

WordPress 4.x Complete

Get your website up and running and beautify it
with WordPress

Karol Król

BIRMINGHAM - MUMBAI

WordPress 4.x Complete

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2006
Second edition: January 2011
Third edition: November 2013
Fourth edition: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-090-7

www.packtpub.com

www.packtpub.com

Credits

Author
Karol Król

Reviewers
Matt Cohen

Cyril Pierron

Olivier Pons

Ardian Yuli Setyanto

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Neha Nagwekar

Content Development Editor
Siddhesh Salvi

Technical Editor
Taabish Khan

Project Coordinator
Nidhi Joshi

Copy Editors
Hiral Bhat

Pooja Iyer

Tani Kothari

Sonia Mathur

Khushnum Mistry

Shambhavi Pai

Vikrant Phadke

Kriti Sharma

Sameen Siddiqui

Proofreaders
Safis Editing

Paul Hindle

Indexer
Hemangini Bari

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Karol Król is a WordPress developer, PHP programming specialist, professional
blogger, and writer. He has been building expertise in WordPress ever since his early
years at Silesian University of Technology, Poland, where he graduated with a master's
degree in computer science. Early in his career, he worked as a freelance website
developer for several years. Later, he decided to shift his focus toward popularizing
WordPress as the perfect solution for all web-based projects and devoted his time to
developing his writing career. His articles have been featured on websites such as
NewInternetOrder.com, About.com, MarketingProfs.com, SmashingMagazine.com,
ProBlogger.net, Six Revisions, Web Design Ledger, and many more. Currently, Karol's
two main projects are providing business advice to normal people online through his
website at http://newinternetorder.com/ (normal people who don't have hours
upon hours of time to spend sitting on their computer, watching yet another business
training and trying to figure things out in the middle of the night), and offering his
writing services through his main hub at http://karol.cc/.

I'd like to thank everyone at Packt Publishing for working with
me and making this book a reality. Also, many thanks to everyone
who has supported me along the way. Last but not least, I'd like to
thank the WordPress team for building and constantly improving
an incredible tool. If it wasn't for you guys, I'd be out of work.

http://newinternetorder.com/
http://karol.cc/

About the Reviewers

Matt Cohen is the Chief Product Officer at WooThemes, market leaders in premium
WordPress products and the creators of WooCommerce. He spends his day managing
his engineering team and a growing team of product managers.

With a deep love of web development, Matt began tinkering with HTML4 in
high school (before CSS existed) and developed a strong bond with early web
development languages and principles. Then, he worked as a senior developer
at a handful of agencies before joining WooThemes as a senior web developer in
late 2010. A love for product creation, customer experience, and well-architected
products led Matt to move into the chief product officer's role, where he now
oversees the design and creation of all products developed within WooThemes.

Matt loves WordPress deeply and is an engineer at his core, with a strong interest in
creating amazing customer experiences. In his free time, he enjoys nature, punk rock,
and forgotten 90s television.

Cyril Pierron is a tech-savvy and life-curious engineer and web addict.
He started programming at the age of 8 and has been working in the field
of telecommunications for 12 years. He has been a solution architect in the
e-commerce sector since 2011. He is married and the father of a lovely girl.

As an e-commerce expert, Cyril has noticed an increasing requirement
to blend both the online store and marketing content into one consistent
unified experience for consumers.

I would like to thank Packt Publishing for giving me the opportunity
to work on this book as a reviewer, after my first experience with
jQuery 1.4 Animation Techniques Beginner's Guide, Dan Wellman, Packt
Publishing, a few years ago. I would also like to thank Karol Król, who
did a wonderful job writing it, and my wife, who showed quite a lot
of patience and support as I kept working on this book after hours.

Content management systems (CMS) are the key to brands
sharing information and reaching out to their communities and
fans. WordPress is a reference, one of the best known systems in
this market, and this book will definitely give you, the reader,
a complete view of its capabilities and usages.

Olivier Pons is a senior developer who's been building websites since 1997.
He's a teacher at IngeSup (École Supérieure d'Ingénierie Informatique, http://
www.ingesup.com/ and http://www.y-nov.com); the University of Sciences
(IUT) in Aix-en-Provence, France; ISEN (Institut Supérieur de l'Électronique et du
Numérique); and École d'Ingénieurs des Mines de Gardanne, where he teaches
state-of-the-art web techniques: MVC fundamentals, Symfony, WordPress, PHP,
HTML, CSS, jQuery / jQuery Mobile, Node.js, AngularJS, Apache, NoSQL,
Linux basics, and advanced VIM techniques. He has already done some technical
reviews, including Ext JS 4 First Look, jQuery Hotshot, jQuery Mobile Web Development
Essentials, WordPress Complete, and jQuery 2.0 for Designers Beginner's Guide, all by
Packt Publishing. In 2011, he left a full-time job as a Delphi and PHP developer to
concentrate on his own company, HQF Development (http://hqf.fr). He currently
runs a number of websites, including http://krystallopolis.fr, http://
artsgaleries.com, http://www.battlesoop.fr, http://www.livrepizzas.
fr, http://www.papdevis.fr, and http://olivierpons.fr, which is his own
web development blog. He works as a consultant, teacher, project manager, and
sometimes helps big companies as a senior and highly skilled developer.

http://www.ingesup.com/
http://www.ingesup.com/
http://www.y-nov.com
http://hqf.fr
http://krystallopolis.fr
http://artsgaleries.com
http://artsgaleries.com
http://www.battlesoop.fr
http://www.livrepizzas.fr
http://www.livrepizzas.fr
http://www.papdevis.fr
http://olivierpons.fr

Ardian Yuli Setyanto, S.Kom, has been programming since his high school days.
He featured in the national selection for Tim Olimpiade Komputer Indonesia (TOKI,
which means Indonesia Computer Olympiad Team) twice, in 2002 and 2003. This
persuaded him to study computer science at Gadjah Mada University (UGM). He
graduated in 2009, the first among his other friends, with a score of 3.5 out of 4. He
also used WordPress for his essay during his bachelor's degree. Ardian developed his
own plugin and combined it with a GSM phone to read and send SMS (text messages),
instead of the usual e-mail service used to manage WordPress comments, which he
discussed in his essay.

After graduating from the university, he started working as a freelancer using
WordPress and PrestaShop. These CMSes are widely used in his home country,
Indonesia. Ardian was a technical reviewer for PrestaShop 1.3 Beginners Guide,
Packt Publishing, written by John Horton. He was also selected as a local moderator
for the PrestaShop forum in the Indonesia region.

Nowadays, he works as a backend developer, using PHP and Ruby. Some of his
favorite frameworks are Symfony2, Rails, and Sinatra. You can read his blog at
http://www.ardianys.com, which discusses programming and his beloved
family—Niela, Dzulqarnain, and Nusaibah. If you have any technical questions
about this book, you can contact him via Twitter at @ardianys.

Many, many thanks and kudos to Packt Publishing for selecting
me again as a technical reviewer, although I could not completely
finish my work because my father was not well. Mainly, thanks to
Ms. Nidhi Joshi, who patiently accepted my conditions.

http://www.ardianys.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 xi
Chapter 1: Introducing WordPress	 1

Getting into WordPress	 2
Using WordPress for a blog or a website	 3

Starting the journey – what is a blog?	 3
Understanding the common terms	 4

Post	 4
Categories and tags	 4
Comments	 5
Themes	 5
Plugins	 5
Widget	 6
Menus	 6
RSS	 6
Page	 6
Home page	 7
Users	 7

Why choose WordPress	 7
A long time in refining	 7
Active in development	 8
A large community of contributors	 8
Amazingly extendable	 8

Getting to know the WordPress family	 8
Digging into WordPress – the features	 9
Getting familiar with the new feature list since 3.7	 10

Learning more	 11
Learning more with online WordPress resources	 12
Staying updated through WordPress news	 12

Table of Contents

[ii]

Understanding the Codex	 13
Getting support from other users	 14
Using theme and plugin directories	 14
Summary	 15

Chapter 2: Getting Started with WordPress	 17
Building your WordPress website – start here	 18
Using WordPress.com	 20

Publishing your first content on a WordPress.com blog	 22
Installing WordPress manually	 24

Preparing the environment	 24
Downloading WordPress	 24
Upgrading from an earlier version of WordPress	 25
Uploading the files	 25
Installing WordPress	 27
Installing WordPress through a hand-built configuration file	 30
Learning more	 33

Installing WordPress through an auto-installer script	 33
The wp-admin panel	 37

Changing general blog information	 41
Creating your first post	 43
Writing your first comment	 44
Retrieving a lost password	 47

Getting a Gravatar	 47
Summary	 48

Chapter 3: Creating Blog Content	 49
WordPress admin conventions	 49

Lists of items	 50
Posting on your blog	 52

Adding a simple post	 52
Common post options	 54

Categories and tags	 55
Images in your posts	 57
Videos and other media in your posts	 63
Using the Visual editor versus the Text editor	 67
Lead and body	 68
Drafts, pending articles, and timestamps	 69

Advanced post options	 71
Excerpt	 71
Sending pingbacks and trackbacks	 72
Discussion	 73
Custom Fields	 74
Working with post revisions	 75

Table of Contents

[iii]

Changing the author of the post	 77
Protecting content	 77
Pretty post slug	 78
Custom post format settings	 79

Additional writing options	 81
Press This	 81
Posting via e-mail	 82
External blogging tools	 82
Mobile apps for iOS and Android	 83

Discussion on your blog – comments	 85
Adding a comment	 85
Discussion settings	 86

Submission, notification, and moderation settings	 86
When to moderate or blacklist a comment	 88
Avatar display settings	 89

Moderating comments	 90
How to eliminate comment spam	 92

Getting an Akismet API key	 93
Activating Akismet	 95

Adding and managing categories	 96
Summary	 97

Chapter 4: Pages, Menus, Media Library, and More	 99
Pages	 99

Adding a page	 100
Parent	 102
Order	 102

Managing pages	 102
Menus	 103

Adding a Menu	 103
Displaying a Menu	 106

Header	 107
Background	 109
Advanced site customization	 112
Media library	 113

Media Manager	 115
Adding an image gallery	 118

Choosing a post or page	 118
Selecting or uploading images	 119

Importing/exporting your content	 123
Importing content	 124
Exporting content	 125

Summary	 126

Table of Contents

[iv]

Chapter 5: Plugins and Widgets	 127
Breaking down plugins – what are they?	 127
Why use plugins	 128
Where to get plugins from	 128
Finding new plugins	 130
Installing a plugin – the how-to	 131

Manual plugin installation	 131
Auto-installation	 134

The must-have pack of plugins	 137
Backing up	 137
Enabling Google Analytics	 140
Caching	 142
Search engine optimization (SEO)	 143
Securing your site	 145
Social media integration	 148
Jetpack	 151

Widgets	 152
Summary	 155

Chapter 6: Choosing and Installing Themes	 157
Finding themes	 158

WordPress Theme Directory	 158
Main types of themes	 161
Finding more themes	 162

Some not-design-related theme basics	 164
The structure of a theme	 164
Factors to consider when choosing a theme	 165

The purpose of the theme	 165
Theme licensing	 168
Up-to-date themes only	 168
Themes that are customizable	 169
Themes with responsive structure	 169
Support, reviews, and documentation	 170

Installing and changing themes	 170
Adding a theme within the wp-admin	 170
Downloading, extracting, and uploading	 173

Summary	 176
Chapter 7: Developing Your Own Theme	 177

Setting up your design	 178
Designing your theme to be WordPress-friendly	 178
Three paths of theme development	 179

Building a theme from the ground up	 180
Building a theme with a framework	 180

Table of Contents

[v]

Building a theme with a starter theme	 181
Converting your design into code	 182

Examining the HTML structure	 182
Examining the CSS	 184

Converting your build into a theme	 190
Creating the theme folder	 190
How to create basic WordPress content	 193

The functions.php file	 193
The <head> tag	 198
The header and footer	 199
The sidebar	 201

Main column – the loop	 202
Creating template files within your theme	 207

Understanding the WordPress theme	 208
Breaking it up	 208

The header.php file	 208
The footer.php file	 209
The sidebar.php file	 209
Your four template files	 210

Archive template	 211
Single template	 212
Page template	 214
Generated classes for the body and post	 216
Other WordPress templates	 217
Creating and using a custom page template	 218

Making your theme widget-friendly	 225
Going back to our sidebar	 225
Working with the functions.php file	 226
Adding some widgets	 226
Additional widgetizing options	 227

Enabling a menu in your theme	 228
Creating a child theme	 228

Creating the new theme folder	 229
Creating the style sheet	 230
Using your child theme	 230

Sharing your theme	 231
Summary	 233

Chapter 8: Feeds, Podcasting, and Social Media Integration	 235
Getting started with feeds	 236
Working with built-in WordPress feeds	 238
Adding feed links	 239

Feeds for the entire website	 240

Table of Contents

[vi]

Feeds for comments	 241
Podcasting	 242

Creating a podcast	 243
Recording yourself	 243
Making a post	 244
Dedicated podcasting	 245

Podcasting plugins	 246
Using a service to host audio files for free	 247

Integrating social media	 248
Making your blog social media friendly	 248
Setting up social media share buttons	 249
Setting up social media APIs' integration	 249
Setting up automatic content distribution to social media	 250

The Jetpack plugin	 251
The Revive Old Post plugin	 251

Setting up social media metrics tracking	 253
Summary	 254

Chapter 9: Developing Plugins and Widgets	 255
Plugins	 256

Building plugins from scratch	 256
Plugin code requirements	 257
Basic plugin - adding link icons	 257

Naming and organizing the plugin files	 258
Writing the plugin's core functions	 260
Adding hooks to the plugin	 261
Trying out the plugin	 264

Adding an admin page	 265
Adding management page functions	 265
Modifying the doctype_styles_new_regex() function	 268
Adding hooks	 268
Trying out the plugin	 269

Testing your plugins	 270
A plugin with DB access – capturing searched words	 271

Getting the plugin to talk to the database	 272
Adding management page functions	 273
Trying out the plugin	 274

Learning more	 276
Widgets	 276

Custom tag cloud widget	 276
Naming our widget	 277
The widget structure	 278
The widget initiation function	 279
The widget form function	 280
The widget save function	 281

Table of Contents

[vii]

The widget print function	 282
Custom widget styles	 283
Initiating and hooking up the widget	 284
Trying out the widget	 284
Learning more	 285

Bundling a widget with an existing plugin	 286
Shortcodes	 286

Shortcodes and the way they work	 286
Types of shortcodes	 286
Creating a simple shortcode	 287
Enabling shortcodes in widgets	 290

Summary	 291
Chapter 10: Community Blogging	 293

Concerns for a multi-author blog	 293
User roles and abilities	 294

Administrator	 294
Editor	 295
Author	 296
Contributor	 298
Subscriber	 298

Managing users	 299
Enabling users to self-register	 301

User management plugins	 303
Summary	 303

Chapter 11: Creating a Non-blog Website Part 1 – The Basics	 305
The must-do tasks	 307
Static websites	 307

The process	 308
Building your home page	 309
Creating easy-to-grasp menus	 311

Corporate or business websites	 311
Picking a clean theme	 312
Branding elements	 313
Good navigation	 314
Custom home page	 315
Optional slider	 316
Meteor Slides	 317
Master Slider	 318

One-page websites	 321
Picking a one-page theme	 323
Branding elements	 324

Table of Contents

[viii]

High-quality images	 324
Summary	 326

Chapter 12: Creating a Non-blog Website Part 2 – Community
Websites and Custom Content Elements	 327

Membership websites	 327
Taking the simple approach	 328
Using membership plugins	 329
Taking the free approach	 330

Installing the plugin	 331
Using the plugin	 333

Video blogs and photo blogs	 334
Exploring themes for video and photo sites	 336
Getting plugins for video and photo sites	 336

Social networks	 338
Installing a social network	 339
Designing your social network	 341
Extending the functionality	 341

Introducing custom post types	 342
Registering a new post type	 342

Adding labels	 344
Adding messages	 344
Creating book template files	 346

Registering and using a custom taxonomy	 352
Customizing the admin display	 354

Summary	 355
Chapter 13: Administrating WordPress	 357

System requirements	 357
Enabling permalinks	 358
The importance of backing up	 358

Easy, quick, and frequent content backups	 358
Backing up everything	 359
Getting a managed solution	 360

Upgrading WordPress	 360
Steps for upgrading	 360

Backing up your database	 361
Backing up your WordPress files	 361
Running the WordPress upgrade feature	 361
Updating permalinks and .htaccess	 362
Installing updated plugins and themes	 362

Migrating or restoring a WordPress website	 363
Acting in case of a site crash	 364
Setting file permissions	 365

Table of Contents

[ix]

Explaining file permissions	 365
Permissions for WordPress	 366
How to set permissions	 366

Troubleshooting	 366
Troubleshooting during installation	 367

Headers already sent	 367
Page comes with only PHP code	 367
Cannot connect to the MySQL database	 367

Basic troubleshooting	 368
Cannot see posts	 368
I don't receive the e-mailed passwords	 369

Tips for theme development	 369
Template tags	 369
Class styles generated by WordPress	 372
Learning more	 373

Summary	 373
Index	 375

[xi]

Preface
WordPress 4.x Complete will take you through the complete process of building a fully
functional WordPress site from scratch. The journey goes all the way from teaching
you how to install WordPress to the most advanced topics, such as creating your
own themes, writing plugins, and even building non-blog websites. The best part
is that you can do all of this without losing your shirt along the way. Moreover,
once you get some practice, you will be able to launch new WordPress sites within
minutes (not a metaphor, by the way; this is completely true).

This book guides you along the way in a step-by-step manner to explain everything
there is to know about WordPress. We'll start by downloading and installing the
core of WordPress, where you will learn how to choose the correct settings in order
to guarantee a smooth experience for yourself and your visitors. After that, this
book will teach you all about content management functionalities for your site,
from posts and pages to categories and tags, all the way to links, media, menus,
images, galleries, administration, user profiles, and more. Next, you will find out
what plugins and themes are and how to use them effectively. Finally, you'll learn
how to create your own themes and plugins to enhance the overall functionality
of your website. Once you're done with WordPress 4.x Complete, you'll have all the
knowledge required to build a professional WordPress site from scratch.

What this book covers
Chapter 1, Introducing WordPress, explains what makes WordPress an excellent software
that can run your website (blog or not). WordPress is packed with excellent features
and is so flexible that it can really do anything you want. It has a wealth of online
resources. Additionally, it's super easy to use, and you need no special skills or prior
experience to use it. Last but not least, it is free!

Preface

[xii]

Chapter 2, Getting Started with WordPress, describes how to install WordPress on
a remote server, change the basic default settings of your blog, write posts, and
comment on those posts. This chapter also shows you how to work with sites
hosted on WordPress.com, which is one of the branches of the WordPress world.

Chapter 3, Creating Blog Content, teaches you everything you need to know to add
content to your blog and then manage that content, be it posts, categories, and
comments, or tags, spam, and excerpts.

Chapter 4, Pages, Menus, Media Library, and More, explores all of the content WordPress
can manage that's not directly about blogging. You also get to learn about static pages,
menus, headers and backgrounds, the media library, image galleries, and more.

Chapter 5, Plugins and Widgets, discusses everything there is to know about finding
the best plugins for WordPress and then using them effectively. Plugins are an
integral part of every WordPress site's lifespan, so it's hard to find a successful site
that isn't using any of them.

Chapter 6, Choosing and Installing Themes, describes how to manage the basic look
of your WordPress website. You also get to learn where to find themes, why they
are useful, and how to implement new themes in your WordPress website.

Chapter 7, Developing Your Own Theme, explains how to create your own theme.
With just the most basic HTML and CSS abilities, you can create a design and
turn it into a fully functional WordPress theme.

Chapter 8, Feeds, Podcasting, and Social Media Integration, explains what an RSS feed
is and how to make feeds available for your WordPress blog. This chapter also
explores how to syndicate an entire blog or just posts within a certain category,
and how to create your own podcast with the help of plugins. Finally, it goes on to
discuss social media integration and how it can help you build a popular website.

Chapter 9, Developing Plugins and Widgets, teaches you everything you need to
know about creating basic plugins and widgets: how to structure the PHP files,
where to put your functions, and how to use hooks. This chapter also teaches
you to add management pages and a widget that is related to a plugin.

Chapter 10, Community Blogging, explains how to manage a group of users working
with a single blog, which is a community of users. Community blogging can play
an important role in a user group or a news website. This chapter also explains
how to manage the different levels of privileges for users in the community.

Preface

[xiii]

Chapter 11, Creating a Non-blog Website Part 1 – The Basics, explores the endless
possibilities of WordPress when it comes to using it to launch various types
of websites. This chapter presents the first batch of our non-blog websites and
explains in detail how to build them on top of a standard WordPress installation.

Chapter 12, Creating a Non-blog Website Part 2 – Community Websites and Custom
Content Elements, goes through some additional types of non-blog websites and
also presents some technical aspects of building them (caution—code talk inside!).

Chapter 13, Administrating WordPress, covers many of the common administrative
tasks you may face when managing a WordPress website. This includes backing
up your database and files, moving your WordPress installation from one server
or folder to another, and doing general problem-solving and troubleshooting.

What you need for this book
•	 A computer
•	 A web browser
•	 A plain text editor
•	 FTP software

You may consider a text editor that highlights code (such as Coda, TextMate,
HTMLKit, and so on), but a simple plain text editor is all that's required. You may
like to run a local copy of WordPress on your computer, in which case you may
need a server such as Apache and MySQL installed (though WAMP and MAMP
can take care of all that for you). But even this is not necessary, as you could do
the entire thing remotely.

Who this book is for
This book is a guide to WordPress for both beginners and those who have slightly
more advanced knowledge of WordPress. If you are new to blogging and want to
create your own blog or website in a simple and straightforward manner, then this
book is for you. It is also for people who want to learn to customize and expand the
capabilities of a WordPress website. You do not require any detailed knowledge of
programming or web development, and any IT-confident user will be able to use
this book to produce an impressive website.

Preface

[xiv]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The wp-config.php file allows us to set this, too."

A block of code is set as follows:

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
<head>
<meta charset="UTF-8" />
<title>Blog title</title>
<style type="text/css">@import url("style.css");</style>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

function ahs_doctypes_regex($text) {
$types = get_option('ahs_supportedtypes');
$types = ereg_replace(',[]*','|',$types);
$text =

Any command-line input or output is written as follows:

chmod –R wp-admin 744

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"To add a new page, go to your wp-admin and navigate to Pages | Add New."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xv]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/B04045_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/B04045_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/B04045_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xvi]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introducing WordPress
Have you ever wanted to get yourself a shiny new website at a low cost, without the
need to hire a team of developers and designers, without learning advanced PHP,
and with almost unlimited extension possibilities? Or maybe you want to get into the
world of website creation and becoming the next expert. If that's a yes to any of these
questions, then WordPress is likely to be the platform you should look into.

These days, everyone has a good reason to have a website. It's not just large
companies anymore. Individuals, families, freelancers, and small or independent
businesses can all benefit from having one. Many individuals and small businesses
may not have the financial resources to hire a website development company or
a freelance web developer to create a website for them. This is where WordPress
comes into play.

In short, WordPress is an open source web software application that you can use
to create and maintain a modern website, even if you don't have any technical
expertise. Since WordPress is a web application, it doesn't need to be installed
on your home computer, or any other machine under your control. It can live
on a server (a kind of computer) that belongs to your website hosting company.
WordPress is free, easy to use, and packed with excellent features.

Originally, WordPress was an application meant to run a blog website. However,
it has now evolved into a fully-featured Content Management System (CMS).
Actually, at the time of writing, WordPress powers over 23 percent of the entire
Internet. If that's not enough, the newest version of the platform has been
downloaded over 25 million times (you can see the live numbers at https://
wordpress.org/download/counter/). It seems that joining the craze is, indeed, a
wise thing to do.

https://wordpress.org/download/counter/
https://wordpress.org/download/counter/

Introducing WordPress

[2]

In this chapter, we'll explore:

•	 The reasons that will make you choose WordPress to run your website
•	 The greatest advantages of WordPress
•	 Online resources for WordPress
•	 The complete list of features in the newest versions of WordPress

Getting into WordPress
WordPress is an open-source content management system. Open source means that
the source code of the system is made available with a license, whereby the copyright
holder provides the rights to study, change, and distribute the software to anyone
and for any purpose (as Wikipedia defines it). Content management system means
a software application that can run a website (for example, a blog) and allows you
to publish, edit, and modify the content. It's a piece of software that lives on the web
server and makes it easy for you to add and edit posts, themes, comments, and all of
your other content.

Even though WordPress was originally a blog engine—used primarily to run
blogs—it's now being used by a number of big (by today's standards) online agencies
to run their sites. Outlets such as The New York Times, The Wall Street Journal, Forbes,
and Reuters use WordPress as the base of their web publishing platforms.

Undoubtedly, the platform has evolved a lot over the years, and even though a large
number of new functionalities have been introduced, WordPress still remains one of
the easiest to use web publishing platforms out there.

Originally, WordPress was a fork of an older piece of software
named b2/cafelog. WordPress was developed by Matt Mullenweg
and Mike Little, but is now maintained and developed by a team
of developers that includes Mullenweg.

Chapter 1

[3]

Using WordPress for a blog or a website
There are generally two popular types of websites for which WordPress is meant to
be used:

•	 A normal website with relatively static content—pages, subpages, and so on.
•	 A blog website—chronologically organized and frequently updated,

categorized, tagged, and archived.

However, as experience shows, these days WordPress is successfully used to run a
wide variety of other sites as well, such as:

•	 Corporate business sites
•	 E-commerce stores
•	 One-page profile sites
•	 Membership sites
•	 Video blogs
•	 Photo blogs
•	 Product sites
•	 Education sites (e-courses) and more

For those of you unfamiliar with blog websites and blogging terminology, let's take a
look at the basics.

Starting the journey – what is a blog?
Originally, blog was short for weblog. According to Wikipedia, the term weblog was
first used in 1997, and people started using blogs globally in 1999. The terms weblog,
weblogging, and weblogger were added to the Oxford Dictionary in 2003, though these
days most people leave off the "we" part.

Just to give you a more plain-English explanation, a blog is a website that usually
contains regular entries made by an author. These entries can be of various types,
such as commentary, descriptions of events, photos, videos, personal remarks,
tutorials, case studies, long opinion pieces, political ideas, or whatever else you can
imagine. They are usually displayed in a reverse chronological order, with the most
recent additions at the top. Those entries can be organized in a variety of ways—by
date, topic, subject, and so on.

Introducing WordPress

[4]

One of the main characteristics of a blog is that it's meant to be updated regularly.
Unlike a site where the content is static, a blog behaves more like an online diary,
wherein the blogger posts regular updates. Hence, blogs are dynamic with ever-
changing content. A blog can be updated with new content and the old content can be
changed or deleted at any time (although deleting content is not a common practice).

Most blogs focus their content on a particular subject—for example, current events,
hobbies, niche topics, and technical expertise. This doesn't mean that blogs are meant
to be published only by individuals sharing their personal opinions on given matters.
On the contrary, these days, blogs have become a major part of the online presence
for many businesses and corporations. The modern practice of "content marketing" is
now one of the most widely accepted web marketing methods, and its core is based
on publishing quality content, often in blog form.

Understanding the common terms
If you are new to the world of blogging (sometimes called "blogosphere", which is a
fairly popular expression these days), you may want to familiarize yourself with the
following common terms.

Post
Each entry in the blog is called a post. Every post usually has a number of different
parts. Of course, the two most obvious parts are title and content. The content is text,
images, links, and so on. Posts can even contain multimedia (for example, videos and
audio files). Every post also has a publication timestamp, and most have one or more
categories and tags assigned to them. It is these posts, or entries, that are displayed in
a reverse chronological order on the main page of the blog. By default, the latest post
is displayed first, in order to give the viewer the latest news on the subject.

Categories and tags
Categories and tags are ways to organize and find posts within a blog and even
across blogs. Categories are like topics, while tags are more like keywords. For
example, for a blog about food and cooking, there might be a category called
Recipes, but every post in that category might have different tags (for example,
soup, baked, vegetarian, and dairy free).

The purpose and correct usage of tags and categories is one of the widely discussed
topics among bloggers. Although there are basic guidelines such as the ones
presented here, every blogger develops their own approach after a while, and there
are no rules "written in stone".

Chapter 1

[5]

Comments
Most blogs allow visitors to post comments about the posts. This gives readers
the opportunity to interact with the author of the blog, thus making the whole
experience interactive. Often, the author of the blog will respond to comments by
posting additional comments with the single click of the reply button, which enables
a continuous public online conversation or dialog.

Comments are said to be one of the most important assets for a blog. The presence of
a large number of comments shows how popular and authoritative the blog is.

Themes
The theme for a blog is the design and layout that you choose for your blog. In most
blogs, the content (for example, posts) is separate from the visual layout. This means
you can change the visual layout of your blog at any time without having to worry
about the content being affected. One of the best things about themes is that it takes
only minutes to install and start using a new one. Moreover, there are a number of
very good free or low-cost themes available online.

That being said, you need to be careful when working with free themes from
unknown developers. Often, they contain encrypted parts and code that can hurt
your site and its presence on Google. Always look for user reviews before choosing
a theme. Most importantly, the safest bet is getting your free themes only from the
official WordPress directory at https://wordpress.org/themes/. The themes there
have been tested and checked for any suspicious code.

You can learn more about this whole issue at http://
newinternetorder.com/free-wordpress-themes-are-evil/.

Plugins
WordPress plugins are relatively small pieces of web software that can be installed on
a WordPress site. They extend the native functionality to do almost anything that the
technology of today allows. Just like WordPress itself, the code within plugins is open
source, which means that anyone can build a new plugin if they have the required
skill set. Every WordPress website or blog can work with an unlimited number of
plugins (although it is not a recommended approach). The most popular functionalities
introduced through plugins include: spam protection, search engine optimization,
caching, social media integration, interactive contact forms, and backups.

https://wordpress.org/themes/
http://newinternetorder.com/free-wordpress-themes-are-evil/
http://newinternetorder.com/free-wordpress-themes-are-evil/

Introducing WordPress

[6]

Widget
In short, widgets are a simplified version of plugins. Furthermore, they display a
direct, visible result on your blog by using small content boxes (depending on the
exact widget you're using, this content can be very diverse). The most common usage
of widgets is to have them showcased within the sidebars on your site. Typically,
your current theme will provide you with a number of widget areas where you can
display widgets (as mentioned, many of these are located in the sidebar). Some of the
common usages for widgets are to display content such as categories and tags, recent
posts, popular posts, recent comments, links to archived posts, pages, links, search
fields, or standard non-formatted text.

Menus
We need to talk some history to explain the meaning of menus in WordPress.
Back in the day, WordPress didn't allow much customization in terms of tweaking
navigation menus and hand-picking the links we wanted to display. This changed
in version 3.0, whereby the new Custom Menus feature was introduced. In plain
English, it allows us to create completely custom menus (featuring any links of
our choice) and then display them in specific areas on our sites. To be honest,
this feature, even though it sounds basic, is one of the main ones that has turned
WordPress from a simple blogging tool into a fully-fledged web publishing platform.
I promise this will sound much clearer in the following chapters.

RSS
RSS is an acronym for Really Simple Syndication, and Chapter 8, Feeds, Podcasting,
and Social Media Integration, addresses the topic of feeds in detail. For now, let's say
that RSS and feeds are a way to syndicate the content of your blog so that people can
subscribe to it. This means people do not actually have to visit your blog regularly to
see what you've added. Instead, they can subscribe and have new content delivered
to them via e-mail, or through a feed reader such as Feedly.

Page
It's important to understand the difference between a page and a post. Unlike posts,
pages do not depend on timestamps and are not displayed in a chronological order.
Also, they do not have categories or tags. A page is a piece of content with only a
title and content (an example would be About Me or Contact Us—the two most
popular pages on almost any blog). It is likely that the number of pages on your
blog remains relatively static, while new posts can be added every day or so.

Chapter 1

[7]

Home page
A home page is simply the main page that visitors see when they visit your website
by typing in your domain name or URL address. In the early days of WordPress'
existence, a home page wasn't something we talked about as a separate kind of page.
Originally, a home page was generated automatically from the newest posts—it
was a listing of those posts in a reverse chronological order. Right now, however,
WordPress allows us to build a completely customized home page and display
whatever content we wish on it.

Users
As mentioned earlier, WordPress is now a complete web publishing platform. One
of its characteristics is that it is capable of working with multiple user accounts,
not just a single account belonging to the owner (main author) of the site. There are
different types of user accounts available, and they have different credentials and
access rights. WordPress is clearly trying to resemble a traditional publishing house
where there are authors, editors, and other contributors all working together. Even
though the possibility of creating an unlimited number of user accounts won't be that
impressive for anyone planning to manage a site on their own, it can certainly be a
more than essential feature for big, magazine-like websites.

Why choose WordPress
WordPress is not the only publishing platform out there, but it has an awful lot
to offer. In the following sections, I've called attention to WordPress's most
outstanding features.

A long time in refining
In web years, WordPress has been around for quite a while and was in development
the whole time, and so constantly getting better. WordPress very first release,
Version 0.70, was launched in May 2003. Since then, it has had 24 major releases,
with a number of minor ones in between. Each release came with more features and
better security.

Each major release comes with a codename honoring a great Jazz musician, and this
has become a tradition in the WordPress world. For instance, the latest version, 4.1, is
codenamed Dinah (in honor of jazz singer Dinah Washington).

Introducing WordPress

[8]

Active in development
WordPress is a continually evolving application. It's never left alone to stagnate.
Developers are working on WordPress constantly to keep it ahead of spammers and
hackers, and to evolve the application on the basis of the evolving needs of its users.

A large community of contributors
WordPress is not being developed by a lonely programmer in a dark basement room.
On the contrary, there is a large community of people working on it collaboratively
by developing, troubleshooting, making suggestions, and testing the application.
With such a large group of people involved, the application is likely to continue to
evolve and improve without pause.

Amazingly extendable
In addition to having an extremely strong core, WordPress is also quite extendable.
This means that once you get started with it, the possibilities are nearly limitless.
Any additional functionality that you can dream of can be added by means of a
plugin that you or your programmer friends can write.

Getting to know the WordPress family
WordPress as a platform and as a community of users has evolved in two main
areas. The first one is gathered around WordPress.org—the native, main website of
the WordPress project. The other is WordPress.com—a platform providing free blogs
for every user who wants one:

Chapter 1

[9]

Essentially, WordPress.org is about developing the platform itself, sharing new
plugins, discussing the technical aspects of WordPress, and being all "techie" in
general. WordPress.com (the preceding screenshot) is a purely community-driven
site where bloggers can meet with each other, and publish their content on free blogs
under the wordpress.com subdomain (for example, something like http://my-
blog-name.wordpress.com/ is a subdomain). That being said, there are paid plans
available at WordPress.com as well.

In Chapter 2, Getting Started with WordPress, we will discuss all of the differences
between having your blog on WordPress.com and downloading the software from
WordPress.org and hosting it yourself, but the basic difference is the level of control.
If your blog is on WordPress.com, you have less control over plugins, themes, and
other details of the blog because everything is managed and made worry-free by the
WordPress.com service, which obviously has its pros and cons.

Digging into WordPress – the features
Here is a list of some of the features that WordPress has to offer:

•	 Compliance with the World Wide Web Consortium (W3C) standards,
although this does depend on the theme you're using

•	 Unlimited categories and subcategories
•	 Unlimited tags
•	 Automatic syndication (RSS and Atom)
•	 Use of the XML RPC interface for trackbacks and remote posting
•	 Ability to post via e-mail and mobile devices (there are apps available

for all major mobile platforms, including iOS and Android)
•	 Support for plugins and themes
•	 Import of data from other blogs (Moveable Type, Textpattern, Greymatter,

b2evolution, and Blogger)
•	 Easy to administer and blog without any previous experience
•	 Convenient, fully functional, built-in search
•	 Instant and fast publishing of content—no re-building of pages required
•	 Multilanguage capability
•	 Ability to password protect content
•	 Comments manager and spam protection

Introducing WordPress

[10]

•	 Built-in workflow (write, draft, review, and publish)
•	 Intelligent text formatting via a What You See Is What You Get (WYSIWYG)

editor
•	 Multi-user and multi-author support for user accounts
•	 Feature-rich Media Library for managing photos and other non-text content

through a visual and highly usable interface
•	 Social media integration capabilities
•	 Dynamic and scalable revision functionality with post (edit) locking
•	 Built-in embed functionality through shortcodes (compatible with services

such as YouTube, Vimeo, Flickr, and SoundCloud)
•	 An admin panel that's accessible via all modern devices, operating systems,

and web browsers
•	 Pre-made color schemes for the admin panel
•	 User-friendly image editing, plus a drag-and-drop image importing feature
•	 Advanced Search Engine Optimization (SEO) features through plugins

and themes

Getting familiar with the new feature list
since 3.7
Since the last edition of this book was published, quite a staggering number of new
features have been added to the WordPress software. If you're new to WordPress,
this list may not mean a whole lot to you, but if you're familiar with WordPress and
have been using it for a long time, you'll find this list quite enlightening:

•	 Introduction of a new, modern admin panel design (uncluttered, with clean
typography, improved contrast, responsive structure, and better theme
management)

•	 Inclusion of eight new admin color schemes
•	 Introduction of Open Sans as the new font for the WordPress admin panel
•	 New default theme—Twenty Fifteen
•	 Update of the external libraries used in WordPress
•	 Improved right-to-left (RTL) support

Chapter 1

[11]

•	 New click-to-add interface for adding widgets to sidebars
•	 Introduction of a smoother media editing experience (better visual editing,

quicker access to scaling, and crop and rotation tools)
•	 Drag-and-drop file importing into the editor itself
•	 Image gallery previews right in the editor
•	 Live widget previews inside the Customizer
•	 Introduction of a new theme browser
•	 Enabling of HTML5 markup to be used for captions and galleries
•	 Improved database layer
•	 Media Library listing now appearing on a grid layout
•	 Improved visual editor that expands to fit the content being worked on
•	 New fixed toolbar in the editor
•	 Embeddable content previews right in the visual editor
•	 Inclusion of a new grid view of the plugins page for finding and installing

new plugins
•	 Introduction of the Customizer API
•	 Improved WordPress installation in languages other than English
•	 Improved media experience on small screen sizes

Learning more
If you'd like to see detailed lists of all the new features added since WordPress
version 3.7, take a look at the articles on these links:

•	 http://codex.wordpress.org/Version_3.8

•	 http://codex.wordpress.org/Version_3.9

•	 http://codex.wordpress.org/Version_4.0

•	 http://codex.wordpress.org/Version_4.1

Also, you can read a fully explained feature list at https://wordpress.org/about/
features/.

http://codex.wordpress.org/Version_3.8
http://codex.wordpress.org/Version_3.9
http://codex.wordpress.org/Version_4.0
http://codex.wordpress.org/Version_4.1
https://wordpress.org/about/features/
https://wordpress.org/about/features/

Introducing WordPress

[12]

Learning more with online WordPress
resources
One very useful characteristic of WordPress is that it has a large, active online
community. Everything you will ever need for your WordPress website can likely be
found online, and probably for free. In addition to this, these days we can also find
many paid resources and training programs that offer expert advice and training,
revolving around many different possible usages of a WordPress site.

Staying updated through WordPress
news
As WordPress is constantly being developed, it's important to keep yourself up-to-
date with the software community's latest activities.

If you visit the dashboard of your own WordPress site regularly, you'll be able to
stay up-to-date with WordPress news and software releases. There are widgets on
the dashboard that display the latest news and announcements, and an alert always
appears when there is a new version of WordPress available for download and
installation.

If you prefer to visit the website, then the most important spot to visit or subscribe
to is WordPress Releases. Whenever there is a new release, be it a major release,
or an interim bug fix, or an upgrade, it will be at https://wordpress.org/news/
category/releases/.

Also, be sure to stay tuned to the main WordPress blog at
https://wordpress.org/news/.

Some additional resources worth mentioning are as follows:

•	 https://wordpress.org/: The absolute main hub for WordPress
•	 https://wordpress.com/: The main platform for free WordPress blogging
•	 http://jobs.wordpress.net/: Job listings for anyone searching for

employment in various areas related to WordPress (or anyone searching for
WordPress help)

https://wordpress.org/news/category/releases/
https://wordpress.org/news/category/releases/
https://wordpress.org/news/
https://wordpress.org/
https://wordpress.com/
http://jobs.wordpress.net/

Chapter 1

[13]

•	 http://wordpress.tv/: A great source of top-notch WordPress tutorials,
how-to advice, case studies, product demonstrations, and WordPress-related
conference presentation recordings

•	 http://central.wordcamp.org/: WordCamp is a conference that focuses
on everything WordPress, it takes place a number of times during the year
in different locations around the world, and this site is the central point for
the conference

Understanding the Codex
The WordPress Codex is the central repository of all the information that the official
WordPress team has published to help people work with WordPress.

The Codex has some basic tutorials for getting started with WordPress, such as a
detailed step-by-step discussion of the installation, and lists of every template tag
and hook. Throughout this book, I'll be providing links to specific pages within the
Codex, which will provide more or advanced information on the topics in this book.

The Codex can be found at http://codex.wordpress.org/Main_Page (the
following screenshot):

http://wordpress.tv/
http://central.wordcamp.org/
http://codex.wordpress.org/Main_Page

Introducing WordPress

[14]

What's also worth pointing out is that, recently, the WordPress team released one
more resource that will come in handy for new and experienced developers alike. It's
called the WordPress Code Reference and it can be found at https://developer.
wordpress.org/reference/. It delivers a lot of education on WordPress's functions,
classes, methods, and hooks.

Getting support from other users
The online WordPress community asks questions and responds with solutions on
the WordPress forum at https://wordpress.org/support/. It's an excellent place
to go if you can't find the answer to a problem in the Codex. If you have a given
question, then probably someone else has had it as well, and WordPress experts
spend time in the forum answering them and giving solutions.

Using theme and plugin directories
There are official directories for themes and plugins on WordPress.org. Though not
every theme and plugin is available here, the ones that are have been vetted by the
community to some extent. Anything you download from these directories is likely
to be relatively bug-free. Plugins and themes that you get from other sources can
have malicious code, so be careful. You can also see what the community thinks of
these downloads by looking at ratings, comments, and popularity.

Additionally, plugins in the Plugin Directory are automatically upgradable from
within your WordPress administration panel (wp-admin), while other plugins
have to be upgraded manually. We'll cover this in detail in a later chapter. You can
find the Theme Directory at https://wordpress.org/themes/ (the following
screenshot) and the Plugin Directory at https://wordpress.org/plugins/.

https://developer.wordpress.org/reference/
https://developer.wordpress.org/reference/
https://wordpress.org/support/
https://wordpress.org/themes/
https://wordpress.org/plugins/

Chapter 1

[15]

Summary
Having a website of your own is essential these days, whether you are an individual,
a small business, or some other group, or you are blogging regularly or want
some accurate static content up on the Internet. In this chapter, we reviewed basic
information about blogging and common blog terms for those of you who are new
to the concept.

WordPress is an excellent software application that can run your website (blog
or not). It's packed with excellent features and is so flexible that it really can do
anything you want, and it has a wealth of online resources. Additionally, it's super
easy to use, and you don't need any special skills or prior experience to use it. Last
but not least, it is free!

In the next chapter, we will explore the choices and steps involved in installing
WordPress and getting started.

[17]

Getting Started with
WordPress

This chapter will guide you through the process of setting up WordPress and
customizing its basic features. You can choose between a couple of options regarding
where your WordPress installation will live. Keep in mind that WordPress is
relatively small (less than 10 MB) as well as easy to install and administer.

WordPress is available in easily downloadable formats at https://wordpress.
org/download/. WordPress is a free, open-source application and is released under
GNU General Public License (GPL). This means that anyone who produces a
modified version of the software released under the GPL is required to maintain
the same freedoms, and that people buying or using the software can also modify
and redistribute it. Thus, WordPress and other software released under the GPL are
maintained as open source. In this chapter, you will learn how to:

•	 Create a free blog on WordPress.com
•	 Install WordPress manually on your web host
•	 Perform basic setup tasks in the WordPress admin panel (the wp-admin)
•	 Publish your first content

https://wordpress.org/download/
https://wordpress.org/download/

Getting Started with WordPress

[18]

Building your WordPress website – start
here
The first decision you have to make is where your blog is going to live. You have two
basic options when creating your site:

•	 Do it at https://wordpress.com
•	 Install on a third-party web server (hosted or your own)

Let's look at some of the advantages and disadvantages of each of these two options.

The advantage of using WordPress.com is that they take care of all the technical
details for you. The software has already been installed, and it will be upgraded for
you whenever there's an upgrade. You're not responsible for anything else but the
management of your content. A major disadvantage is that you lose almost all of
the theme and plugin control you'd have otherwise. WordPress.com will not let you
upload or edit your own theme, though it will let you (for a fee) edit the CSS of any
theme you use. WordPress.com will not let you upload or manage plugins at all.
Some plugins are installed by default (most notably Akismet, for spam blocking, and
also plugins supporting Google Sitemaps, caching, Carousel slideshows, polls, site
stats, and some social media buttons), but you can neither uninstall them nor install
others. Additional features are available for a fee. Furthermore, you can sign up with
WordPress.com Enterprise and get access to a range of optional plugins. The current
list features nearly 100 plugins (WordPress.com Enterprise is available at http://
en.wordpress.com/enterprise/). This chapter will guide you through the creation
of a blog on WordPress.com, and the next chapter will acquaint you with navigation
around the wp-admin. However, much of what this book covers will be impossible
on WordPress.com.

A major advantage of installing WordPress on another server (which means either a
server that belongs to the web host with which you signed up, or a server you set up
on your own computer) is that you have control over everything. You can add and
edit themes, add and remove plugins, and even edit the WordPress application files
yourself if you wish to (however, don't do this unless you're confident about your
WordPress skills). You'll have to keep your own WordPress software up-to-date, but
that's relatively simple, and we'll cover it in this chapter. The only disadvantage is
that you have to perform the installation and maintenance tasks on your own, which,
as you'll see, shouldn't be too intimidating. Moreover, some web hosts provide a one-
click or easy-to-use installer, which lets you skip over some of the nitty-gritty steps
involved in manual installation.

https://wordpress.com
http://en.wordpress.com/enterprise/
http://en.wordpress.com/enterprise/

Chapter 2

[19]

In this chapter, we'll discuss how to create a new blog on WordPress.com and how to
start working with it on a daily basis. However, if you want to accomplish any of the
more advanced tasks with reference to the topics in this book, you will have to install
WordPress on your own server as opposed to using WordPress.com.

The following table is a brief overview of the essential differences between using
WordPress.com and downloading an installation package from WordPress.org and
then installing it on your own server:

WordPress.com WordPress.org (installation on your
own server)

Installation No need to install anything,
just sign up.

Install WordPress yourself, either
manually or via your host's control
panel (if offered).

Themes Use any theme made
available by WordPress.com.

Use any theme available anywhere,
written by anyone (including yourself).

Plugins No ability to choose or add
plugins (unless you sign
up to the premium paid
WordPress.com Enterprise).

Use any plugin available anywhere,
written by anyone (including yourself).

Upgrades WordPress.com provides
automatic upgrades.

You have to upgrade it yourself when
upgrades are available.

Widgets Widget availability depends
on available themes.

You can widgetize any theme yourself.

Maintenance You don't have to do any
maintenance.

You're responsible for the maintenance
of your site.

Advertising No advertising of your
own allowed. However,
WordPress.com itself
sometimes runs ads on your
site.

You can advertise anything and in any
amount you like.

Ownership Even though the content
belongs to you, WordPress.
com can take down your
blog at any moment if
they consider it being
inappropriate.

You have complete control over your
site, and no one can force you to take it
down.

Getting Started with WordPress

[20]

WordPress.com WordPress.org (installation on your
own server)

Domain Your site is available
as a subdomain under
.wordpress.com by
default, but you can also
upgrade to the Premium
package (for a fee) and
use your own, manually
registered domain.

You can use any manually registered
Internet domain.

Using WordPress.com
WordPress.com (https://wordpress.com) is a free service provided by
the WordPress developers, where you can register a blog or non-blog website
easily and quickly with no hassle. However, because it is a hosted service, your
control over some things will be more restricted than it would be if you hosted
your own WordPress website. As mentioned earlier, WordPress.com will not let
you edit or upload your own themes or plugins. Apart from this, WordPress.com
is a great place to maintain your personal site if you don't need to do anything
fancy with your theme or the source code of your site in general. To get started, go
to https://wordpress.com and enter your new site address—the address of the
site that you'd like to have created. Then, click on the loud blue-and-white Create
Website button. You will be taken to the sign-up page:

https://wordpress.com
https://wordpress.com

Chapter 2

[21]

The following screenshot shows an example sign-up page where you need to
enter your e-mail address (please triple-check when entering yours; it's where the
confirmation e-mail will be sent), username (this is what you will sign in with in the
future), password (note that the password measurement tool will notify you whether
your password is strong or weak; there's also a Generate strong password link
available next to the field), and finally blog address (WordPress.com also allows you
to register a custom domain in place of the standard .wordpress.com subdomain):

After providing this information, you need to click on the Create Blog button at
the bottom of the screen (shown in the following screenshot). Now, at this point,
WordPress will try to sell you one of their premium packages (WordPress.com
Premium and WordPress.com Business). Some of the additional functionalities inside
the premium packages include a free .com, .net, .org, or .me domain, advanced
customization capabilities, access to a range of premium themes, the possibility to
store videos directly on your WordPress.com account, additional disk space (the free
account offers 3 GB), and direct e-mail support or live chat support.

Getting Started with WordPress

[22]

For now, we're going to stick with the basic, free account.

You'll be redirected to the final settings page, where you will be able to set some
additional details about your new blog, such as the blog title, tagline, and default
language. After that, you will have the chance to do the one thing that's usually the
most exciting part about building a new blog—picking a new theme. There are some
free and paid themes available. Additionally, after clicking on a specific theme,
you'll have some limited possibilities to customize it. This is not too fancy. For more
in-depth tuning, one of the WordPress.com premium packages is required.

Clicking on the Next Step button a couple more times will finally get you to the end of
the process, where you will have the chance to publish your first piece of content (more
on that shortly). At this stage, you will also be prompted to visit your inbox and search
for the activation e-mail that has just been sent to you. The e-mail itself is very clear
and only requires you to click the big Activate Blog button. If you can't see the images,
then you might need to check your e-mail software's settings.

Right now, your new WordPress.com site is fully installed and visible to the world,
and you can begin to publish and promote content, and build your audience.

Publishing your first content on a WordPress.
com blog
All you have to do in order to publish some content on your WordPress.com blog is
click on the New Post link in the top menu:

Chapter 2

[23]

When you do so, you're presented with a handy online text editor window, where
you can type in the contents of your post. Every post needs a title, the actual content,
and some optional parameters such as tags and categories. You can add a photo for
your publication.

Once you have finished editing, you can either save the write up as a draft
(for further modifications), preview what it's going to look like on the blog,
or publish it straight away with the Publish to [YOUR SITE] button.

Essentially, a WordPress.com blog can be managed just like any other WordPress
site (content wise), so you do get access to the Dashboard (explained later in this
chapter), where you can edit and publish your content, too. The interface described
here is a specially designed panel that can't be found on any other type of blog. In
other words, you won't get it with a regular WordPress site (a standalone site on
your own domain and hosting). Therefore, if WordPress.com is your preferred way
of launching a blog, then you should skip the next section of this chapter, which is all
about installing WordPress manually as a standalone site.

Getting Started with WordPress

[24]

Installing WordPress manually
The WordPress application files can be downloaded for free if you want to perform
a manual installation. If you've got a website host, this process is extremely easy and
requires no previous programming skills or advanced blogging experience.

Some web hosts offer automatic installation through the host's online control panel.
One of these automatic installation methods is described later in this chapter.

Preparing the environment
A good first step is to make sure you have an environment setup that is ready for
WordPress. This means you need to ensure that the server meets the minimum
requirements and that your database is ready.

For WordPress to work, your web host must provide you with a server that fulfills
the following requirements:

•	 Support for PHP version 5.2.4 or greater (recommended is PHP 5.4
or greater)

•	 Provision of a MySQL database (full access) of version 5.0 or greater
(recommended is MySQL 5.5 or greater)

Additionally, these minimum requirements tend to change occasionally. The most
current requirements can always be found at https://wordpress.org/about/
requirements/.

You can determine whether your host meets these two requirements by contacting the
support team at your web host. If it does, you're ready to move on to the next step.

Downloading WordPress
Once you have checked your environment, you need to download WordPress from
https://wordpress.org/download/. On that page, the .zip file is shown as a big
blue button because this will be the most useful format for people to identify what
to download. If you are using Windows, Mac, or Linux operating systems, your
computer will be able to unzip that downloaded file automatically. (The .tar.gz
file is provided because it is preferred by some Unix users.)

https://wordpress.org/about/requirements/
https://wordpress.org/about/requirements/
https://wordpress.org/download/

Chapter 2

[25]

A further note on location
We're going to cover remote installation of WordPress. However, if
you plan to develop themes or plugins, it is recommended that you
install WordPress locally on your own computer's web server. Testing
and deploying themes and plugins directly to the remote server will
be much more time-consuming than working locally. If you look at
the screenshots depicting WordPress installation throughout the book,
you'll notice that all these are examples of working locally.

After you download the WordPress .zip file and extract the files, you'll get a folder
called wordpress.

Upgrading from an earlier version of
WordPress
If you are upgrading an existing installation of WordPress, you should probably
leave this chapter and instead read the section Upgrading WordPress in Chapter 13,
Administrating WordPress, of this book.

Uploading the files
Now, we need to upload all these files to our web server using any FTP client (or
simply put them in our local server directory on our local computer). FTP stands for
File Transfer Protocol. There are several FTP clients available on the Internet that
are either freeware (no cost) or require a small fee. If you don't already have an FTP
client, try one of the following:

•	 Filezilla: https://filezilla-project.org/download.php?type=client
(for Mac or Windows)

•	 Fetch: http://fetchsoftworks.com/ (for Mac only)
•	 SmartFTP: http://www.smartftp.com/ (for Windows only)

You can also download the popular web-based FTP application net2ftp from
http://www.net2ftp.com. These services are useful if you don't want to install
a desktop application on your computer. You can also check whether your host
provides browser-based FTP software.

https://filezilla-project.org/download.php?type=client
http://fetchsoftworks.com/
http://www.smartftp.com/
http://www.net2ftp.com

Getting Started with WordPress

[26]

A note about security
Whenever possible, you should use Secure FTP (sFTP) rather than
regular FTP. If you're using sFTP, all of the data sent and received
is encrypted. With FTP, data is sent in plain text and can easily be
nabbed by hackers. Check both your FTP software and your hosting
options and select sFTP if it's available.

Using your FTP client or service, connect to the FTP server using the server address,
username, and password provided to you by your host. Next, open the folder where
you want WordPress to live. You may want to install WordPress in your root folder,
which will mean that visitors will see your WordPress website's home page when
they go to your main URL—for example, http://yoursite.com. Alternatively, you
may want to install WordPress in a subfolder—for example: http://yoursite.com/
blog/.

On the left side, you will see the files from your local folder, and on the right side,
you will see your remote folder. (Note that the FTP client you are using may have a
slightly different layout, but this is the general idea.)

Chapter 2

[27]

Now select all of the WordPress files on your local machine from the left pane,
and drag them onto the right pane. You can watch as your FTP client uploads the
files one at a time and they appear on the right panel. This may take a few minutes,
so be patient.

If you're installing WordPress on your local server, just be sure to place the
WordPress files in the correct webroot directory on your computer.

Once all of the files have been uploaded, you're ready to proceed with the
installation.

Installing WordPress
Now it's time to proceed with the famous 5-minute installation of WordPress
(the fact that WordPress can be installed in 5 minutes or less is widely advertised on
the official WordPress website). If you access your WordPress URL via your browser,
you will see a short introduction message instructing you to choose the language that
you want to perform the installation in:

Getting Started with WordPress

[28]

After this, you will be presented with another screen, informing you of all the
required details that you'll need in order to complete the installation successfully.
Currently, the following are the required details:

•	 Database name: For example, this can be wptestblog.
•	 Database username: For example, this can be localdbuser.
•	 Database password: For example, 62dcx%^_0hnm—the more complex the

password, the better.
•	 Database host: For example, this can be 1.1.1.1—most of the time, you

will be required to provide an IP address of your database host (if needed,
you can take a look at this handy cheat sheet for an in-depth explanation of
all the possibilities: http://codex.wordpress.org/Editing_wp-config.
php#Possible_DB_HOST_values). In the case of servers running locally on
your own machine, the database host is most likely localhost.

The big question, therefore, is where to get all this information from. The answer
is your web host. Most of the large web hosts offer you a way to create your own
databases via an online control panel, with usernames and passwords of your
choice. If you're not sure how to do this, just e-mail or call your hosting provider for
assistance. Professional support teams will be glad to help you with this.

Once you have those four parameters, you can press the Let's go! button and proceed
to the next step of the installation. The following is a screenshot of the
main setup form:

http://codex.wordpress.org/Editing_wp-config.php#Possible_DB_HOST_values
http://codex.wordpress.org/Editing_wp-config.php#Possible_DB_HOST_values

Chapter 2

[29]

As you can see, the details are the same as those shown in an earlier screenshot. Of
course, your details will be different. Also, another important point to note is that
there's an additional field labeled as Table Prefix. This is the default prefix that every
table in your database will have before its name. The default value in that field is
wp_. It is recommended that you change this to any two- or three-letter word of your
choice and end it with an underscore (_), just as a safety precaution against standard
database attacks on known WordPress tables. The one used here is wtb_.

After pressing the Submit button, you will be redirected to the final confirmation
page. All you have to do here is click the Run the install button.

At this point, things can either go well, or not that well. In the latter case, proceed to
the next section, Installing WordPress through a hand-built configuration file. Fortunately,
such problems are rare. The best indication that the online installation is going well
is the presence of the following screen:

Getting Started with WordPress

[30]

This is the final setup page. Here, you set up the core details of your new site. (If
you've ever installed an earlier version of WordPress, you'll notice some differences,
such as the ability to choose your first username and password.) Now, fill out the
installation form (you will be able to change all of these later, so don't be too worried
about getting locked into your choices):

•	 Site Title: Fill in the name of your blog (it can be something simple, such as
"Daily Cooking").

•	 Username: It's in your best interest to choose a username that's not obvious.
For instance, if you go with "Admin", it will be very easy to guess for anyone
who might want to hack into your blog. Also worth pointing out is the fact
that this account is the administrator account, which has the most privileges
and access rights in all areas of the site. Opt for something difficult to guess,
such as "Site-Master-45" and don't worry, silly is good.

•	 Password, twice: Choose a secure password, one that has both upper and
lowercase letters, a number or two, and even a few punctuation marks.

•	 Your E-mail: Double-check that this is correct. This is the e-mail address
WordPress will use to contact you about the blog, comments, and so on. If
you do not get an e-mail from your WordPress site shortly after installing it,
check your spam folder.

•	 Privacy: This is the final checkbox, yet possibly one of the most important
settings on this list. If you leave it checked (recommended), your site is going
to be accessible through Google and other search engines. Unchecking it
means banning your site from the search engines.

Now, click on Install WordPress. You're done with the installation!

You can click on Log In to get to the login page. Alternatively, you can always enter
your WordPress Admin panel (also known as the wp-admin) by pointing your
browser to http://yoursite.com/wp-admin. If you're not already logged in, this
URL will redirect you to the login page.

Installing WordPress through a hand-built
configuration file
Now, in some cases, your web hosting account will prevent WordPress from creating
a valid configuration file. This issue may be caused by access rights limitations.
However, it's not a big obstacle because you can always create a configuration file
manually. To do this, just open the wordpress folder and find the file named wp-
config-sample.php. Make a copy of this file and name it wp-config.php. We'll
modify this file together.

Chapter 2

[31]

You need not be a PHP programmer to do this. Just open this file with a simple
editor such as Notepad. The following is the copied text from the original wp-
config.php file. Note that most of the comments have been removed, so that we can
focus on the items we need to change. One thing to know about PHP is that any text
that comes after a double slash (//), or between a slash-star and star-slash (/* and
*/), is a comment. It's not actual PHP code. Its purpose is to inform you what that
line or that section is about:

<?php
/** The name of the database for WordPress */
define('DB_NAME', 'database_name_here');

/** MySQL database username */
define('DB_USER', 'username_here');

/** MySQL database password */
define('DB_PASSWORD', 'password_here');

/** MySQL hostname */
define('DB_HOST', 'localhost');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');

define('AUTH_KEY', 'put your unique phrase here');
define('SECURE_AUTH_KEY', 'put your unique phrase here');
define('LOGGED_IN_KEY', 'put your unique phrase here');
define('NONCE_KEY', 'put your unique phrase here');
define('AUTH_SALT', 'put your unique phrase here');
define('SECURE_AUTH_SALT', 'put your unique phrase here');
define('LOGGED_IN_SALT', 'put your unique phrase here');
define('NONCE_SALT', 'put your unique phrase here');

$table_prefix = 'wp_';

As you can see from the code, you can insert a number of settings here, but they
do resemble the ones we were filling out in the online installer just a minute ago.
Let's walk through the most important ones.

Getting Started with WordPress

[32]

Just as in the online installation, we fetched the database information, but this time
we put it in the wp-config.php file:

// ** MySQL settings ** //
define('DB_NAME', 'wptestblog');
define('DB_USER', 'localdbuser');
define('DB_PASSWORD', '62dcx%^_0hnm');
define('DB_HOST', 'localhost');

Next, for security purposes, you need to put some unique phrases into the keys. The
secret keys are used by WordPress to add random elements to your passwords and
in some other situations. This will help to keep your WordPress installation uniquely
protected. No one else is likely to choose the same unique keys that you chose, and
therefore, breaking or hacking into your site will be more difficult. You can get
some secret keys generated from https://api.wordpress.org/secret-key/1.1/
salt/ (the sample config file itself will remind you of this through the in-code PHP
comments). Once you have finished, you will get the following code snippet, which
you can paste directly onto the default code in wp-config.php:

define('AUTH_KEY', 'uu|6#00Pc/3h?Pg5:Zc#:S=;<3mdw-ai');
define('SECURE_AUTH_KEY', 'vy1.@Nr@Zb^G|0Vfz-|TH5&W');
define('LOGGED_IN_KEY', 'sryMVd'jVpiMWWQqx~!v XE5@fJMTt2[Z');
define('NONCE_KEY', 'i,+UPpMR>Mj3o}(B**^<T:/md,YFF76d]Kf');
define('AUTH_SALT', 'n.8Li=9OjV+_p|}e5yN2k<s{!KJs|[S&Zh');
define('SECURE_AUTH_SALT', 'I#2vPT^u[5vLX|'MzPg/J*y]RTfr');
define('LOGGED_IN_SALT', 'gR%QP^c*jfFUy,iQ}-0g_%;%H)pN0B5');
define('NONCE_SALT', '&L);.IH'v{]zYLO2:h_t#J0D-p)cvyc');

Important! Don't ever get the salt keys from anywhere other than
https://api.wordpress.org/secret-key/1.1/salt/. This
is an important security mechanism that protects your browser's
session from being hijacked and then used for unauthorized access
to your WordPress site.

Finally, we have the aforementioned table prefix. The wp-config.php file allows us
to set this, too. Again, here's the prefix of our choice:

$table_prefix = 'wtb_';

https://api.wordpress.org/secret-key/1.1/salt/
https://api.wordpress.org/secret-key/1.1/salt/
https://api.wordpress.org/secret-key/1.1/salt/

Chapter 2

[33]

The WordPress Codex has a long and detailed page that describes everything about
editing your wp-config.php file: http://codex.wordpress.org/Editing_wp-
config.php. Once you save the wp-config.php file and either upload it onto
your web host or place it on your local server, you can visit your site through your
domain name (like http://yoursite.com/). You should be presented with the
final setup page—the one visible in the earlier screenshot. All you have to do now is
proceed according to the instructions described earlier in this chapter.

Learning more
If you'd like to see an even more detailed step-by-step guide for manual installation,
take a look at this page in the WordPress Codex at http://codex.wordpress.org/
Installing_WordPress.

Also, you can find more detailed installation instructions as well as specifics on
changing file permissions, using FTP and languages, importing from other blogging
engines, and so on in the WordPress Codex at http://codex.wordpress.org/
Getting_Started_with_WordPress#Installation.

Installing WordPress through an
auto-installer script
Some web hosts provide their customers with access to a range of auto-installer scripts
for various web platforms, including WordPress. Most of these auto-installers have
quite similar functionalities, and the actual process of installing a new WordPress site
is similar as well. Here, we're going to focus on one of these scripts, Softaculous.

Note that this is yet another way of installing a WordPress site, and we're
covering it here to make this book as complete as it can be. However, if
you've already managed to install your site by the methods described
earlier, then this section won't be of any use to you at this point.

http://codex.wordpress.org/Editing_wp-config.php
http://codex.wordpress.org/Editing_wp-config.php
http://codex.wordpress.org/Installing_WordPress
http://codex.wordpress.org/Installing_WordPress
http://codex.wordpress.org/Getting_Started_with_WordPress#Installation
http://codex.wordpress.org/Getting_Started_with_WordPress#Installation

Getting Started with WordPress

[34]

Softaculous is the preferred method of WordPress installation for many professional
developers and bloggers. In some cases, it's the fastest method when dealing with
a completely new hosting account maintained by a new web host. Softaculous is
provided on hosting accounts running on many management platforms, such as
cPanel, Plesk, DirectAdmin, InterWorx, and H-Sphere. Most likely, your hosting
account (a commercial hosting account you've bought from a respected provider) is
certain to be using one of these platforms. The following screenshot shows cPanel,
which is one of the platforms:

Although such platforms have different user interfaces, the core functionalities from
a user's point of view remain mostly the same. To access Softaculous, just scroll
down until you see the main icon labeled Softaculous. When you click on it, you will
be redirected to the control panel of Softaculous, where you can see the WordPress
icon in the center, along with an Install button that becomes visible when you hover
your mouse over the icon.

Chapter 2

[35]

The whole idea of using this script is to make things quicker and more hassle-
free, so that you don't have to take care of creating databases manually, or setting
configuration files. Softaculous will handle all of this for you. The following is the
site creation form:

Getting Started with WordPress

[36]

Here's a breakdown of all the fields and what details to fill them out with:

•	 Choose Protocol: You can stick with the default value of http://.
•	 Choose Domain: If you have more than one domain assigned with your

hosting account, then you get to choose which one you want to use here. For
single-domain accounts (most likely the case), this drop-down field has only
one option.

•	 In Directory: If you want to install your WordPress site under a subdirectory,
then input its name here (just the name). If you want to install the site in the
main directory (http://yoursite.com/), then make sure the field is blank.

•	 Database Name: You can confidently go with the default value.
•	 Table Prefix: As discussed earlier in this chapter, change this to something

unique (in my case, it's wp_).
•	 Site Name: This is the name of your site (in the present case, "My Blog").
•	 Site Description: This is the tagline (in the present case, "Exploring cooking

every day of the week").
•	 Enable Multisite (WPMU): Leave this unchecked unless you're an advanced

user planning to launch a multisite installation.
•	 Admin Username, Admin Password, and Admin Email: These are the

details of your admin account, similar to the ones we had to provide during
the manual WordPress installation.

•	 Select Language: WordPress has many localized versions of the platform,
not only English, and you can choose one here.

Clicking on the Install button starts the installation process. The process itself
requires no supervision, and you will be able to access your site as soon as it finishes
after roughly one or two minutes. You can check whether the installation has been
successful through the standard http://yoursite.com/ and http://yoursite.
com/wp-admin/ URLs. In other words, this is the end of the installation process
through Softaculous. As you can see, it's much simpler and quicker than manual
installation. Furthermore, Softaculous always installs the most recent version of
WordPress, so you don't have to worry about getting something out of date.

You can also encounter other auto-installer scripts, which are similar to
Softaculous, such as Fantastico, Installatron, and SimpleScripts.

Chapter 2

[37]

The wp-admin panel
WordPress installs a powerful and flexible administration area where you can
manage all of your website content and do much more. Throughout the book, this
will be referred to in shorthand as the wp-admin or WP Admin.

Now that you've successfully installed WordPress, it's time for our first look at the
wp-admin. There are some immediate basic changes that are recommended to make
sure your installation is set up properly.

You can always get to the wp-admin by visiting http://yoursite.com/wp-admin/
(this URL is also the reason why we're calling it the wp-admin, by the way). If it's
your first time there, you'll be re-directed to the login page. In the future, WordPress
will check whether you're already logged in, and if so, you'll skip the login page.

To log in, just enter the username and password you chose during the installation.
Then, click on Log In.

Whenever you log in, you'll be taken directly to the Dashboard section of the wp-
admin. Following is a screenshot of the wp-admin that you will see immediately
after you log in to the blog you just installed:

Getting Started with WordPress

[38]

You'll see a lot of information and options here, which we will explore throughout
this book. For now, we will focus on the items that we need to consider right after a
successful installation. First, let's take a brief look at the top of the wp-admin and the
Dashboard section.

The very top bar, referred to as top bar or admin bar, is mostly dark grey and
contains the following:

•	 A rollover drop-down menu featuring a set of links to About WordPress
(some details about the current installation of WordPress), WordPress.org,
Documentation, Support Forums, and Feedback

•	 A link to the front page of your WordPress website (in this example, the title
of the whole site is Daily Cooking)

•	 An updates and activity section containing either links to the newest
comments or to pending updates

•	 A rollover drop-down menu with handy links to New Post, New Media,
New Page, and New User

•	 Your username linked to your profile, which is yet another drop-down menu
containing a link labeled as Edit My Profile and another one, namely the Log
Out link

You'll also notice the Screen Options tab, which appears on many screens within
the wp-admin. If you click on it, it will slide down a checklist of items on the page
to show or hide. It will be different on each page. I encourage you to play around
with that by checking and unchecking the items, as you find whether you need
them or not:

Right next to the Screen Options tab, you find the Help tab. Just like the Screen
Options tab, this one also appears on many screens within the wp-admin. Whenever
you're in doubt regarding a specific screen, you can always check the Help tab for
instructions. Accessing the Help tab is always quicker and, in most cases, more
effective than searching for solutions online.

Chapter 2

[39]

On the left side of the screen is the main menu:

You can click on any word on the main menu to be taken to the main page for that
section, or you can hover your cursor over a given link to see all of the possible
subsections you can visit. For example, if you hover your cursor over Settings, you'll
see the subpages for the Settings section, and at that point, you can click on either of
the subpages or the main Settings link itself:

Getting Started with WordPress

[40]

In this book, instructions regarding which page within the wp-admin to navigate
to are indicated by phrases such as "navigate to Settings | General" or "navigate to
Posts | Add New". This always describes the path you should take to get there via
the main menu.

The top menu and the main menu exist on every page within the wp-admin.
The main section on the right contains information for the current page you're on.
In this case, we're on the Dashboard section. It contains boxes that have information
about your blog, and about WordPress in general.

In the new versions of WordPress, when you log in for the first time, you're
presented with a welcome message, similar to the one that follows:

In short, it's the welcome panel that allows you to access some of the crucial sections
of the wp-admin with just one click. Once you click on the Dismiss link, the panel
will no longer be displayed after login. In its current version, the panel allows you to
do the following:

•	 Customize the current theme, but only if the theme provides some
customization features (not all themes do)

•	 Change the current theme to a new one
•	 Write your first blog post
•	 Add an About page, which is usually the most visited page on most

WordPress sites
•	 View your site
•	 Manage menus and widgets
•	 Turn comments on or off—by default they are on
•	 Learn more about how to get started with WordPress, which is an external

link pointing to http://codex.wordpress.org/First_Steps_With_
WordPress

http://codex.wordpress.org/First_Steps_With_WordPress
http://codex.wordpress.org/First_Steps_With_WordPress

Chapter 2

[41]

For now, we're not going to focus on this welcome panel because first we need to
understand what its content means, in order to use it effectively. In this chapter and
the following chapters, we will get to know all of the crucial methods of managing
a WordPress site, and once we gain some experience, with time, this welcome panel
can make our everyday work much quicker. Therefore, let's jump right into the
general site settings section.

Changing general blog information
You may need to change and add some general blog information (such as blog title
or one-sentence description) after a successful installation to get your website set
up with the correct information. To get started with this, navigate to Settings in the
main menu.

There are many options you can set here, most of which are self-explanatory.
We'll look at the most important ones, and you can explore the rest on your own.
Obviously, you can change your blog's title. Mine is called "Daily Cooking", for
example. You can also change the blog description, which is used in most themes
as a subtitle for the blog, like the subtitle of a book. The default description is "Just
another WordPress site". You'll probably want to change that. Let's change ours to
"Exploring cooking every day of the week."

One of the things you probably want to take a look at on this page is the Timezone
option. Whether you have a blog (with timestamps on every post) or not, it's
important that WordPress knows what time zone you're in, if you want to schedule a
page or post for the future, show users accurate timestamps, or even just make sure
that e-mail notifications are correctly time-stamped. Additionally, if you're planning
to publish content internationally, meaning that your target audience is located in
an entirely different location, it's good to set the time zone to represent your target
audience and not yourself.

The pull-down menu will show you different UTC settings, along with the biggest
cities around the world. Just choose a city in your time zone. After you save the
changes, the time that appears further down the page (next to Time Format) will
change to the time you chose, so that you can check and make sure it's correct.

Another feature worth considering on this page is whether or not you want to
allow user registration on your site. For most sites, this is not particularly useful,
but if you're planning to make the site community-driven or utilize some form of
crowdsourcing, then this might be worth considering. In that case, it's not advisable
to give new users a user role higher than Subscriber (the default value).

When you're done making changes to this page, be sure to click on the Save Changes
button at the bottom of the page.

Getting Started with WordPress

[42]

Finally, there's only one more component you should adjust in your new site's
settings before publishing any content: the permalinks. As WordPress defines them,
permalinks are the permanent URLs to your individual pages, blog posts, categories,
and tags. By default, WordPress links to your new posts using a highly unoptimized
URL structure. For instance, if you create a post titled "How to Cook the Best Meal
Ever", WordPress will link it as http://yoursite.com/?p=123 (or something
similar). The main problem with this structure is that it doesn't indicate what the
page is about. Neither your visitors nor Google will be able to make a guess. In the
case of Google, such a structure can also significantly impact on your future search
engine rankings. Therefore, to set a more optimized structure, you can go to Settings
| Permalinks. Here are the available settings:

The best setting from a visitor's point of view, as well as from Google's, is the one
labeled Post name. Going back to the example with the "How to Cook the Best Meal
Ever" post, if you set the permalinks to Post name, the URL of this post will be
http://yoursite.com/how-to-cook-the-best-meal/, which is a lot clearer and
predictable.

You can always review the official information on permalinks anytime at
http://codex.wordpress.org/Using_Permalinks. Further down the page,
there are also optional settings for Category base and Tag base. By default, Category
base is set to category. For example, if you have a category called "recipes", then
you can view all posts under this category at http://yoursite.com/category/
recipes. Some site owners prefer to change this to something more user-friendly,
for example, "topics".

http://codex.wordpress.org/Using_Permalinks

Chapter 2

[43]

Even though it conveys the exact same message, it can be much easier to grasp for
visitors who are not that familiar with the standards of web content publishing. In
the end, the construction of your category base is solely down to your discretion. The
tag base, on the other hand, rarely needs any adjustments.

Creating your first post
For this chapter, and the next few chapters, we'll be focusing on the use of
WordPress to run a blog website. In a later chapter, we'll talk more specifically
about using WordPress for a non-blog website.

Therefore, with that in mind, let's add the first piece of content to your new blog—a
blog post. (This won't be the very first post on the blog itself, because WordPress
created a post, a comment, and a page for you when it installed. Nevertheless, it will
be "your" first post.) To create a post, just click on New Post on the top menu. You'll
be taken to the following page:

Getting Started with WordPress

[44]

As you can see, there are a lot of options for your post (which we'll explore in more
detail in Chapter 3, Creating Blog Content). For now, let's just worry about the basics.
Every post should have, at a minimum, a title and some content. Therefore, go ahead
and type in some text in those two fields (the title field and the big content field).
When you are happy with it, click on the Publish button.

You'll get a green label note informing you that the post has been published. Take a
look at the front page of your site by clicking on the name of your site in the top bar.
You'll see the following:

Notice that we are using the default Twenty Fourteen theme. If you're using a
different one, then the design and the layout of your first post will be different.

Writing your first comment
Now, let's see what it's like to post a comment. One of the great things about blogs
is that they give you—the writer—an opportunity to spark a conversation with your
readers. WordPress comes with a fantastic commenting system that allows visitors to
add comments to your blog. To add your own comment to your first post, just visit
the post's permalink URL and scroll down until you see the comment form.

Chapter 2

[45]

As you're already logged in, all you have to do is write something in the text area
and click on Post Comment. The comment form you'll see is basic and doesn't leave
much room for error:

Getting Started with WordPress

[46]

However, those who are not logged in to the wp-admin will see a slightly different
one (the following image):

Later, we'll explore how we can control which comments show up right away and
which comments have to wait for you to verify them as valid, as well as which fields
are required for visitors.

Chapter 2

[47]

Retrieving a lost password
If you have lost your password and can't get into your wp-admin panel, you can easily
retrieve it by clicking on the Lost your password? link on the login page. A newly
generated password will be e-mailed to you at the e-mail address you provided during
the installation process. This is why you need to be sure that you enter a valid e-mail
address. Otherwise, you will not be able to retrieve your password.

Getting a Gravatar
One final point that's worth discussing in this chapter is the matter of WordPress
avatars. Although WordPress provides a number of possibilities in this area, the
most popular one revolves around an external service—Gravatar. Gravatar started as
a tool meant to provide people with the capability of using the same profile picture
(avatar) across the entire web. The name Gravatar actually stands for Globally
Recognized Avatar.

What this means in plain English is that whenever you sign up with a web service,
and if the service is Gravatar-compatible, so to speak, then it will pick your profile
picture from Gravatar automatically, instead of forcing you to upload it manually
from your computer. Apart from the profile picture, Gravatar also gives you a
personal online profile that anyone can see whenever they click on your (Gravatar)
profile picture or something called Hovercard. Now, what does all this have to
do with WordPress, right? Well, WordPress is one of those services and tools that
widely support Gravatar in all possible areas of the platform. For example, if you
create a new blog and use an admin e-mail address that's hooked to Gravatar, your
profile picture in WordPress will immediately be replaced with the one provided by
Gravatar. Moreover, if you ever comment on any WordPress blog with a Gravatar
e-mail address, your profile picture will be set as the avatar for the comment itself.

To set your own Gravatar, just go to http://gravatar.com/ and click on the Sign
In button in the right corner of the screen. You'll be presented with a login form and
a small sign-up link labeled Need an account?. If you already have a WordPress.
com account, then you can safely log in with it. If not, click on the Need an account?
link, which will redirect you to the sign-up page. The fields are quite standard, with
you being prompted to enter your e-mail address and your preferred username
and password. Once you've completed the sign-up process, you can finally set your
Gravatar. On the main Manage Gravatars page, there's a link labeled Add one by
clicking here!—this is where you can upload a Gravatar.

http://gravatar.com/

Getting Started with WordPress

[48]

The good thing about Gravatar is that you can choose where you want to get the
picture from. You can either upload it from your computer, get it from some other
place on the web (for example, from a direct link to your Facebook profile image),
or use an image that you've uploaded as your Gravatar previously. In the next step,
Gravatar allows you to crop and adjust your image. When you're finally happy with
the result, you can click the big button and proceed to the rating settings of your
image. Every Gravatar can be classified as G rated, PG rated, R rated, or X rated.
The fact is that if you select anything other than G rated, your Gravatar won't be
displayed on all sites. Thus, it's a good practice to upload only appropriate images.

When you're done with this step, from now on, your Gravatar is set up and ready
to use. Gravatar also enables you to hook up more than one e-mail address to a
single account, as well as use more than one image. This is actually a great feature
because you can manage each of your e-mail addresses and every form of your
online presence with just one Gravatar account, a true timesaver. Now you can go
back to your WordPress blog and check whether your new Gravatar has appeared in
the profile section within the wp-admin (provided that you've used the same e-mail
address for the account).

Summary
You have learned a lot of things from this chapter. Now, you can install WordPress
on a remote server, change the basic default settings of your blog, write posts, and
comment on those posts.

You also have a basic understanding of how WordPress.com works, and how to
handle your online image or brand by using Gravatar.

In the next chapter, we will learn about all the other aspects of a blog post that you
can control, and additional ways to add posts, as well as the intricacies of managing
and controlling comments and discussions on your blog.

[49]

Creating Blog Content
Now that your WordPress installation is up and running, you are ready to start
creating content. In this chapter, you will first become familiar with the WordPress
admin dashboard display (also commonly referred to as wp-admin), editing
features and conventions. Then, you'll learn how to control all of the information
associated with a post, not just the title and content, but also images and media.
You will also learn about comments – what they are for, and how to manage them.
Additionally, we will explore how to keep your content organized and searchable
using tags and categories.

WordPress admin conventions
In the wp-admin, you have the ability to manage a number of different types of
content and content sorting types, including posts, categories, pages, links, media
uploads, and more. WordPress uses a similar format for various screens. Let us
explore them here.

Creating Blog Content

[50]

Lists of items
For every object in WordPress you might want to manage, there will be a screen
listing them. For example, let's have a look at what a list of posts might look like:

As you can see, the name of the post type is at the top, and the list of items has
columns. Let's take a look at the important elements:

•	 Each item in the list shows its Title. You can always click on an item title to
edit it.

•	 If you hover your mouse over a specific row, as I hovered over Hello world!
in the preceding screenshot, you will see four additional links. The first
three are always the same (Edit, Quick Edit, Trash), while the fourth varies
between View and Preview, depending on whether we're dealing with an
already published post or one that's pending. The Edit, Trash and View/
Preview links are pretty self-explanatory, but the Quick Edit link deserves
an additional word. When you click on it, you will see a panel allowing you
to perform some simplified editing (just the basic details and parameters,
with no actual content editing):

Chapter 3

[51]

•	 You can make changes and then click on Update, or click on Cancel if you've
changed your mind.

•	 The area above the list of posts lets you choose whether to view All (posts),
Published (posts), Drafts, Pending (posts), or Trash. At the moment, I have
only All posts and Published posts on my list. But with time, the list is
bound to get populated some more, as we're going to continue writing new
posts (and the same goes for your own site).

•	 Just below those links is the Bulk Actions menu, and its corresponding
Apply button. Choose one or more posts by clicking on their checkboxes
(or check the top checkbox to select every item). Then choose Edit or Move
to Trash from the Bulk Actions menu, and after clicking on Apply, you'll
be able to bulk delete or bulk edit those posts. Additionally, further down
the road, so to speak, when you install some third-party plugins, you'll
notice that this Bulk Actions menu might contain more options on top
of the standard two – editing and deleting.

•	 The filter menu lets you choose options from the dates and categories
pull-down lists, and then click on the Filter button to only show items
that meet those qualifications.

•	 The search field along with the Search Posts button provides yet another
way of filtering through your posts, to find the specific one you're looking
for. This might not seem like a particularly useful feature at first, but once
you have more than, say, 200 posts published on the site, finding individual
entries becomes quite a challenge.

•	 At the very top is the Screen Options drop-down. This tab, which appears on
every screen, will allow you to hide or show particular columns, and choose
the number of items to show per page.

Creating Blog Content

[52]

Posting on your blog
The central activity you'll be doing with your blog is adding posts. A post is like
an article in a magazine; it needs a title, content, and an author (in this case, you,
though WordPress allows multiple authors to contribute to a blog). A blog post
also has a lot of other information attached to it, such as a date, excerpt, tags, and
categories. In this section, you will learn how to create a new post, and what kind
of information to attach to it.

Adding a simple post
Let's review the process of adding a simple post to your blog, which we carried
out in the previous chapter. Whenever you want to add content or carry out a
maintenance process on your WordPress website, you have to start by logging
in to the wp-admin (WordPress Administration panel) of your site. To get to the
admin panel, just point your web browser to http://yoursite.com/wp-admin.

Remember that if you have installed WordPress in a subfolder
(for example, blog), then your URL has to include that subfolder
(for example, http://yoursite.com/blog/wp-admin).

When you first log in to the wp-admin, you'll be at the Dashboard. The Dashboard
has a lot of information on it so don't worry about that right now.

Chapter 3

[53]

The quickest way to get to the Add New Post page at any time is to click on New, and
then Post link at the top of the page in the top bar. This is the Add New Post page:

Creating Blog Content

[54]

Note that depending on the setup of your computer and your web browser, some
of the blocks shown in the preceding screenshot might not be visible by default.
However, everything that's crucial for content publication will definitely be on
the screen.

To add a new post to your site quickly, all you need to do is the following:

1.	 Type in a title into the text field under Add New Post (for example,
My Top 3 Favorite Dishes).

2.	 Type the text of your post in the content box. Note that the default view is
Visual, but you have a choice of the Text view as well:

3.	 Click on the Publish button, which is at the far right. Note that you can
choose to save a draft or preview your post as well.

Once you click on the Publish button, you have to wait while WordPress performs
its magic. You'll see yourself still on the Edit Post screen, but now the following
message would have appeared telling you that your post was published, and giving
you a View post link:

If you view the front page of your site, you'll see that your new post has been added
at the top (newest posts are always at the top).

Common post options
Now that we've reviewed the basics of adding a post, let's investigate some of the
other options on the Add New Post and Edit Post screens. In this section, we'll look
at the most commonly used options, and in the next section we'll look at the more
advanced ones.

Chapter 3

[55]

Categories and tags
Categories and tags are two types of information that you can add to a blog post.
We use them to organize the information in your blog by topic and content (rather
than just by date), and to help visitors find what they are looking for on your blog.

Categories are primarily used for structural organizing. They can be hierarchical,
meaning a category can be a parent of another category. A relatively busy blog will
probably have at least ten categories, but probably no more than 15 or 20. Each post
in such a blog is likely to between one and possibly four categories assigned to it.
For example, a blog about food and cooking might have these categories: Recipes,
Food Talk, In The Media, Ingredients, and Restaurants. Of course, the numbers
mentioned are just suggestions; you can create and assign as many categories as
you like. The way you structure your categories is entirely up to you as well. There
are no true rules regarding this in the WordPress world, just guidelines like these.

Tags are primarily used as shorthand for describing the topics covered in a particular
blog post. A relatively busy blog will have anywhere from 15 to even 100 tags in use.
Each post in this blog is likely to have three to ten tags assigned to it. For example, a
post on the food blog about a recipe for butternut squash soup may have these tags:
soup, vegetarian, autumn, hot, and easy. Again, you can create and assign as many
tags as you like.

Let's add a new post to the blog. After you give it a title and content, let's add tags
and categories. When adding tags, just type your list of tags into the Tags box on
the right, separated by commas:

Then click on the Add button. The tags you just typed in will appear below the text
field with little x buttons next to them. You can click on an x button to delete a tag.
Once you've used some tags in your blog, you'll be able to click on the Choose from
the most used tags link in this box, so that you can easily re-use tags.

Creating Blog Content

[56]

Categories work a bit differently than tags. Once you get your blog going, you'll
usually just check the boxes next to existing categories in the Categories box. In this
case, as we don't have any existing categories, we'll have to add one or two.

In the Categories box on the right, click on the Add New Category link. Type your
category into the text field, and click on the Add New Category button. Your new
category will show up in the list, already checked. Look at the following screenshot:

If in the future you want to add a category that needs a parent category, select Parent
category from the pull-down menu, before clicking on the Add New Category button.
If you want to manage more details about your categories, move them around, rename
them, assign parent categories, and assign descriptive text, you can do so on the
Categories page, which we'll see in detail later in this chapter.

Click on the Publish button, and you're done (you can instead choose to schedule a
post; we'll explore that in detail in a few pages). When you look at the front page of
your site, you'll see your new post on the top, your new category in the sidebar, and
the tags and category (that you chose for your post) listed under the post itself.

Chapter 3

[57]

Images in your posts
Almost every good blog post needs an image! An image will give the reader an
instant idea of what the post is about, and the image will draw people's attention in
as well. WordPress makes it easy to add an image to your post, control default image
sizes, make minor edits to that image, and designate a featured image for your post.

Adding an image to a post
Luckily, WordPress makes adding images to your content very easy. Let's add an
image to the post we've just created a minute ago. You can click on Edit underneath
your post on the front page of your site to get there quickly. Alternatively, go back
to the wp-admin, open Posts in the main menu, and then click on the post's title.

To add an image to a post, first you'll need to have that image on your computer,
or know the exact URL pointing to the image if it's already online. Before you get
ready to upload an image, make sure that your image is optimized for the web; for
instance, you can use a service like Kraken (https://kraken.io/). Huge files will
be uploaded slowly and slow down the process of viewing your site. Just to give
you a good example here, I'm using a photo of my own so I don't have to worry
about any copyright issues (always make sure to use only the images that you
have the right to use, copyright infringement online is a serious problem, to say
the least). I know it's on the desktop of my computer. Once you have a picture
on your computer and know where it is, carry out the following steps to add the
photo to your blog post:

1.	 Click on the Add Media button, which is right above the content box and
below the title box:

https://kraken.io/

Creating Blog Content

[58]

2.	 The box that appears, allows you to do a number of different things regarding
the media you want to include in your post. The most user-friendly feature
here, however, is the drag-and-drop support. Just grab the image from your
desktop, and drop it in the center area of the page labeled Drop files anywhere
to upload:

3.	 Immediately after dropping the image, the uploader bar will show the
progress of the operation, and when it's done, you'll be able to do some
final fine-tuning:

Chapter 3

[59]

4.	 The fields that are important right now are Title, Alt Text, Alignment, Link
To, and Size. Title is a description for the image, Alt Text is a phrase that's
going to appear instead of the image in case the file goes missing or any
other problems present themselves; Alignment will tell the image whether
to have text wrap around it and whether it should be right, left, or center;
Link To instructs WordPress whether or not to link the image to anything
(a common solution is to select None); and Size is the size of the image.

5.	 Once you have all of these fields filled out, click on Insert into post. This box
will disappear, and your image will show up in the post – right where your
cursor was prior to clicking the Add Media button – on the edit page itself
(in the Visual editor, that is. If you're using the Text editor, then the HTML
code of the image will be displayed instead).

6.	 Now, click on the Update button, and go look at the front page of your site
again. There's your image!

Creating Blog Content

[60]

Controlling default image sizes
You may be wondering about those image sizes. What if you want bigger or smaller
thumbnails? Whenever you upload an image, WordPress creates three versions of that
image for you. You can set the pixel dimensions of those three versions by opening
Settings in the main menu, and then clicking on Media. This takes you to the Media
Settings page:

Here you can specify the size of the uploaded images for the following:

•	 Thumbnail size
•	 Medium size
•	 Large size

Chapter 3

[61]

If you change the dimensions on this page, and click on the Save Changes button,
only the images you upload in the future will be affected. Images you've already
uploaded to the site will have had their thumbnail; medium, and large versions
created, already using the old settings. It's a good idea to decide what you want
your three media sizes to be early on in your site's lifespan, so you can set them
and have them applied to all images, right from the start.

Another thing about uploading images is the craze for HiDPI displays, also called
Retina displays. Currently, WordPress is in a kind of a transitional phase when it
comes to images and being in tune with modern display technology; Retina-ready
functionality was introduced quite recently in WordPress 3.5. In short, if you want
to make your images Retina-compatible (meaning that they look good on iPads,
modern Android phones and other devices with HiDPI screens), you should upload
the images at twice the dimensions. For example, if you want your image to be
presented as 800 pixel wide and 600 pixel high then upload it as 1600 pixel wide and
1200 pixel high. WordPress will manage to display it properly anyway, and whoever
visits your site from a modern device will see a high-definition version of the image.
In future versions, WordPress will provide a more managed way of handling
Retina-compatible images.

Editing an uploaded image
Every image that has been previously uploaded to WordPress can be edited. In order
to do this, go to the Media Library by clicking the Media button in the main sidebar.
What you'll see is a new kind of listing, introduced in one of the latest versions of
WordPress. Instead of a traditional list, what you get to work with now is a grid-based
archive that gives each piece of media much better visibility. Right now, we only
have one image in the library, but as you continue working with your site, the list will
become much more impressive:

Creating Blog Content

[62]

When you click on the image and then on the Edit Image button at the bottom
of the pop-up window that's going to appear, you'll enter the Attachment Details
section. Here, you can perform a number of operations to make your image just
perfect. As it turns out, WordPress does a well enough job with simple image
tuning so that you don't really need an expensive software like Photoshop for this.
Among the possibilities, you'll find the option of cropping, rotating, scaling, and
flipping vertically and horizontally:

For example, you can use your mouse to draw a box, as I have done in the
preceding screenshot. On the right, in the box marked Image Crop, you'll see
the pixel dimensions of your selection. Click the crop icon (top left), then the
Thumbnail radio button (on the right), and then Save (just below your photo).
You now have a new thumbnail! Of course, you can adjust any other version of
your image just by making a different selection prior to hitting the Save button.
Play around a little until you become familiar with the details.

Chapter 3

[63]

Designating a featured image
As of WordPress 2.9, you can designate a single image that represents your post.
This is referred to as the featured image. Some themes will make use of this, and
some will not. The default theme, the one we've been using, is named Twenty
Fifteen, and it uses the featured image to create a great looking background for
the post on the front page. Depending on the theme you're using, its behavior
with featured images can vary, but in general, every modern theme supports
them in one way or the other.

In order to set a featured image, go to the Edit Post screen. In the sidebar, you'll see
a box labeled Featured Image. Just click on the Set featured image link. After doing
so, you'll see a pop-up window, very similar to the one we used when uploading
images. Here, you can either upload a completely new image, or select an existing
image by clicking on it. All you have to do now is click on the Set featured image
button in the bottom right corner. After completing the operation, you can finally
see what your new image looks like on the front page. Also, keep in mind that
WordPress uses featured images in multiple places, and not only the front page.
And as mentioned before, much of this behavior depends on your current theme.

Videos and other media in your posts
These days, the newest versions of WordPress are capable of not only including images
into our blog posts, but other types of media too, such as audio files and videos.

Adding videos to blog posts
Luckily for us, the process of adding a video to a standard blog post or page has been
made as easy as possible. Let's discuss this step by step.

We're going to start by creating a whole new post. The title we can use is, Great
Baby Back Ribs Recipe. Creating the post itself is pretty basic. All you need to do is go
to Posts | Add New. You'll see a screen that we've already covered earlier in this
chapter. Let's put some example content in place, and try including a video right
away. All we have to do in order to achieve this is copy and paste the URL of the
video that we'd like to have included in our content. Just a standard copy-and-paste,
and nothing else.

When copying the URL of the video, it's important to
make sure that the link is copied as-is in raw-text form
(not hyperlinked anywhere: that is, not clickable).

The example I'm going to use here is the video at http://www.youtube.com/
watch?v=hDyHbTxTL-A.

http://www.youtube.com/watch?v=hDyHbTxTL-A
http://www.youtube.com/watch?v=hDyHbTxTL-A

Creating Blog Content

[64]

It's a nice video recipe for some baby back ribs. So in order to include this video in
a blog post, all I have to do is take its URL address and just paste it in. This is the
raw-text content of the new post that I'm working on now:

There's a great video recipe I've found on YouTube. It teaches us how
to prepare killer baby back ribs!

http://www.youtube.com/watch?v=hDyHbTxTL-A

(by Laura Vitale)

However, when I save such a post, on the front page of my site, the video URL will
be turned into a live video automatically. This is visible in the next screenshot:

Chapter 3

[65]

To give the post some more unique presence, I also added a new category – RECIPES
(which you can see in the preceding screenshot), and I assigned the post to a new
content type – Video. This is done through the sidebar on the post editing screen.
We will talk more about different content types later in this chapter:

The process described here explains how to embed YouTube videos and make them
a part of your blog posts, but the same goes for other popular platforms like Vimeo,
TED, Hulu, WordPress.tv, and others. To get the full list of supported platforms,
please visit https://codex.wordpress.org/Embeds.

One more method of adding videos to blog posts, which we left out initially, is
uploading the raw video files manually (instead of using a third-party platform like
YouTube). Although this is possible in WordPress – you can drag and drop a video
file just like you'd do with an image – it's not a recommended solution. Video files
are always quite large in size, and having them hosted on your standard web server
can become very expensive (bandwidth costs), should the video become popular
and end up being viewed by thousands of people. It's a lot more effective and
user-friendly to just upload the video to YouTube or a similar platform, and then
have it embedded on your site, like we've explained a minute ago.

Adding audio to blog posts
Not surprisingly at this point, it turns out that WordPress makes adding audio to
your blog posts, just as easy as adding a video. To demonstrate this, I'm going to
create an entirely new post and call it, Some Paleo Wisdom with Robb Wolf. In it, I'm
going to share a podcast episode of Robb's. To do that, just like with videos, I have to
get a direct URL of the audio file that I want to share on the blog.

https://codex.wordpress.org/Embeds

Creating Blog Content

[66]

Going to Robb's site, I quickly find the episode I'm after available at
http://traffic.libsyn.com/robbwolf/PaleoSolution-240.mp3. So, I take
this URL, and just like with video, I paste it right into my new blog post's content
box as follows:

Check out this great podcast episode by Robb Wolf:
http://traffic.libsyn.com/robbwolf/PaleoSolution-240.mp3

WordPress will pick that URL immediately and turn it into a live audio streaming.
When I publish my new post, this becomes visible right away. The next screenshot
presents what my new post looks like on the front page:

Now, in this example, I used a direct URL address of an audio file (the MP3 podcast),
but I can also use a direct URL of an audio recording at SoundCloud, Spotify, or Rdio,
plus a bunch of other services. Again, to get the full list of supported platforms, feel
free to visit https://codex.wordpress.org/Embeds.

Adding raw audio files is possible too. However, this presents the same problems
as we mentioned when talking about video files. Even though audio files are always
smaller in size than videos, they can still cost you a lot of money if you're attempting
to host them on your standard web server. It's therefore always a better solution to
upload your audio somewhere else (like, SoundCloud, for example), and then just
embed the audio inside of a blog post like we're describing here.

Limited editing possibilities
Unlike with images, WordPress doesn't really give us any editing possibilities
when it comes to media like audio or video. It's understandable that images can
be manipulated in a lot of ways, for example, they can be rotated, cropped, scaled,
and so on. However, there's no such possibility with videos. Once a video file or
audio file is produced, we can't alter it in any way. We can only take it and display
it on our sites as-is.

http://traffic.libsyn.com/robbwolf/PaleoSolution-240.mp3
https://codex.wordpress.org/Embeds

Chapter 3

[67]

Using the Visual editor versus the Text editor
WordPress comes with a Visual editor, otherwise known as a WYSIWYG editor
(pronounced "wissy-wig", and stands for What You See Is What You Get). This is the
default editor for typing and editing your posts. If you're comfortable with HTML,
you may prefer to write and edit your posts using the Text editor – particularly
useful if you want to add special content or styling.

To switch from the rich text editor to the Text editor, click on the Text tab next to the
Visual tab at the top of the content box:

You'll see your post in all its raw HTML glory, and you'll get a new set of buttons
that let you quickly bold and italicize text, as well as add link code, image code,
and so on. You can make changes, and swap back and forth between the tabs to
see the result.

For example, going back to the post we were building just a minute ago – the one
with the embedded podcast episode – when we switch between Visual and Text,
we'll see that in the Visual editor mode, the link to the audio file has already been
turned into a live audio player, while in the Text editor mode, we can still see the
URL in its raw form. The next screenshot presents this side by side:

Even though the Text editor allows you to use any HTML element in existence, it's
not a fully-fledged HTML support. For instance, using <p> tags is not necessary in the
Text editor, as they will be stripped by default. In order to create a new paragraph in
the Text editor, all you need to do is press the Enter key twice. That being said, at the
same time, the Text editor is currently the only way to use HTML tables in WordPress
(within posts and pages).

Creating Blog Content

[68]

You can easily place your table content inside <table>, <tr>, and <td> tags and
WordPress won't alter it in any way, effectively allowing you to create the exact table
you want. Another thing the Text editor is most commonly used for, is introducing
custom HTML parameters in and <a> tags, and also custom CSS classes in
other popular tags. Some content creators actually prefer working with the Text editor,
rather than the Visual editor because it gives them much more control, and more
certainty regarding the way their content is going to be presented on the frontend.

Lead and body
One of the many interesting publishing features WordPress has to offer is the concept
of the lead, and the body of the post. This may sound like a strange thing, but it's
actually quite simple. When you're publishing a new post, you don't necessarily want
to display its whole contents right away on the front page. A much more user-friendly
approach is to display only the lead, and then display the complete post under its
individual URL. Achieving this in WordPress is very simple. All you have to do is use
the Insert More Tag button, available in the Visual editor (or the more button in the
Text editor). Simply place your cursor exactly where you want to break your post (the
text before the cursor will become the lead), and then click the Insert More Tag button:

An alternative way of using this tag is to switch to the Text editor and input the
tag manually, which is <!--more-->. Both approaches produce the same result.
Clicking the main Update button will save the changes.

On the front page, most WordPress themes display such posts by presenting the
lead along with a Continue reading link, and then the whole post (both the lead
and the rest of the post) is displayed under the post's individual URL.

Chapter 3

[69]

Drafts, pending articles, and timestamps
There are three additional items I'd like to cover in this section: drafts, pending
articles, and timestamps.

Drafts
WordPress gives you the option to save a draft of your post, so that you don't have
to publish it right away, but can still save your work. If you've started writing a post
and want to save a draft, just click on the Save Draft button at the right (in the Publish
box), instead of the Publish button. Even if you don't click on the Save Draft button,
WordPress will attempt to save a draft of your post for you, about once a minute.
You'll see this in the area just below the content box. The text will say Saving Draft…
and then show the time of the last draft saved:

At this point, after a manual save or an auto-save, you can leave the Edit Post page
and do other things. You'll be able to access all of your draft posts from the Dashboard,
or from the Edit Posts page.

In essence, drafts are meant to hold your "work in progress", which means all articles
that haven't been finished yet, or haven't even been started yet, and obviously
everything in between.

Pending articles
Pending articles is a functionality that's going to be a lot more helpful to people
working with multi-author blogs, rather than single-author blogs. The thing is
that in a bigger publishing structure, there are individuals responsible for different
areas of the publishing process. WordPress, being a quality tool, supports such a
structure by providing a way to save articles as Pending Review. In an editor-author
relationship, if an editor sees a post marked as Pending Review, they know that they
should have a look at it and prepare it for the final publication.

Creating Blog Content

[70]

That's it for the theory, and now how to do it. When creating a new post, click on the
Edit link right next to the Status: Draft label:

Right after doing so, you'll be presented with a new drop-down menu from which
you can select Pending Review, and then click the OK button. Now, just click the
Save as Pending button which will appear in place of the old Save Draft button,
and you have a shiny new article that's pending review.

Timestamps
WordPress will also let you alter the timestamp of your post. This is useful if you are
writing a post today that you wish you'd published yesterday, or if you're writing
a post in advance and don't want it to show up until the right day. By default, the
timestamp will be set to the moment you publish your post. To change it, just find
the Publish box, and click on the Edit link (next to the calendar icon and Publish
immediately), and fields will show up with the current date and time for you
to change:

Change the details, click on the OK button, and then click on Publish to publish
your post (or save a draft).

Chapter 3

[71]

Advanced post options
By now, you have a handle on the most common and simple options for posts,
and you may be wondering about some of the other options on the Edit Post page.
We'll cover them all in this section.

A quick display tip
When you first visit the Edit Post page, some of the advanced
options (Excerpt, Send Trackbacks, Custom Fields, Discussion,
Revisions, Author, and Format) are "open" below the post content.
If you never use them and want to clean up the look of this page,
you can single-click each bar and they'll collapse. You can also
rearrange them by dragging them to form a new order.
You can also use Screen Options (top right of the page) to uncheck
certain boxes, and thus not display them at all.

Excerpt
WordPress offers theme designers the option to show a post's excerpt (instead of its
full content) on pages within the theme:

This is how the excerpt works:

•	 If you enter some text into the Excerpt box on the Edit Post page, that text
will be used as the post's excerpt on the theme pages that call for it.

•	 If you do not enter any text into the Excerpt box, WordPress will use the first
55 words of the post's content (which is stripped of HTML tags) followed by
[…] (which is not a link).

•	 If you do not enter any text into the Excerpt box, and the theme you are
using does something special, the number of words and the final text
could be different.

Creating Blog Content

[72]

You are never required to enter excerpt text. However, it is advisable that you
do take advantage of this possibility. Excerpts can introduce big readability
improvements to your site, and make your content easier to grasp for the reader,
provided that your current theme uses excerpts in one way or the other.

The more tag (<!--more-->), which has been described in one
of the previous sections in this chapter, should not be confused
with the excerpt. It is different from the excerpt because you, not
the theme designer, controls its use. Additionally, the more tag
is supported by every theme and it has a slightly different task
than the excerpt. It's meant to present the lead of the post – the
part that's going to convince the reader to visit the complete post,
while the excerpt is a summary of the post's contents.

Sending pingbacks and trackbacks
Pingbacks and trackbacks provide you with a way to communicate with other
websites, and let them know that you've published a post mentioning them in one
way or the other (usually through a link). For instance, they are useful if you write
a blog post that is a response to an old post on someone else's blog, and you want
them to know about it.

The difference between pingbacks and trackbacks is that pingbacks are automatic,
whereas trackbacks are manual. In other words, WordPress always tries to send a
pingback automatically, whenever you link to another WordPress blog from any
of your posts. Trackbacks are something you have to send manually, as WordPress
will not do this for you. Apart from that, pingbacks and trackbacks are pretty much
the same, and produce a very similar effect.

If you want to notify a given blog via trackback, just copy the trackback URL from that
person's blog post, and paste it into the trackback box on your post's editing screen
(this can be enabled through the Screen Options panel at the top). An excerpt of your
blog post and a link pointing back to your site will show up as a comment on their blog
post, provided that the blog has trackbacks enabled. Sending an automatic pingback
will also include a link pointing back to your site, in the comments section. Again, this
only works if the blog you're targeting has trackbacks and pingbacks enabled.

Quite frankly, trackbacks are becoming somewhat out-of-date with the advent
of pinging. Many WordPress themes are written to essentially disable trackbacks.
As it turns out, most WordPress bloggers these days don't even bother to send
trackbacks when the built-in mechanism of pingbacks handles it automatically.

Chapter 3

[73]

Discussion
The Discussion box on the post editing screen (sometimes needs enabling through
Screen Options) has two checkboxes in it: one for allowing comments, and the
other for trackbacks and pingbacks. When you first install WordPress, both these
checkboxes will be checked by default. You have to uncheck them if you want to
turn off the comments or trackbacks and pingbacks for the post:

If you uncheck the Allow comments box, visitors will not be able to comment on this
blog post.

If you uncheck the Allow trackbacks and pingbacks on this page box, when other
people mention your blog post and link to it on their own websites, your blog
post won't notice and won't care. So, if you are using WordPress to run a non-blog
website, this is the best option for you.

If the box stays checked, other people's pingbacks about this post will show up under
your post along with comments, if any. If you want either or both of these boxes to
be unchecked by default, go to Settings, and then Discussion in the main menu. You
can uncheck either or both of the boxes labeled, Allow link notifications from other
blogs (pingbacks and trackbacks) and Allow people to post comments on new
articles.

If you're using WordPress to run a blog website, you'll want pingback to stay
checked, at least most of the time. Every once in a while you can start experiencing
something called a pingback spam. The main idea is that some bloggers attempt to
ping a big number of other blogs in an attempt to get a pingback link. Once you start
attracting a bigger crowd of visitors, you might have to start dealing with this issue.
In such a case, disabling pingbacks altogether can be a good solution. Back in the
day, no one was paying attention to what appeared in their pingback and trackback
sections, so every notification went through un-moderated in any way. These
days, despite the fact that online publishers are much more aware of the situation,
the spamming continues, and it gets difficult to separate genuine pingbacks and
trackbacks from the spammy ones, hence shutting them down altogether can make
things easier in the long run. Nevertheless, the decision whether or not to support
trackbacks and pingbacks on your site is entirely up to you.

Creating Blog Content

[74]

Learning More
To learn more about trackbacks and pingbacks you can visit the
following sites:

•	 http://www.wpbeginner.com/beginners-guide/
what-why-and-how-tos-of-trackbacks-and-
pingbacks-in-wordpress/

•	 https://codex.wordpress.org/Introduction_
to_Blogging#Trackbacks

•	 http://codex.wordpress.org/Introduction_
to_Blogging#Pingbacks

Custom Fields
Custom Fields are WordPress' way of giving you the possibility to include some
additional information in your blog post (information that you don't want to display
directly on the frontend). In essence, Custom Fields are a kind of semi-programming
tool – they are not exactly "code" as understood by PHP programmers, yet they do give
you the possibility to tweak your content in a certain, non-stock way. Many themes
use various Custom Fields to style the individual aspects of posts. For example, some
theme creators use Custom Fields to disable the sidebar on certain posts, or include
various typographic elements.

As another example, let's say you are a gadget reviewer and every blog post is a
review of some new gadget. Every time you write a review, you're writing it about a
product that's made by some company, and you'd like to have that company's logo
associated with the blog post. You can make a custom field called company_logo,
and the value can be the path to the logo image:

http://www.wpbeginner.com/beginners-guide/what-why-and-how-tos-of-trackbacks-and-pingbacks-in-wordpress/
http://www.wpbeginner.com/beginners-guide/what-why-and-how-tos-of-trackbacks-and-pingbacks-in-wordpress/
http://www.wpbeginner.com/beginners-guide/what-why-and-how-tos-of-trackbacks-and-pingbacks-in-wordpress/
https://codex.wordpress.org/Introduction_to_Blogging#Trackbacks
https://codex.wordpress.org/Introduction_to_Blogging#Trackbacks
http://codex.wordpress.org/Introduction_to_Blogging#Pingbacks
http://codex.wordpress.org/Introduction_to_Blogging#Pingbacks

Chapter 3

[75]

To display or make use of this Custom Field information, you either have to modify
your theme files manually, or use a plugin.

Learning More
Read more about custom fields in the WordPress codex at
https://codex.wordpress.org/Using_Custom_Fields.

Working with post revisions
Apart from many content formatting features, WordPress also allows some basic
version control for your posts. What this means is that WordPress stores every
subversion of your every post. Or in plain English, every time you press the Update
button, instead of overwriting the previous version of your post, WordPress creates
a completely new one. Although this feature doesn't seem like the most useful one
at first, it's actually very important for sites, where the content is managed by more
than one person. In such a scenario, it's easy to get the newest versions of the posts
mixed up, so it's always good to have the possibility to return to the previous one.

In WordPress 3.6, the revision functionality has been completely revamped and
a lot of new features have been introduced that make working with your content
much more efficient. To take full advantage of this functionality, what you need to
do first is enable Revisions in the upper slide-down Screen Options menu on the
post editing screen. Once you do so, a small box titled Revisions will appear at the
bottom of the screen:

https://codex.wordpress.org/Using_Custom_Fields

Creating Blog Content

[76]

If you click on any of the links displayed inside this box, you will be taken to a page
where you can compare individual revisions, and then restore the one you want to
work with from now on. The interface provides a main slider that can be used to
select individual revisions of the post. This is visible in the following screenshot:

The revision functionality has two main versions. The first one is when the
Compare any two revisions box isn't checked, and it lets you compare the revision
that's currently selected (on the slider) to the revision directly preceding it. The
second version is when the Compare any two revisions box is checked. In this case,
you can select the revisions you want to compare individually which essentially
allows you to compare any two revisions, just like the box suggests. The revision
on the left is always the previous revision, while the one on the right is the next or
current one (visible in the preceding screenshot). For every paragraph where there
is a difference found, this will be highlighted in red and green, and every individual
difference will have additional highlighting. Clicking on the Restore This Revision
button will restore the revision on the right, and you will be brought back to the
post editing screen automatically.

On the other hand, if you feel that revisions won't be of any particular use to your site,
then you can simply choose to not pay attention to the Revisions box. When you work
with your content normally, not worrying about the revisions, WordPress will always
display the most recent versions of your posts by default.

Chapter 3

[77]

Changing the author of the post
This is a very basic feature in WordPress, so let's only take a minute to discuss it.
Basically, every post and page in WordPress has an author, which is quite obvious
in itself. However, if you want to, you can change the assigned author of any given
entry. In order to do it, just go to the post editing screen or the page editing screen,
and scroll down until you see the Author box. If it's not visible, enable it from the
pull-down Screen Options menu.

The box contains just one drop-down menu that lists every user account on your site.
Just select a new author, and click on the Update button. That's all. If you only have
one user – the admin account – on your site, then the box will only contain one name.

Protecting content
WordPress gives you the option to hide posts. You can hide a post from everyone
but yourself by marking it Private (although the user roles of admin and editor will
still see it), or you can hide it from everyone but the people with whom you share
a password by marking it as Password protected. To implement this, look at the
Publish box at the upper right of the Edit Post page. If you click on the Edit link
next to Visibility: Public, a few options will appear:

If you click on the Password protected radio button, you'll get a box where you can
type a password (limited to 20 characters). Visitors to your blog will see the post title,
along with a note that they have to type in a password to read the post.

Creating Blog Content

[78]

If you click on the Private radio button, the post will not show up on the blog at
all to any viewers, unless you are the viewer, and you are logged in. The post will
also appear if the person browsing the site is a logged-in editor (having the user
role of Editor).

If you leave the post Public and check the Stick this post to the front page checkbox,
this post will be the first post on the front page, regardless of its publication date.

Be sure to click on the OK button, if you make any changes.

Pretty post slug
We've already talked about tuning the permalinks settings of your site in Chapter 2,
Getting Started with WordPress. Now is a good moment to expand this knowledge, and
discuss a little something called the post slug. One of the most accurate definitions
of what a post slug is comes from the WordPress Codex itself. The one provided at
https://codex.wordpress.org/Glossary#Post_Slug teaches us that the post
slug is made from a few lowercase words separated by dashes, describing a post and
usually derived from the post title to create a user-friendly permalink. In other words,
the post slug is what comes after your domain name in the post's URL. For example,
my post about my top three favorite dishes uses this URL: http://localhost/wp-
dev-temp/my-top-3-favorite-dishes/, where the last part – my-top-3-favorite-
dishes – is the slug. Just like the official definition says, WordPress chooses the slug by
taking my post title, making it all lowercase, removing all punctuation, and replacing
spaces with dashes. If I'd prefer it to be something else, such as 3-favorite-dishes, I
can change it in the area just below the post's title:

Just click on Edit to change the slug. Readable URLs are something that Google
Search loves, so using them helps to optimize your site for search engines. It also
helps users figure out what a post is about before clicking on the URL.

https://codex.wordpress.org/Glossary#Post_Slug

Chapter 3

[79]

Custom post format settings
Since you will most likely start your WordPress journey with the default theme
– Twenty Fifteen –, I should probably say a few words about one more box that's
visible on the post editing screen – the one titled Format. We've already touched
upon this briefly when talking about publishing videos and audio files along with
your posts:

Some themes provide basic, ready-made formatting styles for certain types of posts;
Twenty Fourteen isn't one of the most functional themes in this sense. The only thing
we get is a small note near the title of the post that lets us know what format has been
chosen when publishing the post. We can see this, when we take a look at our audio
post and our video post (the ones we created earlier in this chapter). The audio post
is this:

The video post is this:

Creating Blog Content

[80]

However, there are hundreds of themes out there that support the format
functionality more broadly. Here are some examples derived from the previous
default theme – Twenty Thirteen. First we have a post saved as Standard:

Then the same post is saved as Quote:

And finally it is saved as Status:

Chapter 3

[81]

Additional writing options
In addition to simply logging into the wp-admin, you have four other choices of
ways for adding posts to your blog.

Press This
WordPress offers a neat bookmarklet called Press This. You can put it into your
browser's bookmarks or favorites, and it will let you quickly write a blog post
about the website you're visiting. You may have encountered this same feature
as offered by Facebook, Delicious, and other social networking sites.

You just have to add Press This to your browser once, and then you can use it
anytime. To add the Press This link to your browser, in the wp-admin, go to the
Tools page. At the top of the Tools page is the Press This box. Just use your mouse,
and drag it up to your browser's bookmark bar.

Now you can use it! For example, if you're browsing through a website and you read
an article you'd like to mention in a blog post, just click on the Press This bookmark.
A window will pop up with the Edit Post page in it, and the URL of the site, at
which you're looking, will already be written in as a link:

You can then write whatever additional text you want, add tags and categories, and
then either save it as a draft or publish it right away.

Creating Blog Content

[82]

Posting via e-mail
If you want to add a post to your blog without having to open the wp-admin and
log in, you can set up your WordPress installation to accept posts sent via e-mail.
First, you have to set up a special secret e-mail address that is accessible via POP.
WordPress will check that e-mail address and turn any e-mails in it into posts.
If you decide to set up this feature, you will have to be sure not to use this e-mail
address for any other purpose!

Once you have the e-mail address set up at your mail server, go to your wp-admin
and navigate to Settings | Writing. Scroll down a bit to the section labeled Post
via e-mail. Now just enter the server, login name, and password into the Writing
Settings page, and be sure to click on the Save Changes button. Note that on this
page, WordPress provides you with three random strings you could use for the
e-mail address, so you might want to visit this page first to get one, then set up
your POP account, and then return to this page to set up Post via e-mail.

Even though posting via e-mail sounds like a good idea at first, it's actually not the
safest way of doing things. As you've probably realized by now, anyone who finds
out what your secret e-mail address is can easily get anything published on your site.
All they have to do is send their content to that e-mail address. Spammers will quickly
start capitalizing on this by publishing random-content posts containing nothing but
links to their own websites (in an attempt to get some SEO benefits out of this). To
be honest, posting via e-mail is a thing of the past, at least in its current form, unless
WordPress comes up with some innovative way of doing it in future versions.

Learning More
Posting via e-mail in its default form is not the safest approach out there.
While this is true, with just a little creativity you can do it in a way that
still makes sense (safety-wise). Feel free to visit http://themefuse.
com/blog/posting-to-wordpress-via-email-theres-a-safe-
way-of-doing-this/ for an in-depth guide.

External blogging tools
In short, external blogging tools are specialized pieces of software that allow you
to work with your blog from the desktop of your computer. The main difference
between them and working with WordPress directly is that they make it possible
to create content (posts) offline, and then export it directly to your WordPress site.
This has some great benefits, the biggest of which being that you can write posts
whenever inspiration hits you, not only when you have an internet connection at
your disposal (particularly handy for creating content when travelling).

http://themefuse.com/blog/posting-to-wordpress-via-email-theres-a-safe-way-of-doing-this/
http://themefuse.com/blog/posting-to-wordpress-via-email-theres-a-safe-way-of-doing-this/
http://themefuse.com/blog/posting-to-wordpress-via-email-theres-a-safe-way-of-doing-this/

Chapter 3

[83]

Another benefit is that your posts are stored as normal files, which you can copy
wherever you want, send to someone via e-mail, or back up on Dropbox, or other
similar solutions.

The first question worth answering here is: how are these tools better than writing
a post in MS Word, and then copying it into WordPress manually? Well, if you've
ever tried doing this, then you already know that most of your formatting, layout,
as well as the graphics, are sure to go missing. There's no such problem with external
blogging tools, as they are optimized for working with WordPress right from the
get-go.

The only bad news in this whole story is that the best tool available – Windows Live
Writer – works on Windows only, so Mac users will have a little harder time here.
If you're on Mac, you can consider alternatives such as MarsEdit (http://www.red-
sweater.com/marsedit/) or Qumana (http://www.qumana.com/).

The best thing about the Windows Live Writer is that, even though it's been created
by Microsoft, it's absolutely free. You can download it at http://explore.live.com/
windows-live-writer and then install it on any version of Windows. The tool itself is
very easy to use and very efficient (when it comes to performance). Finally, Windows
Live Writer doesn't require you to set up your site in any specific way before you can
work with it. All you have to do is configure the Writer itself, so it can connect to the
site (basically, it only needs the address of the site, your username and password).
I strongly encourage you to give this a shot.

Mobile apps for iOS and Android
This final method of posting content on WordPress is growing stronger every year,
or even every month. The mobile usage of the web is constantly rising, and this is
reflected in the way people interact with their WordPress sites or blogs.

It's not surprising that there's a great wealth of blogging tools and apps for the two
most popular mobile platforms – iOS and Android.

Both systems have the native WordPress app available. You can get these apps at
https://apps.wordpress.org/.

The user interfaces of the apps have some minor differences depending on what
device you're using to access the app with, but the core functionality remains the
same. Here, we're going to use the iPad edition as an example.

http://www.red-sweater.com/marsedit/
http://www.red-sweater.com/marsedit/
http://www.qumana.com/
http://explore.live.com/windows-live-writer
http://explore.live.com/windows-live-writer
https://apps.wordpress.org/

Creating Blog Content

[84]

The app is very user-friendly and guides you through all the crucial steps of setting
up a connection with your blog. You can add a new site from the settings menu.
Once you do so, you get to use a standard set of features that let you in on a variety
of actions that you can perform on your site's content. You can create and edit posts,
do the same with pages, moderate comments, and hop over to the site's wp-admin
via a direct link. Everything is available from a clear menu in the center of the screen:

What seems to be the only downside about the native WordPress apps is that they
only support the Text editor for editing content. So in order to create any kind of
post you will need to have a basic understanding of working with HTML code.

Chapter 3

[85]

Discussion on your blog – comments
Comments are an important element for most blogs. While you are the only person
who can write blog posts, the visitors to your blog can add comments to your posts.
This can fuel a sense of community within a blog, allow people to give you feedback
on your writing, and give your visitors a way to help or talk to other visitors. The
only downside of commenting is that unscrupulous people will try to misuse your
blog's ability to accept comments, and will try to post spam or advertisements in
your blog instead of relevant comments. It's actually reported by Akismet – one of
the leaders in spam fighting on WordPress blogs – that there are 7.5 million spam
comments being processed every hour. What this means is simple: whether we like
it or not, spam is an integral part of our online journey. Luckily, the WordPress
community is always developing more ways of fixing the problem.

Adding a comment
If you look at the front page of your blog, you'll see that every post has a link that
says Leave a Comment. Clicking on that link will take you to the bottom of the post
page, which is where comments can be added, as we saw in Chapter 2, Getting Started
with WordPress.

If you're logged into the wp-admin, you'll see your name and a space to write your
comment. If you're not logged in, you'll see a comment form that any other visitor
will see. This form includes fields to fill in name, e-mail, and website, along with the
commenting text area.

Once you type in the required information and click on the Post Comment button, the
comment will be entered into the WordPress database, along with all of your other blog
information. How soon it shows up on the site depends on your discussion settings:

Creating Blog Content

[86]

Discussion settings
In the preceding screenshot, notice that Name and Email fields are both marked
required (*). As the owner of this blog/site, you can change the requirements for
comments. First, log into the wp-admin and navigate to Settings | Discussion.
We explored the first box (Default article settings), earlier in this chapter.

Submission, notification, and moderation settings
Let's focus on the checkboxes on this page that relate only to submission, notification,
and moderation. The boxes that are checked on this page will determine how much
moderation and checking a comment has to go through before it gets posted on the
blog.

The default settings are relatively strict. The only way to make a more strictly
controlled discussion on your blog is to check Comment must be manually approved.
This option means that no matter what, all comments go into the moderation queue,
and do not show up on the site until you manually approve them.

Let's look at the settings having to do with the comment submission that are visible
under Other comment settings. The first two options control what the user has to
do before even being able to type in a comment:

•	 Comment author must fill out name and e-mail: As you noticed in the
screenshot in the Adding a comment section, Name and Email fields are
required. If you leave this checked, then anyone posting a comment will
encounter an error if they try to leave either of the fields blank. This doesn't
add a huge amount of security because robots know how to fill out a name and
an e-mail, and because anyone can put fake information in there. However, it
does help your blog readers to keep a track of who is who if a long discussion
develops, and it can slightly discourage utterly impulsive commenting. Also,
visitors who have a Gravatar account (mentioned in the previous chapter),
are quite willing to provide their e-mail addresses anyway. That's because
using an e-mail address that's connected to Gravatar will result in their
profile picture (avatar) being displayed along with the comment, making
it much more personal and visible among all the other comments.

•	 Users must be registered and logged in to comment: Most bloggers do not
check this box because it means that only visitors who register for the blog
can comment. Most bloggers don't want random people registering, and
most visitors don't want to be compelled to register for your blog. If you
check this box, there's a good chance you'll get no comments (which may
be what you want). Alternatively, if you're setting up a blog for a closed
community of people, this setting might be useful.

Chapter 3

[87]

•	 Automatically close comments on articles older than X days: Here, you
can set any number of days, after which the comments on your content
will be closed. Although this feature might not seem like a useful one at
first, it can actually be valuable to various kinds of news sites or other
online publications, where allowing comments on old events makes
very little sense.

•	 Enable threaded (nested) comments X levels deep:: This option is enabled
by default, and it's yet another way of making your site more readable and
user-friendly. Sometimes commenters want to be able to respond to someone
else's comments, simply as part of an ongoing discussion. This is the feature
that allows them to do so. Also, it gives you – the author – a great way of
interacting with your audience, through direct responses to every comment
of theirs.

•	 Break comments into pages […]: This feature won't be of any value to
you unless you're getting more than 200 comments per post. So you can
confidently leave it unchecked for now.

Now let's look at the settings that have to do with moderation visible under Before
a comment appears. These two options have to do with the circumstances that allow
comments to appear on the site. They are by the Before a comment appears header:

•	 Comment must be manually approved: As I mentioned before, if this box
is checked, every comment has to be manually approved by you before it
appears on the site.

•	 Comment author must have a previously approved comment: If you uncheck
the box above this, but check this one, then you've relaxed your settings a little
bit. This means that if the person commenting has commented before and
had his or her comment approved, then the person's future comments don't
have to be verified by you; they'll just appear on the website immediately.
The person just has to enter the same name and e-mail as the one in the
previously approved comment.

Now let's look at the settings that have to do with notification. These two options
are under the E-mail me whenever header. These options are related to the
circumstances of receiving an e-mail notification about the comment activity:

•	 Anyone posts a comment: This is generally a good setting to keep. You'll
get an e-mail whenever anyone posts a comment—whether or not it needs
to be moderated. This will make it easier for you to follow the discussion on
your blog, and to be aware of a comment that is not moderated, and requires
deletion quickly.

Creating Blog Content

[88]

•	 A comment is held for moderation: If you're not particularly interested in
following every comment on your blog, you can uncheck the Anyone posts
a comment checkbox, and only leave this one checked. You will only get an
e-mail about legitimate-looking comments that appear to need moderation
and need your approval.

When to moderate or blacklist a comment
If you scroll down the page a bit, you'll see the Comment Moderation area:

This is an extension of the moderation settings from the top of the page. Note that
if you've checked the Comment must be manually approved checkbox, you can
safely ignore this Comment Moderation box. Otherwise, you can use this box to
help WordPress figure out which comments are probably okay, and which might
be spam or inappropriate for your blog. You can tell WordPress to suspect a
comment if it has more than a certain number of links, as spam comments often
are just a list of URLs.

The larger box is for you to enter suspect words and IP addresses:

•	 Here, you can type words that are commonly found in spam (you can
figure this out by looking in your junk mail in your e-mail), or just
uncouth words in general.

•	 The IP addresses you will enter into this box would be those of any
comments you've gotten in the past from someone who comments
inappropriately, or adds actual spam. Whenever WordPress receives
a comment on your blog, it captures the IP address for you so that
you'll have them handy.

Chapter 3

[89]

Scroll down a bit more, and you'll see the Comment Blacklist box:

Unlike the Comment Moderation box we just saw, which tells WordPress how to
identify the comments to suspect, the Comment Blacklist box tells WordPress how
to identify comments that are almost definitely bad. These comments won't be added
to the moderation queue, and you won't get an e-mail about them; they'll be marked
right away as spam.

Avatar display settings
The final box on this page is the Avatars box. Just as I mentioned in the previous
chapter, an avatar is an image that is a person's personal icon. Avatars in WordPress
are provided through Gravatar – a service available at http://gravatar.com/ that
lets you create your personal online profile, which is going to then be consistently
used on other websites across the web. By default, avatars will show up on your blog
if you leave the Show Avatars radio button checked, which is visible near the bottom
of the discussion settings page.

The second box, Maximum Rating, will tell WordPress if it should not show avatars
that have been rated too highly. Remember the rating we were setting when uploading
a new picture to Gravatar? This setting here is the place where you can choose which
pictures you want to allow on your own site (selecting the G rating is advisable).

http://gravatar.com/

Creating Blog Content

[90]

The third box, Default Avatar, tells WordPress what avatar to use for visitors who
do not come with their own gravatar. When you installed WordPress, it created
a comment for you on the first post, and also created a default avatar for you.
You can see the default avatar, Mystery Man, in use on the Hello World! post:

Moderating comments
Now that we've thoroughly explored the settings for which comments need to
be moderated, let's discuss what you actually need to do to moderate comments.
'Moderating' means that you look over a comment that is in limbo and decide whether
it's insightful enough that it can be published on your site. If it's good, it gets to appear
on the frontend of your website; and if it is bad, it's either marked as spam, or is
deleted and is never seen by anyone but you, and the person who wrote it.

To view comments waiting for moderation, log in to your wp-admin and navigate to
Comments in the main menu.

If you have any comments waiting for moderation, there will be a little number in
the main menu telling you how many comments await moderation:

Chapter 3

[91]

This main Comments page is fully featured, just like the Posts page. For each
comment, you see the following information from left to right:

•	 Commenter avatar, name, website address (if there was any given),
e-mail address (if there was any given), and IP (if there was any given)

•	 Comment text, along with links to approve it so that it shows up on the site
(the links appear when you hover your mouse over the comment), you can
also mark it as Spam, Trash it, Edit it, Quick Edit it, or Reply to it

•	 Comment submission time and date
•	 The title of the post on which the comment was made (which is also a link

to edit that post), a number in parentheses indicating how many approved
comments are already there on that post (which is also a link that will filter
the comments list so that it shows only comments on this page), and a link
to the post itself (labeled View Post)

Comments that are awaiting moderation have a red-ish background, like the first
comment in the preceding screenshot (you can also see my Gravatar).

You can click on the Quick Edit link for any comment to open form fields right
within this list. This will allow you to edit the text of the comment and the
commenter's name, e-mail, and URL.

Creating Blog Content

[92]

You can use the links at the top – All, Pending, Approved, Spam, and Trash – to
filter the list based on those statuses. You can also filter either pings or comments
with the All comment types pull-down filter menu. You can check one or more
comments to apply any of the bulk actions available in the Bulk Actions menus
at the top and bottom of the list.

Another quick way to get to this page, or to apply an action to a comment, is to use the
links in the e-mail that WordPress sends you when a comment is held for moderation
(provided you've selected this option in the Settings | Discussion section).

Additionally, this listing is where all pingbacks appear for your moderation.
From a blog owner's point of view, pingbacks look just like any other comments,
which means that you can edit them, mark them as spam, or trash them like you
normally would with standard comments.

How to eliminate comment spam
Comment spam is one of the most annoying things on the Internet if you're an
online publisher. Basically, a spam comment is a comment that has been submitted
for the sole purpose of getting a link back to a specific website. The main reason why
people submit spam comments is Search Engine Optimization – the number of links
pointing to a site is a known SEO factor, and website owners around the world do
whatever they can to get as many links as possible. Unfortunately for us, sometimes
it means using various spam methods as well.

The way WordPress comments are set up by default makes it possible for anyone
to get a link from your site just by submitting a comment, and providing a website
address in one of the comment fields. If they do so and the comment gets approved,
whatever was typed into the Name field of the comment becomes the text of the link,
and the Website becomes the link's destination.

The worst thing about comment spam is that once your site gets even remotely
popular, you can start getting hundreds of spam comments a day; hence dealing
with them by hand becomes almost impossible.

Chapter 3

[93]

Unfortunately, fighting comment spam is not something built into WordPress by
default. This means that you have to get some plugin(s) to enable this functionality.
For now let's focus on the most popular spam protection plugin at the moment –
Akismet. The good thing about it is that it comes along with the standard WordPress
installation, so you should be able to find it in the Plugins section in your wp-admin.
We will cover plugins in detail later in this book, for now let's just review how to
get Akismet working on your blog. If your blog is built on WordPress.com, then
Akismet is already activated by default. For a standard, standalone blog, you'll
have to activate it first.

Learning more
You can learn more about the Akismet spam-fighting service
at http://akismet.com/. Also, if you're interested in some
alternative solutions then please visit https://wordpress.
org/plugins/antispam-bee/ and https://wordpress.
org/plugins/growmap-anti-spambot-plugin/

Getting an Akismet API key
The Akismet plugin requires that you have a special API key. Getting this API key
isn't something particularly difficult, but we still need to go through a couple of
steps. First of all, you need to go to https://wordpress.com/, and create a new
account. Once you have it, you can navigate to https://akismet.com/signup/,
and click the link labeled I already have a WordPress.com account! On the next
screen, you will be asked to simply input your login details (for the WordPress.
com account). Finally, what you have to do to complete the process is click the
blue Authorize button:

http://akismet.com/
https://wordpress.org/plugins/antispam-bee/
https://wordpress.org/plugins/antispam-bee/
https://wordpress.org/plugins/growmap-anti-spambot-plugin/
https://wordpress.org/plugins/growmap-anti-spambot-plugin/
https://wordpress.com/
https://akismet.com/signup/

Creating Blog Content

[94]

At this point, Akismet will attempt to sell you some of their premium services,
but luckily this isn't mandatory. Click on the Sign Up button, under the plan
labeled Personal:

Now, this is tricky. The plan you've selected is based on voluntary donations.
If you're not willing to spend any money, just take the slider that's in the center
and slide it to the left, all the way to $0.00/yr. Apart from that, you just have to
provide standard details like your first and last name:

Your API key will arrive via e-mail to the address specified during registration.
Select and copy that text. You may want to paste it into a text file to be sure you
have it.

Chapter 3

[95]

Activating Akismet
Now go back to your WordPress installation, and navigate to Plugins in the
main menu:

You'll see Akismet listed as the first plugin. Click on the Activate link. A green
message bar will appear at the top of the page that says Activate your Akismet
account. Click on that button, and you'll be taken to a page where you can enter
the API key you copied from WordPress.com. Paste your API key into the box,
and click the button:

In the next step, if you're feeling confident, you can check the box labeled Silently
discard the worst and most pervasive spam so I never see it. Akismet is relatively
good at identifying which comment is actually spam, and checking this box will
make those comments disappear. However, if you're concerned about Akismet
misidentifying comments, leave this unchecked.

Now click on Save Changes, and your blog is protected from comment spam!

Creating Blog Content

[96]

Adding and managing categories
Earlier in this chapter, you learned how to add a category quickly when adding a
post. Now, let's talk about how to manage your categories in a bigger way. First,
navigate to Posts | Categories in your wp-admin. You'll see the Categories page:

This is a useful page that combines the ability to add, edit, and review all of your
categories. As you can see, any category that you've added via the Edit Post page is
listed. You can edit, quick edit, or delete any category by clicking on the appropriate
link in the list.

If you add a category on this page, you can also choose its slug. The slug is the
short bit of text that shows up in the URL of your site, if you have pretty permalinks
enabled. If you don't choose a slug, WordPress will create one for you by taking
the category name, reducing it to all lowercase, replacing spaces with dashes, and
removing any other punctuation mark (similarly to what's being done with slugs
for posts).

Another thing you can do on this page is to choose a parent category for any
category. Some themes support displaying categories hierarchically, but not all
do. In a good, modern theme (we'll talk about those in Chapter 7, Developing Your
Own Theme), if you create a custom menu for categories, all child categories will
be displayed as submenus.

Chapter 3

[97]

The ability to create a hierarchy of categories is actually the main technical thing
that separates categories from tags. Other than that, both elements are quite similar
in construction, although they still have different purposes.

Summary
In this chapter, you learned everything you need to know in order to add content
to your blog, and then manage that content. You learned about posts, categories,
and comments. You discovered tags, spam (unfortunately), and excerpts. You also
learned about adding and editing images, working with video and audio content,
using the Visual editor (and the Text editor), changing timestamps, customizing
excerpts, and the different ways of posting (for example through e-mail or external
blogging tools).

Your control of your blog content is complete, and you are well equipped to set your
blog on fire!

In the next chapter, you'll learn about all the other types of content that you can
manage on your website with WordPress.

[99]

Pages, Menus,
Media Library, and More

You now have the blog part of your website fully under control. By now, you've
probably noticed that WordPress offers you a lot more than simply posts, comments,
tags, and categories.

In this chapter, we will explore and control all the other types of content that
WordPress already has. You'll be able to create static pages that aren't a part of your
ongoing blog, add various types of media to your posts, and create appealing image
galleries to display photos and other images (working with the new media library).
You'll also learn how to manage navigation menus and work with the basic layout
customization features to further enhance the capabilities of your entire website.

Pages
At first glance, pages look very similar to posts. Both pages and posts have a
title and a content area in which we can write extended text. However, pages
are handled quite differently from posts. First of all, pages don't have categories,
or tags (pages don't need to be categorized since on most websites there's a lot
less pages than posts). Moreover, posts belong to your blog and are meant to be a
part of an ongoing, expanding section of your website. Posts are added regularly,
whereas pages are more static and aren't generally expected to change that much.

Pages, Menus, Media Library, and More

[100]

In short, I would advise you to think of pages as pieces of static content, and posts as
a series of articles published in a timely manner. In other words, pages are meant to
hold content that is equally up to date, no matter when someone reads it. Posts are
often very time-sensitive and present advice/news that's important today/now. For
most blogs, posts are the pillars of their content and make up more than 90 percent
of the whole content. Furthermore, posts appear in the RSS feed of a WordPress blog,
while pages don't.

When you installed WordPress, a page was automatically created for you (along
with the first post and the first comment). You can see this by going to http://
YOURSITE.com/sample-page/:

Adding a page
To add a new page, go to your wp-admin, and navigate to Pages | Add New, or
use the drop-down menu in the top dark menu by clicking on New and then Page.
This will take you to the Add New Page screen:

Chapter 4

[101]

The minimum you need to do in order to create a new page is type in a title and
some content. Then, click on the blue Publish button, just as you would for a post,
and your new page will become available under its unique URL.

You'll recognize most of the fields on this page from the Add New Post page.
They work the same for pages as they do for posts. Let's talk about the one section
that's new: The box called Page Attributes, consisting of elements such as Parent
and Order:

Pages, Menus, Media Library, and More

[102]

Parent
WordPress allows you to structure your pages hierarchically. This way, you can
organize your website's pages into main pages and subpages, which is useful if
you're going to have a lot of pages on your site. For example, if I was to write a blog
along with three other authors, we would each have one page about us on the site,
but those would be subpages of the main About page. If I was adding one of these
pages, I'd first create a new About page, then create another page just for me, called
About Karol, and finally choose About as the parent page for this new page.

Order
By default, the pages on your page list in the sidebar or the main navigation menu of
your blog will be in alphabetical order by page title. If you want them in some other
order, you can specify it by entering numbers in the Order box for all your pages.
Pages with lower numbers (for example, 0) will be listed before pages with higher
numbers (for example, 5). You can easily test this by editing some of your pages
and assigning various numbers to them. That being said, to be honest, this isn't a
very clear method of rearranging pages inside menus. You can do it much more
easily with a functionality called Custom Menus (described later in this chapter).
In the end, I would advise you to save all of your pages with the order of 0.

Managing pages
To see a list of all the pages on your website in the wp-admin, navigate to Pages | Edit
in the main menu. You'll see the Pages screen, as shown in the following screenshot:

Chapter 4

[103]

By now, this list format should begin to look familiar to you. You've got your list
of pages and in each row there are a number of useful links allowing you to edit,
quick edit, trash, or view the page. You can click on an author's name to filter the
list by that author. You can use the two links at the top, All and Published, to filter
the pages by status (if you have pages saved as Drafts or Pending Review, then they
will also appear here). There's also filtering by date through the drop-down menu
just above the list of pages. Additionally, you can check certain boxes and mass-edit
pages by using the Bulk Actions menu at the top and bottom of the list. You can also
search your pages with the search box at the top.

Menus
As of WordPress 3.0, custom menus are now available within the wp-admin.
This wasn't always the case, but these days, all modern themes support custom
menus, and so does the default theme: Twenty Fifteen.

The Custom Menus feature lets you create menus with links to pages, category
archives, and even arbitrary links to any URL (which also allows you to link to
your individual posts). Then you can place your custom menu into your theme.

Adding a Menu
Let's take a look at the menus management screen. To get there, just navigate to
Appearance | Menus:

Pages, Menus, Media Library, and More

[104]

To create your first menu, enter a title (for example, Main) where it says Enter menu
name here. After doing so, you can select individual pages from the panel on the left
and click on the Add to Menu button to confirm:

You can add some custom links to the menu if you want to. This can be done after
clicking on the Links heading on the left and then filling out the required link
information. To confirm, click on Add to Menu:

Finally, you can add some category links. Click on the Categories heading on the left
and then proceed to clicking on the checkboxes next to the categories you want to
include. Click on Add to Menu to confirm:

Chapter 4

[105]

Finally, be sure to click on Save Menu in the upper-right corner. The following is
what my new menu looks like now:

Pages, Menus, Media Library, and More

[106]

You can also drag items to the right to make them subitems of the item immediately
above. For example, I'll drag one of my pages as a subitem under the other page.
Now, my menu looks like the following screenshot:

You can make more menus by clicking on the create a new menu link at the top and
repeating the process. Now you might ask: I created my new menu, but how do I
make it show up on my site?

Displaying a Menu
If you have a menu-enabled theme, then once you have one menu, a new box will
appear on the Menus page showing you the menu locations. Twenty Fifteen has
two menu locations, and they're named Primary Menu and Social Links Menu:

All you have to do to assign your newly created menu to the predefined menu
area in Twenty Fifteen is to check one of the boxes, as shown in the preceding
screenshot. Right now, my primary navigation on the website looks like the
following screenshot:

Chapter 4

[107]

And when I click on the down arrow next to This is the Full Width Page, I will also
see my other page that was saved as a subpage, as shown in the next screenshot.
Twenty Fifteen displays subitems in a rollover menu.

Header
The functionality I'm about to describe is highly dependent upon your current theme.
Not all themes support header functionality, and even the ones that do can provide
you with different set of features related to this topic. However, most modern themes
these days do support header customizations in some form. So learning a few things
about this feature will definitely come in handy for you sooner rather than later.

If you're starting your WordPress adventure with the default theme Twenty Fifteen,
then in the Appearance section, you will see one link labeled Header. This is where
you can adjust the design of your site's header:

Pages, Menus, Media Library, and More

[108]

As you can see, my header doesn't feature anything fancy at the moment. However,
with just a little effort, this can be changed in no time. Most themes will allow you
to select any image to be placed inside the header. Twenty Fifteen has some specific
requirements for this image, which you can see in the preceding screenshot. The
suggested size is 954 pixels wide by 1300 pixels high, but you don't have to worry
all that much about this because WordPress also provides some handy image editing
tools. All you have to do here is use the Choose Image button and select one of the
pictures from the media library, or upload a new one. WordPress will immediately
redirect you to the aforementioned image editing tools, where you can adjust and
crop your image, as shown next:

After clicking on the Crop Image button and then Save & Publish, we're done with
setting up the header image. Here's what my site looks like now:

Chapter 4

[109]

This looks much better, right?

Background
Now let's take a look at the other visual setting in the Appearance section called
Background. When you navigate to Appearance | Background for the first time,
there's nothing visually appealing there, but we can change this with just a couple
of clicks, as shown in the following screenshot:

Pages, Menus, Media Library, and More

[110]

The first thing we have to do is select an image we want to place in the background of
our whole site. Let me say that again—our whole site. As an example, I will try using
the same picture that I used for the header image; only this time, it will be displayed in
its original resolution. Right after selecting the image (just click on Select Image visible
in the preceding screenshot), the Preview block will get refreshed, and you will be able
to see what your background looks like at the moment.

Immediately, there are some new options visible at the bottom of the block:

The various options are as follows:

•	 Background Repeat: This can be No Repeat, Tile, Tile Horizontally,
or Tile Vertically:

°° No Repeat: This means that your background image will be displayed
only once, and after the visitor scrolls down, they will simply "run out"
of the background image.

Chapter 4

[111]

°° Tile: This is the most popular setting and actually the default one
as well. This means that WordPress will repeat your image in both
dimensions (width and height). So, no matter what part of your site
the visitor is browsing, the background image will always be visible.

°° Tile Horizontally: This tiles your image horizontally.
°° Tile Vertically: This tiles your image vertically.

•	 Background Position: This can be Left, Center, or Right. This decides whether
the background image should be aligned to the left, center, or right.

•	 Background Attachment: This can be either Scroll or Fixed:
°° Scroll: In this, your image scrolls along with the content.
°° Fixed: In this, your image remains in a fixed position. In other words,

it stands still in the background at all times.

I encourage you to play around with these settings for a while when adjusting your
site. In the meantime, you can see the exact settings I've selected in the preceding
screenshot. And finally, here's what my site looks like now:

I'm sure you can agree that setting a custom header image and a custom background
has given my site a much more attractive appearance.

Pages, Menus, Media Library, and More

[112]

Advanced site customization
Yet another feature in WordPress that's highly dependent upon your theme is
the Customize Your Site module. If you still have the Welcome box enabled in
your Dashboard's screen settings, you can access this module by clicking the
big Customize Your Site button, as shown in the following screenshot:

Another way of accessing this module is by visiting http://yoursite.com/wp-
admin/customize.php. This is what you'll see (provided you're working with the
default theme):

This module doesn't deliver any new functionality. It simply takes all the
customization features and displays them in one, easy to grasp place.

By going through the individual tabs on the left, you can adjust various aspects
of your site that we've already talked about in this and the previous chapters.
These aspects are as follows:

•	 Site Title & Tagline
•	 Colors

Chapter 4

[113]

•	 Header Image
•	 Background Image
•	 Navigation (you can choose which menu you want to assign as the top

primary menu and secondary menu in the left sidebar)
•	 Widgets (more on this later)
•	 Static Front Page

The best thing about this module is that it provides a live preview, which makes
editing the basic aspects of your design much quicker. When you're done, you can
click on either the Cancel button or the Save button.

Media library
The media library is where WordPress stores all of your uploaded files such as
images, PDFs, music, videos, and so on. To see your media library, navigate to
Media in the main menu (there probably isn't a lot of media in there at the moment):

The content layout we're seeing here is a new type of presentation introduced in
WordPress 4.0. Previously, the media library could be browsed only via the now-
familiar management table/listing. This new grid layout makes looking through
media much more user-friendly. This is mostly due to larger thumbnails and the
lack of distracting text data.

Pages, Menus, Media Library, and More

[114]

My media library has three photos in it at the moment. Once I click on any of them,
I will see the Attachment Details screen that we talked about in Chapter 3, Creating
Blog Content. On this screen, there are a lot of options to modify the file that's been
selected. We can edit details, such as Title, Caption, Alt Text, and Description,
and also delete the file permanently, or view it on the front page of the site:

You can also add a new file to your media library. Navigate to Media | Add New to
get a page similar to the upload media page that you got while uploading a file for
a post. When you click on the Select Files button and select the file to be uploaded,
or drag and drop it directly from your desktop, it will upload the file and then
display it along with the rest of the media files in the library. Your new item will be
unattached to any post or page at this point.

To include it somewhere (in a post or page), just go to the Add/Edit Post or
Add/Edit Page screen and click on the Add Media button as you did previously.
However, instead of uploading a new file, just select it from the media library
(the default screen after clicking on the Add Media button):

Chapter 4

[115]

When you click on any image displayed on this Insert Media screen, you'll see
the same set of options you got after uploading an image. Now you can click on
the Insert into post button. The media item will now appear as Uploaded To that
post or page:

By the way, as you can see, I've created a whole new post for that image and titled it
Some Spanish Dishes.

Media Manager
The aforementioned Insert Media screen that's visible in the preceding screenshots
is also known as the Media Manager. This Media Manager is a relatively new feature
in WordPress as it was introduced in version 3.5. Its interface is a lot different than
it was in the previous versions of the platform. It's certainly more visually attractive
and, at the same time, much easier to use.

Pages, Menus, Media Library, and More

[116]

You can always access the Media Manager from within the Add/Edit Post or
Add/Edit Page screen by clicking on the Add Media button. We've already
discussed two ways of using it—uploading new media and attaching media
that has been previously uploaded—but that's not all. The Media Manager
has a lot more interesting stuff under the hood.

First of all, if we take a look at the left sidebar, there are four links there (please
review the preceding screenshots). Starting from the top, these are as follows:

•	 Insert Media
•	 Create Gallery
•	 Set Featured Image
•	 Insert from URL

Also, later on, when you have some third-party plugins installed, you might find
even more links in that sidebar, but for now, four it is.

Clicking on any of them will reload the center part of the screen to present a
new range of features. We've already mostly covered the Insert Media tab, that
is, the default one. This is where you can either upload new files or select existing
ones from the media library. This tab also provides a handy search box and a
filtering dropdown:

Chapter 4

[117]

The filtering dropdown won't be of much use right now, but once you have hundreds
of different media in the media library, being able to sort through them will become
invaluable. The filtering dropdown simply lets you display media only of a specific
type (the types are Images, Audio, Video, and All media items). Also, the dropdown
right next to it delivers the possibility to filter by date. The search field is simply a
"search field", and works immediately as you type (there's no submit button).

The second tab is Create Gallery. This is a completely new gallery creation mechanism.
The number of things we can do in this module are truly impressive. It's all explained
in the section ahead.

The third tab in the Media Manager is Set Featured Image. This offers you yet
another way to assign a featured image to your posts (the first method was from
within the box on the post editing screen itself). This is a very simple task. All you
need to do is click on the image you want to save as the featured one and then click
the Set Featured Image button in the bottom-right corner.

Finally, we have the last tab called Insert from URL. Apart from the possibility
to upload your own images, WordPress also allows you to pick an image from the
Web and have it displayed on your site. As always in such situations, you have to
be careful not to take a copyrighted image, but from the technical point of view,
WordPress is capable of importing any image that you input into the main field,
as shown in the following screenshot:

Pages, Menus, Media Library, and More

[118]

As you can see, I've used a link to an image on Flickr (an image from my personal
account, actually). There are some additional settings here that you should use. Apart
from the Caption and the Alt Text options (this is the text that gets displayed in case
the image fails to load for whatever reason), there are also settings for the alignment
and the URL destination of the link (if you want to link your image to something).

The important thing worth pointing out here is that WordPress doesn't import this
external image into your media library. Instead, it hot-links the image from the
source. In other words, the image is still on another server. What this means for
you is that you don't have any actual control over this image. It can be removed
overnight or replaced with another image without your knowledge. That's why
in 90 percent of the cases, it's actually better to download the image you want to
use and then upload it to your media library, instead of hot-linking it.

Adding an image gallery
As mentioned in the previous section, the gallery module that you can find inside
the Media Manager provides a completely redesigned, modern way of working
with image galleries. Just to remind you, this new gallery module can be accessed by
clicking on the Add Media button when editing a post or a page, and then clicking
on the Create Gallery link in the left sidebar.

One of the most user-friendly aspects about creating image galleries in WordPress is
that you can drag and drop multiple images at once, and WordPress will immediately
start turning them into a gallery. However, before you can do this, you have to choose
where you want to display your new gallery, and that's what we're going to do next.

Choosing a post or page
This is a very simple step, and we've been doing this previously, so here we go.
You can add a gallery (or multiple galleries) to any new or existing page or post.
I, for example, went with one of my existing posts, which you can see in the
following screenshot:

Chapter 4

[119]

Note where I have left my cursor (it's right in the middle if you can't see it). I made
sure to leave it in a spot on the page where I want my gallery to appear, that is,
underneath my introductory paragraphs.

Selecting or uploading images
You can start either by uploading some new images or selecting the ones already
in your media library. If it's the former you're after, then simply click on the Create
Gallery link on the left, grab some images from your desktop, and drag and drop
them onto the upload area.

Pages, Menus, Media Library, and More

[120]

If you want to work with some of your existing images that are already in the
media library, then just click on the Media Library link as shown in the following
screenshot. As an example, I've selected two images that I want to use (they have a
checkbox in the upper-right corner):

At this stage, you can adjust the titles and descriptions of the images if you want
to, and then click on the Create a new gallery button. In the next step, you have
the opportunity to rearrange your images by dragging them around the display
area. You can also adjust the captions (the captions will be saved so that they can be
reused later on if you're creating a gallery using the same images). On the right side,
under Link To, there's a drop-down menu where you can change the link destination
for each image. The way a gallery works in WordPress is that when visitors click on
any image, they will be redirected either to the media file itself, to the attachment
page (an individual page created for each image by default), or nowhere at all.
Going with the default value of Media File is the recommended choice.

The other two options on this page—the number of columns, and the Random
Order checkbox—are pretty self-explanatory. When you're done, just click on the
Insert gallery button:

Chapter 4

[121]

On the post editing screen, the gallery block itself has a nice preview. There's a small
space, and in it we can see the images that will appear as part of the gallery:

Pages, Menus, Media Library, and More

[122]

However, when you view the gallery on the frontend of your site, it's going to look
great. The degree of its greatness depends closely on the theme you're using, though.
When you click on any of the images, you'll be taken to a larger version of the image.

Also, while on the post editing screen, you can edit any image and any gallery by
clicking on the preview and then on one of the buttons that will appear:

One more note, if you're in the text view, you'll see the gallery shortcode instead of
the visual gallery block:

In this case, the gallery is inserted through a simple shortcode, which is [gallery
link="file" ids="40,38"]. These IDs are the individual IDs of the media files
that are a part of the gallery. What this means is that you can also edit your gallery
by hand, simply by replacing the IDs or adding some new ones.

We're going to talk about shortcodes in more detail in Chapter 9,
Developing Plugins and Widgets. For now, all you need to know is
that they allow you to sometimes use quite complex functionality
just by using short trigger codes; hence the name "shortcodes".

Note that because I'm uploading the photos while editing this particular post, all of
these photos will be attached to this post, which is a nice way of indicating which
images go where.

Chapter 4

[123]

The [gallery] shortcode is quite powerful! Take a look at the codex
to get all of its parameters, at https://codex.wordpress.org/
Gallery_Shortcode.

Importing/exporting your content
The final thing I want to describe in this chapter is the feature of importing and
exporting your content. By default, WordPress allows you to "take" content from
other places and publish it on your site. There are a number of platforms supported,
including Blogger, LiveJournal, Tumblr blogs, and more. You can see the complete list
by navigating to Tools | Import (it's also the starting point when importing content):

https://codex.wordpress.org/Gallery_Shortcode
https://codex.wordpress.org/Gallery_Shortcode

Pages, Menus, Media Library, and More

[124]

Importing content
If you want to import content from any source, after you click on any of the links
visible in the preceding screenshot, WordPress will prompt you to install some
plugins to fully enable the feature. Plugins are the topic of the next chapter, but the
way WordPress uses them for importing is really a hands-off approach, so you don't
need to know much about plugins themselves in order to be able to import content.

Now, importing content from each of the available platforms is a bit different, but
the general process looks similar, so we're going to use another WordPress site as
an example here (that is, we're going to import content from another WordPress site).
The first step is to click on the WordPress link visible in the preceding screenshot.
Immediately, you'll see a prompt to install the WordPress Importer plugin:

You can just click on the blue Install Now button at the bottom and the process will
start automatically. When it finishes, you can click on the Activate Plugin & Run
Importer link, which will take you straight to the importer panel:

Chapter 4

[125]

It's a very simple interface where all you have to do is take a WordPress export file
and upload it to your site. The platform will take care of extracting the archive and
importing the content in it. As a result, your site is going to be filled with new posts,
pages, even comments, custom fields, and navigation menus.

The main purpose of this feature is to help anyone who's migrating their sites from
platforms such as Blogger or LiveJournal. Imagine if someone had a Blogger blog
with over a hundred posts in it. Going through each one individually and inputting
it to WordPress by hand would be too time-consuming. With this feature, it can be
done in minutes.

Exporting content
Exporting content is even simpler than importing. To start, navigate to Tools | Export:

Pages, Menus, Media Library, and More

[126]

There's not much you can do here except select what you want to export and then
click the big button to download the WordPress export file.

Selecting All content will export your posts, pages, comments, custom fields,
terms, navigation menus, and custom posts. Selecting just Posts or Pages is pretty
self-explanatory.

When you click on the Download Export File button, you will end up with a file
that's just like the one we used when importing. This means that you can take that
file and create a mirror copy of your site somewhere else under another domain
name. Keep in mind though that the mirror file doesn't include your media files;
these you will need to import separately. The export file is only for the content
that sits in the database.

Summary
In this chapter, we explored the content that WordPress can handle that's not directly
about blogging. You learned about static pages, menus, the media library (and the
Media Manager), image galleries, header and background settings, and more.

You are now fully equipped to use the WordPress Admin panel to control all of
your website's content. Next, you'll learn how to expand your site's functionality
by installing new plugins, which we'll be discussing in the following chapter.

[127]

Plugins and Widgets
The topic of plugins and widgets has grown a lot in recent years. Nowadays,
it's hard to imagine any WordPress site that could operate without at least a
handful of (essential) plugins or widgets.

In this chapter, you will get to know what plugins are, why to use them, how to
use them, where to get them, and how to be up to date and take notice of any new
useful plugin that gets released to the community. We will also talk about some of
the most basic and popular plugins in the WordPress world, and why getting them
might be a good idea. Finally, you'll learn how to work with widgets to make your
sidebars even more functional and reader-friendly. Okay, let's get on with it!

Breaking down plugins – what are they?
Simply speaking, plugins are small scripts (files with executable PHP code) that
allow you to include new functionality in your WordPress site—functionality that
is not available or enabled by default. One of the best advantages of WordPress
is that it's quite an optimized platform. It makes your site load fast and doesn't
contain much redundant code. However, WordPress itself only offers the absolute
essential range of features—the features that are useful to everyone. However, the
platform does provide a straightforward way of expanding the abilities of your site
by introducing, you guessed it, plugins. The idea is simple: if you want your site to
be able to handle a specific new task, there's surely a plugin for that. Much like in the
Apple world and the popular expression, "there's an app for that."

Plugins and Widgets

[128]

Why use plugins
The best thing about plugins is that you don't need any specific programming
knowledge in order to use them. Essentially, they are just like standard applications
for iOS or Android—you can install them and enjoy the things they have to offer
without knowing what's going on inside. This being said, not all plugins are safe
to use in terms of data security or code quality. We will discuss this topic later in
this chapter.

Furthermore, the right combination of plugins can make your site more optimized,
more user-friendly, more attractive, more social-media-friendly, properly backed
up, protected against spam, and, ultimately, unique. Plugins are really one of the
best things about WordPress.

You see, before content management systems like WordPress were popularized,
there was no easy way for site owners to introduce new functionalities on their
sites. Doing so always required hiring a professional programmer and investing in
the whole development process. Nowadays, this is no longer the case, and virtually
anyone can have an impressive site without losing the shirt off their back.

Where to get plugins from
The community behind WordPress plugins is a huge one. There's no one central
plugin-building company. Developers all over the world create plugins and
then distribute them across the Internet. And, very often, they receive no direct
compensation whatsoever. The best place to visit for WordPress plugins is the
official directory at https://wordpress.org/plugins/.

https://wordpress.org/plugins/

Chapter 5

[129]

There are over 37,000 different plugins available in the directory at the time of
writing this book, and this number is constantly expanding with around 110 new
plugins being added every week. This really is an impressive number considering
that many of these plugins are very advanced pieces of web software and not just
simple, one-script add-ons.

There's a search field available in the center of the page in the directory (visible in
the preceding screenshot), which allows you to search plugins by topic and by tag.
You can also view a list of the most popular plugins as well as featured plugins.
In short, the official plugin directory is where you should always go first when
looking for a plugin.

It's also a good habit to always check how popular the plugins you're interested in
are. Getting plugins that already have a proven track record of happy users will
improve your chances of getting a quality product that you'll enjoy using.

Plugins and Widgets

[130]

You can also do Google searches. I recommend searching for the problem you're
trying to solve and see what plugins other users recommend and why. Often, there
are multiple plugins that perform similar functions, and you will find the feedback
of other WordPress users valuable in choosing between them. However, as you do
this, be sure to keep an eye out for malicious or poorly coded plugins that could
break your website or allow someone to hack into it. Be careful when installing
new plugins with no reviews, comments, or feedback from users, in addition to
those plugins that have bad feedback about them on the Internet.

To get even more in-depth with your plugin investigation, you can
also check out the changelogs and support forums for each plugin
you're considering for your site (every plugin page inside the
official plugin directory has a tab named Changelog and Support).
They should give you an idea of how well or how poorly a given
plugin is coded, supported, and so on.

Apart from free plugins, there's also a big set of premium plugins (paid ones)
available. However, you won't find them in the official directory. Most of those
plugins have their own websites handling sales, customer support, and usage
tutorials. If you're interested, one of the more popular premium plugin directories
can be found at http://codecanyon.net/category/wordpress.

Finding new plugins
Generally speaking, if a given plugin proves that it's a quality solution and gains
some popularity, it will be showcased on the home page of the official directory in
the Featured Plugins section. But if you want to be up to date with things as they
happen, you can pay attention to what's going on at https://wordpress.org/
plugins/browse/new/.

Additionally, a great way to discover new plugins is to become a regular visitor
to one of the popular blogs about WordPress. Although these blogs are not official
creations (they are run by independent owners), they do provide an impressive
range of tips and advice, not only on plugins but also on other aspects related to
WordPress. The list includes the following:

•	 http://wptavern.com/

•	 http://www.wpbeginner.com/

•	 http://www.codeinwp.com/blog/

•	 https://yoast.com/

•	 http://premium.wpmudev.org/blog/

http://codecanyon.net/category/wordpress
https://wordpress.org/plugins/browse/new/
https://wordpress.org/plugins/browse/new/
http://wptavern.com/
http://www.wpbeginner.com/
http://www.codeinwp.com/blog/
https://yoast.com/
http://premium.wpmudev.org/blog/

Chapter 5

[131]

•	 http://bobwp.com/bobwp-wordpress-blog/

•	 http://themefuse.com/blog/

Installing a plugin – the how-to
The steps for installing a plugin are simple:

1.	 Find your plugin.
2.	 Download it to your WordPress site, either manually or through the

automatic installer.
3.	 Install and activate it.
4.	 Configure and/or implement it (if necessary).

There are two ways to get the plugin into your WordPress installation:

•	 Install manually
•	 Install from within the wp-admin

The first option—installing plugins manually—generally requires a bit more effort than
the second one, but sometimes it's the only way to work with some specific plugins
(mostly premium ones). The second option—installing from within the wp-admin—is
generally quicker and easier, but it's not possible in all cases. You need to be on a server
that's configured correctly, in a way that allows WordPress to add files (we talked
about installing WordPress and server configuration in Chapter 2, Getting Started with
WordPress). Plus, the plugin you want to install has to be available in the WordPress
plugin repository, that is, the official plugin directory.

In the following section, we'll go over the manual method first, and then handle
auto-installation.

Manual plugin installation
As an example here, I will install a popular plugin called Jetpack by WordPress.com.
It's quite a large plugin, offering a range of features and effectively making your
WordPress site more functional and easier to use at the same time. We'll discuss it
in more detail later in this chapter. That being said, the following procedure allows
you to install any WordPress plugin you can get your hands on, not only Jetpack.

To install a plugin manually, you must start by downloading the plugin archive
either from the official directory at https://wordpress.org/plugins/ or from
some other website or source (usually when dealing with premium plugins).

http://bobwp.com/bobwp-wordpress-blog/
http://themefuse.com/blog/
https://wordpress.org/plugins/

Plugins and Widgets

[132]

In this case, the Jetpack plugin is available in the official directory at
https://wordpress.org/plugins/jetpack/.

Just click on the orange Download Version 3.2 button, and save the resulting ZIP file
on your computer in a place where you can find it easily.

An important point to note is that before downloading any plugin, check the plugin
compatibility. You can do so by looking at the parameter labeled Compatible up to
that's visible on the plugin page (preceding screenshot). You can check which version
of WordPress you are using on your site by taking a look into the Updates section of
the Dashboard (available at http://yoursite.com/wp-admin/update-core.php),
as shown in the following screenshot:

https://wordpress.org/plugins/jetpack/

Chapter 5

[133]

Once you have the plugin downloaded, and if your server is set up correctly,
you should be able to upload the ZIP file directly via the Plugins | Add New
page. Just click on the Upload Plugin button at the top and choose the ZIP file
of the plugin, as shown in the following screenshot:

If this automatic uploader doesn't work for you, you can do this
the old-fashioned way. First unzip, that is, extract the ZIP file you
downloaded so that it's a folder, probably named jetpack (at least
in this case). Then, using your FTP client, upload this folder inside
the wp-content/plugins/ folder of your WordPress installation.
You'll also see the two plugins in that folder that WordPress came
with—akismet and hello.php.
If you need some assistance with FTP software, please review
Chapter 2, Getting Started with WordPress, where we talked about
the topic of installing WordPress.

After the uploading finishes, you will be able to activate the plugin. This is required
to effectively "turn the plugin on". This can be done simply by clicking on the Activate
Plugin link, as shown in the following screenshot. At this point, you're done and the
Jetpack plugin is working.

Now you are ready for the final step—configuring and ultimately making use of the
plugin. But, before we shift our attention to this, let's discuss an easier method of
dealing with plugin installation, which is also the recommended way.

Plugins and Widgets

[134]

Auto-installation
If the plugin you want to install is available in the official plugin directory at
https://wordpress.org/plugins/ and your server configuration meets the
requirements for auto-installation (your webhost has to grant you the read/write/
modify directory and file permissions: this is usually the case with the majority of
serious hosting companies), then you can search for and install a new plugin from
within the wp-admin. Just navigate to Plugins | Add New. It just so happens that
the plugin I'm using here as the example—Jetpack—is one of the most popular
plugins in the directory at the moment. Therefore, you will actually see it right on
the main screen in the Plugins | Add New section. If the plugin you want to install
is not in this featured plugins area, you can type its name in the search box to the
right (the following screenshot):

https://wordpress.org/plugins/

Chapter 5

[135]

Once you see a plugin that seems interesting, you can click on the More Details link
to see some more information about the features it has to offer:

I recommend you always look at this information carefully. Be sure to watch
for version compatibility. Just like with the manual installation method, there's
a parameter labeled Compatible up to here as well. In some cases, you can risk
installing a plugin that's a little outdated, but you should proceed with caution.

After the installation, you need to test the plugin carefully and verify that it's behaving
correctly. Most of the time, if the Compatible up to parameter indicates an older
version of WordPress, it doesn't necessarily mean that the plugin will fail to work
with a newer version. It just means that it hasn't been thoroughly tested, hence the
importance of performing your own tests. However, I strongly advise against installing
any plugins that haven't been updated in more than two years. Luckily, whenever you
encounter such a plugin, WordPress itself will warn you either through this message
on the official plugin page, as shown in the following screenshot:

Plugins and Widgets

[136]

Or, alternatively, inside the plugin details section in the wp-admin, there's a parameter
labeled Last Updated, as shown in the following screenshot:

If everything is fine, you can proceed by clicking on the Install Now button.
The next screen you see will invite you to activate the plugin (just like when
installing a plugin manually), as shown in the following screenshot:

At this point, the plugin has been installed and activated. In other words, it should
be fully operational.

There's just one more thing. Some plugins are perfectly functional right after activation,
while others require some additional tuning up. The following are the four most
likely scenarios:

•	 You may not have to do anything. Some plugins simply change the way
WordPress does some things, and activating them is all you have to do.

•	 You may have to configure the plugin before it begins to work. Some plugins
need you to make choices and set new settings.

•	 You may also get a set of shortcodes or other elements that you can use to
include additional content that the plugin provides inside your posts or pages.

•	 There may not be a configuration page, but you may have to add some code
to one of your theme's template files.

If you're unsure of what to do after you've uploaded and activated your plugin,
be sure to read the readme file that came with the plugin, or look at the FAQ on
the plugin's website.

Chapter 5

[137]

Many plugin authors accept donations. I strongly recommend giving donations to
the authors of the plugins that you find useful. It helps to encourage everyone in
the community to continue writing great plugins that everyone can use.

If, for some reason, the auto-installation process has failed,
then you will need to switch to the manual installation
described in the previous section.

The must-have pack of plugins
Even though there are over 37,000 plugins available in the official directory, you
obviously don't need all of them on your WordPress site at the same time! There is,
therefore, a small set that we might call the "must-have pack". And, obviously, my list
of must-have plugins can be different from the next guy's, so please treat the following
information more as guidance rather than as a written-in-stone necessity. That being
said, I am being honest here, and despite the fact that some of my blogs feature more
than 25 plugins, all working at the same moment, the essential must-have list consists
of only seven plugins. All these plugins handle a specific task geared toward making
a WordPress site better and more functional.

Backing up
Backing up is probably the most important task for any website owner, and I'm
saying this in all seriousness. For instance, can you imagine a situation in which
you lose your whole site overnight with no ability to restore it? This might sound
a bit hard to believe right now, but it does happen. If it's a personal blog you've
been running, then it's not that tragic. But for a business website, it's a completely
different story.

So, one of the main problems with backing up is that it's only effective if it's done
regularly. In other words, you need to create backups often and keep them somewhere
safe. While that's all fine, who has the time to do this manually? No one, honestly.
That's why we'll be using a plugin that does its magic in the background without
any supervision required on our part: introducing WordPress Backup to Dropbox,
available at https://wordpress.org/plugins/wordpress-backup-to-dropbox/.

https://wordpress.org/plugins/wordpress-backup-to-dropbox/

Plugins and Widgets

[138]

This plugin allows you to handle website backups in an easy to grasp and hassle-free
way. It connects with your Dropbox account and then backs up your site regularly
on autopilot. It requires only minimal initial setup. After installing and activating it,
you need to integrate it with your Dropbox account by going to the WPB2D section
in your wp-admin.

If you don't have an account yet, you can sign up to Dropbox
for free at https://www.dropbox.com/. As part of the free
package, you get 2 GB disk space, which will be more than
enough to keep your site backed up.

The activation is done with one click on the orange Authorize button, as shown in
the following screenshot:

After you're done with that, you get to pick the things you want to back up and also
select the directory where you want your backups to sit within your Dropbox. The
way I have my site set up is to handle the backups on Sunday at 5 A.M., and to do
them weekly (for a busy site, you can even go as far as setting up daily backups)
On the Settings screen, you can also pick the files and directories that you want
excluded from the backups.

https://www.dropbox.com/

Chapter 5

[139]

Once you click on the main Save Changes button your site is integrated with Dropbox
and backups will be done automatically, as shown in the following screenshot:

With this plugin, you can also trigger backups manually (on top of the backup
scheduling feature). Doing so is a good idea when you first install the plugin, just
to check that everything's working fine and to have your initial backup done. You
can start the backup in WPB2D | Backup Monitor. You will be presented with the
following screen:

Plugins and Widgets

[140]

When the backup finishes, you will be able to see everything in your Dropbox
account, as shown in the following screenshot:

Enabling Google Analytics
Google Analytics is a very popular site stats and analytics solution. It's free, easy to
use for a beginner, and very powerful for anyone willing to get into it a little more
deeply. In short, Google Analytics lets you in on a set of stats and data regarding the
web traffic your site is getting, including things such as the exact number of visitors
(daily, monthly, and so on), traffic sources, your most popular content, and virtually
myriads of other statistics. Google Analytics is available at https://www.google.
com/analytics/.

To enable Google Analytics on your site, you have to sign up for a Google account
first, then enable Analytics, then add your site in the control panel (all available on
the official Google Analytics page, along with extensive tutorial documentation),
and then take the tracking code that Google gives you and include it in your site.
This last step is where the Google Analytics by Yoast plugin comes into play and
makes the whole thing a lot simpler. You can get it at https://wordpress.org/
plugins/google-analytics-for-wordpress/.

https://www.google.com/analytics/
https://www.google.com/analytics/
https://wordpress.org/plugins/google-analytics-for-wordpress/
https://wordpress.org/plugins/google-analytics-for-wordpress/

Chapter 5

[141]

Once you download and activate it, proceed to Analytics | Settings (in the
wp-admin). Although the plugin has a lot of settings, the only thing you must
do in order to make it work is to authenticate the plugin to enable a connection
with your Analytics account. Just click on the Authenticate with your Google
account button. This will redirect you to a page on Google where you have to click
on another button, Grant access, and then you'll be taken back to your wp-admin.
Now you can select your UA-profile that you want to use for monitoring the site.

If you're having problems with this semi-automatic way of authentication, you
can simply input your Analytics code (called the UA code) manually. This code
is visible in your profile at Google Analytics (usually starts with "UA-" and is
followed by nine numbers).

Once you're done with the authentication procedure, your site is fully connected
to Google Analytics and the traffic stats are being collected. After a while, you can
navigate to your profile in Google Analytics and see how your site's been doing in
terms of visitor popularity. Also, to get a more immediate indication whether the
tracking code has been set correctly or not, you can navigate to the Real-Time
traffic section inside Google Analytics.

Plugins and Widgets

[142]

Caching
To be honest, caching is a pretty complicated concept. If you speak "Engineering," then
here's the definition: in computer science, a cache is a component that transparently stores
data so that future requests for that data can be served faster. What it means in plain English
is that if you have caching enabled on your site, it will load faster and be much more
accessible to your audience/visitors. Luckily, even though the concept itself is not that
straightforward, the plugin that enables you to "cache" is. Currently, the top of the line
plugin is called W3 Total Cache, available at https://wordpress.org/plugins/w3-
total-cache/.

And it's not just me recommending it. Actually, a number of major hosting companies
and experts say that it provides the way to get your site optimized fast. More than that,
this plugin is also in use on some major blogs around the web.

The installation procedure is the same as with any WordPress plugin. But right after
you activate it, you'll see that the usage is quite different. For one thing, it's accessible
through a completely new section in the left sidebar.

It's labeled Performance and it's placed right below Settings. Less than a second
after you click on it, you will realize that this plugin is a huge one. It could probably
have a completely separate book written about it. So here, I will only share the
quick-start guide, so to speak.

https://wordpress.org/plugins/w3-total-cache/
https://wordpress.org/plugins/w3-total-cache/

Chapter 5

[143]

Go to Performance | General Settings and browse through the page. There's a
number of checkboxes labeled Enable. Just to get started with the plugin, I advise
you to enable (check the checkbox below) the following blocks:

•	 Page Cache
•	 Database Cache
•	 Object Cache
•	 Browser Cache

And, then, click on any of the Save all settings buttons. From now on, caching will
be fully enabled on your site and your visitors should start experiencing performance
improvements right away. Obviously, we've only touched on the possibilities and
customizations that this plugin brings to the table, so I encourage you to give it a
closer look in your spare time.

Search engine optimization (SEO)
SEO is one of the most popular topics online (at least among website owners).
The simple truth is that working on your site's SEO, if done right, will raise its
position in search engines (like Google) and will bring you more visitors on a daily
basis. The concept is pretty simple in theory, but the work involved in order to
achieve this can become a full-time job. If you're not interested in devoting a big
chunk of your time to SEO, then at least get the WordPress SEO plugin, available at
https://wordpress.org/plugins/wordpress-seo/, and have the basics handled.
The plugin is very popular in the blogosphere. Among others, it's being used by
blogs like http://css-tricks.com/ and http://www.viperchill.com/.

https://wordpress.org/plugins/wordpress-seo/
http://css-tricks.com/
http://www.viperchill.com/

Plugins and Widgets

[144]

Similar to the previous plugin—W3 Total Cache—this one has a custom section
within the wp-admin too. It's visible right below Settings and it's called SEO,
as shown in the following screenshot:

The best way to get the core how-to on this plugin is to click on the Start Tour button
visible at the top of the settings page, as shown in the following screenshot:

Chapter 5

[145]

This tour will guide you through the most basic settings and features of the plugin.
I really encourage you to spend a while optimizing your site with this plugin because
this work will definitely pay off in the long run, or maybe even much sooner.

There's a separate resource published by the author of the WordPress
SEO plugin—Joost de Valk. It's where you should go to get true,
in-depth information on how to set up the plugin and also what other
things you can do to make your site SEO-friendly. You can find it at
https://yoast.com/articles/wordpress-seo/.

Securing your site
The issue of site security and hacker attacks is a really serious thing online these
days. You might be thinking that no one will try to harm your site because you're
not that popular yet, right? Well, the reality can be harsh in this case. Most hacker
attacks are not about stealing your revenue or taking over your site as a whole.
Usually, they are about including a small piece of code on your site that will link
out to other external sites (most of the time either fraudulent sites or "naughty"
content). The idea of such an attack is that you won't find out that it ever took
place, which is the biggest danger.

Don't sweat though, there's a plugin that will help you with that—Wordfence
Security, available at https://wordpress.org/plugins/wordfence/.

https://yoast.com/articles/wordpress-seo/
https://wordpress.org/plugins/wordfence/

Plugins and Widgets

[146]

Getting started with this plugin requires only basic setting up. First of all, download
and activate it (the usual procedure). Immediately afterward, you will see an invitation
to take the tour and input your admin e-mail to get notifications about your site's
security, as shown in the following screenshot:

This tour, although short, will present all of the most important features to you
and tell you how to work with the plugin effectively. For the most part, the plugin
doesn't require any supervision, and thanks to the notification e-mails, you can just
sit back, relax, and wait for the plugin to reach out to you, so to speak.

The best way to get started with the plugin is to click on the orange Start a Wordfence
Scan button, as shown in the following screenshot:

Chapter 5

[147]

Right after doing so, you will see the scan running (inside the two blocks visible
below the scan button you've just clicked). When the scan is done and everything
is okay, you will see a success message, as shown in the following screenshot:

In case there are any problems, Wordfence will display them to you further down
the page inside the New Issues block, as shown in the following screenshot, and
will also give you tips on how to solve them. Unfortunately, or rather fortunately,
I don't have a screenshot with actual problems inside to show you.

Apart from the basic scanning functionality, this plugin also gives you the ability to
block certain IP addresses from accessing your site, improving your site's performance
with caching, and even making your site inaccessible to whole countries (in case some
geographical area causes you serious problems).

So, now your site is fully protected against various hacker attacks. As usual, there are
a lot more settings available in this plugin. However, I wouldn't advise playing around
with them without reading the official documentation first. This type of protection is a
very powerful mechanism and it's easy to make a mess if you're not careful.

Plugins and Widgets

[148]

Social media integration
Social media has taken the online world by storm, and these days we can hardly
imagine a website existing without at least some level of social media integration. The
benefits of such integration are clearly visible. With a good social media WordPress
plugin, you will be able to share your posts with friends and family on all of the most
popular social platforms online. More than this, your readers will be able to do so too,
effectively growing your audience and making your site more popular. Ultimately,
publishing content that goes viral on social media can skyrocket your traffic and make
your site visible to thousands of new people every week or even day.

So, the way we're going to make it easier for your readers (and you) to share your
content is by displaying some social media buttons on your site or, more accurately,
on each post and page that your site consists of.

But there's a problem here. Most social media plugins out there, while doing a great
job of enabling your audience to share the content, also display a lot of negative social
proof. In short, when you first publish a new post, the share counters on them always
say 0 shares— this simply doesn't look good.

To solve this problem, I've developed a plugin of my own and I'm making it available
to you for free since you've already invested money in this book. It's called the Social
Share Starter. To get the full description on what makes this plugin unique, feel free
to visit http://bit.ly/sss-plugin.

http://bit.ly/sss-plugin

Chapter 5

[149]

The main feature of this plugin is displaying social media share buttons to your
visitors, nothing unusual there. However, instead of showing an individual share
number for each service, it shows a cumulative number for all of them. Plus, it also
allows you to set the minimal displayed number of shares.

Right after downloading and installing the plugin (via manual plugin installation
explained earlier in this chapter) you can go to Settings | Social Share Starter by
KK to set it up.

The following are the options you can see in the preceding screenshot:

•	 Minimal displayed number of shares: This is the number of total shares
that a given piece of content has to achieve in order for that number to
be displayed.

•	 Maximum width of the whole share buttons block: This is just a typical
design setting. You can experiment with this pixel value to get the right
presentation for your theme.

•	 Your Twitter name: This will be used to construct custom tweets.

Plugins and Widgets

[150]

•	 The story source parameter for LinkedIn: Just place the name of your
site here.

•	 Where to display the buttons: There are three display options available here.
You can choose whichever makes the most sense to you.

•	 Buttons to use: The plugin displays buttons for Facebook and Twitter by
default. You can also enable three more buttons for Google+, LinkedIn,
and Pinterest.

•	 The post IDs you don't want to show the buttons on (comma-separated):
To see an individual post's ID, just go to Posts in the wp-admin and
then proceed to edit the post. The ID is going to be visible in the URL,
right next to post=.

After clicking on the Save Changes button, you've successfully enabled social media
integration on your site. Just to give you an example, the following is what the
buttons look like on one of my more popular blog posts:

And the following is what they look like on my Daily Cooking blog on a completely
new post:

Chapter 5

[151]

Jetpack
This mysterious name is what one of the most popular plugins of today is called
(it's being used by some mainstream blogs on the web, such as Tim Ferriss'
http://www.fourhourworkweek.com/). Jetpack, by the guys behind WordPress.com,
offers a truly exceptional range of features and functionalities. The plugin consists
of a number of modules that can be enabled or disabled one by one. This gives you
full control over the features you want and don't want to use. Jetpack is available at
https://wordpress.org/plugins/jetpack/.

After downloading and activating it, you'll see a new section in the wp-admin,
but this time, it's right below the Dashboard, as shown in the following screenshot:

Inside, you can see all of the available modules and functionalities. First, you should
navigate to Jetpack | Settings to enable or disable the modules you need/don't
need. There are over 30 modules there, so you have a lot to choose from.

In the current version, the modules are Beautiful Math, Carousel, Contact Form,
Custom CSS, Custom Content Types, Enhanced Distribution, Extra Sidebar Widgets,
Gravatar Hovercards, Infinite Scroll, JSON API, Jetpack Comments, Jetpack Single Sign
On, Likes, Markdown, Mobile Theme, Monitor, Notifications, Omnisearch, Phonon,
Post By Email, Publicize, Related Posts, Sharing, Shortcode Embeds, Site Icon, Site
Verification, Spelling and Grammar, Subscriptions, Tiled Galleries, VideoPress,
WP.me Shortlinks, Widget Visibility, WordPress.com Stats, and VaultPress.

http://www.fourhourworkweek.com/
https://wordpress.org/plugins/jetpack/

Plugins and Widgets

[152]

As you can see, the list is impressive to say the least. I won't go over each of the
modules here in detail because it would probably require a chapter of its own.
Instead, I encourage you to click on the name of each module you'd like to look
into. Right away, a pop-up window will appear with the description.

That being said, the modules that you will quite possibly find the most useful are
Publicize (allows you to share your content automatically with various social media
platforms), WordPress.com Stats (gives accessible stats), Spelling and Grammar (an
advanced spelling and grammar checker), Contact Form (lets your visitors contact you
directly), Monitor (checks if your site is online and sends you an e-mail notification in
case it isn't), and Shortcode Embeds (an easy way of including YouTube videos and
other external media in your content).

Widgets
Widgets are one of the native mechanisms in WordPress. Their main purpose is
to provide us with an easy-to-use way of customizing the sidebars, footers, and
headers of our site, with the addition of extra content. Even though the most common
placement for widgets is indeed the sidebar, the only actual rule is that a widget
can be displayed inside a widget area. And, a widget area can be anywhere a theme
developer wants it to be. Common widgets contain the following:

•	 A monthly archive of blog posts
•	 A clickable list of pages
•	 A clickable list of recent posts
•	 A metadata box (containing log in/out links, RSS feed links, and other

WordPress links)
•	 Recent comments posted on the blog
•	 A clickable list of categories
•	 A tag cloud
•	 A block of text and HTML
•	 A search box

These days, most themes are widget-enabled with one or more widget areas
available for use. If I were to simplify this a bit, I'd say that widget areas behave
like locations for menus. To control the widgets on your new website, navigate to
Appearance | Widgets. Twenty Fifteen comes with one widget area. It's simply
called Widget Area.

Chapter 5

[153]

This widget area appears in the left sidebar of the site. Currently, I have a lot of stuff
in there (which you can see in the preceding screenshot). Namely, there's a search
field, archives, categories, and metadata.

The way you work with widgets is very simple. The only thing you have to do
(on the Appearance | Widgets screen) is take any of the widgets visible on the
left-hand side and drag and drop them into the right-hand area under Widget
Area. For example, let's take the Custom Menu block and drag it all the way to
Widget Area. The result is as shown in the following screenshot:

Plugins and Widgets

[154]

Now, we can give this block a title and also use the dropdown to select the custom
menu we want to include in this widget. Currently, there's only one menu, which we
created a while ago—Main. The following is what the site looks like with this custom
menu placed in the left sidebar:

At this point, we have the main menu displayed two times on the site. There's one in
the top area, and the second one is inside the left sidebar. As you can see, if you want
to place your custom menu somewhere on the site, you have two ways of doing so.
You can either assign it inside the Appearance | Menus section, or use it as a custom
menu widget and place it in any widget area that your theme supports.

Enabling any other type of widget is very similar to the process just described.
All you need to do is drag the widget you like and drop it onto the area where
you want to have it displayed. Then, once the widget is in place, you can adjust
its settings and content.

When it comes to working in the Appearance | Widgets section, you can click on
the little down arrow to the right of any widget to expand the details and see the
options. You can drag a new widget in from the collection of available widgets on
the left. You can drag existing widgets up and down to change their order. You can
delete a widget by expanding it and then clicking on Delete.

Experiment with putting widgets into different widget areas and then refresh your
blog to see what they look like. Always be sure to click on Save if you make any
changes to a widget.

Chapter 5

[155]

Also, at the bottom of the screen, there's one more section labeled Inactive Widgets, as
shown in the following screenshot. Many widgets have their settings and parameters.
Therefore, even if you don't want to display a particular widget on your site at the
moment, but don't necessarily want to lose its settings (in case you'd like to use the
widget again in the future), this section is where you should put it. Just like the label
says, it's where you can drag your widgets to remove them from the sidebar but keep
their settings. This is also where you will find any widgets that were previously active
in a sidebar, but that got deactivated automatically after switching to a theme that
didn't use the same sidebar naming convention.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Summary
This chapter was all about expanding the features available on your site and
making your content more attractive without the need to touch any source code.
Basically, that's the whole idea behind plugins.

Let's face it; most developers don't actually need plugins because they can code
things on their own. However, for the rest of the world, plugins are what makes
WordPress easy to use and attractive for everyone.

At this point, we know how to control the content of our WordPress site, so now
it's time to learn how to control the display. In the next chapter, we will start
discussing themes.

http://www.packtpub.com
http://www.packtpub.com/support

[157]

Choosing and
Installing Themes

One of the greatest advantages of using a Content Management System (CMS)
for your website is that you are able to change the look and feel of your website
without being knowledgeable about HTML and CSS. Almost every CMS allows
users to customize the look of their website without having to worry about their
content being changed. Those managed looks are referred to as themes. On other
platforms (for example, Blogger, Joomla!, Drupal, and so on), themes are sometimes
called templates or layouts.

Thousands of WordPress themes are available for download free of cost, and
thousands more are available at a pretty low cost. Some of the free themes are
developed by members of the WordPress community and listed on WordPress'
main website at https://wordpress.org/themes/, while others can be found
across the Web on independent sites.

But before you change the theme of your current website, you will want to know
the following:

•	 Some basic factors about the theme you're considering
•	 How to find quality themes
•	 How to choose the theme that best suits your content and audience
•	 How to install a theme

In this chapter, we will discuss all of the above topics. This chapter is a ground-up
guide to using themes. And, in the next chapter, we will discuss the advanced topic
of developing your own themes.

https://wordpress.org/themes/

Choosing and Installing Themes

[158]

If you are using WordPress.com to host your WordPress website, you
cannot upload themes to your site. Instead, you have to choose from the
hundred or so themes that WordPress.com makes available to you.

Finding themes
There are dozens of websites that offer WordPress themes for you to download and
to implement on your own website. Many theme developers offer their themes for
free, whereas some charge a small fee. Of course, if you cannot find a free theme
that fits your needs, you can always hire a theme developer to create a customized
theme for you, or you can be your own theme developer (see Chapter 7, Developing
Your Own Theme).

WordPress Theme Directory
The first place you should always go to when looking for a theme is the official
WordPress Theme Directory at https://wordpress.org/themes/. This is where
everyone in the WordPress community uploads their free themes and tags them
with keywords that describe the basic look, layout, and functions of their themes,
as shown in the following screenshot:

https://wordpress.org/themes/

Chapter 6

[159]

By looking at the list of popular themes on the right (the preceding screenshot), you
can see which themes are chosen most often. Twenty Fifteen, as you already know,
is the default theme that WordPress uses automatically when you first install it.

To get a better idea of what a theme will look like—apart from what's offered
by the thumbnail—just click on the title of the theme (in my case Zerif Lite, at
https://wordpress.org/themes/zerif-lite). You'll be taken to the theme's
detail page, as shown in the following screenshot:

https://wordpress.org/themes/zerif-lite

Choosing and Installing Themes

[160]

The above page shows you the theme's description, all of the tags that apply to it,
the average rating given to it by other users, and some comments on the theme.
If you click on the Preview button, you'll get to see the theme actually in action,
as shown in the following screenshot:

As you browse through the Theme Directory, make sure to take note of any theme
you find that you like; we'll discuss how to add it to your WordPress site later on in
this chapter.

It's also worth pointing out that each theme in the official directory comes with its own
Support section and Ratings section. You can view them by clicking on one of the links
available in the right sidebar, as highlighted in the following screenshot:

Chapter 6

[161]

Main types of themes
As mentioned before, there are two main types of themes: free themes and premium
(paid) themes. Also, if you don't consider price being a factor here, we can divide the
themes into four additional groups: standard themes, child themes, starter themes,
and theme frameworks.

We will discuss child themes in detail in the next chapter, so for now, let's say that a
child theme is a theme that inherits the functionality of another theme—the parent.

Standard themes are themes meant to work in their original form while allowing some
basic customizations and tuning up (just like the default theme—Twenty Fifteen).

Choosing and Installing Themes

[162]

Starter themes are a relatively new concept in the WordPress world. In short, when
using them, you are encouraged to modify the theme files directly, and effectively
make them the foundation of the theme you're currently building—like the name
suggests, they provide a great starting point for your own theme to be built upon.
They are a great solution for developers, but not so much for regular users who
just want to download a great theme and be able to use it right out the box.

Theme frameworks are somewhat similar to starter themes (they are meant to be
used as the base for your custom theme development), but they usually deliver a
larger range of various built-in features, plus they can be used straight out the box
as a standalone theme (at least to some extent). In one way, the main difference
between starter themes and theme frameworks is that when you get a starter theme,
you must put work into it beforehand, in order to make the theme functional. While
with frameworks, you get a functional theme right away, but then you are expected
to spend time tweaking its various elements to make it fit your site hand-in-glove.
The thing with both theme frameworks and starter themes is that they are usually
highly code-heavy products. This means that you can't really take full advantage
of them if you don't possess any programming skill or don't have anyone on your
payroll that does. This may not sound that clear right now, and that's okay. We will
explain this concept in more depth in the next chapter.

In the end, standard themes are what most bloggers and site owners work with
during their WordPress journeys, especially if they don't need any advanced
customizations or don't run purpose-specific websites (such as animated sites,
interactive sites, and so on).

Finding more themes
If you can't find a theme in the directory that you like, you have other options.
There are other sites with free themes, and also sites that sell themes for a price.
Most commercial themes are offered at two or three price points. The first price is
simply the cost of buying the theme for your own use, and can be anywhere from
$20 to $100. Such a license allows you to use the theme on a single site. The second
price is the price you pay if you want to be able to use the theme on multiple
sites (domains), or when you need the project graphics (for example, Photoshop
documents) and other development files. In this case, it's usually from $60 to $200.
The last price point, although not that popular nowadays, is the "exclusive license."
You can get it if you want to be the only user of the theme. This can be anywhere
from $500 to even $1500, or more.

Chapter 6

[163]

Let's focus on free versus paid themes here. While every theme in the official
directory is free, the rest of the Internet is split in half regarding this. Some sites
provide free themes exclusively, while others offer paid ones exclusively. There are
also a number of distributors who sit in between. I personally don't advise getting
any free themes just from anywhere other than either the official directory or one of
the respected theme stores (which offer some free themes as a promotional method).
The reason is simple. Only quality themes are allowed into the official directory, and
I'm not just talking about the looks or the design. What matters apart from the design
is also the code structure and code quality. There's not one theme that features any
mysterious blocks of code (such as encrypted code or suspicious external links) that
will ever find its way into the official directory. That's what ultimately makes the
official directory one of the best sources of free WordPress themes on the Internet.

When it comes to various free themes being released in theme stores, the story is
much the same. The "first league" of WordPress themes, so to speak, comprises
respected, serious companies. So even when they release a free theme, they can't
afford it being low quality or lacking in any other way. Therefore, in most cases,
they are safe to use as well.

The last thing we can see online are hundreds, if not thousands, of free themes being
released on random websites, promoted through paid advertising, "top themes" lists,
advertorial articles, and so on. Let me say this again: I don't advise you to get any of
these, even if the designs are attractive. The fact is that you'll never know what sits
on the inside and what security breaches can be taken advantage of to hack into such
a theme. They are also almost never supported by their creators and there's no theme
documentation or updates. In short, it is not worth it.

If you want to learn more about why unknown-origin
free themes are unsafe to use, feel free to visit the article at
http://newinternetorder.com/free-wordpress-
themes-are-evil/.

Finally, if you have some money you'd like to invest in your site and its quality,
consider getting a full-blown premium theme or even a premium theme framework.
As I mentioned earlier, the price range is around $20 to $100, depending on the
manufacturer and the features the theme comes with.

You are welcome to check out any theme provider you wish, but just to make things
quicker, the following is a go-to-first list of quality theme stores:

•	 StudioPress: http://www.studiopress.com/
•	 ThemeIsle: https://themeisle.com/

http://newinternetorder.com/free-wordpress-themes-are-evil/
http://newinternetorder.com/free-wordpress-themes-are-evil/
http://www.studiopress.com/
https://themeisle.com/

Choosing and Installing Themes

[164]

•	 ThemeFuse: http://themefuse.com/
•	 WooThemes: http://www.woothemes.com/
•	 ThemeForest: http://themeforest.net/category/wordpress

In general, most good commercial theme websites let you see a preview of the theme
in action before you buy it. Some also let you customize the theme before download.
As with any other online shopping experience, do some research before buying to
make sure you'll be getting a quality theme with decent support. There are plenty of
badly coded themes out there and even themes with malicious code. Before buying
a theme, verify the source of the theme and see if you can find feedback or reviews
from anyone else who has purchased it.

To find even more websites that offer themes, just do a Google search for "WordPress
themes" or "premium WordPress themes" and you'll get over 70 million hits. Also,
keep in mind that you can choose a basic theme now and customize it or create your
own from scratch later as you build skills by reading this book.

Some not-design-related theme basics
Let's take a quick look at some factors to consider when choosing and installing
themes, just so that you'll be better informed.

The structure of a theme
A WordPress theme is actually a collection of files in a folder/directory. There are no
special or unusual formats, just a few requirements for those files in the theme folder.
The only requirements for a folder to be a valid WordPress theme are as follows:

1.	 It should have a style.css file and an index.php file.
2.	 The style.css file must have the basic theme information in its first five lines.

There are a number of additional files that you'll find in most theme folders. They are
as follows:

•	 A screenshot.png file that is the little thumbnail that shows what the theme
looks like

•	 An images folder where all images associated with the theme live
•	 A variety of files that are used for different purposes (for example, header.

php, footer.php, page.php, single.php, archive.php, and so on)

http://themefuse.com/
http://www.woothemes.com/
http://themeforest.net/category/wordpress

Chapter 6

[165]

To learn more about the structure of various theme files and their
hierarchy, feel free to read the article at http://www.codeinwp.
com/blog/wordpress-theme-heirarchy/.

You don't have to worry about these details now, but knowing them will help you
identify what's going on in the themes you download for now. This will also be useful
in the next chapter where we will discuss making our own theme from scratch.

Also, don't worry if you download a theme and its directory structure looks very
different from what's described here. Some theme developers decide to go with
their own structure in order to provide some extra features and a more customizable
environment. This is mostly the case with various theme frameworks and big
premium themes that come with their pre-made child themes.

Factors to consider when choosing a theme
As you look through all of the available themes, you'll see that there is quite a variety
when it comes to look, feel, and layout.

To be honest, picking the perfect theme involves effort and some thought. A couple of
years ago, there were just a handful of quality websites and stores where you could get
your hands on some themes. Now, there are hundreds to thousands of them.

All this results in a situation where there are multiple factors to consider when
selecting a theme. It's best if you start with the following.

The purpose of the theme
As I've already mentioned multiple times in this and the previous chapters, nowadays,
WordPress is perfectly capable of running any kind of site, and this situation is
reflected in the number of available themes. Therefore, the first question to answer is:
what do you need the theme for?

Depending on the kind of site you're planning to launch, you should focus on
different types of themes. The following are some of the popular possibilities:

•	 Traditional blogs: These are the ones where the content is laid out in a
reverse chronological order, with only several pages of static content.

•	 Photo blogs: These are very much like traditional blogs when it comes to
the content organization, but in this case, the content consists mainly of
photos. This is a popular type of blog among photographers and other
creative individuals.

http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
http://www.codeinwp.com/blog/wordpress-theme-heirarchy/

Choosing and Installing Themes

[166]

•	 Video blogs: These are very much like photo blogs except now, we're
dealing with videos.

•	 Small business websites and corporate websites: Most small business sites
don't feature a lot of "posts" like traditional blogs. They usually focus on
static pages for providing the most important information about the business
(such as contact data, offer, and so on). This type is most commonly used by
local businesses such as restaurants, cafes, hotels, and other similar "physical"
businesses. Corporate sites are very similar in nature, but are much bigger
and feature much more content.

•	 One-page micro-websites: Some people know very well that they need only
a minimal online presence, effectively treating their new website as a modern
business card. In this case, a solution like a one-page site is perfect for them.
In short, one-page sites are just what they sound like; they consist of only
one page. However, due to the clever design and structure of that page,
the visitor can still get a rich experience while browsing it.

•	 Online magazines: The main difference between traditional blogs and online
magazines is that the latter feature a lot more content, with usually as many
as 10 or more posts being published every day. This requires good content
layout and clear presentation.

•	 E-commerce stores: Traditionally known as online stores or shops, an
e-commerce store is every website that offers a shopping cart functionality
and allows its visitors to buy a wide range of products, much like they'd do
in a traditional store or supermarket.

•	 Software/app websites: These are websites devoted to promoting/selling
one specific product. Nowadays, it's usually some kind of an app or other
piece of mobile software.

The trick when choosing a theme for your site is to understand its purpose and make
your decision based not only on the appearance of the theme but also on the thing you
need the theme for, its capabilities, as well as options for further customization. The
easiest way to do this is to pay attention to the categories of themes on the site where
you're looking for them. For instance, if you go to one of the popular theme stores such
as the ones at http://www.woothemes.com/product-category/themes/, https://
themeisle.com/allthemes, or http://themefuse.com/wp-themes-shop/, you'll
see that all three feature great mechanisms for filtering themes by purpose. Here's how
ThemeIsle does it:

http://www.woothemes.com/product-category/themes/
https://themeisle.com/allthemes
https://themeisle.com/allthemes
http://themefuse.com/wp-themes-shop/

Chapter 6

[167]

Here's WooThemes:

You can also do some research on the Internet and look at what the standard
is when it comes to the themes being used in your niche and for your type of site.
For example, if you're thinking of launching a photo blog, check what sort of themes
other photo blogs use: do they feature a lot of sidebars? How big are the photos they
publish? Are there a lot of static pages? And so on. The idea is this: don't reinvent
the wheel. If there's a significant number of sites that are similar to the one you're
planning to launch, then you should always try learning from them and then
make an educated decision when choosing your theme.

Choosing and Installing Themes

[168]

Theme licensing
If you're getting a theme from the official directory, then this part doesn't concern you.

However, when getting a theme from a professional theme store, you usually have
two or more options regarding the license. As I've mentioned earlier, the price range
is usually $20 to $100. Now, there are many licensing models, but the following two
are the most popular web-wide:

•	 Standard, one-site license: This allows you to launch one site using the
theme. It's the recommended choice if you're just searching for a theme for
yourself and don't need to use it on other people's sites as well. This is the
cheapest kind of license.

•	 Developer license: This is targeted toward developers and people who want
to launch more than one site with a theme. Additionally, the package usually
includes PSD project files and other mid-development files (note that some
one-site licenses include those as well). Developer licenses can be as much
as two times more expensive than the standard, one-site licenses.

Up-to-date themes only
This is probably the most important parameter here. Your theme has to be up-to-date
or it will fail to take advantage of all the newest features in WordPress. The only bad
news is that you can't know for sure whether a theme is a modern one or not. You
can only rely on the details provided by the theme seller. But as bad as it sounds, it's
actually not that big of a problem, because big theme stores can't afford to lie in their
marketing materials. So, whenever you see a message that the theme is compatible
with WordPress version X.X, it's most likely to be true (provided you're getting a
theme from a respected company).

Also, a good rule of thumb is to check when the last update took place. Depending
on the theme store, this information can be displayed in various places, so I can't
give you any specific advice where to look for it. Nevertheless, if you're getting your
theme from the official directory at https://wordpress.org/themes/, then you can
find this detail in the right sidebar on every individual theme's page (labeled Last
Updated), as shown in the following screenshot:

https://wordpress.org/themes/

Chapter 6

[169]

Themes that are customizable
When considering a theme, make sure to find answers to the following questions:

•	 Are the sidebars flexible? Can I choose how many sidebars I want to display?
•	 Is it widget-ready?
•	 Does it support custom menus?
•	 Is it complex or simple? Which do I prefer?
•	 How flexible is the content and layout? Can I choose the column count

and widths?
•	 Does it support the Customizer feature? Or does it offer a Theme

Settings page where I can customize layout, category display,
home page, and other options?

At this point in WordPress' development, I recommend rejecting any theme that
does not support widgets and custom menus, or deliver good customization
features. The idea behind all this is that these days, a situation where you can
use a theme right out of the box rarely happens, so having at least a couple of
customization possibilities goes a very long way.

Themes with responsive structure
This is one of the new parameters among modern themes. Back in the day, if you
wanted to make your site mobile-friendly, you needed to get some plugins and
additional mobile themes and then enable them to work at the same time. Now,
with HTML5 and CSS3, you can use just one theme and be certain that it's going
to look great on every possible device (from desktop computers, to laptops, to
mobile devices). The keyword to all this is responsive design/structure.

Choosing and Installing Themes

[170]

Whenever a theme developer indicates that their theme is responsive, it means
that it's compatible with all the devices people use to access the Internet these days.
In a nutshell, whenever a theme is responsive, this fact will always be mentioned on
the official sales/download page.

Support, reviews, and documentation
This is especially important if you're getting a paid premium theme. Quite simply,
since you're paying money, you naturally want to be sure that the product you're
getting is a quality one that provides good customer service and well-designed
functionality, hence the importance of documentation, reviews, and customer
support. It's as simple as that.

I do admit that selecting a theme can take a while, especially if you have to
remember everything we just covered, but this is work that will definitely pay off.
Let's not forget that you're going to be stuck with the theme you choose for at least
a year or two (a common scenario), so you definitely don't want to spend money
on a low-quality product.

Installing and changing themes
Now that you've chosen the theme you want to use, you'll need to install it into your
WordPress website.

You'll have the following two choices, as you did when adding new plugins:

1.	 If the theme you want is in the WordPress Theme Directory, and if your
server is set up for direct installation, you can add the theme straight from
within the wp-admin.

2.	 If any of those two conditions are not met, you'll have to download, extract,
and then upload the theme by hand.

Adding a theme within the wp-admin
As mentioned in the preceding section, you can add a theme directly from within
your wp-admin if you've chosen a theme from the WordPress Theme Directory,
provided you're using a current-enough version of WordPress and if your server
settings allow. First, navigate to Appearance, and then click on the Add New
button (visible at the top), as shown in the following screenshot:

Chapter 6

[171]

The screen that's going to appear will be very similar to the Add New Plugins screen.
At the top, you'll see some familiar elements such as various subnavigation links
(Featured, Popular, Latest, Feature Filter) along with a search box to the right. You can
click on any theme displayed on the grid to see its details, along with a nice preview.

By using the Feature Filter (the next screenshot), you can filter out some of the
themes based on the functionality they have or don't have. The Feature Filter is
a great way to find a theme that offers a specific range of functionalities that you
require for the site you're currently building. For instance, you can choose to display
themes featuring a responsive layout only. This will make sure that your website is
going to look great on all devices, and that's including all desktop computers, as well
as mobiles and tablets.

Choosing and Installing Themes

[172]

Now, I've already found a theme I like, so I won't bother with filtering and just put
the name of the theme in the search box, as shown in the following screenshot:

Once I hover over the theme block, I will see additional links for details, preview,
and installation. Clicking on Preview is a great way to see how the theme is most
likely going to look like in action. Note that at this point, the theme preview will be
the same as the preview on the Theme Directory page, rather than a preview of your
own site's content. Until the theme is installed, you won't see a preview of your own
site. If I click on Install, the theme will be downloaded and added to my collection
of themes automatically (and will be visible in the Appearance section in wp-admin),
as shown in the following screenshot:

By clicking on the theme, I will see a larger block containing all the details, along
with two more links to activate and see the live preview of the theme (which uses
the content I currently have on my site), as shown in the following screenshot:

Chapter 6

[173]

At this point, clicking on the Activate button will result in "turning the theme on"
and using it as the new design on the website instead of Twenty Fifteen (which I'm
using right now).

Downloading, extracting, and uploading
If you can't install a theme from within the wp-admin for whatever reason, you'll
have to use the following procedure instead.

Additionally, due to the growing popularity of external theme sources such as
various theme stores and independent developers, downloading and installing
a theme manually becomes the default way of handling things, and gradually
replaces the traditional approach of getting a theme from the official directory.

Therefore, to provide a good example when explaining the manual installation,
I'm going to get a theme (a free one) from one of the premium theme stores and
guide you through the process of having it installed.

It doesn't matter where you get your themes from, as the installation procedure
always starts once you have the theme downloaded to your computer. When this
is done, you'll see a ZIP file on your desktop (or in your Downloads folder).

The theme I'd like to try out is called Underscores, and it's a free starter theme
available at http://underscores.me/.

http://underscores.me/

Choosing and Installing Themes

[174]

Depending on the source of the theme, you might be required to either create a
user account, make a purchase, sign up to a newsletter, and so on, in order to get the
theme. Of course sometimes, there's just a direct download link. Underscores uses
a pretty straightforward model. All you need to do is input the name that you want
to use for your theme in the field at http://underscores.me/ (it can be whatever
name you wish). After clicking on GENERATE, you'll get a ZIP download:

At this point, you can upload the ZIP file through the wp-admin by navigating to
Appearance | Themes and clicking on the Add New button. There, you can click on
the Upload Theme button, which will take you to the place where you can finally
perform the manual installation, as shown in the following screenshot:

The only thing you need to do here is choose the ZIP file from your desktop and
then click on the Install Now button. After a short while, you will be redirected
to the success page where you will be able to activate your new theme.

http://underscores.me/

Chapter 6

[175]

If this doesn't work, continue with the following steps to extract and upload the
theme files manually.

If you're using Mac, the ZIP file may have automatically been unzipped for you, in
which case you'll see a folder on your desktop instead of the ZIP file or in addition
to the ZIP file. If not, then just do the extraction/unzipping manually so that you do
have the theme folder on your desktop.

The following screenshot shows the file contents of the Underscores theme that
I downloaded:

Apart from the mandatory style.css file and the index.php file, it also has
a number of other files that can handle different tasks and take care of various
aspects of the display and functionality of the theme.

Choosing and Installing Themes

[176]

Now you need to upload the theme folder to your WordPress website. As you did in
Chapter 2, Getting Started with WordPress, you need to start an FTP connection with your
server. Once there, navigate to your WordPress website's installation folder. Next, go
to the wp-content folder and then to the themes folder. You'll see one theme folder
in here already named twentyfifteen (and possibly others as well). These are the
themes that came pre-installed with WordPress. So, the only thing you have to do here
is upload the folder that you've just unzipped a minute ago, so that it sits alongside the
default twentyfifteen folder. And that's it!

At this point, when you go back to Appearance in your wp-admin, you will see the
new theme waiting there. All that's left to do now is to activate it and use it as the
main design of your site.

Summary
This chapter described how to manage the basic look of your WordPress website.
You learned where to find themes, why they are useful, what the basic differences
between various themes are, how to select the perfect theme for your site, and how
to install themes manually as well as through the wp-admin.

In the next chapter, you will learn, step by step, how to build your own theme
from scratch.

[177]

Developing Your Own Theme
At this point, you know how to find themes on the web and install them for use
on your WordPress website. But, there's a lot more that WordPress has to offer,
particularly in the theme development department. So, in this chapter, you'll learn
how to turn your own design into a fully functional WordPress theme that you'll
then be able to use on your site. You'll also learn how to convert your theme folder
into a ZIP file that can be shared with other WordPress users on the web.

All you will need before we get started are the following:

•	 Your own design
•	 The ability to slice and dice your design to turn it into HTML

We'll start out with tips on slicing and dicing, so that your HTML and CSS files are
as WordPress-friendly as possible, and then cover the steps for turning that HTML
build into a fully functional theme.

Note that I assume that you are already comfortable writing and working with
HTML and CSS. You don't need to be familiar with PHP, because I'll be walking
you through all of the PHP code.

This chapter covers only the very basics of theme creation. This topic
actually deserves a whole book, and it has one! I highly recommend the
book WordPress Theme Development Beginner's Guide, Rachel McCollin
and Tessa Blakeley Silver, Packt Publishing. This book covers in detail
everything you can possibly want to know about creating your own
theme, including details such as choosing a color scheme, considering
typography, writing the best CSS, and laying out your HTML by using
rapid design comping. If this chapter leaves you wanting more, go there!

Developing Your Own Theme

[178]

Setting up your design
Just about any design in the world can be turned into a WordPress theme. However,
there are some general guidelines you can follow—both regarding the design and the
HTML/CSS build of your theme —that will make your job a lot easier.

Designing your theme to be
WordPress-friendly
While you can design your blog any way you want, a good starting point would be
with one of the standard blog layouts.

Note that while these standard layouts have differing numbers of columns, they all
have these essential parts:

•	 Header
•	 Main column
•	 Side column(s)
•	 Footer

WordPress expects your theme to follow this pattern, and so, it provides functions
that make your work easier. As you're designing your first blog theme, I suggest
including these parts. Also, a build that stays within the same general design patterns
of WordPress themes will most easily accommodate the existing plugins and widgets.

That being said, a common situation in the WordPress world is to build custom
home pages or landing pages (purpose-specific pages, mostly commercial) that
feature completely different designs. Therefore, you might stumble upon websites
that don't look like they're built with WordPress at first glance. Also, many modern
theme frameworks give us the possibility to create such custom home pages, as well
as other custom page templates. This is all part of the trend to make WordPress
capable of running any kind of website.

The two-column layout is the simplest and the easiest to implement as a WordPress
theme, so we'll be using this layout as an example in this chapter.

Chapter 7

[179]

Now, the example theme I will be working with isn't an ordinary one. I got it from
ThemeIsle (http://themeisle.com/), one of the new players in the WordPress
theme store market. Basically, after a brief talk, one of the co-founders was happy
to help me out and agreed to provide a custom and free design for everybody to use
(you can find both the HTML design and the complete WordPress theme that was
built on it in the official code bundle for this chapter). Here's what it looks like:

The HTML structure of the design was built on the basis of the _S starter theme
(which is read as Underscores, http://underscores.me/), and the visual elements
were all done through CSS, with only minimal modifications to the original HTML
structure.

Three paths of theme development
Essentially, there are three paths you can follow when developing your new theme.
You can either work from the ground up, by building the HTML structure and the
functional structure of the theme by hand. Or, you can work on top of an existing
theme framework, where you only have to adapt your design to work on the structure
provided by the framework itself. Or, you can go for a solution that sits somewhere in
between. All of these paths have their pros and cons though, as always.

http://themeisle.com/
http://underscores.me/

Developing Your Own Theme

[180]

Building a theme from the ground up
The main advantage of building a theme from the ground up is the massive
educational value of this path. When you're developing a theme from scratch,
you're learning the basics of theme construction and function. This kind of
knowledge goes a long way for your future projects in WordPress.

On the other hand, it's also the longest of the three paths. In a professional
production environment (among people designing and developing themes as a
profession), creating themes from scratch is a highly time-consuming approach,
making it quite ineffective. And, it's not that much about adapting the design
(which always must be done with theme frameworks as well); it's more about
building the core functionality of the theme.

Building a theme with a framework
The main advantage of this approach is its time efficiency and the quality of the final
result. For instance, if you're building a theme from scratch, you have to make sure
to keep your theme up-to-date long after the development process has been finished.
The thing is that WordPress gets updated very frequently (around once every 51
days), and many features change their purpose over time and get completely erased
or replaced with new ones. In such a scenario, only modern themes that are kept
up-to-date can take full advantage of these features. Updating your theme will
obviously take a massive amount of work. This is where theme frameworks come into
play. In essence, theme frameworks are themes with a very minimalist design and no
visually complicated aspects. The purpose of frameworks is to make them the base
of any future theme by acting as the parent theme. So, the fact that the framework
itself has no design allows every creator to introduce almost any design imaginable
while taking full advantage of the features and constructions provided inside the
framework. Now, the strength of quality frameworks is that they get updated almost
as frequently as WordPress plugins. In short, if you're using a framework, you don't
have to worry about your theme going out of date. Whenever there's an update
available, you can simply perform it and forget about the whole thing.

This brings me to the main disadvantage of using theme frameworks. Most of the
time theme frameworks are big and complex pieces of web software (PHP scripts).
So, if you want to be able to use them effectively, you'll have to spend a significant
amount of time learning the framework. On top of this, if you decide to switch to
a different framework later down the road, you'll have to learn it all over again
(frameworks are usually very different from each other). As you can see, reaping
the benefits of using frameworks has its price.

Chapter 7

[181]

Here are some of the popular theme frameworks (both paid and free ones):

•	 Thematic (free): http://themeshaper.com/thematic/
•	 Gantry (free): http://www.gantry-framework.org/
•	 Genesis (paid): http://my.studiopress.com/themes/genesis/
•	 Thesis (paid): http://diythemes.com/
•	 Some frameworks listed by WordPress:

https://codex.wordpress.org/Theme_Frameworks

Building a theme with a starter theme
Finally, there's also a third solution, one that's somewhere in the middle between
building a theme from the ground up and using a framework. What I'm talking
about is using a starter theme.

A starter theme—like the one we'll be using in this chapter to create the base of our
HTML structure—is a great solution to make sure that the theme you're building has
the right scaffolding and that it's up-to-date with modern practices and optimized
to be used for a WordPress site. Apart from this, the starter theme leaves you all the
freedom in the world to adjust your creation however you wish (you have almost
the same freedom as you do with from-the-ground-up theme building).

In other words, a starter theme provides us with the best of both worlds, that is,
starting from scratch and using a framework. We can learn the basic structure of
WordPress themes this way, and at the same time, we don't need to worry about
making any silly mistakes because the core of the task is being handled by the
starter theme itself.

So, in short, going with a starter theme is what we're going to do here. The main idea
is to use it to learn the craft and get to know all the basic structures and mechanisms
sitting inside WordPress.

Your journey with theme development starts once you have a graphic design prepared
in Photoshop or some other similar tool. You can also take the code bundle for this
chapter and work with the design from there. Either way, the next step is to turn it
into some HTML code.

http://themeshaper.com/thematic/
http://www.gantry-framework.org/
http://my.studiopress.com/themes/genesis/
http://diythemes.com/
https://codex.wordpress.org/Theme_Frameworks

Developing Your Own Theme

[182]

Converting your design into code
The next step towards turning your ideal design into a WordPress theme is to slice
images out of your design and write HTML and CSS files that put it all together. For
the purpose of this chapter, I assume that you already know basically how to do this.
We'll cover some pointers on how to do your slicing and dicing in a way that will fit
best into WordPress.

Let's get down to business and take a look at the HTML structure that was generated
(by the _S starter theme) for the purpose of the theme we're building here. Just to
remind you, the starter theme can be generated at http://underscores.me/.

Examining the HTML structure
The following is the very basic layout of the HTML file for my food blog design;
I'm showing it just to give you a general understanding of what we're going to
be working on:

<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-
 scale=1">
<link rel="profile" href="http://gmpg.org/xfn/11">
<link rel="stylesheet" id="open-sans-css"
 href="//fonts.googleapis.com/css?family=Open+Sans%3A300italic
 %2C400italic%2C600italic%2C300%2C400%2C600&subset=latin%2
 Clatin-ext&ver=4.0.1" type="text/css" media="all" /> <!--
embedding Google Fonts -->
<link rel="stylesheet" id="daily-cooking-custom-style-css"
 href="style.css" type="text/css" media="all" /> <!--
 embedding the style sheet for the design -->
<title>Daily Cooking</title>
</head>

<body>
<div id="page">
 <header id="masthead" class="site-header" role="banner">
 <div class="site-branding">
 <h1 class="site-title">Daily Cooking</h1>
 </div>
 <nav id="site-navigation" class="main-navigation"
 role="navigation">
 <!-- placeholder for site navigation -->

http://underscores.me/

Chapter 7

[183]

 </nav>
 </header>

 <div id="content" class="site-content">
 <div id="primary" class="content-area"><main id="main"
 class="site-main" role="main">
 <article>
 <header class="entry-header">
 <h1 class="entry-title">Hello world!</h1>
 </header>

 <div class="entry-content">
 <p>Welcome!</p>
 <!-- main content block -->
 </div>

 <footer class="entry-footer">
 <!-- footer of the content block -->
 </footer>
 </article>
 </main></div>

 <div id="secondary" role="complementary">
 <!-- sidebar -->
 </div>
 </div>

 <footer class="site-footer" role="contentinfo">
 <!-- main footer of the page -->
 </footer>
</div>

</body>
</html>

You can see that I've separated out these major parts:

•	 The header is in an HTML5 <header> tag
•	 As part of it, there's the main site navigation—also an HTML5 tag <nav>
•	 Next, we have the main content block: <div id="content" class="site-

content">; each individual post will be displayed inside separate HTML5
<article> tags

Developing Your Own Theme

[184]

•	 After this, we have a section that handles the sidebar: <div
id="secondary" role="complementary">. The sidebar is set with the
role="complementary" attribute. Roles are one of the relatively new
HTML parameters. Essentially, a role attribute describes the role that the
element plays in the context of the document. In this case, the sidebar is
complementary to the main content (and if you pay close attention, you'll
notice that the main part, that is, the content, is indeed set to role="main").
In general, such attributes are meant to explain the purpose of elements in
the HTML structure.

•	 Finally, there's the footer using the <footer> tag. Keep in mind that this is
HTML5 and it may not work on older web browsers.

Now that I've got my basic layout, I'm going to add a few more HTML elements
to flesh it out a bit, including more information in <head> as well as in the main
content box, plus some additional CSS. Then, I'll fill up the sidebar, header, content,
and footer.

Examining the CSS
Generally, a very good practice in web development is to start your CSS design by
resetting all the default styles used by various web browsers. The main issue and the
reason why this is an important step is that most popular web browsers, or should
I say every single one of them, have their own default set of CSS styles. And, if you
want your theme to look exactly the same in every browser, you have to start your
work by resetting these styles, whatever they might actually be. The good thing
about it is that you don't have to do it by hand. You can just use one of the reset
scripts available on the Internet. For the purpose of this description, I'm using the
reset script that's part of our starter theme. Keep in mind that every piece of code
that's listed in this chapter is also available in the official code bundle that came
with your book. So, what we're doing first is just having the following CSS at the
beginning of our new style.css file:

/* setting up the basic elements - starter setup */
html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {
 border: 0;
 font-family: inherit;

Chapter 7

[185]

 font-size: 100%;
 font-style: inherit;
 font-weight: inherit;
 margin: 0;
 outline: 0;
 padding: 0;
 vertical-align: baseline;
}

html {
 font-size: 62.5%;
 overflow-y: scroll;
 -webkit-text-size-adjust: 100%;
 -ms-text-size-adjust: 100%;
 box-sizing: border-box;
}
*, *:before, *:after {
 box-sizing: inherit;
}

body {
 background: #fff;
}

/* resetting the basic content blocks */
article, aside, details, figcaption, figure, footer, header, main,
 nav, section {
 display: block;
}

/* resetting the lists */
ol, ul {
 list-style: none;
}

table {
 border-collapse: separate;
 border-spacing: 0;
}
caption, th, td {
 font-weight: normal;
 text-align: left;
}

Developing Your Own Theme

[186]

blockquote:before, blockquote:after, q:before, q:after {
 content: "";
}
blockquote, q {
 quotes: " "";
}

a:focus {
 outline: thin dotted;
}

a:hover, a:active {
 outline: 0;
}

a img {
 border: 0;
}

Let's now take a look at the actual CSS—the things that build our design and not
just reset it. First, we'll review the CSS that displays everything you see in the design.
Note that I've got styles for all of the key elements such as header, sidebar, main
content area, and footer.

Also, please notice that this is just the scaffolding, so to speak. It only indicates the
individual areas of the final CSS stylesheet. Listing the complete version here wouldn't
be very helpful as I'm sure that you're much more likely to copy and paste the code
from the official bundle rather than rewriting it straight from here. Besides, talking
about CSS isn't the main thing we're focusing on in this book anyway. Therefore, I'm
including the complete version in the aforementioned code bundle, and right now, I'm
only presenting the individual areas of the CSS. This is just to make the whole thing
easier to grasp once you look at the complete stylesheet. To be honest, the final CSS
isn't actually that complex from a CSS design point of view, but it is quite lengthy.
Here's the simplified version.

Let's start with the typography settings and various standard content elements.
I'm not showcasing the individual styles here as they are kind of basic and don't
have a huge role in our WordPress site structure:

/*---------
Typography
-----------*/
body, button, input, select, textarea {}
h1, h2, h3, h4, h5, h6 {}

Chapter 7

[187]

h1 a, h2 a, h3 a, h4 a, h5 a, h6 a {}
p {}
b, strong {}
dfn, cite, em, i {}
blockquote {}
address {}
pre {}
code, kbd, tt, var {}
abbr, acronym {}
mark, ins {}
sup, sub {}
small {}
big {}
/*--------
Elements
---------*/
hr {}
ul, ol {}
dt {}
dd {}
img {}
figure {}
table {}
button, input, select, textarea {}

What follows next is a set of rules that will take care of the alignment, general design
structure, the headers, and other typical HTML elements:

.site-header {
 width: 15%;
 float: left;
 height: auto;
 background: #279090;
 margin-right: 2.5%;
 border-radius: 6px;
}

#page {
 width: 1160px;
 margin: 0 auto;
 margin-top: 50px;
 position: relative;
 overflow: auto;
}

Developing Your Own Theme

[188]

#primary {
 width: 56%;
 float: left;
}

/* Navigation */
.main-navigation {
 clear: both;
 display: block;
 float: left;
 width: 100%;
}

/* Alignments */
.alignleft {
 display: inline;
 float: left;
 margin-right: 1.5em;
}
.alignright {
 display: inline;
 float: right;
 margin-left: 1.5em;
}
.aligncenter {
 clear: both;
 display: block;
 margin: 0 auto;
}

The center part of the site structure is where the posts and pages will be displayed.
The code for it is as follows:

.site-content .page, .site-content .post {
 margin-bottom: 40px;
 background-color: white;
 border-radius: 6px;
}

.entry-header h1.entry-title {
 text-align: center;
}

.site-content .entry-content {
 padding: 10px 20px;
}

Chapter 7

[189]

The code for the main sidebar is this:

#secondary {
 width: 24.5%;
 float: left;
 height: auto;
 margin-left: 2%;
 opacity: 0.6;
 background-color: white;
 border-radius: 3px;
 padding: 0 10px;
}

And finally, the code for the footer is as follows:

.site-footer {
 float: right;
 padding: 20px;
}

Inside this stylesheet, you will find many specific classes that aren't just my own
creations but rather come from WordPress itself. Here's what I mean. When WordPress
spits out items that include page lists, category lists, archive lists, images, and galleries,
it gives many of these items a particular class name. If you know these class names, you
can prepare your stylesheet to take advantage of them. This is one more reason why
we're using a starter theme here. With it, we don't have to worry about any of this.

To learn more about this, feel free to check out http://css-tricks.
com/back-basics-wordpress-css-understanding-native-
classes/ for an in-depth post on one of the top websites about CSS
on the web.

For example, when you add an image to a post or page, WordPress gives you
the option to have it to the right or left, or at the center of the text. Depending on
what you choose, WordPress will give the image the alignleft, alignright, or
aligncenter class. These classes, for example, are handled in the Alignments
section of our CSS stylesheet. Another thing is that when you add an image with a
caption, WordPress gives it the wp-caption class. This particular thing is handled
in the Captions section of the stylesheet we're using. WordPress uses many other
classes that you can take advantage of when building your stylesheet. I've listed a
few of them in Chapter 12, Creating a Non-blog Website Part 2 – Community Websites
and Custom Content Elements.

Now that you've got your HTML and CSS lined up, you're ready for the next step:
turning the HTML build into a WordPress theme.

http://css-tricks.com/back-basics-wordpress-css-understanding-native-classes/
http://css-tricks.com/back-basics-wordpress-css-understanding-native-classes/
http://css-tricks.com/back-basics-wordpress-css-understanding-native-classes/

Developing Your Own Theme

[190]

Converting your build into a theme
You'll be turning your HTML build into a theme, which is composed of a number
of template files and other scripts. We are going to first dig into the inner workings
of a theme so as to get familiar with how it's put together. Then, we'll actually turn
the HTML build into a theme folder that WordPress can use. Finally, we'll include
WordPress functions that spit out content. As I mentioned in an earlier chapter,
doing development for your WordPress website in a local environment can make
the whole process much smoother. Consider getting a server up and running on
your home computer by using WAMP, MAMP, or some other way to install
Apache and MySQL.

Creating the theme folder
The first step to turning your HTML build into a theme is to create your theme folder
and give it everything it needs to be recognized as a theme by WordPress. Let's look
at an overview of the steps and then take them one by one:

1.	 Name your folder and create backup copies of your build files.
2.	 Prepare the essential files.
3.	 Add a screenshot of your theme named screenshot.png.
4.	 Upload your folder.
5.	 Activate your theme.

Let's take these steps one by one now:

1.	 Name your folder and create backup copies of your build files.
You'll want to give your build folder a sensible name. I'm naming my theme
Daily Cooking Custom because it's a custom version of a theme provided by
the ThemeIsle team, and since it is meant to run my cooking blog, the new
name kind of makes sense. I'll name the folder daily-cooking-custom.
Now, I suggest creating backup copies of your HTML and CSS files. As you'll
eventually be breaking up your build into template files, you can easily lose
track of where your code came from. By keeping a copy of your original
build, you'll be able to go back to it for reference.

2.	 Prepare the essential files.
WordPress has only the following two requirements to recognize your folder
as a theme:

°° A file called index.php
°° A file called style.css with an introductory comment

Chapter 7

[191]

Just rename your main design's HTML file to index.php, and this takes
care of the first requirement.
To satisfy the second requirement, your stylesheet needs to have an
introductory comment that describes the basic information for the
whole theme: title, author, and so on. Also, it has to be at the very
top of the stylesheet. I've added this comment to my style.css file:
/*
Theme Name: Daily Cooking Custom
Theme URI: http://newinternetorder.com/
Author: Karol K & ThemeIsle
Author URI: http://themeIsle.com/
Description: Daily Cooking Custom is a custom theme created
 for the buyers of "WordPress Complete"
Version: 1.0
License: GNU General Public License v2 or later
License URI: http://www.gnu.org/licenses/gpl-2.0.html
Text Domain: daily-cooking-custom
Tags: brown, orange, tan, white, yellow, two-columns,
 right-sidebar, flexible-width, custom-header, custom-
 menu, translation-ready
*/

The preceding structure has been created on the basis of the template
available at https://codex.wordpress.org/Theme_Development#Theme_
Stylesheet. Whenever you're creating a new theme, it's always good to
check the current recommended template beforehand. When you add this
comment section to your stylesheet, just replace all of the details with those
that are relevant to your theme.

3.	 Add a screenshot.
Remember when we first learned how to activate a new theme that there
were thumbnail versions of the themes in your Appearance tab? You'll
want a thumbnail of your own design. It has to be a PNG file with the
name screenshot.png. Just do the following:

1.	 Flatten a copy of your design in Photoshop.
2.	 Change the image width to 880 px and the height to 660 px.
3.	 Save it for the web as a PNG-8 file.

The preceding requirements (880 x 660 px) are the current ones at the
time of writing. To get the latest guidelines at any point in time, please
revisit the official codex at https://codex.wordpress.org/Theme_
Development#Screenshot

https://codex.wordpress.org/Theme_Development#Theme_Stylesheet
https://codex.wordpress.org/Theme_Development#Theme_Stylesheet
https://codex.wordpress.org/Theme_Development#Screenshot
https://codex.wordpress.org/Theme_Development#Screenshot

Developing Your Own Theme

[192]

4.	 Name your file screenshot.png and save it in your build folder.
5.	 Upload your folder.

Using your FTP software, upload your template folder to wp-content/
themes/ in your WordPress build. It will share the themes folder with
twentyfifteen and any other theme you've added as you installed
WordPress. In the following screenshot, you can see my daily-cooking-
custom theme living in the themes folder:

6.	 Activate your theme.
You've got the absolute basic necessities in there now, so you can activate
your theme (although it won't look like much yet). Log in to your wp-admin
and navigate to Appearance. There you'll see your theme waiting for you.
As you can see, I've created a nice screenshot for my theme, with the name
of the theme on it for easier identification:

Chapter 7

[193]

At this point, you can activate your new theme and continue working on
it to include WordPress-generated content and make it into a full-fledged
WordPress theme in general. Don't be alarmed if the theme doesn't look
perfectly right after activation though. There's still a lot of work to do.
This is another good reason to have a development server. You wouldn't
want to have this incomplete theme active on a live site while you finish
the final pieces in the background.

Note that not every theme installation goes as expected, and sometimes, you have
to deal with an error. In most cases, WordPress will let you know what went wrong
through a notification. Every once in a while, however, the activation can end up in
a critical error and your whole site can go blank. If that happens, simply rename the
new theme's folder or delete it completely. This will force WordPress to switch to
the default theme, and things should get back to normal. From there, you can start
looking for the issue that caused the crash in the first place.

Speaking of final pieces, your theme is now ready to have all of the WordPress
content added, so let's do just that!

How to create basic WordPress content
Right now, your index.php file is your only theme file. We'll be breaking it up into
template files a bit later. First, we need to include WordPress functions that will spit
out your actual content into your theme.

The functions.php file
In short, the functions.php file is meant to set up your theme and provide some
helper functions and settings to make the usage of the theme easier. Apart from this,
the functions file also has many other applications that we're not going to be discussing
here, as it is beyond the scope of this book. In essence, functions.php is a kind of
file that allows you to perform a very wide scope of modifications. Even though there
is a set of standard things that should always be taken care of when dealing with
a functions file, no one restricts you from doing virtually anything you wish. For
instance, you can create a classic PHP function such as my_function_name() and
then call it from within one of your template files (such as index.php) through
<?php my_function_name(); ?>, but this is just one of the possible scenarios.

Developing Your Own Theme

[194]

Although this isn't a requirement, it's always good to start your functions file with
the following lines of code (just as a good reference point):

<?php
/**
 * Daily Cooking Custom functions and definitions.
 *
 * @package Daily Cooking Custom
*/

The preceding lines of code provide the essential information about the theme.

Next in line is the $content_width variable. Here's how to use it:

if(!isset($content_width))
 $content_width = 610; //pixels

This parameter is often overlooked by many theme developers despite the fact that
it can mean a lot to the final form of the theme. It's simply the maximum width of
the content area allowed in your theme (in pixels). For example, if you ever upload
a picture that massively exceeds this value, it will always be scaled down to prevent
messing up your site's layout. The exact value you should set depends on your CSS
and design. The value 610 in the preceding example is just that—an example.

The next part in our functions.php file is the setup of the default features that the
theme is going to enable:

if(!function_exists('daily_cooking_custom_setup')) :
function daily_cooking_custom_setup() {

 //Make theme available for translation.
 //Translations can be filed in the /languages/ folder.
 load_theme_textdomain('daily-cooking-custom',
 get_template_directory().'/languages');

 //Adds RSS feed links to <head> for posts and comments.
 add_theme_support('automatic-feed-links');

 //Let WordPress manage the document title.
 /* By adding theme support, we declare that this theme does not
 use a hard-coded <title> tag in the document head, and expect
 WordPress to provide it for us. */
 add_theme_support('title-tag');

 //This theme uses wp_nav_menu() in one location.
 register_nav_menus(array(

Chapter 7

[195]

 'primary' => __('Primary Menu', 'daily-cooking-custom'),
));

 //Switch default core markup for search form, comment form, and
 comments to output valid HTML5.
 add_theme_support('html5', array(
 'search-form', 'comment-form', 'comment-list',
 'gallery', 'caption',
));

 //Enable support for Post Formats.
 add_theme_support('post-formats', array(
 'aside', 'image', 'video', 'quote', 'link',
));

 //Set up the WordPress core custom background feature.
 add_theme_support('custom-background', apply_filters(
 'daily_cooking_custom_custom_background_args', array(
 'default-color' => 'ffffff',
 'default-image' => '',
)));
}
endif; //daily_cooking_custom_setup
add_action('after_setup_theme', 'daily_cooking_custom_setup');

The preceding function—daily_cooking_custom_setup()—is going to be executed
at just the right time, triggered by the after_setup_theme action called at the end
to set up the basic features of our theme properly. Most of the code is pretty self-
explanatory due to the comments, but there's just one thing I'd like to mention
individually, which is this part (registering the menu):

register_nav_menus(array(
 'primary' => __('Primary Menu', 'daily-cooking-custom'),
));

This is a small piece of code that will let us assign any custom menu to appear as the
primary menu later on. It is also what we'll use to set in our new theme. In addition,
the preceding function allows you to register even more menu areas if you wish so,
and all you'd have to do is add the following line: 'secondary' => 'Secondary
Menu'.

Developing Your Own Theme

[196]

Next, let's enable our stylesheet CSS file to load with our theme, or more accurately,
to be "enqueued" and then load in precisely at the right moment. Here's how to do so:

function daily_cooking_custom_scripts() {
 wp_enqueue_style('daily-cooking-custom-style', get_stylesheet_
uri());
}
add_action('wp_enqueue_scripts', 'daily_cooking_custom_scripts');

As you can see, there's only one stylesheet here. It is enabled by the very first line in
the function.

Nowadays, the preceding code is the best practice for including various CSS styles and
JS scripts into our themes. You can still go with the traditional (alternative) approach
by placing <link rel="stylesheet" href="<?php bloginfo('stylesheet_
url'); ?>" type="text/css" media="screen" /> inside the header section of
your design, but it will lower the performance of your site as CSS styles and various JS
scripts tend to take a long time to load. So, it's always better to deal with them through
the modern wp_enqueue_scripts handle.

The preceding code closes our first template-like functions.php file. Later, we
will add new lines to it to make it even more functional. Now, the interesting part
is that there is no closing PHP tag in the functions file (no ?>). This is not a typo or
anything. It's intentional. Since most of the file is pure PHP, we don't need this tag
for anything.

The complete file is as follows:

<?php
/**
 * Daily Cooking Custom functions and definitions
 *
 * @package Daily Cooking Custom
 */

/**
 * Set the content width based on the theme's design and stylesheet.
 */
if(!isset($content_width))
 $content_width = 610; //pixels

if(!function_exists('daily_cooking_custom_setup')) :
/**
 * Sets up theme defaults and registers support for various WordPress
features.
 */
function daily_cooking_custom_setup() {

Chapter 7

[197]

 //Make theme available for translation.
 load_theme_textdomain('daily-cooking-custom',
 get_template_directory().'/languages');

 //Adds RSS feed links to <head> for posts and comments.
 add_theme_support('automatic-feed-links');

 //Let WordPress manage the document title.
 add_theme_support('title-tag');

 //This theme uses wp_nav_menu() in one location.
 register_nav_menus(array(
 'primary' => __('Primary Menu', 'daily-cooking-custom'),
));

 //Switch default core markup for search form, comment form, and
 comments to output valid HTML5.
 add_theme_support('html5', array(
 'search-form', 'comment-form', 'comment-list', 'gallery',
 'caption',
));

 //Enable support for Post Formats.
 add_theme_support('post-formats', array(
 'aside', 'image', 'video', 'quote', 'link',
));

 //Set up the WordPress core custom background feature.
 add_theme_support('custom-background', apply_filters(
 'daily_cooking_custom_custom_background_args', array(
 'default-color' => 'ffffff',
 'default-image' => '',
)));
}
endif; //daily_cooking_custom_setup
add_action('after_setup_theme', 'daily_cooking_custom_setup');

/**
 * Enqueue scripts and styles.
 */
function daily_cooking_custom_scripts() {
 wp_enqueue_style('daily-cooking-custom-style',
 get_stylesheet_uri());}
add_action('wp_enqueue_scripts', 'daily_cooking_custom_scripts');

Just to remind you, this whole functions.php file can be found inside the code
bundle for this chapter.

Developing Your Own Theme

[198]

The <head> tag
Okay, let's move on to our index.php file and the things we can do inside of it.
In the following section of the chapter, we're going to be altering specific lines
of code from the original HTML structure.

First, we'll set up the <head></head> section of your HTML file. Let's start with
charset and the device width parameter. Simply, here are the two lines to begin
with right after the opening <head> tag:

<meta charset="<?php bloginfo('charset'); ?>">
<meta name="viewport" content="width=device-width, initial-
 scale=1">

The first one holds the character set that your blog uses. The other defines the width
of the viewport used. Here, it's set to the width of the device being used (this allows
everyone to view the site correctly, including desktop computer users, iPad users,
and Android phone users).

Next, you need to add another important chunk of code: First, to put header tags
into your theme for the pingback URL; second, other miscellaneous WordPress stuff.
Add the following lines in your <head> section:

<link rel="profile" href="http://gmpg.org/xfn/11">
<link rel="pingback" href="<?php bloginfo('pingback_url'); ?>">

Finally, add the following line right before the closing </head> tag (it takes
care of displaying your site's title and enabling a number of WordPress-specific
functionalities):

<?php wp_head(); ?>

Now, add the body_class() function to the body tag, so it looks like this:

<body <?php body_class() ?>>

Your header now looks something like this:

<!DOCTYPE html>
<html <?php language_attributes(); ?>>
<head>
<meta charset="<?php bloginfo('charset'); ?>">
<meta name="viewport" content="width=device-width, initial-
 scale=1">
<link rel="profile" href="http://gmpg.org/xfn/11">
<link rel="pingback" href="<?php bloginfo('pingback_url'); ?>">

Chapter 7

[199]

<?php wp_head(); ?>
</head>

<body <?php body_class(); ?>>

The header and footer
It's time to start adding some content. Here, we'll take care of things such as displaying
a link to the blog's home page, displaying the blog's title, displaying the tagline, and
displaying the main navigation.

All these operations are pretty simple, so let's just take a look at the lines of code that
take care of them. Then, we'll put these lines of code in just the right place within our
HTML structure.

First, we have the code that displays the site's main URL:

<?php echo esc_url(home_url('/')); ?>

Next, the code that displays the site's title is as follows:

<?php bloginfo('name'); ?>

Here's the code for displaying the tagline:

<?php bloginfo('description'); ?>

The preceding two lines pull information from where you set the blog name and
description in wp-admin, and you can simply change them from the Settings |
General page.

Lastly, displaying the main navigation is done through the following code:

<?php wp_nav_menu(array('theme_location' => 'primary')); ?>

The wp_nav_menu() function is a built-in way of displaying the navigation menu.
It will take care of the proper HTML structure of the menu and all its elements.
In other words, you don't have to worry about anything else other than using
this one line of code.

Now, the part of your HTML that describes the header looks like what the
following listing presents. As you can see, additionally, we're linking the logo
to the home page—a standard practice in modern website design:

<div id="page" class="hfeed site">
 <?php
 _e('Skip to content', 'daily-cooking-custom'); ?>

Developing Your Own Theme

[200]

 <header id="masthead" class="site-header" role="banner">
 <div class="site-branding">
 <h1 class="site-title"><a href="<?php echo esc_url
 (home_url('/')); ?>" rel="home"><?php bloginfo('name');
 ?></h1>
 <h2 class="site-description"><?php bloginfo('description');
 ?></h2>
 </div><!-- .site-branding -->

 <nav id="site-navigation" class="main-navigation" role=
 "navigation">
 <button class="menu-toggle" aria-controls="menu" aria-
 expanded="false"><?php _e('Primary Menu', 'daily-cooking-
 custom'); ?></button>
 <?php wp_nav_menu(array('theme_location' => 'primary')); ?>
 </nav><!-- #site-navigation -->
 </header><!-- #masthead -->

<div id="content" class="site-content">

Are you wondering why you should bother with some of this when you could have
just typed your blog title, URL, and description to the theme? One reason is that
if you ever want to change your blog's title, you can just do it in one quick step in
wp-admin and it will change all over your site. The other reason is that if you want to
share your theme with others, you'll need to give them the ability to easily change the
name through their own wp-admin panels. Keep in mind, anything, anything at all,
that will change from site to site based on the site's purpose and content, should not
be hardcoded into the theme but should be dynamically generated.

Now, when I refresh the site, there's the actual blog title in the header:

The three links visible in the header are live links coming from one of my custom
menus. Just to tie things up, I'm going to add some code to my footer to display
the Proudly powered by WordPress message, and to include the wp_footer()
function/hook that's often used by many plugins in one way or the other, so every
theme should feature it. The code for my footer section now looks like the following:

</div><!-- #content -->

 <footer id="colophon" class="site-footer" role="contentinfo">

Chapter 7

[201]

 <div class="site-info">
 <a href="<?php echo esc_url(__('http://wordpress.org/',
 'daily-cooking-custom')); ?>"><?php printf(__('Proudly
 powered by %s', 'daily-cooking-custom'), 'WordPress');
 ?>
 |
 <?php printf(__('Theme: %1$s by %2$s.', 'daily-cooking-
 custom'), 'Daily Cooking Custom', 'Karol K., ThemeIsle
 , and <a href="http://underscores.me/"
 rel="designer">_S'); ?>
 </div><!-- .site-info -->
 </footer><!-- #colophon -->
</div><!-- #page -->

<?php wp_footer(); ?>

</body>
</html>

One thing you might have noticed inside the previous listing is the mysterious
function __(). It's a native WordPress function that retrieves the translated string
corresponding to the parameters given in the function. It's a feature meant for
internationalization of your site. More details about the function can be found
at https://codex.wordpress.org/Function_Reference/_2.

The sidebar
Now, we can move along to adding WordPress-generated content in the sidebar.
Essentially, this part of our work is pretty simple. All we have to do is include some
WordPress functions that will handle displaying various bits of dynamic content.
In this case, it is the categories, tags, and archives.

Starting at the top, include the following piece of code in the sidebar area:

<div id="secondary" class="widget-area" role="complementary">
 <?php if(is_active_sidebar('sidebar-1')) dynamic_sidebar(
 'sidebar-1'); ?>
</div><!-- #secondary -->

https://codex.wordpress.org/Function_Reference/_2

Developing Your Own Theme

[202]

This code takes care of displaying whatever widgets have been assigned to that
particular widget area. Placing widgets in the sidebar of your HTML structure is
the easiest and probably the most usable way of widget-enabling your theme. Also,
WordPress will take care of actually displaying everything properly, so you don't
have to worry about any weird-looking elements on your site. For instance, every
menu is displayed as an list, and every menu element is inside . This is
as in tune with the standards as it can be.

Main column – the loop
The most important part of the WordPress code comes next. It's called the loop, and
it's an essential part of your theme. The loop's job is to display your posts in a reverse
chronological order, choosing only those posts that are appropriate. You need to put
all of your other post tags inside the loop. The basic loop text, which has to surround
your post information, is displayed using the following code:

<?php if (have_posts()) : ?>
<?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('content', get_post_format()); ?>
<?php endwhile; else: ?>
 <?php get_template_part('content', 'none'); ?>
<?php endif; ?>

The get_template_part() function call that's right in the middle fetches another file
that contains the rest of the loop, but for now, let's just focus on the main section here.

There are two basic parts of the loop:

•	 Individual post information
•	 What to do if there are no appropriate posts

The first part is handled by a standard PHP while loop that goes through every post
and for each element calls the appropriate content-[TYPE].php file. The second
part is similar, as it calls the content-none.php file, in case there are no posts that
can be displayed. The use of these various content-[TYPE].php files is currently
the standard for handling different types of content that WordPress displays. It's a
lot more effective and clear than working with individual if or switch clauses.

So, in order to get started with this, let's create a basic content.php file that will
serve the role of a placeholder for the default type of content. In this file, let's place
the following code that handles the loop:

<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <header class="entry-header">

Chapter 7

[203]

 <?php the_title(sprintf('<h1 class="entry-title"><a href="%s"
 rel="bookmark">', esc_url(get_permalink())), '</h1>');
 ?>

 <?php if('post' == get_post_type()) : ?>
 <div class="entry-meta">
 <?php daily_cooking_custom_posted_on(); ?>
 </div>
 <?php endif; ?>
 </header>

 <div class="entry-content">
 <?php
 the_content(sprintf(
 __('Continue reading %s
 →', 'daily-cooking-custom'),
 the_title('"', '"',
 false)
));

 wp_link_pages(array(
 'before' => '<div class="page-links">' . __('Pages:',
 'daily-cooking-custom'),
 'after' => '</div>',
));
 ?>
 </div>

 <footer class="entry-footer">
 <?php daily_cooking_custom_entry_footer(); ?>
 </footer>
</article><!-- #post-## -->

If you give it a closer look, you'll notice that it's very similar to the static HTML
version I shared earlier in this chapter. The only difference is that instead of the
dummy text, there are calls to specific WordPress functions and custom-made
functions that we'll discuss in a minute.

Let's take it from the top; the file starts with these two lines:

<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <header class="entry-header">

Developing Your Own Theme

[204]

This is just some standard HTML and basic WordPress function calls to display
proper element IDs and CSS classes. For instance, the the_ID() function displays
the ID of the post. Next, we have the following line:

<?php the_title(sprintf('<h1 class="entry-title"><a href="%s"
 rel="bookmark">', esc_url(get_permalink())), '</h1>'); ?>

It displays the link and the title of the current content element (usually a post),
instead of using the dummy text. The the_title() function takes three parameters
(all optional). Right here, we're using just two. The first one defines the text to
place before the title (in this case, we're making a sprintf() function call), and
the second one defines the text to place after the title. Right below this line, there's
a piece of code that displays various types of meta information about the current
content element:

<?php if('post' == get_post_type()) : ?>
<div class="entry-meta">
 <?php daily_cooking_custom_posted_on(); ?>
</div>
<?php endif; ?>

If what we're dealing with is a standard post, a custom function is called to display
the details. This way of handling things—through an additional function—makes
everything much clearer, in comparison to placing the code right there. Here's
what the function looks like (we can place it in our main functions.php file, or
inside a new file in a separate subdirectory called inc—indicating that it holds
additional functions):

function daily_cooking_custom_posted_on() {
 $time_string = '<time class="entry-date published updated"
 datetime="%1$s">%2$s</time>';
 if (get_the_time('U') !== get_the_modified_time('U')) {
 $time_string = '<time class="entry-date published"
 datetime="%1$s">%2$s</time><time class="updated"
 datetime="%3$s">%4$s</time>';
 }

 $time_string = sprintf($time_string,
 esc_attr(get_the_date('c')),
 esc_html(get_the_date()),
 esc_attr(get_the_modified_date('c')),
 esc_html(get_the_modified_date())
);

Chapter 7

[205]

 $posted_on = sprintf(
 _x('Posted on %s', 'post date', 'daily-cooking-custom'),
 ''
 . $time_string . ''
);

 $byline = sprintf(
 _x('by %s', 'post author', 'daily-cooking-custom'),
 '<a class="url fn n" href="' .
 esc_url(get_author_posts_url(get_the_author_meta('ID'))
) . '">' . esc_html(get_the_author()) . ''
);

 echo '' . $posted_on . '<span
 class="byline"> ' . $byline . '';

}

As you can see, this is quite a long function, but the thing to remember is that it's
just meant to display the date of when the post was published and the byline of
the author. Also, there are language functions (_e() and _x()) used here to fetch
translated data from the database. You can learn more about these functions at
https://codex.wordpress.org/Function_Reference/_e and https://codex.
wordpress.org/Function_Reference/_x.

Going back to our content.php file, we have the following:

<div class="entry-content">
 <?php
 the_content(sprintf(
 __('Continue reading %s →',
 'daily-cooking-custom'),
 the_title('"', '"',
 false)
));

 wp_link_pages(array(
 'before' => '<div class="page-links">' . __('Pages:', 'daily-
 cooking-custom'),
 'after' => '</div>',
));
 ?>
</div>

https://codex.wordpress.org/Function_Reference/_e
https://codex.wordpress.org/Function_Reference/_x
https://codex.wordpress.org/Function_Reference/_x

Developing Your Own Theme

[206]

The first part (the_content()) takes care of displaying the contents of the current
post, along with a Continue reading link. This is actually the most important part
of the whole file. Next, the second part (wp_link_pages()) is meant to display
page links for paginated posts (WordPress allows you to divide your content into
individual subpages; this can be useful when dealing with an overly long piece of
text). Finally, we have the code for the footer section for the entry:

<footer class="entry-footer">
 <?php daily_cooking_custom_entry_footer(); ?>
</footer>

There's another call to a custom-made function there. Here's what the function
looks like:

function daily_cooking_custom_entry_footer() {
 // Hide category and tag text for pages.
 if ('post' == get_post_type()) {
 $categories_list = get_the_category_list(__(', ', 'daily-
 cooking-custom'));
 if ($categories_list &&
 daily_cooking_custom_categorized_blog()) {
 printf('' . __('Posted in %1$s',
 'daily-cooking-custom') . '', $categories_list);
 }

 $tags_list = get_the_tag_list('', __(', ', 'daily-cooking-
 custom'));
 if ($tags_list) {
 printf('' . __('Tagged %1$s',
 'daily-cooking-custom') . '', $tags_list);
 }
 }

 if (! is_single() && ! post_password_required() && (
 comments_open() || get_comments_number())) {
 echo '';
 comments_popup_link(__('Leave a comment', 'daily-cooking-
 custom'), __('1 Comment', 'daily-cooking-custom'), __('%
 Comments', 'daily-cooking-custom'));
 echo '';
 }

 edit_post_link(__('Edit', 'daily-cooking-custom'), '<span
 class="edit-link">', '');
}

Chapter 7

[207]

All this code handles the post details such as the categories and tags, and the
comment links (which other visitors can click to submit their own opinion
about the post). One interesting thing I'd like to point out here is the call to
the comments_popup_link() function:

comments_popup_link(__('Leave a comment', 'daily-cooking-custom'),
 __('1 Comment', 'daily-cooking-custom'), __('% Comments',
 'daily-cooking-custom'));

Here, you can see that there are three arguments passed, separated by commas:

•	 The first option tells WordPress the text that it has to display when there are
no comments.

•	 The second option tells WordPress the text that it has to display when there
is just one comment.

•	 The third option tells WordPress the text that it has to display for more than
one comment. The percent symbol (%) gets replaced with the actual number
of existing comments.

I'm happy to say that this is it when it comes to the basic understanding of the loop.
Of course, its structure allows you to do many more things and include many custom
features. But for now, we are good with what we have here. Once you save your
index.php and reload your website, you will see your new theme in action.

This version of the index.php file is available in the code bundle for
this chapter—inside a subdirectory labeled phase 2. Our theme files
will go through a couple of phases before we have the final version
(phase 1 was the raw HTML).

Later in the chapter, I will show you how to create a custom page template, which
will take advantage of the loop and use it for a slightly different purpose.

Creating template files within your theme
You've now got a functional basic template for your theme. It works great on the
main blog page and successfully loads content for anything you can click on in your
site. However, we want slightly different templates for other types of content on our
site. For example, a single post page needs to have a comments form where visitors
can post comments; the page page doesn't need to show the date, category, or tags;
and the category page should show the category name.

Developing Your Own Theme

[208]

Before we can create other templates, we need to break up the main index.php
file into parts so that these different templates can share the common elements.
I've mentioned many times the importance of the header, sidebar, and footer.
We're going to break them up now. First, let's take a quick look at how it works.

Understanding the WordPress theme
Usually, WordPress themes are composed of a number of template files. This allows
the different parts of the site (such as the frontend, blog archive, pages, single posts,
and search results) to have different purposes. Breaking the index.php file into
template files allows us to not only share some common parts of the design but also
have different code in the different parts.

As I mentioned earlier, we'll soon be breaking up the four main pieces of the design
(header, sidebar, main column, and footer) so that WordPress can make good use of
them. That's because while the header and footer are probably shared by all pages,
the content in the main column will be different. Also, you may want the sidebar on
some pages, but not on others.

We'll first create these template files and then, move on to other, more optional
template files.

Breaking it up
We're going to break up the index.php file by removing some of the code into three
new files:

•	 header.php

•	 footer.php

•	 sidebar.php

The header.php file
First, cut out the entire top of your index.php file. This means cutting the doctype
declaration, the <head> tag, any miscellaneous opening tags, and the <header> tag.
In my case, I'm cutting out all the way from this initial line:

<!DOCTYPE html>

I'm cutting through to and including these lines:

</header><!-- #masthead -->
<div id="content" class="site-content">

Chapter 7

[209]

Then, paste this text into a new file named header.php that you created within your
theme folder.

Now, at the very top of the index.php file (that is, where you just cut the header text
from) write in the following line of WordPress PHP code:

<?php get_header(); ?>

This is a WordPress function that includes the header.php file you just created.
If you save everything and reload your website now, nothing should change. The
important part here is to make sure that the call to the preceding PHP function sits
right at the very top of your index.php file.

The footer.php file
Next, we will create the footer file. To create this, first cut out all of the text at the
very bottom of the index.php file, from the following code:

</div><!-- #content -->
<footer id="colophon" class="site-footer" role="contentinfo">

Cut all the way through to the </html> tag. Paste the text you just cut into a new
footer.php file that you create within your theme folder.

Now, at the very bottom of the index.php file (from where you just cut the footer
text), write in the following line of WordPress PHP code:

<?php get_footer(); ?>

This is a special WordPress function that includes the footer.php file you just
created. Again, you should save everything and reload your website to make
sure nothing changes.

The sidebar.php file
There is just one more essential template file to create. For this one, cut out the entire
div element containing your sidebar. In my case, it's the following text:

<div id="secondary" class="widget-area" role="complementary">
 <?php if(is_active_sidebar('sidebar-1')) dynamic_sidebar(
 'sidebar-1'); ?>
</div>

Paste this text into a new file in your theme folder named sidebar.php.

Developing Your Own Theme

[210]

Now, in index.php, add this function in the place you just cut your sidebar from:

<?php get_sidebar(); ?>

This will include the sidebar. In the case of my design, I will want the sidebar on
every page. So, it's not very crucial for it to be a separate file. I could have included it
in the footer.php file. However, in some templates, including the default template
that came with your WordPress installation, the designer prefers to not include the
sidebar in some views such as the Page view and single posts.

Your four template files
You've now got four template files in your theme folder, namely header.php,
footer.php, sidebar.php, and the now-much-shorter index.php. By the way,
my index.php file now has only a handful of WordPress functions and the loop.
The following is the entire file:

<?php get_header(); ?>

 <div id="primary" class="content-area">
 <main id="main" class="site-main" role="main">

 <?php if (have_posts()) : ?>

 <?php /* Start the Loop */ ?>
 <?php while (have_posts()) : the_post(); ?>

 <?php
 get_template_part('content', get_post_format());
 ?>

 <?php endwhile; ?>

 <?php daily_cooking_custom_paging_nav(); ?>

 <?php else : ?>

 <?php get_template_part('content', 'none'); ?>

 <?php endif; ?>

 </main><!-- #main -->
 </div><!-- #primary -->

Chapter 7

[211]

<?php get_sidebar(); ?>
<?php get_footer(); ?>

This whole cutting-and-pasting process to create these four files was just to set the
scene for the real goal of making alternative template files.

This version of the index.php file, as well as header.php,
footer.php, and sidebar.php, is available in the code
bundle for this chapter—inside a subfolder labeled phase 3.

Archive template
WordPress is now using the index.php template file for every view on your site.
Let's make a new file—one that will be used when viewing a monthly archive,
category archive, or tag archive.

To learn even more about how WordPress utilizes different files
to display its content, feel free to read the guide at http://www.
codeinwp.com/blog/wordpress-theme-heirarchy/.

To create your archive template, make a copy of index.php and name this copy
archive.php.

Now, navigate to a monthly archive on the site by clicking on one of the month
names in the sidebar. At this point, it looks exactly like the main listing—the one
handled by index.php.

Let's make one more change to the archive template. I'd like it to display a message
that lets the users know what type of archive page they are on. Currently, the archive
looks the same as the main index listing and this isn't the most optimized situation.
To fix it, just add this code below the <?php if (have_posts()) : ?> line:

<header class="page-header">
 <?php
 the_archive_title('<h1 class="page-title">', '</h1>');
 the_archive_description('<div class="taxonomy-description">',
 '</div>');
 ?>
</header>

http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
http://www.codeinwp.com/blog/wordpress-theme-heirarchy/

Developing Your Own Theme

[212]

Now, when I click on a month, category, or tag, I see a new heading at the top of the
page that lets me know where I am:

This version of the archive.php file is available in the code bundle
for this chapter—inside a subfolder labeled phase 4.

Single template
The next template we need to create is for the single post view. To view a single post,
you can usually just click on the post title. Right now, the single post looks like the
site's front page (because it's using index.php)—except with just one post.

To get started, again make a copy of index.php, and name the copy single.php.
This is the template that WordPress will look for first when it's serving a single post.
If it doesn't find single.php, it'll use index.php.

Without further delay, here's my single.php file. You should notice that the file
features almost exactly the same elements as the index.php. The only difference is
that the get_template_part() function call fetches a different element. In this case,
it's single.

<?php get_header(); ?>

 <div id="primary" class="content-area">
 <main id="main" class="site-main" role="main">

 <?php while (have_posts()) : the_post(); ?>

 <?php get_template_part('content', 'single'); ?>

 <?php daily_cooking_custom_post_nav(); ?>

Chapter 7

[213]

 <?php
 if (comments_open() || get_comments_number())
 comments_template();
 ?>

 <?php endwhile; // end of the loop. ?>

 </main><!-- #main -->
 </div><!-- #primary -->

<?php get_sidebar(); ?>
<?php get_footer(); ?>

The aforementioned get_template_part('content', 'single') call will fetch the
content-single.php file. Here's what the file looks like:

<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <header class="entry-header">
 <?php the_title('<h1 class="entry-title">', '</h1>'); ?>

 <div class="entry-meta">
 <?php daily_cooking_custom_posted_on(); ?>
 </div>
 </header>

 <div class="entry-content">
 <?php the_content(); ?>
 <?php
 wp_link_pages(array(
 'before' => '<div class="page-links">' . __('Pages:',
 'daily-cooking-custom'),
 'after' => '</div>',
));
 ?>
 </div>

 <footer class="entry-footer">
 <?php daily_cooking_custom_entry_footer(); ?>
 </footer>
</article><!-- #post-## -->

Developing Your Own Theme

[214]

This file's structure is almost exactly the same as the one we've discussed a couple
of pages ago—content.php—with only minor differences. Also, the following are
three specific things that are worth pointing out:

•	 The presence of the <article> tag. The individual post's content is displayed
inside this tag.

•	 The call to the the_content() function. This time, we're displaying the
whole content of the post, not just the excerpt.

•	 The call to the comments_template() function in single.php. It displays
the comment form and the individual comments that have been submitted
for this post.

These versions of the single.php file and the content-single.php
file are available in the code bundle for this chapter—inside a subfolder
labeled phase 4.

Page template
The last template we're going to create is for the static page view. On my food blog
site, this would be the Sample Page, for example. The easiest way to go about this is
to start with the single.php file this time. So, just make a copy of this file and name
it page.php. Now, we'll be simplifying the file so that only the essential information
about a given page is displayed. In the end, this is what my page.php file looks like:

<?php get_header(); ?>

 <div id="primary" class="content-area">
 <main id="main" class="site-main" role="main">

 <?php while (have_posts()) : the_post(); ?>

 <?php get_template_part('content', 'page'); ?>

 <?php endwhile; // end of the loop. ?>

 </main><!-- #main -->
 </div><!-- #primary -->

<?php get_sidebar(); ?>
<?php get_footer(); ?>

Chapter 7

[215]

I did just a few of modifications here. They are as follows:

•	 I changed the last parameter of the get_template_part() function to page,
instead of single.

•	 I erased the call to daily_cooking_custom_post_nav(), which handled the
display of post navigation.

•	 I erased the whole block of code that handled the comments. We don't need
those on pages.

Next, we need a custom content-page.php file. The easiest way to build it is to
make a copy of the content-single.php file and tune it up a bit. Here's my final
content-page.php file:

<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <header class="entry-header">
 <?php the_title('<h1 class="entry-title">', '</h1>'); ?>
 </header>

 <div class="entry-content">
 <?php the_content(); ?>
 <?php
 wp_link_pages(array(
 'before' => '<div class="page-links">' . __('Pages:',
 'daily-cooking-custom'),
 'after' => '</div>',
));
 ?>
 </div>

 <footer class="entry-footer">
 </footer>
</article><!-- #post-## -->

Here's what I did here in terms of simplifying:

•	 I got rid of the whole code displaying meta data.
•	 I erased the entry footer, which was meant to display categories and tags.

We don't use those with WordPress pages.

Developing Your Own Theme

[216]

Now, my Sample Page looks much cleaner:

These versions of the page.php file and the content-page.
php file are available in the code bundle for this chapter—inside
a subfolder labeled phase 4.

Generated classes for body and post
As you're modifying your theme to make accommodations for different types of
pages, you should also know about the CSS classes that WordPress will put into
your theme. If you look carefully at the code we've been using, you'll see these
two functions:

•	 body_class(): For example, in the header.php file, the exact line is
<body <?php body_class(); ?>>

•	 post_class(): For example, in the content-page.php file, the exact line is
<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

The body_class() function adds a whole bunch of classes to the body tag, depending
on the page you're viewing. For example, the main page of my site has the following
class in the body:

<body class=" home blog custom-background">

My Some Spanish Dishes single post page's body tag looks like the following:

<body class=" single single-post postid-41 single-format-standard
 custom-background">

If I wanted to style anything differently on different pages, I could do it largely with
CSS, without having to create another template.

Chapter 7

[217]

The post_class() function does something similar with the individual post's
div, giving it different classes depending on the characteristics of the post itself.
For example, my Some Spanish Dishes post's tag has the following class:

<article id="post-41" class="post-41 post type-post status-publish
 format-standard hentry category-uncategorized">

Further, my Sample Page post tag has the following class:

<article id="post-2" class="post-2 page type-page status-publish
 hentry">

By using these classes in my stylesheet, I could style every post differently depending
on its category, tag, post type, and so on. Keep this in mind as you design your next
theme. This becomes extremely important when working with theme frameworks
further down the road. Although modifications inside PHP files are allowed, most of
the time, you can customize the design of your whole site just by working in the CSS
and tweaking various classes (both the native ones in WordPress and the new ones
that the framework uses). Situations where a whole new site working on a theme
framework gets built purely in the CSS files are not uncommon.

Other WordPress templates
In addition to archive.php, single.php, and page.php, there are a number of
other standard template files that WordPress looks for before using index.php for
particular views. We're not going to create these files here, but you should feel free
to experiment on your own WordPress installation. To learn about the complete
file hierarchy for WordPress themes, feel free to visit http://www.codeinwp.com/
blog/wordpress-theme-heirarchy/. There's a great graph there that presents the
hierarchy visually. It's very easy to follow and does a much better job at explaining
this than I would do here through just words. In addition, when you browse the
official code bundle for this chapter, you'll see that many additional files have been
created and are actually available inside the bundle. We're not covering them here,
however, as it would probably be too much information at this point.

Learning more
You can also find a detailed flow chart of the template hierarchy at
https://codex.wordpress.org/Template_Hierarchy.

In this chapter, we've experimented with the uses of quite a number of WordPress
template tags. In Chapter 12, Creating a Non-blog Website Part 2 – Community Websites
and Custom Content Elements, I have listed more of the most useful template tags.

Next, we'll explore making custom templates for pages.

http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
http://www.codeinwp.com/blog/wordpress-theme-heirarchy/
https://codex.wordpress.org/Template_Hierarchy

Developing Your Own Theme

[218]

Creating and using a custom page template
WordPress allows you to create custom templates. These can be used only for pages
(not for posts). A custom template allows you to display the content differently or
easily use built-in WordPress functions within a template.

Just to give you a good example of what custom page templates are and how they
can benefit your site (no matter what theme you're using), let's create a custom
version of the archives template. This is also what we will use to create a custom
archives page that should be much more useful to our readers than the standard
one. Here's what the archives look like on my blog right now:

There are just a couple of small links in the sidebar that redirect the visitors to a
standard monthly archive. Of course, later on, when there are more posts on your
site, there will be many more links shown (exactly one link for each month of your
site's existence).

Now, as far as the idea of archives goes, I have to admit, somewhat reluctantly,
that WordPress was never good at this. One of the few problems with the platform
as a web publishing solution was the fact that posts usually have very short life
spans. Whenever you publish a post, it sits on the front page for a while and then
it vanishes in the archives never to be seen again, irrespective of whether it's still
relevant or not. In the end, it's really hard for a new visitor to find these old posts
on your site.

One of the few chances you have at reviving those old posts is mastering the art
of search engine optimization (SEO) and driving some new traffic to your old posts
through your SEO efforts only (it's the most popular solution). But luckily, it's not the
only way around to fix this issue. Again, custom page templates are an interesting
remedy here.

Chapter 7

[219]

In the preceding screenshot, you can see that the default version of the archives is
just a sidebar widget with some links to the individual months. The problem with
such content organization is that it provides a rather bad user experience. Archives,
in general, are not about listing everything in one place; they are about providing a
hub where the visitor can go and find some specific piece of content. For example,
think about how archives work in your local library. This is what you want to
eventually have on your site as well. So, what we're going to do here is say no to
the traditional archives template in WordPress and create a custom page template
to handle the archives manually. Then, we're going to link to this archive from one
of the menus. Here's how to do it.

On our new archives page, we want to achieve the following things:

•	 Display a piece of custom text. For instance, as a form of introduction or a
notification message explaining what's in the archives

•	 Display a categories archive—a list all the categories in use on the site.
•	 Display a tag cloud—a form of tag archive where all of the tags in use on

the site are displayed one after the other (inline, not in a list format), and the
font size increases for the tags that have been used more often than others.

•	 Display a list of 15 latest posts or whatever other number you wish.
•	 Display a monthly archives block. The fact that it's displayed at the bottom

is not accidental, as this block is not particularly useful for a typical visitor.

To do this, we need to create a template. The following are the steps we'll take:

1.	 Create the template file.
Make a copy of page.php within your theme, and give it a new name. I like
to prepend all of my custom template files with tmpl_ so that they are sorted
separately from all the WordPress template files that I will create. I'll name
this file tmpl_archives.php.
In order for WordPress to be able to identify this file as a template file, we
need to add a specially styled comment to the top of the page (just as we
did with style.css). The comment needs to be formatted as follows:
 <?php
 /* Template Name: Blog Archives Custom */
 ?>

In the wp-admin panel, the template will be identified by this template name,
so make sure the name signals to you for what the template is used.

Developing Your Own Theme

[220]

2.	 Add WordPress functions.
This is a crucial part of the process, but thankfully not a complicated one at this
stage. Look over your new template file and find the occurrence of this line:
<?php get_template_part('content', 'page'); ?>

Now, erase it and put this in its place:
<?php get_template_part('content', 'tmpl_archives'); ?>

This is the result we're after; the middle part of your tmpl_archives.php file
should now look like the following:
<?php while (have_posts()) : the_post(); ?>

 <?php get_template_part('content', 'tmpl_archives'); ?>

<?php endwhile; // end of the loop. ?>

Next, create a completely new file called content-tmpl_archives.php and
put the following code in it:
<article id="post-<?php the_ID(); ?>" <?php post_class();
 ?>>
 <header class="entry-header">
 <?php the_title('<h1 class="entry-title">', '</h1>');
 ?>
 </header>

 <div class="entry-content">
 <?php the_content(); ?>

 <div style="float: left; width: 50%;">
 <h2>Categories</h2>

 <?php wp_list_categories('orderby=name&title_li=');
 ?>

 </div>
 <div style="float: left; width: 50%;">
 <h2>Tags</h2>
 <?php wp_tag_cloud('smallest=8&largest=20'); ?>
 </div>
 <div style="clear: both;"></div><!-- clears the
 floating -->

Chapter 7

[221]

 <?php
 $how_many_last_posts = 15;
 echo '<h2>Last '.$how_many_last_posts.' Posts</h2>';
 $my_query = new WP_Query('post_type=post&nopaging=1');
 if($my_query->have_posts())
 {
 echo '';
 $counter = 1;
 while($my_query->have_posts() &&
 $counter<=$how_many_last_posts)
 {
 $my_query->the_post();
 ?>
 <a href="<?php the_permalink() ?>"
 rel="bookmark" title="Permanent Link to <?php
 the_title_attribute(); ?>"><?php the_title();
 ?>
 <?php
 $counter++;
 }
 echo '';
 wp_reset_postdata();
 }
 ?>

 <h2>By Month</h2>
 <p><?php wp_get_archives('type=monthly
 &format=custom&after= |'); ?></p>
 </div>

 <footer class="entry-footer">
 </footer>
</article><!-- #post-## -->

The preceding code includes some additional functionality on our new
archives template. Actually, because we are creating a custom template, we
can add any of the WordPress functions we discovered earlier in the chapter,
as well as any other WordPress function in existence (see Chapter 12, Creating
a Non-blog Website Part 2 – Community Websites and Custom Content Elements).
What we did here is the following. Here are some of the more interesting
parts of the code. Starting with the following:
<div style="float: left; width: 50%;">
 <h2>Categories</h2>

Developing Your Own Theme

[222]

 <?php wp_list_categories('orderby=name'); ?>

</div>

It's about adding a complete list of categories that are present on the site.
The div elements are responsible for displaying this block on the left side and
allowing the next block—tags—to be placed next to it (it's a more effective
way of achieving such an effect than using HTML tables because it's a more
cross-device-friendly approach).
The next part of the code is the following:
<div style="float: left; width: 50%;">
 <h2>Tags</h2>
 <?php wp_tag_cloud('smallest=8&largest=20'); ?>
</div>
<div style="clear: both;"></div><!-- clears the floating --
 >

It has a very similar purpose, only this time we're displaying the
aforementioned tag cloud. The last div element visible here is meant
to clear the float parameter used in the previous div elements.
Next, we have the part responsible for displaying the latest posts:
<?php
$how_many_last_posts = 15;
echo '<h2>Last '.$how_many_last_posts.' Posts</h2>'; $my_query =
new WP_Query('post_type=post&nopaging=1');
if($my_query->have_posts()) {
 echo '';
 $counter = 1;
 while($my_query->have_posts() &&
 $counter<=$how_many_last_posts) 	 {
 $my_query->the_post();
 ?>
 <a href="<?php the_permalink() ?>" rel="bookmark"
 title="Permanent Link to <?php the_title_attribute();
 ?>"><?php the_title(); ?>
 <?php
 $counter++;
 }
 echo '';
 wp_reset_postdata();
}
?>

Chapter 7

[223]

Currently, the code displays 15 latest posts, but this can be adjusted if
you just change the value of the $how_many_last_posts variable.
Finally, there's the block that displays a traditional monthly archive,
where every month is represented as a standard link:
<h2>By Month</h2>
<p><?php wp_get_archives('type=monthly&format=custom&after=
 |'); ?></p>

At this point, you can save the file and proceed to the next step.

3.	 Apply the template to a page.
Leave your HTML editor, and log in to your wp-admin. You need to edit or
create the page in which you want to use this template. In this case, I will
create a page and name it Archives.
On the Edit Page page, look for the Template menu within the Page
Attributes box (on the right, by default):

Developing Your Own Theme

[224]

Change it from Default Template to Blog Archives Custom, and click on
Update (Note that you can also change a page's template using Quick Edit
on Pages | Edit Page). Now, in order to see the page somewhere, you have to
add it to one of the menus. We already covered this in Chapter 4, Pages, Menus,
Media Library, and More, so I'm sure you can get it done quickly. Once you have
this handled, you can return to the frontend of your website and click on the
Archives page. However, because your site is not that content-heavy at this
point, you won't get a staggering effect, but there's still some nice presentation
of the most recent posts:

There is no limit to the number of custom templates you can make in your
WordPress theme. And now that we are done making templates for the
daily-cooking-custom theme, the theme folder has grown quite a lot.

These versions of the tmpl_archives.php file and the
content-tmpl_archives.php file are available in the code
bundle for this chapter—inside a subfolder labeled phase 5.

Chapter 7

[225]

Making your theme widget-friendly
If you want to be able to use the widgets in your theme, you will need to make your
theme widget-friendly (also known as widgetizing your theme). Widgetizing is
actually pretty easy, and to be honest with you, we already took care of that when
constructing our sidebar. I hadn't discussed much back then, but now let's go back
to this topic and explain how widgetizing works.

Going back to our sidebar
Back in the old days, it was very common for a WordPress site to use statically placed
content blocks in the sidebar. In other words, the only way to place dynamic content
in the sidebar of our sites was to use handmade code that would fetch whatever data
we wanted and then display it. This solution wasn't very usable for the everyday user
who might not be familiar with the PHP source code. So, a better solution needed to be
found. Hence, widgets.

Widgets give us the ability to set the sidebars in a way so they fetch the data that's
been set in Appearance | Widgets. Therefore, the only thing the user has to do is go
to Appearance | Widgets and pick whatever type of content they want to feature in
the sidebar (or any other widget area for that matter; it can be in the footer as well).

Just to give you an example of old versus new, here's what a standard piece of code
might look like that handles displaying blog archives the old way (this can be placed
in sidebar.php):

<div id="secondary" class="widget-area" role="complementary">
 <aside>
 <h1>Archives</h1>

 <?php wp_get_archives(); ?>

 </aside>
</div><!-- #secondary -->

However, this code is not customizable in any way, so a much better solution to
display the archives is to use the code that we already have in our sidebar.php,
which is as follows:

<div id="secondary" class="widget-area" role="complementary">
 <?php if(is_active_sidebar('sidebar-1')) dynamic_sidebar(
 'sidebar-1'); ?>
</div><!-- #secondary -->

And then, just assign a new Archives widget to this sidebar in the Appearance |
Widgets section of wp-admin.

Developing Your Own Theme

[226]

Working with the functions.php file
Okay, so right now, let's examine how all this actually works. As I said earlier, the
functions.php file can contain many different elements, so now, it's about time to
focus on how to actually enable dynamic sidebars also known as widgets. So, in the
functions.php file, we place the following code:

function daily_cooking_custom_widgets_init() {
 register_sidebar(array(
 'name' => __('Sidebar', 'daily-cooking-custom'),
 'id' => 'sidebar-1',
 'description' => '',
 'before_widget' => '<aside id="%1$s" class="widget %2$s">',
 'after_widget' => '</aside>',
 'before_title' => '<h1 class="widget-title">',
 'after_title' => '</h1>',
));
}
add_action('widgets_init', 'daily_cooking_custom_widgets_init');

In this code, I'm using one new function to register a new widget area. As you can
see, the widget area is simply called Sidebar (the name parameter).

Now, the final add_action('widgets_init', 'daily_cooking_custom_widgets_
init') function call is what actually registers the widget areas (it's the most important
line of code here; it lets WordPress know when to enable the widget areas).

Adding some widgets
At this point, your theme is ready for widgets! You can now go to wp-admin,
navigate to Appearance | Widgets, and add widgets. For example, as you can see
in the following screenshot, I've added three widgets to one of the widget areas:

Chapter 7

[227]

Be sure to click on Save, and then return to your website and reload the page.
The default items you had placed in the sidebar have been replaced with widgets,
as shown in the following screenshot:

Additional widgetizing options
What we just covered is the simplest way to widgetize a theme. There are actually
a lot of other possibilities that you could utilize when adding the code to your
sidebar.php and functions.php pages. For example, there are options that
allow you to do the following:

•	 Widgetize more than one sidebar, giving each a name
•	 Widgetize a part of your sidebar, but leave in some default items
•	 Widgetize the footer
•	 Customize the search form widget
•	 And much more

Learning more
To learn about the variety of options available and how to take
advantage of them, take a look at the codex at https://codex.
wordpress.org/Widgetizing_Themes.

https://codex.wordpress.org/Widgetizing_Themes
https://codex.wordpress.org/Widgetizing_Themes

Developing Your Own Theme

[228]

Enabling a menu in your theme
As of WordPress 3, users can now more easily control what appears in menus.
Instead of having to show "all pages" in the menu, you can choose to show
a selection of pages and/or categories, and/or other options (as we saw in
Chapter 4, Pages, Menus, Media Library, and More).

The good news I have for you right now is that menus are already enabled in the
structure of the theme we're creating here. Because we used the wp_nav_menu()
function in the header of the site (in the header.php file), if the user creates a menu
in Appearance | Menus and then assigns it to the area indicated as Primary Menu,
it will show up in this spot.

If you want to have more than one navigation menu in your theme, you can register
multiple navigation menu locations and let the user create multiple menus and
choose which menu goes in which location. To learn more about this, check out
the codex at https://codex.wordpress.org/Navigation_Menus.

Learning more
The wp_nav_menu() function is quite powerful and can take a number
of parameters that will let you control the classes and IDs, the name
of the menu, and more. Take a look at the codex at http://codex.
wordpress.org/Function_Reference/wp_nav_menu.

Creating a child theme
If you've found an existing theme or theme framework that you like, and you just
want to adjust it a bit to fit your requirements hand-in-glove, you can create a child
theme on top this existing theme. A child theme uses the parent theme as a starting
point and, without changing the theme itself, alters just the bits you want to alter.

https://codex.wordpress.org/Navigation_Menus
http://codex.wordpress.org/Function_Reference/wp_nav_menu
http://codex.wordpress.org/Function_Reference/wp_nav_menu

Chapter 7

[229]

As a matter of fact, using child themes is the recommended way of making
modifications to any theme. The rule of thumb is simple: if you want to change
anything at all about a stock theme (either inside the source code, graphics, or
template files), do it through a new child theme.

In plain English, a child theme inherits the functionality and features of the parent
theme. The biggest value of creating child themes is that you can introduce any bells
and whistles you wish without altering the structure of the parent theme. I know that
this sounds like some additional work, because if you just want to change a couple of
lines of code, then it's always going to be quicker to do it directly within the theme.
However, taking the longer "child theme" way has its benefits.

The main one is that if you were to modify the original theme directly, all your
modifications would vanish the minute you updated the theme. However, if you're
using child themes, you can take full advantage of any update that the original
theme's authors release. Let me say this again, preserving your modifications after
performing a theme update is impossible unless you're using a child theme.

Another benefit of working with child themes is that you have a very clear view
over the modifications that you've introduced into your theme. Basically, every new
thing that you're implementing through a child theme has to be placed in a new file,
so even when you come back to review your child theme after a while, you can still
easily identify every piece of your work.

The final benefit, actually, there's probably a lot more of them, but the final one on
this short list is that it's very easy to revert every modification you've introduced
through a child theme. In short, if something is causing any serious problems and
you have to fix your site quickly (you know—an emergency), then you can simply
delete the files responsible. If you were modifying your original theme directly,
going through every file individually would surely take much more time and
would make any sort of quick recovery very difficult to achieve.

Let's take a quick look at how to make a child theme.

Creating the new theme folder
Just to make things easier to understand here, we'll take the theme that we've been
creating in this chapter and build a child theme for it. The starting point is really
simple. Create a new folder in wp-content/themes/, and name it daily-cooking-
child.

Developing Your Own Theme

[230]

Creating the style sheet
The only file you need to start with in this folder is the stylesheet (style.css).
The stylesheet needs the usual header, plus a new line:

/*
Theme Name: Daily Cooking Child Theme
Description: Child theme for the Daily Cooking Custom theme.
Theme URI: http://newinternetorder.com/
Author: Karol K
Author URI: http://karol.cc/
Template: daily-cooking-custom
*/

The key line in that code is Template: daily-cooking-custom. This tells
WordPress that your new theme is a child theme of daily-cooking-custom.
To make your child theme start out with the CSS from the parent theme, add
the following code below the comment:

@import url("../daily-cooking-custom/style.css");

If you don't use the preceding line, your child theme will begin its existence on
a blank stylesheet. In most cases, this is not a desirable scenario.

Using your child theme
That's it! Your new theme now shows up on the Appearance page (the new child
theme doesn't have a screenshot icon yet), as shown in the following screenshot:

Granted, the theme is not really useful at this point, but it does exist and we can use
it as the base for further modifications. By default, it will use all of the main theme's
styles, template files, functions, and everything else. If you activate it, it will present
your site as if you were using your main theme.

Chapter 7

[231]

If you want to change anything, do so in your child theme's folder. You will override
the main theme's original template file if you create a new template file (for example,
single.php, index.php, and archive.php). The functions.php file works a little
differently, however. If you create a functions.php file, it will be in addition to
the main theme's original functions.php file; it will not override. In fact, your
new file will be loaded first, right before the original file. If you want to override a
specific function in the original functions.php file, just create a function with the
same name. You can also create completely new functions that are not present in
the parent theme.

Like I said, every other template file you create inside the child theme (such as
page.php and single.php) will override its namesake, so it's the perfect method to
include a new, slightly different design or some new features. Apart from replacing
the existing template files, you can add new ones that are not present in the parent
(including custom page templates).

In the end, the whole topic of child themes is quite an easy one to grasp once you
spend a little while trying out different things and checking how your site reacts to
the things you include in the child theme.

Learning more
The WordPress codex has a page devoted to learning about child
themes at https://codex.wordpress.org/Child_Themes.

Sharing your theme
If you want to turn your template into a package that other people can use, you just
have to take the following steps:

1.	 Make sure you have the rights to redistribute images, icons, photos, and so
on, that you included in your theme.

2.	 Remove all unnecessary files from your theme's folder. Be sure you don't
have backup versions or old copies of any of your files. If you do delete
any file, be sure to retest your theme to ensure you didn't accidentally
delete something important.

3.	 Make sure the comment at the top of the style.css file is complete
and accurate.

4.	 Create a Readme.txt file. This is a good place to let future users know
with what version of WordPress your theme is compatible and if it has
any special features or requirements.

https://codex.wordpress.org/Child_Themes

Developing Your Own Theme

[232]

5.	 Zip the folder and post your theme's ZIP file on your own website for
people to download, or post it directly in the WordPress Theme Directory
at https://wordpress.org/themes/.

Even though the preceding looks like a standard step-by-step process, it's actually
nothing like it. To be honest, your theme has to be a really quality one if it's to be
allowed into the directory. For example, every theme undergoes a human review,
which often results in your theme not passing it. In this case, you just have to make
the requested changes, resubmit your work, and keep trying until you get in.

Then, there's also the issue of licensing. By default, WordPress is available under the
GNU General Public License (GPL). In plain English, this means that WordPress
(the platform) is free and every derivative work that is built upon it has to be filed
under GPL too—this includes themes. In short, every piece of PHP code you find
inside WordPress, various themes, or plugins is GPL (that includes premium themes
and plugins). When it comes to artwork and CSS, GPL might not apply. If you want
to learn more about the GPL licensing, it's best if you go straight to the official legal
opinion at https://wordpress.org/news/2009/07/themes-are-gpl-too/.

Now, apart from the official directory, you can share your theme through other
channels. First of all, you have to decide whether you want your theme to be available
for free or not. In the case of the former, you can reach out to some popular blogs on
WordPress and WordPress design and simply let them know that you have a theme
you'd like to share. Most of the time (if the theme looks attractive), they will have no
problem notifying their community that there's a cool new free theme.

If you want to make your theme a premium one, you can go to ThemeForest
(http://themeforest.net/) and try submitting it there. The only challenge is that
your theme must really be a quality one if you don't want to get a lot of refunds.

I'm not forcing you to share your theme with the community right away, but once
you build some expertise and build your themes to be really cool and useful, you
really should reach out to the community and share your work.

Finally, if you're interested in creating an impact with your new theme in the
community, consider launching a website dedicated to your theme. This website
will be a place where you can publish a demo version, deliver some documentation,
and provide support forums and other things to deliver a great user experience.

The final versions of all the theme files (including the child theme)
are available in the code bundle for this chapter—inside a subfolder
labeled final.

https://wordpress.org/themes/
https://wordpress.org/news/2009/07/themes-are-gpl-too/
http://themeforest.net/

Chapter 7

[233]

Summary
You have now crossed to the other side of the WordPress themes world—you have
learned how to make your own theme. With just the most basic HTML and CSS
abilities, you can create a design and turn it into a fully functional WordPress theme.

In this chapter, we saw how to turn your HTML build into a basic theme, create
WordPress templates to influence the display of a variety of views on your site,
create custom templates to be applied to pages within your site, make your new
theme widget-ready, create a child theme, and share your theme with everyone
else in the WordPress community.

In the next chapter, we'll discuss the topic of feeds, podcasting, and social media
integration. This information will allow you to expand your blogging habits and
make your work more diverse and more noticeable on the web.

[235]

Feeds, Podcasting, and
Social Media Integration

Let's start this chapter with a definition. For those of you who don't know, this is
what a feed is (when it comes to websites):

"A web feed is a data format used for providing users with frequently
updated content."

 Wikipedia

Let's take a closer look at this concept. The key idea here is "frequently updated
content". A website that features a blog, updated news, or any type of content that
changes regularly will want to offer users a feed. This is because most users do not
want to have to visit such websites every day(nor do they remember). Users will
lose track of which websites have new content today, which ones don't, which ones
they've already seen, and so on.

If you think about it, feeds are one of the few sensible ways of consuming content
on the Internet (irrespective of whether it's written content, audio, or videos). With
information overload being one of the most common problems that people experience
online in the 21st century, manually visiting every website that we like is becoming
quite unmanageable.

Instead, we can use a feed aggregator (or feed reader). The idea is simple. You can
tell the feed reader about all of the regularly updated websites you are interested in,
and the feed reader will grab the updated content and display it all in one place. I,
for example, used to enjoy one of the most popular feed readers of all time—Google
Reader. The only problem was that it ceased to exist on July 1, 2013.

Feeds, Podcasting, and Social Media Integration

[236]

Currently, there are a number of alternatives, which grew strong after Google's
moves. I'm a Feedly user right now (http://www.feedly.com/), but you are free to
choose your own favorite. Also, let me just tell you that, for me, life without a feed
reader would really be very difficult. I know that it may sound very strange, or like a
big exaggeration, but I mean it. Just to give you some stats, currently, I'm subscribed
to over 500 different feeds, but the best thing is that I only need few minutes a
day to catch the most important news and articles. How's that for time efficiency?
Actually, I don't even need to visit all these sites directly; I can read every article
in a feed reader. This also adds up to savings in terms of page load time, as feeds
contain fewer advertisements and contain only the textual content in which you are
interested. So you don't have to wait for website design elements or ads to render.

What it all boils down to is this: if you are going to create a website with frequently
updated content, you'll want to offer your users a feed so that they can add it to their
reader. Also, you'll want to make sure you are familiar with feeds and feed readers
so that you can understand what your users are seeing and offer them everything
they are likely to want.

In this chapter, you will learn about feeds, how to provide feeds for your website's
content, and some useful plugins to make all this happen.

But wait, there's more! We're also going to cover podcasting (which for some
site owners is an important element of their online presence) and social media
integration, which the blogs of today can't function without.

Getting started with feeds
Feeds are pure content (or just summaries of content) presented in a structured way
via XML. They are usually organized with the most recent information on top. You
can always stay up-to-date using feed aggregators (software that can read feeds).
Using them, you can also have the content you want delivered or collected for you
how and where you want it. This applies not only to written content from blogs or
new websites, but also audio and video content (that is, podcasts).

Typically, web feeds are either in the Really Simple Syndication (RSS) or Atom
format. RSS has changed over the past decade, and thus, is often referred to by a
version number. The most up-to-date version of RSS is RSS 2.0.1. The older versions
are 0.91 and 1.0. However, to be honest, in my some years' experience with blogging
and WordPress, I can't recall a moment when I had to worry about, or even be aware
of, the version I'm currently using. It is just one of those things that go unnoticed.

http://www.feedly.com/

Chapter 8

[237]

Apart from that, however, RSS is kind of a dying technology these days. The
once-popular RSS readers have now either ceased development or have been
discontinued completely (just like the earlier mentioned Google Reader). Right
now, we have other solutions for consuming content, and the growing popularity
of social media makes it even easier to share the posts and pages that we find
interesting. People are slowly transitioning from feed readers (solutions where they
get to choose the content to read), to apps and social media (solutions that do the
choosing for them, either through the followers' efforts or the app's algorithm).

That being said, WordPress is 100 percent ready to handle any content distribution
and delivery mechanism imaginable. So you don't have to worry about your site
getting lost in the zeitgeist. By default, WordPress automatically helps you format
your posts so that they come in nicely through today's feed readers as well as any
new content-related apps that tomorrow might bring.

Let me say this again; the functionality of content delivery and content feeds'
compatibility is built into WordPress by default. This means you don't have
to do anything at all to make it available.

However, you may want to take a look at your blog in a few feed readers to see what
your content looks like. The following is a screenshot of Feedly (http://feedly.
com), a content reader / feed reader that has become the main player in the market:

http://feedly.com
http://feedly.com

Feeds, Podcasting, and Social Media Integration

[238]

As long as your WordPress is configured correctly, you will have no difficulty
displaying your content in Feedly and delivering it to thousands of readers
around the globe.

Learning more
You can find an extensive comparison of various feed
readers on Wikipedia (in case Feedly isn't your pair
of shoes) at http://en.wikipedia.org/wiki/
Comparison_of_feed_aggregators.

Working with built-in WordPress feeds
Just like I mentioned earlier, luckily for you, feed generation is automated
in WordPress. The WordPress installation has a feed generator included.
The feed generator creates feeds from posts, comments, and even categories.
It also generates all versions of RSS and Atom feeds.

You can find the feed generator for your WordPress blog if you point your
browser to any of the following URLs (replace yoursite.com with the URL
of your WordPress installation), and if you have pretty permalinks turned
on for your site:

•	 RSS 2.0 feed (http://yoursite.com/feed/)
•	 RDF/RSS 1.0 feed (http://yoursite.com/feed/rdf/)
•	 Atom feed (http://yoursite.com/feed/atom/)
•	 Comments RSS 2.0 feed (http://yoursite.com/comments/feed/)

http://en.wikipedia.org/wiki/Comparison_of_feed_aggregators
http://en.wikipedia.org/wiki/Comparison_of_feed_aggregators

Chapter 8

[239]

This is what I see in my web browser when I navigate to the RSS 2.0 URL:

Adding feed links
WordPress automatically generates the feed links that you have seen in the preceding
paragraphs, so you don't have to type them in or remember what they are for. If you're
using an existing theme, there's a good chance it's already got the feed links in it, in
which case you can skip this section.

You can use handy built-in WordPress functions to add feeds to your theme. Actually,
this is something we have partially done in the previous chapter. Just to remind you of
what I'm talking about, we used a code to enable feed links in the <head> section of our
custom theme. The following code was placed in the functions.php file of the theme:

//Adds RSS feed links to <head> for posts and comments.
add_theme_support('automatic-feed-links');

Feeds, Podcasting, and Social Media Integration

[240]

This instruction is what makes sure that the automatic feed links will be included
in the right place. The presence of these links in the <head> section allows various
feed readers to pick up your feeds just by using the main URL of your site. In other
words, visitors don't have to know the exact addresses of your feeds' URLs. Instead,
they can subscribe through the main site's URL.

The only additional thing that we can do at this point, to make our theme even more
usable, is to include some custom feed links in the footer, so that every visitor can
click on them directly. This is exactly what I'm going to describe next.

Feeds for the entire website
First, let's start by going back to the footer.php file we created in the previous
chapter. If you don't have it at your disposal at the moment, then simply download
the code bundle for Chapter 7, Developing Your Own Theme, and install it on your site.

Using your FTP software or the built-in WordPress theme editor (available from
the wp-admin by navigating to Appearance | Editor), edit the footer.php file
that's in your theme folder. Just before the Proudly powered by WordPress
message, add this:

<a href="<?= esc_url(get_bloginfo('rss2_url')) ?>"
 class="rss">Posts
 |
<a href="<?= esc_url(get_bloginfo('comments_rss2_url')) ?>"
 class="rss">Comments
 |

I've also added an RSS icon in the PNG format to the theme's images folder along
with the following CSS to the stylesheet:

.rss {
 background: url(images/rss.png) no-repeat;
 background-position: left center;
 padding: 0 0 0 18px;
}

Chapter 8

[241]

Now, when you reload your site, you'll see links for those two feeds in the footer, as
shown in the following screenshot:

WordPress will generate the feeds' URLs for you based on your site settings, so that
you don't have to hardcode them into your theme. If you want to add links for other
kinds of feeds, replace rss2_url in the earlier mentioned link with the following:

•	 For RSS 1.0, use rdf_url
•	 For Atom, use atom_url

Feeds for comments
On the individual posts page, we can add a feed to allow users to subscribe to the
comments on a particular post. Sometimes, a single post on a blog can draw a lot
of attention, with dozens or hundreds of people adding comments. People who
comment, and even those who don't, may be interested in following the thread
or subscribing to it.

Using your FTP software or the built-in WordPress theme editor, edit the
single.php file in your theme folder. If you're using the theme we built
in Chapter 7, Developing Your Own Theme, find the code that we added in it.
Scroll to the comments_template(); function call and add the following
code just before it:

?>
<p class="rss">
<?php post_comments_feed_link(__('Subscribe to these comments',
 'daily-cooking-custom')); ?>
</p>
<?php

If you are not using the theme we built in Chapter 7, Developing Your
Own Theme, you can add the preceding text anywhere in single.php,
so long as it's inside the if and while loops of the loop.

Feeds, Podcasting, and Social Media Integration

[242]

Now, when you look at the single post page, you'll see the subscription link just
above the comments form:

More built-in feeds are available in WordPress. Learn about them
at https://codex.wordpress.org/WordPress_Feeds.

Podcasting
A podcast is a special feed that includes a reference to an audio or video file instead
of just text. People use a podcasting client (such as iTunes or Juice) to collect and
listen to the episodes.

Fun fact
The word "podcast" is a combination of iPod and broadcasting.

Have you ever considered creating your own podcast? It's like having your
own radio or TV show. Your subscribers, instead of reading your posts on their
computers, can listen to your content through their headphones at any time.

Adding a podcast to your WordPress blog is outrageously easy. While generating
your blog's RSS feeds, WordPress automatically adds all the required tags if a music
file is linked within that post. These tags are read by podcast clients. Therefore, all
you have to do is make a post, and WordPress will do the rest for you.

https://codex.wordpress.org/WordPress_Feeds

Chapter 8

[243]

Creating a podcast
For basic podcasting, there are just two steps you need to take:

1.	 Record
2.	 Post

Let's look at these steps in detail.

Recording yourself
Using any commercial or free software, you can record your voice, a conversation,
music, or any other sound you'd like to podcast, and then save it as an MP3 file.
You may also find that you need to do some editing afterwards.

Some good software to consider for use are as follows:

•	 I recommend using Audacity, which is a free, cross-platform sound
recorder and editor. You can download Audacity from http://audacity.
sourceforge.net/. You may have to do a bit of extra fiddling around to
get the MP3 part working, so pay attention to the additional instructions
at that point. If you don't want to learn the basics of audio compression
and equalization, then you may also want to use a leveling tool such as the
Levelator, which can be found at http://www.conversationsnetwork.
org/levelator/. Although it's no longer updated as of the end of 2012,
it still works well if you want to level the volume in a simple audio file.

•	 If you are working on a Mac and want some free software, take a look
at Garage Band. It comes with the OS, so it will already be installed on
your computer.

•	 If you want to examine some advanced pieces of audio software, called
digital audio workstation (DAW), used by professional podcast producers
and musicians, then look into Sonar X2, Studio One, Logic, or ProTools.

To learn more about the basics of audio recording and production for podcasters,
which will make your podcasts sound professional, feel free to check this in-depth
tutorial at http://www.hongkiat.com/blog/audio-production-for-podcasters/.

http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
http://www.conversationsnetwork.org/levelator/
http://www.conversationsnetwork.org/levelator/
http://www.hongkiat.com/blog/audio-production-for-podcasters/

Feeds, Podcasting, and Social Media Integration

[244]

Making a post
Now that you've created an MP3 file and it's sitting on your computer, you're ready
to make a WordPress post that will be the home for the first episode of your podcast:

1.	 In the wp-admin, click on New Post in the top menu. Enter some initial text
into your post if you want to provide a description for the episode. Also, at
this point, add a new category called Podcast to your blog.

2.	 Just so we learn the basics of including media files, let's upload your media
file via the Media Manager. Later on in this chapter, I will explain why this
is not always the most effective approach. However, for now we're here to
learn. Start by clicking on the Add Media button, and drag and drop your
MP3. If all goes well, your file will be on the server shortly (remember that
audio files are bigger than images, so uploading will always take a little
longer).

3.	 Next, insert the MP3 file into your post. This is the options screen:

4.	 WordPress gives you three main possibilities under the Embed or Link
section. The default one is Embed Media Player. If you select it, WordPress
will display your audio file inside an interactive player (as shown in the
following screenshot). However, here we're going to select the second option,
namely Link to Media File.

Chapter 8

[245]

5.	 Click on Insert into Post.
6.	 Make any other changes or additions you want, and publish the post;

you're done! The final result is visible in the following screenshot
(it's just a standard link):

That's it. Your website's RSS 2.0 feed and Atom feed can now be used by podcast
clients to pick up your podcast.

You can use your own podcast client (in my case, iTunes) to subscribe right
away. If you are using iTunes, navigate to Advanced | Subscribe to podcast
and paste the RSS URL of the new podcast category you just created (for example,
http://yoursite.com/category/podcast/feed/). At this point, you (and your
visitors) can enjoy the new podcast you've just created.

Dedicated podcasting
Setting up a dedicated podcast is easy; we already did it here! You just need to
use a separate category for all of your podcast posts. Whenever you post a podcast
episode, be sure to assign it only to this category. Also, you would want to make
this link available in the sidebar of your site.

First, go to the archive page for your podcast category and copy its URL (for example,
http://yoursite.com/category/podcast/feed/). Also, to make things easier for
iTunes users, you can add an iTunes-specific link. It is the same as your other link,
but replace http:// with itpc://.

Feeds, Podcasting, and Social Media Integration

[246]

Now, create a new text widget for your sidebar (refer to Chapter 5, Plugins and Widgets),
and add this HTML to it (replace yoursite.com with your actual domain):

The
 Podcast
iTunes
 Podcast Feed

That's it. These simple lines of code will display two neat links pointing to
your podcast.

The WordPress codex has a section on getting started with podcasting.
Take a look at https://codex.wordpress.org/Podcasting.

Podcasting plugins
We just learned that it's quite easy to add a podcast to your WordPress website.
However, if you want additional features, you may want to use a podcasting plugin.
Some additional features could be as follows:

•	 Automatic feed generation
•	 A preview of what your podcast will look like in iTunes
•	 Download statistics
•	 Automatic inclusion of a player within your post on your website
•	 Support for separate category podcasts

There are quite a number of podcast-related plugins available in the WordPress
plugin repository. The three most popular ones are as follows:

•	 PowerPress (https://wordpress.org/plugins/powerpress/)
•	 Podlove Podcast Publisher (https://wordpress.org/plugins/podlove-

podcasting-plugin-for-wordpress/)
•	 Podcasting Plugin by TSG (https://wordpress.org/plugins/

podcasting/)

https://codex.wordpress.org/Podcasting
https://wordpress.org/plugins/powerpress/
https://wordpress.org/plugins/podlove-podcasting-plugin-for-wordpress/
https://wordpress.org/plugins/podlove-podcasting-plugin-for-wordpress/
https://wordpress.org/plugins/podcasting/
https://wordpress.org/plugins/podcasting/

Chapter 8

[247]

For an in-depth guide on how to use the PowerPress plugin (which
is my favorite one from the preceding list) and how to configure it
correctly, please watch this 30-minute video tutorial by Pat Flynn
at https://www.youtube.com/watch?v=Ei67QMWD4MA#!.
Through this tutorial, you'll learn how to optimize your podcast
and set it up properly so that it can be picked up by iTunes and
then shared across the community.

Also, there are hundreds more such plugins that you can find by looking at all the
plugins tagged podcasting (https://wordpress.org/plugins/tags/podcasting).
You'll have to read the plugin descriptions and user reviews to decide which of these
might be the best match for you.

Using a service to host audio files for free
As I mentioned a while ago, the old-school approach of uploading your podcast
straight to your blog has its flaws, which doesn't make it the most effective way to
handle things these days. First of all, if you want to host the media file on your main
server (the one where your website is hosted), you can quickly encounter serious
bandwidth problems, especially if your podcast becomes popular. Also, there's a
problem with the maximum upload size in WordPress. Depending on your webhost,
you might not be able to upload files larger than 2 MB, 8 MB, or 16 MB (you can
contact your webhost's support to clarify this for you). This is what the problem
looks like in the uploader:

Therefore, if you anticipate having a large number of subscribers, or if you plan to
produce such a large volume that you'll run out of space on your own server, you
can use an external hosting service that will host your audio files, either for a fee or
free of cost. Some options to consider are as follows:

•	 Libsyn: This provides effective and affordable podcast hosting
(http://www.libsyn.com/)

•	 Archive.org: Once you sign up for an account, you can contribute your
audio files to be placed in the podcast directory (http://archive.org/
details/audio)

https://www.youtube.com/watch?v=Ei67QMWD4MA#!
https://wordpress.org/plugins/tags/podcasting
http://www.libsyn.com/
http://archive.org/details/audio
http://archive.org/details/audio

Feeds, Podcasting, and Social Media Integration

[248]

•	 PodBean: This provides free podcast hosting (http://www.podbean.com/)

If you choose to do this, first upload your file to the service you've selected and then
make a copy of the URL it gives you for the file. Now you need to insert this URL
into your WordPress post by using one of the earlier mentioned plugins. After doing
so, your podcast episode will be recognized by podcast directories.

Integrating social media
We've briefly mentioned the topic of social media integration in Chapter 5, Plugins
and Widgets, when discussing the plugins that are worth having on your WordPress
site. So right now, let's take a moment to expand upon it and list some more ways in
which you can make your site social media friendly, and also see why you'd want to
do that in the first place.

Let's start with the why. In this day and age, social media is one of the main drivers
of traffic for many sites. Even if you just want to share your content with friends and
family, or you have some serious business plans regarding your site, you need to
have at least some level of social media integration.

Even if you install just simple social media share buttons, you will effectively
encourage your visitors to pass on your content to their followers, thus expanding
your reach and making your content more popular.

Making your blog social media friendly
There are a handful of ways to make your site social media friendly. The most
common approaches are as follows:

•	 Social media share buttons, which allow your visitors to share your content
with their friends and followers

•	 Social media APIs integration, which make your content look better on social
media (design wise)

•	 Automatic content distribution to social media
•	 Social media metrics tracking

Let's discuss these one by one.

http://www.podbean.com/

Chapter 8

[249]

Setting up social media share buttons
This is something we talked about in Chapter 5, Plugins and Widgets, when discussing
plugins. There are hundreds of social media plugins available out there that allow you
to display a basic set of social media buttons on your site. The one I advise you to use
is called Social Share Starter (http://bit.ly/sss-plugin). Its main advantage is
that it's optimized to work on new and low-traffic sites, and doesn't show any negative
social proof when displaying the buttons and their share numbers.

You can find the full description, plus a tutorial on how to set everything up, in
Chapter 5, Plugins and Widgets.

Setting up social media APIs' integration
The next step worth taking to make your content appear more attractive on social
media is to integrate it with some social media APIs; particularly that of Twitter.

What exactly their API is and how it works isn't very relevant for the WordPress
discussion we're having here. So instead, let's just focus on what the outcome of
integrating your site with this API is.

Here's what a standard tweet mentioning a website usually looks like (please notice
the overall design, not the text contents):

http://bit.ly/sss-plugin

Feeds, Podcasting, and Social Media Integration

[250]

Here's a different tweet, mentioning an article from a site that has Twitter's (Twitter
Cards) API enabled:

This looks much better. Luckily, having this level of Twitter integration is quite easy.
All you need is a plugin called JM Twitter Cards (available at https://wordpress.
org/plugins/jm-twitter-cards/). After installing and activating it, you will be
guided through the process of setting everything up and approving your site with
Twitter (mandatory step).

Setting up automatic content distribution
to social media
The idea behind automatic social media distribution of your content is that you
don't have to remember to do so manually whenever you publish a new post.
Instead of copying and pasting the URL address of your new post by hand to
each individual social media platform, you can have this done automatically.

This can be done in many ways, but let's discuss the two most usable ones,
the Jetpack and Revive Old Post plugins.

https://wordpress.org/plugins/jm-twitter-cards/
https://wordpress.org/plugins/jm-twitter-cards/

Chapter 8

[251]

The Jetpack plugin
The Jetpack plugin is available at https://wordpress.org/plugins/jetpack/.
We talked about the Jetpack plugin and its many modules in Chapter 5, Plugins and
Widgets. One of those modules is called Publicize. You can activate it by navigating
to the Jetpack | Settings section of the wp-admin.

After doing so, you will be able to go to Settings | Sharing and integrate your site
with one of the six available social media platforms:

After going through the process of authorizing the plugin with each service, your site
will be fully capable of posting each of your new posts to social media automatically.

The Revive Old Post plugin
The Revive Old Post plugin is available at https://wordpress.org/plugins/
tweet-old-post/. While the Jetpack plugin takes the newest posts on your site
and distributes them to your various social media accounts, the Revive Old Post
plugin does the same with your archived posts, ultimately giving them a new life.
Hence the name Revive Old Post.

https://wordpress.org/plugins/jetpack/
https://wordpress.org/plugins/tweet-old-post/
https://wordpress.org/plugins/tweet-old-post/

Feeds, Podcasting, and Social Media Integration

[252]

After downloading and activating this plugin, go to its section in the wp-admin
Revive Old Post. Then, switch to the Accounts tab. There, you can enable the plugin
to work with your social media accounts by clicking on the authorization buttons:

Then, go to the General settings tab and handle the time intervals and other details
of how you want the plugin to work with your social media accounts. When you're
done, just click on the SAVE button.

Chapter 8

[253]

At this point, the plugin will start operating automatically and distribute your
random archived posts to your social media accounts.

Note that it's probably a good idea not to share things too often if you don't want
to anger your followers and make them unfollow you. For that reason, I wouldn't
advise posting more than once a day.

Setting up social media metrics tracking
The final element in our social media integration puzzle is setting up some kind of
tracking mechanism that would tell us how popular our content is on social media
(in terms of shares).

Granted, you can do this manually by going to each of your posts and checking
their share numbers individually (provided you have the Social Share Starter plugin
installed). However, there's a quicker method, and it involves another plugin. This
one is called Social Metrics Tracker and you can get it at https://wordpress.org/
plugins/social-metrics-tracker/.

In short, this plugin collects social share data from a number of platforms and then
displays them to you in a single readable dashboard view. After you install and
activate the plugin, you'll need to give it a couple of minutes for it to crawl through
your social media accounts and get the data. Soon after that, you will be able to visit
the plugin's dashboard by going to the Social Metrics section in the wp-admin:

https://wordpress.org/plugins/social-metrics-tracker/
https://wordpress.org/plugins/social-metrics-tracker/

Feeds, Podcasting, and Social Media Integration

[254]

For some webhosts and setups, this plugin might end up consuming
too much of the server's resources. If this happens, consider activating
it only occasionally to check your results and then deactivate it again.
Doing this even once a week will still give you a great overview of
how well your content is performing on social media.

This closes our short guide on how to integrate your WordPress site with social
media. I'll admit that we're just scratching the surface here and that there's a lot
more that can be done. There are new social media plugins being released literally
every week, and describing every single one of them would fill a book on its
own. That being said, the methods described here are more than enough to make
your WordPress site social media friendly and enable you to share your content
effectively with your friends, family, and audience.

Summary
There was a lot going on in this chapter. First, we focused on feeds (RSS) and their
importance for every website that aims at being reader friendly. Next, there was
the topic of podcasting and a brief getting-started guide to it (how to configure
your feeds, what plugins to use, and so on). Finally, we talked about social media
integration, tools, and plugins that can make your life a lot easier as an online
content publisher.

In the next chapter, we'll discuss the topic of developing your own plugins and
widgets, what the basics are and how to get your head around them.

[255]

Developing Plugins
and Widgets

In Chapter 5, Plugins and Widgets, you learned how to install plugins. Plugins are
essentially a way to add to or extend WordPress' built-in functionalities. There are
thousands of useful plugins (at the time of writing, the official counter at https://
wordpress.org/plugins/ shows over 37,000 plugins) available from the online
WordPress community, and they perform all different kinds of functions. In the
earlier chapters, we installed plugins that catch spam, back up your site, give you
basic SEO features, and more. You can also get plugins that manage your podcasts,
track your stats, translate your content into other languages, and much more.

Sometimes, however, you'll find yourself in a situation where the plugin you need
just doesn't exist. Luckily, it's quite easy to write a plugin for WordPress that you
can use on your own site and share with the larger community if you want to. All
you need is some basic PHP knowledge, and you can write any plugin you want.

This chapter is divided into three major parts:

•	 In the first part, we'll create two plugins by using an easy-to-follow
step-by-step process.

•	 In the second part, we'll create a widget by using the built-in WordPress
Widget class.

•	 In the third part, you will learn what shortcodes are and how to use them.

https://wordpress.org/plugins/
https://wordpress.org/plugins/

Developing Plugins and Widgets

[256]

Plugins
In this section, we'll create a plugin via a simple step-by-step process. We'll first see
what the essential requirements are, then try out and test the plugin, and then briefly
discuss the PHP code.

Building plugins from scratch
First of all, we're here to learn about WordPress, so in this particular case, we will
indeed build things from scratch. This is always the best approach to get an in-depth
look into how a particular technology works.

However, later on, once you're working with WordPress on a regular basis managing
your own or other people's websites, I actually advise you to always look for an
already existing plugin before deciding to write a new one yourself. As I mentioned
earlier, there are around 37,000 plugins in the official directory alone, not to mention
all the premium plugins available all over the web. In short, if you need some
functionality, most likely, there's a plugin for it, so you can just go out and get it.

Why is this the recommended approach? If I'm correct, you've chosen to use
WordPress because you wanted to make your site as functional as possible with
the least amount of effort possible. Following this line of thought, using an existing
plugin simply requires much less effort than building one. Also, many existing
plugins are already used by thousands of other people and have large communities
supporting them. Choosing a quality plugin is therefore a lot safer path to take.

I feel that I should emphasize this clearly because experience tells me that many young
WordPress developers tend to press their peers to create things from scratch just for
the heck of it despite the fact that there are other and better solutions available.

Moreover, please remember that everything that's a derivative work based on
WordPress is available under GPL. So, there's nothing standing in your way to
take an existing plugin, build upon it, make it better, and then re-share your
version with the world. That way, we all win and there's no redundant work.

But before we can do that, we indeed must learn the craft by constructing something
of our own from start to finish. Onward then!

Chapter 9

[257]

Plugin code requirements
Just as there were requirements for a theme, there are requirements for a plugin.
At the very least, your plugin must satisfy the following:

•	 It must be placed in the wp-content/plugins folder (inside the root folder
of WordPress).

•	 It must have a PHP file with a unique name (not used by any other plugin
in the main wp-content/plugins folder).

•	 It must have a specially structured comment at the top of the file
(see https://codex.wordpress.org/File_Header).

That's it. Then, of course, you must have some functions or processing code, but
WordPress will recognize any file that meets these requirements as a plugin.

If your plugin is a simple one, then you can just place a unique PHP file straight
in your wp-content/plugins folder, so it can sit next to the default Hello Dolly
plugin that WordPress comes with. However, a much better practice is to create a
subfolder (again, unique) and place your PHP file there. It makes the wp-content/
plugins folder seem much more organized. Plus, you never know when your plugin
is going to need some additional files (it's always easier to simply add new files to a
previously existing plugin folder than to restructure the plugin from scratch).

Basic plugin - adding link icons
As a demonstration, we will create a simple plugin that adds icons to document
links within WordPress. For example, in Chapter 8, Feeds, Podcasting, and Social
Media Integration, we added a link to an MP3 file. It looks like the following now:

https://codex.wordpress.org/File_Header

Developing Plugins and Widgets

[258]

Once this plugin is complete, the link will look like the following instead:

To accomplish this, we have to do the following:

1.	 Provide images of the icons that will be used.
2.	 Have a PHP function that identifies the links to documents and adds a

special CSS class to them.
3.	 Have a stylesheet that creates the CSS classes for displaying the icons.
4.	 Tell WordPress that whenever it prints the content of a post (that is, using the

the_content() function), it has to run the PHP function first.
5.	 Tell WordPress to include the new styles in the <head> tag.

Keep this list in mind as we move forward. Once all these five requirements are met,
the plugin will be done. So, let's get started!

Naming and organizing the plugin files
Every plugin should have a unique name so that it does not come into conflict with
any other plugin in the WordPress universe. When choosing a name for your plugin
and the PHP file, be sure to choose something unique. You may even want to do a
Google search for the name you choose in order to be sure that someone else isn't
already using it.

Apart from the main plugin file itself, your plugin can contain any number of other
files and subfolders. If the situation calls for it, you can even use media files like
audio and videos to go along with your plugin. Of course, additional CSS or JS files
(or even full libraries) are allowed as well.

Chapter 9

[259]

In this case, as my plugin will be composed of multiple files (a PHP file, a stylesheet,
and some image files), I'm going to create a folder to house my plugin. I'll name the
plugin Add Document Type Styles New and place it in a folder called add_doctype_
styles_new. The PHP file, doctype_styles_new.php, will live in this folder. I've also
collected a number of document type icons (provided by http://www.freepik.com/
via http://www.flaticon.com/).

The folder I created for my plugin now looks like this:

It is best practice to also create folders like images, css, and js inside
your plugin's folder if what you're building will consist of more files.

Now that I've got the images in my folder, I've taken care of the first requirement in
the list of requirements my plugin has to meet.

If your plugin has any unusual installation or configuration options, you
may also want to include a readme.txt file in this folder that explains
this. This readme file will be useful both as a reminder to you and as an
instructional document to others who may use your plugin in the future.
If you plan to submit your plugin to the WordPress plugin directory, you
will be required to create a readme file. To get the template for such a file,
please visit https://wordpress.org/extend/plugins/about/
readme.txt.

As mentioned earlier, your plugin has to start with a special comment that tells
WordPress how to describe the plugin to users on the plugins page. Now that
I've got my folder and a blank PHP file created, I'll insert the special comment.
It has to be structured like the following. This really is fundamental (explained
at https://codex.wordpress.org/File_Header).

<?php
/*
Plugin Name: Add Document Type Styles New
Plugin URI: http://newinternetorder.com/plugins
Description: Detects URLs in your posts and pages and displays nice
document type icons next to them. Includes support for PDF, DOC, MP3,
and ZIP.
Version: 1.0

http://www.freepik.com/
http://www.flaticon.com/
https://wordpress.org/extend/plugins/about/readme.txt
https://wordpress.org/extend/plugins/about/readme.txt
https://codex.wordpress.org/File_Header

Developing Plugins and Widgets

[260]

Author: Karol K
Author URI: http://karol.cc/
Text Domain: add_doctype_styles_new
License: GNU General Public License v2 or later
*/

Another good piece of information to have in your plugin is about
licensing. Most plugins use the GNU General Public License
(GPL). This license essentially means that anyone can use, copy,
and enhance your code, and that they are not allowed to prevent
anyone else from redistributing it. I've also added a note about the
GPL to my plugin's PHP file. Remember that all PHP code you
encounter in any WordPress plugin is GPL by default. However,
graphic files, CSS, JavaScript, and other elements might have a
different license, so be careful when copying other people's work
and making it part of your own.
You can read more about the license at https://www.gnu.org/
copyleft/gpl.html.

That's all about the introductory code. Now, we can add the meat.

Writing the plugin's core functions
The core of any plugin is the unique PHP code that you bring to the table. This is the
part of the plugin that makes it what it is. Since this plugin is so simple, it only has a
few lines of code in the middle.

The second requirement the plugin has to meet is have a PHP function that identifies
links to documents and adds a special class to them. The following function does just that.
Note that in keeping with my efforts to ensure that my code is unique, I've prefixed
both of my functions with doctype_styles_new:

function doctype_styles_new_regex($text) {
 $text = preg_replace('/href=([\'|"][[:alnum:]|
 [:punct:]]*)\.(pdf|doc|mp3|zip)([\'|"])/', 'href=\\1.\\2\\3
 class="link \\2"', $text);
 return $text;
}

When the function is given some $text, it will perform a search for any HTML
anchor tag linking to a PDF, DOC, MP3, or ZIP file, and replace it with a class to
that anchor. Then, the function returns the altered $text.

https://www.gnu.org/copyleft/gpl.html
https://www.gnu.org/copyleft/gpl.html

Chapter 9

[261]

The third requirement the plugin has to meet is have a stylesheet that creates classes for
displaying the icons. The following function fetches our stylesheet:

function doctype_styles_new_styles() {
 wp_register_style('doctypes_styles', plugins_url
 ('doctype_styles_new.css', __FILE__));
 wp_enqueue_style('doctypes_styles');
}

As you can see, this function uses the same enqueue mechanism that we used in
Chapter 7, Developing Your Own Theme, when registering the stylesheets for our
custom theme. Here's the CSS file the preceding function fetches (inside doctype_
styles_new.css):

.link {
 background-repeat: no-repeat;
 background-position: left center;
 padding: 0 0 0 18px;
}
.pdf { background-image: url(icon-pdf.png); }
.doc { background-image: url(icon-doc.png); }
.mp3 { background-image: url(icon-mp3.png); }
.zip { background-image: url(icon-zip.png); }

Indeed a very simple file, containing just a handful of styles and icons to distinguish
our document links!

Adding hooks to the plugin
We get our code to actually run when it is supposed to by making use of WordPress
hooks. The way in which plugin hooks work is as follows: at various times while
WordPress is running, they check to see whether any plugins have registered functions
to run at that time. If there are, the functions are executed. These functions modify the
default behavior of WordPress. The WordPress Codex says it best:

[…] There are two kinds of hooks:

1. Actions: Actions are the hooks that the WordPress core launches at specific points
during execution, or when specific events occur. Your plugin can specify that one or
more of its PHP functions are executed at these points, using the Action API.

2. Filters: Filters are the hooks that WordPress launches to modify text of various
types before adding it to the database or sending it to the browser screen. Your plugin
can specify that one or more of its PHP functions is executed to modify specific types
of text at these times, using the Filter API.

Developing Plugins and Widgets

[262]

This means that you can tell WordPress to run your plugin's functions at the same
time when it runs any of its built-in functions. In our case, we want our plugin's first
function, doctype_styles_new_regex(), to be run as a filter along with WordPress'
the_content(). (This is the fourth requirement a plugin has to meet.)

Now, add the following code to the bottom of the plugin:

add_filter('the_content', 'doctype_styles_new_regex');

This uses the add_filter hook that tells WordPress to register a function named
doctype_styles_new_regex() when it is running the function called the_
content(). By the way, if you have more than one function that you want added as a
filter to the content, you can add a third argument to the add_filter() function. This
third argument would be a number representing the load priority (the default value is
10, highest priority is 1, and there are no particular limits for the lowest priority—you
can even assign values such as 100 or 999), and WordPress would run your functions
in the ascending order.

All that's left in our list of requirements that a plugin has to meet is the fifth
requirement: tell WordPress to include the new styles in the <head> tag. This
is actually done the same way it's been done for themes, which is through the
following hook using add_action() with the wp_enqueue_scripts handle:

add_action('wp_enqueue_scripts', 'doctype_styles_new_styles');

Here is the complete plugin PHP file:

<?php
/*
Plugin Name: Add Document Type Styles New
Plugin URI: http://newinternetorder.com/plugins
Description: Detects URLs in your posts and pages and displays nice
document type icons next to them. Includes support for PDF, DOC, MP3
and ZIP.
Version: 1.0
Author: Karol K
Author URI: http://karol.cc/
Text Domain: add_doctype_styles_new
License: GNU General Public License v2 or later

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. | This is a fork of a plugin
called "Add Document Type Styles" created by Aaron Hodge Silver
(http://springthistle.com) | Icons made by http://www.freepik.com from
http://www.flaticon.com - licensed under CC BY 3.0.

Chapter 9

[263]

*/

// this function does the magic
function doctype_styles_new_regex($text) {
 $text = preg_replace('/href=([\'|"][[:alnum:]|
 [:punct:]]*)\.(pdf|doc|mp3|zip)([\'|"])/', 'href=\\1.\\2\\3
 class="link \\2"', $text);
 return $text;
}

// this functions adds the stylesheet to the head
function doctype_styles_new_styles() {
 wp_register_style('doctypes_styles', plugins_url('doctype_styles_
new.css', __FILE__));
 wp_enqueue_style('doctypes_styles');
}

// HOOKS =============

add_filter('the_content', 'doctype_styles_new_regex', 9);
add_action('wp_enqueue_scripts', 'doctype_styles_new_styles');

Please make sure that there are no blank spaces before <?php. If there
are any spaces, the PHP code will break, complaining that headers have
already been sent. This is quite a common mistake developers stumble
into during their initial attempts with WordPress plugins.
It's also a generally good idea to not use the PHP closing tags (?>)
at the end of your PHP files. It saves you from some of the most
unfortunate execution errors.

Make sure you save and close this PHP file. You can now do one of two things:

•	 Using your FTP client, upload add_doctype_styles_new/ to your
wp-content/plugins/ folder

•	 Zip up your folder into add_doctype_styles_new.zip and use the plugin
uploader in wp-admin to add this plugin to your WordPress installation

This version of the plugin is available in the code bundle
for this chapter—inside a subfolder labeled phase 1.
Our plugin files will go through a couple of phases
before we have the final version.

Developing Plugins and Widgets

[264]

Once the plugin is installed, it will show up on the plugins page:

Now, you can activate it and test it out.

If you need more in-depth advice on installing and working with
plugins, then feel free to review Chapter 5, Plugins and Widgets,
where we discussed plugins and widgets in detail.

Trying out the plugin
If you look at the podcast post we created in an earlier chapter, you'll notice that an
MP3 icon has been added to it.

You can also try adding a new post with links to PDF, ZIP, or DOC files. This can
be done by uploading the files through the media manager and clicking on Insert
into Post. Then, when you view the post, you'll see that even more icons have been
added to it by the plugin.

Now that you've learned about a basic plugin that uses hooks to piggyback on
the existing WordPress functionality, let's enhance this plugin by giving the user
some controls.

Chapter 9

[265]

Adding an admin page
Some plugins add a page to wp-admin where you or the user can edit plugin options.
We've seen this with W3 Total Cache, WordPress SEO, and others. Now, let's modify
our plugin to give the user some control over which document types are supported.
The following is what the new management page will look like when we are done:

First, deactivate the plugin we just wrote. We'll make changes to it and then reactivate
it. Following are the steps we'll carry out to modify the plugin in order to make this
new page possible:

•	 Add functions that create an admin page and save the user's input in a
new option.

•	 Modify the doctype_styles_new_regex() function so that it retrieves
the user's input.

•	 Add hooks for the admin page functions.

Let's get started!

Adding management page functions
The management page that we will create is going to add an option to wp-admin.
This uses the existing space in the WordPress options table in the database, so no
database modifications are required. The name of the new option has to be unique.
I'm going to call the new option doctype_styles_new_supportedtypes.

There are six functions we need to add to the plugin so that an admin page can be
added to wp-admin. Let's take a look at the first two:

1.	 The first function adds the new option doctype_styles_new_supportedtypes
when the plugin is activated, and sets the default value:
function set_supportedtypes_options() {
 add_option("doctype_styles_new_supportedtypes",
 "pdf,doc,mp3,zip");
}

Developing Plugins and Widgets

[266]

2.	 The second function removes the new option when the plugin is deactivated:
function unset_supportedtypes_options () {
 delete_option("doctype_styles_new_supportedtypes");
}

3.	 Let's look at the new third function:
function modify_menu_for_supportedtypes() {
 add_submenu_page(
 'options-general.php', //The new options page will
 be added as a submenu to the Settings menu.
 'Document Type Styles', //Page <title>
 'Document Type Styles', //Menu title
 'manage_options', //Capability
 'add_doctype_styles_new', //Slug
 'supportedtypes_options' //Function to call
);
}

This function adds a new item to the Settings menu in wp-admin by using
the add_submenu_page() function call. This takes six arguments, namely,
where the options page should be placed, page title, menu link text, the user
at the maximum level who can access the link, what file to open (none, in this
case), and the function to call, supportedtypes_options().

4.	 The supportedtypes_options() function is, in fact, the fourth new function
we are adding.
function supportedtypes_options() {
 echo '<div class="wrap"><h2>Supported Document
 Types</h2>';
 if (isset($_POST['submit'])) {
 update_supportedtypes_options();
 }
 print_supportedtypes_form();
 echo '</div>';
}

This function actually displays our new page. It prints a title, checks to see
if someone has clicked on the submit button; if the submit button has been
clicked, the supportedtypes_options() function updates the options, and
then prints the form.

Chapter 9

[267]

5.	 The new fifth function we have to add is responsible for updating options
if the submit button has been clicked:
function update_supportedtypes_options() {
 $updated = false;
 if ($_POST['doctype_styles_new_supportedtypes']) {
 $safe_val = addslashes(strip_tags($_POST
 ['doctype_styles_new_supportedtypes']));
 update_option('doctype_styles_new_supportedtypes',
 $safe_val);
 $updated = true;
 }

 if ($updated) {
 echo '<div id="message" class="updated fade">';
 echo '<p>Supported types successfully updated!</p>';
 echo '</div>';
 } else {
 echo '<div id="message" class="error fade">';
 echo '<p>Unable to update supported types!</p>';
 echo '</div>';
 }
}

6.	 The last function we need to add, the new sixth function, prints the form
that the users will see. Please make sure to have no spaces before or after
the closing tag (EOF;):
function print_supportedtypes_form() {
 $val_doctype_styles_new_supportedtypes =
 stripslashes(get_option('
 doctype_styles_new_supportedtypes'));
 echo <<<EOF
<p>Document types supported by the Add Document Type Styles New
plugin are listed below.
To add a new type to be linked, take
the following steps, in this order:

 Upload the icon file for the new doctype to <i>wp-
 content/plugins/add_doctype_styles_new/</i>
 Add a line for the new doctype to the stylesheet at
 <i>wp-content/plugins/add_doctype_styles_new/
 doctype_styles_new.css</i>
 Add the extension of the new doctype to the list
 below, keeping with the comma-separated format.

</p>

Developing Plugins and Widgets

[268]

<form method="post">
 <input type="text" name=
 "doctype_styles_new_supportedtypes" size="50" value="$val_
doctype_styles_new_supportedtypes" />
 <input type="submit" name="submit" value="Save Changes"
 />
</form>
EOF;
}

These six functions together take care of adding a link in the menu, adding the
management page for this link, and updating the new option.

Modifying the doctype_styles_new_regex() function
Now that the users are able to edit the list of supported document types by appending
the document types they want, we should have a way of telling the doctype_styles_
new_regex() function to use the user's list instead of the built-in list. To do so, we
need to use get_option('doctype_styles_new_supportedtypes') in our doctype_
styles_new_regex() function. The get_option() function will retrieve the value
that the user has saved in the new option we just created. Modify your doctype_
styles_new_regex() function so that it looks like this:

function ahs_doctypes_regex($text) {
 $types = get_option('doctype_styles_new_supportedtypes');
 $types = preg_replace('/,\s*/', '|', $types);

 $text = preg_replace('/href=([\'|"][[:alnum:]|
 [:punct:]]*)\.('.$types.')([\'|"])/i', 'href=\\1.\\2\\3
 class="link \\2"', $text);

 return $text;
}

Adding hooks
We have added our management page functions, but now we have to tell WordPress
to use them. To do so, we just need to add the following three new hooks:

add_action('admin_menu', 'modify_menu_for_supportedtypes');
register_activation_hook(__FILE__, "set_supportedtypes_options");
register_deactivation_hook(__FILE__,
 "unset_supportedtypes_options");

Chapter 9

[269]

The first hook tells WordPress to add our link to the menu when it creates the menu
with admin_menu(). The next two hooks tell WordPress to call the activation and
deactivation functions when the plugin is activated or deactivated.

This version of the plugin is available in the code bundle for this
chapter—inside a subfolder labeled final. It is the final version
of our plugin.

Trying out the plugin
We have added all of the new functions. Now it's time to save the file and see what
happens. You can go ahead and reactivate the plugin. Now, when you look at the
Settings menu, you will see that the new link has been added:

Click on it to see the management page:

Developing Plugins and Widgets

[270]

If you follow the three steps here on the management page (upload the file icon,
add a new style to the stylesheet, and add the extension to the option), then that
new document type will be supported.

There are already a number of ways in which this plugin could be improved. Some
of them are as follows:

•	 Instead of making the user upload his or her new icon using FTP, the
plugin could allow the user to upload the new icon directly via the new
management page.

•	 The plugin could display the icons for the supported document types on
the management page so that the users see what they look like.

•	 The plugin could check to make sure that for every document type in the
option field there is an existing icon, else it displays an error to the user.

Perhaps, you'd like to try to make these changes yourself!

Testing your plugins
Just a minute ago, we've tried out our new plugin, so it's probably a good moment to
say a word or two about testing your plugins and making sure that they don't cause
any problems for regular users in general.

Our particular plugin is a very simple one; the only thing it does is process each
link it finds inside any post's or page's content and add a custom icon next to it.
However, even such a simple plugin can be a possible security breach point. For
example, the only place where the user can input anything is the plugins section in
wp-admin (the field handling the supported file types). Now, there is a possibility
that someone might use this field to input a piece of specific PHP code instead of
a standard file type, for instance, code that is meant to perform a specific action
on the server side, which could result in a serious security breach. That is why
our update_supportedtypes_options() function has these two lines:

$safe_val = addslashes(strip_tags($_POST
 ['doctype_styles_new_supportedtypes']));
update_option('doctype_styles_new_supportedtypes', $safe_val);

Thanks to them, everything that the user inputs will have all PHP and HTML tags
stripped by strip_tags(), and then every character that needs to be quoted in
database queries will be handled by addslashes(). Using such functions is a
just-in-case practice, but it tends to be something that eventually pays off.

Chapter 9

[271]

Apart from testing our work against some of the common hacking practices such as
code injection and SQL injection, we also need to handle all kinds of unconventional
uses we can think of. For instance, would anything bad happen if someone put a
value that's not a standard file type? Or what if the CSS file goes missing all of a
sudden? These are just some of the questions a good testing session should answer.

One more good way of testing plugins is to hand them over to a handful of trusted
users and ask for feedback. Someone who's entirely new to your plugin will usually
do a way better job at testing it than you—the author.

Of course, this short section here only scratches the surface of plugin testing and
code testing in general, so I encourage you to give it a closer look on your own.
There are many great resources on the Internet and in the nearest bookstore.

A plugin with DB access – capturing searched
words
We're going to leave the doctypes plugin behind now, and create a new plugin,
featuring active use of the database. Let's create a simple plugin that stores all the
words that visitors search for (when using the blog's search function).

The database table structure for this plugin will be as follows:

The table name is wp_searchedwords:

Field Type Null Key Default Extra
Id INT NOT NULL PRI auto_

increment

Word VARCHAR(255) NULL
created DATETIME NOT NULL Today

00:00:01

Now, let's write the plugin code.

Even though I say that the table is named wp_searchedwords, it
won't always be the case. It's all based on the table prefix that's set
on your site (the default one is indeed wp_). Here, I'm going to refer
to the table as wp_searchedwords anyway, out of convenience.

Developing Plugins and Widgets

[272]

Getting the plugin to talk to the database
The first part of this plugin has to be run only when the plugin is activated. This will
be the initialization function. One of its tasks is to create or update the database table
(the table will be created only if it hasn't been created before):

function searchedwords_init($content) {
 global $wpdb;
 $sw_table_name = $wpdb->prefix.'searchedwords';

 //creating the table (if it doesn't exist) or updating it if
 necessary
 if(isset($_GET['activate']) && 'true' == $_GET['activate']) {
 $sql = 'CREATE TABLE `'.$sw_table_name.'` (
 id INT NOT NULL AUTO_INCREMENT,
 word VARCHAR(255),
 created DATETIME NOT NULL DEFAULT \''.date('Y-m-d').'
 00:00:01\',
 PRIMARY KEY (id)
)';

 require_once(ABSPATH.'wp-admin/includes/upgrade.php');
 dbDelta($sql);
 }

 // in case a search has just been performed, store the searched
 word
 if (!empty($_GET['s'])) {
 $current_searched_words = explode(" ",urldecode($_GET['s']));
 foreach ($current_searched_words as $word) {
 $wpdb->query($wpdb->prepare("INSERT into `$sw_table_name`
 VALUES(null,'%s','".date('Y-m-d H:i:s')."')", $word));
 }
 }
}

This function connects to the database by using various function calls like
dbDelta(), $wpdb->query(), and $wpdb->prepare(). The dbDelta() function
takes care of creating the table or updating it (whatever is needed at the time; find
out more at https://codex.wordpress.org/Creating_Tables_with_Plugins).
Apart from this, when dealing with the WordPress database, you can utilize any
database-related PHP function in existence. Or, you can use the WordPress' class
member function $wpdb->get_results(). The function we're using here also
stores the searched word in the database table if a search has just been performed.
This is done through the $wpdb->query() and $wpdb->prepare() functions.

https://codex.wordpress.org/Creating_Tables_with_Plugins

Chapter 9

[273]

Adding management page functions
We now need a familiar-looking function that adds a management page to the admin
menu. In this case, we use add_management_page() instead of add_submenu_page()
because this plugin is more of a tool than something that needs settings:

function modify_menu_for_searchedwords() {
 $page = add_management_page(
 "Capture Searched Words",
 "Capture Searched Words",
 'manage_options',
 'capture_searches_new',
 'searchedwords_page'
);
}

For this plugin, we're not going to load any custom styling or CSS files. The topic
here is to just showcase how database connection can be done, so we're going to
keep everything else ultra-simple and minimal. Therefore, the only thing we have
to do at this point is write a function that retrieves the information from the database
and displays it on the new management page (again, everything is done through the
$wpdb object).

function searchedwords_page() {
 global $wpdb;
 $sw_table_name = $wpdb->prefix.'searchedwords';

$searched_words = $wpdb->get_results("SELECT COUNT(word) AS
 occurrence, word FROM `$sw_table_name` GROUP BY word ORDER BY
 occurrence DESC");
 ?>
<div class="wrap" style="max-width: 600px;">
<h2>Searched Words</h2>
<table class="wp-list-table widefat">
<thead>
 <tr>
 <th scope="col">Search Words</th>
 <th scope="col"># of Searches</th>
 </tr>
</thead>
<tbody>
 <?php
 if($searched_words !== NULL) {
 foreach($searched_words as $searched_word) {

Developing Plugins and Widgets

[274]

 echo '<tr valign="top"><td>'.$searched_word-
 >word.'</td><td>'.$searched_word->occurrence.'</td></tr>';
 }
 $searched_perfomed = true;
 }
 else {
 echo '<tr valign="top"><td colspan="2">No searches
 have been performed yet</td></tr>';
 }
 ?>
</tbody>
</table>
</div>
 <?php
}

That's it. The previous plugin had more functions because data was being captured
from the user and being saved. Here, that's not necessary.

Lastly, we just need to add two hooks:

add_filter('init', 'searchedwords_init');
add_action('admin_menu', 'modify_menu_for_searchedwords');

The first hook tells WordPress to run the initialization function when the plugin is
activated, or when a search is performed. The second hook modifies the admin menu
to add a link to the new management page.

This version of the plugin is available in the code bundle for this
chapter—inside a subfolder labeled final. It is the first and final
version of our plugin.

Trying out the plugin
As with the last plugin, you can now either upload your plugin using FTP to
wp-content/plugins or turn it into a ZIP file and add it using the uploader
to wp-admin.

Once you've installed it, activate it. Then, look at the menu under Tools and
you'll see a link to the new management page:

Chapter 9

[275]

When you click on Capture Searched Words, you'll see a new page that the
plugin created:

As you can see, I did perform some searches beforehand just to have something to
show on this new page. You can do the same by placing a search field widget in your
sidebar (the next screenshot), and then experimenting with different search words
and phrases. The plugin will pick them all up and display the most searched ones
in its section in wp-admin:

Developing Plugins and Widgets

[276]

Learning more
There are hundreds of hooks available in WordPress—way too many to cover in
this book. You can learn more about them by going online. Start out at these online
reference sites:

•	 The Plugin API article contains very thorough information about writing
plugins and using hooks (https://codex.wordpress.org/Plugin_API).

•	 For a complete list of action hooks, visit https://codex.wordpress.org/
Plugin_API/Action_Reference.

•	 For a complete list of filter hooks, visit https://codex.wordpress.org/
Plugin_API/Filter_Reference.

•	 You may also want to take a step back and look at the general Plugin
Resources page in the WordPress Codex at https://codex.wordpress.
org/Plugin_Resources.

•	 If you want to submit your plugin to the WordPress plugin repository, you'll
have to take steps similar to those you took when preparing a theme, and
you'll also have to get hooked up to the WordPress SVN repository. Learn
more about how to submit a plugin to the WordPress plugin repository at
https://codex.wordpress.org/Plugin_Submission_and_Promotion.

Widgets
Writing a widget bears some similarities to writing a plugin, but in some ways
it's easier because there is a widget class that you can leverage for some of the
functionalities. In other ways, it's also a bit more time-consuming as there's a
lot of mandatory code that every widget has to feature.

Custom tag cloud widget
In this section, we'll see how to write a widget that displays a custom tag cloud that
we can then place in the sidebar. There will also be the possibility to change the title
of the widget, and although this is a tag cloud widget, we'll be able to switch tags
to categories and display them using a tag-cloud-like style as well. In its final form,
the widget will look like this:

https://codex.wordpress.org/Plugin_API
https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API/Action_Reference
https://codex.wordpress.org/Plugin_API/Filter_Reference
https://codex.wordpress.org/Plugin_API/Filter_Reference
https://codex.wordpress.org/Plugin_Resources
https://codex.wordpress.org/Plugin_Resources
https://codex.wordpress.org/Plugin_Submission_and_Promotion

Chapter 9

[277]

Just as a comparison, here's what the standard tag cloud widget (the native one in
WordPress) looks like:

Let's get started!

Naming our widget
In this case, we're going to create the widget as a standalone plugin. So, just like any
other plugin, it needs a unique name and a unique appearance in the wp-content/
plugins folder.

I encourage you to search the Web whenever you're creating a new
widget or plugin just to make sure that there's nothing out there going
by the same name. On top of that, use "namespace" as a prefix with
every file name (and function name) that you're creating. For example,
mine is "kk_".

I'll name the new plugin file (which holds the widget) kk_tag_cloud_widget.php
and put it in its own kk_tag_cloud_widget folder inside wp-content/plugins.

Developing Plugins and Widgets

[278]

This main PHP file starts just like any other plugin, with this declaration:

<?php
/*
Plugin Name: Karol K's Tag Cloud Widget
Description: Displays a nice tag cloud.
Plugin URI: http://newinternetorder.com/plugins
Version: 1.0
Author: Karol K
Author URI: http://karol.cc/
License: GNU General Public License v2 or later
*/

The widget structure
When you are building a widget by using the widget class, your widget needs to
have the following structure:

class UNIQUE_WIDGET_NAME extends WP_Widget {

 public function __construct() {
 $widget_ops = array();
 $control_ops = array();
 parent::__construct('base id', 'name', $widget_ops,
 $control_ops);
 }

 public function widget($args, $instance) {
 // used when the sidebar calls the widget
 }

 public function form($instance) {
 // prints the form on the widgets page
 }

 public function update($new_instance, $old_instance) {
 // used when the user saves his/her widget options
 }
}

// initiate the widget

// register the widget

My unique widget name for this project is KK_Widget_Tag_Cloud. Now, let's go over
each of the preceding functions one by one and understand what's going on.

Chapter 9

[279]

The widget initiation function
Let's start with the widget initiation function. Blank, it looks like this:

public function __construct() {
 $widget_ops = array();
 $control_ops = array();
 parent::__construct('base-id', 'name', $widget_ops,
 $control_ops);
}

In this function, which is the constructor of the class, we initialize various things that
the WP_Widget class is expecting. The first two variables, to which you can give any
name you want, are just a handy way to set the two array variables expected by the
third line of code.

Let's take a look at these three lines of code:

•	 The $widget_ops variable is where you can set the class name, which
is given to the div widget itself, and the description, which is shown in
wp-admin on the widgets page.

•	 The $control_ops variable is where you can set options for the control box
in wp-admin on the widget page, like the width and height of the widget
and the ID prefix used for the names and IDs of the items inside. For my
basic widget, I'm not going to use this variable (it's optional).

•	 When you call the parent class's constructor, WP_Widget(), you'll tell it the
widget's unique ID, the widget's display title, and pass along the two arrays
you created.

For this widget, my code now looks like this:

public function __construct() {
 parent::__construct(
 'kk-tag-cloud',
 'KK Tag Cloud',
 array(
 'description' => 'Your most used tags in cloud format; same
 height; custom background'
)
);
}

Developing Plugins and Widgets

[280]

The widget form function
The widget form function has to be named form(). You may not rename it if
you want the widget class to know what its purpose is. You also need to have
an argument in there, which I'm calling $instance, which the class also expects.
This is where the current widget settings are stored.

This function needs to have all of the functionalities to create the form that users
will see when adding the widget to a sidebar. Let's look at some abbreviated code
and then explore what it's doing:

public function form($instance) {
 $instance = wp_parse_args((array) $instance, array('template' =>
 ''));
 $current_taxonomy = $this->_get_current_taxonomy($instance);
 ?>
 <p>
 <label for="<?php echo $this->get_field_id('title');
 ?>">Title</label>
 <input type="text" class="widefat" id="<?php echo $this-
 >get_field_id('title'); ?>" name="<?php echo $this-
 >get_field_name('title'); ?>" value="<?php if
(isset($instance['title'])) {echo esc_attr($instance['title']);}
 ?>" />
 </p>
 <p>
 <label for="<?php echo $this->get_field_id('taxonomy');
 ?>">Taxonomy</label>
 <select class="widefat" id="<?php echo $this-
 >get_field_id('taxonomy'); ?>" name="<?php echo $this-
 >get_field_name('taxonomy'); ?>">
 <?php foreach(get_object_taxonomies('post') as $taxonomy) :
 $tax = get_taxonomy($taxonomy);
 if(!$tax->show_tagcloud || empty($tax->labels->name))
 continue;
 ?>
 <option value="<?php echo esc_attr($taxonomy) ?>" <?php
 selected($taxonomy, $current_taxonomy); ?>><?php echo $tax-
 >labels->name; ?></option>
 <?php endforeach; ?>
 </select>
 </p>
 <?php
}

Chapter 9

[281]

First, you use a WordPress function named wp_parse_args(), which creates an
$instance array that your form will use. What's in it depends on what defaults
you've set and what settings the user has already saved.

Then, you create form fields. Note that for each form field, I make use of the built-in
functions that will create unique names and IDs and input the existing values.

•	 $this->get-field_id() creates a unique ID based on the widget instance
(remember, you can create more than one instance of this widget).

•	 $this->get_field_name() creates a unique name based on the
widget instance.

•	 The $instance array is where you will find the current values for the
widget, whether they are defaults or user-saved data.

All the other code in there is just regular PHP and HTML. Note that if you give the
user the ability to set a title, name that field title, WordPress will show it on the
widget form when it's minimized. The widget form this will create will look like this:

The widget save function
When a user clicks the Save button on the widget form, WordPress uses AJAX to
run your save function. You need to be sure to save whatever the user types in,
which is all we're doing in this case, but you can put other functionalities here if
it's appropriate for your widget (for example, database interactions, conversions,
calculations, and so on). The final code for this function is as follows:

public function update($new_instance, $old_instance) {
 $instance['title'] = $new_instance['title'];
 $instance['taxonomy'] = stripslashes($new_instance['taxonomy']);
 return $instance;
}

Developing Plugins and Widgets

[282]

Be sure this function is named update() and is prepared to accept two instances,
one with the old data and one with the just-submitted data. You can write your code
to check $new_instance for problems, and thus, return $old_instance if the new
one isn't valid. The $instance data you return will be what's shown in the update
widget form.

The widget print function
The third main function in your widget class is the one that is called by the sidebar
when it's time to actually show the widget to people visiting the website. It needs
to retrieve any relevant saved user data and print out information for the website
visitor. In this case, our final print function looks like this:

public function widget($args, $instance) {
 extract($args);
 $current_taxonomy = $this->_get_current_taxonomy($instance);
 if(!empty($instance['title'])) {
 $title = $instance['title'];
 }
 else {
 if('post_tag' == $current_taxonomy) {
 $title = 'Tags';
 }
 else {
 $tax = get_taxonomy($current_taxonomy);
 $title = $tax->labels->name;
 }
 }
 $title = apply_filters('widget_title', $title, $instance, $this-
 >id_base);

 $before_widget = '<div class="widget-container
 kk_widget_tag_cloud">';
 $after_widget = '</div>';
 $before_title = '<h1 class="widget-title">';
 $after_title = '</h1>';

 echo $before_widget;
 if ($title) { echo $before_title . $title . $after_title; }
 echo '<div class="kk_tagcloud">';
 wp_tag_cloud(apply_filters('widget_tag_cloud_args',
 array('taxonomy' => $current_taxonomy)));
 echo "</div>\n";
 echo $after_widget;
}

Chapter 9

[283]

The preceding function calls one more helper function responsible for fetching the
current taxonomy. A very simple one, though:

function _get_current_taxonomy($instance) {
 if (!empty($instance['taxonomy']) &&
 taxonomy_exists($instance['taxonomy']))
 return $instance['taxonomy'];
 return 'post_tag';
}

The first thing I do in the main function is extract the data in the instance, which has
the information the website administrator had saved when filling out the widget
form. Then, the widget takes a look into the selected taxonomy (tags or categories)
and displays all individual items as a simple one-line list.

Custom widget styles
Our small widget has its own stylesheet that needs to be included in the current
theme's head section, like any other stylesheet.

The file is named kk_tag_cloud_widget.css and contains the following:

.kk_widget_tag_cloud .kk_tagcloud {
 line-height: 1.5em;
}

.kk_widget_tag_cloud .kk_tagcloud a {
 display: inline-block;
 margin: 3px 2px;
 padding: 0 11px;
 border-radius: 3px;
 -webkit-border-radius: 3px;
 background: #eee;
 color: #279090;
 font-size: 12px !important;
 line-height: 30px;
 text-transform: uppercase;
}

.kk_widget_tag_cloud .kk_tagcloud a:hover {
 color: #f2f2f2;
 background: #404040;
}

Developing Plugins and Widgets

[284]

Nothing fancy, just a set of classes that will make sure that the widget looks great.
The only thing we have to do with this stylesheet is enqueue it through a standard
WordPress hook. Place this in your plugin's main file:

function kk_tag_cloud_widget_styles_load() {
 wp_register_style('kk_tag_cloud_widget_styles',
 plugins_url('kk_tag_cloud_widget.css', __FILE__));
 wp_enqueue_style('kk_tag_cloud_widget_styles');
}
add_action('wp_enqueue_scripts',
 'kk_tag_cloud_widget_styles_load');

Initiating and hooking up the widget
That's it for widget functionality! Now, you just need to add a little piece of code that
will hook the widget up to the rest of WordPress:

function KK_Widget_Tag_Cloud_Reg() {
 register_widget('KK_Widget_Tag_Cloud');
}
add_action('widgets_init', 'KK_Widget_Tag_Cloud_Reg');

This tells WordPress that when it initiates widgets, it should be sure to register our
new widget.

This version of the widget is available in the code bundle for this
chapter—inside a subfolder labeled phase 1. We'll still be adding
one more feature before we can call it the final version.

Trying out the widget
Your widget is ready to go! Save all your changes, and upload your widget to the
wp-content/plugins folder. Go to the Installed Plugins page, and you'll see your
widget waiting to be activated, as usual. After you click on the Activate button, you
can navigate to Appearance | Widgets. You'll see the widget waiting to be added to
a sidebar:

Chapter 9

[285]

Drag the widget to a sidebar, and then click on the little down arrow to edit it. You'll
see the options slide down, as shown in the following screenshot:

You can enter a Title or leave it blank for the default, and choose Taxonomy to use.
Then, click on Save as you would with any widget. When you return to the frontend
of the site and reload, the new tag cloud will be right there:

Learning more
You can browse the following online reference sites to learn more about widgets:

•	 The WordPress Widgets API is located at
https://codex.wordpress.org/Widgets_API

•	 WordPress lists a number of widgets at
https://codex.wordpress.org/WordPress_Widgets

https://codex.wordpress.org/Widgets_API
https://codex.wordpress.org/WordPress_Widgets

Developing Plugins and Widgets

[286]

•	 If you want to find more widgets to install on your website, visit the widgets
section of the plugin repository at https://wordpress.org/plugins/tags/
widget

Bundling a widget with an existing plugin
If you're writing a plugin and you'd like to make a widget available with it, you don't
have to create a separate widget plugin. Just include all of the widget code—like
what we created in the preceding section—in with your plugin's PHP file. When the
user activates the plugin, the widget you created will automatically show up on the
widgets page in wp-admin. No need for a separate file!

Shortcodes
Shortcodes are a handy way to let a nontechnical person, such as an editor of a
website, include dynamic functionality within pages and posts, without having to
actually use any PHP, complex HTML structures, or custom JavaScript. In other
words, shortcodes are handy reusable pieces of code, yet they don't require any
actual coding experience or knowledge on the end user's part.

Shortcodes and the way they work
The way a shortcode works is that you tell WordPress to look at the text within
square brackets ([]) and evaluate it by running a PHP function. That PHP function
can live in the functions.php file of your theme, or in a plugin file, or in a widget
file. Let's create a simple shortcode and include it with our most recent widget.

Types of shortcodes
Shortcodes are a pretty simple concept by definition, but we can still distinguish
three main types:

•	 Single-tag shortcodes: These shortcodes are executed with just a single tag,
for example, [my_first_shortcode/].

•	 Double-tag shortcodes: These shortcodes are executed with opening
and closing tags, for example, [my_2nd_shortcode]some text here[/
my_2nd_shortcode] (please notice that the closing tag has an additional /).
As you can see, there's also some content within the tags. This content can
be processed by the shortcode function.

https://wordpress.org/plugins/tags/widget
https://wordpress.org/plugins/tags/widget

Chapter 9

[287]

•	 Shortcodes with attributes: These shortcodes can have one or two tags and
also a number of attributes we can use to customize the output, for example,
[my_3rd_shortcode name="Karol" twitter="carlosinho"]some text
here[/my_3rd_shortcode].

Creating a simple shortcode
Let's create a simple shortcode that will make it possible to use our widget's output
inside any given post or page.

This is going to be a double-tag shortcode with one additional attribute, which we'll
use to indicate whether the output should be formatted using our custom CSS or
WordPress' native styling.

Let's start by creating a new function at the bottom of our kk_tag_cloud_widget.
php file, and then, we'll go through each individual line:

function kk_tag_cloud_handler($atts, $content=null) {
 extract(shortcode_atts(array(
 'use_css' => '1',
 'taxonomy' => 'post_tag'
), $atts));

 $tax = 'post_tag';
 if(taxonomy_exists($taxonomy)) $tax = $taxonomy;

 $result = '';

 if ('0' != $use_css) {
 $result .= '<div class="kk_widget_tag_cloud"><div
 class="kk_tagcloud">';
 }
 if (null != $content) {
 $result .= addslashes(strip_tags($content)).' ';
 }
 $result .= wp_tag_cloud(apply_filters(
 'widget_tag_cloud_args',
 array('taxonomy' => $tax, 'echo' => false)
));
 if ('0' != $use_css) {
 $result .= '</div></div>';
 }

 return $result;
}

Developing Plugins and Widgets

[288]

First of all, note that this function does not echo or print anything. It just returns a
string. If you let your function print, it won't look correct on the website.

Inside our function, the first line handles the custom attributes that the shortcode
receives (in this case, just the use_css parameter for indicating whether the styles
should be used or not, and the taxonomy parameter to indicate the taxonomy that
should be shown in the shortcode). WordPress will hand off the $atts argument
automatically, and we only have to use the extract() function to turn the attributes
the user submits into variables available in the function. The values in the array passed
to extract() set the defaults, in case the user chooses no options. In general, there is
no limit to the number of options that you can make available to the shortcode users.

The next line extracts the taxonomy identifier and tries to turn it into a valid
taxonomy. In case the user's input is not valid, the default post_tag taxonomy
will be used. The final part of the function handles the display based on the state
of the use_css attribute. Pretty basic at this point! There's also a possibility to
include custom text as the main content of the shortcode. This can be useful in
some situations.

What we have to do now is tell WordPress that this function is a shortcode,
and we do so by using a hook. Be sure to choose something unique. I've chosen
kk_tag_cloud as the name for this shortcode, so the hook looks like this:

add_shortcode('kk_tag_cloud', 'kk_tag_cloud_handler');

To use this shortcode in our content, all we have to do is edit any given post or
page and put a line like this in it:

[kk_tag_cloud taxonomy="category"]Select the category you'd like
 to read next:[/kk_tag_cloud]

Such usage will have the following effect:

Chapter 9

[289]

We can also use the shortcode like this:

[kk_tag_cloud use_css="0" taxonomy="category"]Select the category
 you'd like to read next:[/kk_tag_cloud]

This will disable the custom styles and produce this effect:

To display the tag cloud in its default form (showing the tags and using the custom
stylesheet), all we have to do is execute the shortcode like this:

[kk_tag_cloud][/kk_tag_cloud]

The effect is shown in the following screenshot:

There are very few limitations regarding what you can and cannot do with shortcodes.
However, the most common uses are for embedding online videos from sites such as
YouTube (using the [youtube] shortcode, for example), or for showing various social
media boxes and activity streams.

This version of the widget is available in the code bundle for this
chapter—inside a subfolder labeled final. It is the final version
of our widget.

Developing Plugins and Widgets

[290]

Enabling shortcodes in widgets
By default, shortcodes are ignored inside widgets. So, assume that you add a text
widget with your shortcode in it, as shown in the following screenshot:

Then, all that would show is the shortcode itself:

This can be fixed by adding the following line just after our shortcode definition:

add_filter('widget_text', 'do_shortcode', 11);

The third parameter in this function (11) specifies the order in which the functions
associated with the widget_text action are executed. Using 11 means that our
shortcode functions will be executed later on in the queue. You can learn more
about this parameter and the whole add_filter() function at https://codex.
wordpress.org/Function_Reference/add_filter.

Now, all shortcodes on the site will be evaluated in widgets. In other words, you can
place any shortcode inside a text widget.

In this particular case, however, you can see that enabling our shortcode inside a text
widget has very little sense, as we can clearly just use our tag cloud widget normally
instead. But for other implementations (other shortcodes), it can indeed be useful.

https://codex.wordpress.org/Function_Reference/add_filter
https://codex.wordpress.org/Function_Reference/add_filter

Chapter 9

[291]

Summary
In this chapter, you learned everything you need to know about creating basic
plugins and widgets. Now, you know how to structure the PHP file, where to put
your functions, and how to use hooks. You also learned about adding management
pages and enabling plugins and widgets to have database access. On top of all this,
you learned how to create shortcodes, a powerful tool that lets you make dynamic
functionalities available to all WordPress users. With your existing knowledge of
PHP and HTML, you now have the tools to get started with writing every plugin
and widget your heart may desire.

The next chapter will be all about community blogging—running multi-user blogs,
and other aspects of turning your site into a serious online magazine.

[293]

Community Blogging
So far in this book, we've focused on working with a personal website: one that
belongs to, and is used by just one person. However, many blogs are used in a
different way - there may be a single blog or website with a variety of writers,
editors, and administrators. This makes the site more like a community project
or even an online magazine.

Furthermore, it's by no means uncommon for bigger online publishers to use
WordPress as the base of their websites. In which case, the site has a number of
authors, editors, reviewers, and overall contributors with varying responsibilities.
Not to mention the technical staff or designers.

In this chapter, we'll discuss allowing a blog to have multiple authors with differing
levels of control over the blog's administration and content. We'll explore user
management for multiple users on one blog, as well as other aspects of blogging as
a member of a community. We'll also take a look at using a non-blog website with
multiple users.

Concerns for a multi-author blog
A multi-author blog is useful when a group of people with similar interests want
to collaborate and share space to publish their writing, or if an organization or
company wants to have an online magazine. If that group wants to publish news
on a particular topic, or on many topics in a broad sense, then they'll each need to
be able to log in and post their content, update their profile, and so on. For example,
I can decide that I want every member of my family to be able to contribute to my
Daily Cooking blog. Each of my sisters, brothers, cousins, aunts, and uncles can add
their recipes and discoveries regarding food, which has the potential to make my
food blog a richer and more exciting place for visitors.

Community Blogging

[294]

However, content moderation is also essential to a multi-author blog. The best way
to keep a blog clean and relevant to the topic is by using a moderation flow that
restricts the display of content until it travels through an approval process. Such
practice is usually called workflow. A workflow makes working in large groups
much easier and more manageable.

User roles and abilities
WordPress includes the ability to have an unlimited number of users. Each user can
be assigned one of five different roles. Let's look at these roles one at a time, starting
with the most powerful one.

Administrator
When you installed WordPress, it created a user with administrative powers for you.
This role is called administrator, and every WordPress site must have at least one
admin (you will not be allowed to delete them all). As you have already seen in
the earlier chapters, administrators can do everything.

The administrator's primary purpose is to manage everything
about a website.

In general, you're not going to want to have a lot of administrators on a single blog
or website. It is best to keep just one administrator for a blog with 10 to 20 authors
and editors or perhaps up to three administrators for a blog with dozens of users.

Some examples of the actions that only a user with the administrator role can take
are as follows:

•	 Switch blog theme
•	 Add, edit, activate, or deactivate plugins
•	 Add, edit, or delete users
•	 Manage general blog options and settings

When creating more administrator accounts (or managing the main one), make sure
to use only complex passwords that are hard to break using any sort of brute-force
methods. In a nutshell, use as many numbers, special characters, combinations
of uppercase and lowercase letters as you can. A lot of hacking attempts revolve
around password guessing, so the more complex your password is, the tougher
it will be to break.

Chapter 10

[295]

Editor
After the administrator, the editor has the most powerful role. This role is for
the users who need to manage everything about the content of a website, but
don't need to be able to change the basic structure, design or functionality of
the blog itself (that's for administrators).

The editor's primary purpose is to manage the content of a blog.

To get an idea of what the screen looks when a user logs in as an editor, let's take
a look at the editor's menu (to the right) in comparison with the administrator's
menu (to the left):

As you can see, the top section is unchanged (apart from the Updates link).
However, nearly the entire bottom menu, with Appearance, Plugins, Users
(which is replaced with Profile), and Settings, has disappeared. We can see that
the editor is left with only the ability to edit his or her own profile, and to access
the Tools section, which includes any plugin pages that allow editor-level users.

Community Blogging

[296]

The examples of actions that a user with the editor role can take are as follows:

•	 Manage all posts
•	 Create and edit pages
•	 Moderate comments
•	 Manage categories, tags, and links
•	 Edit other users' content

There's one very useful aspect of the editor's role. If you take a closer look,
you'll see that it has all the credentials that one would need to publish any piece
of content on a given WordPress site. This makes it perfect for everyday use, even
for single-author blogs/sites. Therefore, what I actually encourage you to do is set a
separate editor account for yourself, and then use it for posting and editing content,
instead of working with the default administrator account. This setup is a lot safer,
particularly if someone tries to hijack your password or in case of any other mishap
to your account. The site itself won't get harmed (considering the fact that editors
can't install new plugins or delete any existing ones).

For multi-author blogs/sites, the editor role is meant to be assigned to users who
are in charge of the content published on the site. Essentially, like the name itself
indicates, the "editor" role is perfect for editors.

Author
Authors have much less access than editors. Authors can add and edit their own
posts, and manage the posts made by their subordinates. However, they can neither
edit posts made by other authors, nor manage comments on posts that don't belong
to them.

The author's primary purpose is to manage his or her own content.

Chapter 10

[297]

To get an idea of the experience of a user with the author role, let's take a look at the
author's menu (to the right) in comparison with the editor's menu (to the left):

As you can see in the preceding screenshot, the Pages section has disappeared.
Additionally, if the author looks at the complete list of posts, they will only have
the ability to view, and not edit, quick edit, or delete posts that he or she did not
author (highlighted):

As you would imagine, the author role is perfect for, well…authors – users who
are actively involved in creating content for your site. Authors can, for example,
do the following:

•	 Submit and publish their posts
•	 Manage their posts after the publication
•	 Moderate the comments under their posts

Community Blogging

[298]

Contributor
Contributors are only able to write posts and submit them for review. These posts
will be in Pending Review status until an editor, or administrator agrees to publish
them. Contributors cannot upload images or other files, view the media library, add
categories, edit comments, or any of the other tasks available to more advanced users.

The contributor's primary purpose is to submit content
for consideration.

One important thing worth mentioning is that although contributors can create and
submit their work for review, once the article is published, they no longer have the
ability to edit it in any way. However, they do get access to the comments section
(for moderation).

When it comes to the real-world applications of this role, it's most commonly used
when working with guest bloggers or any other regular contributors who are not part
of your in-house team. Guest blogging is really popular nowadays, and handling it
through contributor accounts is much less labor-intensive than receiving articles via
e-mail and then having to copy-and-paste them to WordPress.

Subscriber
Subscribers have no ability to do anything at all. They can only log in and edit their
profile (adjust their first name, last name, password, biographical information, and
so on), and that's it. Depending on the permissions set in Settings | Discussion, blog
visitors may have to sign up as subscribers in order to be able to post comments. Also,
there are some plugins that handle sending informational updates to subscribers, such
as newsletters or e-mail notifications of new posts.

A subscriber has no editorial power over the website.
It's a placeholder role.

Most of the time, this role is used as a placeholder. Take, for example, a specific author
who had been contributing to your site regularly in the past, but hasn't submitted
anything in months. Instead of deleting their account completely, you can simply
change their role to that of a subscriber.

Chapter 10

[299]

Managing users
To manage users, log in (as an administrator, of course) and navigate to Users.
You'll see a list of your existing users, as seen in the following screenshot:

When we installed WordPress, it created only our first user (which is how we've
been logging in all this time). So let's create a new user, and assign that user the next
most powerful role - editor. To do this, navigate to Users | Add New. You'll see the
Add New User form as shown in the next screenshot:

Community Blogging

[300]

On this form, only the Username, E-mail, and Password fields are required. You can
also change the Role from the default (Subscriber) to one of the other roles. In this
case, I've selected Editor. Then, I click on the Add New User button. Apart from the
required fields, it's also a good practice to fill in First Name and Last Name. This can
make the task of further managing the user accounts much clearer.

I can repeat this process to add an author, a contributor and a subscriber.
When I'm done, the Users page (where the users can be managed) will look
like the next screenshot:

As with any other management list in wp-admin, you can roll over a row to see
the management links. In this case, you can edit or delete users. You can use the
checkboxes and the Bulk Actions menu, or use the filter links to view only users
with particular roles. You can change the role of one or more users on this page
by checking the box (or boxes) and using the Change role to… drop-down menu.

Chapter 10

[301]

Enabling users to self-register
Adding users by yourself is not the only way to add users to your WordPress
website. You can also give your users the ability to register themselves. First,
navigate to Settings | General and make sure you've checked Anyone can
register next to Membership.

I strongly recommend leaving New User Default Role as Subscriber, though
Contributor would also be fine if the purpose of your blog requires it. However,
allowing new users to automatically be assigned a role with more power than
that is just asking for trouble.

Next, add a link somewhere on your blog that links the users to the login and
registration pages. The easiest way to do this is to use the widget named Meta,
which comes with your WordPress installation. It will add a box to your sidebar
with a few useful links, including Log in and Register.

Community Blogging

[302]

Of course, if this is not exactly the collection of links that you want, you can create
your own widget (we talked about widgets in Chapter 5, Plugins and Widgets). Users
clicking on Register will be taken to the following basic registration page that asks
for only Username and E-mail, as seen in the following screenshot:

After submitting this form, the user will be e-mailed a password, and the main site
administrator will be sent an e-mail notification of the new registration. The user can
now log in and edit his/her profile, or do more if an administrator changes their role.

Learning more
You can learn more about the built-in WordPress roles
and capabilities at https://codex.wordpress.org/
Roles_and_Capabilities.

https://codex.wordpress.org/Roles_and_Capabilities
https://codex.wordpress.org/Roles_and_Capabilities

Chapter 10

[303]

User management plugins
At the time of writing, there are over 350 plugins tagged as "users" in the
WordPress plugin directory (https://wordpress.org/plugins/tags/users).
We can actually divide those plugins into many groups as the functionality
offered is exceptionally wide. For example, there are plugins for the following:

•	 Dealing with various author accounts, co-authoring posts,
and multi-author sites

•	 Constructing membership sites around WordPress where members can get
access to premium packages of content based on their subscription model

•	 Building a classic e-commerce store where everybody can make a purchase
from the available directory of "things"

•	 Building an online forum based on WordPress
•	 Building an e-mail newsletter sent to a given site's users directly from within

WordPress, instead of using external services
•	 Launching a social network on WordPress
•	 Managing user profiles for registered users

As you can see, the number of possibilities is really striking. If we want to, we can
do essentially anything with a WordPress site and its users. Only our imagination
is the limit.

Finally, let's not forget about one of the more popular areas in modern website
launch – social networks (like Facebook). As it turns out, you don't need a huge
budget at your disposal in order to launch such a network. A plugin like BuddyPress
(https://buddypress.org/) has all the functionality you'd need and, best of all,
it's free. We'll actually give BuddyPress a closer look in the next chapter where we'll
focus on building non-blog websites, but I just wanted to mention it here to keep the
message complete.

Summary
In this chapter, we learned how to manage a group of users working with a single
blog, which is a community of users. Community blogging can play an important
role in a user group, or a news website. We also learned how to manage the different
levels of privileges for users in a community.

In the next chapter, we'll walk through the process of creating a complete non-blog
website from scratch.

https://wordpress.org/plugins/tags/users
https://buddypress.org/

[305]

Creating a Non-blog Website
Part 1 – The Basics

As you have seen while reading this book, WordPress comes fully equipped to
power a blog with all its particular requirements of post handling, categorization,
chronological display, and so on. However, powering blogs is not WordPress'
only purpose. In fact, there are millions of websites out there right now running
WordPress, where blogging is not the primary focus of the website. I myself have
built a number of such sites.

Just to give you a general idea of what's possible, here's a list of some popular
non-blog type websites that you can build and launch using WordPress (we will
cover some of them in more detail later in this and the next chapter):

•	 Static websites: Featuring just a handful of static subpages that are not
meant to be updated very often; also, the main content is not organized
chronologically like blog posts.

•	 Corporate or business websites: Similar to the previous type, but usually
a bit bigger in size and in the number of subpages; additionally, for most
business sites, their design appears very official and toned down.

•	 One-page websites: Websites that only have a single page of content;
used mostly as a business card type site, or used by businesses that don't
have a lot of content to showcase on their site. Even though the whole site
is comprised of just one page, the designs are usually attractive with a lot
of dynamic transition effects and parallax scrolling backgrounds.

•	 E-commerce stores: Websites where anyone can browse through a number
of products and then use a shopping cart to make a purchase. Apart from
the shopping cart functionality, there's also online payment integration and
often a backend inventory management system.

Creating a Non-blog Website Part 1 – The Basics

[306]

•	 Membership websites: A kind of site where some of the content is available
only to those users who have signed up for a membership and (often) paid
a small fee for the privilege; such members-only areas can contain any type
of content that the site owner finds suitable – WordPress doesn't limit this
in any way.

•	 Video blogs: Just like a standard blog; only instead of text-based posts,
the blogger publishes video-posts.

•	 Photo blogs: Just like video blogs, only revolving around photos; a very
common type of blog for photographers, graphic designers and other
people of similar professions.

•	 Product websites: In short, it's a type of site very similar to an e-commerce
store, only this time, we're usually dealing with just a single product on sale.
It's a very popular type of website for all kinds of web apps, iOS or Android
apps.

•	 Social networks: Just like Facebook, only run on WordPress.
•	 Niche business websites: Some examples of such sites are local restaurant

websites, hotel websites, coffee shop websites, personal portfolio websites,
art gallery websites, and so on.

Again, if I were to explain, in brief, what a general non-blog website is, I'd say
that it's any kind of website where the blog is not the main functionality used by
the website owner. And of course, non-blog websites make up the majority of the
Internet as a whole. However, since we're discussing WordPress here, which many
still believe to be a blog system only, I just want to assure you that it's no longer
the case. These days, WordPress can be used for virtually anything.

In this chapter and the next, we will go through some of the types of websites just
mentioned and present an effective way of building them with WordPress. We'll also
use the knowledge which we've acquired in the previous chapters, so it's best that
you get familiar with everything that's been going on so far before consuming the
information in the following pages.

Also, there are a number of new pieces of functionality that we have not explored in
previous chapters, and this is what we will be focusing on. These include the following:

•	 Designating a standard page to be the front page of the website
•	 Creating a custom post type with a custom taxonomy
•	 Altering custom post type display in the wp-admin

Let's get started!

Chapter 11

[307]

The must-do tasks
Even though there are many different types of sites that one can build with WordPress,
there are some steps that are mandatory for all of them.

For instance, no matter what type of website you want to launch, you always have
to start by installing WordPress properly. This is exactly what we talked about in
Chapter 2, Getting Started with WordPress. Virtually, nothing is different at this point.
The installation process is the same, all the steps are the same, and the final result
is the same too – you end up with a clean, blank WordPress installation. Also,
whenever installing specific themes and plugins, make sure to follow the same
guidelines which we discussed in Chapter 5, Plugins and Widgets, and Chapter 6,
Choosing and Installing Themes.

Last but not the least, to ensure that your site is secure and has a good user
management structure, you have to keep in mind all the best practices revolving
around user accounts, and editorial workflow (publishing new content).

Basically, the only element that's different when building a non-blog website
is the process of picking the theme and selecting the exact plugins for the site.
Additionally, if you want to take it to the next level, you'll have to look into
implementing various functionalities by hand or getting a custom solution
made for you by a professional.

Luckily though, the process itself is not much more difficult than working with a
standard blog. So once you have some experience with WordPress under your belt,
you'll be able to get it done just as quickly.

Static websites
Let's start with static websites, as they are the simplest type of non-blog websites
and, also, the easiest ones to create (which shouldn't be surprising).

The best part about static websites is that building them doesn't require any specific
themes or plugins. The secret is your mindset as the developer. In essence, to pull
this off effectively, the only things you need to do are the following:

1.	 Utilize the WordPress' pages functionality
2.	 Tune up the default home page to create a more static experience

Creating a Non-blog Website Part 1 – The Basics

[308]

The process
Firstly, let's tackle one common misconception. The point of a static website isn't
to make the content hardcoded into the HTML or PHP files at all. The actual point
is to abandon the standard chronological organization of content (to abandon the
blog functionality) and to focus on building a site where pages exist on their own,
independently of one another. So, in the end, we can still edit everything pretty easily
through the wp-admin, and the only difference is that we're not using the standard
WordPress' posts for anything. Instead, we're focusing on the WordPress' pages.

During the setup process of a good static page you'll have to do the following:

1.	 Pick a WordPress theme that fits your goals and one that looks attractive
for your particular project (something we talked about in Chapter 6, Choosing
and Installing Themes); this is actually a mandatory step for any type of
non-blog website. Quite simply, not every theme will fit every type of
website. So whenever picking a specific one, keep in mind what you want
to use the website for—this is going to make your work easier as a developer,
and make the website better for future visitors once the site is launched.

2.	 Create a list of all static pages that you want to make a part of your website.
For instance, for a local pet grooming service, the pages could be: gallery,
offer and pricing, testimonials, contact, and map.

3.	 Create each page in the wp-admin (through Pages | Add New).
4.	 Create one more page, call it HOME and tweak it to provide a good home page

experience. For instance, start by focusing on the elements that a first-time
visitor would consider useful on your home page. A good home page should
answer the question of "what is this site about?"

5.	 Create easy-to-grasp menus to make navigation a breeze.

Steps 1 to 3 are pretty straightforward, so let's just focus on the last two.

Chapter 11

[309]

Building your home page
By default, WordPress takes the main blog listing (the chronological list of posts)
and uses it as the home page. This is not a desired situation in our case since there
will be no posts. What we'll do instead is create a custom page and then use it as
a static front page (home page).

We'll start by doing something very familiar to us by this point – go to Pages | Add
New and create a new page titled HOME. What you'll place on this page is up to
you. Essentially, a home page should be a great starting page for anyone who visits a
given site for the first time. For instance, I've decided to go with a short introductory
message, a list of some popular articles on the site, a contact form provided by the
Contact Form 7 plugin, and an interactive map by Google Maps.

Once you have your page ready, the only thing you have to do is assign it as the
front page. Go to Settings | Reading, click on the radio button next to A static
page and select your new page as the Front page, like this:

Creating a Non-blog Website Part 1 – The Basics

[310]

The other setting – Posts page is not important at this stage, as posts are not the
focus of this particular project. When I go to my main website now, the home page
no longer presents the standard listing. Now I can see this:

I have to admit, the word HOME doesn't look that pretty, so I will probably change
it to something like "Welcome" to make it more visitor-friendly, but this is only
an example.

If you want to make your home page more fancy, you can create a custom page
template (described in Chapter 7, Developing Your Own Theme), which will allow
you to include any design elements you might need along with a wealth of custom
functionality. Again, it all depends on the project.

Chapter 11

[311]

Creating easy-to-grasp menus
The last element of this static-website puzzle is a proper menu (or proper menus).
Because our home page is just like any other page one can create in WordPress,
it will appear in the default pages menu (pages widget), which isn't the most
optimized situation.

Therefore, whenever working with static websites, make sure to use only custom
menus created in Appearance | Menus. This gives you full control over what gets
displayed either in the header, the sidebar, or anywhere else on the site. For example,
you can see that I've added a new link pointing to the home page in the main menu
on my site:

Just like I said, nothing difficult here.

Corporate or business websites
When we look at the main purpose of corporate or business websites, it becomes
apparent that their construction is very similar to static websites. The only difference
is that they are much bigger (more pages and more content), and their design
seems much more official. Also, most businesses like to publish some occasional
announcements, so a blog-like functionality is required too (but it still won't be the
main element on the site).

Creating a Non-blog Website Part 1 – The Basics

[312]

In essence, creating a quality corporate site with WordPress is all about picking (or
building) the right theme. If you do a quick bit of research on the web, you'll see that
most corporate sites (at least the good ones) feature hardly any design. The thing that
makes them stand out is their very subtle branding (through a certain color scheme
or clever use of logos) and stellar navigation layout.

What this means is that the easiest way to build a great corporate site with
WordPress is to do the following:

•	 Pick a clean theme with good content organization and featuring almost none
of the design bells and whistles

•	 Include specific branding elements and pick the right color scheme
•	 Build a nice user-friendly navigation structure through custom menus
•	 Construct a custom home page
•	 Add one visual element in the form of a home page slider – to make the site

seem more alive (optional)

Let's go through this list one by one.

Picking a clean theme
This is something we talked about in the previous chapters, so let me just point you
towards some of the top places where you can get WordPress themes real quick.
They are: the official directory (https://wordpress.org/themes/), ThemeIsle
(https://themeisle.com/), ThemeFuse (http://themefuse.com/), StudioPress
(http://www.studiopress.com/), and ThemeForest (http://themeforest.net/
category/wordpress). The thing to keep in mind is to go straight to the business-
related part of the theme directory you're browsing. For example, at Theme Forest,
go straight to http://themeforest.net/category/wordpress/corporate. This
will make the selection process a lot quicker.

Keep in mind that if it's a free theme you're after, you should
always get it from the official directory (we discussed this in
Chapter 6, Choosing and Installing Themes). Also, if you want to
build a theme on your own, look into some of the free theme
frameworks like Gantry (http://www.gantry-framework.
org/), or Thematic (http://thematictheme.com/).

https://wordpress.org/themes/
https://themeisle.com/
http://themefuse.com/
http://www.studiopress.com/
http://themeforest.net/category/wordpress
http://themeforest.net/category/wordpress
http://themeforest.net/category/wordpress/corporate
http://www.gantry-framework.org/
http://www.gantry-framework.org/
http://thematictheme.com/

Chapter 11

[313]

The features to look for in a quality corporate theme are as follows:

•	 Minimal design that lets you include your branding elements
•	 Easy way of adding a logo and other graphics
•	 Custom header functionality
•	 Favicon support
•	 Responsive layout (meaning that it'll be equally as attractive on a desktop

computer as on a mobile phone)
•	 Widget areas
•	 Breadcrumbs
•	 Customizable sidebars
•	 Customizable layouts (for example, full-width, 1-sidebar, 2-sidebar,

and so on)
•	 Multi-author support (there's usually a number of people taking care of

a corporate site simultaneously)
•	 Built-in color schemes to choose from
•	 SEO-compatible
•	 Custom page templates for home page, contact page, FAQ, offer, gallery,

team, testimonials, 404 error, portfolio, and so on
•	 Cross-browser compatible

Your theme doesn't have to do all of these mentioned things, but this list should be
a good benchmark in determining how suitable the theme you're about to pick is
when it comes to running a corporate site.

Branding elements
From a business point of view, branding is the most important parameter of a
recognizable site. Therefore, make sure that the logo and the corporate identity
of the company both match the color scheme of the theme. Also, as I mentioned
in the previous section, a good theme should allow you to pick the color scheme
from one of the predefined ones.

Finally, turn the logo into a favicon and upload it to the site too (this can be done
through your theme's built-in favicon functionality or via a plugin like All In One
Favicon available at https://wordpress.org/plugins/all-in-one-favicon/).
This will give the site some additional visibility in the bookmarks menu (should the
visitor bookmark it).

https://wordpress.org/plugins/all-in-one-favicon/

Creating a Non-blog Website Part 1 – The Basics

[314]

Good navigation
This is probably the toughest part of the job when building a corporate site,
mainly because we can never be sure how much content the site is eventually
going to feature. There's always the danger that our navigation will either be
too much for the handful of pages of content, or too little for hundreds of pages.
There are, however, some good practices that you can follow:

•	 Focus on providing an extensive menu in the footer. This will make sure
that every visitor will be able to find what they're looking for once they
scroll down to the bottom of the page. This is easily doable with footer
widget areas, which every good corporate theme should provide you
with. Here's an example by Samsung:

•	 Create a top menu with only a couple of the most essential pages. Sometimes,
News and About will be enough:

•	 Create a sidebar menu linking to the important areas of the site, like specific
categories, products, announcements, or other things the average visitor
might find interesting.

Chapter 11

[315]

•	 Use breadcrumbs. Breadcrumbs are small links that present the path
of the visitor in relation to the home page. Most themes provide this
functionality by default. It's best to place them just below the header.
Here's an example (highlighted):

•	 Display a visible search field. A big number of visitors coming to a corporate
site are after a specific piece of information, so they naturally start looking for
a search field right away. Therefore, making their life easier is a very good
idea. A good placement for a search field is in the header and in the main
sidebar (sidebar menu) for good visibility.

Custom home page
Just as with static websites, the default blog listing rarely makes a good home page
for a corporate site either. Going with a custom home page is always a better strategy
and gives us a more optimized way of presenting the company, its goals, and its field
of expertise. To create such a home page, you can safely follow the instructions given
earlier in this chapter, when we were discussing static websites.

Now, like I said, showing the default blog listing as the home page is not a good
approach here. We should provide at least some integration with the blog-part of
the website. The two most sensible solutions are to either link to a blog listing page
in a visible place on the home page, or include a simplified listing as a widget in
one of the available widget areas on the home page itself.

Creating a Non-blog Website Part 1 – The Basics

[316]

The latter can be done by the Recent Posts widget that's available in WordPress by
default (we covered widgets and how to use them in Chapter 5, Plugins and Widgets).
The former can be done as follows:

1.	 Create a new page (Pages | Add New) and call it "NEWS". The page doesn't
have to feature any content. It only needs to exist with a unique name. I'm
suggesting "NEWS" because it gives a clear indication of what's going on.

2.	 Go to Settings | Reading and set your new page as the default Posts page,
like this:

3.	 As you can see, there's also the old HOME page that's currently set as the
Front page; we're going to leave it like that.

4.	 Place the link to the new blog section (NEWS) in the top menu (preferably).
You can do it in Appearance | Menus.

5.	 Now, if you navigate to your new NEWS page (something like
http://yoursite.com/news), you will see the default blog listing,
which the company—the owner of the website—can use to publish
various announcements or whatever else they see fit.

Optional slider
The last element worth discussing here is a home page slider. Although most
corporate websites are not about the graphics, this single visual element is often
added. Animated sliders make any website seem more alive and attractive to the
visitor. For a corporate site, the slider can present photos from events, individual
announcements, product offers, contact details, and a number of other things.

Chapter 11

[317]

Some themes will come with a slider functionality built in right from the get-go.
If they don't, you can always get a plugin to handle the job. The only downside is
that most slider plugins are not free. Among those that are free, I can point out two.

Meteor Slides
Meteor Slides is available at https://wordpress.org/plugins/meteor-slides/.
It allows you to pick specific images from the media library (or upload new ones),
set them as slides, and then display them wherever you wish. You can display
images either through a widget or by using a shortcode ([meteor_slideshow]).
The slides themselves are actually organized as a new separate content type –
Slides – right next to the default content types like Posts and Pages (more on
custom content types in the next chapter):

This means that you can manage them just like you would manage your standard
posts and pages. The only downside is that the plugin in its current form doesn't
allow you to display custom text content as a slide. You're basically limited to
images only.

https://wordpress.org/plugins/meteor-slides/

Creating a Non-blog Website Part 1 – The Basics

[318]

It's kind of difficult to show you what the slider looks like through a static
screenshot, but anyway, just so you get the general idea, here's my current
home page after using the [meteor_slideshow] shortcode at the top of the
content block (please notice the navigation arrows on either side of the image):

Master Slider
Master Slider is available at https://wordpress.org/plugins/master-slider/.
This is the second free slider plugin I can recommend. Even though it's the lite
version, it still offers an impressive range of features and a lot of possible ways
to create a slideshow.

https://wordpress.org/plugins/master-slider/

Chapter 11

[319]

Right after installing the plugin and going to its section in the wp-admin (right below
Settings), you'll see this interface:

Once you click on the Create New Slider button, you'll get to choose from a number
of pre-defined styles, or build a fully customized one:

Creating a Non-blog Website Part 1 – The Basics

[320]

Select the one labeled Slider with Slide Info and proceed forward. The screens
that follow offer a lot of possible customizations and extra options. It's best if you
try experimenting with this for a while to get a grasp on what's possible with
this plugin. To get started, you get a set of sample data to work with. Gradually
swapping it to your own content is a good way to begin using this plugin. For
instance, with this plugin, you can adjust things like the slides' transitions, the
navigation from slide to slide, the appearance of each slide, or editing each slide
individually, and much more. Describing everything here would probably take a
chapter of its own. Anyway, here's what I was able to get after some tuning up (the
slider itself can be placed anywhere you wish with a simple shortcode, in my case,
[masterslider id="1"]):

Chapter 11

[321]

In the preceding screenshot, please notice the custom slide description below
the image.

In general, sliders are not a mandatory thing for corporate sites, but they might
improve the user experience, so they're probably worth a try.

One-page websites
One-page websites are a relatively new invention in the online world. A couple
of years ago, webmasters were not that keen on having just a single page to make
up their entire website. It simply seemed like not working hard enough on your
website's presence. These days, however, things have changed. It's no longer looked
down upon. In fact, single-page websites are the new trend.

In some way, a one-page or a single-page website is similar to a static website.
You mostly get to work with WordPress pages rather than its blog functionality
and after you set that page in place, it will likely stay that way for a longer period
of time - it will remain static. Now, the difference between static websites and
one-page websites is obvious (by definition). On one-page websites, you simply
get to work with only one page as opposed to having a number of them.

Creating a Non-blog Website Part 1 – The Basics

[322]

Just to give you a general overview of what a one-page site looks like, please visit
http://karol.cc/. It's my personal website, which I use to market my freelance
writing services:

http://karol.cc/

Chapter 11

[323]

As you can see, the website is built up of just a single page - the home page.
However, each block on that page is visually separated from the previous and the
next one. This visual separation is one of the most important aspects of single-page
websites. So as with many types of websites, creating a truly great-looking one-page
site is about picking the right theme - something that your target audience will enjoy
and appreciate. The easiest way to build a great one-page site with WordPress is to
do the following:

•	 Pick a theme that's marketed explicitly as a one-page theme and has a clean
design, with good-looking content blocks on the main page

•	 Include specific branding elements and pick the right color scheme
•	 Make sure to prepare a number of high quality images, which you can use

in the background

Let's go through this list one by one.

Picking a one-page theme
Just as with most other categories, one-page themes are now highly popular in
most theme stores on the web. The best places to go include: again, the official
directory (https://wordpress.org/themes/), ThemeIsle (https://themeisle.
com/), and ThemeForest (http://themeforest.net/category/wordpress).
Not all of them, however, feature specialized categories for one-page themes, so
you might have to use the search option to find something interesting. Searching
for terms like single page or one page should give you great results.

The features to look for in a quality one-page theme are as follows:

•	 Minimal design that lets you include your branding elements
•	 Easy way of adding a logo and other graphics
•	 Custom header functionality
•	 Parallax scrolling option (where the background images move by the

camera slower than the foreground)
•	 Responsive layout (meaning that it'll be equally as attractive on a desktop

computer as on a mobile phone)
•	 Widget areas
•	 Built-in color schemes to choose from
•	 SEO-compatible
•	 Cross-browser compatible

https://wordpress.org/themes/
https://themeisle.com/
https://themeisle.com/
http://themeforest.net/category/wordpress

Creating a Non-blog Website Part 1 – The Basics

[324]

The more of the preceding features your theme includes, the better. If anything
is missing, you can always find a plugin that will fill the void. After all, there's a
plugin for everything, remember?

Branding elements
Branding elements are particularly important with one-page sites because,
by definition, you don't get much online real estate to work with, so to speak.
If there's just one page on the site, you need to make sure that it's as in tune with
your brand and its identity as possible. Therefore, a good theme should allow you
to place elements like your own logo, social media links, and custom graphics in
places like the header, footer, and the background. Luckily, those sorts of features
are considered the standard among modern WordPress themes, so you probably
won't have to worry about this part at all.

High-quality images
One of the main flaws with one-page themes is that they often rely heavily on good
visuals and high quality images. The designs are often simple and very minimalist,
and their attractive appearance is based on the images used in the background of
the site. Unfortunately, finding such images is entirely up to you. Themes rarely
come with unique images that you would be able to use on your site.

How to get those images? You can buy them in places like http://www.istockphoto.
com/-- that's one solution. But you can also get a lot of great images for free in places
like https://unsplash.com/ or http://jaymantri.com/. The last solution is, of
course, to take your own photos and use them on your site.

As an example, I will get one of the most popular one-page themes in the WordPress
directory right now - Zerif Lite (available at https://wordpress.org/themes/
zerif-lite) and do some basic tuning up around it to show you how one-page
themes work.

Right after downloading and activating the theme (standard procedure; please see
Chapter 6, Choosing and Installing Themes, for the how-to), you can go straight to the
WordPress Customizer at Appearance | Customize. You'll see a large customization
panel there. With it, I can change the main headline on the site, the buttons below, the
appearance of individual blocks, and also the background image of the whole site:

http://www.istockphoto.com/--
http://www.istockphoto.com/--
https://unsplash.com/
http://jaymantri.com/
https://wordpress.org/themes/zerif-lite
https://wordpress.org/themes/zerif-lite

Chapter 11

[325]

After a handful of tweaks, I end up with a great-looking one-page site. You can see
what my final header looks like in the next screenshot:

That's pretty much it when it comes to launching a nice one-page site with WordPress.
The most remarkable thing here is how easy it is to actually do. Just imagine how
much time it would take to create something like this (considering the nice transitions
and background-foreground interactions) from the ground-up. Or, the cost required
to set it up. The possibilities that WordPress delivers these days are really incredible.

Creating a Non-blog Website Part 1 – The Basics

[326]

Summary
We covered a lot of excellent material in this chapter. We started by listing some of the
popular types of non-blog websites that you can build successfully with WordPress.
Then, we went through some of those types individually and discussed the specific
elements to focus on, in order to guarantee a quality final product.

The next chapter is part two of our guide to creating a non-blog website. In that, we'll
go through some of the more user-centered types of websites, like membership sites,
photo and video blogs, and finally, building your own social network.

[327]

Creating a Non-blog
Website Part 2 – Community

Websites and Custom
Content Elements

Let's get straight down to business here. In the previous chapter, you saw different
types of non-blog websites. This chapter is a continuation of that topic, so let's do two
things. First, let's go through some of the more trendy uses of WordPress and focus
on a step-by-step process of reaching a great final result. Then, let's discuss some of
the custom content elements you can create in WordPress, such as custom post types,
custom taxonomies, and the process of customizing the admin display slightly.

Membership websites
When talking of WordPress, from a technical point of view, a membership site is not
very different from a standard blog site. The only thing that sets it apart is the fact
that some of the content is protected by a level of access rights. In other words, the
content is premium, and if anyone wants to get access to it, they usually have to
take out their wallets and pay a small fee.

Even though membership sites might sound like a very niche thing to build with
WordPress, there are actually more and more such sites being launched every year.
Many online businesses, especially in the educational niches, have realized that
the membership model is the one that provides very predictable profits and can be
promoted in a variety of different ways.

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[328]

But let's stick with WordPress as our main topic and leave the marketing issues
aside. Starting with some technical aspects of building a membership site, these
are the functionalities a membership site can/should offer:

•	 The possibility to feature various types of content, including text
(standard articles), audio, video, PDF files, presentations, and photos

•	 An easy method of user registration and subscription
•	 Different levels of subscriptions (with different access rights)
•	 Integrated online payments (for premium subscriptions)
•	 Free trials
•	 Easy user account management and subscription management
•	 E-mail newsletter integration
•	 Teaser content (when you're showing part of the premium content to

persuade visitors into subscribing)
•	 Internal stats

The list of functionality is quite extensive, and some of it might not be that clear at
first, but we're going to explain everything in just a while. Just like with our previous
examples, we're going to build a functional membership site here and discuss some
of the more important aspects of the process along the way.

For this purpose, let's use the theme from Chapter 7, Developing Your Own Theme,
again. Like I said, membership sites are very similar in construction to standard
blogs. And although you can look for specialized themes, often, the default theme
you're using right now will do the job well enough. The only requirement is that
from a user's/visitor's point of view, your membership site theme should provide
good content presentation and should be able to handle various types of content.
That is all.

Taking the simple approach
Even though the recommended approach of building a membership site is based
on using specialized plugins, there's also an alternative path you can take. But it's
neither functional nor professional, so I'm mentioning it just to keep the message
complete. I'm talking about using the simple password protection feature that's
built into WordPress by default.

Chapter 12

[329]

Basically, if you want to limit access to a given piece of content, all you have to do is
go to the wp-admin and then to Posts or Pages and click the Quick Edit link beneath
a given piece of content. There's a Password field at the bottom. After filling it out
and clicking Update, your content will no longer publicly visible from that point
onwards. Anyone who wants to view it has to enter the password.

Although this simple method works and does the job of limiting access to specific
pieces of content, it's not the prettiest one, at least not for serious membership sites.
Besides, it doesn't handle the subscription process itself and forces you to find a way
to deliver the passwords to your subscribers manually.

As it turns out, the simplest solutions are not always the best.

Using membership plugins
The only sensible method of building a membership site on WordPress is using the
help of some of the specialized membership plugins. Of course, just like with any
other type of site, you can still devote your time and effort to building everything
from the ground up by hand. But similarly to e-commerce stores, it would take way
too long before you could show any true quality effects. So membership plugins it is!

As usual, there are many plugins available on the market, and finding the perfect
one for your particular project might take a while, especially if you want to test
every feature before making the site available to the world and your customers.

Now, the only downside is that most of those membership plugins come at a
premium. Seriously premium, so to speak. Some price tags go as high as $ 297
(I'm going to point you toward a free solution in just a minute).

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[330]

Therefore, if you do have some money to invest in your membership site, I would
advise you to look into the following two plugins:

•	 WishList Member (available at http://member.wishlistproducts.com/):
This is used by hundreds of sites worldwide, and it's probably the most
popular membership plugin available. The single site license is $ 97, and it
provides a number of side services apart from the platform itself (training
videos, unlimited updates, unlimited support, and so on). The multisite license
is $ 297. Although that's not cheap it may be a great idea for professional web
designers and developers.

•	 WP-Member (available at http://wp-member.com/): This is slightly
cheaper than WishList Member, currently priced at $ 47 (single site) and
$ 97 (multisite). There's also an additional developer license for $ 147.

When it comes to functionality, both plugins offer an extraordinary amount of
stuff. Also, both cover all of the items I mentioned on the list a couple of pages
ago with some additional bells and whistles (for example, secure RSS feeds and
data encryption).

Now, I'm not actually advising you to spend any money at this point, but you're
here to learn, so I'm only mentioning these plugins because they are at the top of
the game in their field (that is, membership plugins for WordPress).

Taking the free approach
This is probably a good point at which to talk about a solution that's way
cheaper to apply. Actually, the plugin I'm about to describe is free. It's simply
called Membership and you can get it at https://wordpress.org/plugins/
membership/.

The sole fact that it is free doesn't mean that it offers a poor range of features or it
isn't built with quality in mind. This is still one of the top membership site plugins
available. Why is it free? It's based on a freemium model. This means that if you
want to get more functionality or unlock some of the extra features, you'll have to
get the Pro version, which is $ 39.60 per month.

http://member.wishlistproducts.com/
http://wp-member.com/
https://wordpress.org/plugins/membership/
https://wordpress.org/plugins/membership/

Chapter 12

[331]

Installing the plugin
This is a standard installation process. All you have to do is either go to
https://wordpress.org/plugins/membership/ to get the plugin and
then upload it to your plugins folder. Or you can fetch it straight from the
Plugins | Add New section in the wp-admin.

When you activate the plugin, you will be prompted to enable the plugin's
functionality. This can be done from the admin bar in your wp-admin:

After doing so, you'll see a completely new section in the main sidebar, right below
Settings. It's called Membership.

https://wordpress.org/plugins/membership/

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[332]

At this point, I advise you to go through the short user guide that will begin displaying
automatically when you try to visit the Membership section. This will give you a basic
overview of the plugin:

The main block that's displayed right in the middle lets you get started quickly by
creating your first membership site. We'll just select Standard membership site and
proceed to the next step.

The free version of the plugin allows you to create two levels of access. Let's call
ours "Free" and "Premium". (I'm also selecting PayPal as the gateway for handling
payments.)

Chapter 12

[333]

When I click Finish, I'm basically done with the setup process. That wasn't hard,
was it?

Using the plugin
Right after the setup process is complete, you will be presented with another
on-screen user guide on how to use the plugin for doing everyday work. This
guide is quite a long one (with 34 steps), but it does present all of the most crucial
functionalities of Membership. So, in fact, I do advise you to go through it from
start to finish.

In short, the individual sections of the plugin allow you to do the following tasks:

•	 Manage subscribers through Membership | All Members
•	 Manage subscription levels through Membership | Access Levels
•	 Manage subscription plans through Membership | Subscription Plans
•	 Manage payment gateways through Membership | Payment Gateways
•	 Other options through Membership | Options. This is where you can

control other areas of the site that haven't been covered elsewhere.

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[334]

Now, let's talk about how managing your content actually works and what you can
do to prevent some users from accessing its premium parts. Don't be afraid by the
fact that the way this plugin handles content management is quite advanced. First,
we have the access level settings available in Membership | Access Levels. Once
you go there, you will be able to set each access level to utilize a collection of Positive
Rules, Negative Rules, or Advanced rules. Basically, positive rules are where we
can assign the content that a given access level can view, while negative rules do the
opposite thing. For example, if you add all of your posts to the set of negative rules,
you will effectively prevent every free member from viewing any of them:

Bear in mind that this is just an example, and that setting everything up properly so it
actually makes sense in a real-world application will take a significant amount of time.

There are a lot more features waiting for you inside Membership, and I do encourage
you to test them yourself if you're ever building a full-blown membership site. But for
now, it's about time we switch to the next type of site on the list – multimedia blogs.

Video blogs and photo blogs
Let's cover these two types of WordPress sites together because the individual goals
for each are often very similar (although their designs may still be a bit different).
In short, a video blog is one where the author mainly publishes videos, instead of
traditional text-based posts. A photo blog, on the other hand, is essentially the same
thing, the only difference being it revolves around photos.

Now, why would you even bother with a customized setup for a video blog or a photo
blog in the first place when you can just use a standard WordPress installation with
a traditional blogging-optimized theme? Well, to be honest here, you can go with a
standard setup indeed, and your video/photo blog will be just about fine. But with
some additional work (but not much) put into building something that's tailor-made
for multimedia blogs, your site can get a big advantage over your competition, mostly
in terms of usability and content presentation.

Chapter 12

[335]

For instance, let's focus on some of the interesting features you can add to a video blog:

•	 Main blog listing built as a grid layout with big thumbnails, so every visitor
can see the snapshots of the videos right away

•	 Videos on the main listing presented as concise blocks containing the
thumbnail and a small amount of text to convince people to click on
the video

•	 Wide main blog listing with just a narrow sidebar on the left (or right)
•	 Integrated social media features (including the YouTube subscription buttons)
•	 Social media comments fetched from the platform where the video is

originally hosted
•	 Custom backend to host the videos on the blog (or on an external server)
•	 Shareable embed code, so your visitors can embed the videos easily
•	 Custom player to replace the native YouTube or Vimeo players

And for a photo blog, some interesting features are:

•	 Custom home page featuring one main photo ("photo of the day")
•	 Automatic photo slider on the home page
•	 Lightbox functionality for viewing the photos in full size
•	 Wide main blog listing
•	 Integrated social media features
•	 Social media comments
•	 Custom backend to host photos
•	 Shareable embed code
•	 Custom photo controls (such as save, view full size, share, and so on)

As you can see, most of these features can work equally well on both video blogs
and photo blogs. As usual with WordPress, you can get most of them either by
obtaining a quality theme or by using some third-party plugins. Let's cover both
of these approaches.

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[336]

Exploring themes for video and photo sites
Being quite popular kinds of blogs, both video and photo blogs have a very wide
range of themes available on the Internet. But be careful!. Searching for a theme
on Google can get you in trouble. Well, maybe not in trouble per se, but if you
end up downloading a theme from a random site, you have no guarantee that it's
a secure solution and that there's no malicious or encrypted code inside. A much
better method is to either go to the official directory or to some of the recognized
theme stores.

For starters, let's check what's available out there:

•	 Metro CreativeX available at
https://wordpress.org/themes/metro-creativex

•	 Portfolio Press available at
https://wordpress.org/themes/portfolio-press

•	 Foliogine PRO available at
https://themeisle.com/themes/foliogine-pro/

•	 PhotoArtist available at http://themefuse.com/wp-themes-shop/
wordpress-photography-theme/

Getting any of the premium themes will require an investment, so do it only if you're
devoted to creating a really high-quality multimedia blog.

Getting plugins for video and photo sites
As I said, apart from video and photo optimized themes, you can also get a number
of plugins that will make your site more functional. The good news is that we're only
going to focus on free plugins.

Let's start with two plugins that I already mentioned in Chapter 11, Creating a Non-blog
Website Part 1 – The Basics:

•	 Meteor Slides available at
https://wordpress.org/plugins/meteor-slides/

•	 Master Slider available at
https://wordpress.org/plugins/master-slider/

These are both great plugins for getting a nice slider functionality. This sort of thing
does a good job at improving the overall user experience, especially when dealing
with a multimedia-driven site. For a detailed description of these plugins, please
review the previous chapter's section about building a static site.

https://wordpress.org/themes/metro-creativex
https://wordpress.org/themes/portfolio-press
https://themeisle.com/themes/foliogine-pro/
http://themefuse.com/wp-themes-shop/wordpress-photography-theme/
http://themefuse.com/wp-themes-shop/wordpress-photography-theme/
https://wordpress.org/plugins/meteor-slides/
https://wordpress.org/plugins/master-slider/

Chapter 12

[337]

Now, these are the other plugins that can come handy:

•	 WP Smush (https://wordpress.org/plugins/wp-smushit/):
This plugin doesn't present any particular output on the frontend of your
site because what it actually does is automatically optimize your images in
the background. This is a great plugin for saving your bandwidth, especially
if you're publishing a lot of images. The installation process is quite standard.
Once the plugin is activated, it starts working in the background with no
supervision required.

•	 Lightbox (https://wordpress.org/plugins/lightbox/): This plugin
delivers a really good looking lightbox functionality. The best thing about
this plugin is that it's ultra easy to use. All you have to do is activate it and
it will immediately start taking care of the images you're displaying on your
blog. The plugin will intercept image clicks and show the image file in a nice
lightbox instead of loading them individually (on a blank page).

Lastly, I have one more social media plugin which I'd like to show you. It's simply
called Facebook and it's the official Facebook plugin for WordPress (available at
https://wordpress.org/plugins/facebook/).

This plugin can give a good level of integration between your main site and your
Facebook page or profile. With it, you can publish new posts to Facebook almost
automatically and also allow Facebook users to comment on your content using their
accounts. This is just a small part of the full functionality. I'd advise you to give this
plugin a closer look yourself. As it's an official plugin, every new functionality that
Facebook makes available for WordPress blogs is sure to be introduced as quickly
as possible.

Just to sum up the topic of multimedia blogs, I have to point out that this is a very
crowded area among both theme and plugin developers. The plugins mentioned
here will give you a good start, but having your finger on the pulse and paying
attention to what's new on the market (cool new plugins and themes) is the actual
best way to keep your photo or video blog on top of its game. That being said,
getting and testing every new plugin out there is not the recommended approach.
However, from time to time, you can find a true gem that's going to help you take
your blog to the next level.

https://wordpress.org/plugins/wp-smushit/
https://wordpress.org/plugins/lightbox/
https://wordpress.org/plugins/facebook/

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[338]

Social networks
Finally, it's time to discuss one of the most surprising topics in relation to building
various types of websites with WordPress. As it turns out, the platform can be very
well used to run a fully functional social network. In other words, you can have your
own Facebook if you'd like to… at least when it comes to functionality.

And speaking of functionality, in short, a social network built with WordPress can
offer the following features:

•	 Support to any number of user accounts
•	 Facebook-like publishing method for users (a "Wall" or an activity stream)
•	 Forums
•	 Blogs and micro blogs
•	 Friends
•	 Groups
•	 Private messages
•	 Comments
•	 Photo and video content
•	 Much much more

That being said, building and then running a well-constructed social network
utilizing all of the available features will require some serious work. This is way
beyond the scope of this book. So here we're only going to focus on the basic setup
process and getting started. If you're planning to launch an actual social network
and make it available to the world, you should probably get more info, either by
going to the official online documentation or obtaining some more publications
on the topic.

Essentially, social networking on WordPress works through one specific plugin
– BuddyPress. Although calling it just a plugin is a massive understatement.
BuddyPress is actually a whole online publishing environment on its own that
integrates with WordPress. Unlike other plugins, it doesn't just display some custom
content here and there. It actually changes the whole appearance (structure) of your
WordPress site to make it look and operate like a social network.

Let's take the topic step by step, starting with installation.

Chapter 12

[339]

Installing a social network
There's nothing fancy here, but all you have to do is either go to
https://buddypress.org/, download the main plugin and then upload
it to your WordPress site, or search for the plugin from within the wp-admin
(Plugins | Add New) using the name BuddyPress. The installation process of
the plugin itself is quite standard, meaning that after getting it on your server,
you only have to click the Activate button. Right after doing so, you will see
the following welcome screen:

It's actually advisable to go through the information in this to get a basic
understanding of the platform and the things it has to offer.

https://buddypress.org/

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[340]

Next, visit the settings section under Settings | BuddyPress. First, pick the
components you'd like to use on your new social network. For testing purposes,
I just enabled all of them:

To get more information about available components, feel free to visit
https://codex.buddypress.org/legacy/getting-started/
configure-buddypress-components/.

The second tab on this settings page – titled Pages – lets you assign the pages that
will house some standard areas of your social network such as the activity stream,
user groups, member profiles, and so on. You can create new pages here or use the
ones that BuddyPress has already created during installation.

Finally, there's the last tab – Settings – where you can adjust some of the other
standard settings such as the presence of the top toolbar, various profile settings,
and group settings.

That's all about the main settings area. As you can see, the plugin is designed in a
way that makes using it as easy as possible.

https://codex.buddypress.org/legacy/getting-started/configure-buddypress-components/
https://codex.buddypress.org/legacy/getting-started/configure-buddypress-components/

Chapter 12

[341]

Designing your social network
In its current form, BuddyPress can work with any WordPress theme. That's right,
you don't have to get an optimized social networking design if you don't want to.
BuddyPress will manage to display its contents inside either the main content block
of your current theme or the widget areas you have available.

However, as usual, if you want to make your social network look more professional,
then you should probably look around and get something that's specially optimized
for social networks. The best rule of thumb when you're searching for such themes,
in my opinion, is to compare them against the biggest social network of them all –
Facebook. Although some people don't enjoy the design that Facebook offers, it is
still the most successful social network around, so they are clearly doing something
right. Treating it as a benchmark of sorts is, therefore, a very good idea.

If you want to find a nice list of BuddyPress-compatible themes, the WordPress
directory comes to the rescue yet again. When you go to https://wordpress.org/
themes/search/buddypress/, you'll find a filtered list of themes that have been
tested with BuddyPress and are optimized to work as a social network.

Once you've found yourself a nice-looking theme, you can go straight to working
with your new social network without focusing any more on the setup. However,
if you really want to get to know the platform and the way it's built, I advise you
to go to the official documentation, which is one of the best BuddyPress resources
available (https://codex.buddypress.org/). It's also where you can learn all
the ins and outs of BuddyPress development, creating your own themes or even
BuddyPress extension plugins.

Extending the functionality
BuddyPress is constructed in a way that provides the basic social networking
functionality and site organization. If you want to extend your social media site and
give it some new features, you can install a number of BuddyPress plugins. You can
find them at https://buddypress.org/extend/plugins/. Basically, they are just
like other WordPress plugins (the installation process is the same), but instead of
delivering some new functionality to WordPress, they focus more on BuddyPress.

There is a lot more waiting for you inside BuddyPress, and I actually encourage you
to do some researching and learning on your own, especially if you're planning to
launch a social network at some point. But for now, I think that we've got the topic
covered at least when it comes to giving you an introduction to social networking
with WordPress, and getting started with the best social networking plugin
available—BuddyPress.

https://wordpress.org/themes/search/buddypress/
https://wordpress.org/themes/search/buddypress/
https://codex.buddypress.org/
https://buddypress.org/extend/plugins/

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[342]

Introducing custom post types
While building some of the sites described in the current and the previous chapters,
you may stumble upon what's called custom post types. Or you may even decide to
create them yourself for the purpose of your individual projects. But let's take it from
the top. The custom post type functionality was added to WordPress in version 3.0
because people wanted to be able to specify new objects. The most commonly known
objects are posts and pages, but there are actually already three other custom types in
the WordPress backend: attachments, revisions, and navigation menus. However, if we
feel that the situation/project calls for it, we can create any number of new post types
by taking advantage of the custom post type functionality and its wide versatility.

The need for custom post types can appear in many scenarios. For instance, when
a writer is building a personal portfolio site, they might need a custom post type
named book to present their publications in an attractive way instead of just using
standard posts. This is exactly what we're about to do in this section of the chapter.
So gear up to learn how custom post types work by building a new one.

For this purpose, we'll go back to our main cooking blog theme – Daily Cooking
Custom. In its default form, it doesn't feature any custom post types, and that's a
good thing as we've got a blank canvas to work on.

To specify that you'd like to have a custom post type in your theme, you can
add some code to your theme's functions.php file. This is what we'll be doing.
However, keep in mind that you can also attach the custom post type to a plugin
or a widget if you don't want it to be tied to a particular theme.

Registering a new post type
To register a new post type, all you have to do is add some simple code to your
functions.php file. It's good practice to tie the creation of the new type to the
init function of the theme, so that it gets called at the right moment in the
booting process. The initial - blank - custom post type code looks like this:

function book_init() {
 register_post_type('book');
}
add_action('init', 'book_init');

Chapter 12

[343]

The register_post_type() function takes an array as its second parameter, and
in that array you can specify whether the object is public or should be involved in
rewriting the URL, what elements it supports on its editing page, and so on. Let's
set up an array of all the arguments and then pass it to the function. Now our code
looks like this:

function book_init() {
 $args = array(
 'description' => 'A custom post type that holds my books',
 'public' => true,
 'rewrite' => array('slug' => 'books'),
 'has_archive' => true,
 'supports' => array('title', 'editor', 'author', 'excerpt',
 'custom-fields', 'thumbnail')
);
 register_post_type('book', $args);
 flush_rewrite_rules();
}
add_action('init', 'book_init');

I've chosen each of these parameters because they make sense for the book custom
post type. Let's take a look at them:

•	 description: This one's pretty self-explanatory.
•	 public: This means that the post type is available publicly, like how posts

and pages in fact are, rather than hidden behind the scenes. It'll get a user
interface and can be shown in navigation menus, and so on.

•	 rewrite: This specifies that the post type can be used in the rewrite rules for
pretty permalinks.

•	 has_archive: This enables post type archives (a classic index page like we
can see for our standard posts).

•	 supports: This is an array of the capabilities which users see when they're
creating or editing an item. For books, we're including six items.

The final function call – flush_rewrite_rules() – will allow us to show a standard
archive listing of the books later on (just like a standard post listing but for our
custom post type).

These are just some of the arguments you can pass. Read about
the others in the codex at https://codex.wordpress.org/
Function_Reference/register_post_type.

Now that we've got the basic post type set up, let's add some labels.

https://codex.wordpress.org/Function_Reference/register_post_type
https://codex.wordpress.org/Function_Reference/register_post_type

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[344]

Adding labels
You can add labels to your custom post type so that WordPress knows what to say
while talking about it. First, let's simply create an array of all the labels. Put this as
the first thing inside the book_init() function:

$labels = array(
 'name' => 'Books',
 'singular_name' => 'Book',
 'add_new' => 'Add New',
 'add_new_item' => 'Add New Book',
 'edit_item' => 'Edit Book',
 'new_item' => 'New Book',
 'view_item' => 'View Book',
 'search_items' => 'Search Books',
 'not_found' => 'No books found',
 'not_found_in_trash' => 'No books found in Trash'
);

Then, add a single line of code to the $args array telling it to use the labels, as shown
in the following snippet (highlighted):

$args = array(
 'labels' => $labels,
 'description' => 'A custom post type that holds my books',
/* the rest of the function remains the same */

The next step is to add messages, which is what WordPress tells the user when they
are doing stuff with books.

Adding messages
Whenever a user updates, previews, or does anything with a book, you'll want them
to see an accurate message. All we need to do is create an array of messages and then
hook them to WordPress. Here's the code for doing that:

function book_updated_messages($messages) {
 $messages['book'] = array(
 '', /* Unused. Messages start at index 1. */
 sprintf('Book updated. View book', esc_url
 (get_permalink($post_ID))),
 'Custom field updated.',
 'Custom field deleted.',
 'Book updated.',
 (isset($_GET['revision']) ? sprintf('Book restored to revision
 from %s', wp_post_revision_title((int)$_GET['revision'],
 false)) : false),

Chapter 12

[345]

 print('Book published. View book', esc_url
 (get_permalink($post_ID))),
 'Book saved.',
 sprintf('Book submitted. Preview
 book', esc_url(add_query_arg('preview', 'true',
 get_permalink($post_ID)))),
 sprintf('Book scheduled for: %1$s. Preview book', date_i18n('M
 j, Y @ G:i', strtotime($post->post_date)),
 esc_url(get_permalink($post_ID))),
 sprintf('Book draft updated. <a target="_blank"
 href="%s">Preview book', esc_url(add_query_arg
 ('preview', 'true', get_permalink($post_ID))))
);
 return $messages;
}
add_filter('post_updated_messages', 'book_updated_messages');

This code creates a function named book_updated_messages() that sets up an array
of messages and returns it. We call this using the filter for post_updated_messages.

Now, our custom post type is ready to use! Go to your wp-admin and reload it.
You'll see that a new menu has appeared under Comments. It's called Books.
Let's add a book:

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[346]

Note that I gave it a custom field named book_author, I also uploaded a featured
image for the book cover. Now, when you go to the main Books page, you'll see the
book listed:

If you click on the View link under the book's title, you'll see the book displayed
using the single.php theme template, which won't be the most reader-friendly
experience. Therefore, let's make some new template files to display our books.

Creating book template files
WordPress needs to know how to display your new post type. You have to create
a template for a single book and one for the listing of books.

First, we'll make a book version of single.php. It must be named single-POST_
TYPE_NAME.php, which in our case is single-book.php. Using page.php as our
starting point (as it's already the closest to what we'd like our book page to look like),
we're going to add the display of the custom field book_author and the featured
image. So, let's start by taking our page.php file, making a copy of it and renaming
it to single-book.php. Also, let's make a copy of content-page.php and call it
content-book.php. Next, it's time to include all the elements.

Here's what the two files look like. First, single-book.php looks like this:

<?php
/**
 * The template for displaying a single book.
 *
 * @package Daily Cooking Custom
 */
?><?php get_header(); ?>

<div id="primary" class="content-area">

Chapter 12

[347]

 <main id="main" class="site-main" role="main">
 <?php while (have_posts()) : the_post(); ?>

 <?php get_template_part('content', 'book'); ?>

 <?php endwhile; // end of the loop. ?>

 </main><!-- #main -->
</div><!-- #primary -->

<?php get_sidebar(); ?>
<?php get_footer(); ?>

The only change that's been made to this file is highlighted in the preceding listing
(the get_template_part() function call). Next, the content-book.php file looks
like this:

<?php
/**
 * The template used for displaying book content
 *
 * @package Daily Cooking Custom
 */
?>

<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <header class="entry-header">
 <?php the_title('<h1 class="entry-title">', '</h1>'); ?>
 </header>

 <div class="entry-content">
 <?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft"><?php echo
 get_the_post_thumbnail($post->ID, 'medium', array('style'
 => 'border: 1px solid black;')); ?></div>
 <?php endif; ?>
 <?php echo '<p>by '.get_post_meta($post->ID,
 'book_author', true).'</p>'; ?>
 <?php the_content(); ?>
 </div>

 <footer class="entry-footer">
 </footer>
</article><!-- #post-## -->

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[348]

Now let's take our custom field – book_author – and display it right below the
featured image. We can do this by adding one new line of code (highlighted) in
between the featured image code and the main content code, as shown in the
following code snippet:

<?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft"><?php echo
 get_the_post_thumbnail($post->ID, 'medium', array('style' =>
 'border: 1px solid black;')); ?></div>
<?php endif; ?>
<?php echo '<p>by '.get_post_meta($post->ID, 'book_author',
 true).'</p>'; ?>
<?php the_content(); ?>

At this point, when you visit a single book page, the author's name is displayed and
the book cover shows up automatically:

Chapter 12

[349]

Our next task is a page that will show a listing of the books like what index.php does.
If you go to http://YOURSITE.com/books/ now, you'll see something like this:

This is basically a standard archive listing. In fact, WordPress uses the default
archive.php file to show the listing of every new custom post type. We can
customize this by creating a new template file and calling it archive-book.php.
To be more exact, every template file controlling the archive for any new custom
post type has to be named archive-POST_TYPE.php. The easiest way to create such
file is by making a copy of the standard archive.php file or the index.php file and
renaming it to archive-book.php. Then we can take it from there and modify the
file to fit our requirements. So what I'm going to do here is use my index.php as the
template and do some tuning up around it.

Right now, my new archive-book.php file doesn't offer any custom way of
displaying my books. Here's what it looks like (please notice the highlighted
part - the main loop):

<?php
/**
 * The listing of books.
 *
 * @package Daily Cooking Custom
 */
?><?php get_header(); ?>

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[350]

 <div id="primary" class="content-area">
 <main id="main" class="site-main" role="main">

 ?php if (have_posts()) : ?>

 <?php /* Start the Loop */ ?>
 <?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('listing', 'book'); ?>
 <?php endwhile; ?>

 <?php daily_cooking_custom_paging_nav(); ?>

 <?php else : ?>

 <?php get_template_part('content', 'none'); ?>

 <?php endif; ?>

 </main><!-- #main -->
 </div><!-- #primary -->

<?php get_sidebar(); ?>
<?php get_footer(); ?>

As you can see, the actual display is done by the get_template_part('listing',
'book') function call. In order to make this line work, we have to create the listing
file itself. The simplest way of doing this is by making a copy of content.php and
modifying it slightly. First, rename it to listing-book.php.

Right away, I'm going to erase some of the unneeded sections and leave only those
that can be used to make our books' listing look great. Next, I will also include a
thumbnail display. Quite frankly, I don't have to do this, but I believe that the book
listing will look better with smaller thumbnails. Finally, I will also display the author
of each book. The finished file will look like this:

<?php
/**
 * @package Daily Cooking Custom
 */
?>
<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <header class="entry-header">
 <?php the_title(sprintf('<h1 class="entry-title">"<a href="%s"
 rel="bookmark">', esc_url(get_permalink())), '"</h1>');
 ?>

Chapter 12

[351]

 </header>

 <div class="entry-content">
 <?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft">
 <?php echo '<a href="'.esc_url(get_permalink()).'"
 >'.get_the_post_thumbnail($post->ID, 'thumbnail')
 .''; ?>
 </div>
 <?php endif; ?>

 <div class="entry clearfix">
 <p>by <?php echo get_post_meta($post->ID, 'book_author',
 true); ?></p>
 <?php the_content(sprintf(__('Continue reading %s <span
 class="meta-nav">→', 'daily-cooking-custom'),
 the_title('"',
 '"', false))); ?>
 </div>
 </div>

 <footer class="entry-footer">
 </footer>
</article><!-- #post-## -->

And here's the final effect (I've added one more book just for demonstration purposes):

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[352]

Registering and using a custom taxonomy
Just to follow the example given a while ago with our custom post type for books,
let's now create a custom taxonomy. Essentially, you might not want to mix book
categories and post categories, so we are going to create a custom taxonomy named
Book Categories.

Add the following code to your functions.php file:

function build_taxonomies() {
 register_taxonomy(
 'book_category',
 'book',
 array(
 'hierarchical' => true,
 'label' => 'Book Category',
 'query_var' => true,
 'rewrite' => array('slug' => 'available-books')
)
);
}
add_action('init', 'build_taxonomies', 0);

Like the register_post_type() function, the register_taxonomy() function
allows you to register a new taxonomy within WordPress. You can read up on
the details of all of the parameters you can add in the codex (https://codex.
wordpress.org/Function_Reference/register_taxonomy). For now, you can
see that we're calling it book_category; it belongs to the object type book and is
hierarchical, and you can query it too. It needs to be included in the rewrite of
URLs with a custom slug available-books.

Next, we need to make this taxonomy available to books. Simply find the $args
array we used while registering the book post type (the book_init() function)
and add this item to the array (highlighted):

$args = array(
 'labels' => $labels,
 'description' => 'A custom post type that holds my books',
 'public' => true,
 'rewrite' => array('slug' => 'books'),
 'has_archive' => true,
 'taxonomies' => array('book_category'),
 'supports' => array('title', 'editor', 'author', 'excerpt',
 'custom-fields', 'thumbnail')
);

https://codex.wordpress.org/Function_Reference/register_taxonomy
https://codex.wordpress.org/Function_Reference/register_taxonomy

Chapter 12

[353]

When you return to the wp-admin and edit a book, you'll see that the book categories
have appeared on the right, and they are also in the main navigation on the left:

After you've added some categories and assigned them to the books, let's take a look
at displaying those categories on the front of the website. First, we'll add them to the
single book display. Open content-book.php and add this code in an appropriate
place within the loop ;for example, you can add it right after the the_content()
function call (highlighted):

<div class="entry-content">
 <?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft"><?php echo
 get_the_post_thumbnail($post->ID, 'medium', array('style' =>
 'border: 1px solid black;')); ?></div>
 <?php endif; ?>
 <?php echo '<p>by '.get_post_meta($post->ID, 'book_author',
 true).'</p>'; ?>
 <?php the_content(); ?>
 <?php echo get_the_term_list($post->ID, 'book_category',
 'Categories: ', ', ', ''); ?>
</div>

You're using the function get_the_term_list(), which takes the
following arguments:

•	 ID of the post ($post->ID)
•	 Name of the taxonomy (book_category)
•	 Print before the list (Categories:)
•	 Separate items in the list with (,)
•	 Print after the list ()

Also, now that you have categories, you can visit Appearance | Menus and add
links to those categories to your header menu, and you can also create a custom
menu with all the categories and add it to one of the sidebars.

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[354]

Note that if you get a 404 error from WordPress at any point during
the creation of your custom post type and custom taxonomy when you
don't think you should, then visit Settings | Permalinks. Sometimes
WordPress needs to refresh the permalinks to make the new links
work correctly.

Customizing the admin display
The final thing you can do to realize your new book custom post type fully is to
change its display in the wp-admin. You don't need to know the WordPress user
who created a given book, but you do want to see the book categories and the
thumbnail. Let's go back to functions.php. First, we'll change the columns that
are displayed:

function ahskk_custom_columns($defaults) {
 global $wp_query, $pagenow;
 if ($pagenow == 'edit.php') {
 unset($defaults['author']);
 unset($defaults['categories']);
 unset($defaults['date']);
 $defaults['book_category'] = 'Categories';
 $defaults['thumbnail'] = 'Image';
 }
 return $defaults;
}
add_filter('manage_book_posts_columns', 'ahskk_custom_columns');
function ahskk_show_columns($name) {
 global $post;
 switch ($name) {
 case 'book_category':
 echo get_the_term_list($post->ID, 'book_category', '', ', ',
 '');
 break;
 case 'thumbnail':
 if (has_post_thumbnail($post->ID)) echo
 get_the_post_thumbnail($post->ID, array('40', '40'));
 break;
 }
}
Add_action('manage_book_posts_custom_column',
 'ahskk_show_columns');

Chapter 12

[355]

The first function says "don't show author, date, and categories, but do show book
categories and thumbnail," and the second function says "for the book categories
column, print the list of categories, and for the thumbnail column, print the get_
post_thumbnail() function."

Revisit the Books page in the wp-admin, and it now looks like the following
screenshot:

Summary
This chapter was part two of our non-blog website journey with WordPress. I hope
you enjoyed the material. Here, you went through the process of setting up video
blogs, photo blogs, membership sites, and social networks. Along the way, you took
a closer look at some interesting plugins and their functionalities, just to make your
lives easier as WordPress developers. Finally, you created a custom post type and a
corresponding custom taxonomy.

The next and final chapter of this book will cover some general maintenance and
troubleshooting techniques for WordPress administrators as well as provide a list
of useful functions, CSS styles, and template files.

I believe that at this point, you are well-equipped to work with WordPress and use
it to build your next great site! WordPress is a top-notch CMS, which has matured
tremendously over the years. The WordPress admin panel is designed to be user-
friendly and is being continuously improved. The code that underlies WordPress is
robust and is the creation of a large community of dedicated developers. Additionally,
WordPress' functionality can be extended through the use of plugins and themes.

Creating a Non-blog Website Part 2 – Community Websites and Custom Content Elements

[356]

I hope you enjoyed this book and got off on the right footing by learning the process
of administering and using WordPress for your own site, whatever that may be.
Be sure to stay connected to the WordPress open source community! Thank you
for reading; you rock!

[357]

Administrating WordPress
This chapter will provide information to help you with the WordPress administrative
tasks. A few topics that have been covered elsewhere in the book are explained in
greater detail here.

I'll review the essentials, and then give you some important links that you can visit
for more details. This chapter is a kind of cheat sheet that you can refer to for quick
answers to common administrative issues.

System requirements
The minimum system requirement for WordPress is a web server with the following
software installed:

•	 PHP version 5.2.4 or greater (recommended PHP 5.4 or greater)
•	 MySQL version 5.0 or greater (recommended MySQL 5.5 or greater)

Although Apache and Nginx are highly recommended by the WordPress developers,
any server running PHP and MySQL will do.

Learn more about system requirements at
https://wordpress.org/about/requirements/.

Your system will also need to be set up in a particular way if you want to use pretty
permalinks, which give you nice-looking URLs throughout your site.

https://wordpress.org/about/requirements/

Administrating WordPress

[358]

Enabling permalinks
We talked about permalinks in Chapter 2, Getting Started with WordPress, so please start
by giving it a quick glance to refresh your memory.

Permalinks are a great functionality in WordPress. They allow you to take advantage
of great looking URLs but, in order to use them, you must have a web server with
mod_rewrite enabled.

Most commercial web hosts have this module turned on by default, so there's no
need to do any additional tuning up. However—for a local installation, if you are
using Windows IIS, for example—then some tweaks might be required. There
are ways to implement permalinks on IIS; the most straightforward being to buy
Helicon's ISAPI_Rewrite (http://www.helicontech.com/isapi_rewrite/).
There are other ways as well; start at the following codex link. This topic is too
extensive to be explored in depth in this book, but I encourage you to search the
Internet for other people's solutions.

Learn more about permalinks at
https://codex.wordpress.org/Using_Permalinks.

The importance of backing up
I promise you, if you ever lose any data stored either on your local computer or on
your website, you'll instantly understand the importance of backing up. The fact is
that a hard disk failing is not a matter of if, it's a matter of when. All it actually takes
is a glitch in your server or a hacker's infection. And although most web hosts offer
some kind of backup services, it's good to have your own additional system setup
(just in case). There are a couple of approaches to dealing with backups, which I will
outline in the following sections.

Easy, quick, and frequent content backups
The most important part of your website, and also the part that you will never be
able to re-create, is the content contained in the database. You should back up your
database frequently. Exactly how often will depend on the number of times you
change your content.

If you're running a blog, take a backup whenever you've posted two or three new
posts. If you're running a non-blog website, back up every time you make significant
changes to your content or add new pages.

http://www.helicontech.com/isapi_rewrite/
https://codex.wordpress.org/Using_Permalinks

Chapter 13

[359]

The question you should ask yourself is, "If my server or host completely fizzles out
today, how much time would it take me to re-create what's not already backed up?"

Luckily, your website content is pretty easy to back up. You can directly export the
content of your database using phpMyAdmin or any other database tool provided
by your host.

You can also install the WordPress Backup to Dropbox plugin that I described in
Chapter 5, Plugins and Widgets. It's easy to use and will help you back up not only
the database but also the filesystem of your site (all files, uploads, themes, plugins,
and other PHP code). The installation process of the plugin is 100 percent standard,
so it doesn't require any additional explaining.

Backing up everything
In addition to your database, there are other irreplaceable files that make up your
WordPress website. These include the following:

•	 The theme you are using
•	 The plugins you've installed and activated
•	 The files you've uploaded
•	 The code you've changed by hand

WordPress stores all of these things (except for the last one, since you can modify
any file you wish) in the same folder named wp-content/. Every time you change
your theme and install a new plugin, you should make sure that you have a backup
of these things on your home computer. After that, you don't need to back these two
things up regularly because they won't change.

However, the files you upload (for example media files, images, audio, icons, and
so on) are a collection that change over time as you add more files. If you add a
photo with each blog post, then that collection changes as frequently as you post.
You should be sure to create a backup of the wp-content/uploads/ folder pretty
regularly.

This you can do manually via FTP or through the WordPress Backup to Dropbox
plugin mentioned earlier. When dealing with FTP, it's good to have an FTP program
with a synchronize feature so you won't have to constantly re-download older files,
or do a lot of hunting and pecking for new ones. In the end, using WordPress Backup
to Dropbox is still a lot simpler and more user-friendly than playing with FTP.

Administrating WordPress

[360]

Getting a managed solution
There are various ways of getting your site safely backed up, and one of them is to
sign up to a managed solution that handles the process for you, with no supervision
required. One of the popular services like this is called CodeGuard (get it at https://
www.codeguard.com/), where there's a free trial available. CodeGuard handles your
site backups automatically, based on a schedule. Every day it analyzes your site, and
backs up every new entry in the database and every file in your site's filesystem, then
notifies you if it finds any changes. This allows you to keep your finger on the pulse
and act fast if there's anything suspicious going on. For example, when your files
change but you are not the person making the changes, it might mean a hacker attack.
CodeGuard also offers a time-machine-like functionality. This feature enables you to
restore your site to one of its previous versions in case anything goes wrong and your
site stops working.

Upgrading WordPress
In Chapter 2, Getting Started with WordPress, we briefly discussed upgrading your
existing WordPress version to the latest available version. In this section, we will
take a closer look at the upgrade process.

So what about the built-in upgrader?

As of WordPress 2.6, you can do an upgrade with one click from within WordPress.
This is actually an advisable approach and one that's much faster than going the
manual way. These days, WordPress is perfectly capable of handling almost all of the
steps on its own, and it only needs our input to do a couple of pre- and post-upgrade
operations. In the following section, we're going to describe how to work with the
WordPress' upgrade feature.

Steps for upgrading
The steps involved in upgrading WordPress are as follows:

1.	 Back up your database.
2.	 Back up your WordPress files.
3.	 Run the WordPress' upgrade feature.
4.	 Update permalinks and .htaccess.
5.	 Install updated plugins and themes.

Each step has been described in detail in the following sections of the chapter.

https://www.codeguard.com/
https://www.codeguard.com/

Chapter 13

[361]

Backing up your database
Before upgrading WordPress, you should always back up the database. If anything
goes horribly wrong with your upgrade, you won't lose everything. We reviewed
how to back up your WordPress website earlier in this chapter, so you can refer
back to that for specific instructions.

Backing up your WordPress files
Remember, the complete content of what creates your site is not only contained in
the database, but also in certain files on the server. Always back up all your files as
well, just in case something goes wrong with the upgrade. Again, refer back to the
backup instructions given earlier if you need to review the steps.

Running the WordPress upgrade feature
WordPress takes care of the next step for you: running the upgrade. This script usually
takes a look at your database and makes alterations to it so that it is compatible with
the new version of WordPress. It also updates the default WordPress core files and
other elements of the platform.

To access it, just point your browser to your wp-admin, then go to Dashboard |
Updates. If the site needs an update, this is what you'll see:

Administrating WordPress

[362]

All you have to do now is click the Update Now button. After the process is finished,
you will be redirected to a new welcome screen:

Updating permalinks and .htaccess
You may have to update the permalink settings so that they match the previous
installation. Your permalink settings dictate what the .htaccess file should look like.
If WordPress cannot access your .htaccess file because of permissions problems, then
the permalinks page will display a message letting you know about it. That message
will also tell you what text needs to be in the .htaccess file, so that you can create or
update it yourself.

Lastly, if you've previously used a plugin like BulletProof Security (available at
https://wordpress.org/plugins/bulletproof-security/) to handle your
.htaccess file, then enabling the plugin again after the upgrade should give the
.htaccess file a correct structure again.

Installing updated plugins and themes
In your wp-admin, visit the plugins page again. If there are new versions of any of
your installed but now inactive plugins, there'll be a note telling you so. If you have
any plugins that are not part of the WordPress Plugin Directory, this is a good time
to check the websites for those plugins to see if there's an upgrade available.

You can also take a look at the Plugin Compatibility lists
at https://codex.wordpress.org/Plugins/
Plugin_Compatibility.

https://wordpress.org/plugins/bulletproof-security/
https://codex.wordpress.org/Plugins/Plugin_Compatibility
https://codex.wordpress.org/Plugins/Plugin_Compatibility

Chapter 13

[363]

Once you're sure that the plugins you want to use are up-to-date, activate them one
at a time so that there are no problems. This is also a good time to check for updates
for the theme that you are using. You can check for a new version on the developer's
website, or in the WordPress Theme Directory. Of course, you have to be sure you
haven't made any theme customizations directly to the theme that you're using.
If you have, they will be overwritten when you run the theme update. If you want
to customize an existing theme, be sure to make a child theme (covered in Chapter 7,
Developing Your Own Theme).

Migrating or restoring a WordPress
website
Sometimes, you may find yourself in a situation where you need to move your
WordPress website from one server to another or from one URL to another.
Alternatively, if something gets fried on your server and is restored, you need
to recreate your damaged WordPress website. Here you'll essentially need to
do the same things as you would in a migration.

I highly recommend that you check out the article at https://codex.wordpress.
org/Moving_WordPress in the WordPress codex, which has detailed step-by-step
instructions on how to migrate your WordPress website under a variety of different
circumstances.

That page will be kept up-to-date as time moves on. If you need to do a migration and
don't have access to the codex right now, you can follow these steps for migration:

1.	 Download a backup of your database (as described earlier in this chapter,
in the Backing up your database section). If your URL is going to change, you
may want to use a different plugin to download your database. It's called
WP Migrate DB (https://wordpress.org/plugins/wp-migrate-db/).
This plugin will change the URLs for you.

2.	 Download all your files (as described earlier in this chapter, in the Backing
up your WordPress files section).

3.	 Look in your downloaded files for wp-config.php. Find the lines that
define the connection to the database. Edit those lines so that they now
have the database name, username, password, and the hostname for
your new database.

4.	 Upload all your files to your new server.
5.	 Implement your SQL file in the new database.

https://codex.wordpress.org/Moving_WordPress
https://codex.wordpress.org/Moving_WordPress
https://wordpress.org/plugins/wp-migrate-db/

Administrating WordPress

[364]

6.	 Change the permissions of your wp-content folder if necessary, so that
you'll be able to upload files without any problems.

7.	 Change the absolute path of your WordPress folder in the database.
You can do this by getting a custom script like https://interconnectit.
com/products/search-and-replace-for-wordpress-databases/; please
follow the URL for a step-by-step tutorial.

8.	 Log in to your new wp-admin, and check the permalinks. You may have to
reset them if your .htaccess file didn't come over properly.

You're done!

If you're restoring your site on the same server, with no changes to the location or the
database, then you can skip steps 3 and 7. Steps 1 and 2 (to back up) should be done
before the meltdown!

Acting in case of a site crash
This is quite unfortunate, but it does happen from time to time. One day, you might
wake up and find your site not working, just like that. Getting it back on can take
a while depending on the cause of the crash. Here are some of the most common
reasons for a WordPress site crashing:

•	 Bad hosting service running the site
•	 Poor quality themes or plugins with badly structured code
•	 Weak passwords for admin accounts (prone to hacker attacks)

Here's my routine when dealing with a site that has just crashed:

1.	 Deactivate or even delete all plugins. Actually, you don't have to delete
anything, just rename the main plugins directory so WordPress won't
be able to find it.

2.	 Rename the current theme folder, so WordPress goes back to the
default theme.

3.	 Take a working backup copy of the site and restore all contents from it.
4.	 Overwrite all your WordPress core files with new ones. Proceed as if you

want to upgrade WordPress manually (described earlier in this chapter).

https://interconnectit.com/products/search-and-replace-for-wordpress-databases/
https://interconnectit.com/products/search-and-replace-for-wordpress-databases/

Chapter 13

[365]

It's important to check if your site has started working again
after handling each step. Most of the time, you don't have to
go through all the steps; your site will probably start working
again somewhere in the middle of the process.

If your site has started working again, then you can begin reactivating your theme
and your plugins one by one. Check if the site is still working after each activation.

To get a more detailed guide on how to restore WordPress
after a crash, feel free to visit http://themefuse.com/
restoring-wordpress-after-a-crash/.

Setting file permissions
To install and maintain WordPress properly, you may need to change permissions
to different files and folders in the WordPress folder, so that uploads and built-in
updates will work from within WordPress. Usually, this affects people on Unix
servers, though it affects some Windows servers as well.

Explaining file permissions
File permissions are settings that indicate who is allowed to do what. That is, some
users may have permission to alter the contents of a file, some may have permission
to only read it, and some may not even have read/write access. In addition to read/
write permissions, there are also "execute" permissions. If a file is executable, then
this permission indicates who can execute that file.

For Unix file permissions at a glance, look at the following chart:

File/folder Owner
permission

Group
permission

User
permission

Total Numerical
equivalent

/ rwx rw Rw rwxrw-rw- 766

/.htaccess rwx rw Rw rwxrw-rw- 766

/wp-admin rwx r-- r-- rwxr--r-- 744

/wp-includes rwx r-- r-- rwxr--r-- 744

/wp-content rwx rwx rw- rwxrwxrw- 776

/wp-content/
themes

rwx rwx rw- rwxrwxrw- 776

/wp-content/
plugins

rwx rw- rw- rwxrw-rw- 766

http://themefuse.com/restoring-wordpress-after-a-crash/
http://themefuse.com/restoring-wordpress-after-a-crash/

Administrating WordPress

[366]

Permissions for WordPress
The best permission scheme for a WordPress installation is for all of the files to
be owned by your user (your server's user, not your WordPress user), and to be
writable by your user. Other than that, any file that WordPress will need to modify
(such as, well, just about anything in wp-content) should be group-owned by both
your user and the webserver's user (often called dhapache or nobody).

If you've installed your WordPress website yourself, then you shouldn't need to
modify any permissions for all WordPress functionalities to work.

If you're having trouble using the built-in upgrader or plugin installer, do not
chmod everything to 777 (world-writable). Instead, check with the hosting
provider or people who run your server, and ask what they recommend.

How to set permissions
You can change permissions to files and folders using any FTP client. If you have
shell access, you can use shell commands to change file permissions. If you're using
an FTP client, select the files you want to change permissions for, and look for menus
like Get Info, File Attributes, or Change Permissions. There will be a GUI, often
with checkboxes, that lets you choose permissions for different files. Some hosting
control panels, such as Fantastico, allow you to change permissions through the
control panel itself.

If you are using shell, change the file permissions with the chmod command.
For example, the wp-admin folder should be set as rwxr--r-- or 744; and to
change the permissions for the wp-admin/ folder, run the following command:

chmod –R wp-admin 744

Learn more about WordPress and file permissions at
https://codex.wordpress.org/Changing_
File_Permissions.

Troubleshooting
In this section, we will discuss problems that may arise during the installation and
execution of WordPress, and provide solutions for troubleshooting them.

https://codex.wordpress.org/Changing_File_Permissions
https://codex.wordpress.org/Changing_File_Permissions

Chapter 13

[367]

Troubleshooting during installation
Most of the problems discussed here have been taken from the WordPress installation
FAQs and troubleshooting FAQs.

Headers already sent
•	 Problem: When you point your browser at your website, you may get

an error that displays a "headers already sent" message on your page.
The whole page may look scrambled, and it will not function.

•	 Cause: WordPress uses PHP session functions. If anything is sent by the
server to the browser before these session functions, even if it's just a blank
space, then the session functions will not work properly.

•	 Solution: You have to figure out where the error lies. Usually, it is a file that
you have edited manually. If you remember, you edited the wp-config.php
file while installing WordPress. Open the file with your text editor, and make
sure that there is nothing before <?php in the first line or after ?> in the last
line. Another precaution would be to erase the final ?> line altogether.

Page comes with only PHP code
•	 Problem: When you point your browser at your website, it displays the

PHP code instead of its contents.
•	 Cause: This happens when your server is not parsing PHP, but is instead

treating it the same as any text or HTML file. This is a server configuration
problem; either PHP is not installed on your server, or it is not configured
to function properly.

•	 Solution: To solve this problem, contact the system administrator for your
server or try installing PHP.

Cannot connect to the MySQL database
•	 Problem: WordPress cannot connect to the MySQL database, and is

displaying an error.
•	 Cause: This might happen if:

°° The database parameters are incorrect
°° The daemon/service is not running properly
°° Your server is running an outdated version of MySQL

Administrating WordPress

[368]

•	 Solution: To solve this problem, you can try the following:
°° Open your wp-config.php file, and check that the database

parameters are correct.
°° If you are sure that these settings are correct, check if the MySQL

daemon/service is running properly. If MySQL is not running,
run this service. If MySQL is already running, try restarting the
service. If you are not running your own server, check in with
your host company's support people.

°° If you are sure that your database parameters are fine, and
MySQL is also running, then connect to MySQL using your
MySQL command-line tool and run these commands:

set password = OLD_PASSWORD('your_current_password');
flush privileges;

This will use the old encryption of passwords so that PHP can
connect to MySQL.

Basic troubleshooting
As you have probably already figured out, the best place to look for troubleshooting
tips is the WordPress.org website, both the codex and the support forum. The codex
even has a page devoted to basic troubleshooting (https://codex.wordpress.org/
Troubleshooting). There's also an updated Troubleshooting Master List for each
new version of WordPress. The newest one at the time of writing is at https://
wordpress.org/support/topic/read-this-first-wordpress-41-master-list
(you can always find the current version by going to https://wordpress.org/
search/wordpress+master+list?forums=1.).

The following are some of the most common problems that people encounter when
setting up WordPress; if you don't see yours here, I encourage you to visit the codex.

Cannot see posts
•	 Problem: Posts are not seen, and the message "search doesn't meet criteria"

is displayed.
•	 Cause: This can happen because of caching. For example, you have searched

once, and WordPress stored the search result inside its cache; so every time
you visit the page, you see the old result.

•	 Solution: You can solve this problem by clearing the cache and cookies from
your browser.

https://codex.wordpress.org/Troubleshooting
https://codex.wordpress.org/Troubleshooting
https://wordpress.org/support/topic/read-this-first-wordpress-41-master-list
https://wordpress.org/support/topic/read-this-first-wordpress-41-master-list
https://wordpress.org/search/wordpress+master+list?forums=1
https://wordpress.org/search/wordpress+master+list?forums=1

Chapter 13

[369]

I don't receive the e-mailed passwords
•	 Problem: You don't receive the e-mailed passwords.
•	 Cause: This problem may happen if your web server has no Simple

Mail Transfer Protocol (SMTP) server installed, or if the mail function
is explicitly disabled.

•	 Solution: Please contact your system administrator, or try installing
Sendmail (or any other mail server) properly.

Tips for theme development
In Chapter 7, Developing Your Own Theme, we covered theme development pretty
thoroughly, though you can get a more in-depth tutorial in theme development from
the excellent book WordPress Theme Design, Tessa Blakeley Silver, Packt Publishing.

This section lists the top template tags and stylesheet classes that you'll want to have
if you're going to be developing themes. These are the most essential ones, with some
of my personal favorites thrown in.

Template tags
The following is a list of the most used template tags. For a complete list, visit
the codex. The article at https://codex.wordpress.org/Template_Tags is
a good place to start. You can also have a look into the Function Reference sheet at
https://codex.wordpress.org/Function_Reference/. In the list that follows,
I do not cover the parameters that can be passed to these functions. You'll want
to visit the codex to find out about the default settings for each tag and how to
override them.

The header and informational tags are as follows:

The tag What it does
wp_title() Prints an appropriate title for your blog (the post

title, the archives title, the page title, or whatever is
appropriate for the current page)

bloginfo('name') Prints out the name of your blog, as specified on the
main options page in your wp-admin. You can also use
a similar tag – get_bloginfo(), which returns the
information instead of displaying it

wp_head() An essential part of the <head></head> tag, because a
variety of things get printed out by this tag, depending
on the details of the blog

https://codex.wordpress.org/Template_Tags
https://codex.wordpress.org/Function_Reference/

Administrating WordPress

[370]

The tag What it does
bloginfo('stylesheet_
url')

Prints out the path to the stylesheet of the current theme.

bloginfo('rss2_url') Prints out the RSS 2.0 feed URL for your blog.
body_class() Prints out a list of appropriate class names in the body

tag. It should be used to replace <body> like this:
<body <?php body_class(); ?>>

The following tags can be used inside the loop:

The tag What it does
the_title() Prints out the title of the current post or page.
the_time() Prints out the date and time of the post or page.
the_content() Prints out the formatted post or page content.
the_category() Prints out a list of the categories that belong to this post.
the_tags() Prints out a list of the tags associated with this post.
the_author() Prints out the name of the post or page author.
edit_post_link() If the person viewing the blog is a logged-in blog user,

this tag will print out a link for editing the post (very
handy!)

the_permalink() Prints out the URL of the post or page itself (must be
used within a tag).

comments_popup_link() If comments_popup_script is not used, this displays
a normal link to the comments for the post or page.

post_class() If you put this tag inside the <div> tag for your posts,
it will generate a list of classes for the categories and
tags that belong to this post. For example, if you put
this in your template as follows:
<div <?php post_class(); ?>>

WordPress will print something like this:
<div class="post category-recipes
category-locavore tag-holiday tag-pasta
tag-recipe tag-spinach">

get_post_meta() Use this function to get the value stored in a custom
field. Just pass this function the current post ID, the
name of the custom field you want, and true to get
the value of that custom field.

get_the_post_
thumbnail()

Prints out a complete img tag for the featured image.

Chapter 13

[371]

The following tags can be used for lists and navigation:

The tag What it does
previous_post_
link()

When viewing a single post, this prints a link to the previous
post (the one with the preceding newest timestamp)

next_post_link() When viewing a single post, this prints a link to the next
post (the one with the next newer timestamp)

wp_list_pages() Prints a list of all the pages in your WordPress site
wp_get_archives() Prints a list of archives (by post, month, and so on)

The following tags can be used to include PHP files:

The tag What it does
get_header() Includes header.php from the current theme folder
get_footer() Includes footer.php from the current theme folder
get_sidebar() Includes sidebar.php from the current theme folder
comments_template() Prints the standard list of comments and comment-

submission forms, unless there is a file in the theme
folder named comments.php, in which case that is
included instead

get_search_form() Prints the standard search form
include(TEMPLATEPATH.
'/filename.php')

Includes filename.php from the current theme folder

The following are some of the most useful conditional tags. Note that some of them
can take a parameter, so be sure to look them up in the codex for details.

The tag What it does
is_front_page() Returns true if user is viewing the front page of the

site, regardless of whether it's the most recent blog post
or page

is_home() Returns true if user is viewing the main page of your
blog, which can either be the front page of your site or
the page you designated as the Posts page in Settings |
Reading

is_page() Returns true if user is viewing a page
is_single() Returns true if user is viewing a single post
is_archive() Returns true if user is viewing an archive page of blog

posts (monthly, yearly, category, tag, and so on)
is_search() Returns true if user is viewing search results

Administrating WordPress

[372]

The tag What it does
has_post_thumbnail() Returns true if the post (the only parameter is a post ID)

has a featured image or designated thumbnail assigned to
it

Learn more about conditional tags at https://codex.wordpress.org/
Conditional_Tags.

Class styles generated by WordPress
WordPress helpfully applies classes to just about everything that it generates,
thus making it easy for you to style WordPress-generated elements on your page.

Here is a starter list of those styles. If you want to know about the other styles,
create a template and view the source of the page it creates.

Class or ID Where to find it
.page_item On the tag of every page in the generated page list.
.current_page_item On the tag of the current page in the generated

page list.
.current_page_parent On the tag of the parent of the current page in the

generated page list.
.page-item-23 On the tag of the page with ID=23 (there is one of

these for each page) in the generated page list.
.menu-item On the tag of every item in the generated nav list.

As with pages, menu-item-parent, current-menu-item,
and so on are also generated for appropriate items.

.widget On the tag of every widget.

.cat-item On the tag of every category in the generated
category list.

.current-cat On the tag of the current category in the generated
category list.

.cat-item-13 On the tag of the category with ID=13 (there is one
of these for each category) in the generated category list.

#searchform On the <form> tag for the generated search form.

https://codex.wordpress.org/Conditional_Tags
https://codex.wordpress.org/Conditional_Tags

Chapter 13

[373]

Learning more
If you want to learn more about how WordPress deals with CSS and various style
classes, please visit any of the following resources:

•	 The official guide on CSS in WordPress (https://codex.wordpress.org/CSS)
•	 Default WordPress Generated CSS Cheat Sheet for Beginners (http://www.

wpbeginner.com/wp-themes/default-wordpress-generated-css-cheat-
sheet-for-beginners/)

•	 Back to Basics With WordPress CSS: Understanding the Native Classes
(http://css-tricks.com/back-basics-wordpress-css-understanding-
native-classes/)

Summary
In this chapter, we covered many of the common administrative tasks that you might
face when you're managing a WordPress-driven website. This includes backing up
your database and files, moving your WordPress installation from one server or folder
to another, and doing general problem-solving and troubleshooting. We also covered
some of the most basic and useful template tags that you'll need when creating your
own WordPress themes.

You should now feel well-equipped to address all the usual administrative tasks for
your website or blog.

WordPress is a top-notch CMS, which has matured tremendously over the years.
The WordPress Admin panel is designed to be user-friendly, and is continually being
improved. The code that underlies WordPress is robust, and is the creation of a large
community of dedicated developers. Additionally, WordPress' functionality can be
extended through the use of plugins.

I hope you have enjoyed this book, and have gotten a strong start for administering
and using WordPress for your own site, whatever it may be. Be sure to stay connected
to the WordPress open source community!

https://codex.wordpress.org/CSS
http://www.wpbeginner.com/wp-themes/default-wordpress-generated-css-cheat-sheet-for-beginners/
http://www.wpbeginner.com/wp-themes/default-wordpress-generated-css-cheat-sheet-for-beginners/
http://www.wpbeginner.com/wp-themes/default-wordpress-generated-css-cheat-sheet-for-beginners/
http://css-tricks.com/back-basics-wordpress-css-understanding-native-classes/
http://css-tricks.com/back-basics-wordpress-css-understanding-native-classes/

[375]

Index
Symbols
$control_ops variable 279
$widget_ops variable 279
<head> tag 198

A
action hooks

URL 276
add_filter() function

URL 290
additional writing options

about 81
external blogging tools 82
mobile apps, for iOS and Android 83, 84
posting, via e-mail 82
Press This 81

admin conventions 49
administrator 294
admin page, plugins

adding 265
doctype_styles_new_regex() function,

modifying 268
hooks, adding 268
management page functions,

adding 265-268
advanced post options

about 71
author, changing 77
content, protecting 77, 78
Custom Fields 74, 75
custom post format settings 79, 80
Discussion box 73
excerpt 71, 72

pingbacks 72
post revisions, working with 75, 76
post slug 78
trackbacks 72

Akismet
about 93
activating 95
API key, obtaining 93, 94
URL 93

All In One Favicon
URL 313

Archive.org
URL 247

archive template
about 211
creating 211

Atom feed
URL 238

Audacity
URL 243

authors 296, 297
auto-installation, plugin 134-136
automatic content distribution, setting up to

social media
about 250
Jetpack plugin 251
Revive Old Post plugin 251-253

B
background

about 109, 110
Background Attachment option 111
Background Position option 111
Background Repeat option 110

[376]

backing up
about 137
importance 358

backups
about 358
content backups 358, 359
managed solution, obtaining 360
performing 359

basic content
creating 193
footer 199-201
functions.php file 193-197
header 199-201
sidebar 201

blog 3
blogging, common terms

about 4
categories 4
comments 5
home page 7
menus 6
page 6
plugins 5
post 4
RSS 6
tags 4
themes 5
users 7
widgets 6

blog, posting
additional writing options 81
advanced post options 71
common post options 54
simple post, adding 52-54

body_class() function 216
Book Categories, custom taxonomy

creating 352
book custom post type

description parameter 343
has_archive parameter 343
public parameter 343
rewrite parameter 343
supports parameter 343

BuddyPress plugin
about 338
URL, for components 340
URL 339

built-in feeds
about 238
URL 242

C
caching 142
categories

about 96
adding 96
managing 96

cheat sheet 357
child theme

creating 228, 229
stylesheet, creating 230
theme folder, creating 229
using 230, 231

CodeGuard
about 360
URL 360

Codex. See WordPress Codex
comments

about 5, 85
adding 85
avatar display settings 89, 90
blacklisting 88, 89
comment spam, eliminating 92
discussion settings 86
moderating 90-92
moderation settings 86-88
notification settings 86, 87
submission settings 86, 87

comment spam elimination
Akismet, activating 95
Akismet API key, obtaining 93, 94
performing 92

Comments RSS 2.0 feed
URL 238

common post options
about 54
audio, adding to blog posts 65, 66
categories 55, 56
default image sizes, controlling 60, 61
drafts 69
featured image, designating 63
image, adding in posts 57-59
lead and body 68

[377]

limited editing possibilities 66
media, adding to blog posts 63
pending articles 69, 70
tags 55, 56
Text editor, using 67, 68
timestamps 70
uploaded image, editing 61, 62
videos, adding to blog posts 63-65
Visual editor, using 67

community blogging
about 293
multi-author blog, concerns 293
user management plugins 303
user roles 294
users, managing 299

conditional tags
URL 372

Contact Form 7 plugin 309
content

about 4, 123
exporting 125, 126
importing 124, 125

Content Management System (CMS) 157
contributor 298
corporate or business websites

about 311
clean theme, picking 312
custom home page 315, 316
elements, branding 313
good navigation 314, 315
Master Slider 318-320
Meteor Slides 317
optional slider 316

corporate theme
features 313

Custom Fields 74, 75
Custom Menus 6
custom page template

creating 218
using 218-224

custom post types
about 342
admin display, customizing 354, 355
book template files, creating 346-351
custom taxonomy, registering 352
custom taxonomy, using 352, 353
labels, adding 344

messages, adding 344-346
new post type, registering 342, 343

custom tag cloud widget
about 276
form function 280, 281
hooking up 284
initiating 284
initiation function 279
naming 277
print function 282, 283
save function 281
structure 278
styles 283
using 284, 285

D
dedicated podcast

setting up 245, 246
digital audio workstation (DAW) 243
double-tag shortcodes 286
Dropbox

URL 138

E
editor 295
excerpt 71
external blogging tools 82

F
Facebook plugin

URL 337
features, WordPress

about 7
active in development 8
extendable 8
large community of contributors 8
long time in refining 7

feed aggregator (feed reader) 235
feed generator 238
feed links

adding 239
feeds, for comments 241
feeds, for whole website 240

Feedly
about 6

[378]

URL 236
Wikipedia reference link 238

feeds 235-237
Fetch

URL 25
file permissions

explaining 365
permissions, for WordPress 366
setting 365, 366

Filezilla
URL 25

filter hooks
URL 276

filter menu 51
Foliogine PRO

URL 336
freemium model 330
FTP client 25
functions.php file 193-197

G
Gantry

URL 181
Garage Band 243
general blog information, wp-admin panel

creating 41, 42
Genesis

URL 181
GNU General Public License (GPL) 232
Google Analytics

about 140
enabling 140
URL 140

Google Analytics by Yoast plugin
about 140
activating 141
URL 140

GPL licensing 232
Gravatar (Globally Recognized Avatar)

about 47, 48
URL 47

H
header 107, 108
HTML build, converting into theme

about 190

basic WordPress content, creating 193
loop 202-207
theme folder, creating 190-193

I
image gallery

adding 118
images

selecting 119-122
uploading 119-122

index.php file
about 208
footer.php file 209
header.php file 208
sidebar.php file 209

installation, WordPress
environment, preparing 24
files, uploading 25, 26
manual installation 24

ISAPI_Rewrite
URL 358

J
Jetpack

about 131, 151, 251
setting up 151, 152
URL 132

JM Twitter Cards
URL 250

K
Kraken

URL 57

L
Levelator

URL 243
Libsyn

URL 247
Lightbox

about 337
URL 337

Logic 243
loop 202-207

[379]

M
manual plugin installation 131-133
MarsEdit

URL 83
Master Slider

about 318-320
URL 318

media library
about 113-115
image gallery, adding 118
images, selecting 119-122
images, uploading 119-122
Media Manager 115-118
page, selecting 118
post, selecting 118

Membership plugin
installing 331, 332
URL 330
using 333, 334

membership websites
about 327, 328
free approach 330
functionalities 328
membership plugins, using 329, 330
simple approach 328, 329

menus
about 6, 103
adding 103-106
displaying 106, 107

Meteor Slides
about 317
URL 317

Metro CreativeX
URL 336

multi-author blog 293, 294
must-have plugins

about 137
Google Analytics by Yoast plugin 140, 141
Jetpack 151
Social Share Starter 148-150
W3 Total Cache 142, 143
Wordfence Security 145-147
WordPress Backup to Dropbox 137-139
WordPress SEO plugin 143-145

N
net2ftp

URL 25
non-blog type websites

corporate or business websites 305
e-commerce stores 305
membership websites 306
must-do tasks 307
niche business websites 306
one-page websites 305
photo blogs 306
product websites 306
social networks 306
static websites 305
video blogs 306

O
one-page websites

about 321, 323
elements, branding 324
high quality images 324, 325
one-page theme, features 323
one-page theme, picking 323

P
pages

about 99, 100
About Karol 102
adding 100, 101
Custom Menus 102, 103
managing 102
order 102
Page Attributes 101
parent 102
selecting 118
structuring 102

page template
about 214
creating 214, 215

permalinks
enabling 358
URL 358

PhotoArtist
URL 336

[380]

photo blog
about 334
features 335
plugins, obtaining 336, 337
themes, exploring 336

pingbacks
about 72
URL 74

Plugin API
URL 276

Plugin Directory
URL 14

Plugin Resources page
URL 276

plugins
about 5, 127, 256
admin page, adding 265
auto-installation 134-136
building, from scratch 256
code requirements 257
features 128
installing 131, 255
manual installation 131-133
must-have pack 137
obtaining 128, 129
podcasting 246
reference links 276
searching 130
testing 270, 271
URL 255
using 269, 270

plugin, with DB access
management page functions,

adding 273, 274
running, when activated 272
searched words, capturing 271
using 274, 275

PodBean
URL 248

podcast
about 242
adding 242
audio files, hosting with service 247, 248
creating 243
dedicated podcast, setting up 245, 246
post, creating 244, 245
URL, for tutorial 243

voice, recording 243
podcasting

URL 246, 247
Podcasting Plugin by TSG

URL 246
Podlove Podcast Publisher

URL 246
Portfolio Press

URL 336
post

about 4, 52
selecting 118

post_class() function 217
post slug 78
PowerPress

URL 246
premium plugin directories

URL 130
Press This 81
ProTools 243

Q
Qumana

URL 83

R
RDF/RSS 1.0 feed

URL 238
Really Simple Syndication (RSS) 236
Recent Posts widget 316
Recipes 4
responsive design/structure 169
Revive Old Post plugin

about 251
settings 252
URL 251

right-to-left (RTL) support 10
RSS 2.0 feed

URL 238

S
salt keys

URL 32
search engine optimization (SEO) 143

[381]

secret keys
URL 32

Secure FTP (sFTP) 26
shortcodes

about 286
double-tag shortcodes 286
enabling, in widgets 290
shortcodes with attributes 287
simple shortcode, creating 287-289
single-tag shortcodes 286
types 286
working 286

simple plugin
core functions, writing 260, 261
creating 257
hooks, adding 261-264
link icons, adding 257, 258
plugin files, naming 258-260
plugin files, organizing 258-260
using 264

simple post
adding 52-54

single template 212-214
site

customizing 112, 113
security 145

slug 96
SmartFTP

URL 25
social media integration

about 148, 248
automatic content distribution,

setting up 250
blog, making social media friendly 248
social media APIs integration,

setting up 249, 250
social media metrics tracking,

setting up 253, 254
social media share buttons, setting up 249

Social Metrics Tracker
URL 253

social network
about 338
designing 341
features 338
functionality, extending 341

installing 339, 340
Social Share Starter

about 148
setting up 149, 150
URL 148

Sonar X2 243
standard themes 161
starter themes 162
static websites

about 307
easy-to-grasp menus, creating 311
home page, building 309, 310
process 308

Studio One 243
StudioPress

URL 163
subscriber 298

T
tags 4
template files, WordPress theme

archive template 211, 212
classes, generating for body

and post 216, 217
creating 207, 208
custom page template, creating 218
custom page template, using 218-224
index.php file 210, 211
index.php file, breaking up 208
page template 214, 215
single template 212-214

template hierarchy
URL 217

template tags
about 369
conditional tags 371
header and informational tags 369
using, for including PHP files 371
using, inside loop 370

Thematic
URL 181

theme. See WordPress theme
theme development

class styles 372
template tags 369-371
tips 369

[382]

Theme Directory
URL 14

ThemeForest
URL 164

theme frameworks
about 162
URL 181

ThemeFuse
URL 164

ThemeIsle
URL 164

theme selection, factors
about 164
customizable factor 169
documentation 170
purpose 165, 166
responsive design/structure 169, 170
reviews 170
structure 164, 165
support 170
theme licensing 168
up-to-date themes 168

theme stores
StudioPress 163
ThemeForest 164
ThemeFuse 164
ThemeIsle 164
WooThemes 164

Thesis
URL 181

trackbacks
about 72
URL 74

troubleshooting
about 366
WordPress 368, 369
WordPress installation FAQs 367, 368

Twenty Fifteen theme 152
Twenty Fourteen theme 44

U
Underscores

URL 173
upgrade, WordPress

.htaccess, updating 362
database, backing up 361

permalinks, updating 362
running 361
steps 360
themes, installing 362
updated plugins, installing 362
WordPress files, backing up 361

user management plugins 303
user roles

about 294
administrator 294
authors 296, 297
contributor 298
editor 295
subscriber 298

users
about 7
enabling, to self-register 301, 302
managing 299, 300

V
video blog

about 334
features 334, 335
plugins, obtaining 336, 337
themes, exploring 336

Visual editor
versus Text editor 67, 68

W
W3 Total Cache

about 142, 265
installing 142
URL 142

web feed 235
weblog 3
widget area 152
widget-friendly theme

creating 225
widgetizing

about 225
functions.php file, working with 226
options 227
sidebars, setting 225
URL 227
widgets, adding to theme 226, 227
working 225

[383]

widgets
about 6, 152, 276
bundling, with existing plugin 286
controlling 152-154
custom tag cloud widget 276
URL 285

Windows Live Writer 83
WishList Member

about 330
URL 330

WooThemes
URL 164

Wordfence Security
about 145
setting up 146, 147
URL 145

WordPress
about 1, 2
admin conventions 49
advantage 18
blog 3, 4
built-in feeds 238
common reasons, for site crashing 364, 365
downloading 24
features 7-10
installation FAQs, troubleshooting 367, 368
installing 27-30
installing, through auto-installer

script 33-36
installing, through hand-built

configuration file 30-32
lists of items 50, 51
manual installation 24
online resources 12
plugin directories 14
reference, for requisites 24
resources 373
staying updated, through news 12
step-by-step guide for

manual installation 33
templates 217
theme directories 14
upgrading 25, 360
URL 5
URL, for forum 14
using, for blog or website 3
wp-admin panel 37

WordPress, administrating
about 357
backups 358
permalinks, enabling 358
system requirements 357

WordPress app
URL 83

WordPress Backup to Dropbox plugin
about 137, 138, 359
installing 138
setting up 139
URL 137

WordPress Codex
about 13, 33
URL 13

WordPress family 8, 9
WordPress plugins

URL 128
WordPress SEO plugin

about 143, 144, 265
settings 145
URL 143

WordPress theme
about 5, 208
adding, within wp-admin 170-172
building, from ground up 180
building, with framework 180
building, with starter theme 181
changing 170
child themes 161
CSS, examining 184-189
design, converting into code 182
design, setting up 178
developer license 168
developing 179
downloading 173-176
extracting 173-176
finding 158-164
HTML structure, examining 182-184
installing 170
main types 161
menu, enabling 228
selecting, factors 165
sharing 231, 232
standard, one-site license 168
standard layouts 178, 179
standard themes 161

[384]

starter themes 162
stores 163
structure 164, 165
template files, creating 207
theme frameworks 162
uploading 173-176
URL, for hierarchy 217
URL, for stores 166

WordPress Theme Directory
about 158-160
URL 158

WordPress version 3.7
features 10, 11
references 11

WordPress website
building 18
content, publishing 22, 23
migrating 363
restoring 363, 364
URL 20
using 20-22
versus WordPress.org 19

WordPress Widgets API
URL 285

World Wide Web Consortium (W3C)
standards 9

wp-admin panel
about 37-41
admin bar 38
comment, creating 44-46
general blog information, changing 41-43
lost password, retrieving 47
post, creating 43, 44
top bar 38

wp-admin (WordPress Administration
panel) 52

wp-config.php file
URL 33

WP-Member
about 330
URL 330

WP Migrate DB
URL 363

wp_nav_menu() function 228
WP Smush.it

about 337
URL 337

Z
Zerif Lite

URL 159

Thank you for buying
WordPress 4.x Complete

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WordPress 3.7 Complete
Third Edition
ISBN: 978-1-78216-240-7 Paperback: 404 pages

Make your first end-to-end website from scratch
with WordPress

1.	 Learn how to build a WordPress site quickly
and effectively.

2.	 Find out how to create content that's optimized
to be published on the Web.

3.	 Learn the basics of working with WordPress
themes and playing with widgets.

WordPress 3 Cookbook
ISBN: 978-1-84951-460-6 Paperback: 328 pages

Over 100 recipes to help you enhance your
WordPress site!

1.	 Take your WordPress site to the next level
with solutions to common WordPress problems
that make your site better, smarter, faster, and
more secure.

2.	 Enhance your SEO and make more money
online by applying simple hacks.

3.	 Rich with screenshots and practical tasks that
you will find quite useful .

Please check www.PacktPub.com for information on our titles

WordPress 3 Complete
ISBN: 978-1-84951-410-1 Paperback: 344 pages

Create your own complete website or blog from
scratch with WordPress

1.	 Learn everything you need for creating your
own feature-rich website or blog from scratch.

2.	 Clear and practical explanations of all aspects
of WordPress.

3.	 In-depth coverage of installation, themes,
plugins, and syndication.

WordPress 3 Site Blueprints
ISBN: 978-1-84719-936-2 Paperback: 300 pages

Ready-made plans for 9 different professional
WordPress sites

1.	 Everything you need to build a varied
collection of feature-rich customized
WordPress websites for yourself.

2.	 Transform a static website into a dynamic
WordPress blog.

3.	 In-depth coverage of several WordPress
themes and plugins.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing WordPress
	Getting into WordPress
	Using WordPress for a blog or a website
	Starting the journey – what is a blog?

	Understanding the common terms
	Post
	Categories and tags
	Comments
	Themes
	Plugins
	Widget
	Menus
	RSS
	Page
	Homepage
	Users

	Why choose WordPress
	A long time in refining
	Active in development
	Large community of contributors
	Amazingly extendable

	Getting to know the WordPress family
	Digging into WordPress – the features
	Getting familiar with the new feature list since 3.7
	Learning more

	Learning more with online WordPress resources
	Staying updated through WordPress news
	Understanding the Codex
	Getting support from other users
	Using theme and plugin directories
	Summary

	Chapter 2: Getting Started with WordPress
	Building your WordPress website – start here
	Using WordPress.com
	Publishing your first content on a WordPress.com blog

	Installing WordPress manually
	Preparing the environment
	Downloading WordPress
	Upgrading from an earlier version of WordPress
	Uploading the files
	Installing WordPress
	Installing WordPress through a hand-built configuration file
	Learning more

	Installing WordPress through an
auto-installer script
	The wp-admin panel
	Changing general blog information
	Creating your first post
	Writing your first comment
	Retrieving a lost password

	Getting a Gravatar
	Summary

	Chapter 3: Creating Blog Content
	WordPress admin conventions
	Lists of items

	Posting on your blog
	Adding a simple post
	Common post options
	Categories and tags
	Images in your posts
	Videos and other media in your posts
	Using the Visual editor versus the Text editor
	Lead and body
	Drafts, pending articles, and timestamps

	Advanced post options
	Excerpt
	Sending pingbacks and trackbacks
	Discussion
	Custom Fields
	Working with post revisions
	Changing the author of the post
	Protecting content
	Pretty post slug
	Custom post format settings

	Additional writing options
	Press This
	Posting via e-mail
	External blogging tools
	Mobile apps for iOS and Android

	Discussion on your blog – comments
	Adding a comment
	Discussion settings
	Submission, notification, and moderation settings
	When to moderate or blacklist a comment
	Avatar display settings

	Moderating comments
	How to eliminate comment spam
	Getting an Akismet API key
	Activating Akismet

	Adding and managing categories
	Summary

	Chapter 4: Pages, Menus,
Media Library, and More
	Pages
	Adding a page
	Parent
	Order

	Managing pages

	Menus
	Adding a Menu
	Displaying a Menu

	Header
	Background
	Advanced site customization
	Media library
	Media Manager
	Adding an image gallery
	Choosing a post or page
	Selecting or Uploading images

	Importing/exporting your content
	Importing content
	Exporting content

	Summary

	Chapter 5: Plugins and Widgets
	Breaking down plugins – what are they?
	Why use plugins
	Where to get plugins
	Finding new plugins
	Installing a plugin – the how-to
	Manual plugin installation
	Auto-installation

	The must-have pack of plugins
	Backing up
	Enabling Google Analytics
	Caching
	Search engine optimization (SEO)
	Securing your site
	Social media integration
	Jetpack

	Widgets
	Summary

	Chapter 6: Choosing and
Installing Themes
	Finding themes
	WordPress Theme Directory
	Main types of themes
	Finding more themes

	Some not-design-related theme basics
	The structure of a theme
	Factors to consider when choosing a theme
	The purpose of the theme
	Theme licensing
	Up-to-date themes only
	Themes that are customizable
	Themes with responsive structure
	Support, reviews, and documentation

	Installing and changing themes
	Adding a theme within the wp-admin
	Downloading, extracting, and uploading

	Summary

	Chapter 7: Developing Your Own Theme
	Setting up your design
	Designing your theme to be
WordPress-friendly
	Three paths of theme development
	Building a theme from the ground up
	Building a theme with a framework
	Building a theme with a starter theme

	Converting your design to code
	Examining the HTML structure
	Examining the CSS

	Converting your build into a theme
	Creating the theme folder
	How to create basic WordPress content
	The functions.php file
	The <head> tag
	The header and footer
	The sidebar

	Main column – the loop

	Creating template files within your theme
	Understanding the WordPress theme
	Breaking it up
	The header.php file
	The footer.php file
	The sidebar.php file
	Your four template files

	Archive template
	Single template
	Page template
	Generated classes for body and post
	Other WordPress templates
	Creating and using a custom page template

	Making your theme widget-friendly
	Going back to our sidebar
	Working with the functions.php file
	Adding some widgets
	Additional widgetizing options

	Enabling a menu in your theme
	Creating a child theme
	Creating the new theme folder
	Creating the stylesheet
	Using your child theme

	Sharing your theme
	Summary

	Chapter 8: Feeds, Podcasting, and Social Media Integration
	Getting started with feeds
	Working with built-in WordPress feeds
	Adding feed links
	Feeds for the whole website
	Feeds for comments

	Podcasting
	Creating a podcast
	Recording yourself
	Making a post
	Dedicated podcasting

	Podcasting plugins
	Using a service to host audio files for free

	Integrating social media
	Making your blog social media friendly
	Setting up social media share buttons
	Setting up social media APIs integration
	Setting up automatic content distribution
to social media
	The Jetpack plugin
	The Revive Old Post plugin

	Setting up social media metrics tracking

	Summary

	Chapter 9: Developing Plugins
and Widgets
	Plugins
	Building plugins from scratch
	Plugin code requirements
	Basic plugin - adding link icons
	Naming and organizing the plugin files
	Writing the plugin's core functions
	Adding hooks to the plugin
	Trying out the plugin

	Adding an admin page
	Adding management page functions
	Modifying the doctype_styles_new_regex() function
	Adding hooks
	Trying out the plugin

	Testing your plugins
	A plugin with DB access – capturing searched words
	Getting the plugin to talk to the database
	Adding management page functions
	Trying out the plugin

	Learning more

	Widgets
	Custom tag cloud widget
	Naming our widget
	Widget structure
	Widget initiation function
	Widget form function
	Widget save function
	Widget print function
	Custom widget styles
	Initiate and hook up the widget
	Trying out the widget
	Learning more

	Bundling a widget with an existing plugin

	Shortcodes
	Shortcodes and the way they work
	Types of shortcodes
	Creating a simple shortcode
	Enabling shortcodes in widgets

	Summary

	Chapter 10: Community Blogging
	Concerns for a multi-author blog
	User roles and abilities
	Administrator
	Editor
	Author
	Contributor
	Subscriber

	Managing users
	Enabling users to self-register

	User management plugins
	Summary

	Chapter 11: Creating a Non-blog Website Part 1 – The Basics
	The must-do tasks
	Static websites
	The process
	Building your homepage
	Creating easy-to-grasp menus

	Corporate or business websites
	Picking a clean theme
	Branding elements
	Good navigation
	Custom homepage
	Optional slider
	Meteor Slides
	Master Slider

	One-page websites
	Picking a one-page theme
	Branding elements
	High quality images

	Summary

	Chapter 12: Creating a Non-blog
Website Part 2 – Community Websites and Custom Content Elements
	Membership websites
	Taking the simple approach
	Using membership plugins
	Taking the free approach
	Installing the plugin
	Using the plugin

	Video blogs and photo blogs
	Exploring themes for video and photo sites
	Getting plugins for video and photo sites

	Social networks
	Installing a social network
	Designing your social network
	Extending the functionality

	Introducing custom post types
	Registering a new post type
	Adding labels
	Adding messages
	Creating book template files

	Registering and using a custom taxonomy
	Customizing the admin display

	Summary

	Chapter 13: Administrating WordPress
	System requirements
	Enabling permalinks
	The importance of backing up
	Easy, quick, and frequent content backups
	Backing up everything
	Getting a managed solution

	Upgrading WordPress
	Steps for upgrading
	Backing up your database
	Backing up your WordPress files
	Running the WordPress' upgrade feature
	Updating permalinks and .htaccess
	Installing updated plugins and themes

	Migrating or restoring a WordPress website
	Acting in case of a site crash
	Setting file permissions
	Explaining file permissions
	Permissions for WordPress
	How to set permissions

	Troubleshooting
	Troubleshooting during installation
	Headers already sent
	Page comes with only PHP code
	Cannot connect to MySQL database

	Basic troubleshooting
	Cannot see posts
	I don't receive the e-mailed passwords

	Tips for theme development
	Template tags
	Class styles generated by WordPress
	Learning more

	Summary

	Index

