within a controller
first so that we can immediately see what worked and what didn't.

So far, we have defined the following options:

• The token
• The authentication listener

Now, we need to tell the firewall how to make any use of these. The class responsible
for tying these together is SecurityFactory.

Let's take a look at how things work for the security component. In the following
diagram, we can see that Factory brings together the AuthenticationListener
and UserProvider classes and makes the firewall aware of them:

Firewall

Factory

Authentication Provider

Authentication Listener

In the following diagram, we see that any incoming request is first stopped at the
Firewall level. The firewall finds a suitable authentication listener for this request,
which creates a non-authenticated token with all the relevant information in order
to authenticate the user later. This token is then passed on to the User Provider
block, which attempts to find a user based on the given credentials.

Chapter 4

[65]

Request

Firewall

Authentication Listener

User Provider

Authentication Provider

You shall not pass

Create token with credential info

Token

Credentials Github ID

User

Authenticated

Token

Credentials Github ID

User

Authenticated

Token

Credentials Github ID

User

Authenticated

Yes I know this user

Yes he is allowed in with these roles

X

X

To define our security factory, we extend it from the abstract security factory,
thus avoiding the burden of reimplementing everything. This is shown in the
following code:

namespace Khepin\BookBundle\Security\Github\SecurityFactory;

use Symfony\Bundle\SecurityBundle\DependencyInjection\
 Security\Factory\AbstractFactory;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\DefinitionDecorator;
use Symfony\Component\DependencyInjection\Reference;

class SecuirtyFactory extends AbstractFactory
{
 public function createAuthProvider(
 ContainerBuilder $container, $id, $config,
 $userProviderId)
 {

Security

[66]

 $providerId =
 'khepin.github.authentication_provider.'.$id;
 $definition = $container->setDefinition(
 $providerId, new DefinitionDecorator(
 'khepin.github.authentication_provider')
);
 if (isset($config['provider']))
 {
 $definition->addArgument(new Reference(
 $userProviderId));
 }

 return $providerId;
 }

 public function getPosition()
 {
 return 'pre_auth';
 }

 public function getKey()
 {
 return 'github';
 }

 protected function getListenerId()
 {
 return 'khepin.github.authentication_listener';
 }
}

The getKey method returns the name under which you will be able to use the
security factory in the firewall. The createAuthProvider part receives the builder
for the dependency injection container and can add and modify service definitions.
Here, a new authentication provider is created, and we pass the user_provider
parameter as an argument to its constructor.

The preceding class is then passed onto your Bundle class, the one that Symfony
generates at the root of each bundle, to be added to the configuration, which is
shown in the following code snippet. We will see more about what it means to add
configuration directly through the Bundle class in Chapter 6, Sharing Your Extensions.

namespace Khepin\BookBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
use Khepin\BookBundle\Security\Github\SecurityFactory;

Chapter 4

[67]

class KhepinBookBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);

 $extension = $container->getExtension('security');
 $extension->addSecurityListenerFactory(
 new SecurityFactory()
);
 }
}

This part, at least, is pretty straightforward to understand.

There is one last class that must be implemented before we can finish our configuration
and use our login, the AuthenticationProvider class, which is given in the following
code snippet:

namespace Khepin\BookBundle\Security\Github;

use Symfony\Component\Security\Core\Authentication
 \Provider\AuthenticationProviderInterface;
use Symfony\Component\Security\Core\Authentication
 \Token\TokenInterface;
use Khepin\BookBundle\Security\Github\GithubUserToken;

class AuthenticationProvider implements
 AuthenticationProviderInterface
{
 private $user_provider;

 public function __construct($user_provider)
 {
 $this->user_provider = $user_provider;
 }

 public function supports(TokenInterface $token)
 {
 return $token instanceof GithubUserToken;
 }

 public function authenticate(TokenInterface $token)
 {

Security

[68]

 $email = $token->getCredentials();
 $user = $this->user_provider->loadOrCreate($username);
 // Log the user in
 $new_token = new GithubUserToken($user->getRoles());
 $new_token->setUser($user);
 $new_token->setAuthenticated(true);
 return $new_token;
 }
}

It receives a user provider that is used to either load or create the user. This is because
a login through GitHub or any third-party site can be as much a login as it can be a
registration. So, if the user is not found, it must be created. Letting Symfony know that
the user is now authenticated means two things on the token, which are as follows:

• The Token::isAuthenticated line is true
• The token contains some roles defining what the user is or isn't allowed

to do within the application

The services configuration is as follows:

khepin.github.authentication_listener:
 class: Khepin\BookBundle\Security\Github\
 AuthenticationListener
 parent: security.authentication.listener.abstract
 abstract: true
 public: false

khepin.github.authentication_provider:
 class: Khepin\BookBundle\Security\Github\
 AuthenticationProvider
 public: false

There are two interesting aspects we didn't see before. They are as follows:

• parent: This service definition inherits from another service definition,
so anything that is not specified directly here will come from the parent.

• abstract: This service itself cannot be implemented. The security component
is responsible for taking this abstract service definition and creating actual
concrete services from it.

Our security file now also looks like the following code snippet:

providers:
 fos_userbundle:

Chapter 4

[69]

 id: fos_user.user_provider.username

firewalls:
 main:
 pattern: ^/
 form_login:
 provider: fos_userbundle
 csrf_provider: form.csrf_provider
 github:
 provider: fos_userbundle
 check_path: /github_login
 logout: true
 anonymous: true

As FOSUserBundle is a very popular way of dealing with users in Symfony, we
are reusing their user provider. This would work fine if your users were already
registered with the same username they have on GitHub and if we were using
the username to identify users. However, we need to use the e-mails to ensure
consistent and secure logins through multiple third-party providers.

The UserProvider class is one of the components of
Symfony's security component, so you don't need the one
provided by FOSUserBundle. It is used in this example
for convenience and shows how you can integrate your
new authentication with it.

We can then create our own user provider using the following code snippet:

class UserProvider implements UserProviderInterface
{
 public function __construct($user_manager)
 {
 $this->user_manager = $user_manager;
 }

 public function supportsClass($class)
 {
 return $this->user_manager->supportsClass($class);
 }

 public function loadUserByUsername($email)
 {
 $user = $this->user_manager->findUserByEmail($email);

Security

[70]

 if(empty($user)){
 $user = $this->user_manager->createUser();
 $user->setEnabled(true);
 $user->setPassword('');
 $user->setEmail($email);
 $user->setUsername($email);
 }
 $this->user_manager->updateUser($user);

 return $user;
 }

 public function loadOrCreateUser($email)
 {
 return $this->loadUserByUsername($email);
 }

 public function refreshUser(UserInterface $user)
 {
 if (!$this->supportsClass(get_class($user)) ||
 !$user->getEmail())
 {
 throw new UnsupportedUserException(sprintf(
 'Instances of "%s" are not supported.',
 get_class($user)));
 }

 return $this->loadUserByUsername($user->getEmail());
 }
}

The preceding UserProvider class is then defined as a service and is set up as a
provider in the security configuration. This is done using the following lines of code:

config.yml
khepin.github.user_provider:
 class: Khepin\BookBundle\Security\Github\UserProvider
 arguments: [@fos_user.user_manager]

security.yml
providers:
 fos_userbundle:
 id: fos_user.user_provider.username
 github_provider:

Chapter 4

[71]

 id: khepin.github.user_provider

firewalls:
 main:
 pattern: ^/
 form_login:
 provider: fos_userbundle
 csrf_provider: form.csrf_provider
 github:
 provider: github_provider
 check_path: /github_login
 logout: true
 anonymous: true

Authentication is not the easiest part to understand in Symfony, but it is structured
in a way that allows for many customizations. After this part, you should have a
better understanding of how things are working and be able to create your own
authentication method if you need it.

Authorization
It is a common thing in any application to restrict access to different parts of
an application depending on who the user is. In Symfony, this can be done in
many places, such as through annotations on the controller (or some equivalent
configuration), via Access Control Lists (ACL), and through voters.

Controller annotations are role-based, which is fine for a lot of cases, but won't be
adapted when we want to exercise fine-grained controls. At that point, you either
have to create many more roles to express all of the permissions of a user or start
using ACLs. ACLs provide much more fine-grained control, but they are very
inexpressive. A user's rights on a given object or page are stored in the database
as just that; these rights are called granular permissions. These permissions have
to be granted and revoked one by one in your code; so, if you decide one day to
completely change the logic of how some users are allowed to do something and
others are not, you will have to go over all of these single permissions again and
update them.

Security

[72]

Voters in Symfony allow you to express your permissions as business logic rules.
Some famous websites (think stackoverflow, for example) rely on this type of logic
a lot. A user with a reputation of less than 100 cannot edit a question, a user with a
reputation of 1000 or more can close a question, and so on. Luckily, in Symfony, it
doesn't really matter how you express your authorization logic; the way to check
a user's rights to perform an action or access a resource is always done in the same
way through SecurityContext; for example, consider the following code lines:

$context->isGranted('ROLE_ADMIN');
$context->isGranted('EDIT', $object);

Our project so far was to create meetups that a user can join. As we're a small website
for now, we don't plan to grow international operations yet. So, we'll only allow users
from a given country to create new meetups. Anyone can create a meetup as long as
they are from the right country.

In real life, it is very difficult to know which country a user
is actually from. The IP address checks can be circumvented
by using VPN services, and everything else coming in the
HTTP request to your server can be set up by anyone with
basic knowledge of HTTP. You shouldn't base any important
security decisions on that information.

Voters
Let's create a simple Voter class that will let a user create a meetup depending on
their country. The Voter class implements the three methods of VoterInterface,
which are as follows:

• supportsAttribute: This method will return true if the attribute is MEETUP_
CREATE, and false otherwise. This means our voter is only allowed to vote
for this. It will not be called when the security component is checking for
something else such as ROLE_ADMIN, for example. It's important to set it
correctly to avoid conflicts between different voters.

• supportsClass: This method will return true all the time as we won't be
passed an actual object to check if the user has rights on this specific object.

• vote: This method will return the result of our vote.

As you will see, it is your responsibility to call the
supports* methods; the AccessDecisionManager
method will not do it for you.

Chapter 4

[73]

namespace Khepin\BookBundle\Security\Voters;

use Symfony\Component\HttpFoundation\RequestStack;
use Symfony\Component\Security\Core\Authorization
 \Voter\VoterInterface;
use Symfony\Component\Security\Core\Authentication
 \Token\TokenInterface;

class CountryVoter implements VoterInterface
{
 protected $country_code;

 public function __construct($service_container)
 {
 $this->country_code = $service_container
 ->get('user_locator')->getCountryCode();
 }

 public function supportsAttribute($attribute)
 {
 return $attribute === 'MEETUP_CREATE';
 }

 public function supportsClass($class)
 {
 return true;
 }

 public function vote(TokenInterface $token, $object, array
$attributes)
 {
 if (!$this->supportsClass(get_class($object)) ||
 !$this->supportsAttribute($attributes[0])
) {
 return VoterInterface::ACCESS_ABSTAIN;
 }
 if ($this->country_code === 'CN') {
 return VoterInterface::ACCESS_GRANTED;
 }
 return VoterInterface::ACCESS_DENIED;
 }
}

Security

[74]

The vote method of a voter can return one of the following three results:

• ACCESS_GRANTED: The user is allowed access
• ACCESS_DENIED: The user is denied access
• ACCESS_ABSTAIN: This voter does not take part in the current vote

We define this voter as a service and tag it as a security voter using the following
lines of code:

security.access.country_voter:
 class: Khepin\BookBundle\Security\Voters\CountryVoter
 public: false
 arguments: [@service_container]
 tags:
 - { name: security.voter }

If you haven't done it before, it is now time to use the AccessDecisionManager
method in the security configuration using the following code lines:

security:
 access_decision_manager:
 strategy: unanimous

As shown in the preceding code lines, AccessDecisionManager takes a few possible
arguments, which are described as follows:

• strategy: This can have one of the following values:
 ° unanimous: If any voter votes ACCESS_DENIED, then access is denied
 ° affirmative: If any voter votes ACCESS_GRANTED, then access

is granted
 ° consensus: This counts the number of ACCESS_DENIED and ACCESS_

GRANTED permissions and decides based on the majority of votes

• allow_if_all_abstain: This checks whether or not to grant access when all
voters returned ACCESS_ABSTAIN

• allow_if_equal_granted_denied: In the consensus strategy, when
the number of ACCESS_GRANTED and ACCESS_DENIED is equal, this checks
whether access should be granted or not

The last step to make this work is to configure the controller to deny access to anyone
who isn't allowed to create a meetup:

/**
 * @Security("is_granted('MEETUP_CREATE')")

Chapter 4

[75]

 * ... other annotations ...
 */
public function newAction()
{
 // ...
}

The logic we implemented here would be painful to manage through roles or
ACL. With these, whenever you want to add a new country, you would have to
find all users in that country and update their roles or ACL. You would also need
to update all of the users' entries in the ACL whenever they change country and
so forth.

Voters can also be used for more specific object decisions. If our meetups had to be
reviewed and then published or approved by someone else, we would need specific
permission checks for this. However, maybe a user that has already successfully
organized at least five meetups can now be trusted to publish them on their own.
These would work exactly the same way as what we just saw as they are rules
independent from the meetup itself.

A different case would happen if we decide that a user can only update a meetup if
the following conditions are met:

• They were the ones who created the meetup.
• The meetup has not been joined by anyone yet. This would avoid bad

surprises for users who joined a meetup.

First, let's see how the AccessDecisionManager strategies work if we modify our
edit controller to include the following code snippet:

if (!$this->get('security.context')
 ->isGranted('EDIT', $entity)) {
 throw new UnauthorizedHttpException(
 'No edit allowed at this time'
);
}

Trying to access the edit page, we get an unauthorized response. This happened
because all our voters abstained from voting and we didn't set allow_if_all_
abstain to true. Try switching it to see the effect, then set it back to false before
we continue.

Security

[76]

Since the voter has already passed the security token while voting, we don't need to
inject it while defining the service; hence, our service definition is extremely simple:

security.access.meetup_voter:
 class: Khepin\BookBundle\Security\Voters\MeetupVoter
 public: false
 tags:
 - { name: security.voter }

The voter class now becomes as follows:

namespace Khepin\BookBundle\Security\Voters;

use Symfony\Component\HttpFoundation\RequestStack;
use Symfony\Component\Security\Core\Authorization\Voter\
 VoterInterface;
use Symfony\Component\Security\Core\Authentication\Token\
 TokenInterface;

class MeetupVoter implements VoterInterface
{
 public function supportsAttribute($attribute)
 {
 return $attribute === 'EDIT';
 }

 public function supportsClass($class)
 {
 return $class === 'Khepin\BookBundle\Entity\Event';
 }

 public function vote(TokenInterface $token, $object,
 array $attributes)
 {
 if (!$this->supportsClass(get_class($object)) ||
 !$this->supportsAttribute($attributes[0]))
 {
 return VoterInterface::ACCESS_ABSTAIN;
 }

 if (
 $this->meetupHasNoAttendees($object) &&
 $this->isMeetupCreator($token->getUser(), $object))
 {
 return VoterInterface::ACCESS_GRANTED;
 }

Chapter 4

[77]

 return VoterInterface::ACCESS_DENIED;
 }

 protected function meetupHasNoAttendees($meetup)
 {
 return $meetup->getAttendees()->count() === 0;
 }

 protected function isMeetupCreator($user, $meetup)
 {
 return $user->getUserId() === $meetup->getUserId();
 }
}

Any user is now allowed to edit a meetup if and only if they are the organizer of that
meetup and the meetup does not have any attendees yet. These complex decision
rules would be impossible to express through roles. They could be expressed with
ACLs and with a lot of care. They could be repeated over different controllers too.
With voters, you have a simple way to use access rules that are very expressive and
simple to use.

We saw that to secure our controller action, all we had to do was to add an @Security
annotation. Annotations are a very common way of configuring things in Symfony,
and we have already encountered them in the book (defining controllers in Chapter 1,
Services and Listeners), but never written our own. The @Security annotation is also
interesting because it does more than just provide some configuration information
about a method or a class; it modifies the workflow of the application, adding a
security check before the method is executed.

Annotations
Let's take advantage of this possibility in our app. An event organizer should be able
to contact the event attendees and view their phone numbers in case of last minute
changes to the event. Therefore, we should only allow users that have registered
their phone number in their profile to join an event.

Our action to join an event should be decorated with an annotation as follows:

/**
 * @Route("/events/{event_id}/join")
 * @Template()
 * @ValidateUser("join_event")
 */

Security

[78]

public function joinAction($event_id) {
 // ...
}

Here, join_event is the name of the validation group, which is defined in the user
class as follows:

/**
 * @ORM\Column(type="string", length=255, name="phone")
 * @Assert\NotBlank(groups={"join_event"})
 */
protected $phone;

Defining an annotation
Annotations are defined through annotation classes. These classes don't need to
inherit or implement any specific interface, but they need to be annotated with
@Annotation.

An annotation will receive an array as a constructor parameter. This array contains
all the information that was passed to the annotation. Consider that your annotation
is as follows:

/**
 * @Log("custom_logger", level="debug")
 */

Then, the array you would receive in the constructor would be:

['value' => 'custom_logger', 'level' => 'debug']

Whenever you need to read an annotation, you need an annotation reader. Of course,
this service is readily available for you in Symfony, and all that you have to do in a
service where you need to read annotations is to inject that annotation reader.

Let's define our annotation class as follows:

namespace Khepin\BookBundle\Security\Annotation;

/**
 * @Annotation
 */
class ValidateUser
{
 private $validation_group;

Chapter 4

[79]

 public function __construct(array $parameters)
 {
 $this->validation_group = $parameters['value'];
 }

 public function getValidationGroup()
 {
 return $this->validation_group;
 }
}

The annotation is a simple value object containing the information that was passed
to it, nothing more.

Let's try to read the annotation first to better understand how they work with
regards to the reader by directly using it inside of our controller:

/**
 * @Route("/events/{event_id}/join")
 * @Template()
 * @ValidateUser("join_event")
 */
public function joinAction($event_id)
{
 $reader = $this->get('annotation_reader');
 $method = new \ReflectionMethod(
 get_class($this), 'joinAction');
 $annotation_name = 'Khepin\BookBundle\Security\
 Annotation\ValidateUser';
 $annotation = $reader->getMethodAnnotation(
 $method, $annotation_name);

 // ... Your normal code
}

We see that through our reader service, and by knowing only the name of the
class and the method, we can read the annotation and get back an instance of
our annotation class.

Here, we create \ReflectionMethod directly because we already
know the exact method we want to read an annotation for. You would
probably, in most interesting cases, have to create a class named
\ReflectionClass, and then loop over all defined methods to
see which ones have the annotation you are looking for.

Security

[80]

In the same way, you can read annotations for methods, properties, and the class
itself, using the following code:

// Reading a class annotation
$reader->getClassAnnotation(
 new \ReflectionClass('MyClass'),
 '\My\Annotation'
);

// Reading a property annotation
$reader->getPropertyAnnotation(
 new \ReflectionProperty(
 'UserClass',
 'phone_number'
),
 '\My\Annotation'
);

The preceding code works well for reading a single annotation if you know which
annotation you are looking for. For these cases, it is important to always use the fully
qualified class name, including the namespace; otherwise, Doctrine's annotation reader
will not be able to match the annotation class to the one you are trying to load.

For cases when you need to load all annotations and see which ones are defined, you
can use get*Annotations() instead of the singular method. In this case, you would
receive an array of all of the available annotations:

$annotation = $reader->getMethodAnnotations(
 new \ReflectionMethod(get_class($this), 'joinAction'));
=>
{
 [0]=> object(Sensio\Bundle\FrameworkExtraBundle\
 Configuration\Route),
 [1]=> object(Sensio\Bundle\FrameworkExtraBundle\
 Configuration\Template),
 [2]=> object(Khepin\BookBundle\Security\Annotation\
 ValidateUser)
}

When adding annotations to entities or documents managed
through Doctrine, you should not rely on get_class. Instead, use
\Doctrine\Common\Util\ClassUtils::getClass because
Doctrine will generate proxy classes for your entities, and in some
cases, you will be trying to read the annotations on the proxy class
instead of the class you are actually interested in. ClassUtils avoids
this by returning the real class of an object instead of the proxy.

Chapter 4

[81]

When a bundle is using annotations, it is creating a service in which the
annotation reader is injected and then reads the annotation whenever needed.
Even SensioFrameworkExtraBundle, which brings us the @Route and @Template
annotations that we use on our joinAction method, does it the same way.
By listening to the kernel.controller event before the controller is called,
a service can read the required annotations and modify the behavior as needed.

The annotation reader in Symfony will cache your annotations after
they are read. Because PHP doesn't have support for annotations,
they are created by adding comments. Parsing these comments on
each request would be extremely slow. Make sure you use Symfony's
annotation_reader service, and don't instantiate your own as it is
already configured to speed things up and cache all read annotations.

Securing controllers with custom annotations
We now have all the building blocks in order to secure our actions, and we'll define
a listener to the kernel.controller event:

security.access.valid_user:
 class: Khepin\BookBundle\Security\ValidUserListener
 arguments: [@annotation_reader, @router, @session,
 @security.context, @validator]
 tags:
 - { name: kernel.event_listener,
 event: kernel.controller,
 method: onKernelController}

Our listener takes quite a few arguments. They are as follows:

• annotation_reader: This will allow us to read the arguments on
each controller

• router: This will let us redirect the user to their profile page if their
profile is not complete

• session: This is to add a "flash" message telling the user why they
were redirected and what they have to do

• security.context: This is to retrieve the user
• validator: This is to validate the user

Security

[82]

The controller event allows us to retrieve the controller in the form of an array:

{
 [0] => object('\My\Controller'),
 [1] => 'myAction'
}

This is everything we need in order to read our annotation. Now, change the
controller as follows:

class ValidUserListener
{
 private $reader;

 private $router;

 private $session;

 private $sc;

 private $validator;

 private $annotation_name = 'Khepin\BookBundle\Security\
 Annotation\ValidateUser';

 public function __construct(Reader $reader, Router $router,
 Session $session, SecurityContext $sc,
 Validator $validator)
 {
 $this->reader = $reader;
 $this->router = $router;
 $this->session = $session;
 $this->sc = $sc;
 $this->validator = $validator;
 }

 public function onKernelController($event)
 {
 // Get class and method name to read the annotation
 $class_name = get_class($event->getController()[0]);
 $method_name = $event->getController()[1];

 $method = new \ReflectionMethod(
 $class_name, $method_name);

Chapter 4

[83]

 // Read the annotation
 $annotation = $this->reader->getMethodAnnotation($method,
 $this->annotation_name);

 // If our controller doesn't have a "ValidateUser"
 // annotation, we don't do anything
 if (!is_null($annotation)) {
 // Retrieve the validation group from the
 // annotation, and try to validate the user
 $validation_group = $annotation->getValidationGroup();
 $user = $this->sc->getToken()->getUser();
 $errors = $this->validator->validate($user,
 $validation_group);

 if (count($errors)) {
 // If the user is not valid, change the
 // controller to redirect the user
 $event->setController(function()
 {
 $this->session->getFlashBag()->add(
 'warning', 'You must fill in your
 phone number before joining a
 meetup.');
 $url = $this->router->generate(
 'fos_user_profile_edit');
 return new RedirectResponse($url);
 });
 }
 }
 }
}

When we change the controller, we define an anonymous function instead of the
array. All that is required is to pass a callable, so you could also pass in a static
method, another callable array, and so on.

If you have a user defined that does not have a phone number, whenever they try
to view the page to join a meetup, they are redirected to their profile page with a
message saying they should update their phone number. If the phone number is
present, then they see the page as requested.

Here, this is secure because viewing the form to join a
meetup and submitting the form are both in the same
action. If you were to separate them, then both calls
would need to be secure as well.

Security

[84]

Securing an API – an example
It is becoming a common practice to only have an API on your web server and not
generate the page's HTML on the server but through JavaScript in a user's browser.

However, it is also common for developers to still use standard sessions and logins
when the API is only there to serve their own website at first. This can lead to issues
regarding security. Whenever you create a form to be displayed in Symfony via
Twig, it contains a CSRF token. This token is here to help us ensure that not only
is the request coming from this user's browser (cookies do that) but also from your
actual webpage and not a malicious tab in the user's browser.

With an API, your forms are going to be generated entirely in the frontend. So, they
cannot include a CSRF token. Furthermore, whenever an attacker submits a request
to our server through a user's browser, all the cookies will be sent together, allowing
the attacker to control the user's account. However, because of the same origin policy
in browsers, an attacker's script cannot see what the cookies are for our website. So
a technique to still defend ourselves is to double-submit the cookies, once normally,
which we don't control, and once through a custom header.

An attacker will not be able to reproduce this, and for us, through the JavaScript that
we are using, it is very easy to include this duplicated header on every request.

Since we are only checking for permissions and access, we create the simplest
possible controller:

/**
 * @Route("/api/status")
 */
public function apiAction()
{
 return new Response('The API works great!');
}

Now, for any request to a URL starting with /api/, we want to make sure that our
cookie exists twice. In the following code snippet, we will use events in a way similar
to what we did with annotations earlier, but this time, we'll use the kernel.request
event as it happens earlier. Also, in this case, we don't need information about the
controller.

security.access.api:
 class: Khepin\BookBundle\Security\ApiCustomCookieListener
 tags:
 - { name: kernel.event_listener,
 event: kernel.request,
 method: onKernelRequest }

Chapter 4

[85]

This listener will receive the request through the event and only compare two
headers of this request, so it will not require any argument. The listener is also
very easy to implement:

namespace Khepin\BookBundle\Security;

use Symfony\Component\HttpFoundation\Response;

class ApiCustomCookieListener
{
 public function onKernelRequest($event)
 {
 // We only secure urls in our API
 if (strpos(
 $event->getRequest()->getPathInfo(),
 '/api/'
) !== 0
) {
 return;
 }

 $cookie = $event->getRequest()->headers
 ->get('cookie');
 $double = $event->getRequest()->headers
 ->get('X-Doubled-Cookie');

 if ($cookie !== $double) {
 $event->setResponse(new Response('', 400));
 }
 }
}

With just these few lines, we have enabled the CSRF protection on an API with a cost
that is a lot less than that of using CSRF tokens as compared to forms, as these need
to be random and encrypted values.

Security

[86]

Summary
Security is a huge topic and a source of endless debate. This chapter showed you
how to craft authentication and authorization mechanisms in Symfony, but it's
important to understand that security does not stop there. Depending on the level
of security required by your application, you should always do your research on
how to best make it safe for you and your users.

Although creating your own authentication method is a bit complex in Symfony,
it's done in a way that is highly modular and customizable. For that reason,
most authentication schemes you might encounter will already have an existing
third-party bundle that you could use, relieving you of the implementation effort.

We also saw how roles, ACLs, and voters can be used independently or together
to give various authorizations to different users. Roles, combined with voters,
allow for a powerful and expressive way to control access.

In the next chapter, we will take a break from Symfony to talk about Doctrine.
Doctrine is not the only persistence layer that can be used, but it is Symfony's
default choice and offers a lot in terms of extensibility.

Doctrine
Doctrine is the Object-relational Mapper (ORM) that ships with Symfony. It lets
you work with PHP classes and objects, and handles their storage and retrieval to
and from a data store. It can work with a variety of data stores such as traditional
relational databases or document databases. The examples in this chapter will be
either for the ORM or for the MongoDB ODM (Object-document Mapper).

Creating your own data types
Not all databases are created equal! MongoDB can store a collection of values or
documents within a document, which is impossible in most relational databases.
PostgreSQL can deal with geographical values, but MySQL can't.

For this reason, Doctrine only ships with a subset of standard supported types that
are common across most of the databases. But, what if you want to use features specific
to your database vendor or invent your own form of mapping type? You can define
these types in exactly the same way Doctrine does.

User and meetup locations
We have already created a class named Coordinates to hold the latitude and
longitude of a meetup. We have also created a query in our first controller to get
a user only the events within a 50 km side square centered on them. There are a
few problems with this; firstly, we can only use a square (or force the DB to do
some calculation on each row), and secondly, there's no index on these queries,
so it might slow down after some time.

Doctrine

[88]

MongoDB has support for geospatial indexes, but it requires the locations to be
stored as [latitude, longitude]. If we had used MongoDB instead of a relational
database in the first place, our meetup class would look as follows:

/**
 * @ODM\Document
 */
class Meetup
{
 /**
 * @ODM\Id
 */
 protected $id;

 /**
 * @ODM\String
 */
 protected $name;

 /**
 * @ODM\???
 */
 protected $location;

 // Getters and Setters ...
}

The annotation for location is ??? as we don't know how to store this yet! So, we'll
create our own Doctrine mapping type to be applied here. Let's say, we add a custom
type named coordinates, and then our annotation will become as follows:

/**
 * @ODM\Field(type="coordinates")
 */

For Doctrine to become aware of our custom type, we need to do the following
two things:

• Create the Type class
• Tell Doctrine about it

Chapter 5

[89]

The Type class is very simple to understand, but there's a catch since some of its
behavior is not yet implemented in Doctrine's ODM! It has the following four
possible methods:

• convertToPHPValue

• convertToDatabaseValue

• closureToPHP

• closureToDatabase

The names are immediately easy to understand. The two closureTo* methods
actually return a string containing PHP code that will be used during Doctrine's
code generation. Here's the catch: convertToPHPValue doesn't work. It is simply
never called, so you must use the closureToPHP method instead, as follows:

namespace Khepin\BookBundle\Document;
use Doctrine\ODM\MongoDB\Types\Type;
use Doctrine\ODM\MongoDB\Types\DateType;
use Khepin\BookBundle\Geo\Coordinate;
use Symfony\Component\Validator\Exception\UnexpectedTypeException;

class CoordinatesType extends Type
{
 public function convertToPHPValue($value)
 {
 return new Coordinate($value[0], $value[1]);
 }

 public function convertToDatabaseValue($value)
 {
 if (!$value instanceof Coordinate) {
 throw new UnexpectedTypeException($value,
 'Khepin\BookBundle\Geo\Coordinate');
 }
 return [$value->getLatitude(), $value->getLongitude()];
 }

 public function closureToPHP()
 {
 return '$return = new
 \Khepin\BookBundle\Geo\Coordinate($value[0], $value[1]);';
 }
}

Also, be careful, because your closure's code will actually be written as code in a
completely different context than the one of this class; therefore, it is important to
use fully qualified namespaces.

Doctrine

[90]

In Doctrine's base type class, we find a list of all available types as a static array,
as follows:

private static $typesMap = array(
 self::STRING => 'Doctrine\ODM\MongoDB\Types\StringType',
 self::DATE => 'Doctrine\ODM\MongoDB\Types\DateType',
 // ...
);

This is where our type must be declared for Doctrine to know about it. It is registered
as follows:

use Doctrine\ODM\MongoDB\Types\Type;
Type::addType('coordinates',
 'Khepin\BookBundle\Document\CoordinatesType');

The Mongo ODM bundle doesn't offer a way (similar to forms) of tagging your
types and letting Doctrine register them on its own. As the preceding two lines
of code are only here to declare how to load a special type, we'll add them to
app/autoload.php.

Testing
Let's test whether our mapping is working properly using the following code:

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
use Khepin\BookBundle\Document\Meetup;
use Khepin\BookBundle\Geo\Coordinate;

class MongoCoordinateTypeTest extends WebTestCase
{
 public function testMapping()
 {
 $client = static::createClient();
 $dm = $client->getContainer()->get('doctrine.odm');

Create a new meetup with a unique name and persist it, as follows:

 $meetup = new Meetup();
 $name = uniqid();
 $meetup->setName($name);
 $meetup->setLocation(new Coordinate(33, 75));

 $dm->persist($meetup);
 $dm->flush();

Chapter 5

[91]

We will retrieve our meetup through PHP's native Mongo extension, using the
following code, to verify that the value was indeed stored as an array:

 $m = new \MongoClient();
 $db = $m->extending;
 $collection = $db->Meetup;

 $met = $collection->findOne(['name' => $name]);
 $this->assertTrue(is_array($met['location']));
 $this->assertTrue($met['location'][0] === 33);

We set a new value without Doctrine, directly by setting an array in the database
as follows:

 $newName = uniqid();
 $collection->insert([
 'name' => $newName,
 'location' => [11, 22]
]);

Now, retrieve our meetup through Doctrine and verify that we get a coordinate,
as follows:

 $dbmeetup = $dm->getRepository('KhepinBookBundle:Meetup')-
 >findOneBy(['name' => $newName]);
 $this->assertTrue($dbmeetup->getLocation() instanceof
 Coordinate);
}

Finally, test that the correct exception is thrown if we pass something that is not a
coordinate, using the following code:

/**
 * @expectedException \Symfony\Component\Validator\Exception\
UnexpectedTypeException
 */
public function testTypeException()
{
 $client = static::createClient();
 $dm = $client->getContainer()->get('doctrine.odm');

 $name = uniqid();
 $meetup = new Meetup();
 $meetup->setName($name);
 $meetup->setLocation([1,2]);

 $dm->persist($meetup);
 $dm->flush();
}

Doctrine

[92]

Custom DQL functions
Doctrine can be adapted to many different database vendors such as MySQL,
PostgreSQL, and others. To achieve this and still be able to take advantage of
the specifics of each underlying platform, Doctrine is designed in such a way
that it is easy to define your own custom SQL functions.

We will take advantage of this for our geolocation. In the first chapter, we decided
that the home page would only display events within 25 kilometers (which roughly
translates to 0.3 in terms of latitude and longitude). To do so, we defined a box of
coordinates around a given point and then used it in the SQL code.

However, an actual distance between two points (in a Cartesian plan) is calculated
by the following formula:

() ()
2 2

1 2 1 2x x y y- + -

The preceding formula can be translated to the following SQL query:
SQRT (POW(lat_1 - lat_2, 2) + POW(long_1 - long_2, 2)).

This is correct; however, it is a bit tedious to write, so we'll take advantage of
Doctrine's ability to define your own SQL functions and define a DISTANCE function
that will be used as DISTANCE((lat_1, long_1), (lat_2, long_2)).

Let's go ahead and register it immediately in our config.yml file as follows:

orm:
 # ...
 dql:
 numeric_functions:
 distance: Khepin\BookBundle\Doctrine\DistanceFunction

The name we chose here, distance, is important. Doctrine will register it as an
identifier so that whenever it encounters the word DISTANCE in our DQL, it will call
our DistanceFunction to take over.

We will also update our controller code so that it uses this new DQL function
as follows:

/**
 * @Route("/")
 * @Template()
 */
public function indexAction()

Chapter 5

[93]

{
 $position = $this->get('user_locator')->getUserCoordinates();
 $position = [
 'latitude' => $position->getLatitude(),
 'longitude' => $position->getLongitude()
];

 // Create our database query
 $em = $this->getDoctrine()->getManager();

 $qb = $em->createQueryBuilder();
 $qb->select('e')
 ->from('KhepinBookBundle:Event', 'e')
 ->where('DISTANCE((e.latitude, e.longitude), (:latitude,
 :longitude)) < 0.3')
 ->setParameters($position)
 ;

 // Retrieve interesting events
 $events = $qb->getQuery()->execute();

 return compact('events');
}

We can now define our new SQL function as follows:

namespace Khepin\BookBundle\Doctrine;

use Doctrine\ORM\Query\AST\Functions\FunctionNode;
use Doctrine\ORM\Query\SqlWalker;
use Doctrine\ORM\Query\Parser;
use Doctrine\ORM\Query\Lexer;

class DistanceFunction extends FunctionNode
{
 protected $from = [];

 protected $to = [];

 public function parse(Parser $parser)
 {
 // ...
 }

 public function getSql(SqlWalker $sqlWalker)
 {
 // ...
 }
}

Doctrine

[94]

We have already stated that Doctrine should hand over the parsing to us whenever
it encounters the DISTANCE token. Our function then needs to do the following
two things:

• Parse the following DQL by consuming the DQL string until the final
parenthesis of our DISTANCE function

• Generate some SQL, which will be the Cartesian distance calculation:
SQRT(...)

Parsing the DQL is done by using the parser (which consumes the string), and the
lexer, which knows how to read it.

When the parser consumes a part of the string, that part of the string is no longer
available to be parsed by default. The parser advances its position in the string until
the end, so we always need to be careful until which point we should parse the DQL.

The lexer knows about special DQL tokens such as parenthesis, commas, DQL
function identifiers, and much more. By using these two, we tell the parser about
our distance function in a way that can be described as follows:

Start with the **DISTANCE** identifier.
Find a **(**
 Find another **(**
 Find some expression (this could be a value, or a full SQL
select statement)
 Find a **,**
 Find some expression
 Find a **)**

 Find a **,**

 Find a **(**
 Find some expression
 Find a **,**
 Find some expression
 Find a **)**
Find a **)**

Our parse function actually looks very similar to the following few lines of code:

public function parse(Parser $parser)
{
 // Match: DISTANCE((lat, long), (lat, long))
 $parser->match(Lexer::T_IDENTIFIER);
 $parser->match(Lexer::T_OPEN_PARENTHESIS);

Chapter 5

[95]

 // First (lat, long)
 $parser->match(Lexer::T_OPEN_PARENTHESIS);
 $this->from['latitude'] = $parser
 ->ArithmeticPrimary();
 $parser->match(Lexer::T_COMMA);
 $this->from['longitude'] = $parser
 ->ArithmeticPrimary();
 $parser->match(Lexer::T_CLOSE_PARENTHESIS);

 $parser->match(Lexer::T_COMMA);

 // Second (lat, long)
 $parser->match(Lexer::T_OPEN_PARENTHESIS);
 $this->to['latitude'] = $parser
 ->ArithmeticPrimary();
 $parser->match(Lexer::T_COMMA);
 $this->to['longitude'] = $parser
 ->ArithmeticPrimary();
 $parser->match(Lexer::T_CLOSE_PARENTHESIS);

 $parser->match(Lexer::T_CLOSE_PARENTHESIS);
}

We will save the matched expressions as a from and to variable so that we can use
them to generate the SQL later.

It is possible to check what the next token will be without
consuming it to provide different possible syntax of your
DQL function through on of:

• $parser->getLexer()->peek();

• $parser->getLexer()->glimpse();

• $parser->getLexer()-
>isNextToken(<token_type>);

So, we can, for example, use both DISTANCE((lat,
long), (lat, long)) and DISTANCE (e, (lat,
long)) functions if we know that the selected element e
has a latitude and longitude property.

If the parser does not find what it is supposed to, it will throw a syntax error.
The code to generate the SQL statement then looks as follows:

public function getSql(SqlWalker $sqlWalker)
{
 $db = $sqlWalker->getConnection()->getDatabasePlatform();
 $sql = 'POW(%s - %s, 2) + POW(%s - %s, 2)';

Doctrine

[96]

 $sql = sprintf(
 $sql,
 $this->from['latitude']->dispatch($sqlWalker),
 $this->to['latitude']->dispatch($sqlWalker),
 $this->from['longitude']->dispatch($sqlWalker),
 $this->to['longitude']->dispatch($sqlWalker)
);

 $sql = $db->getSqrtExpression($sql);

 return $sql;
}

We could have written our SQL as SQRT (POW(%s - %s, 2)
+ POW(%s - %s, 2)) as the SQRT function is the same across
all the major SQL database vendors. However, it is safer to rely
on Doctrines Database Abstraction Layer to take care of these
differences for us. As the POW function is not being included as
an abstracted function, we can directly output its SQL statement.

What we stored in our from and to variables were not the results of SQL statements
but the pieces of yet unparsed DQL. Since these could be anything from a literal value
to a full SELECT statement, we can use the SQL Walker to keep generating the correct
SQL for these expressions.

All Doctrine functions that you are currently using are also built this way, so you
can find a lot of examples on how to write these functions within the Doctrine
source code itself.

Versioning
A common issue when a lot of users have access to modifying the same resources
is to make sure that they are not overwriting each other's changes. One technique
to prevent this from happening is to version the resources. In Doctrine, we can
set a version number to any entity when we first persist it, and then increment it
whenever there is a request to change the information.

This will allow us to check if the version number of the incoming request is at least
equal to the current one in the database. If not, refuse the change and force the user
to refresh before updating the content.

Chapter 5

[97]

Doctrine also uses events that we can listen to. These are as follows:

• prePersist: This event is triggered before the entity is persisted to the
database for the first time.

• preRemove: This event occurs before deleting an object.
• preUpdate: This event occurs before a new version of the entity is saved

to the database.
• post*: All the preceding events also have a post version that occurs after

the action has been completed.
• postLoad: This event is triggered after loading data from the database.
• pre / on / postFlush: These events are not tied to a single entity, but occur

when the entity manager is performing actions on the database.
• onClear: This event occurs when the entity manager has no more work to

do on the entities.
• loadClassMetadata: This event is triggered when Doctrine has loaded

metadata such as the mapping information about a class. This can be useful
if you need to create a service that knows about different entity relations in
your application.

Using these events, it is possible to add behavior to your entities and share this
behavior among them. Some famous use cases include creating a soft delete behavior
where a delete flag is set to true instead of actually removing the information from
the database, dynamically creating a URL-friendly version of an article's title, saving
the time of creation and last update, and so on.

To make it easy to share our Versionable behavior, we'll add the required fields and
methods in a Trait method, as follows:

namespace Khepin\BookBundle\Doctrine;
use Doctrine\ORM\Mapping as ORM;

Trait Versionable
{
 /**
 * @ORM\Column(name="version", type="integer", length=255)
 * @ORM\Version
 */
 private $version;

 public function getVersion()
 {

Doctrine

[98]

 return $this->version;
 }

 public function setVersion($version)
 {
 $this->version = $version;
 }
}

This way, all we have to do for an entity, such as our meetups, to become versionable
is to add the trait as follows:

class Event
{
 use Versionable;
 // ...
}

The @ORM\Version annotation indicates to Doctrine that this
field is to be used to compare versions. Doctrine doesn't provide
a versionable trait but gives you the tools to create your own
so that your version property can be an integer, a timestamp,
a hashed value of the entity, and so on.

We identified two important steps in our process; first, we set a version number of 1
whenever the entity is created, and secondly, we used it to verify the validity of an
operation and incremented it.

Setting a version on all entities
Since we are going to use listeners and events, we will again define a service as
follows:

khepin.doctrine.versionable:
 class: Khepin\BookBundle\Doctrine\VersionableListener
 tags:
 - { name: doctrine.event_listener, event: prePersist }
 - { name: doctrine.event_listener, event: preUpdate }

We have already set our service to listen to both the prePersist and preUpdate
methods. In this case, we don't have to define a method to be called on the listener
whenever the event is triggered. Doctrine will just call the prePersist method or
the preUpdate method of the class.

Chapter 5

[99]

Our listener is quite simple this time, so the service doesn't rely on any other service,
but for each entity, if you wanted to add the name of the last person who updated
it, then your service could depend on the security context in order to get the current
connected user.

Although it is tempting to define Doctrine extensions that
integrate with Symfony services in such a way, especially for
adding the user, you should use this with caution and make
sure that your code is flexible enough. Whenever you want to
manipulate your objects from the command line, your listener
might be called, but the user session or the security context
would not exist, and this will prevent you from performing
useful database operations from a command line.

In order to just set the version on any entity, it's quite easy. We only do it through the
listener to show how it is working; otherwise, simply setting a default value of 1, as
follows, would have been perfectly fine:

<?php
namespace Khepin\BookBundle\Doctrine;

use Doctrine\ORM\Event\LifecycleEventArgs;

class VersionableListener {
 public function prePersist(LifecycleEventArgs $args)
 {
 $entity = $args->getEntity();

 $versionable = in_array(
 'Khepin\BookBundle\Doctrine\Versionable',
 (new \ReflectionClass($entity))->getTraitNames()
);

 if ($versionable) {
 $entity->setVersion(1);
 }
 }
}

The listener will be called for absolutely all entities before it is persisted, no matter if
we added the Versionable trait or not. So, the first thing to do is check that we are
dealing with an object that we actually want to version. We do this by verifying that
our class uses the Versionable trait.

If we need to update the version, then we set it to 1.

Doctrine

[100]

Using and updating versions
Now, when we are about to save an updated object, we must check whether it is
versionable, check whether the current version is compared to the database value,
decide to allow the update or not, and increment the version number, by using the
following code:

public function preUpdate(LifecycleEventArgs $args)
{
 $entity = $args->getEntity();
 $em = $args->getEntityManager();

 $versionable = in_array(
 'Khepin\BookBundle\Doctrine\Versionable',
 (new \ReflectionClass($entity))->getTraitNames()
);

 if ($versionable) {
 $em->lock(
 $entity,
 LockMode::OPTIMISTIC,
 $entity->getVersion()
);
 $version = $entity->getVersion();
 $uow = $em->getUnitOfWork();
 $uow->propertyChanged(
 $entity,
 'version',
 $version,
 $version + 1
);
 }
}

Since we added the @ORM\Version annotation to our Trait earlier, we can take
advantage of Doctrine's entity locking. The OPTIMISTIC lock is one of the defaults
that come with Doctrine. When we try to lock the entity, if the version number
present in the database is not the same as the one present in the entity (someone
else modified it in the meantime), Doctrine will throw an exception and the entity
cannot be updated.

Notice that we have to then explicitly tell the unit of work that the version was
updated. A unit of work is a small set of all the changes that the entity manager has
to perform when $em->flush() is called. It already contains the newly computed
values ready to be saved to the database. Here, since it has already been computed,
we need to explicitly let it know that there is a new value.

Chapter 5

[101]

Testing
Testing anything directly related to Doctrine like this is usually easier and is better
done by directly interacting with the database. Therefore, your tests will modify the
data included in the database. This might not be what you want if you cannot set up
a clean test environment. One way to do it is to redefine the Doctrine connection for
the test environment and use sqlite. This can be done in the config_test.yml file,
as follows:

doctrine:
 dbal:
 driver: pdo_sqlite
 host: localhost
 port: null
 dbname: test_db
 user: root
 password: null
 charset: UTF8
 path: %kernel.root_dir%/…/ BookBundle/Tests/db.sqlite

As long as you are running tests, you will be in the test environment, and any call
to $container->get('doctrine') will return a connection to the test database.
If you wish to execute any command in that environment (to first create the DB and
schema, for example), just execute your normal command and add --env test.

Other than that, our tests are pretty simple and straightforward:

class VersionableTest extends WebTestCase
{
 public function testVersionAdded()
 {
 $client = static::createClient();

 $meetup = new Event();
 $em = $client->getContainer()->get('doctrine')->getManager();

 $this->assertTrue($meetup->getVersion() === null);

 $em->persist($meetup);
 $em->flush();

 $em->refresh($meetup);

 $this->assertTrue($meetup->getVersion() === 1);
 }

Doctrine

[102]

 /**
 * @expectedException \Exception
 */
 public function testRefuseOutdated()
 {
 $client = static::createClient();
 $meetup = new Event();
 $em = $client->getContainer()->get('doctrine')
 ->getManager();
 $em->persist($meetup);
 $em->flush();

 $meetup->setName('myEvent');
 $meetup->setVersion(0);
 $em->flush();
 }

 public function testIncrementedVersion()
 {
 $client = static::createClient();
 $meetup = new Event();
 $em = $client->getContainer()->get('doctrine')
 ->getManager();
 $em->persist($meetup);
 $em->flush();

 $this->assertTrue($meetup->getVersion() === 1);

 $em->refresh($meetup);
 $meetup->setName('test event');
 $em->flush();
 $this->assertTrue($meetup->getVersion() == 2);
 }
}

Creating a Doctrine filter
With the two types of extensions we already saw, a lot can be done. We could create
an extension that notifies us whenever an entity has been updated, by whom, or
create URL-friendly names for entities. We know how to deal with entity versions;
we could even extend that behavior to save all the previous versions of an entity
and maintain a record history. Some behaviors, though, can still not be achieved
with what we have seen.

Chapter 5

[103]

If we want, we can create a soft delete, or ensure automatically that all database
queries include user_id so that a user can see only data that belongs to them. In
the latter case, we will be able to easily add a value to a user_id field on any entity
before it is persisted, but while retrieving entities through a SQL query, we still need
to remember to add the user_id = "123" value every time we write a query. This is
likely to be forgotten, and that can cause some big issues, because your app will start
to leak data from one user to another.

A better version will be that all queries have this bit of logic added automatically.
In Doctrine, before version 2.2, you would have had to create a custom AST Walker.
The AST (Abstract Syntax Tree) Walker is the class that generates the actual SQL
statement based on the query you have defined in the query builder. The query
builder receives chunks of SQL statements when you use the following code:

$qb->select('u')
 ->from('User', 'u')
 ->where('u.id = ?1')
 ->orderBy('u.name', 'ASC');

This was a bit complex and inconvenient.

Doctrine 2.2 and higher versions came with the concept of filters that allow you to do
exactly this. Filters also come with the advantage that they can easily be enabled and
disabled, so whenever you are writing commands for doing administrative work on
your database, you can completely bypass the filter and perform your normal work.

We will first configure and add a very simple filter class by adding a filters entry to
the ORM configuration, as follows:

orm:
 auto_generate_proxy_classes: %kernel.debug%
 auto_mapping: true
 filters:
 - { name: owner_filter, class:
 Khepin\BookBundle\Doctrine\OwnerFilter, enabled:
 true }

Sadly, it is not possible to use a service as a filter. Doctrine registers filters by class
name. So, we won't be able to inject the current user inside of the filter. We also need
to remember that the filter will be applied to all queries, even the one that retrieves
our user from the database. So, we need a way to differentiate between entities for
which this filter should be applied and those for which it is not needed.

Doctrine

[104]

We will define a simple PHP interface (an empty one) that will allow us to make the
distinction between entities to which the filter should be applied and others. As with
security, the secure option should always be the default one. It is better to pull your
hair for an hour because you don't understand where this user_id = 123 constraint
is coming from in your SQL statement, rather than having the user data exposed
wrongly because you forgot to add a UserOwnedEntity interface to a specific entity.

To be on the safe side, we use the opposite of the UserOwnedEntity interface,
as follows:

// Interface
namespace Khepin\BookBundle\Doctrine;

interface NonUserOwnedEntity
{

}

// Filter
namespace Khepin\BookBundle\Doctrine;
use Doctrine\ORM\Mapping\ClassMetaData,
 Doctrine\ORM\Query\Filter\SQLFilter;

class OwnerFilter extends SQLFilter
{
 public function addFilterConstraint(ClassMetadata $targetEntity,
 $targetTableAlias)
 {
 if ($targetEntity->reflClass->implementsInterface('Khepin\
 BookBundle\Doctrine\NonUserOwnedEntity')) {
 return "";
 }

 return $targetTableAlias.'.user_id = ' . $this-
 >getParameter('user_id');
 }
}

We also need to remember that before any user is logged in, it is impossible to have
the proper parameter value.

Doctrine allows us to retrieve the filters later, so we can still use an event listener that
will be triggered on each request once the user information is available, and pass the
correct parameter at that point. We will also disable our filter before this happens
since the database will be queried at least once to get the current user information.
This will prevent some future mistakes.

Chapter 5

[105]

Our OwnerFilter class doesn't need to change except in the configuration where
we will now set it to enable: false by default. We'll need to create an event listener
that:

• Knows the user (inject @security.context)
• Knows about Doctrine (inject @doctrine)
• Is triggered very early on each request (listen to kernel.request)

kernel.request is the first event that gets triggered for any request, and it is called
on every request. If the user previously logged in, the user information is already
present when the kernel.request event is triggered. The following code shows
the use of the kernel.request event:

khepin.doctrine.owned_entity.listener:
 class: Khepin\BookBundle\Doctrine\OwnerListener
 arguments: [@doctrine, @security.context]
 tags:
 - { name: kernel.event_listener, event: kernel.request
 , method: updateFilter }

The event listener class itself isn't very complex, as shown in the following code:

namespace Khepin\BookBundle\Doctrine;

class OwnerListener
{
 private $em;
 private $security_context;

 public function __construct($doctrine, $security_context)
 {
 $this->em = $doctrine->getManager();
 $this->security_context = $security_context;
 }

 public function updateFilter()
 {
 $id = $this->security_context->getToken()->getUser()-
 >getUserId();
 $this->em->getFilters()->enable('owner_filter')-
 >setParameter('user_id', $id);
 }
}

Doctrine

[106]

Summary
This chapter covered a great deal of what you could want to do in using and extending
Doctrine. Combining events and filters, you can create very solid extensions. Do you
want to create a new CMS where articles can only be seen after they are "published"?
Events and filters will come along nicely to provide a publishable behavior to your
entities. Do you need to keep versions of all changes and know who made what change
and when? Here again, the events will allow you to have this taken care of on all
entities without worrying about manually doing it.

As an exercise, you can try to implement a soft delete behavior. Soft delete indicates
that whenever an entity is about to be deleted, you instead update a deleted field
to true, or to the timestamp at which it was deleted. Creating a SoftDeleteable
behavior for your entities should involve both listening to events and using a filter.

I mentioned earlier about Doctrine's Abstract Syntax Tree and how it used to be
necessary before Doctrine added the concept of filters. There are still cases where
you might want to use these, for example to augment the DQL syntax or to tailor
it to your specific database vendor.

With all this, you are now fully equipped to create any type of extension in Symfony.
But, the whole point of creating an extension rather than just coding something that
works in one place is to be able to reuse and share it. In the last chapter, we will take
a look at the possibilities to do so in Symfony.

Sharing Your Extensions
Since everything is a bundle in Symfony, all the code you write is already in the
structure it needs to be in order to be shared with others. If we take all the code
that we wrote over the course of this book inside the BookBundle folder, and
make it available to others, all they would have to do to make it work is copy
our configurations. This is nice, but it is still a "lot of work" to do, which includes
defining each of the services with the right parameters and so on.

In this chapter, we will look at the steps required to make an easy-to-use bundle
for others as well as other best practices for sharing code. In Chapter 4, Security,
we added a way for users to sign in using their GitHub account. This is a good
example of something that others might want to reuse or that we ourselves might
want to reuse from one project to another.

Creating the bundle
While developing our app initially, we didn't care about where our files were.
Everything was under a giant monolithic bundle that included everything.
We'll go through the following steps to change the situation and make a
decoupled GithubAuthBundle:

1. Set up the bundle.
2. Move or write the code.
3. Move or create the services configuration directly in the bundle.
4. Define the bundle configuration and merge the user-defined parameters.

Sharing Your Extensions

[108]

First, we will use the following command line provided by Symfony to generate
an empty bundle:

php app/console generate:bundle

To do this, you have to choose a namespace and a bundle name, which in the case of
this book are Khepin and GithubAuthBundle. Now, let's move all the required files
to this new bundle and update their namespaces accordingly. In the end, our bundle
structure should be as follows:

GithubAuthBundle/
 DependencyInjection/
 Configuration.php
 KhepinGithubAuthExtension.php
 Resources/
 config/
 services.xml
 Security/
 Github/
 AuthenticationListener.php
 AuthenticationProvider.php
 GithubUserToken.php
 SecurityFactory.php
 UserProvider.php
 Test/
 KhepinGithubAuthBundle.php

Also note that the KhepinGitAuthBundle bundle class now needs to contain the
code that was previously in KhepinBookBundle to register the security factory,
as follows:

// Updated BookBundle class
namespace Khepin\BookBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class KhepinBookBundle extends Bundle
{
}

// GithubAuthBundle class
namespace Khepin\GithubAuthBundle;

Chapter 6

[109]

use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Khepin\GithubAuthBundle\Security\Github\SecurityFactory;

class KhepinGithubAuthBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);

 $extension = $container->getExtension('security');
 $extension->addSecurityListenerFactory(
 new SecurityFactory()
);
 }
}

Once we do so, our previously working code will stop functioning. All the services
we had defined in our config.yml file are now referencing the files that are not
there anymore.

Symfony lets us move the service definitions to the bundles themselves. This is
what we will do, going from a YML-based configuration to an XML-based one.
It is recommended that you use XML when creating a bundle to be shared with
others instead of other forms of configurations (PHP, annotations, or YML) since
the XML format is more flexible.

Our initial configuration is as follows:

khepin.github.authentication_provider:
 class: Khepin\BookBundle\Security\Github\AuthenticationProvider
 public: false

Now, the configuration is different, as follows:

<service
 id="khepin.github.authentication_provider"
 class="Khepin\GithubAuthBundle\Security\ …
 … Github\AuthenticationProvider"
 public="false">
</service>

Sharing Your Extensions

[110]

The complete configuration of the file is as follows:

<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="khepin.github.authentication_provider"
 class="Khepin\GithubAuthBundle\Security\Github\ …
 … AuthenticationProvider"
 public="false">
 </service>
 <service
 id="khepin.github.user_provider"
 class="Khepin\GithubAuthBundle\Security\ …
 … Github\UserProvider">
 <argument type="service"
 id="fos_user.user_manager" />
 </service>
 <service
 id="khepin.github.authentication_listener"
 class="Khepin\GithubAuthBundle\Security\ …
 … Github\AuthenticationListener"
 parent="security.authentication.listener.abstract"
 abstract="true"
 public="false">
 </service>
 </services>
</container>

Our bundle is now self contained, and no configuration will be needed to make
it work in another project. However, you will still need to add the bundle to the
AppKernel file, and set up the user provider in the security configuration.

Exposing the configuration
There is a problem with our AuthenticationListener class though. From where
we left things in Chapter 4, Security, it contained the credentials for our GitHub
application. We'll want our users to provide their own credentials instead.

Chapter 6

[111]

The AuthenticationListener class is as follows:

class AuthenticationListener extends AbstractAuthenticationListener
{
 protected $client_id;

 protected $client_secret;

 protected function attemptAuthentication(Request $request)
 {
 $client = new \Guzzle\Http\Client(
 'https://github.com/login/oauth/access_token'
);
 $req = $client->post('', null, [
 'client_id' => $this->client_id,
 'client_secret' => $$this->client_secret,
 'code' => $request->query->get('code')
])->setHeader('Accept', 'application/json');
 // ...
 }

 public function setClientId($id)
 {
 $this->client_id = $id;
 }

 public function setClientSecret($secret)
 {
 $this->client_secret = $secret;
 }
}

We will update our AuthenticationListener class to provide two methods to
set the credentials. We know that since our class inherits from an abstract class,
the constructor methods within that class take many parameters and are already
configured. We prefer to avoid messing with this as there is a risk of breaking
compatibility if the underlying interface changes in the future. For this, we will
inject the following arguments through methods instead of the constructor:

<service
 id="khepin.github.authentication_listener"
 class="Khepin\GithubAuthBundle\Security\Github\ …
 … AuthenticationListener"
 parent="security.authentication.listener.abstract"

Sharing Your Extensions

[112]

 abstract="true"
 public="false">
 <call method="setClientId">
 <argument>xxxx</argument>
 </call>
 <call method="setClientSecret">
 <argument>xxxx</argument>
 </call>
</service>

Now, we want to let other users configure these values from their own config.yml
file as follows:

khepin_github_auth:
 client_id: xxxx
 client_secret: xxxx

To do this, we will update the services.xml service definition as follows:

<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <parameter key="khepin_github_auth.client_id">
 </parameter>
 <parameter key="khepin_github_auth.client_secret">
 </parameter>
 <parameter
 key="khepin_github_auth.authentication_
 provider_class">
 Khepin\GithubAuthBundle\Security\Github\
 AuthenticationProvider
 </parameter>
 <parameter
 key="khepin_github_auth.user_provider_class">
 Khepin\GithubAuthBundle\Security\Github\
 UserProvider
 </parameter>
 <parameter
 key="khepin_github_auth.authentication_
 listener_class">

Chapter 6

[113]

 Khepin\GithubAuthBundle\Security\Github\
 AuthenticationListener
 </parameter>
 </parameters>

 <services>
 <service
 id="khepin.github.authentication_provider"
 class="%khepin_github_auth. …
 … authentication_provider_class%"

 public="false">
 </service>
 <service
 id="khepin.github.user_provider"
 class="%khepin_github_auth.user_provider_class%">
 <argument type="service"
 id="fos_user.user_manager" />
 </service>
 <service
 id="khepin.github.authentication_listener"
 class="%khepin_github_auth.authentication_
 listener_class%"
 parent="security.authentication.listener.abstract"
 abstract="true"
 public="false">
 <call method="setClientId">
 <argument>
 %khepin_github_auth.client_id%
 </argument>
 </call>
 <call method="setClientSecret">
 <argument>
 %khepin_github_auth.client_secret%
 </argument>
 </call>
 </service>
 </services>
</container>

The preceding code defines the client_id and client_secret parameters as
well as three others for our implementation classes. It is usually a good practice
to define these classnames as parameters. This will allow users to replace your
implementation with another one if they need to later on. Those classes are defined
with a value, so they don't need to be configured by default. The only parameters
that are absolutely necessary are client_id and client_secret.

Sharing Your Extensions

[114]

To load and validate the configuration of your bundle, you need to perform the
following three steps:

1. Define the configuration format.
2. Load your XML configuration.
3. Merge it with the user-defined configuration.

When you create a bundle through the Symfony generate command, you will
usually have a DependencyInjection folder in your bundle. This folder is here
exactly for our purpose. It should contain the following two files:

• Configuration.php: This is the file where you define the structure
of your configuration

• Extension.php: This is the file where you map the bundle and
user-defined configuration together

The Configuration.php file contains the following lines of code:

// Configuration.php
class Configuration implements ConfigurationInterface
{
 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('khepin_github_auth');

 $rootNode
 ->children()
 ->scalarNode('client_id')
 ->isRequired()->cannotBeEmpty()->end()
 ->scalarNode('client_secret')
 ->isRequired()->cannotBeEmpty()->end()
 ->scalarNode('authentication_provider_class')->end()
 ->scalarNode('user_provider_class')->end()
 ->scalarNode('authentication_listener_class')->end()
 ->end();

 return $treeBuilder;
 }
}

Chapter 6

[115]

We have defined client_id and client_secret as two mandatory parameters
for our configuration. We have also declared that our entire specific configuration
should be under the khepin_github_auth key. This configuration class defines a
specific tree structure that your configuration should stick to. This definition can
get much more complex than the current one if, for example, you create multiple
configurations of an object. If we wanted to configure multiple entity managers
in Doctrine, it would require an array node instead of a scalar one. A simplified
version of the code looks as follows:

$node = $treeBuilder->root('entity_managers');
$node
 ->requiresAtLeastOneElement()
 ->useAttributeAsKey('name')
 ->prototype('array')
 ->addDefaultsIfNotSet()
 ->children()
 ->scalarNode('connection')->end()
 ->scalarNode('class_metadata_factory_name')
 ->defaultValue('xxx')->end()
 ->scalarNode('default_repository_class')
 ->defaultValue('xxx')->end()
 ->scalarNode('auto_mapping')
 ->defaultFalse()->end()
 ->scalarNode('naming_strategy')
 ->defaultValue('xxx')->end()
 ->scalarNode('entity_listener_resolver')
 ->defaultNull()->end()
 ->scalarNode('repository_factory')
 ->defaultNull()->end()
 ->end()
 ->end()
;

The actual version in DoctrineBundle is a lot longer than this one, but this gives
an idea of what is possible. Explaining all the details of what is possible through
this configuration file would take a chapter of its own, and it might not be a very
interesting one to read. It is possible to set information and examples for each node,
validate their type and value, and so on. If you need something more advanced than
the simple example here, for the bundle you are building, the best way to learn is to
check the core Symfony bundles. They often allow some deep customization and,
therefore, have pretty advanced configuration classes.

Sharing Your Extensions

[116]

With this configuration class defined, we know that the configuration we get from
the user is formatted properly and can be loaded by our extension class as follows:

class KhepinGithubAuthExtension extends Extension
{
 private $namespace = 'khepin_github_auth';

 public function load(array $configs, ContainerBuilder $container)
 {
 $configuration = new Configuration();
 $config = $this->processConfiguration(
 $configuration,
 $configs
);

 $loader = new Loader\XmlFileLoader(
 $container,
 new FileLocator(__DIR__.'/../Resources/config')
);
 $loader->load('services.xml');

 $this->setParameters(
 $container,
 $config, $this->namespace
);
 }

 public function setParameters($container, $config, $ns)
 {
 foreach ($config as $key => $value) {
 $container->setParameter(
 $ns . '.' . $key,
 $value
);
 }
 }
}

Most of this file would actually be generated for you. An interesting method is
setParameters, which we have defined as a helper method. It takes the parameters
in the user config, prefixes them with our configuration namespace, and sets the
parameter's value as a container parameter. There is no official convention and
nothing is enforced by Symfony regarding how you name your parameters, so
this notion of namespace with all our parameters prefixed by khepin_github_
auth is just for convenience. However, it is not required in any way. Now, all our
parameters are correctly set from app/config.yml, which lets the users of our
bundle use it in a very simple way.

Chapter 6

[117]

In a DEV environment, Symfony checks for file changes to see if it needs
to reload and revalidate the configuration. This has a high performance
cost, so it is not enabled in a PROD environment, where the configuration
will be parsed once and cached for later use.

Getting ready to share
With the changes made to the bundle earlier, your bundle is technically ready to be
shared between various projects. However, what's left to do? It all depends on your
goals, but if you went through all the trouble to create a reusable bundle, maybe
even an open source one for all the world to use, then you don't want your efforts
to be vain, and you hope that many people will start using your bundle. To improve
the adoption and usefulness of your bundles, here's what you should always do.

Research
KNP Labs, a very active company in the Symfony community, created a website
(http://knpbundles.com) that lists many Symfony bundles and gives them a
score based on popularity, recommendations, activity, testing status, and so on.

A simple search on this website will show us at least two existing bundles for
performing authentication through GitHub. It is possible that you have a specific need
that is not addressed by these bundles, but in that case, you would do the Symfony
community a better service by contacting the author of one of these bundles and
trying to improve their work together. One bundle with two authors that fits more
(still related) use cases is better and more useful in general than two bundles with
a 90 percent functionality overlap and 10 percent specificity.

Documentation
So, your bundle is now available on the Web. It has been indexed on knpbundles as
well and people can start using it. There are two kinds of bundles that your fellow
developers enjoy or agree to use: the ones that are done so well and have such a
clear API that they don't require any documentation to be used (let's settle for very
little documentation) and the ones with a clear and extensive documentation. In our
case, you can simply add a README file to the bundle, mentioning what it does (user
authentication through GitHub), what it needs (FOSUserBundle is a prerequisite),
how to install it, and how to configure it.

If your bundle becomes much bigger, think about setting up a small web page for a
clearer documentation. The GitHub pages can be very useful here.

Sharing Your Extensions

[118]

Testing
Many people will refuse (with reason) to use a bundle that is not properly tested.
There are services (such as Travic.CI) that will let you run the test suite on every
single commit you make to your bundle. They will provide you with a little badge
to include in your documentation, which will tell the world whether your tests are
currently successful or not.

When you are testing a bundle independently of the framework, you don't benefit
as much from all the configuration and setup that Symfony does for you. If you
have doubts on how you should write your tests or configure a specific service
for your tests, it's always a good idea to learn from other bundles that deal with
similar problems and gain knowledge from the way they do things.

Let's add some testing to our bundle. First, we make use of a composer to define
what libraries we will be using for testing as well as how to autoload our bundle
classes. This is done through the autoload, target-dir and require-dev sections
of composer.json. The reference to the full composer.json file can be found in the
following Distribution and licensing section.

In the Tests folder, we create the following two files:

• phpunit.xml: This file configures phpunit
• bootstrap.php: This file will hold any bootstrapping code that you might

need before running your tests, such as configuring a Doctrine connection
and mappings, wiring up complex services, and so on

The most basic phpunit configuration will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<phpunit bootstrap="bootstrap.php">
 <testsuites>
 <testsuite name="Github Authentication">
 <directory suffix=".php">./</directory>
 </testsuite>
 </testsuites>
</phpunit>

This defines one test suite and tells phpunit to execute bootstrap.php before
running any tests.

Chapter 6

[119]

Remember that phpunit is only one of the possible options for unit
testing your bundle. This is the one we use in this book as it is the
default one in Symfony, but now, more and more bundles have their
tests using different tools such as Atoum (http://atoum.org) or
phpspec (http://www.phpspec.net/). For example, the following
snippet makes use of Mockery (https://github.com/padraic/
mockery) as a replacement for the mocks of phpunit.

Once we have set up our configuration, it is possible to add the first test as follows:

use Khepin\GithubAuthBundle\Security\Github
 \AuthenticationProvider;
use \Mockery as m;

class AuthenticationProviderTest extends \PHPUnit_Framework_TestCase
{
 public function testAuthenticatesToken()
 {
 $user = m::mock(['getName' => 'Molly',
 'getRoles' => ['ROLE_ADMIN']]);
 $user_provider = m::mock(['loadOrCreateUser' => $user]);
 $unauthenticated_token = m::mock(
 'Khepin\GithubAuthBundle\Security\Github\GithubUserToken',
 ['getCredentials' => 'molly@example.com']);
 $auth_provider = new AuthenticationProvider(
 $user_provider);
 $token = $auth_provider
 ->authenticate($unauthenticated_token);
 $this->assertTrue($token->isAuthenticated());
 $this->assertEquals($token->getUser()->getName(),'Molly');
 }
}

Distribution and licensing
Symfony makes heavy use of composer (http://www.getcomposer.org) to manage
dependencies, so the best way to get others to use your newly created bundle is to
make it available through composer. To do so, we add a simple composer.json file
to our bundle as follows:

{
 "name": "khepin/github-auth-bundle",
 "type": "symfony-bundle",
 "description": "Let your user authenticate to a Symfony2 app
 through their github account",

Sharing Your Extensions

[120]

 "keywords": ["authentication, symfony, bundle, github"],
 "homepage": "http://xxxx.com",
 "license": "MIT",
 "authors": [
 {
 "name": "Machete",
 "homepage": "http://en.wikipedia.org/wiki/Machete_(film)"
 }
],
 "minimum-stability": "dev",
 "require": {
 "php": ">=5.3.2",
 "friendsofofsymfony/user-bundle": "~1.3"
 },
 {
 "mockery/mockery": "*"
 },
 {
 "autoload": {"psr-0": {"Khepin\\GithubAuthBundle": ""}}
 },
 {
 "target-dir": "Khepin/GithubAuthBundle"
 }
}

Once this is in place, you can register your package on http://packagist.org, and
it will be available for download through composer.

Here, we included the MIT license. There are many existing open source licenses,
and if you decide to open source your bundle, you should pick one (or know what
it means when you don't). The http://choosealicense.com/ website can help
you decide which license is right for you. Symfony itself is MIT licensed, and this
is a popular choice for many Symfony bundles.

Is it just a bundle?
A Symfony bundle is meant to be used only within Symfony. By making your code
available as a bundle, you limit it to the people using the Symfony framework. The
audience for whom you have created the bundle might actually be larger than that
within the PHP world. In Chapter 2, Commands and Templates, we introduced the idea
that commands in Symfony should only be a very thin wrapper around a service.
Well, your bundle should also be a very thin wrapper when possible.

Chapter 6

[121]

The example we followed in this chapter is for GitHub authentication. It is well suited
as it is being fully packaged as a bundle due to the following reasons:

• It only deals with authentication in the Symfony way. Other frameworks
or PHP without any framework will deal with authentication differently.

• There is very little logic that is not specific to Symfony. The only part where
we do things not completely for Symfony is when we call the GitHub API,
but it's contained within just 10 lines of code.

In many cases, your bundle will do more. Maybe, instead of just dealing with the
authentication as we did here, you could add a full integration of GitHub. This
would mean that based on a user, you can browse their repositories, notifications,
latest comments, and so on. If you provide this through a bundle, you have most
likely developed a complete API client. This will be very valuable for use outside
of Symfony and should then be extracted to a separate library. Your bundle will
then exist only to bridge the API client and the framework, provide authentication,
declare the appropriate services, and so on.

There is no strict rule that suggests when something should or should not be in
a bundle, but asking yourself the question whether some functionality could be
extracted for reuse outside of Symfony will lead you on the right way!

Summary
With what we saw in all the previous chapters, you know how to craft Symfony
extensions that will make your work easy to reuse within your project.

With this final chapter, you learned how to share it between projects, people, and
teams. The technical part of creating a bundle that can be shared is relatively easy.
Usually, your code will already be structured inside a bundle, and setting up the
configuration and the extension is all you will have to worry about.

It is important to also take time to carefully prepare about the non-technical aspects
of sharing a Symfony bundle such as documentation, licensing, and testing. This will
greatly help your contributions to be noticed and spread among the community.

Index
Symbols
@Security annotation 77

A
AbstractSecurityFactory class 65
abstract service 68
ACCESS_ABSTAIN 74
Access Control Lists (ACL) 71
AccessDecisionManager arguments

about 74
allow_if_all_abstain 74
allow_if_equal_granted_denied 74
strategy 74

ACCESS_DENIED 74
ACCESS_GRANTED 74
allow_if_all_abstain 74
allow_if_equal_granted_denied 74
annotation_reader 81
annotations

about 77
controllers, securing with custom

annotations 81-83
defining 78-81

API
securing 84, 85

AST Walker (Abstract Syntax Tree) Walker
103

Atoum
URL 119

attemptAuthentication method 62
authentication

about 59
firewalls 61

listener, creating 62, 63
OAuth, with GitHub 60, 61

AuthenticationProvider class 67
authorization

about 59, 71
voters 72, 74

B
bundle

about 107
benefits 120, 121
configuration 110-116
creating 107-110
distribution 119, 120
documentation 117
licensing 119, 120
research 117
sharing 117
testing 118

C
ClassUtils 80
commands

about 27
as interface, to services 32-35
Console command 27, 28
testing 31, 32
used, for resizing user pictures 28-31

composer
about 27
URL 27, 119

configuration, bundle 110-116
configure() function 28
container scope 11

[124]

controllers
securing, with custom annotations 81

createAuthProvider part 66
custom DQL function 92-96
custom events

used, for updating user preferences 20-23
customization, forms

about 53
fields, adding 55-57
fields, removing 55-57
initial setup 53-55

D
data transformers

about 48-50
reverseTransform method 49
transform method 49

data type
creating 87
meetup locations 87-90
testing 90, 91
user 87-90

Dependency Injection Container (DIC) 9
distribution, bundle 119, 120
Doctrine

about 87
versioning 96-98

Doctrine filter
creating 102-104

Doctrine LifeCycle Events
URL 18

Doctrines Database Abstraction Layer 96
documentation, bundle 117

E
events 18
execute() function 28
extension, Twig

creating 35
defining, for time difference filter 40
testing 38, 39

F
factory 64
fields

adding 55-57
removing 55-57

firewall 61-64
forms

based on user data 51, 52
building 41
customizing 53
input for geographical coordinates 41-43

FOSUserBundle 69

G
generate command 114
geolocation service 6-11
get*Annotations() 80
getKey method 66
GitHub

OAuth with 60, 61
Google Maps

URL 42

I
Imagine library

URL 28
input for geographical coordinates, forms

map, using 46-48
setting up 43-45

J
joinAction method 81

K
kernel.controller event 18, 81
kernel.exception event 18
kernel.request event 18, 84
kernel.response event 18
kernel.terminate event 18
kernel.view event 18
KNPbundles

URL 117

L
license, bundle 119, 120
listeners

about 18-20

[125]

user performance, improving 24
user preferences updating, custom events

used 20-23
user response, generating with 24, 25

loadClassMetadata event 97

M
map

using 46-48
Mockery

URL 119
MongoDB ODM 87

O
OAuth

URL 60
with GitHub 60, 61

Object-document Mapper. See ODM
Object-relational Mapper. See ORM
ODM 87
onClear event 97
onFlush event 97
ORM 87

P
parent service 68
phpspec

URL 119
post* event 97
postFlush event 97
postLoad event 97
preFlush event 97
prePersist event 97
preRemove event 97
preUpdate event 97
prototype scope 11

R
redirect_url parameter 62
request scope 11
research, bundle 117
reverseTransform method 49
router 81

S
scripts

managing 36, 37
security

about 59
authentication 59
authorization 59
factory 64

security.context 81
service, Symfony2

about 5, 6
geolocation service 6-11
tagging service 14-18
testing service 12, 13

session 81
supportsAttribute method 72
supportsClass method 72
Symfony2

about 5
bundle 107
commands 27
forms, building 41
listeners 18-20
service 5, 6
Twig 27, 35

T
tagging service 14-18
testing service 12, 13
time difference filter

Twig extension, defining for 40
Token class 63
toString() method 50
transform method 49
Twig

about 27, 35
extension, creating 35
extension defining, for time difference

filter 40
extension, testing 38, 39
scripts, managing 36, 37

U
user performance

improving, with listeners 24

[126]

user pictures
resizing 28-31

user preferences
updating, custom events used 20-23

User Provider block 64
UserProvider class 69, 70
user_provider parameter 66
user response

generating, with listeners 24, 25

V
validator 81
version, Doctrine

about 96-98
setting 98, 99
testing 101
updating 100
using 100

vote method 72
voter

about 72
ACCESS_ABSTAIN 74
ACCESS_DENIED 74
ACCESS_GRANTED 74
VoterInterface method 72

VoterInterface methods
supportsAttribute method 72
supportsClass method 72
vote method 72

Thank you for buying
Extending Symfony2 Web Application Framework

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Laravel Application Development
Blueprints
ISBN: 978-1-78328-211-1 Paperback: 260 pages

Learn to develop 10 fantastic applications with the
new and improved Laravel 4

1. Learn how to integrate third-party scripts and
libraries into your application.

2. With different techniques, learn how to adapt
different methods to your needs.

3. Expand your knowledge of Laravel 4
so you can tailor the sample solutions
to your requirements.

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1. Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real life development tasks.

2. Effectively structure, write, test, and finally
deploy your application.

3. Add security and optimization features to
your AngularJS applications.

Please check www.PacktPub.com for information on our titles

Persistence in PHP with
Doctrine ORM
ISBN: 978-1-78216-410-4 Paperback: 114 pages

Build a model layer of your PHP applications
successfully, using Doctrine ORM

1. Develop a fully functional Doctrine-backed
web application.

2. Demonstrate aspects of Doctrine using
code samples.

3. Generate a database schema from your
PHP classes.

Learning FuelPHP for Effective
PHP Development
ISBN: 978-1-78216-036-6 Paperback: 104 pages

Use the flexible FuelPHP framework to quickly and
effectively create PHP applications

1. Scaffold with oil - the FuelPHP
command-line tool.

2. Build an administration quickly
and effectively.

3. Create your own project using FuelPHP.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Services and Listeners
	Services
	A geolocation service
	Testing services and testing with services
	Tagging services

	Listeners
	Updating user preferences using custom events
	Improving user performance
	Code that works after the response

	Summary

	Chapter 2: Commands and Templates
	Commands
	The initial situation
	Resizing user pictures
	Testing a command
	Commands as an interface to services

	Twig
	Managing our scripts
	Testing a Twig extension
	Time difference filter

	Summary

	Chapter 3: Forms
	An input for geographical coordinates
	Setting up the basics
	Using the map

	Data transformers
	Forms based on user data
	Going further
	Initial setup
	Adding and removing fields

	Summary

	Chapter 4: Security
	Authentication
	Simple OAuth with GitHub
	The firewall
	The security factory

	Authorization
	Voters
	Annotations
	Defining an annotation
	Securing controllers with custom annotations

	Securing an API – an example
	Summary

	Chapter 5: Doctrine
	Creating your own data types
	User and meetup locations
	Testing

	Custom DQL functions
	Versioning
	Setting a version on all entities
	Using and updating versions
	Testing

	Creating a Doctrine filter
	Summary

	Chapter 6: Sharing Your Extensions
	Creating the bundle
	Exposing the configuration

	Getting ready to share
	Research
	Documentation
	Testing
	Distribution and licensing
	Is it just a bundle?

	Summary

	Index

