WordPress Responsive
Theme Design

Develop and customize your very own responsive WordPress
themes quickly and efficiently

PACKT =

WordPress Responsive
Theme Design

Develop and customize your very own responsive
WordPress themes quickly and efficiently

Dejan Markovic

|] open source
| i g

OrimunTy experience distilied

PUBLiSHiNu

BIRMINGHAM - MUMBAI

WordPress Responsive Theme Design

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015
Production reference: 1260615

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-845-6

www . packtpub.com

www.packtpub.com

Credits

Author
Dejan Markovic

Reviewers
Rory Ashford

John Eckman

Mattia Migliorini

Commissioning Editor
Dipika Gaonkar

Acquisition Editors
Neha Nagwekar

Larissa Pinto

Content Development Editor
Rohit Kumar Singh

Technical Editors
Mrunal M. Chavan

Rahul C. Shah

Copy Editors
Sonia Michelle Cheema

Gladson Monteiro
Vikrant Phadke
Stuti Srivastava

Neha Vyas

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Safis Editing
Maria Gould

Indexer
Monica Ajmera Mehta

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Dejan Markovic is the president of NYTO Group (http://www.nytogroup.
com/), a premium web development company with offices conveniently located in
both Toronto and New York. He is an experienced web developer with the extensive
knowledge of both frontend and backend technologies (PHP, ASP.NET, JavaScript,
ColdFusion, HTML5, CSS3, WordPress, Joomla, Drupal, to name just a few).

As Dejan strongly believes in returning back to the community, he developed and
contributed to 2 free WordPress plugins: Buffer My Post (https://wordpress.org/
plugins/buffer-my-post/) and Tweet Old Custom Post (https://wordpress.org/
plugins/tweet-old-custom-post/). He is also one of the organizers of WPToronto
meetup group and the WordCamp Toronto, an annual WordPress conference.

You can always find him on various WordCamps (especially the ones within driving
distance from Toronto) or exploring the nature, art & love for food across Canada &
US. Should you have any questions, comments, concerns or just want to say hello,
you can shoot him an email at dejanedejanmarkovic.com. He would love to hear
your thoughts about this book.

Dejan was a technical reviewer of the book Learning Yeoman (http: //www.amazon.com/
Learning-Yeoman-Jonathan-Spratley/dp/1783981385). This is his first time as
an author.

http://www.nytogroup.com/
http://www.nytogroup.com/
https://wordpress.org/plugins/buffer-my-post/
https://wordpress.org/plugins/buffer-my-post/
https://wordpress.org/plugins/tweet-old-custom-post/
https://wordpress.org/plugins/tweet-old-custom-post/
http://www.amazon.com/Learning-Yeoman-Jonathan-Spratley/dp/1783981385
http://www.amazon.com/Learning-Yeoman-Jonathan-Spratley/dp/1783981385

I would like to thank my girlfriend, life partner, and future wife,
Tina, who always stood beside me through my best and worst times.
Thank you for your help and understanding, and your tremendous
and unconditional support. Without you, all of this would have been
impossible. Tina, you are my shining star!

I would also like to thank my mother, Spasenija, who is still my
inspiration and a great example of a survivor who went through a
lot. Thank you Mama for everything!

This book would not have been possible without the support and
love of my brother, Marko, my beautiful sister-in-law, Nikolina,
and the best nephews and niece anyone could have —Stefan, Luka,
and Angelina. I love you all very much and thank you for your
understanding (especially my nephews and niece) as I had to work
on this book even while staying at your home during the holidays.
I am so sorry that I didn't have more free time to play with you.

My soon-to-be brother-in-law, Tosha Serbian, has created the logo
for the theme Topcat that we used in this book. Tosha, thank you for
your help and advice. It is greatly appreciated!

Many thanks to Neha Nagwekar, Neetu Mathew, Rohit Kumar
Singh, Larissa Pinto, and the rest of the Packt Publishing team.

I have recently lost two family members that were important to me,
and this section is dedicated to them:

Our beloved Dragisa,

You've left us quietly, as you have lived your entire life. Your heart, which taught us
honesty, integrity, and loyalty, has stopped. We are left here alone, without you,
with all those memories of true appreciation and friendship. Your time was colored
with modesty, generosity, and self-sacrificing and strenuous work. You were our backbone
in the hardest times and with your generosity you accepted us as your own. We will be
forever grateful. May you have eternal glory!

Dear Noki,

You were the light that was shining on us. Your passion to help everybody and your
reliability are something that people will remember you by.

I will never forget you and I will always love you with all my heart. Your will be
my brother forever!

About the Reviewers

Rory Ashford is an English web developer. He currently manages the studio at
Code Blue Digital. In his spare time, he has built the Gridtacular responsive grid
system, Wordpress BEM Menus, and other open source projects.

I would like to thank my girlfriend, Caroline, for her patience (and
her coffee). She put up with me when reviewing this book in the
midst of buying and moving into our new house.

John Eckman is the chief executive officer of 10up, a distributed digital agency that
focuses on designing and delivering great web publishing experiences on WordPress.

He received a BA from Boston University, a master's degree in information systems
from Northeastern University, and a PhD from the University of Washington,
Seattle. John is an active contributor to a number of open source projects and
communities, and a founder and organizer of WordCamp Boston. He posts blogs at
www . openparenthesis.org and tweets as @jeckman.

Mattia Migliorini, also known as deshack, is a freelance web designer and
developer who loves WordPress. He is always on the lookout for amazing
responsive designs. He is also an open source evangelist and a member of the
Ubuntu community. Mattia currently works both as a freelancer and for VB Italia Srl,
an Italian e-commerce company.

www.openparenthesis.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ] PACKT

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface \'
Chapter 1: Responsive Web Design with WordPress 1
The concepts of RWD 2
Controlling Viewport 2
Scaling 4
The screen density 5
Problems and solutions with the screen density 5
Techniques in RWD 6
Media queries 6
Breakpoints 8
Fluid grids 9
Flexible images and media 10
Setting up the WordPress environment 1"
Installing and setting up WordPress 11
Setting up the underscores theme 12
Installing the WordPress theme's unit test data 13
Installing the Developer plugin 14
Summary 15
Chapter 2: Understanding the WordPress Theme Structure 17
Setting WordPress permalinks 17
What is a WordPress theme? 19
Template files 20
The page structure of template files 23
Theme subfolders 31
Summary 33
Chapter 3: Getting Started with Responsive Layout 35
Choosing the right tool for our project 35
How to set up functions.php 37

[il

Table of Contents

How to set up styles.css 42
The em and rem values 44
Adding media queries 50
Summary 52
Chapter 4: Learn How to Create the Header and Navigation 53
Making our layout centered 54
Dealing with the header 55
How to create a menu and make it responsive and accessible 61
Menu basics 61
Styling our menu 62

How to make our menu accessible 65
How to make our menu responsive 67
Summary 71
Chapter 5: Customizing Single Post Templates 73
Analyzing single post templates 74
Analyzing the content-single.php file 79
Template improvements 84
Header improvements 85
Implementing changes to the post template 87
Styling post's metadata 89
Content section 93
Tags 98
Post navigation 99
Summary 102
Chapter 6: Responsive Widgets, Footer, and Comments 103
Widgets 103
Sidebars 105
Styling sidebars 112
Editing the footer 116
Working with comments 125
Styling comments title 127
Styling comments 128
Comments navigation 130
Summary 133
Chapter 7: Working with Images and Videos 135
Featured images 135
Setting up a featured image 137
Resizing featured images 138
Image captions 140
Image galleries 142

Lii]

Table of Contents

Making the gallery responsive 146
Working with videos 148
Summary 149
Chapter 8: Working with Template Files 151
The WordPress template hierarchy 152
Excerpts 154
Featured images 157
Customizing the paging navigation 158
Styling sticky posts 162
Modifying archive.php 163
Modifying 404.php 165
Modifying search.php 166
Summary 168
Chapter 9: Working with Static Pages and Adding the Extra
Functionality with Plugins 169
Home page 170
The home page template 171
Styles for the home template 172
Slider plugin 174
The Services section (list of services) 176
Making our home page responsive 181
The Contact Us page 183
Summary 186
Chapter 10: Submitting Your Theme to WordPress.org 187
Polishing code before submission 188
Applying the editor styles 193
Validating the HTML and CSS code 195
Validating the JavaScript code 196
Validating the PHP code 197
Debugging the setup 197
Multiple wp-config.php sets 198
Adding the readme.txt file 200
Adding the screenshot.png file 201
Running a theme check plugin 201
Summary 202
Index 203

[iii]

Preface

If you want to leave your mark in the wonderful world of WordPress, then continue
reading. This book will teach you how to develop and customize your very own
responsive theme in WordPress. The added benefits for you are that you will get a
lot of useful tips and tricks throughout the book intended to make your life easier.
We will provide you with the essentials in the development of the responsive theme
in WordPress and the rest is up to you and your imagination!

What this book covers

Chapter 1, Responsive Web Design with WordPress, introduces you to the concepts and
techniques of responsive web design and walks you through the process of setting
up a WordPress environment.

Chapter 2, Understanding the WordPress Theme Structure, teaches you about the
WordPress theme architecture and the purpose of the most important template files.

Chapter 3, Getting Started with Responsive Layout, starts your development journey
where you will learn how to choose the right tool for your project (text editor or
IDE), how to set up functions.php and styles.css, set fonts and font-icons, add
morenizr.js and respond.js essential scripts, and how to add media queries.

Chapter 4, Learn How to Create the Header and Navigation, teaches you about the most
important component of any website —navigation!

Chapter 5, Customizing Single Post Templates, focuses on the post templates and their
components: title, meta, and navigation. In this chapter, we are setting up a basic
layout that we will later expand with the index templates and static pages.

[v]

Preface

Chapter 6, Responsive Widgets, Footer, and Comments, introduces you to the magic
world of widgets, footer, sidebar, and comments with a lot of useful tips and tricks.

Chapter 7, Working with Images and Videos, starts with something fun and, as some
might say, the most interesting components of any website —images and videos. In
this chapter, you will learn about featured images, image captions, image galleries,
and how to work with videos.

Chapter 8, Working with Template Files, focuses on the most important files for the
WordPress themes. In this chapter, you will understand the WordPress template
hierarchy, understand the functionality of archive pages and you will find excerpts
on how to customize the paging navigation, style and sticky post, and also how to
modify archive.php, 404.php, and search.php.

Chapter 9, Working with Static Pages and Adding the Extra Functionality with Plugins,
wraps up the development part of our book. In this chapter, you will learn about
static pages, sliders, shortcodes, how to make your home page responsive, and how
to make the contact us page.

Chapter 10, Submitting Your Theme to WordPress.org, covers how to test your theme
and polish your code before the submission, and helps you learn how to submit your
theme to the WordPress.org repository.

What you need for this book

The software applications that are recommended for this project are XAMPP,
WAMP, and MAMP please choose one that fits your needs. Also, it would be
beneficial to have the WordPress installed locally or on the hosted environment.

Who this book is for

This book is intended for all of you WordPress enthusiasts who want to develop
and customize your very own WordPress responsive theme. Some knowledge of
WordPress, PHP, MySQL, HTML, and CSS is expected from you.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

[vil

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Make sure that the theme directory is named topcat and not topcat_start."

A block of code is set as follows:

@media only screen and (max-width: 480px) {
//mobile styles
// up to 480px size

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<div id="page" class="hfeed site topcat page">

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
tagline can be found and set in wp-admin by navigating to Settings | General."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

[vii]

www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http: //www.packtpub.com/
sites/default/files/downloads/84560S ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[viii]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[ix]

Responsive Web Design
with WordPress

Responsive web design (RWD) is a web design approach aimed at crafting sites

to provide an optimal viewing experience — easy reading and navigation with a
minimum of resizing, panning, and scrolling — across a wide range of devices (from
mobile phones to desktop computer monitors).

Reference: http://en.wikipedia.org/wiki/Responsive web design.

To say it simply, responsive web design (RWD) means that the responsive website
should adapt to the screen size of the device it is being viewed on.

When I began my web development journey in 2002, we didn't have to consider as
many factors as we do today.

We just had to create the website for a 17-inch screen (which was the standard at that
time), and that was it. Yes, we also had to consider 15, 19, and 21-inch monitors, but
since the 17-inch screen was the standard, that was the target screen size for us. In
pixels, these sizes were usually 800 or 1024. We also had to consider a fewer number
of browsers (Internet Explorer, Netscape, and Opera) and the styling for the print,
and that was it.

Since then, a lot of things have changed, and today, in 2015, for a website design, we
have to consider multiple factors, such as:

* Alot of different web browsers (Internet Explorer , Firefox, Opera, Chrome,
and Safari)

* A number of different operating systems (Windows (XP, 7, and 8), Mac OS X,
Linux, Unix, i0OS, Android, and Windows phones)

* Device screen sizes (desktop, mobile, and tablet)

[11]

http://en.wikipedia.org/wiki/Responsive_web_design

Responsive Web Design with WordPress

¢ s content accessible and readable with screen readers?

* How the content will look like when it's printed

M Throughout the book, we will use the RWD abbreviation for responsive
Q web design, the IE abbreviation for Internet Explorer, and the FF
abbreviation for Firefox browsers.

Today, creating different design for all these listed factors and devices would take
years. This is where a responsive web design comes to the rescue.

In this chapter, we will cover:

* The concepts of RWD
* Techniques in RWD

* Setting up the WordPress environment

The concepts of RWD

I have to point out that the mobile environment is becoming more important factor
than the desktop environment. Mobile browsing is becoming bigger than the desktop-
based access, which makes the mobile environment very important factor to consider
when developing a website. Simply put, the main point of RWD is that the layout
changes based on the size and capabilities of the device its being viewed on. The
concepts of RWD, that we will learn next, are: Viewport, scaling and screen density.

Controlling Viewport

On the desktop, Viewport is the screen size of the window in a browser. For
example, when we resize the browser window, we are actually changing the
Viewport size.

On mobile devices, the Viewport size is also independent of the device screen size.
For example, Viewport is 850 px for mobile Opera and 980 px for mobile Safari, and
the screen size for iPhone is 320 px.

If we compare the Viewport size of 980 px and the screen size of an iPhone of 320px,
we can see that Viewport is bigger than the screen size. This is because mobile
browsers function differently. They first load the page into Viewport, and then they
resize it to the device's screen size. This is why we are able to see the whole page on
the mobile device.

[2]

Chapter 1

If the mobile browsers had Viewport the same as the screen size (320 px), we would
be able to see only a part of the page on the mobile device.

In the following screenshot, we can see the table with the list of Viewport sizes for
some iPhone models:

Search: iphona
Pixel Screen Portrait Viewport Landscape Viewport
Device Hame 4 | Platform % % % % *
Density Size Width Width
Apple iPhone 3G 05 16:3dip 35 320 480
Apple iPhone 2G5 05 163dpi 3.5 320 430
Apple iPhone 4 0% 326 1.5 320 430
Apple iPhone 45 05 326dpi 3.5 320 430
Apple iFhone 08 328 ¥ 2 558

We can control Viewport with CSS:
@viewport {width: device-width;}
Or, we can control it with the meta tag:
<meta name="viewport" content="width=device-width">
In the preceding code, we are matching the Viewport width with the device width.

Because the Viewport meta tag approach is more widely adopted, as it was first used
on iOS and the @viewport approach was not supported by some browsers in this
book, we will use the meta tag approach.

We are setting the Viewport width in order to match our web content with our
mobile content, as we want to make sure that our web content looks good on a
mobile device as well.

M We can set Viewports in the code for each device separately, for
Q example, 320 px for the iPhone. The better approach will be to use

content="width=device-width".

[31]

Responsive Web Design with WordPress

Scaling

Scaling is extremely important, as the initial scale controls the zoom aspect of the
content for the initial look of the page. For example, if the initial scale is set to 3, the
content will be loaded in the size of 3 times of the Viewport size, which means 3
times zoom. Here is the look of the screenshot for initial scale=1 and initial scale=3:

RELOCATION l!‘lﬂis TION SOLUTIONS

in B
Helping people get to a better place. ..
with er without meve.

RELDCMIGH THANSITIDN SOLUTIONS

HOME

ABOUT TOPCAT
MOVING

As we can see from the preceding screenshots, on the initial scale 3 (three times
zoom), the logo image takes the bigger part of the screen.

It is important to note that this is just the initial scale, which means that the user can
zoom in and zoom out later, if they want to.

Here is the example of the code with the initial scale:

<meta name="viewport" content="width=device-width, initial-
scale=1, maximum-scale=1">

In this example, we have used the maximum-scale=1 option, which means that the
user will not be able to use the zoom here. We should avoid using the maximum-
scale property because of accessibility issues. If we forbid zooming on our pages,
users with visual problems will not be able to see the content properly.

[4]

Chapter 1

The screen density

As the screen technology is going forward every year or even faster than that, we
have to consider the screen density aspect as well. Screen density is the number of
pixels that are contained within a screen area. This means that if the screen density is
higher, we can have more details, in this case, pixels in the same area.

There are two measurements that are usually used for this, dots per inch (DPI) and
pixels per inch (PPI). DPI means how many drops a printer can place in an inch of
a space. PPI is the number of pixels we can have in one inch of the screen. If we go
back to the preceding screenshot with the table where we are showing Viewports
and densities and compare the values of iPhone 3G and iPhone 4S, we will see that
the screen size stayed the same at 3.5 inch, Viewport stayed the same at 320 px, but
the screen density has doubled, from 163 dpi to 326 dpi, which means that the screen
resolution also has doubled from 320*480 to 640*960. The screen density is very
relevant to RWD, as newer devices have bigger densities and we should do our
best to cover as many densities as we can in order to provide a better experience
for end users.

Pixels' density matters more than the resolution or screen size, because more pixels is
equal to sharper display.

There are topics that need to be taken into consideration, such as hardware, reference
pixels, and the device-pixel-ratio, which we will not cover here, as it's out of the
scope of this book.

Problems and solutions with the screen
density

Scalable vector graphics and CSS graphics will scale to the resolution.

This is why we will use Font Awesome icons in our project. Font Awesome icons
are available for download at http://fortawesome.github.io/Font-Awesome/
icons/.

[51]

http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/

Responsive Web Design with WordPress

Font Icons is a font that is made up of symbols, icons, or pictograms (whatever
you prefer to call them) that you can use in a webpage just like a font. They can be
instantly customized —size, drop, shadow, or anything you want can be done with
the power of CSS.

The real problem triggered by the change in the screen density is images, as for
high-density screens, we should provide higher resolution images.

There are several ways through which we can approach this problem:
* By targeting high-density screens (providing high-resolution images to
all screens)

* By providing high-resolution images where appropriate (loading high-
resolution images only on devices with high-resolution screens)

* By not using high-resolution images

As this book covers only the essentials, we will use the second approach, providing
high-resolution images where appropriate.

Techniques in RWD

RWD consists of three coding techniques:

* Media queries (adapt content to specific screen sizes)
* Fluid grids (for flexible layouts)

* Flexible images and media (that respond to changes to screen sizes)

More detailed information about RWD techniques by Ethan Marcote, who is
the person who coined the term Reponsive Web Design, is available at http://
alistapart.com/article/responsive-web-design.

Media queries

Media queries are CSS modules, or as some people like to say, just a conditional
statement, which tells the browsers to use a specific type of style, depending on the
size of the screen and other factors, such as print (specific styles for print). They are
here for a long time already, as I was using different styles for print in 2002.

If you wish to know more about media queries, refer to W3C Candidate
% Recommendation 8 July 2002 at http://www.w3.0org/TR/2002/CR-
’ css3-mediaqueries-20020708/.

[6]

http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://www.w3.org/TR/2002/CR-css3-mediaqueries-20020708/
http://www.w3.org/TR/2002/CR-css3-mediaqueries-20020708/

Chapter 1

Here is an example of media query declaration:

@media only screen and (min-width:500px) {
font-family: sans-serif;

}

Let's explain the preceding code.
The "emedia" code means that it is a media type declaration.

The "screen and" part of the query is an expression or condition (in this case, it
means only screen and no print).

The following conditional statement means that everything above 500 px will have
the font family of sans serif:

(min-width:500px) {
font-family: sans-serif;

}
Here is another example of a media query declaration:

@media only screen and (min-width: 500px), screen and
(orientation: portrait)
font-family: sans-serif;

}

In this case, if we have two statements and if one of the statements is true, the entire
declaration is applied (either everything above 500 px or the portrait orientation will
be applied to the screen)

[% The only keyword hides the styles from older browsers.]

As some older browsers don't support media queries, we will use a respond. js
script, which will "patch" support for them.

Polyfill (or polyfiller) is code that provides features that are not built or supported by
some web browsers. For example, a number of HTMLS5 features are not supported
by older versions of IE (older than 8 or 9), but these features can be used if polyfill

is installed on the web page. This means that if the developer wants to use these
features, he/she can just include that polyfill library and these features will work in
older browsers.

[71

Responsive Web Design with WordPress

Breakpoints

Breakpoint is a moment when layout switches, from one layout to another, when
some condition is fulfilled, for example, the screen has been resized. Almost all
responsive designs cover the changes of the screen between the desktop, tablets,
and smart phones.

Here is an example with comments inside:

@media only screen and (max-width: 480px)
//mobile styles
// up to 480px size

}

Media query in the preceding code will only be used if the width of the screen is 480
px or less.

@media only screen and (min-width:481px) and (max-width: 768px) {
//tablet styles
//between 481 and 768px

}

Media query in the preceding code will only be used the width of the screen is
between the 481 px and 768 px.

@media only screen and (min-width:769px) {
//desktop styles
//from 769px and up

}

Media query in the preceding code will only be used when the width of the screen is
769 px and more.

. The minimum width value in desktop styles is 1 pixel over the maximum
% width value in tablet styles, and the same difference is there between
= values from tablet and mobile styles. We are doing this in order to avoid
overlapping, as that could cause problem with our styles.

There is also an approach to set the maximum width and minimum width with em
values. Setting em of the screen for maximum will mean that the width of the screen
is set relative to the device's font size. If the font size for the device is 16 px (which is
the usual size), the maximum width for mobile styles would be 480/16=30. Why do
we use em values? With pixel sizes, everything is fixed; for example, h1 is 19 px (or
1.5 em of the default size of 16 px), and that's it. With em sizes, everything is relative,
so if we change the default value in the browser from, for example, 16 px to 18 px,
everything relative to that will change.

[8]

Chapter 1

Therefore, all h1 values will change from 19 px to 22 px and make our layout
"zoomable". Here is the example with sizes changed to em:

@emedia only screen and (max-width: 30em) {
//mobile styles
// up to 480px size

}

@media only screen and (min-width:30em) and (max-width: 48em) {
//tablet styles
//between 481 and 768px

}

@emedia only screen and (min-width:48em) {
//desktop styles
//from 769px and up

}

Fluid grids

The major point in RWD is that the content should adapt to any screen it's viewed
on. One of the best solutions to do this is to use fluid layouts where our content can
be resized on each breakpoint.

In fluid grids, we define a maximum layout size for the design. The grid is divided

into a specific number of columns to keep the layout clean and easy to handle. Then
we design each element with proportional widths and heights instead of pixel based
dimensions. So whenever the device or screen size is changed, elements will adjust

their widths and heights by the specified proportions to its parent container.

Reference: http://www.lstwebdesigner.com/tutorials/fluid-grids-in-
responsive-design/.

To make the grid flexible (or elastic), we can use the % points, or we can use the em
values, whichever suits us better. We can make our own fluid grids, or we can use

grid frameworks. As there are so many frameworks available, I would recommend
that you use the existing framework rather than building your own.

Grid frameworks could use a single grid that covers various screen sizes, or we can
have multiple grids for each of the break points or screen size categories, such as
mobiles, tablets, and desktops.

[o]

http://www.1stwebdesigner.com/tutorials/fluid-grids-in-responsive-design/
http://www.1stwebdesigner.com/tutorials/fluid-grids-in-responsive-design/

Responsive Web Design with WordPress

Frameworks positives
The key positive features of frameworks are:

* Faster prototyping: Our clients can see and approve our prototypes faster.

* Faster development: The cost borne by the client is reduced. We can now
complete more projects within the same time period.

Frameworks negatives
The key negative features of frameworks are:

e [t takes some time to learn the framework rules

* They are usually class-based with non-semantic class names, which can
clutter up our code

* They add extra container elements, which makes our HTML code bigger
* They are large in size and that increases the page loading time

Some of the notable frameworks are Twitter's Bootstrap, Foundation, and
SemanticUL. I prefer Twitter's Bootstrap, as it really helps me speed up the process
and it is the most used framework currently.

Flexible images and media

Last but not the least important, are images and media (videos). The problem
with them is that they are elements that come with fixed sizes. There are several
approaches to fix this:

* Replacing dimensions with percentage values

* Using maximum widths

* Using background images only for some cases, as these are not good for
accessibility

* Using some libraries, such as Scott Jehl's picturefill
* Taking out the width and height parameters from the image tag and dealing
with dimensions in CSS

We will tackle this quest in more detail in Chapter 7, Working with Images and Videos.

[10]

Chapter 1

Setting up the WordPress environment

In order to achieve a responsive design for a WordPress site, you need a WordPress
theme that employs the basic techniques of RWD.

In this section, we will cover:

* Installing and setting up WordPress

* Setting up underscores (the starter theme) and explaining why we use it
* Installing the WordPress theme's unit test data

* Installing the Developer plugin

Installing and setting up WordPress

Before we begin with any coding, we need to make sure that we set up our
development environment. There are numerous ways we can do it, but my
preference is to have:

* Local installation on the hard drive

* Automatic syncing to our server (this step is optional)
I perform autosyncing to my server because my local environment is Windows and
my server environment is Linux (CentOS). Through many years of development,

I've seen many times that local and server environment differences can cause a lot
of headache, so I try to test the code on both while I am working.

In order to make your life easier, I would recommend that you download the
PHP development environments. For Windows, there are three PHP development
environments that I highly recommend:
* XAMPP (www.apachefriends.org/index.html)
* WAMP (www.wampserver.com/en/)
* Bitnami (www.bitnami.com/stack/wordpress)
These packages will install and configure Apache, Mysql, and PHP automatically for

you. Only Bitnami will install WordPress for you as well. All of them are pretty good
and the choice just depends on your preference. I use XAMPP as I am used to it.

For Mac OS X, I recommend:

* MAMP (www.mamp.info/en/)
* XAMPP (www.apachefriends.org/index.html)

* Bitnami (www.bitnami.com/stack/wordpress)

[11]

www.apachefriends.org/index.html
www.wampserver.com/en/
www.bitnami.com/stack/wordpress
www.mamp.info/en/
www.apachefriends.org/index.html
www.bitnami.com/stack/wordpress

Responsive Web Design with WordPress

I was using MAMP on Mac OS X and had no issues. MAMP Pro is even better, as it
provides more options to make our life easier, and it is well worth the investment.
When these packages are installed, WordPress should be downloaded from http:/

www . wordpress . org/download/. After it is downloaded, WordPress should be
unpacked (unzipped) and placed in web server's public directory with the project name;
in my case, on Windows with XAMPP installed, this is C: \xampp\htdocs\topcat.

Our project, which we will use in this book as an example, is called

topcat. Here is a great guide in how to install WordPress locally at
’ http://codex.wordpress.org/Installing WordPress.

After WordPress is installed, our _s or underscores starter theme should be
downloaded and installed.

Setting up the underscores theme

Underscores (_s) is the starter theme for WordPress. It has been created by the
people from Automattic (the company that stands behind WordPress) and numerous
contributors. Why is this theme so good? It is good because it follows all the rules
from WordPress.org, and it really makes our lives easier, as we don't have to start
developing the theme from scratch. There are a number of starter themes that can be
used for the projects, and I have closed this one as it's really popular and has a lot of
features implemented (page templates, customizer, layouts, and languages) in order
to make our lives easier.

If you are an inexperienced developer and you want to follow me from now on,

I suggest that you go and download the same version of the theme as the one I
downloaded from: https://github.com/dejanmarkovic/topcat start. Make
sure that the theme directory is named topcat and not topcat_start. If you want
to start with the finished code, then please download this version from: https://
github.com/dejanmarkovic/topcat. On the other hand, if you prefer to start with
the latest _s version (at your own risk, as the code might change a lot further in this
book), you can download it from https://github.com/Automattic/_s/, or from
here http://underscores.me/.

a1

~ The good thing about downloading the theme from the underscores
website rather than from GitHub is that you can set a theme name there.

[12]

http:/www.wordpress.org/download/
http:/www.wordpress.org/download/
http://codex.wordpress.org/Installing_WordPress
https://github.com/dejanmarkovic/topcat_start
https://github.com/dejanmarkovic/topcat
https://github.com/dejanmarkovic/topcat
https://github.com/Automattic/_s/
http://underscores.me/

Chapter 1

Now let's get started:

1. Put the theme in the themes directory. The theme location should look like
this ¢: \xampp\htdocs\topcat\wp-content\themes\topcat (on Windows).

2. Activate the theme by clicking on the Activate button in wp-admin. Your
screen should look like this:

Don't worry, we will soon be changing this flat-looking theme into a nice-
looking responsive web design.

3. When installed, the theme's preview should look like this:

Installing the WordPress theme's unit
test data

Unit test data fills the WordPress database with sample posts, pages and comments
spanning across different post types, image sizes, tags, and categories. It makes our
lives easier while developing the theme, as we don't have to add all that content
ourselves and we are sure when we test the code of our theme with all that content
loaded that we will be able to see if something breaks.

We can test the features of our theme by using the unit test data that is also used
by the WordPress.org theme team when we submit our theme. It can be
downloaded from: https://wpcom-themes.svn.automattic.com/demo/theme-
unit-test-data.xml.

More information about theme testing is available at http: //codex.
wordpress.org/Theme Unit Test and athttp://codex.
wordpress.org/Theme Development#Theme Testing Process.

% If you have your own content that you want to use, you can use it. I
certainly recommend that you use the WordPress theme's unit test data as
it covers all the cases for themes, and the WordPress.org team uses it
when they test your theme for approval.

[13]

https://wpcom-themes.svn.automattic.com/demo/theme-unit-test-data.xml
https://wpcom-themes.svn.automattic.com/demo/theme-unit-test-data.xml
http://codex.wordpress.org/Theme_Unit_Test
http://codex.wordpress.org/Theme_Unit_Test
http://codex.wordpress.org/Theme_Development#Theme_Testing_Process
http://codex.wordpress.org/Theme_Development#Theme_Testing_Process

Responsive Web Design with WordPress

Installing the Developer plugin

In the final step in this chapter, we have to install the Developer plugin. We can
install it by going to plugin section of wp-admin and then by searching for that
plugin at http://localhost/topcat/wp-admin/plugin-install.php. Here
is the screenshot of how the exact result should look like:

Developer Install Now
A plugin, which helps More Details
WordPress developers

develop.

By Automattic

****{? (39) Last Updated: 1 year ago

62,059 downloads Untested with your version of WordPress

Note that the author of the plugin should be Automattic. Or, we can download the
.zip file from https://wordpress.org/plugins/developer.

Now, perform the following steps:
1. During the installation, you will be prompted to choose between
three options:
° The plugin for a self-hosted WordPress installation
° The theme for the self-hosted WordPress installation
° The theme for the WordPress.com VIP website

Please choose the second option.

Because the Developer plugin actually consists of many smaller plugins, we
should install the ones that we need.

[14]

http://localhost/topcat/wp-admin/plugin-install.php
https://wordpress.org/plugins/developer

Chapter 1

4. Iam going to choose the following:

o

Debug Bar (It provides a debug menu in the WordPress admin bar.
In the debug menu, you can view query, cache, and other relevant
debugging information).

° Debug Bar Console (It adds a PHP/MySQL console to the debug bar).

Debug Bar Cron (It adds a new panel to Debug Bar that displays
information about scheduled events within WordPress).

Debug Bar Extender (It extends the debug bar with features such as
variable lookup, profiler, and so on)

Monster widget (It provides a quick and easy method to add all core
widgets to a sidebar for testing purposes. This means that it will
add all core widgets at one place so that we can easily see whether
something had broke the layout.)

Regenerate thumbnails (Each WordPress theme has its own image/
thumbnail settings. So, if we switch from one theme to another,

we should regenerate the thumbnails in order to make sure that
thumbnails properties match the settings in the theme.

© Theme Check (It tests the theme against the latest standards and
practices and provides the feedback.) We are going to use is in
Chapter 10, Submitting Your Theme to WordPress.org, before we
submit our theme to WordPress.org.

This is my choice of plugins within the developer pack that I use, and you are
free to use others if you want. If you want to change any of the settings that you
have already chosen, you can go to Tools | Developer in wp-admin and change
them there.

Summary

In this chapter, we first covered RWD concepts such as Viewport scaling and the
screen density. Secondly, we covered the RWD techniques: media queries, fluid
grids, and flexible media. Finally, we spent some time setting up our WordPress
environment by installing WordPress, underscores theme, WordPress theme's unit
test data, and the Developer plugin.

In the next chapter, we will cover the WordPress theme architecture and the purpose
of the most important template files.

[15]

Understanding the
WordPress Theme Structure

As we have already installed and set up WordPress and our starter underscores
theme, we are now continuing our journey and, in this chapter, we will learn about
the WordPress theme architecture and the purpose of the most important template
files.

Without further ado, in this chapter we will cover:

* The WordPress permalinks functionality
* WordPress theme structure

* WordPress template files

Setting WordPress permalinks

When users come to our page, for example, http://localhost/topcat/about, they
usually see the permalink that is set as a post name, or they just see the post ID. It all
depends on the current settings in wp-admin. The permalinks section can be reached
by going to Settings | Permalinks. Default settings are always set on a post ID, but
recommended settings should be set to the post name because of Search Engine
Optimization (SEO) purposes. The about post name makes more sense than p=123
inhttp://localhost/topcat/p=123.

[17]

Understanding the WordPress Theme Structure

With SEO, we are optimizing the website properties in order
to make our website more appealing to search engines. With
a permalinks, we are making our URL readable and searchable by
L humans. It is easier to find the term dejan markovic wordpress if we
have a page for it, as in the dejanmarkovic.com/wordpress
example, rather than dejanmarkovic.com/page=?123.

Here is an example of the permalinks settings in wp-admin:

Common Settings

=) Default

) Day and name http://localhost/topcat/2014,/18/31/sample-post/
' Month and name http://localhost/topcat/2@14/18/sample-post/
) Numeric http://localhost/topcat/archives/123

® Post name http://localhost/topcat/sample-post/

_) Custom Structure http://localhost/topcat /¥postnamei/

Please note that permalinks in the preceding screenshot are set to
A Post name.

Then again, when the user comes to our page, http://localhost/topcat/about,
and the about permalink is recognized in the backend as the post ID (as that's how
the posts are stored in the database), the database will figure out whether the page
is of the post type, page, or something else.

[18]

Chapter 2

Refer to the following figure for an explanation of the steps numbered from top
to bottom:

1. hitpeilocalhosttopeat/about! (permalink)

2. hitp:ilocalhostiopeat’?p=123 (1D}

3. database call

4. page. php

In this case, because the about page is of the page type, page . php is loaded.

Note that WordPress saves posts, pages, categories, and menu items
& with their custom IDs in the database system, so the database can
e :
check the type of the item by ID.

What is a WordPress theme?

WordPress theme is a group of files (template files) that are working together

to display the content to end users. Themes are extensions, like plugins, to the
WordPress core file and their purpose is to customize the front-end of the website.
They also allow users who have access to the dashboard (usually admins) to
customize the look of the website.

Note that WordPress admin themes have been gaining popularity in
a 2015 and these themes are used to change the look of the WordPress
e .
dashboard (admin).

[19]

Understanding the WordPress Theme Structure

Template files

The style.css file is a CSS file where theme information is stored. There are a
number of variables in this file, as we can see in the following screenshot:

Fad

Thems Nams: TopCat

Theme URI: http://sdejanmarkovic.com/themes/topcat

Ruthor:

Deisn Mazkovic

Ruthor URI: http://dejanmarkovic.com/

Description: TopCat is corporate portfolic theme

Version: 0.1

License: GNU General Public License w2 or later

License URI: http:// /www.gnu.org/licenses/gpl-Z.0_html
Text Domain: fopcat

Tags:

blue, gray, white, black, one-column, two-columns, left-sidebar, right-sidebar, responsive-layout

Let's examine each of these variables. They are as follows:

Theme Name: This is the name of the theme.

Theme URI: This is the location of the theme. I am using the location on my
http://dejanmarkovic.com/ website until my theme gets approved by the
theme team at WordPress.org. Then I will move the theme to a location on
the WordPress.org website.

author: This is the name of the author of the theme (in this case, yours truly).
Author URI: This is the author's website URL.

Description: This is the place where we should describe the theme with as
many details as we can, because this value will attract our users/customers.
As we have just started, I have provided only the basics. I highly recommend
that you update this value when you complete your journey in order to make
your theme more interesting and unique.

version: This is our current version of this theme. When our theme gets
published, we should change the version number each time we make a
substantial change.

Note that we should not change the version number for every
/~— simple change but for each commit.

For example, if we fix the bug, that fix will contain multiple changes, but we
will commit the code to WordPress.org only once. Just before committing the
code to WordPress.org, we should change the version value.

[20]

http://dejanmarkovic.com/

Chapter 2

* License: We should state the license we are using for this theme. As we are
going to submit our theme to WordPress.org, it should have the same license
as WordPress: GNU General Public License v2.

e TLicense URI: This is the location of the L.ICENSE file.

* Text Domain: This is used for localization (making your theme translation
ready). We will make our theme translation-ready, and we will cover that in
more detail later in this book.

* Tags: This variable is where you can choose the tags that describe your
theme features/options. For this option, we should only use the tags that
are allowed on WordPress.org. Please use the https://wordpress.org/
themes/tag-filter page as a reference and click on the Feature Filter
option in order to see the tags. If your theme has the same features as mine,
please feel free to use the tags that I've used.

When we complete the settings of our variables, we can see the results by going to
Appearance | Themes and then clicking on the Active: TopCat option on TopCat's
area in wp-admin, as you can see in the following screenshot:

Active: TopCat

A software license is a legal instrument (usually by way of contract law, with or
without printed material) governing the use or redistribution of software. Under
the United States copyright law, all software is copyright protected, except material
in the public domain. A typical software license grants an end user permission

to use one or more copies of software in ways where such a use would otherwise
potentially constitute copyright infringement of the software owner's exclusive
rights under copyright law.

-http://en.wikipedia.org/wiki/Software license

[21]

https://wordpress.org/themes/tag-filter
https://wordpress.org/themes/tag-filter
http://en.wikipedia.org/wiki/Software_license

Understanding the WordPress Theme Structure

Then, we can click on the Customize button in order to be forwarded to the theme
details page, as shown in the following screenshot:

TopCat -

By Dejan Markovic

TopCat is corporate portfolio theme

As we can see in the preceding screenshot, the name, author, description, and tags
are displayed.

. Please note that we have an image on the left-hand side that looks like
the chessboard. This is actually the default image's screenshot . png file
= provided with the theme. We will change this image later on to display

our theme layout.

[22]

Chapter 2

The page structure of template files

Here is a screenshot showing the files in our template directory:

&

topcat

inc

— ke custom-header.php

— ek customizer.php

— e extras.php

— ehe jetpack.php

— ebe template-tags.php
js

— |98 customizer.js

— 5 navigation.js

— |u= skip-link-focus-focjs
languages

— |=] readme.tbxt

'— i topcat.pot
layouts

— =8 content-sidebar.css

— =5 sidebar-content.css

#he 404.php

e archive.php

B Comments.php

e content.php

e content-none.php

e content-page.php

e content-search.php

e content-single.php

e footer.php

e fLnctions.php

e header.php

e index.php

=| LICEMSE

e page.php

M| README.md

£ss i, css

ii| screenshot.png

e search.php

e sidebar.php

e single.php

s style.css

[23]

Understanding the WordPress Theme Structure

WordPress pages are made from the following sections, which are actually all
separate files:

® header.php

e Content files such as index.php, page.php, single.php, and so on

* footer.php

* sidebar.php (optional)

m WordPress Cheat Sheets

header.php

get_header();

wp_nw_menuﬂ; /f the main nav menu (registered in functions.php) get_search form();

index.php sidebar.ph
home.php get sidebar(); -Php
archive.php
page.php
single.php
comments_template();

search.php
author.php

footer.php set ootert:

The header .php page contains all the elements that are needed at the top of each
HTML page, including doctype, opening HTML, meta, title tags, blog info, style
sheets, and website navigation.

[24]

Chapter 2

The content files are scaffolding files, which have a scaffolding code that calls the
header, footer, and other files based on the content type.

The footer.php file contains the information that goes at the bottom of your page
(closing tags and, in some cases, calls to footer sidebars/widgets).

The sidebar. php file is where sidebar information is found (this is an optional file,
as some themes may not have sidebars).

The index. php file is one of the most important scaffolding template files. Its
purpose is to show the blog's index page or any other index page. It is also used
if the system can't locate the designated template page, such as page . php and
single.php, that we are going to cover further.

In cases where we have a blog, we just go to the root of the blog (the index page) and
it will load content .php in the loop for each blog post, like the one shown in the
following screenshot:

get_header(); ?v
ﬂ <div id="primary" clazss="content-area"¥
5 <main id="main" class="site-main" role="main">
b <?php if (have_posta()) = 2>
<?php 2
Fl <?php while (have posts()) : the posti); 7=
<?php
t
El
get_template_part{ 'content', get_post format()
7>
=] «?php endwhile; ?>
<?php topcat_paging_nawi(); ¥
El <?php else = 2=
<?php get_template part{ 'content', 'none' j; >
=] <?php endif; 7>
5 </main¥<!-- fmain —-¥
% </fdive<!-- gprimary —-->
<?php get_sidebar(); 72>
<?php get_footer({); ?>

[25]

Understanding the WordPress Theme Structure

As you can see in the preceding screenshot, we have function calls to get_header (),
get_footer (), and get_sidebar (). With these calls, we are calling the header.
php, footer.php, and sidebar.php files. We can also check whether there are posts
in the database with the i f (have_posts ()) code. If there are posts, then it will
call the content template, the content .php page, with the get_template part (
'content', get_post_format ()); code. If there are no posts in the database,
then it calls the content -none. php template.

There is another interesting call in our code and that is topcat_paging nav (). This
is the call for pagination. It has our theme name, topcat, in it. This prefix was
added on the http://underscores.me/ page when I chose the theme name. The
prefix (topcat) was added to all theme functions and it is supposed to make them
unique and avoid causing conflicts. Here is an excerpt that explains this from the
WordPress codex:

All the functions in your Plugin need to have unique names that are different from
functions in the WordPress core, other Plugins, and themes. For that reason, it is a
good idea to use a unique function name prefix on all of your Plugin's functions. A
far superior possibility is to define your Plugin functions inside a class (which also
needs to have a unique name).

-http://nacin.com/2010/05/11/in-wordpress-prefix-everything/

More information on this provided by Andrew Nacin, who is one of

the lead developers for WordPress, is available at http://nacin.
e com/2010/05/11/in-wordpress-prefix-everything/.

If you want to publish your theme, then you should make sure to change the topcat
prefix to something else that is unique.

The content files are described as follows:
* page.php: This is a scaffolding file for pages and it has similar code to
index.php. It has the content () ; call that calls content -page .php.

* single.php: This is the scaffolding file that will be used if our about
permalink (mentioned previously) links to a post instead of the page,
and it will load the content from content-single.php.

* search.php: This is a scaffolding file where search results are shown.
* archive.php: This is a scaffolding file that displays archived pages.
* comments.php: This is a scaffolding file that displays comments.

* 404 .php: This is a scaffolding template for 404 pages.

[26]

http://underscores.me/
http://nacin.com/2010/05/11/in-wordpress-prefix-everything/
http://nacin.com/2010/05/11/in-wordpress-prefix-everything/
http://nacin.com/2010/05/11/in-wordpress-prefix-everything/

Chapter 2

e rtl.css: Inthe root folder, we also have rt1.css, which is the CSS file for
right-to-left languages (languages that are written from right to left).

* LICENSE: This file is obviously used for licensing purposes. As we are going
to publish this theme on WordPress.org, the license should be GPLv2 (the
same as the WordPress license).

* README.md: This file is used for project descriptions on GitHub.

* functions.php: This is a file where we are able to add our own functionality
to a theme that is not a part of the WordPress core. In order to do this, we can
also call the WordPress core functions.

As the file is too big for this book, I have extracted the code into small excerpts,
which we will analyze together:

11 [f]i:' { I isset({ *content width)) |

fcontent width = 640;

13 E':]}

On line 11 of the preceding screenshot, we have a conditional statement that
means: 'if the content width is not set, we are setting it to 640 px'. The code for
this is as follows:

if (! isset($content width)) {
Scontent width = 640; /* pixels */

}

We need to have the setup function for our theme and, on line 15 of the following
screenshot, we check whether the topcat_setup function is already declared
somewhere else:

15 61:’ { ! function_existsa('topcat setup'))

1a =

On line 21 of the following screenshot, we are setting up the topcat_setup function,
which sets the theme's defaults and adds support for some features that we will
cover in detail later in this chapter.

23 Gfuncti:n topcat setup () {

[27]

Understanding the WordPress Theme Structure

On line 31 of the next screenshot, we are adding support for localization (support for
our theme to be translated into other languages):

I a_ load theme textdomain{ 'topcat', get template directory(] . '/languages' :I."

On line 34 of the following screenshot, we are adding links to RSS feeds from
comments and posts to the header:

34 add theme support{ 'automatic-feed-links');

On line 45, we are registering our theme's primary menu, as shown in the
following figure:

oY
(73]

e
1=
11}

A

= register nav menus|{ array|

oY

(4]

'primary' =¥ ("Primary Menu', "topcat'),

El S

1
(=4}

_ Note that adding links to RSS feeds from comments and posts to the
% header is good for SEO purposes as we should insert as much information
K=" as we can for search engines such as Google to pick that information. If
more information is provided, our site will be easier to find.

[Q Also note that WordPress themes can have multiple menus.]

On line 45 of the following screenshot, we are adding HTML5 support for search
forms, comments, and so on. This means that HTMLS5 tags will replace the old HTML
tags for these elements.

45 El

a3

52 6 add theme support{ "htmls', array|

53 "search-form"', "comment—form', 'comment-list', "gellery"’, 'caption’,
54f @ D De

[28]

Chapter 2

In the following code screenshot, support for post formats such as video, image, and

others is enabled:

=

o
o

i

il

o L

(=)}

(=4}
%]

'post-formats’, array|

'quote',

add theme support |(

'aside', '"image', 'wideo",

A\l

Q

A Post Format is a piece of meta information that can be used
by a theme to customize its presentation of a post. The Post
Formats feature provides a standardized list of formats that are
available to all themes that support the feature.

-https://codex.wordpress.org/Post Formats

On line 65, we are adding the support for the custom background in wp-admin.
This option can be reached by going to Appearance | Background, as shown

in the following screenshot:

70) [Clendif;

dd action(

'custom-background’,

add_theme_support (
'defeult-color” => "
'defeult-image "
I A A
=)}

'after_ setup theme',

apply_filters('topcat custom background srgs', array(

=» "

'topoat, setup')

On line 78 of the following screenshot, we are setting up our first sidebar:

73 E‘:‘

&

89 add_action{ 'widgets_init",

G:’uncti:n topcat widgets_ini

__{ "Sidebar",

el {

'sidebar-1",

'<agide id="%1%3" class="widget %Z5s">",
'<fagide>",
'<hl class="widget-title™>",

'</hlxt

739 = register sidebar({ array(
80 'name " =
81 rid” =¥
82 'description’ =>
83 = 'before_widget' =>
g4 'after widget' =>
85 'before_title' =>
=1 'after title' =%
a7 a Vg

as. Q1

"topcat widgets_init')

[29]

https://codex.wordpress.org/Post_Formats

Understanding the WordPress Theme Structure

Please note that WordPress themes can have multiple sidebars.

We will add more sidebars later in this book.

On line 94 of the following screenshot, we are adding the call for our default styles
style.css and scripts such as navigation:

52} Dfunction gopeat seripts() {
wp_enqueue_style('topcas-style', get_stylesheet_uri());

wp_enqueus_script{

igation', get_template directory uri() . '/js/mavigation.js’

wp_enqueue_script{ 'tgopecat-skip-link-focus-fix', get_template_directory uril) . '/js/skip-1li:

ray(), "20130115°, true);
=] if (is_singular() && corments_open() && get_option('thread comments')) {

wp_enqueus script('comment-reply');

If we want to add some custom CSS and JavaScript, we should use the wp_enque
style () and wp_enque_script () functions, respectively, as shown next:

wp_enqueue_style('topcat-style', get stylesheet uri());
wp_enqueue_ script('topcat-navigation',

get_template directory uri() . '/js/navigation.js', array(),
'20120206', true);

wp_enqueue_script ('topcat-skip-link-focus-fix',

get_template directory uri() . '/js/skip-link-focus-fix.js',
array(), '20130115', true);
if (is_singular() && comments open() && get option/(

'thread comments'))
wp_enqueue_script ('comment-reply');

}
In the next section, we are performing the following steps:
1. Adding support to the custom header (this code is commented out as the
functionality is optional).
Adding template tag functionality.

Adding the extras. php file for custom functions that are not associated with
template files.

Making additions to the theme customizer.

5. Adding support for the Jetpack plugin.

[30]

Chapter 2

These steps are shown in the following screenshot:

107] O

103! @

112 5

1148 A

115 require get template directory() . 'Sine/template-tags.php':
12 reguire get_template directoryl) . '"/inc/extras.php';
121

122 =

123

124] @&

125 reguire get_template directory() . '/finc/customizer.php';
126

127 >

128 Jetpagh

125 é

130 require get_template_directory() - '_.-’:i_nc_.-'je:Ea:I{.php'.'
Lol

Theme subfolders

In this part, we will cover the subfolders of the _s theme. Let's go from the bottom to
the top.

In the 1ayouts folder, we have two CSS files, content-sidebar.css and sidebar-
content . css, which are layout templates. In this book, we will use content -
sidebar.css, as our sidebar will be on the right-hand side on some pages.

The languages folder is used for localization (language) files that have the .pot
extension.

In the js folder, we should store any of our JavaScript files. We already have some
files that are there by default:

* navigation.js: This file is used for navigation.

* customizer.js: This file is used for theme customizer functionality.

[31]

Understanding the WordPress Theme Structure

. Since Version 3.4, WordPress has added support for the theme
customizer. This option allows the user to change the theme's looks
" and settings by just going to the customize section of their theme by
navigating to Appearance | Customize.

* skip-link-focus-£ix.js: Users of Opera and WebKit browsers that use
the keyboard instead of a mouse when click on a skiplink the browsers don't
properly move the focus to its target. This file fixes the focus problem in the
Opera and WebKit browsers when using skip links.

* skip links: Thisis a functionality that we implement on a page if the page
has multiple sections. When the user clicks on that link, the page jumps to the
designated section.

* inc folder: This is the place where we should put the files that extend the
functionality of the theme. We already have some files there, as follows:

o

custom-header.php: This is the file containing our custom header
functionality (this file is optional)

customizer.php: This contains extensions for the theme customizer
mentioned previously

extras.php: This contains custom functions not associated with
template files

jetpack.php: This is the file where support for the Jetpack plugin
is added

What is Jetpack? Jetpack is a group of features and plugins that are
used on WordPress.com and can be installed on self-hosted websites.
The good thing about it is that all these features were tested on
high-traffic websites such as WordPress.com and they are optimized
for best performance. Because of all that, they are less buggy too.
Usually, if someone has a problem/conflict with Jetpack on his/her

% website, it's because other custom plugins or a theme have conflicts

"~ with it and not because Jetpack itself is a problem. If we need a

feature for our website that is covered with Jetpack, I would suggest
that you use Jetpack rather than a custom plugin that has not been
tested as Jetpack. On the other hand, I would strongly recommend
that you use only features that you need rather than enabling all

L features, as that will really slow down your website.

[32]

Chapter 2

Template tags, which are contained in the template-tags.php file, are actually
WordPress functions that we can call in order to have some functionality. For
example, topcat_posted_on () will display the time and author information for the
post. The topcat_post_nav () function will display the previous/next functionality.

Summary

At the beginning of this chapter, we covered the permalinks functionality of
WordPress. Then we covered template files and the page structure of those
files. We also covered the functions.php file in detail. Finally, we analyzed the
theme subfolders and files in it, including support for the Jetpack plugin and

its functionality.

In the next chapter, we are going to start customizing our theme files, such as
functions.php and style.css, and making our theme responsive.

[33]

Getting Started with
Responsive Layout

By now, you have familiarized yourself with the WordPress theme architecture, how
to install and setup WordPress, as well as setup the WordPress environment.

Now, we are getting into more fun stuff.

In this chapter, we will get started with the responsive layout and we will cover the
following in detail:

Choosing the right tool for our project

Setting up functions.php

Setting up styles.css

Setting fonts

Setting font icons

Adding essential scripts, such as modernizr.js and respond.js

Adding media queries

Choosing the right tool for our project

Before we begin analyzing and editing the code, we should decide which IDE or
editor we should use. Some people only use text editors, and for them, I recommend
that they use the following:

Notepad++
SublimeText on Windows
TextMate, Sublime Text, TextWrangler or BBEdit on Mac

[35]

Getting Started with Responsive Layout

If you prefer using Integrated Development Environment (IDE) tools as I do , then
there are three tools in the market that can be used, as follows:

* PhpStorm: You have to pay for this tool but it's worth every penny.
PhpStorm can be downloaded from: https://www.jetbrains.com/
phpstorm/.

¢ NetBeans: This tool is available for free and can be downloaded from:
https://netbeans.org/features/php/.

* PHPEclipse: This is also a free tool, which can be downloaded from:
http://www.phpeclipse.com/.

I have tried both PHPEclipse and PhpStorm. PHPEclipse is a fine tool but it takes

a lot of time to configure. When it is configured, it can be buggy as some features
will not work. So, we would have to go online and search for fixes, and this can take
some time. For example, source control (such as Git or SVN) integration is really
good in PhpStorm, while it is just okay in PHPEclipse. I was working on a consulting
project and had a lot of problems with PHPEclipse. My colleague, who is working
for a reputable WordPress company, told me to try PhpStorm. I was resistant at
first as PhpStorm is not free but when I tried it, I never looked back. I just got the
newsletter last month from JetBrains (the makers of PhpStorm) and they now have
a full WordPress integration in PhpStorm 8.0. For more information on PhpStorm's
integration with WordPress you can: https://confluence.jetbrains.com/
display/PhpStorm/WordPress+Development+using+PhpStorm.

The notable feature that is interesting is the WordPress coding style or the
WordPress coding standards support. WordPress has its own coding standards that
are really recommended, which are shown as follows, especially if you are planning
to create a theme or plugin, so your code can be consistent with the WordPress core
and with the code from other developers.

More information about WordPress Coding Standards is available here:
* WordPress PHP Coding Standards (https://make.wordpress.org/core/
handbook/coding-standards /php/)

* WordPress HTML Coding Standards (https://make.wordpress.org/
core/handbook/coding-standards/html /)

* WordPress CSS Coding Standards (https://make.wordpress.org/core/
handbook/coding-standards/css/ O)

* WordPress JavaScript Coding Standards (https://make.wordpress.org/
core/handbook/coding-standards/javascript /)

[36]

https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://netbeans.org/features/php/
http://www.phpeclipse.com/
https://confluence.jetbrains.com/display/PhpStorm/WordPress+Development+using+PhpStorm
https://confluence.jetbrains.com/display/PhpStorm/WordPress+Development+using+PhpStorm
https://make.wordpress.org/core/handbook/coding-standards/php/
https://make.wordpress.org/core/handbook/coding-standards/php/
https://make.wordpress.org/core/handbook/coding-standards/html/
https://make.wordpress.org/core/handbook/coding-standards/html/
https://make.wordpress.org/core/handbook/coding-standards/css/0
https://make.wordpress.org/core/handbook/coding-standards/css/0
https://make.wordpress.org/core/handbook/coding-standards/javascript/
https://make.wordpress.org/core/handbook/coding-standards/javascript/

Chapter 3

Note that when you set up the code style, Options works only

when you type new code, which is fine. There is another option,
" PHP Code Sniffer, which will actually re-edit your code in

order to match the WordPress Coding Standards.

If you are planning to submit your theme to WordPress.org, I highly recommend
using PhpStorm with the WordPress support enabled. PhpStorm has 30-day trial
option and maybe, this time will be enough for you to finish the project or at least to
test the tool properly, as follows:

* Support for WordPress hooks: Hooks are the options that allow a custom
plugin or theme to hook into the WordPress core. This means that the core
will call your custom functionality and threat is a part of it.

* Search on WordPress.org from the editor: It is a great feature that saves time
when opening a new tab or window in a browser and searching for stuff.

* Integration with WP-CLI: It's the WordPress command-line tool. With this,
you can install, enable/disable plugins, integration, and so on. PhpStorm also
has a great built-in integration for JavaScript technologies such as, Sass, Less,
Stylus, Compass, JavaScript, CoffeeScript, Angular]S, TypeScript, Emmet,
and Grunt. What more we can ask for!

Some of my friends are using NetBeans, and they are happy with it. I just didn't want
to spend more time on a free tool when I can use a paid tool that works perfectly and
saves me a lot of time.

How to set up functions.php

We have analyzed functions.php in detail in the previous chapter. Now, we are
going to delve further into it and customize it to fulfill our needs.

In functions.php,on line 12, the line of code is shown as:
Scontent width = 640;
Here, we have defined the size of the content part in our posts and pages.

Then, we also check to see whether the topcat_setup function is already declared
somewhere else:

if (! function exists('topcat setup'))

[37]

Getting Started with Responsive Layout

We have analyzed this code previously, and we should also mention that it enables
our theme to have child themes and makes our function pluggable. For example,

if someone wants to create the child theme from our theme, they can create the
function with the same name in the child theme's functions.php file. The function
will overwrite our functions.php file as the child theme's functions.php file
precedes our theme's functions.php file.

On line 45, we should uncomment the following line as this feature enables the
image support integrated in our theme:

add_theme support ('post-thumbnails');
On line 110, we should uncomment this code:
require get template directory() . '/inc/custom-header.php';

Here, this code adds the Header option to the Appearance menu (navigate to
Appearance | Header), where a user can add the header image to our template as
shown here:

Custom Header

Header updated. Visit your site to see how it looks.

Header Image

Preview

Top Cat - Professional Move Management & Organizing Experts

Just ancther WordPress site

Select Image You can select an image to be shown at the top of your site by uploading from your computer or choosing from your media library. After
selecting an image you will be able to crop it.
images should be at least 1000 pixels wide. Suggested width is 1000 pixels. Suggested height is 250 pixels.

Choose File | No file chosen

Since this is 2015, we would rather choose custom fonts than basic and outdated
fonts. This is why I have chosen two fonts for our use: one for headings (Open Sans)
and other one for content (Ubuntu).

As we're using custom fonts, we should load the theme from somewhere. There are
two options to consider:

* Firstly, to have the fonts available locally (within our theme).

* Then, to load fonts from an online repository like Google fonts (there are
a number of repositories online. Google fonts is one of the most famous
because of the Google brand).

[38]

Chapter 3

Since we are going to submit our theme to WordPress.org repository and our theme
has to pass the tests, we are going to use the first option. This option is also a bit
better as the local fonts would load a little bit faster.

Note that fonts and CSS files are available in the Code folder of this
VS chapter, however, I will explain how we can obtain them anyway.

Firstly, we have to download the fonts and CSS code that will assign these fonts to
the @efont - face variable. In order to get the fonts and CSS code, we should search
for the font face and name on Google. For example, one of the font faces is called
Open Sans. I found the first result at http://www. fontsquirrel.com/fonts/open-
sans. In order to download both, we should choose the Webfont Kit tab and click
on the DOWNLOAD @FONT-FACE KIT button. When we download the fonts, we
should put the font files in the fonts folder and the CSS files in the css folder.

[Q A font should have multiple files, sometimes in three or more files.]

For example, consider the following files:

® OleoScript-Regular.eot
® OleoScript-Regular.woff
® OleoScript-Regular.ttf
® OleoScript-Regular.svg

In this case, there are four files for this font.
How do we know how many files should be in our download?

To answer this question, we should open the CSS file attached to our download, and
we will be able to see these file names in it:

font-face
font-family: 'Oleo Script';

src: url('../fonts/OleoScripRegular/OleoScript-Regular.eot') ;
src: url('../fonts/OleoScripRegular/OleoScript-
Regular.eot?#iefix') format ('embedded-opentype'),
url('../fonts/OleoScripRegular/OleoScript-Regular.woff')
format ('woff'),
url('../fonts/OleoScripRegular/OleoScript-Regular.ttf"')
format ('truetype'),
url('../fonts/OleoScripRegular/OleoScript-

Regular.svg#fOleoScript-Regular') format ('svg') ;

}

[39]

http://www.fontsquirrel.com/fonts/open-sans
http://www.fontsquirrel.com/fonts/open-sans

Getting Started with Responsive Layout

So, for each font, we should have a separate CSS file with the name as the font name
(for example, oleo-script.css), where we define it as @font -face. In our case, we
are going to use one font for headings (Open sans) and two for the content (Ubuntu
and Oleo Script).

Then, we should add this code in the topcat_scripts () function:

//font for the headings

wp_ register style('topcat-headings-font',

get template directory uri() . '/css/open-sans.css');
wp_enqueue_style('topcat-headings-font');

//font for the content
wp_enqueue_style('topcat-content-font',

get template directory uri() . '/css/ubuntu.css');
wp_enqueue_style('topcat-description-font',
get_template directory uri() .'/css/oleo-script.css');

Downloading the example code

You can download the example code files for all
Al
~ Packt books you have purchased from your account
athttp://www.packtpub.com. If you purchased
this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the
- files e-mailed directly to you. -

As we can see from the preceding code, the font for the headings has more code.

The problem is that I wanted to use the Open Sans font that is already used by the
WordPress core, but our theme did not recognize it. The solution for this is to register
our own font.

For icons, we will use font . awesome and this code should also be added to the
topcat_scripts () function:

//font awesome icons
wp_enqueue_ style('topcat-fontawesome', get template directory uri ()
.'/css/font-awesome.min') ;

Since we want to build a professional theme, we will also have to add some scripts
that would help us add support to the latest technologies of older browsers. These
scripts are:

® modernizr.js

® respond.js

[40]

Chapter 3

Modernizr adds CSS classes to the <html> element for each feature that the user's
browser supports, for example, borderradius. For features that a browser doesn't
support, Modernizr adds a CSS class prefix of no-, for example, no-borderradius.
So, in our CSS, we can target unsupported browsers and provide a fallback using
either CSS or JavaScript.

Modernizr can be downloaded by clicking on the desired link on its home page,
available at: http: //modernizr.com/ or we can just call it from Content Delivery
Network (CDN).

Modernizer can be downloaded using these two options:

* Development uncompressed version

* Production compressed version

It is recommended that you go with the development option, as it will be easier to
debug if something is wrong. For final products or production websites, I certainly
recommend the production version since it is compressed and, therefore, saves
sites or pages during load time. There are many options to choose from and it is
recommended, excluding the default options that are selected.

Since we are loading all the local scripts, we should load Modernizr with this code:

wp_enqueue_ script('topcat-modernizr',
get template directory uri() . '/js/modernizr.min.js', array(),
false, false);

Now, respond. js is the script that enables responsiveness for old browsers that do
not support CSS3 media queries, for example, IE8 and older versions. We are going
to load it from a local file, too, as follows:

wp_enqueue_ script ('topcat-respond', get template directory uri ()
'/js/respond.js', array(), false, false);
L Please make sure to copy the code as it is, as there are options with

Q enqueue scripts that have JavaScript code, which appear in the
footer. Those two scripts should be in header.

This is the what the topcat scripts () function looks like when all the code
is added:

function topcat scripts()

{

wp_enqueue_style('topcat-style', get stylesheet uri());

[41]

http://modernizr.com/

Getting Started with Responsive Layout

wp_enqueue_ script ('topcat-navigation',
get_template directory uri() . '/js/navigation.js', array(),
'20120206', true);
//font for the headings
wp_deregister style('open-sans');
wp_register style('topcat-headings-font',
get_template directory uri() . '/css/open-sans.css');
wp_enqueue_ style('topcat-headings-font');

//font for the content
wp_enqueue_ style('topcat-content-font',

get_template directory uri() . '/css/ubuntu.css');

//font awesome icons

wp_enqueue style('topcat-fontawesome',
get template directory uri() .'/css/font-awesome.min');

wp_enqueue_ script ('topcat-skip-link-focus-fix',
get_template directory uri() . '/js/skip-link-focus-fix.js',
array(), '20130115', true);

wp_enqueue_ script ('topcat-modernizr',
get_template directory uri() . '/js/modernizr.min.js', array(),
false, false);

wp_enqueue_ script ('topcat-respond',
get_template directory uri() . '/js/respond.js', array(), false,
false);

if (is_singular() && comments open() && get option(
'thread comments')) {

wp_enqueue_ script('comment-reply');

}

So, make sure your source code matches ours, especially the scripts that we
have added.

How to set up styles.css

The styles.php file is where our theme settings are set and also where the styles are
set. The following image shows you the theme settings that we have covered in the
previous chapter; we have a table of contents where each section is shown as styles

are broken down into twelve sections:

[42]

Chapter 3

B3 PR3 ORI ORIOR

Wow W W o W
o

N)

o

1 o

[
[

w
N s s R

[T BT U S

1 o

>»» TRBLE OF CONTENTS:

1
2.0 Typography
3.0 Elements

4_0 Forms

5.0 Navigation
5.1 Links

5.2 Menus
Locessikbility

7.0 Alignments

w
=)

Clearings

i
(=]

Hidgets
10.0 Content
10.1 Posts and pages
10.2 RAsides
10.3 Comments
11.0 Infimnite scroll
1.0 Medis
12.1 Captions
1Z.Z Gallexies

__ *

We will cover only the essential parts that we need to change here.

The reset section is where the browsers default style sheet is overridden because
each browser uses its own style sheets to display the layout. If we load the page with
no CSS reset in it, the HTML elements will be styled differently in different browsers,
since a default style sheet is used by each browser. By using the Reset CSS, we are
making sure that all the browsers are have their default styles set to the initial values
that are set by us, as shown here:

[= L = L T = = T = T = VI = VI]

(=11

[I I S

1 oy

border: 0;
font-family: inherit;
font-size: 100%;
font-style: inherit;
font-weight: inherit;
margin: 0O;

outline: 0O;

padding: 0;

vertical-zlign: baseline;

On line 60 of the preceding screenshot, font-family: inherit; and other fonts
inherit options. This means that these settings will be inherited from the browser's

default style.

[43]

Getting Started with Responsive Layout

On line 61, font-size: 100%; means that the browser will render the font size that
is set in the user settings of that browser. For example, in Firefox, the default font
size is 16 pixels and you can see these settings if you navigate to Tools | Options |
Content. Setting the font size to 100% makes our life easier with rem and em values.

The em and rem values

Here, em is the current font size for the element that is associated to it. If the font is
not set anywhere on the page, then the default size will be 16 pixels, as this is the
default font size for the browser; in em, it will be 16 pixels as well.

The most popular method used when working with em values is
\ to set the font size on the body to 62 . 5%. Since the default browser
~ font size is 16 pixels, this makes it 10 pixels (without hard setting
Q it to 10 pixels, which wouldn't cascade). Using 10 as a multiplier is
much easier than using 16. This way, if you need a font size of 18
pixels, use a font size of 1.8 em.

What is a multiplier?

For example, if we have this CSS code { font-size: 1.2em; } CSScode, that1.2
is essentially a multiplier of the current em value. So, if the current em size is 10
pixels, the list tag is going to turn out to be 12 pixels.

Note that in our style.css that we use in the CSS Reset section, we set the font to
62.5%:

html

font-size: 62.5%; /* Corrects text resizing oddly in IE6/7 when
body font-size is set using em units
http://clagnut.com/blog/348/#c790 */

overflow-y: scroll; /* Keeps page centered in all browsers
regardless of content height */

-webkit-text-size-adjust: 100%; /* Prevents 10S text size adjust
after orientation change, without disabling user zoom */

-ms-text-size-adjust: 100%; /*
www.456bereastreet.com/archive/201012/controlling text size in should
be together for ios without disabling user zoom/ */

}

So, we can calculate our values easily as 1 em is 10 pixels, 2 em is 20 pixels, and so
on. The problem with em is that it cascades. For example, if we have the em value set
for a list to be 1.2 em and we have a paragraph within this list, the font size for this
paragraph would be 1.2 em * 1.2 em.

[44]

Chapter 3

Here is the CSS code, where we set the font size for the list and paragraph as 1.2 em:

1i,pf
font-size: 1.2em;

}
Here is the HTML code where we nest the paragraph within the list:

<lislistl</1i>

<p>listl with paragraph inside</p>

The outcome for this is:

list1

list1 with paragraph inside

From the preceding image, we can clearly see how the second list with the paragraph
has larger fonts. That is the result of cascading.

This is an instance where rem comes to the rescue. Rem is root of em, or for some
people, it is the relative em size that is relative to the size defined in the root HTML
element. This means that if you want to get 16 pixels in a rem value (that is 1.6 rem),
set the font size to 62.5% in Reset CSS (as it is in the reset . css file) or for 18 pixels,
it will be 1.8 rem.

We can also see some fixes/hacks for different browsers from line 70 through 82, in
the following screenshot, where text and other hacks are applied. Comments beside
the code are explained through out this code in more detail:

Dhtml {

font-size: €2.5%; /% Corrects text

size is set using em units http://clagnut_com/bleg/348/8c730 +/

overflow-y: seroll; Keaps psge cente content haight *

73 ~webkit-text-size-sdjust: 100%; /* nts

n change, without d: ng user zogm *

-ms-text-size-zdjust: 1008; /* ntrelling_text_size_in_:

ithout_disabling_user_zoom/ */

1 elements; see hotp://www.p

ing-border-box-fow/ */

webkit but still u: 0; === http://caniuse.com/#sesrch=box-sizing *

-moz-box-sizing: border-box; /% Still r fox 28; see http://caniuse.com/§search=} izing */

box-sizing: border-box;

The unspoken rule is that we should never change the reset CSS and we will follow
this rule.

Since the fonts are loaded as we have checked our files earlier, we need to set them
for the content and the headings.

[45]

Getting Started with Responsive Layout

We are going to do this in the typography section:

148 body,

14 button,

148 input,

145 select,

Cltextares |

| color: £404040;

[font—-family: Ubuntu, sSans-serif;

font—-size: lépx;

w

font—-size: 1.&rem;

F
ot ot R
r

T

line-height: 1.5;

Here, we have added our custom Ubuntu font in front of sans-serif. We can also
see that the font size defined in rem and pixels. Pixel sizes are used as fallback values
for older browsers that do not support rem in CSS sections for headers:

3 hi
180 h2
161 h3
1562 h4,
163 hE,
164 Che {

k
o

"
"

"

clear: both;

b
o

1a6 font-family: "Open Sans';

la font-weight: 800;
| font—color: £000;

1&5 S

We have added the custom open Sans family, with a font weight of 800, and the
font color is black.

Since the last couple of years, developers have also used hue-
saturation-light (hsl) values for colors that are more customizable.
g For example, to define the light value of your blue color.

We will add separate layout files for pages that have sidebar, and those files are
located in the layouts folder with the content -sidebar.css name (this means that
the content is on the left-hand side and the sidebar is on the right-hand side).

[46]

Chapter 3

We should add the call to enqueue that file in the functions.php topcat_
scripts () function on line 97:

|E’ | Wp_engueue style('topest-layout-css', get template directory uri() . '/layouts/content-sidebar.ecss');

This is what the page looked like before layout CSS file was added. Note that
sidebar items (such as Recent Posts and Recent Comments) are below the content,
as shown here:

[Top Cat - Professional Move Management & Organizing Experts
Just another WordPress site

HomeSample Page

content file

Hello world!

Posted on October 28, 2014

Welcome to WordPress. This is your first post. Edit or delete it, then start blogging!

1 CommentEdit

Recent Posts
* Hello world!

Recent Comments
* Mr WordPress on Hello world!

[Archives
* October 2014

Categories
* Uncateqgorized

Meta
* Site Admin
* Logout
* Entries RSS
* Comments RSS
= WordPress.org

Proudly powered by WordPress | Theme: topcat by Underscores.me.

[47]

Getting Started with Responsive Layout

This is what the page looks like after the layout CSS file was added. Sidebar
items (such as Recent Posts and Recent Comments) are on the right-hand side,

as shown here:

[Top Cat - Pre i Move 1Y izing Experts
ust another WordPress site
HomeSample Page
ontent file
Helle warld!
Posted an Octot
Recent Posts
welcome to WordPress. This is your first post. Edit or delete it, then start blogging!
Recent Comments
* Mr WordPress on Hello world
Archives
Categories
Meta
* Sita felemin
Proudly powered by WordPress | Theme: topcal by Underscores. me.
The code for this is:

.site-content .widget-area ({
float: right;
overflow: hidden;
width: 25%;

}
We will change it to:

.site-content .widget-area {
float: right;
width: 30%;

padding-left: lrem; /*dejan added*/

background: none repeat scroll 0 0 #f8f8f8;

/**/

[48]

Chapter 3

Here, we have left the f1oat option to right, as that is how the sidebar should float.
Then, we added a width of 30%. We have also set the border: 1px red dashed
option, since we want to see what's going on with sidebar (whether it's getting
squeezed or not) when we resize the page. We have also added the padding-left:
1rem option for cosmetic purposes.

Now, we are going to change the code in the content area. The code here is:

.content-area {
float: left;
margin: 0 -25% 0 O;
width: 100%;

}
It is changed to:

.content-area {
float: left;
width: 70%;
border: 1lpx blue dashed; /*dejan added*/

}

We will let the content float on left, as it should, and we will also have width of 70%
for the content, since the sidebar is taking another 30%. For testing purposes, we will
have the border set to 1px blue dashed.

This is what the template will look like with dashed borders:

Top Cat - Professional Move M & Or izing Experts
ust another WordPress site

Hnmp‘mr!'_r_rlp Page

content file

Hello world!

Posted on October 28, 2014

i Recent Posts

* Hello world!

elcome bo WaordPress. This is your Firsk post. Edit ar delete it, then start blogging!

) i Recent Comments
1 Lomnenl « MrWordPress on Hello world!
: Archives

& Dctober 2014

Categories

= Uncategorized

Meta
* Login

Yroudly powered by WordPress | Theme: topoat by Underscores me

[49]

Getting Started with Responsive Layout

From the previous image, we can see that the content area is takes up 70% of the page
and the sidebar takes up 30% of the remaining space.

Adding media queries

Our final step is to add media queries. There are many approaches for this and
we will use the simplest one to make our life easier. Our media queries have only
three categories:

* Mobile styles (emedia only screen and (max-width:480px))

* Tablet styles (emedia only screen and (min-width:481px) and (max-
width:768px))

* Desktop styles (emedia only screen and (min-width:769px))

As you can see from the previous code, mobile styles are for screens up to 480px,
tablet styles are for the screens from 481px to 768px (note that there is one pixel
difference from mobile styles), and finally, desktop styles are from 769px (note the
one pixel difference from tablet styles).

If you want to use a more complex boilerplate CSS with media queries, you can find
itat: http://www.paulund.co.uk/boilerplate-css-media-queries (this one
supports both portrait and landscape modes for popular devices). For now, I highly
recommend that you follow our book.

Now, we should cut and paste our content area CSS to our desktop media query, as
that is how it should behave on a desktop:

/*desktop styles*/
@media only screen and (min-width:769px) {
.content-area {
float: left;
width: 100%;
border: 1lpx blue dashed;
margin-left: -300px;
padding-left: 300px;

[50]

http://www.paulund.co.uk/boilerplate-css-media-queries

Chapter 3

When we resize the screen to a tablet or phone size, our sidebar will still float on
right-hand side, as shown here:

In order to fix this, we will add this code to tablet and phone media queries:

op Cat - Professional Move Management & Organizing Experts

ust another WordPress site
Primary Menu

ontent file

Hello world!

Posted on October 28, 2014

Welcome to WordPress. This is your first post. Edit or
delete it, then start blogging!

Commenk

| Recent Posts
* Hello world!

| Recent Comments
* MrWordPress on Hello world!

| Archives
* October 2014

| Categories
: * Uncategorized

/* mobile styles */
@emedia only screen and (max-width:480px) {

.site-content .widget-area {

float:
width:

none;

auto;

/*tablet styles*/

@media only screen and (min-width:481px)

.site-content .widget-area {

float:
width:

none;

auto;

and (max-width:768px)

{

[51]

Getting Started with Responsive Layout

The float: none option fixes the problem and width: auto makes sure that

our sidebar will only take up the space it needs. If, for example, we have used
width: 100% (as many people do in those cases), we will have problem if we add
the margin or padding, as then our section (in this case sidebar) will go beyond

its size. The width: auto option makes sure it stays in proper size. The content-
sidebar.css file is available in the code folder of this chapter, so you can compare
it with your changes.

Summary

In this chapter, we got started with the responsive layout, learned how to choose
the right tool for our project IDE, set up functions.php and styles.css, set fonts
and font icons, add essential modernizr.js and respond.js scripts, and add
media queries.

In the next chapter, we will dive into the world of header, navigation, and search.

Don't waste any time and start with Chapter 4, Learn How to Create the Header
and Navigation.

[52]

Learn How to Create the
Header and Navigation

The header is most likely the first thing people see when they land on your website.
In today's world where the next website is only a click away, you only have a few
seconds to make the lasting impressions.

Navigation is also the key component of every website and the design of the website
navigation has a huge impact on results. Navigation is like a road map for the
visitors of your website, showing them the way to go through the website and where
they can find the information they are looking for.

That is why this is probably the most important chapter in our book. Grabbing

the attention of people clicking on your website and easily pointing them to your
website information is the goal of every website, and creating the memorable header
and usable navigation is something that every designer should do!

Are you excited so far? know I am.

So, let's start!

[53]

Learn How to Create the Header and Navigation

In this chapter, we will learn:

* How to create the header

* How to create and style the navigation menu

* How to make menus accessible with superfish.js

* How to make menus responsive (making them look good across all devices)

Making our layout centered

Before we deal with the header, we need to customize our page style in order to
make everything centered on the page, and we do that by adding a topcat_page
class to line 22 in header . php, as shown:

<div id="page" class="hfeed site topcat page">
We also need to add CSS for this class in content -sidebar.css:

.topcat_page({
background: none repeat scroll 0 0 #fff;
box-sizing: border-box;
margin: Opx auto 0 !important;
max-width: 1000px;
border: 1lpx black dashed;

}
The most important parts of this code are:

®* margin: Opx auto 0 !important;: This code makes our content centered.

* max-width: 1000px;: This code makes our content have a maximum width
of 1000 pixels.

[54]

Chapter 4

I have also created the border to be black and dashed with the border: 1px black
dashed; code so that we can distinguish this section from others, as shown next:

T
: i
N v
N L]
' '
N L]
N L]
N L]
3 '
N L]
N L]
N L]
N L]
! D Ea :
N L]
: H
:lrmc.\.ml Msﬂumn = Professi I Mowve M rent & Organizing Experts H
___ .
1Lorem IpsumPage APage |
__ -
y
§
§
;
2T P 2
'osbed on January 7, 201 E R t Posts
o . ' * Helloworld!
his is a sticky past. i » Markup: HTML Tags and
y }
5 Formatting
- R - §
There are a few things to verify: : + Markup: Image Alignment
) o) . . H = Markup: Text Alignment
« The stlcl-qr post should be diskinctly reoogﬂlzabl.ei-! some wa:fl in E o Markup: Title With Soecial
comparisan bo mormzl posts. You can skyle the . sticky cassif \ Charackers
you are using the post class() Function to generate your post E
lasses, which i t practice. H
classes, which is a best practice] - ; Comments
+ They should show at the very top of the blog index page, even : « MrWordPress on Hella warld!
though theycc.ul.d be seve‘al.lp-crss halck chrmolo.g czlly. E « John Doe on Edae Case: Mo
* They should still show up agzin in their chronologically comrect 1 Content
postion in time, but without the sticky indicator. E + Jane Do on Prokacted:
» IF you have a plugin er widget that lists papular posts or : - L S
. . - ; H Template: Password Protected
commenks, make sure thak this sticky post is nok always at the ! (the password is “enter™]
- i i [the pass s “enk
top of those lisks unless it really is popular. E « Jane Doe on Termplate:
.) .) H Comments
'osted in UncategorizedTagged sticky, templateEdit i » lohn Doe on Temolate:
: stes
H Comiments
:
. H Archives
'osbed on October 28, 2014 E » October 2014
.) i ~ 4 = January 2013
elcome bo WordPress. This is your first post. Edit or delete i, then H o Jdarch 2047

Dealing with the header

Here is the image of the header of our current TopCat:

P> a0 08
Free ConSultation 416.534.30

karen@topcatrts.com

RELOCATION mnwmwsuumous Home | AboutUs ‘ Services ‘ Our Clients ‘ Resources ‘ Get in Touch

[55]

Learn How to Create the Header and Navigation

Let's analyze each numbered section:

* Section 1 is our logo.
* Section 2 is the menu for which we will change the look and the structure.

* Section 3 is just an advertisement and the contact information. We will put
the tagline (description) there.

The tagline can be found and set in wp-admin by navigating
s to Settings | General.

* Insection 4, we have the phone image that takes customers to our contact
page. We will take this one out, as we will have a contact us link in the menu.

* Insection 5, we have social icons that will stay in the top-right corner.

As we have mentioned previously, the header for WordPress websites is handled
by the header . php file. In that file, first, we have an HTML markup that any HTML
page has and that is mostly the HTML head and meta tags. Then, we have the wp_
head () ; call, and this function call is actually calling wp_enqueue_styles () and
wp_enque_scripts () that we have set in the functions.php file, as you can see in
the following screenshot:

1 <?php

e [+ The header for ocur theme.

3 ?»<|DOCTYPE html>

10 [—J<html <?php language attributes(); 7>>

11 [%J{headb-

12 <meta charset="<?php bloginfol 'charset’); >"»

13 <meta name="yiewport" content="width=device-width, initial-scale=1"»
14 <title»<?php wp_title("|", true, '"right'); ?></titlex

15 <link rel="profile" href="http://gmpg.org/xzfn/l1l1">

1a <link rel="pingback" href="<?php bloginfol 'pingback url®); 2>">
18 <?php wp _head(); 2>

[Cl</heads

[56]

Chapter 4

After this, the interesting stuff comes, as you can see from the following screenshot:

El<body <2php body class(); 2»>

[J<div id="page" class="hfesd site">

<z clzss="skip-link screen-reader-text" href="gcontent"><?php _e('Skip to content', 'Lopoan!)i PRe/Ed

El <header id="masthead” class="site-header” role="banner">
=] <div class="site-branding">
< ss="site-title"><a href="<2php echo esc_url{ home_url{ '/')); 2»>" rel="homa"><?php bloginfo('name'|); ?></hl>
<hZ class="site-description"><?php bloginfo| 'description’); 2?»</h2>
23t O </dive
ELE R <nav id="site-navigation” classs="main-navigation" role="navigation"s
3z <button class="menu-toggle®s<?php _e('Primary Menu', 'topgat’)i 2r</buttons
] <?php wp_nav_memu(ar "theme_location' =» 'primary’)); 23]

a =1 </navs<l-— fsite-navigati >

3si 0O </headers<l-—— fmasthead —->

37 e <div id="content" class="site-content">
1 1.

Let's take a look at it:

* First, we have a body class () ; call, and this is the function that adds
specific classes to the <body> tag based on where on the site you are in
relation to the WordPress template hierarchy.

We can pass our own classes by passing myclass as an argument to

% the function call.

More information is available at http: //codex.wordpress.
org/Function Reference/body class

* Later on, on line 23. we have a "Skip to content" link. This is the link for
screen readers to help users who use a screen reader just skip to content, and
not to have to link through the menu.

* Then, we have a site title code on line 27 and site description/tagline
on line 28.

* Later on, from line 31 till 34, we have a call to the main navigation
(main menu).

As the number one is the logo on our first image, we should start from there. In our
code, in the previous screenshot, we don't have the image option. However, we had
already implemented a custom header option in the previous chapter, and we just
have to add the code for the image functionality to our header . php file. This code is
available in the custom-header . php file, as shown next:

[57]

http://codex.wordpress.org/Function_Reference/body_class
http://codex.wordpress.org/Function_Reference/body_class

Learn How to Create the Header and Navigation

Now, let's copy this code to our header . php file.

As I don't want to display the site name on this occasion, I've nested this
i code in the site name's link code.

The copied code is as follows:

<a href="<?php echo esc_url(home url/(/U)) ; ?>" rel="home">
<?php if (get _header image()) : ?>
<a href="<?php echo esc_url(home url('/'));
?>" rel="home"><img src="<?php header image(); ?>" width="<?php
echo esc_attr(get custom header()->width); ?>" height="<?php
echo esc_attr(get_custom header()->height); ?>" alt="">

<?php endif; // End header image check. ?>

When the user clicks on the logo, he/she will be taken to our site's root/index page.
Before we upload the image, we should set the image size in our custom-header.
php file on lines 29 and 30 as you can see in the following image.

23 "width’
30 'height"

Our logo is located in the chpt 3 directory with the image that has a
% logo. jpg name. Logo's size is 150 x 250, and we should put these values
to the width and height options, respectively.

In order to see our image, we have to go to Appearance | Header in wp-admin and
then go to the Select image option and upload it.

M You can upload your own image if you want, but my recommendation is
Q that you follow our book for now, and then later on, if you want, you can
change the image.

[58]

Chapter 4

If you decide to use your image and it's a different size than what's there in the
custom-header.php file, you will get the option to crop the image. When you
upload the image, this is how your header should look like:

RELOCATION § TRANSITION SOLUTIONS

Professional Move Ma
HomeSample Page

Organizing Experts

As we can see, section #1 contains the logo. The tagline is in section #2 and the menu
is in section #3.

As we can see in the previous screenshot, the site's description (tagline) is under

the logo. This is fine for mobile devices, but I recommend that you add .site-
description{ display: inline;} in the media query for tablets and desktops.
This way, the site's description is displayed on the right-hand side of the logo exactly
the way we want. As we also want to make the site's description centered on the
page, first, we have to deal with the site-branding section, as it's a parent section of
the site description:

.site-branding{
position: relative;
border: 1lpx #008000 dashed;

}

This code makes position relative to the site branding.

I'have created a green dashed border for it to be able to distinguish it
<8 other sections.

[59]

Learn How to Create the Header and Navigation

Then, in order to make the site description centered, we have to add the following
code:

.site-description{
display: inline;
position: absolute;
bottom: Opx;
left: 25%;
padding: lem O0;
/* border: lpx orange dashed; */

}

The left: 25% property is making the site description centered. The padding: lem
0; property is pushing it up a little bit as well.

As I like to design my layouts more in code than in Photoshop and as it's
more realistic to me, these values may change later on.

I have also added the test code for the social menu in the top-right corner in the
header . php file:

<div class="social-menu">Social menu here</div>
In content-sidebar.css, I have added this:

.social-menu(
display: inline;
position: absolute;
top: 10%;
right: 5%;

}

We will tackle the social menu later on when we deal with the main menu.

Here is the current look of our header:

el

Professional Move Management & Organizing Experts

RELOCATION [| TRANSITION SOLUTIONS

Chapter 4

How to create a menu and make it responsive
and accessible

Here is the current look of our menu on the desktop screen:

|

HomeBlogFront PageSample PageAbout The TestsLevel 1Lorem IpsumPage APage B

__

Now, let's look at our menu on the mobile screen:

As you can see, the code from underscores (_s) changes the look automatically when
we change the screen size, but we still have some work to do.

Menu basics

Our main menu is defined in the functions.php file from lines 43 through 46:

// This theme uses wp_nav menu() in one location.
register_nav_menus(array(
'primary' => _ ('Primary Menu', 'topcat'),

))

Then, the menu sections are defined in Appearance | Menus. If you go to Manage
locations in this section (the second tab in the header), you will be able to change
the assigned menu options.

In order to see the menu, we have this code in header . php:
<?php wp nav _menu(array('theme location' => 'primary')); ?>

This calls the primary menu from the theme location.

[61]

Learn How to Create the Header and Navigation

Styling our menu

Dealing with the menu is one of the most important parts in the WordPress theme
development, as the menu itself is one of the most important parts of any website.
Thanks to underscores (_s) and its architecture, all CSS classes are already covered and
we only have to add proper styles to them. Our menu is nested in the navigation tag
with the main-navigation class and that's the class that we are going to edit first.
This class is located in style.css:

.main-navigation {
font-family: 'Open+Sans', sans-serif;
font-weight: 800;
float: left;
width: 100%;
position: relative;
display: block;
clear: both;
text-transform: uppercase;
background: #0480Db5;

}

In this code, we are adding the open+sans font family (the same font family

that we are planning to use for headings throughout our theme). After that, we

are setting the font weight to 800 to make the fonts bolder than they are. Later on,
we are floating it to the left and setting the width of the container to 100% in order
to make sure that this container takes 100 percent of space. We are also setting the
container to display: block in order to make sure nothing else goes on the side
of the menu. Later on, we are executing clear: both, as we were using floats
(float: left;) previously and we need to clear them. Finally, we our setting our
text to uppercase as it's a menu text, and then we set our background to our blue
color (background: #0480b5;).

This is how our menu looks like after these changes:

Now, we have to change the look of our links, and we will do that with the .main-
navigation a class/selector:

.main-navigation a ({
font-size: 15px;
font-size: 1.5rem;
display: block;
text-decoration: none;
color: white;
padding: 14px 10px;}

[62]

Chapter 4

In this class, we are setting the font size of 15 px, as it helps our menu stand out. We are
also using a 1.5 rem size for new browsers, as 15 px is actually the only fallback value for old
browsers. Later on, we will display the block settings mentioned in the previous code. After
that, we have the text-decoration: none. We need to use this because our menu items are links
and we don't want to have underlines below them. Then, we set the link/items color to white,
and finally, we set the top and the bottom padding to 14 px and the left and right padding to
10 px. Here is the look of our menu now:

HOME BLOG FRONTPAGE SAMPLEPAGE ABOUT THE TESTS LEVEL1 LOREMIPSUM PAGEA PAGEB

It looks awesome, right? We just set the main level, and in the next step, we will style the
dropdowns. In order to see how dropdowns look now, hover about the tests section, as shown
in the following screenshot:

HOME BLOG FRONT PAGE SAMPLE PAGE ABOUT THETESTS LEVEL1 LOREM IPSUM PAGEA

: » :
osted on January 7, 2012 H Recent Posts

N . * Hello world!
his is a sticky post. : o Markup: HTML Tags a

As we can see in the previous screenshot, there is a PAGE IMAGE sub link and
other things under, as dropdowns are not defined yet. We should change some code
for the dropdown in the .main-navigation ul ul class/selector:

.main-navigation ul ul {
/*box-shadow: 0 3px 3px rgba(0, 0, 0, 0.2); */
float: left;
position: absolute;
top: 3.lem;
left: -99%em;
z-index: 99999;
background: #579DB5;
}
In the previous code, I've commented out the box-shadow property, set top to 3. 1em,
and changed background to light-blue (background: #579DB5;).

[63]

Learn How to Create the Header and Navigation

Now we want to get the code that will change the background color when we hover
over the navigation items:

.main-navigation li:hover > a {
color: #fff;
background: #579DB5;

}

The navigation item looks like this after the modifications:

HOME BLOG FRONT PAGE

We are making sure that the main color for fonts is white and that we are putting our
background as light blue.

With the following code, we will change the background color in the hover for submenu items,
which should be the same as our main background color set in the .main-navigation class:

.main-navigation ul ul a:hover {
background: #0480b5;

}

The submenu items look as follows now:

SAMPLE PAGE ABOUT THE TESTS

PAGE IMAGE
ALIGNMENT

The last part of our code should mark/highlight the current page (the currently
active page) in our menu:

.main-navigation .current page item > a,
.main-navigation .current-menu-item > a,
.main-navigation .current page item > a:hover,
.main-navigation .current-menu-item > a:hover

background: #579DB5;

}

[64]

Chapter 4

The previous code highlights the current page in the main menu. The following code
highlights the page ancestor:

.main-navigation .current page ancestor ({
background: #579DB5;

}

If someone has highlighted the subpage and we go through the menu, we will see
that page highlighted. In the third (final) part, we are applying the main blue color,
so if somebody selects a sub-item from a sub menu, that will be in the darker color,
and this way, it will be more distinguished from other sub menu items:

.main-navigation ul ul .current_page_ parent,

.main-navigation .current page parent .current page item > a {
color: #fff;
background: #0480b5;

}

After all the modifications, the navigation menu looks like this:

ABOUT THE TESTS LEVEL1 LOREMIPSUM PAGEA PAGEB

LEVEL 3

LEVEL 3A

As you probably noticed, when we hover over some submenu and then its subitems,
our menu hides very quickly, and this makes our menu almost unusable. In the next
section, we will make our menu accessible, and this will also solve our problem with
closing our items too fast.

How to make our menu accessible

As we can't access some submenu items because the menu closes too fast, we want
to make the menu accessible for the people who use only keyboard, or some other
device, so that they can access the menu normally. For this purpose, we will use
the Superfish jQuery plugin, which is available at: http://users.tpg.com.au/j_
birch/plugins/superfish/download/.

[65]

http://users.tpg.com.au/j_birch/plugins/superfish/download/
http://users.tpg.com.au/j_birch/plugins/superfish/download/

Learn How to Create the Header and Navigation

Please download the archive and unpack it. There is a bunch of files and folders
there, and we only need superfish.min.js, which is available at dist/js folder. In
order to use this, we should copy and paste that file in our theme's js folder. Now,
we should load that file the same way that we load other . js files, and we are doing
that with wp_enqueue_script in the functions.php file:

wp_enqueue_ script ('topcat-superfish',
get template directory uri() . '/js/superfish.min.js',
array('jquery'), '20141123', true);

[Q We should put this code above all JavaScript wp_enqueue_script calls.]

In the previous code, we have topcat-superfish, which is the reference name, we
have the file location (get _template directory uri() . '/js/superfish.min.
js'), and we have array (' jquery') —this property says that this code needs jQuery
in order to run (there is jQuery dependency). Then, '20141123" is a version number
(I've put a current date), and finally, true means that this JavaScript call should be
placed in the footer. So, let's refresh the page and check whether we can find this line
in our footer:

<script type='text/javascript' src='http://localhost/topcat/wp-
content/themes/topcat/js/superfish.min.js?ver=20141123"'></script>

We now need to wire Superfish to our menu. In order to do that, we will create
another custom JavaScript file where we will wire it to our menu. So, let's create the
global.js file in our theme's . js folder and wp_enqueue_script in our functions
file just below Superfish's wp_enqueue_script() call

wp_enqueue_script ('topcat-global', get template directory uri ()
'/js/global.js', array('topcat-superfish'), '20141123', true);

The code is almost the same as the previous one. The only difference is that now
the dependency is on Superfish instead of jQuery. Finally, we have to wire our
custom Superfish to our menu, and we do that with this code, which should go
toglobal.js:

jQuery (document) .ready (function ($) {:
var sfvar = $('div.menu') ;
sfvar.superfish ({
delay: 500,
speed: 'slow'
1
1

[66]

file://192.168.0.200/Current-Titles/000_Product%20ID/4129_Wordpress%20Responsive%20Theme/Index/view-source:http://localhost/topcat/wp-content/themes/topcat/js/superfish.min.js?ver=20141123
file://192.168.0.200/Current-Titles/000_Product%20ID/4129_Wordpress%20Responsive%20Theme/Index/view-source:http://localhost/topcat/wp-content/themes/topcat/js/superfish.min.js?ver=20141123

Chapter 4

In the preceding code, we are wiring Superfish to our outmost menu item, which is
div.menu. Then, we set delay: 500, which determines how long the menu will stay
open (to fix our previous problem) if we move the mouse from the menu. The speed:
'slow' property is set for the opening animation (the opening of sub menu items).

How to make our menu responsive

Our menu looks good on a desktop screen but we have to do some work for mobile
screens. Here is the look of our menu now if we resize the browser:

p/\

|RELOCATION {§ TRANSITION SOLUTIONS

Professional Move Management &
Organizing Experts

Social menu here

content file

Template: Sticky
Posted on January 7, 2012

[This is a sticky post.
[There are a few things to verify:
* The sticky post should be

distinctly recognizable in

some way in comparison to
| e VWens ean chalo

[67]

Learn How to Create the Header and Navigation

In the preceding screenshot, we can only see the word MENU, and that is not a good
user experience. Because of that, we need to change the code in the /* Small menu
*/ section of style.css, where it says @media screen and (max-width: 600px),
which means the code inside of the media query. The current code is as follows:

.menu-toggle,
.main-navigation.toggled .nav-menu {
display: block;
}
.main-navigation ul {
display: none;

}

This code is making toggle part a block element, and it is hiding ul in the main
navigation. So, let's delete this part first:

.main-navigation ul {
display: none;

!
Next, we need to add this code:

.main-navigation ul ul {
display:block;
width:100%;
float :none;
position: relative;
top:inherit;
box-shadow:none;
height:auto;
margin:0;

}

.main-navigation ul ul a {
width:100%;

[68]

Chapter 4

In the first section, we are making navigation elements as block elements as with the mobile
menu, they should all have their own lines. In the second part, we are giving all sub-elements
the width of 100%. Let's see how our menu looks now:

00C

|RELOCATION J§ TRAMSITION SOLUTIONS

Professional Move Management &
Organizing Experts
Social menu here

iHDME BLOG FRONT PAGE
SAMPLE PAGE ABOUT THE TESTS

LEVEL1 LOREM IPSUM PAGEA

Posted on January 7, 2012

This looks a lot better than before, but our menu elements still aren't in one vertical
line as we want. Here is the code that will make this possible:

.main-navigation 1i ({
float: none;
position: relative;

}

[69]

Learn How to Create the Header and Navigation

With this code, we are resetting our floats and here is the new look:

Professional Move Management &
Organizing Experts
Bocial menu here

HOME

BLOG

FRONT PAGE

SAMPLE PAGE

ABOUT THE TESTS

LEVEL 1

LOREM IPSUM

PAGE A

PAGE B

As we can see, it looks a lot better already.

The only issue now is that if we hover over the links that have children, we have the
Superfish animation. So, we should disable Superfish for smaller screens, as follows:

var sfvar = jQuery('div.menu') ;
var phoneSize = 600;
jQuery (document) .ready (function ($) {

//1f screen size is bigger than phone's screen
(Tablet,Desktop)

if ($ (document) .width() >= phoneSize) ({
// enable superfish
sfvar.superfish ({
delay: 500,
speed: 'slow'

3N

[70]

Chapter 4

$ (window) .resize (function()
if (body.width() >= phoneSize && !sfvar.hasClass('sf-js-
enabled')) {
sfvar.superfish ({
delay: 500,
speed: 'slow'
P
}

// phoneSize, disable superfish
else if ((document) .width() < phoneSize) {
sfvar.superfish('destroy') ;

3N
3N

Let's analyze the previous code

* First, we are setting a sfvar variable to div.menu, as our menu begins on
this tag (div.menu).

* Then, we are setting a phonesSize variable that gets the value of 600, which is
the breakpoint for a small/phone menu.

* After this, we are checking whether the HTML screen's width is bigger than a
phone screen, and if it is bigger, then we activate Superfish.

* The next code is checking whether the screen has been resized, from the
phone size to the desktop size. If it has been, it will enable Superfish, and if
the screen was resized from the desktop size to the phone size, Superfish will
be disabled by using sfvar.superfish('destroy') ;.

Summary

In this chapter, we have styled our headings, and then we have created our main
menu and implemented accessibility features in it. Our menu would not be complete
if we didn't make it responsive, and we did that too.

In the next chapter, we will learn about post templates by customizing them and
making them responsive as well.

[71]

Customizing Single
Post Templates

In this chapter, we will work on post templates and their components, such as title,
meta, and navigation. Single post templates are usually used for blog posts. They
help us set up a basic layout that we can extend later with index templates and

static pages.
We will cover the following topics:

* Customizing template elements

* Making template elements responsive

[73]

Customizing Single Post Templates

In order to understand all these template types, we can use the following image as
a reference:

aor, Pagednun
= s
ot |
T T
EIDE N EETE
$pasiiyse oho
e |
Wl Peissry Template Sacendary Templne I varasie Temalats Bl Page Type

Source: http://codex.wordpress.org/images/9/96/wp-template-hierarchy.jpg

Analyzing single post templates

For single post templates, a single.php file is used as a start-up file, and it is only a
bootstrap file. The content of a single.php file is as follows:

?php

/**

* The template for displaying all single posts.
*

* @package topcat

*/

[74]

http://codex.wordpress.org/images/9/96/wp-template-hierarchy.jpg

Chapter 5

get_header(); ?»>
<div id="primary" class="content-area"s>
<main id="main" class="site-main" role="main">

<?php while (have posts()) : the post(); ?>
<?php get template part('content',K 'single'); ?>
<?php topcat post nav(); ?>
<?php

// If comments are open or we have at least one comment, load
up the comment template

if (comments open() || get comments number ())
comments template () ;
endif;

?>

<?php endwhile; // end of the loop. ?>

</mains><!-- #main -->

</divs><!-- #primary -->
<?php get_sidebar(); °?>
<?php get footer(); ?>

At the beginning of the file, there is a call to the get_header () function, which calls
the header . php file. In more detail, this function typically calls the HTML title,
head, and other navigation elements that exist throughout the site —the items that
should appear on every page in the header section.

Later on, we check whether there is a post with the while (have posts()) : the
post () ; code, and if there is, we load the content (part of the page from content -
single.php) with the get_template part('content', 'single'); code.

[75]

Customizing Single Post Templates

The following screenshot shows a sample page:

1
_—

Prefessional Meve Monoagement & Organizing Experts

g

gy

HE BLDG CONTACTUS FRONT PAGE SANPLEPAGE ABOUT THETESTE LEVEL 1 LOREM IPSUM

! Thisis 3 sticky post. There
1 Ehimgs o verify: The stk
1 be distinctly recogrizable in some way
| in comparison ba nanmal posts. Yo

1 an style the
| using thw post class()
! generato your post dagses, whichisa

'
1 bask practice. Thay should show at the

ficky pest. Thera are a few things to verify
tly racogrizabls in some way in comparison to nonmal

the - sticky class Fyoware using the post dass() fumaionto
wwes, which is a best practice.
of the biog index page, even though they could he

caily.

— = They should sERl show up again in their chromobogically correct pastion in time, but L e R 1
withouk ki shicky indicator. e .

= IF o P 3 pdugin or widget Ehat 8 OOl DOSES OF CoMmeTants, Make Sur: that ' '

sticky past s not abways at thwe top of those Fsts unless & really is papular. : o :

|- Fad Mara t

' '

' '

NEXT

Tamgdane: Fassword Profected (The passwand
e Toempiabe: Paginated

& Tanbar)
LEAVE A REPLY

Hame =

In order to better understand what content is, let's analyze the preceding image:

* The first section (#1) is the header

* The second section (#2) is the menu

* The third section (#3) is the sidebar

* The fourth section (#4) is the post navigation
* The fifth section (#5) is the content part

[76]

Chapter 5

After this, we load the post navigation with the topcat_post_nav () function call
and then load comments:

if (comments open() || get comments number())
comments_ template () ;
endif;

If comments are enabled and they exist (somebody has already posted a comment),
we call the sidebar and the footer at the end of the code.

Note that for this section, we will use a Template: Sticky post. As this is the first
post that appears under our navigation, it's easy to manage.

M When you mark the post as a sticky post, it will always load first,
Q no matter when it was created. After it is loaded, other posts will
show up on the post's index page.

To make the post sticky, go to one of the posts in the Posts section in wpadmin and
under the Publish section (top-right corner), check the Stick this post to the front
page option.

We need to click on the Edit link in the Visibility: section (step#1) to see the Stick
this post to the front page option (step#2), as you can see it here:

Publish

Preview Changes
¥ Status: Published Edig

%> Visibilivy: Public, Stic

* Public
| Stick this post to the front page

Password protected

Private

Ok | Cance

[77]

Customizing Single Post Templates

By default, the Visibility item of the Publish section is closed/collapsed.

Publish 1

Previghv Changes

T Status: Published Edit
& Visibility: Public, Sticky Edit

ﬂ Published on: Jan 7, 2012 @ 7:07 Edit

Movwe to Trash Update

Since we are using "Theme unit test data," there is a post with the name Template:
Sticky, which is already set to be sticky, as you can see it from the following image:

HOME BLOG «ONT PAGE SAMPLE PAGE ABOUT THE TESTS LEVEL 1

Template: Sticky
iF'osted on January 7, 2012

iThis is a sticky post.

To find the Template: Sticky post in our database, we need to go to the Posts section
of wpadmin and then search for it, as shown in the following screenshot (step#1):

POSIS Add New Search results for “template sticky” o
emplate sticky Search Posts

All(41) | Published (39) | Sticky (1) | Scheduled (1) | Draft(1)

Bulk Actions |v| Apply All dates v | View all categories v| | Filter E 1 item
O Title Author Categories Tags [] Date

[0 Template: Sticky - Sticky admin Uncategorized sticky. template 2012/01/07

Published

As a result, we will get the post name shown in step #2 of the previous screenshot.

_ If we are not sure whether the option is working, try unchecking
the Stick this post to the front page option, check the main page
L (if that post is no more the first post on the page), and check it

again (now it should be the first post again).

[78]

Chapter 5

In WordPress, there is an option to enable/disable comments for each post. In order
to see whether comments are enabled or disabled, we need to go to our post and then
click on Screen Options on the header, as shown in the next screenshot:

d Screen Options

Template: Sticky Publish

Edit Post AddNew

Then, click on the discussion box, as shown here:

OW On screen
Format Categories Tags Featured Image [Excerpt [Send Trackbacks [] Custom Fiek Discussion] Comments
[slug [Author

M There is also an option named Allow comments to enable/disable
Q comments on all posts in the general settings. This is under the
Discussion section (Settings | Discussion).

After this, the Discussion section will appear under our editor section, and there we
will see the option to enable/disable comments, as shown in the following image.

P
Word count: 122 Last edited on January 7, 2012 at 7:07 am

Discussion
D comments.

[Allow trackbacks and pingbacks on this page.

Analyzing the content-single.php file
Now that we've looked at single.php, which is the container for single pages of

various types, let's look at content-single.php, which is where the post content
itself gets rendered:

<article id="post-<?php the ID(); ?>" <?php post class(); ?>>
<header class="entry-header">
<?php the title('<hl class="entry-title">', '</hl>'); ?>

<div class="entry-meta"s>
<?php topcat_posted_on(); ?>
</divs<!-- .entry-meta -->

[79]

Customizing Single Post Templates

</header><!-- .entry-header -->

<div class="entry-content"s>
<?php the content(); ?>
<?php
wp_link pages(array(

'before' => '<div class="page-links">' . _ ('Pages:',
'topcat!'),
tafter' => '</divs',
))
?>
</divs><!-- .entry-content -->

<footer class="entry-footer"s
<?php topcat entry footer(); ?>
</footer><!-- .entry-footer --»>
</article><!-- #post-## -->

First, let's analyze what each part of our code renders visually on a single post page,
and later on, we will analyze the rendered markup (HTML), too. For this, we need to
gotohttp://localhost/topcat/title-with-special-characters/.

[PUtting special characters i he e Should Rave no adverse o

S pecial characters in the post tlie Rave Deen Known 1o Cause 55y Bl metaboxes, media upkoad. etc.)

Posted in MirkupTagged himl markus, post (il df———

‘\l@ If you are not working on a localhost, please change the hostname

localhost to the hostname of your environment.

The following code prints out the post title (#1 in the preceding image):

<?php the title('<hl class="entry-title">', '</hl>'); ?>

[80]

Chapter 5

This code prints out the meta-information for a single post (#2 in the previous image):

<div class="entry-meta"s>
<?php topcat posted on(); ?>
</divs>

The following code prints out the post content (#3 in the preceding image):

<div class="entry-content"s>

<?php the content(); ?>
<?php
wp_link pages(array(
'before' => '<div class="page-links">' . ('Pages:', 'topcat'
)
tafter' => '</divs',
))
?>
</div><!-- .entry-content -->

The following code prints out the footer (#4 in the previous image):

<footer class="entry-footer"s
<?php topcat_entry footer(); ?>
</footer><!-- .entry-footer -->

Now, let's analyze the rendered markup (HTML) that we got from our code, as there
are a lot of other things going on under the hood.

In the first line of the content-single.php file, we have an article tag with an ID
and class. The ID is created from the word post - and the post ID the_1D (); the class
is generated from the post_class () function. The rendered HTML looks like this:

<article class="post-1241 post type-post status-publish format-
standard hentry category-uncategorized tag-sticky-2 tag-template"
id="post-1241">

As we can see from the preceding code, there are so many classes that we can utilize
in order to reach our goals. These classes allow us to use CSS to target specific post
types, posts, statuses, and formats in order to change the appearance of these posts,
such as the following:

* post-1241: Access only the 1241 post

* post: Access all the posts

* type-post: Access the content of a type post

* status-publish: Access any content that has its status as published

* format-standard: Access any content that has the standard post format

[81]

Customizing Single Post Templates

In a sophisticated software, such as PhpStorm or NetBeans, you
M can easily inspect the function call just to see the declaration of the
Q function or class. For example, we can right-click on the code on a
post_class () call and go to Go To | Declaration. Then we will
be able to see the insides of the function. Isn't that cool?

;j-cart,icle id="post-<?php the_ID(); Pphp t class(l; >

=] <header class="entry-header"> Copy Reference Ctri+Af+Shift+C
<7php the_titla('<hl class="entry-tit| [Ji Paste Ctrl+v
Paste from History... Ctrl+Shift+v
\’? <div class="entry-meta"> paste Simple Ctri+A+Shift+\
i <?ghp topeat_posted onfl; 2- Column Selection Mode Alt+Shift+Insert
fﬁ <fdiv><!-- _entry-meta --> =
3 </header><!-- _entry-header --> Find ugage; Alt+F7
H Refactor 3
= <div class="entry-conten Folding
: <7php th tent(); 7>

R S Alt+Home
H <?php -
gl TR Sty el ceszl Generate... Alt+Insert Declaration Ctr+B
: "before’ =» '<div cless="peg=-| (reate Run Configuration » Implemenstlo_nm Cltrl+:£+ﬁ
refter’ =» '</div>’, P Run 'content-sngle.php’ Ctrl+Shift+F10 Type Declaration Ctrl+Shift+B
£l)i ; Super Method Ctri+u
b i Debug - S g
& </divy<l-— _entry—content —->) Open in Browser ——

This is the screenshot from the PhpStorm IDE.

Post Format is a piece of metainformation that can be used by theme to customize
its presentation of a post. The Post Formats feature provides a standardized list of
formats that is available to all the themes that support the feature. Themes are not
required to support every format on the list. In short, with a theme that supports
Post Formats, a blogger can change the look of each post by choosing a Post Format
from the radio button list.

Post Format (if supported by the theme) can be changed in the wpadmin page of each
post or page. It can be found on the right-side widget called Format, as you can see
from the following image:

Format

® A standard
[Aside
@] Image
[Video
Audio
Quote

[Link

[82]

Chapter 5

The following is the result:

function post class($class = '', S$Spost id = null) {

// Separates classes with a single space, collates classes for
post DIV

echo 'class="' . join(' ', get post class($class, $post_id))

}
After code in article tag, we have the the_title () function, which prints the title
on the screen and uses h1 with the entry-title class. Just after this, we have topcat
posted_on, which provides the date and by whom it was posted information, such as
"Posted on January 7, 2012, by the admin." Later on, we have the the content () call,

which gets the posts content; after this, we have the wp_1link pages () function that
provides the previous/next links (this is the previous/next page of a paginated post).

There are two reasons why you will like to use paginated posts:

* Page views are very important for Search Engine Optimization (SEO). If
we split the posts into multiple pages, we will increase page views for our
website and our website will rank better with search engines.

A page view (PV) or page impression is a request to load a
single HTML file (web page) of an Internet site. On the World
Wide Web (WWW), a page request would result from a web
+ surfer clicking on a link on another page pointing to the page
% in question. This can be contrasted with a hit, which refers to a
T request for any file from a web server. There may, therefore, be
many hits per page view since an HTML page can be made up
of multiple files. On balance, PV refer to a number of pages that
are viewed or clicked on the site during the given time.

* If we have a lot of text in the post and there is a probability that users will not
read the whole post at once, it would be better to split the post into multiple
pages. So, readers can bookmark the page where they have stopped reading
and continue later from there.

Then, we have the topcat_entry footer () call for a function that is declared in
inc/template-tags.php. Let's analyze the code now:

function topcat entry footer () {
if ('post' == get post type()) {
$posttags = get the tags();
echo '<div class="tags-links">Tags: "';
if ($posttags)
foreach ($posttags as $tag)
echo '<i class=" fa fa-tag"></i> '

[83]

Customizing Single Post Templates

'term id) . '">'
Stag->name . ' ' ;
}
}
echo '<divs>"';

}

if (! is _single() && ! post password required() && (
comments_open() || get comments number())) {
echo '';
comments popup link(('Leave a comment', 'topcat'), ('l
Comment', 'topcat'), _ ('% Comments',6 'topcat'));

echo '';

}
}

As we can see from the preceding code, we want to display the tags in the posts (as
tags can only be assigned to posts not pages). Our code checks with the if statement
whether the page is a post or not. If it's a post, it will print out categories and tags.
Later on, it checks whether it's a single post page (which means it's not archived).

Archive posts/pages list or index a number of posts on a page, and
M usually, they display the post title, metacategories and meta tags,
Q and excerpts from the content. Single post pages display everything
mentioned previously, plus the full content instead of excerpts, and
comments too if enabled.

Template improvements

We have analyzed the code and now it's the time to make our changes. As I said
previously, a number of developers, including myself, now like to design in a
browser. This is because when you interact more with your design, you get better
ideas and want to improve more. On the other side, you should be careful not to go
in the feature creep state.

Feature creep is a state where you or your customers feel like
u adding more features, and this road then doesn't end easily. My
~ recommendation is to make changes only if you think they will
Q improve the design and usability of the site, but at the same time,
be careful about how many changes you make as you need to
finish your project on time.

In our case, we need to finish our theme and submit it to WordPress.org as soon as
we can. Later on, we can make changes and updates.

[84]

Chapter 5

Header improvements

I have added a silver background color in order to distinguish the background from
the content of the site. This change should be done in the style.css file's Content
section by adding this code:

body{
background: none repeat scroll 0 0 #e6e9ed;
}

Now that we can clearly distinguish the sections, we should comment out the
borders in content-sidebar.css

.topcat _page /* border: 1lpx black dashed; */
.site-branding /* border: 1px #008000 dashed; */
.site-content .widget-area /* border: 1lpx red dashed;*/

After that, I have decided to give a little space to the header logo that looks like this:

wopcal

RELGCATION |{ TRANSITION SOLUTIONS

As we can clearly see from the previous image, there is no space on the left side by
the border. The solution is to add div with the 1ogo-container class around our

logo to header . php:

<div class="logo-container"s>

<?php if (get header image()) : ?>
<a href="<?php echo esc _url(home url('/')); 2>"
rel="home"><img src="<?php header image(); ?>" width="<?php echo
esc_attr(get custom header()->width); ?>" height="<?php echo
esc_attr(get custom header () ->height); ?>" alt="">
<?php endif; // End header image check. ?>
</div>

I've put a logo-container class in our styles.css file in the new section
13 .Header that I have created:

.logo-container{padding: Opx 10px;}

[85]

Customizing Single Post Templates

With this change, our logo image is moved a little bit to the right:

Upedt

RELOCATION B TRANSITION SOLUTIONS

HOME BLOG FF

Under the header section in styles.css, we can create another section 14 .Colors
where we can store our color palette values:

/*our blue #0480b5; */
/*our blue light #579DB5; */

The comments are added by me and they don't render anything,
<8 as they are here for the information purposes only.

After moving the logo, the site description doesn't look nice, as you can see it from
the following image:

!T*rofessional Move Management & Organizing Experts |

We can change that, too. In order to change the default look, we have to use the
site-description class provided by the underscores theme, and with this code:

.site-description{
font: 400 24px/1.3 'Oleo Script',6 Helvetica, sans-serif;
color: #2B2B2B;
text-shadow: 2px 2px Opx rgba(0,0,0,0.1);

}

As we can see right now, I have added the new 0leo Script custom font, which
was wp_engueued in the functions.php file, as follows:

wp_enqueue_ style('topcat-description-font',
get template directory uri() .'/css/oleo-script.css');

[86]

Chapter 5

Here is the final look of the header with all our changes:

O

RELOCATION || TRANSITION SOLUTIONS meessimﬂi Meve maﬂagement & Organizing Sxpeﬁs

HOME BLOG FRONT PAGE SAMPLE PAGE ABOUT THETESTS LEVEL1 LOREMIPSUM PAGEA PAGEB

The T size of the font in the content also doesn't seem good, so we can make it a bit
smaller in the typography section:

body,
button,
input,
select,
textarea {
color: #404040;
font-family: Ubuntu, sans-serif;
font-size: 1l4px;
font-size: 1.4rem;
line-height: 1.5;

}
It will look a lot better with all the changes that we are going to do later in this book.

Implementing changes to the post template

We just made some nice changes to the header, and now we will make changes to
content-sidebar.css, too.

The Posted on and following lines are right up against the grey background, as you
can see it in the following image:

Posted on January 7, 2012

This is a sticky post.

There are a few things to verify:

[87]

Customizing Single Post Templates

In the content-sidebar.css file, | have added padding: 30px; to the emedia
only screen and (min-width:769px)desktop media query, and now it looks a
little bit better:

This is a sticky post.

There are a few things to verify:

s The sticky post should be distinctly recognizable in some

way in comparison ko normal posts. You can style the

The silver color on the left-hand side of the logo is the silver background
L that we just put in order to see the difference.

Now it's time to change our post title and meta tags. Here is the current look:

nELOElTIEINP’H{l::T[DN SOLUTIONS me?ssiﬂ.ﬂﬂl m L/

HOME BLOG FRONT PAGE SAMPLE PAGE

Template: Sticky
Posted on January 7, 2012 by admin

Note that I have intentionally taken a screenshot of the part of the logo and the menu
in order to show you how small the entry title is. In order to make it bigger and match
our design, we have to add this code to the typography section of the style.css file:

.entry-title(
color: #0480B5;
font-size: 2.8rem;
font-size: 28px;
text-transform: uppercase;
font-family: 'Open Sans', sans-serif;

[88]

Chapter 5

Here, we used the color blue as color: #0480b5; and then we have made our fonts
bigger by using the font-size: 28px; code. After this, we capitalized our fonts
with text-transform: uppercase;, and finally, we made sure our Open Sans
fonts were used in font-family: 'Open Sans', sans-serif;.

We also want to change how the title looks in normal, visited, hovered, and active
states because our title is also a link. This requires adding the following code:

.entry-title a,

.entry-title a:visited,

.entry-title a:hover,

.entry-title a:active({
text-decoration: none;
color: #0480B5;

}

In this part of the code, we make sure that our title (which is a link too) looks the
same in normal, visited, hovered, and active states. Here is the look after the change:

TEMPLATE: STICKY

Posted on January 7, 2012 by admin

Styling post's metadata

Our next step is to style the metadata of the post (Posted on...). This data is in the
content-single.php topcat_posted_on () function. If we go to the function's
declaration, we can see all the code there. Let's make some changes in order to make
the meta box looks better and have more information. From the original function,
keep the $posted_on and $byline declarations and get the categories and the edit
button from topcat_entry footer function. This is because in a footer, we will only
have to display tags.

Here is the code for the topcat posted on () function:

function topcat_ posted on() {

Stime_string = '<time class="entry-date published updated"
datetime="%13$s">%23s</time>";
if (get _the time('U') !== get the modified time('U')) {
Stime_string = '<time class="entry-date published"

datetime="%13s">%2$s</time><time class="updated"
datetime="%33$s">%43s</time>"';

}

[89]

Customizing Single Post Templates

Stime string = sprintf($time string,

esc_attr(get the date('c')),
esc_html (get the date()),

esc_attr(get the modified date('c')),
esc_html (get the modified date())

)i

Sposted on = sprintf(

x('%s', 'post date', 'topcat'),
'<i class="fa fa-calendar"></i> <a href=""
esc_url(get permalink()) . '" rel="bookmark" >' . $time string

'!

)i

Sbyline = sprintf(
_x('<i class="fa fa-user"></i> '.'by: %s', 'post
author', 'topcat'),
'<span class="author vcard"s<a class="url fn n" href="'
esc_url(get author posts url(get the author meta('ID')))

"">' . esc_html(get the author()) . '</spans'
)i
if ('post' == get post type()) {
echo '' . $posted on
' | ' . $byline

' | ' ;
/* translators: used between list items, there is a space
after the comma */

$categories list = get the category list((', ',
'topcat'));

if ($categories list && topcat categorized blog()) ({

echo '<i class="fa fa-th-list"></i> <span

class="byline">'. _ ('Category: ', 'topcat') . '</spans>'
''. Scategories list . '</spans';

}

echo edit post link((' Edit ', topcat),

' | <i class="fa fa-pencil-square-
o"></i> ', '');

}
}

[90]

Chapter 5

Let's analyze the improvements we made:

1. We have first analyzed the PHP and HTML code, and later on, we have
analyzed the CSS attached to this code. In the beginning, we processed the
date/time code that is displayed on the posted on section.

2. Then, we have declared the $posted on variable. We took off the Posted
on words, as there is no point in having them there. <i class="fa fa-
calendar"></1i> is the code where we use font awesome icons, and in this
case, we used a calendar icon.

3. After the sposted_on variable, we have a $byline declaration, and here,
we printed the author information together again with <i class="fa fa-
user">, which is a font awesome icon for the user.

4. In the third section, we outputted categories; before doing this, we had
to check whether our post is a type post. If it is a type post, then we get
a category or a list of categories that are assigned to this post with
get the category list().

5. After this, we have checked whether the list has returned categories and
whether the post has more than one category with topcat_categorized_
blog (). If the post has one or more categories associated with it, we
print them out, again with <i class="fa fa-th-list">, whichis a font
awesome icon for a list, and I've seen it as a proper icon for the categories.

M Note that you can put icons of your choice for this; although,
Q again, I will recommend that you follow the book and make
your changes later on.

At the end of the function, we have a code for the edit post link with <i class="fa
fa-pencil-square-o">, which is a font awesome icon for editing. Now, we are
going to make some CSS changes.

Since we have already analyzed the markup and PHP code, let's see what we did
with CSS in order to accomplish our new look. As the post's meta has its own
container, <div class="entry-meta"s, we have edited it first in style.css file,
and edited code is in the posts and pages section:

.entry-meta, .tags-links {
background: none repeat scroll 0 0 #F8F8FS;;
border-radius: 3px;
margin: 12px 0 24px;
overflow: hidden;
padding: 5px 12px;

[91]

Customizing Single Post Templates

.entry-meta span(
font-size: 13px;;
font-size: 1.3rem;

margin: 0 6px 0 0;
padding: 0;

}

Here, we have first defined a silver background by using background: none repeat
scroll 0 0 #F8F8F8;, border-radius, margin, overflow, and padding. Then, for
the child-element span, we have defined a font size margin and padding. After this, we
have defined the styles for entry meta links, the author, and category links, as well as
the tags that we have used in the footer of the post (we will cover this later):

.entry-meta a,
.entry-meta a:visited,
.entry-meta a:hover,
.entry-meta a:active
.author a,

.cat-links,
.tags-links a,
.tags-links a:visited
.tags-links a:hover,
.tags-links a:active

color: #000;
line-height: 2.8;
text-decoration: none;

}

Then, we have the .byline and .tag-1inks classes to set the default color as silver:
.byline, .tags-links { color: #999;}

As the last step, we will color our font awesome icons in blue:

.fa-calendar, .fa-user, .fa-th-1list, .fa-pencil-square-o, .fa-
tag{color: #0480B5;}

[92]

Chapter 5

After the changes, this is how it all looks:

TEMPLATE: STICKY

B4 January 7,2012 | & by:admin | #2 Category: Uncategorized | & Edit

It looks pretty good now, right?

Content section

It doesn't look nice how the content is separated from the sidebar, as there is a lot of

empty space in between:

TEMPLATE: STICKY

£ January 7,2012 | & by:admin | = Cate Uncategorized | (&

Edit

This is a sticky post.
There are a few things to verify:

» The sticky post should be distinctly recognizable in some way in
comparison to normal posts. You can style the . sticky class if you
are using the post dass() function to generate your post classes,
which is a best practice.

» They should show at the very top of the blog index page, even
though they could be several posts back chronologically.

» They should still show up again in their chronologically correct
postion in time, but without the sticky indicator.

» |f you have a plugin or widget that lists popular posts or comments,
make sure that this sticky post is not always at the top of those lists

10 = =

o

= = |

.
Iz |

To fix this, we should change the right margin in the .site-

.site-main
margin: 0 25% 0 0;

To:

.site-main
margin: 0 5% 0 0;

}

The .site-main class is located in content-sidebar.css.

main class from:

[93]

Customizing Single Post Templates

Now the content looks a lot better, as you can see it here:

B4 January 7,2012 | & by admin | #2 Category: Uncategorized | (& Edit

This is a sticky post.

There are a few things to verify:

The sticky post should be distinctly recognizable in some way in comparison to normal
posts. You can style the . sticky class if you are using the post class() Function to
generate your post classes, which is a best practice.

They should show at the very top of the blog index page, even though they could be
several posts back chronologically.

They should still show up again in their chronologically correct postion in time, but
without the sticky indicator.

TEMPLATE: STICKY Recent Pos

* If you have a plugin or widget that lists popular posts or comments, make sure that this Archives
sticky post is not always at the top of those lists unless it really is popular. * Octob
* Janua
* March
.]
Tags: W sticky % template . Ifnu‘:
MIgIC

As we can see from the previous image, the link in the content post_class ()

function doesn't look appealing at all (just a default visited link color), and we can

change this with only a simple code in style.css:

.entry-content a,
.entry-content a:visited
.entry-content a:hover,
.entry-content a:active

color: #0480B5;
line-height: 1.6;
text-decoration: none;

}

Here is what it looks like after our changes:

» The sticky post should be distinctly recognizable in some way in comparison to normal

posts. You can style the . sticky class if you are using the post_class() Function to

The post_class () link is in our blue color now and it's not underlined.

[94]

Chapter 5

Now, if we just go back to the index page by clicking on the Home link in the menu
and then go to the post with the name Markup: HTML Tags and Formatting, we
will see more HTML elements that we can style.

\ This post and all the other posts/content in our project don't
~ come with WordPress by default. We have loaded them
Q by importing the Theme Unit Test Data from http://
codex.wordpress.org/Theme Unit Test.

We will cover only some of them here, as there are so many of them. This is the look
of our current headings:

Headings
Header one
Header two
Header three
Header four
Header five
Header six

If we go to the typography (2.0) section of style.css, we will be able to see some
headings we have already defined:

hi,
h2,
h3,
h4,
hs5,
he {
clear: both;
font-family: 'Open Sans';
font-weight: 800;
color: #0480B5;

}

We should change the color to our blue (color: #0480B5;) to make everything the
same, then we can style all the heading sizes separately:

hi{
font-size: 28px;
font-size: 2.8rem;

h2{

[95]

http://codex.wordpress.org/Theme_Unit_Test
http://codex.wordpress.org/Theme_Unit_Test

Customizing Single Post Templates

font-size:
font-size:

!
h3{
font-size:
font-size:
!
ha
font-size:
font-size:
!
h5{
font-size:
font-size:
!
hé
font-size:
font-size:
!

24px;
2.4rem;

20px;
2.0rem;

18px;
1.8rem;

léepx;
1l.6rem;

l4px;
l.4rem;

Here is the new look of our headings:

Under headings, we have a Blockquote that looks pretty basic:

Headings
Header one

Header two

Header three
Header four

Header five
Header six

Blockquotes

Single line blockquote:

Stay hungry. Stay foolish.

Multi line blockquote with a cite reference:

People think focus means saying yes to the thing you've got to Focus on. But that's not
what it means at all. It means saying no to the hundred other good ideas that there are.
You have to pick carefully. I'm actually as proud of the things we haven't done as the
things | have done. Innovation is saying no to 1,000 things.

Steve Jobs— Apple Worldwide Developers’ Conference, 1997

[96]

Chapter 5

So here, we will first define margin and padding and also add the dotted border at
the top and bottom of the blockquote:

blockguote
margin: 1.5rem 1.5rem;;
border-top: dotted 1lpx #999;
border-bottom: dotted 1lpx #999;
padding: lem;

}
After this, we will style the p tag nested in blockquote:

blockquote p{
font-style: italic;
margin-bottom: auto;

}

We've made the fonts italic, and since the p element has some strange margin
bottom, we have done a reset it here with margin-bottom: auto;.

We also want to make the author in the cite tag more visible; we can do this with:

citef
font-weight: 600;

}

Since the citation is not nested in blockquote but in the next p tag, we would like to
align it to the right:

blockguote + p{
width: 100%;
text-align: right;

}

Here is the look after all these changes:

Blockquotes

Single line blockguote:

Stay hungry. Stay foolish.

Multi line blockquote with a cite reference:

People think focus means saying yes to the thing you've got to focus on. But that’s not
what it means at all. It means saying no to the hundred other good ideas that there are.
You have to pick carefully. I'm actually as proud of the things we haven't done as the
things I have done. Innovation is saying no ta 1,000 things.

Steve Jobs— Apple Worldwide Developers' Conference, 1997

[97]

Customizing Single Post Templates

There are a number of HTML tags to style here, and since we have
covered the basics and because it will take a lot of time to cover
g them all, we are going to move to the next part, that is, tags.

Tags

We have decided to display tags in a box just after the content.

In the last part of this chapter, we are going to work on navigation in post templates,
and the code for this is located in the topcat_entry footer () function, which is
also located in the template-tags.php file.

% Topcat_entry footer () is the function that handles the footer
L for a single post, not a website footer.

I have changed the tag functionality with my own solution in the topcat_entry_
footer () function of the template-tags.php file, and it looks like this:

if ('post' == get post _type()) {
Sposttags = get_the tags();
echo '<div class="tags-links">Tags: "';
if ($posttags)
foreach ($posttags as $tag)
echo '<i class=" fa fa-tag"></i> '
'term id) . '">'
Stag->name . ' ' ;
}
}
echo '<divs>';

}

At first, we have checked whether the page is of type post, and then, we have
loaded the tags in the $posttags variable with the get_the_tags () function. After
this, we are looping trough the tags with the foreach loop as foreach ($posttags
as $tag), and in front of every tag, we have displayed a font awesome tag icon
with the <i class=" fa fa-tag"></i> markup.

The .tags-1links section has the same styles as that of .entry-meta:

.entry-meta, .tags-links
background: none repeat scroll 0 0 #£8£f8f8;
border-radius: 3px;
margin: 12px 0 24px;

[98]

Chapter 5

overflow: hidden;
padding: 5px 12px;

}

We are also styling the links inside the . tags-1inks section with the same styles as
the styles for . entry-meta links:

.entry-meta a,
.entry-meta a:visited,
.entry-meta a:hover,
.entry-meta a:active
.author a,

.cat-links,
.tags-1links a,
.tags-links a:visited
.tags-1links a:hover,
.tags-links a:active

color: #000;
line-height: 2.8;
text-decoration: none;

}
Finally, we will color . tags-1links with the same markup as that of .byline:
.byline, .tags-links { color: #999;}

Here is the final look of the Tags: section:

W sticky % template

Post navigation

As T have said previously, the final part in this chapter is post navigation or
previous/next navigation. If we go to the single.php file and topcat_post_nav ()
function call, we will see this is the call to post navigation. This function is part of
underscores theme and it's declared in the template-tags.php file:

Template: Paginated —

+« Template: Password Protected (the

password is “enter”)

[99]

Customizing Single Post Templates

As we can see, it looks pretty basic, but we are going to improve it. Here is the
changed PHP code:

<nav class="navigation post-navigation” role="mavigation">

<hl class="screen-reader-text"><?php _e('Post navigation', 'sopean’)i 7 </hlx
<div class="nav-links">
<2php
previocus_post_link('<div class="nav-previcus">%link</diwv>', _x{ '<i class="fa fa-arrow-left fa-3"></i> snbsp;
span class="meta-nav">Previous</spans
inbsp;%title’, 'Previous post link',
next_post_link('<div class="nav-next™>%link</div>', _a('Nextsnbsp;snbsp;<i class="fa
fa-arrow-right f£a-3"»</iy
%titlesnbsp;', 'Next post link', "gopcat’))i

2>
</divy

</nav>

Let's analyze the changed code:

* The first part of the code was changed in the previous_post_1link ()
function, where I added a font awesome markup, namely <i class="fa fa-
arrow-left fa-3"> for the left arrow. Later on, we have changed the words
from the Previous post link to Previous and added a
 tag after it.
We have also applied the same changes to previous_post_1link (), too.

Note that I didn't change any CSS classes.
i

After this, all other changes that we are going to do are in styles.css file.

Firstly, we will add . fa-arrow-1left and .fa-arrow-right to the line where all
font awesome icons are being colored in our blue color:

.fa-calendar, .fa-user, .fa-th-list, .fa-pencil-square-o, .fa-tag,
.fa-arrow-left, .fa-arrow-right{color: #0480B5;}

Because these arrow icons are really small, we are going to make them bigger with
this code:

.fa-3
font-size: 26px !important;
font-size: 2.6rem !important;

% Note that I have added a . fa-3 class in the font
K awesome markup.

[100]

Chapter 5

After this, we need to make all the fonts in the .nav-previous and .nav-next
sections black and italic respectively. We are doing this because the titles of the next
and previous blog posts need to be in this specific style in order to be identifiable:

.nav-previous,
.nav-next,

.nav-previous a,
.nav-next a,
.nav-previous a:visited,
.nav-previous a:hover,
.nav-previous a:active,
.nav-next a:visited,
.nav-next a:hover,
.nav-next a:active

color: #000;
font-style: italic;

}
Then, we need to style the Next and pPrev words:

.meta-nav,

.meta-nav a,
.meta-nav a:visited,
.meta-nav a:hover,

.meta-nav a:active

color: #0480b5;

font-family: "Open Sans",sans-serif;
font-size: 26px;;

font-size: 2.6rem !important;
line-height: 26px;

text-transform: uppercase;
font-weight: 800;

padding: 10px;

font-style: normal;

}

As we can see in the preceding code, we've colored the words in blue; then, we have
assigned to them a proper font and font size, and much more.

% We have used font-style: normal because of the previous
s declaration where we used font-style: italic.

[101]

Customizing Single Post Templates

Finally, with the following code, we are making sure that none of our links in this
section are underlined:

.nav-links a,
.nav-links a:visited
.nav-1links a:hover,
.nav-links a:active

{
}

Here is the final look of our work:

text-decoration: none;

TEMPLATE: STICKY

i January 7,2012 | & by admin | = C Uncategorized | (& Edit

This is a sticky post.

There are a few things to verify:

The sticky post should be distinctly recognizable in some way in comparison to normal
posts. You can style the . sticky class if you are using the post_class() function to
generate your post classes, which is a best practice.

They should show at the very top of the blog index page, even though they could be
several posts back chronologically.

They should still show up again in their chronologically correct postion in time, but
without the sticky indicator.

IF you have a plugin or widget that lists popular posts or comments, make sure that this
sticky post is nok always at the top of those lists unless it really is popular.

Tags: % sticky % template

€< PREVIOUS NEXT 2>
Template: Password Protected (the password is Template: Paginated
“enter")

Summary

In this chapter, we have focused on a single blog post page —starting from the top,
working down through title and meta, then the content's HTML tags, and eventually
to the footer of a single post. To accomplish all these changes, we have worked

with the single.php, content-single.php, template-tags.php, styles.css,
functions.php, and header .php files.

In the next chapter, we will work on the items that appear in the sidebar (widgets),
and we will change the way comments appear in posts.

[102]

Responsive Widgets, Footer,
and Comments

As we are going to cover a lot of things in this chapter, we will break it into two
sections. This way, it will be much more interesting and easier for you to understand.
But, don't worry; it will be a lot of fun, and at the same time, you will learn a lot
about widgets, the footer, and comments.

Without wasting any time, let's see what we will cover in this chapter.
In the first section, we will:

* Learn more about widgets

* Learn how to customize these widgets

* Learn more about sidebars and how to style them
* Learn how to edit the footer

* Learn how to make our widgets responsive
In the second section, we will:

¢ Learn more about comments and how to customize them

Widgets

Widgets are small sections or containers that provide some type of functionality to
our website. Basically, widgets get deployed into sidebars, which we are going to
examine in just a moment. WordPress provides a number of widgets by default, and
many plugins define additional widgets; even themes can define widgets. Widgets
can be, for example, lists of tags, categories, latest posts, contact forms, or Twitter
timelines.

[103]

Responsive Widgets, Footer, and Comments

As we can see, they can be almost anything. When we create widgets in a code, they
appear in the Widgets section under Appearance, where we can select the widget
that we like. We can also add it to any sidebar that we want, as a single theme can
have a number of sidebars.

Widgets o e
Available Widgets Sidebar
To activate a widget drag it to bar or click on it. To
deactivate a widget and delete its 5 s, drag it back.
Search
9 Calendar
Recent Posts
& calendar of your site's
Recent Comments
+ Sidebar
Cancel | [Nl RUTT =S Archives
Categories
Meta

In the previous image, we have first chosen a calendar widget, (#1) and then decided
to add it to the sidebar by clicking on the Add Widget option (#2). With this, the
calendar widget will be added to the sidebar (#3). Instead of doing it this way, we
can simply drag and drop the widget on the sidebar. As soon as we add the widget
to the sidebar, we have the option to customize it, too:

Calendar

.

Delete | Close

[104]

Chapter 6

Since widgets are separate programs/features, the options available to
K= customize the widgets depend on the code that creates the widget.

In this case, as seen in the preceding image, we have the option to add the title.

%\ Some widgets may not have the option to be customized.

Sidebars

Sidebars are areas that are actually containers for our widgets. A few years ago,
when they were first built, they were used for the left and right sidebars; that's why
they have this name. Sidebar containers have evolved so much, and now they can
be placed anywhere you want them to be: on the left or right side, in the header or
footer, and even in the post content area. Sidebar containers are usually defined in
the functions.php file using the register_sidebar () function, and this is also the
case in our example:

function topcat, widgets_init() {

register_sidebar({ array(

'name "’ => _ | "Sidebar', 'topcat' },
tid" =¥ 'sidebar-1',
'description’ = "',
'before_widget' = '<aside id="%1%s" class="widget %25s">",
'after_widget' =¥ '</aside>",
'before title' =¥ '<thl class="widget—-title">",
= 'efter_title’ =» '</hl>",
Yog
}
add_action('widgets_init', '::E:a: widgets_inic');

. More information about the register_sidebar () function can be
% found in Chapter 10, Submitting Your Theme to WordPress.org of our book
L or in it's Codex page at http: //codex.wordpress.org/Function_
Reference/register sidebar.

[105]

http://codex.wordpress.org/Function_Reference/register_sidebar
http://codex.wordpress.org/Function_Reference/register_sidebar

Responsive Widgets, Footer, and Comments

As we can see from the preceding image, we have a function call to topcat_
widgets init (), which is later on called with the add action('widgets init',
'topcat_widgets_init'); hook. This means that this function is being triggered
with the widget_init function. As we can also see from the preceding code, in the
register_sidebar () function, we are setting the following:

d name
e id
* description (which is currently empty)

* Dbefore widget and after widget (where our widgets are going to be
nested in, for example, the <aside> tag)

* Dbefore-title and after-title (where our title is going to be nested)
Since, for our theme, we want to have more than one sidebar, we will create

another one (the footer sidebar) in the same function, just under the first register
sidebar () code:

function Eopcat widgets init () {

register_sidebar({ ar

'name " 'Sidebar"', "topcat’),

rid" =» 'gidebar-1",

'description’ = "',

'before_widget' = '<aside id="%1%53" class="widget %2§3">",
'after_widget' =¥ '</aside>’,

'before title' =¥ '<hl class="widget-title">"',
'efter_title’ =» '</hl>",

YolE

register sidebar({ array|

'name’ =» _ | "Footer Sideker", "topcat'),
tid" =» 'sidebar-footer’,
'description’ =» 'Footer widgets go here',

'before_widget' =» '<aside id="%153" class="widget %253">",
'after_widget' =¥ '<faside>",
'before_title' => '<hl class="widget-title">',
‘after_title’ =» "</hl>",
Yol
}
add sction{ 'widgets init', 'topcat widgets init') ;

[106]

Chapter 6

As we can see in the previous image, we just need to add a different title, ID, and a
description. Now, we can see our new widget area by navigating to Appearance |

Widgets:
Sidebar hfoater Sidebar

E ’ Footer widgets go here

Search

Recent Posts

Recent Comments

In the preceding image, we can see that our new sidebar, the footer sidebar, has been
added beside the old sidebar. Underneath it, our new description Footer widgets go
here has been added, too.

We have to click on the arrow in the top-right corner for the area to
o expand so we can see the new description.

In order to see our sidebars on the live website, we have to complete the following
two steps:

* Declare the sidebar (usually in sidebar.php)

* (Call the dynamic_sidebar () function in order to display the sidebar in
our theme

. More information about the dynamic_sidebar () function can be
% found in Chapter 10, Submitting Your Theme to WordPress.org of our book
i or init's Codex page at http: //codex.wordpress.org/Function
Reference/dynamic_sidebar.

Since we are using the underscores theme, the sidebar declaration code is provided

[107]

http://codex.wordpress.org/Function_Reference/dynamic_sidebar
http://codex.wordpress.org/Function_Reference/dynamic_sidebar

Responsive Widgets, Footer, and Comments

in sidebar.php:

if { ! is active sidebar({ 'sidebar-1")) {
return;

}

Eka

<div id="sgecondary" clesss="widget-area" role="complementary">

<?php dynamic sidebar({ 'sidebar-1'); 2>

< Sdivy<!|—— gsecondary —-%

As we can see from the preceding screenshot, we are checking whether the sidebar
with the ID sidebar-1 has widgets in it. If it has, the result will return true, and if

it doesn't, it will return false. If the result is true, our code will proceed to the next
section where the sidebar will be loaded with dynamic sidebar('sidebar-1');.
Since we currently have a number of widgets loaded in the default sidebar, if we go
to Appearance | Widgets, we will see the following:

Sidebar

Search

Recent Posts

Recent Comments

Archives

Categories

Meta

Calendar

These widgets are also loaded on our home page in the same order:

[108]

Chapter 6

HOME BLOO FROMT FAGE SEAMPLE FAGE AROUT THE TESTS LEVELY LOSEM WFSUM

s W

MPLATE: STICKY

Recent Posts
ey T 387 | | e

+ Exlesaial
+ e ST i e Wy
(SR + Machn e limemeny
T r——
[] * Harhn Thr P G Sy,

Recent Comments

[——
P g s e —— e i—
B T * e Cur e baes G e e

HELLO WORLD!

a8 T s B

e e T s e v B e e

“un
*

MARKUP: HTML TAGS AND FORMATTING

5 ey T | | B i | B

g

Headings
Header one
Header twio
Header thren
Hander faur

isacisr fie.
Hraim

Blockguates
[

EF!EEEEMEEEE-»;E

P

LR

LSRR, S —

ok v mmar

s o b Trnan g by e e e b e v e
et s e g e oo e e e ea e e
e

Empa e b ey epbe TS

oy i Sawa g g v Srraps S e 70

Definition Lists
Eiatiniem Lk T
e e

[

a
"av e e s e

P
Zar iy R S s ey e Soenpn: g B R S
ey

Ry anie

mordered Lists [Neste

e

i
=

EE“.

[109]

Responsive Widgets, Footer, and Comments

Why do we see this sidebar? We see it because it was called in the index.php, page.
php, search.php, and single.php archive templates with the get_sidebar () ;
function call.

X In order to make everything clear, we need to
a include the sidebar.php file with the get sidebar ()
v function. On the other side, the dynamic sidebar () function is
actually responsible for displaying the sidebar.

In our case, we are going to use one more sidebar in the footer, sidebar-footer. We
need to save the sidebar.php copy as a new file with the name sidebar-footer.
php, which we are going to edit for our sidebar footer purpose. Here is the look of
our sidebar-footer.php file:

<!-- Custom sidebar code begin -->
<?php
if (! is active sidebar('sidebar-footer')) {
return;

}

?>

<div id="secondary" class="widget-area" role="complementary">

<?php dynamic_sidebar('sidebar-footer'); ?>
</div><!-- {#fsecondary -->
<!-- Custom sidebar code end -->

Note that we have changed the values from sidebar-1 to
S sidebar-footer.

In order to see this file in the footer, we need to make the call with get
sidebar ('footer') ;.

Note the ' footer' name. If we call our footer sidebar file,

namely sidebar-dejan. php, then our call should be get
g sidebar (dejan') ;.Isn't that awesome?

But wait! We still can't see any changes. Do you know why?

[110]

Chapter 6

It is because we need to go to Apperance | Widgets first, and add at least one widget
to the archives with a title, in our case Archives footer, as you can see it in the next

screenshot:

ter Sidebar

r widgets go here
Archives: Archives footer

Title:
Archives footer

[] Display as dropdown
[J] Show post counts

Delete | Close

Now, if we scroll to the bottom of our index page or just go to any single post, we
will be able to see our archives footer widget, as shown in the following picture:

October 2014

January 2013
March 2012

January 2012
March 2011
October 2010

* September 2010
* August 2010

* July 2010

June 2010

* May 2010

* April 2010
March 2010

® February 2010
January 2010
October 2009

® September 2009
* August 2009

e July 2009

June 2009

May 2009

Proudly powered by WordPress | Theme: topcat by Underscores.me.

[111]

Responsive Widgets, Footer, and Comments

Styling sidebars

Now that we have created new widget area and are able to add widgets, we should
go and style the sidebars. To do this, we need to use the monster widget that we
installed in Chapter 1, Responsive Web Design with WordPress. The monster widget
contains all the default widgets that come with WordPress. It is a great addition to
our toolbox as with this, we don't need to load the widgets one by one. When we
load the widgets, we style them with our code in order to make sure that our theme
is 100 percent compatible with them. What does "compatible" mean?

It means that if the end user puts any or multiple widgets in our sidebar, they should
not break the layout of the page nor the widgets' own the layout.

Before we start making big changes, we need to differentiate the right sidebar from
the content, and we can do this by simply adding this line to .widget-areain
content-sidebar.css:

background: none repeat scroll 0 O#f8f8f8;

Here is the new look of the right sidebar:

L1 LOREMIPSUM PAGEA PAGEB

Archives List

e October 2014 (1)
e January 2013 (5)
* March 2012 (5)

* January 2012 (6)
* March 2011 (1)

e October 2010 (1)
* September 2010 (2)
e August 2010 (3)

e July 2010 (1)

e June 2010 (3)

e May 2010 (1)

e April 2010 (1)

¢ March 2010 (1)

e February 2010 (1)

e January 2010 (1)
® October 2009 (1)

As we can see from the preceding screenshot, we have a dark silver line, which is
our background color, on the right. Then, we have our sidebar in light silver color,
followed by our content in white.

[112]

Chapter 6

If we go to our code in the functions. php file, where we defined the sidebar area,
we will see the following;:

register sidebar(array(

'name'’ => ('Sidebar', 'topcat'),

rid! => 'gidebar-1"',

'description' = ',

'before widget' => '<aside id="%1$s" class="widget %2$s">',
'after widget' => '</aside>',

'before_title' => '<hl class="widget-title">"',

'after title! => '</hl>"',

))

As we can see, our widgets will be contained in <aside id="%1$s" class="widget
%2$s"> with the classname named widget. As I don't like the current padding for
this class, we will add padding: 30px 10px. The widget class is located in the
widgets area in styless.css.

Here is the look we had before the change:

.
Archives List

* October 2014 (1)

¢ January 2013 (5)
+ March 2012 (5)
* January 2012 (6)

Here is the new look, after the change:

Archives List

* October 2014 (1)

* January 2013 (5)
* March 2012 (5)

Widget title fonts are too big, so we will add this style to style.css:

.widget-title

{

font-size: 1.7em;

[113]

Responsive Widgets, Footer, and Comments

We also need to differentiate widget's title from the content, and we will do this by
adding the ensuing code to the widget-title class:

border-bottom: 1lpx dashed #666;
margin: 10px 0px;

Now we can scroll down through the page to see the changes. The only things that
don't look particularly interesting are the links and unstyled lists:

Recent Wnts
e MrWo ss on Hello world!

+ John Doe on Edge Case: No

Content

¢ Jane Doe on Protected: Template:

Password Protected (the password

is “enter”)

¢ Jane Doe on Template: Comments

¢ John Doe on Template: Comments

+ John Doe on Template: Comments

» Jane Doe on Template: Comments

. T'have first tried to color our links in blue (#0480b5), but they didn't look
% appealing as our title is of the same color, meaning there was too much of
" blue everywhere. I have tested numerous colors (and you should do the

same t00).

Finally, I came up with this solution that will work best for our links:

.widget a,

.widget a:visited,

.widget a:hover

.widget a:active,

#today

{
color: #666;
line-height: 1.6;
text-decoration: none;
font-weight: 500;

.widget a:hover(
text-decoration: underline;

[114]

Chapter 6

Here, we have set all the links in silver color and with a proper line height. After this,
we made sure that all the links, except hover links, are not decorated, as shown in the
following image:

Archives List

® October 2014 (1)
* January 2013 (5)
March 2012 (5)
January 2012 (6)
March 2011 (1)
October 2010 (1)
September 2010 (2)
August 2010 (3)
e July 2010 (1)

¢ June 2010 (3)

* May 2010 (1)

Finally, we put a font weight of 500 to distinguish links from normal fonts (for
example, in the calendar widget.)

In the calendar widget, we have a special ID for the current day (#today),
Z— which I have used to style that number too.

Calendar

December 2014
S M T w T S

1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
« Oct

[115]

Responsive Widgets, Footer, and Comments

Now, let's add those styles in order to edit lists:

.widget ul, .widget 1i{
list-style: none;
margin: 0.3em 0 O;

}

.widget 1i 1i { margin-left:lem; }

As we can see in the preceding code, we have disabled the width of list styles
and then added a margin top of 0.3em. Finally, we added margin-1left of 1em
for child lists.

Let's see the look of lists that have children:

Blog
Front Page
Sample Page
About The Tests
Page Image Alignment
Page Markup And Formatting
Clearing Floats
Page with comments
Page with comments disabled
Level 1
Level 2
Level 3
Level 3a
Level 3b
Level 2a

Level 2b

Lorem Ipsum

Editing the footer

Our next step is to edit the footer.

First, we need to make our footer distinctive, and we can do this by changing the
background color of the .site-footer class in the content-sidebar.php file:

background: none repeat scroll 0 0 #2£3336;

[116]

Chapter 6

Now, we are going to create a footer section in the style. css file. Since we have just
changed the background color of the footer, we need to change the widget title too:

.site-footer .widget-title

{
font-size: 1.7em;
border-bottom: 1lpx dashed #ccc;
margin: 10px 0px;
color: #fff;

}

Here, we have changed the title color to white and the bottom border color to silver:

We can solve this problem with the following code:

.site-footer .widget a,
.site-footer .widget a:visited,
.site-footer .widget a:hover
.site-footer .widget a:active,
#today
{
color: #999;
line-height: 1.6;
text-decoration: none;
font-weight: 500;

[117]

Responsive Widgets, Footer, and Comments

With the preceding code, we are making all the widget links in the footer to be of a
medium dark silver color:

Categories List

Now it's more readable, but we still need to fix some parts, right? That number in the
brackets is almost invisible:

.site-footer .widget ul 1i

{

color: #666;

}

The preceding code solves the problem as with it, we have added a darker shade of
silver so we could distinguish the link from the number.

Categories List

We fixed the visibility issue for a number of widgets, but the calendar widget is still
unfinished:

Calendar

[118]

Chapter 6

This line of code will solve the problem for all the unfinished widgets:

.site-footer p, .site-footer strong, .site-footer td, .site-footer th,
.site-footer caption

{

color: #999;

}

Now let's have a look at the result:

Calendar

The only missing part is styling for the current day, and we can solve this with the
following line of code:

.site-footer #today({
color: #fff;
font-weight: 600;

}

Here is the look after our change:

[119]

Responsive Widgets, Footer, and Comments

Now, as our footer and widgets look fine, we should have them rendered side by
side for a desktop look instead of having them one above another:

Archives Dropdown

In order to do this, we just need to add this code:

.site-footer .widget {
float: left;
width: 30%;
margin: 0 lrem 2rem 2rem;

[120]

Chapter 6

In the preceding code, we've first made all the widgets float to the left so they could
be rendered one beside the other. After this, we gave the widgets a width of 30
percent so we can have three widgets in one row. Finally, we set the margins to o,
1rem, 2rem, and 2rem (top, right, bottom, and left).

The final step with widgets is to make them fluid; that is, if we resize the browser
right now, for example to the mobile size, the widgets will still be one beside the
other instead of one above the other:

Archives Archives

We have used a percentage width in order to make our layout fluid (part

of a responsive layout) but we haven't yet applied the breakpoints. When
= we apply the breakpoints, the footer will become responsive (it will

respond to different sizes of the screen).

In order to make our widgets responsive in the footer, we are going to use the
masonry . js library.

. Masonry is a great JavaScript grid library that optimizes the layout based

% on the vertical space size. In our case, it can resize our widgets depending

s on the layout width. For more information about masonry, visit http: //
masonry.desandro.com/.

The good thing about masonry is that it already exists in WordPress. We just need to
load it in our functions.php file where we are loading all the other . js files:

wp_engueue_script ('topcat-masonry','/js/masonry custom.js',
array ('masonry'), false, false);

In the preceding code, we have called our custom masonry file where we are going
to set the default values for masonry. As we can see from the code, we set masonry
as a dependency with array ('masonry'). This way, we are loading masonry first
and then our custom masonry code.

[121]

http://masonry.desandro.com/
http://masonry.desandro.com/

Responsive Widgets, Footer, and Comments

Now is the time to create the masonry custom.js file in our themes js folder.

After this, we should wire the masonry to the footer widgets in our masonry
custon. js file with this code:

jQuery (document) .ready (function($) {

var $container = $('#sidebar-footer');
$container.masonry({

itemSelector: '.widget',
columnWidth: '.widget',
igFitWidth: true,

igsAnimated: true

13N
13N

Here, we have set a container to #sidebar-footer and then itemSelector to
.widget, obviously. The interesting part about masonry is that you can set a column
width to a CSS class instead of a number, and this change makes it even more
responsive. Try both on your own, the number (for example, 300 for columnwidth)
and CSS class (.widget for columnwidth), and compare the results.

In the sidebar-footer file, we should make sure that our widget container has the
sidebar-footer ID:

<div id="sidebar-footer" class="widget-area" role="complementary"s>
<?php dynamic_ sidebar('sidebar-footer'); ?>
</div>

Finally, when we resize the page, the widgets will load nicely (one beside the other):

Archives _(_:_alendar
Dropdown

Select Month v

Categories

[122]

Chapter 6

However, if we minimize the screen too much, the layout will break.

Archives Archives Calenda

In order to fix this, we have to customize our masonry custom code in a similar way
as we did with superfish.js:

var phoneSize = 600;
jQuery (document) .ready (function ($) {

var $container = $('#sidebar-footer');
if ($ (document) .width() >= phoneSize) ({
$container.masonry ({
columnWidth: '.widget',
isFitWidth: true,
isAnimated: true,
itemSelector: '.widget'
I3F;
}
$ (window) .resize (function() {
if ($ (document) .width() >= phoneSize) ({
$container.masonry ({
columnWidth: '.widget',
isFitWidth: true,
isAnimated: true,
itemSelector: '.widget'

I3
}

// < phoneSize disable masonry
else if ($(document) .width() < phoneSize) ({
$container.masonry ({

[123]

Responsive Widgets, Footer, and Comments

columnWidth: '.widget',

isFitWidth: true,

isAnimated: true,

itemSelector: '.widget'
1)

Scontainer.masonry ('destroy') ;

3N
3N

Here, we have set the phone size variable to 480, which is, actually, the same size as
that of content-sidebar.css for a media query. After this, in each section (case),
we initialized masonry with its default values. For screen sizes less than the phone
size, we disabled masonry and had our widgets displayed one per line. For this, we
used the CSS placed in @media screen and (max-width: 480px) instyle.css:

#sidebar-footer { width: 100%!important; }
#sidebar-footer .widget ({
width: 100%;
float: none;

}

When we resize the screen to the phone size, we get only one widget per line:

Archives List

[124]

Chapter 6

Working with comments

In this section, we are going to talk about:

* The purpose of comments and why they are important
* Styling comments title
* Styling comments themselves, including the author comments

* Styling comments navigation

The comments feature is a very important part of any website as the comments
enable interaction between the site owner and visitors. At the same time, they bring
more value to the site, as more information is provided and the site can have more
traffic as people who follow or respond to comments can come back. As WordPress
has two types of pages, that is, the page and the post (including custom posts), the
comments can be displayed on both.

M I recommend that you disable comments on pages of the type "page" on
Q business websites. I don't see the purpose of visitors leaving comments on
our "contact us" page or the "about us" page, right?

In order to deal with comments in our theme, we should go to Template: Comments,
which can be found by using the search widget with the keyword Template:
Comments, or in wpadmin by going to the posts section, searching for the same
keyword, and then choosing the Preview option. When we finally go to that post, we
will see a lot of comments there. Since we don't need to deal with that many, we can
go to Settings | Discussion | Break comments into pages and type the number 5.

[Make sure that this option is checked; then, save the changes.]

[125]

Responsive Widgets, Footer, and Comments

Now we are able to see the number of comments: the comments title (#1), comments
toolbar (#2), and comments themselves (#3):

- 1

19 THOUGH IS ON “TEMPLATE: COMMENTS"

Older
Comments

John Doe ==
am Edit

Comment Depth 01

Reply

Jane Bloggs ==y=:
14, 2043 ak 8:04 am Edik

Comment Depth 02

You are probably wondering how the comments are loaded, right?
If we go to single.php, we will see the following code around line 19:

<?php
// If comments are open or we have at least one comment, load up
the comment template
if (comments open() || get comments number ())
comments_template () ;
endif;

?>

As we can see, this code is checking whether comments are enabled and if there

are any comments. If the answer is yes to both, we call the comment_template ()
function, which loads the comments . php file. Since comments . php has a lot of code, I
have created a copy of it called comments_old.php.

We are going to make a number of changes to the comments . php file,
s and in order to avoid the confusion, I will use line numbers as references.

[126]

Chapter 6

Styling comments title

Before we do anything else, we should change the words around line 28, from
thought to comment and from thoughts to comments:

This is the code before the change:

printf(nx('One thought on “%2$s”', '%$1$s thoughts on
“ 2s” ', get comments number (), 'comments title', 'topcat'
)

number format il8n(get comments number()), '' . get the
title() . '');

This is the code after the change:

printf(nx('One comment on “%2$s”', '%$1$s comments on
“ 2s” ', get comments number (), 'comments title', 'topcat'
),

number format il8n(get comments number()), '' . get the
title() . ''););

As you can see now, in the code between lines 33 through 39 and again between 50
through 56, we have a comments header. We really don't need both, so let's delete
the one on lines 33 through 39. Since we have deleted the first comments header, we
now have this code:

<ol class="comment-list">
<?php
wp_ list comments(array(
'style! => 'ol"',
'short ping' => true,
))i
?>

<!-- .comment-list -->

In the preceding code, we have the comment 1list class and then the function call to
wp_list_comments (), which actually displays the comments.

[127]

Responsive Widgets, Footer, and Comments

Styling comments

Now, let's change the styling of our comments. In styles.css, comments are located
in the comments section:

19 COMMENTS ON “TEMPLATE: COMMENTS"

John Doe =

Aarch 14,2013 at 5 am Edit

Author Comment.

Reply

As we can see in the preceding image, we have to do a lot of changes in order to
make this look nice.

At first, we will fix the look of links by making them black and underlining them
only when they are hovered over:

.comment-body a,
.comment-body a:visited,
.comment-body a:active

{

text-decoration: none;
color: #000;

}

.comment-body a:hover

{

text-decoration: underline;
color: #000;

}

Secondly, we should have some space between the image and the author's name, the
author's name and the word "says", and the timestamp and the word "edit":

.comment-author .fn, .comment-metadata .edit-link

{

margin: 0.5em;

}

[128]

Chapter 6

After this, let's make the button links (edit and reply) look a little bit different than
the other text by making them bold:

.comment-metadata .edit-link, .reply({
font-weight: 600;

}
Then, we make the comment's content text italic:

.comment -content {
font-style: italic;

}
Finally, we make comments distinctive from border-bot tom:

.comment-list article({
border-bottom: 1lpx dashed #666;

}

Here is our improved look:

Jokn Dize
Edit

Comment Depeh 07

Junw Blogeu
Edi

Comment Dapth 02

Frad Eloggs
edit

Comment Depth 03

[129]

Responsive Widgets, Footer, and Comments

It looks a lot better than it did in the previous image, right? But, if we resize the
browser to the mobile size, the list in which comments are located will get more and
more nested (indented). To resolve the problem with indentation, add the following
code to the media query we used for the sidebar code, which is located at the end

of styles.css:

/* comentscomments */

#comments ol.children {
list-style-type: none;
margin-left: 0;
padding: 0;

}

ul, ol {
margin: 0 0 1.5em Oem;

}

Comments navigation

The final step is to style the comments navigation:

John Doe

We are totally going to blog about these tests!

«— Older Comments Newer Comments —

We can have a number of comments on our page/ post if, for example, our
M content is popular. This will make our page too big and it will take a long
Q time to load. To fix this, we can use comments navigation, as with this, the
number of comments can be limited; if our readers want to read them all,
they can use the comments navigation.

[130]

Chapter 6

At first, we should take out the word "comments" from the code in functions.php
around the lines 45 and 46:

<div class="nav-previous"><?php previous comments link(_ ("". "<i
class='fa fa-arrow-left fa-2's></i> Older ", 'topcat')); ?></
divs>

<div class="nav-next"><?php next comments link(_ ("Newer <i
class='fa fa-arrow-right fa-2'></i>". "", 'topcat')); ?></div>

In order to make the look more informed, we should also add font awesome arrows
(fa-arrow-left and fa-arrow-right). As comments are less important for us than
the content, we should resize font awesome icons with the . fa-2 class. Let's analyze
the CSS code in style.css:

comment-navigation
.comment-navigation,
.comment-navigation a,
.comment-navigation a:visited,

.comment-navigation a:active

color: #666;
font-family: "Open Sans",sans-serif;

font-size: 20px;

font-size: 2.0rem !important;
line-height: 20;;
text-transform: uppercase;
font-weight: 800;
padding: 10px;
font-style: normal;

text-decoration: none;

}

In the preceding code, we colored links in the navigation with a darker silver color
with text- decoration set to none (meaning links are not underlined) and font -
size set to 20px

.comment-navigation a:hover, .comment-navigation a:hover .fa-arrow-
left, .comment-navigation a:hover .fa-arrow-right
font-style:normal;
color: #000;

[131]

Responsive Widgets, Footer, and Comments

Here, we have made the links black when hovered over, and with font -
style:normal;, we have made sure that when hovered over, fonts will
not be in italic.

.fa-3
font-size: 20px !important;
font-size: 2.0rem !important;
i

}

Here, we made sure that font awesome icons are smaller in comment navigation than
in the content part.

Here, we will color font awesome icons to black:

.comment-navigation .fa-arrow-left,.comment-navigation .fa-arrow-right

{

color: #666;

}

Let's see the final look of a single comment and the comment navigation under it:

John Doe

We are totally going to blog about these kests!

€ OLDER NEWER =

[132]

Chapter 6

Summary

In this chapter, we learned a lot of useful tips and tricks. In the first section,

we learned more about widgets, how to style them, and how to make them
responsive. Then, we learned more about sidebars, and finally, we learned how to
edit the footer. In the second section, we learned more about comments and how
to edit and style them.

I bet you think that you know it all by now, right?

Well, the bad news is that there are a lot of things that we still have to learn;
however, the good news is that you are halfway done already!

Go get your coffee and continue on reading, as in the next chapter, we will dive into
the wonderful world of images and videos!

In the next chapter, we will learn how to deal with featured images and how to set
up and resize these images, image captions, and image galleries. We'll also learn how
to make the image galleries responsive.

[133]

Working with Images
and Videos

In this chapter, we will start with something fun and explore, some might say,

the most important visual item to look for when designing a website. As we are
visual creatures, images and videos are crucial items that we can have on our
website in order to attract viewers. This is something that we all want to do, right?
Also, YouTube and similar sites have gained a lot of popularity and some people
say that YouTube is even more visited than Google's search page. As videos are
interactive in some way, they can really boost the viewing of your website, too!

Let's look into everything that we will cover in this chapter:

* Featured images

* How to set up and resize featured images
* Image captions

* Image galleries

* How to make image galleries responsive
* Videos

Featured images

Featured images are images that should represent a post or page on the side of the
content. They are optional, which means that the post can have the featured image
or may not have it. They used to be called post thumbnails, but lately, they have
been renamed to featured images, as that is the more appropriate name.

[135]

Working with Images and Videos

We can set a featured image by going to a single post editor, wpadmin, and choosing
the post that we are going to edit. Inside the single post editor, there is the Featured
Image option on the right side menu at the bottom of the post:

Featured Image /

Set featured image

As we have loaded the theme unit test data, we don't have to create the testing page
ourselves. We are going to use Template: Featured Image (Horizontal),and the
post can be reached at: http://localhost/topcat/template-featured-image-
horizontal/ (if you have the same setup as I have). If you can't find it there, then
you should go to wpadmin | Posts and search for the post with the name Template:
Featured Image (Horizontal). This post already has a feature image set:

TEMPLATE: FEATURED IMAGE
(HORIZONTAL)

March 15, 2012 | admin | Template, Uncategorized

HORIZONTAL
FEATURED IMAGE

This post should display a Featured image, if the theme supports it. Mon-sguare images can
provide some unigue styling issues. This posk tests a horizontal featured image.

Codex edge case featuredimage image template

PREVIOUS NEXT

Tempiate: Mare Tag Template: Featured image (Vertical)

[136]

Chapter 7

Setting up a featured image

The post mentioned in the preceding screenshot, Template: Featured Image
(Horizontal), should also display a featured image, but it doesn't. So, let's analyze
the code to see what is going on. If we go to the single.php template, as that's the
template for the single post, we will see this line:

<?php get template part('content',K 'single'); ?>

This line means that we are loading a content-single.php template. So, let's open
a content-single.php template and look for any code that mentions the post
thumbnail. As there is no such code, it means that the featured image functionality is
not implemented yet, and we can implement it with just a single line of code:

<?php the post_thumbnail(); °?>
Within the header section, we can find the post thumbnail:

<header class="entry-header">

<?php the title('<hl class="entry-title"s', '</hls>'); ?>
<div class="entry-meta"s
<?php topcat posted on(); ?>
</div><!-- .entry-meta -->
<?php the post thumbnail(); ?>
</header><!-- .entry-header -->

Here is the new look after our changes:

TEMPLATE: FEATURED IMAGE
(HORIZONTAL)

B3 March 15,2012 | & admin | = Template, Uncategorized | (" Edit

HORIZONTAL

FEATURED IMAGE

[137]

Working with Images and Videos

Although WordPress is referring in the content editor as featured

images, the function name(s) handling the featured images have the
VS names such as the_post_thumbnail, meaning that functions

with the "old name" era associations are still used.

As our users can now load images of all sizes, we should set sizes that we allow
for our featured images. We are going to set this in functions.php just below the
add_theme_support ('post-thumbnails') ; line that we enabled previously:

add_theme support ('post-thumbnails');
add image size('large-thumbnail', 600, 200, true);
add image size('small-thumbnail', 300, 100, true);

Here, we are using the add_image_size function with which we will set up two
thumbnails sizes: 600 x 200 and 300 x 100. The latest parameter that we need to set
true or false is Boolean. The true option (the hard crop mode) will just cut the
image to fill the container that we set, and with the false option (soft crop mode),
the image will be resized to its proposed value.

More information is available here:

®* http://codex.wordpress.org/Function Reference/add image size

® http://www.davidtan.org/wordpress-hard-crop-vs-soft-crop-
difference-comparison-example/

. The cropping option should be used, but as with any important
feature, it should be used with the caution, as it may not work for all
s cases. We highly recommend always testing thoroughly by adding

images and seeing whether cropping options are working properly.

Resizing featured images

As we have seen so far, we can set thumbnail sizes for themes in functions.php,
and that's really a great thing. A problem could arise if our end user loads our theme
to their site that already had thumbnails set for their old theme. When they load our
theme, thumbnails will look distorted, as they were set for the other theme.

[138]

http://codex.wordpress.org/Function_Reference/add_image_size
http://www.davidtan.org/wordpress-hard-crop-vs-soft-crop-difference-comparison-example/
http://www.davidtan.org/wordpress-hard-crop-vs-soft-crop-difference-comparison-example/

Chapter 7

In order to fix this problem, we just have to run the Regenerate Thumbnails plugin,
which we installed in the Chapter 1, Responsive Web Design with WordPress. We go to
wpadmin | Tools | Regenerate Thumbnails, press the Regenerate Thumbnails
button, and we will see the processing screen:

Regenerate Thumbnails

Please be patient while the thumbnails are regenerated. This can take a while if your server is slow (inexpensive hosting) or if you hg
resized. You will be notified via this page when the regenerating is completed.

— =

Abort Resizing Images

Debugging Information

Total Images: 40
Images Resized: 2
Resize Failures: 0

1. "nyto_group” (ID 1710) was successfully resized in 1.523 seconds.

2. "spectacles” (ID 1692) was successfully resized in 1.371 seconds.

M Every time we change the theme on any of our sites, we should
Q run this plugin in order to be 100 percent sure that thumbnails
in the current theme will be displayed properly.

As we have set the thumbnail sizes, we should implement the change in our
content-single.php file from: <?php the post thumbnail (); 2> to this:
<?php the post thumbnail ('large-thumbnail'); ?>

As we can see from this code, we added the 'large-thumbnail' parameter to
the function and if we refresh the page now, the image will be resized.

+ We have set the size for the thumbnail, but we haven't used

small-thumbnail yet. We will use it in the next chapter,
’ where we will explain index pages.

[139]

Working with Images and Videos

Finally, if we resize our browser to the mobile size screen, it will look like this:

TEMPLATE: FEATURED
IMAGE (HORIZONTAL)

f9 March 15,2012 | & by:admin | 3=

Template, Uncategorized | (£ Edit

HORIZONTAL

his post should display a featured image, if the

theme supports it.

We can see that the image has been resized (the image is responsive), and this is
another functionality that was implemented by underscores.

That code is located in style.css around line 354:

img {
height: auto; /* Make sure images are scaled correctly. */
max-width: 100%; /* Adhere to container width. */

}

If you want to add more properties to this code, feel free to do so.

Image captions

Image captions are used a lot, and their purpose is to provide information about the
image. They are optional, but they should be considered for every theme, as some
people may use that feature. In order to see the caption, we should use the Markup:
Image Alignment post. Then, we can scroll down to the example with the image
captions:

[140]

Chapter 7

THIS IMAGE IS
580 X 300

Look at 580=300 getting some caption love.

From the preceding screenshot, we can see that the caption below the image looks
fine. My advice is to just style it a little bit in order to make it more distinguishable.

If we inspect the following code, the image with Firebug, or any other code inspector,
we will get this:

<figcaption class="wp-caption-text">

Look at 580x300 getting some

<a href="http://en.support.wordpress.com/images/image-settings/"
title="Image Settings"scaption

love.

</figcaption>

The wp-caption-text item is the CSS class that we are looking for and it is located
in style.css. So, the code that we are looking to delete is:

.wp-caption .wp-caption-text
margin: 0.8075em 0;

}

This code is located somewhere around the line 1,348. The change I suggest we do
is to make the text more distinctive by making it italic and adding the same silver
background that we used for the sidebar:

figcaption {
padding: 0.8075em O0;
background: #£f8f8f8;
font-style: italic;
width: 150px;
margin: 0;

[141]

Working with Images and Videos

Let's see our result now:

THIS IMAGE IS
580 X 300

Look at 580x300 getting some caption love.

our next section, Image galleries.

[

Image galleries

There are captions as a part of galleries too. We will cover this in]

Image galleries are a great option to share images with end users. We can create the
gallery by just going to the single post editor where we want to create the gallery,

and simply clicking on the Add Media button:

07 Add Media ?

B I ==

= = 6 —

kil
A

After this, the Insert Media menu will show up:

Insert Media

Create Gallery

Insert from URL

Set Featured Image

/3” t Media
Upload Files = Media Library

Create Audio Playlist

All media items ™

Create Video Playlist

Chapter 7

Here, we should click on the Create Gallery option. When we click on this option,
we will see images loaded on the right-hand side. Then, we just have to click on
images that we want to add to the gallery, click on the Create New Gallery button at
the bottom on the right side, and that's it.

As we have loaded a Theme Unit Test data, we don't have to do all this, and we
have two posts: Post Format: Gallery and Post Format: Gallery (Tiled).

Here is the look of the Post Format: Gallery post:

24 Cectember 10, 2010 | & tv- admin | @ Cat=son: PostFormaks | LF Edi

Lorem ipswm dolor sik amet,
consectetuer adipiscing =it
Donec mollic. (uisgue convalli
fibero in sapien pharetra
Encidunt. Aliquam elit snts,
malesuada id, kempor ew,
gravida id, odio. Mascenas
suscipik, risws =t =beifend
imiperdiat, nisi orci ullamoorper
massa, ok adipiscng ord welit
guis magna.

Eell on wharFin San Francizsco Golden Cate Bridge Sunburst over the Clinch Rive

Southwesk VWirginia.

[143]

Working with Images and Videos

As we can see from the preceding screenshot, the captions are taking more space
than images. In order to make sure that we are doing everything correctly, we have
created a new test gallery, so we can double-check the default size of thumbnails.
When we loaded all images, the individual sizes of thumbnails were 150 x 150, which
is what we want. we added a CSS to style.css in order to get this 150 x 150 size for
captions in our existing gallery:

.gallery-item figcaption {
width: 150px;

}

Our result is this:

Bell on whaif in San Golden Gate Bridge
Francisco

The caption is of the same width as the image now. After this, we should go
tothe 12.2 Galleries section and comment out text-align: center in the
.gallery-item class:

.gallery-item {
display: inline-block;
/* text-align: center; */
vertical-align: top;
width: 100%;

}

Now, if we scroll down in the gallery, we will see that some rows don't have
enough space between them:

[144]

Chapter 7

Boardwualk at Boats and Raindrop ripples on

Westport, WA reflections, Rovay a pand
Perth Yacht Cl

We can solve this problem with just one line of code in style.css:

figure

{
}

Let's view our result now:

margin-bottom: 0.8075em !important;

Boardwalk at Raindrop ripoles on
Westport, WA fons, apond

[145]

Working with Images and Videos

Making the gallery responsive

The final step in the creation of a gallery is to make it responsive. For example, if we,
resize the browser to the phone size screen, we will get this:

Lorem ipsum dolor
sit amet,
consectetuer
adipiscing elit.
Donec mollis.
Quisque convallis

The caption is bigger than its image and images are beside each other, because these

images are responsive (they resize together with the screen, so they look good across
all devices), and the caption has a fixed size of 150px, as you can see it from our code
in style.css:

.gallery-item figcaption ({
width: 150px;

}

As the phone screen is too small, we should put our images into their own rows
and their captions just below them. Because we are now handling a mobile size
screen, we should put our classes in @media screenand (max-width: 480px),
which are located in style.css (the same media query that we used for the
sidebar and comments):

.gallery-item {
width:100%;
display: block;
margin: 2em lem;
text-align: center;

}

This code creates our gallery item with width of 100% and centers the item in its
row too. If we refresh the browser now, we will see no changes to our div gallery:

<div id="gallery-1" class="gallery galleryid-555 gallery-columns-3
gallery-size-thumbnail">

[146]

Chapter 7

This code has a class of gallery-columns-3, so we have to make sure that items in
this class take 100% width:

.gallery-columns-3 .gallery-item,
.gallery-columns-4 .gallery-item,
.gallery-columns-5 .gallery-item,
.gallery-columns-6 .gallery-item,
.gallery-columns-7 .gallery-item,
.gallery-columns-8 .gallery-item,
.gallery-columns-9 .gallery-item

max-width: 100%;

}

If we go back to the gallery section of our style.css file, we will see that we have
cases there for gallery-columns-3 up to gallery-columns-9, and the preceding
code has covered it all. If we refresh our page in the mobile size view, we will see
our images centered, but our captions left-aligned:

Colden Gate Bridge

Let's make our captions take 100% width and align them to the center too:

.gallery-item figcaption ({
width: 100%;
text-align: center;

[147]

Working with Images and Videos

Here is our final look:

Bell on wharf in San Francisco

T

Golden Gate Bridge

Working with videos

Working with videos in WordPress is really easy. For the major video sites (YouTube
or Vimeo), we can just copy and paste the URL into the post editor and click on
Publish, and embedded video will appear on our page or post:

EST GALLERY

£ December 11,2014 | & by:admin | = Cat Uncategorized | (2 Edit

Tantrum Desire - Genesis.
-

Vg

[148]

Chapter 7

Now, try to resize the screen to the mobile size and you will be pleasantly surprised
that the video is a responsive, too. Isn't that great?

Al

~ The list of supported video sites can be found here:
http://codex.wordpress.org/Embeds.

As we can see from the link, the list of supported video sites is huge. If, in some case,
you would like to post a video that is not located on these sites, you will have to create
a custom code for it, and that's out of the scope of our book.

You should be aware that posting videos on these external sites is the way
\y
~ to go, as this way, you are using their bandwidth and not yours. As with
most hosting companies, even with those that have unlimited packages,
the bandwidth is limited (read the fine print).

Summary

In this chapter, at the beginning, we learned more about featured images and how to
set up and resize them. Later on, we tackled the image caption and learned how to
create the image gallery and make it responsive. Finally, we learned about videos.

In the next chapter, we will get familiar with template files.

[149]

http://codex.wordpress.org/Embeds

Working with Template Files

Template files are very important files for WordPress themes. We have mentioned
this previously, but let's repeat it again. In order to have a theme in WordPress,
we need to have at least the following files:

®* style.css

¢ functions.php

® index.php
In style.css, we define the theme name, a description, and the core CSS for the
theme. In the functions.php file, we define our own custom functions and calling
our styles and JavaScript, and also wireing our theme code to the WordPress core. In

the index.php file, we display the list of our posts, pages, or any other objects that
are listed in that index page. There can be a lot of index pages in our template.

Without further ado, in this chapter we will:

* Learn the template hierarchy of archive pages
* Learn more about excerpts

* Learn how to customize the paging navigation
* Learn how to style sticky posts

* Modify archive.php

i hﬁodiﬁf404.php

* Modify search.php

[151]

Working with Template Files

The WordPress template hierarchy

So, let's analyze the WordPress template hierarchy again:

This is taken from: http: //codex.wordpress.org/Template Hierarchy. If we start
from right to left, we have the index.php page, and that page catches all requests that
are not explicitly handled by another template. If we want to have a special template
for archives, then we can create the archive.php (available with our theme) template.
For search results, we can use search.php (available with our theme). For a missing
page/ post, we can use 404 . php (available with our theme). So, if we examine the
preceding screenshot, we can see that archive.php is a child of index.php, and
search.php and 404 . php are children of index. php. If we open any of these pages,
we will see that they have a similar structure (as they are bootstrap pages too). They
just have some code that is unique, as it has to be like that in order to serve the purpose
of a page. If we want to see this relationship explained in real life, we can add the
testing archive page textin the archive.php page just under get_header () ;:

get_header(); 2>
testing archive page

[152]

http://codex.wordpress.org/Template_Hierarchy

Chapter 8

From the previous explanation, we know that the archive.php page is an index
page for archives, but if we check the preceding screenshot, we will see that it's a
parent page for author.php, category.php and tag.php. As we don't have any
of these available, archive.php can and will be used as a template for these
situations. If we go to the index page of our website, we will see the first post with
the Template: Sticky name . This post has tags at the bottom, and if we click

on any of the tags, we will see this:

TEMPLATE: STICKY

4 January 7,2012 | | #= Uncategorized | (&' Edit

This is a sticky post.
There are a few things to verify:

® The sticky post should be distinctly recognizable in some way in comparison to normal
posts. You can style the . sticky class if you are using the post_class() Function to
generate your post classes, which is a best practice.

They should show at the very top of the blog index page, even though they could be

several posts back chronologically.
They should still show up again in their chrenologically correct postion in time, but

without the sticky indicator.
If you have a plugin or widget that lists popular posts or comments, make sure that this
sticky post is not abwgys at the top of those lists unless it really is popular.

Tags: W sticky % template

[153]

Working with Template Files

We should go to the index page for this tag (template):

Prefessienal Meve Management & Organizing Experts

HOME BLOG FRONT PAGE SAMPLE PAGE ABOUT THE TESTS LEVEL1 LOREM SUM PAGEA PAGEB
testing archive page

template
TEMPLATE: FEATURED IMAGE (VERTICAL) Archives

December 2014
[March 15,2012 | | E= Template, Uncategorized | (£ Edit o 18
This post should display a Featured image, if the theme supparts it

Mon-square images can provide some unique styling issues.

This post tests a vertical Featured Image.

% Codex % edge case % featured image % image % template

As we can see from the preceding screenshot, our URL (#1) says it's a tag page for
the template tag: http://localhost/topcat/tag/template/.

Secondly, the template tag name is listed above the post's title (#2).

This page will list all posts that have the template tag
s attached to them.

Finally, the testing archive page text that we have added to archive.php is
shown here (#3), which means that archive.php was used to that purpose. The
same thing will happen if we click on any category. We will go to the index page of
the category for which our archive.php page is used, and we will see the same text
that we added to the archive page.

Excerpts

As we have a lot of posts loaded with our test data and hopefully, our customers will
have a lot of posts too, displaying the full content on index pages is not appropriate
as it takes too much space. If somebody is looking for something, it's really
confusing, and it takes valuable time. This is where the excerpt functionality comes
to the rescue.

[154]

Chapter 8

Excerpts can be customized but, by default, they display the first 55 words of the
article and ends with [..], which is called a hellip or an ellipsis symbol.

More info is available at http://codex.wordpress.org/Function Reference/
the excerpt.

As we have mentioned previously, our index. php file is a bootstrap file with calls to
other files that provide page sections. The get_template_part('content', get_
post_format ()) ; line includes the content- [post_type] .php file, and if that file
doesn't exist, it includes the content . php file, which provides the content. In our
case, it includes content . php. Suppose that we go to content . php and comment
out this code:

the content (sprintf(

('Continue reading %s →</

span>"', ’topggt'),
the title('"', '"</
span>', false)

))i
And just leave the excerpt part:

the excerpt().
Here is the full code example where we have commented out the content () part:

<?php
/* translators: %s: Name of current post */

/*
the content (sprintf(
__('Continue reading %s →</spans>',
'topcat!'),
the title('"',6 '"</spans',
false)
))i
*/
the excerpt();

?>

[155]

http://codex.wordpress.org/Function_Reference/the_excerpt
http://codex.wordpress.org/Function_Reference/the_excerpt

Working with Template Files

We will have our excerpt displayed on our index page, as you can see on the
following image:

TEMPLATE: STICKY

January 7,2012 | | £ Uncategorized | (£ Edit

This is a sticky post. There are a few things to verify: The sticky post should be

distinctly recognizable in some way in comparison to normal posts. You can style the sticky
class if you are using the post_class() function to generate your post classes, which is a best
practice. They should show at the very top [...]

ags: W sticky % template

Leave a commment

Isn't this easy? The only part missing here is the Read More button (link). We also
have a footer there with tags and option to leave the comment, and this is really
not needed on the index page, so we will take the footer out:

<?php topcat entry footer(); ?>

Replace this line (in content . php) with the Read More link:

<?php echo '<a href="' . get permalink() . '" title="' . _ ('Read
More ', 'topcat') . get the title() . '" >Read More <i
class="fa fa-arrow-circle-o-right"></i>'; ?>

As you can see, we have added the awesome icon font to the code:

Read More

Now, we just have to style the link properly, and that's it. We will do this in the
Posts and pages section (10.1) of style.css.

At the end of the section, we should put this code:

.entry-footer,
.entry-footer a,
.entry-footer a:visited,
.entry-footer a:active

[156]

Chapter 8

color: #000;

font-weight: 600;

font-family: "Open Sans",sans-serif;
text-decoration: none;

.entry-footer a:hover
color: #0480b5;
font-family: "Open Sans",sans-serif;
text-decoration: underline;

}

The first part is to make the links black and bold in order to make them more
distinctive from the content text, make them undecorated (meaning no underline),
and assign them a font family. On hovering, we color the text with blue and give it
an underline decoration.

Featured images

The next step is to put featured images in the content template, and all it takes is
adding one line:

<header class="entry-header">
<?php the title(sprintf('<hl class="entry-title"><a href="%s"
rel="bookmark">', esc_url(get permalink())), '</hls'); ?>

<?php if ('post' == get post type()) : ?>
<div class="entry-meta"s
<?php topcat posted on(); ?>
</div><!-- .entry-meta -->
<?php the post thumbnail ('small-thumbnail'); ?>
<?php endif; ?>
</header><!-- .entry-header -->

Post thumbnails or featured images

thumbnail —if they are available. This is why featured images are
also called post thumbnails —like thumbnails in a gallery, they
represent the post in the list context.

.\'Q While listing the excerpts of posts, we want to also show their post

[157]

Working with Template Files

If you remember, we have added the two sizes of post thumbnails in the Chapter
6, Responsive Widgets, Footer, and Comments, and we used only the large one for the
single post. For the index page, we are using a small thumbnail:

TEMPLATE: FEATURED IMAGE (VERTICAL)

4 March 15,2012 | | = Template, Uncategori Edit

VERTICAL

FEATURED IMAGE

This post shoul y a Featured image, if the theme supports it. Non-square images can

nigue skyling issues. This post tests a vertical Featured image.

Read More @

We can see a small thumbnail (#1) and the look of the Read More link (#2) in the
preceding screenshot.

Customizing the paging navigation

If we scroll to the end of the index page, we will see the Older posts link:

| “— Older posts |

This is part of our current navigation. The good thing with this navigation is that we
have it and the bad thing is that is really simple and if we have a lot of posts, this
navigation is not that helpful. Paging will be more helpful, as there we will have
boxes with page numbers. Then we will be able to skip more pages at the same time
instead of just going from one page to another. Our navigation code is contained in
the topcat paging nav () function that is located in the template-tags.php file
with other custom functions. As we want to use the more sophisticated solution, I
have found the code that has a paging functionality (this code is actually used in the
Twenty Fourteen theme, that has been tested a lot and because of that it is good).

[158]

Chapter 8

. The updated template-tags.php file is provided with the code
N

~ for this chapter.
Q Make sure that you change the instances of the word (domain) from
twentyfourteen to topcat in this code.

Here is the example:

" 'prev_text' => ('<i class="fa fa-arrow-left fa-4"></i>
Previous', 'twentyfourteen'), "
" 'prev_text' => _ ('<i class="fa fa-arrow-left fa-4"></i>
Previous', 'topcat'), "

Here is the code section where we have to make changes for the navigation located
in /inc/template-tags.php:

// Set up paginated links.
$links = paginate links(array(

'base’ => S$pagenum_link,

'format' => S$format,

'total!' => $Swp_guery->max num_pages,

'current' => $paged,

'mid size' => 1,

'add args' => array map('urlencode',6 $query args),

'prev_text' => _ ('<i class="fa fa-arrow-left fa-4"></i>
Previous', 'topcat'),

'next text' => _ ('Next <i class="fa fa-arrow-right fa-4"></i>',
'topcat'),

))

Here is the current look of the paging navigation:

+— Previous 12 3 4 Next —

Now, let's start with styling our pagination:

.pagination,
.pagination a,
.pagination a:visited,
.pagination a:active

color: #0480Db5;
font-family: "Open Sans",sans-serif;
font-size: 1.6rem !important;

[159]

Working with Template Files

font-size: 16px;
line-height: 1lépx;
text-transform: uppercase;
font-weight: 800;

padding: 10px;

font-style: normal;
text-decoration: none;

}

In the previous code, we are coloring our pagination in blue, we are making fonts to
be uppercase and a 1. 6remsize, and finally, we are making sure none of the links
are underlined. Take a look at this code:

.pagination .current

{
}

In the next code, we are coloring hover links to dark silver and we are making sure
that on hovering, they will be underlined:

color: #666;

In the following code, we are coloring current page number to dark silver:

.pagination a:hover

{
color: #666;
font-family: "Open Sans",sans-serif;
font-size: 1.6rem !important;
font-size: 16px;
line-height: 1lépx;
text-transform: uppercase;
font-weight: 800;
padding: 10px;
font-style: normal;
text-decoration: underline;

}

With this code, we are making sure that our pagination is centered, as it looks better
like that:

.pagination

{

text-align: center;

[160]

Chapter 8

The original pagination used HTML special characters for arrows, but as we are
using the font awesome for them on other sections, it will be appropriate to use

it for this navigation too. In order to use the font awesome fonts, we have to change
the code in template-tags.php:

$links = paginate links(array(

'base’ => $pagenum_link,

'format' => S$format,

'total! => $SwWp_qguery->max num pages,

'current' => $paged,

'mid size' => 1,

'add args' => array map('urlencode',6 $query args),
'prev_text' => ('<i class="fa fa-arrow-left fa-4"></i>

Previous', 'topcat'),
'next text' => _ ('Next <i class="fa fa-arrow-right fa-4"></
i>', 'twentyfourteen'),

))

Changes are marked in bold in the previous code. After this, we have to make
changes in style.css. As we want these arrows to be smaller than the arrows in
other sections, we will use .fa-4 (font awesome 4 class), and because the fonts
are the size of 16px, we should have the font awesome icons to have a 16px size, too:

.fa-4{
font-size: 16px;
font-size: 1.6rem !important;

}

Also, we want icons to change color on the hover to our dark silver color. To achieve
this, we will use the following code:

.pagination a:hover .fa-arrow-right,

.pagination a:hover .fa-arrow-left

{

color: #666;

[161]

Working with Template Files

Styling sticky posts

Sticky post is the most important post that we want to show at the top of all
posts, even before the latest posts. As we have mentioned previously, we can
check whether our post is sticky; if we go to the post editor and at the top-right
Publish section, it will display this:

Publish

Preview Changes

‘f Status: Published w

@ Visibility: Public, Sticky|Editl

il Published on: Jan 7, 2012 @ 7:07 Edit

If it's not a sticky post and we want to make it sticky, we should just click on the Edit
button and check the Stick this post to the front page option:

Publish

Preview Changes
? Status: Published Edit

@& Visibility: Public, Sticky

this post to the front page

(O Password protected
O Private

0K | Cancel

m Published on: Jan 7, 2012 @ 7:07 Edit

If the post is a sticky, WordPress adds a sticky class to the markup:

<article class="post-1241 post type-post status-publish
format-standard sticky hentry category-uncategorized
tag-sticky-2 tag-template" id="post-1241">

[162]

Chapter 8

A\l

~ By default, WordPress adds a st icky class to the markup only under
certain circumstances on index pages but not on single post pages.

Then, we just have to find the sticky class in our style.css file and add the border
and padding:

.sticky {
display: block;
border: 1lpx dashed #666;
padding: 10px;

}

Let's see our result:

TEMPLATE: STICKY

January 7,2012 | | =2 Uncategorized | (&' Edit

This is a sticky post. There are a few things to verify: The sticky post should be

distinctly recognizable in some way in comparison to normal posts. You can style the .sticky
class if you are using the post_class() function to generate your post classes, which is a best
practice. They should show at the very top [..]

Read More @

Modifying archive.php

As we have mentioned at the beginning of this chapter, while analyzing the first
image (the template hierarchy), the archive.php template is the parent template for
archives for authors, categories, post types, taxonomies, dates, and tags. Overall, it
displays the array of posts that match the specific post type (mentioned previously).

We have tested this functionality by clicking on a category or a tag in our index page,
and we got the output from archive.php. Take a look at the code in archive.php:

if (is_category()) :
gingle cat_title();

elseif (is_tag()) :
single_tag titlel];

elseif (is author({)) :

printf{ __{ "RButhor: %s', 'topcat' |, '' . get_the_suthor() . '');

Pttt

[163]

Working with Template Files

We will see that the output is just a basic one. For example, if the end user clicks on
the Template category, he/she will get this output:

Templmte"o

Posts with template-related tests

TEMPLATE: FEATURED IMAGE (VERTICAL)

&% March 15,2012 | | 3= Template, Uncategorized | (£ Edit

The category name (Template) will be displayed above the title, but it doesn't say
anywhere whether that's a category, a tag, or something else. By adding just one
line of the code, we will make it more explicit:

echo(_ ('Category: ', 'topcat'));
single cat_title();

We can make the same change with tags:

echo(('Tag: ', 'topcat'));
single tag title();

The only thing that we should change is the color of that title, as it's currently the
same color as the post title and it's hard to differentiate them. We can perform this
change by adding an archive-title class to this line:

<hl class="page-title archive-title">
With just adding the archive-title class to our style.css file:

.archive-title{
color: #666;

}
We should add this code to 10.1 sections: Posts and pages. Our final result is:

Category: Template

Posts with template-related tests

EMPLATE: FEATURED IMAGE (VERTICAL)

[164]

Chapter 8

We will get the same look if we click on any tags instead
s of categories, as archive. php is a fallback template.

Modifying 404.php
404 .php is the page that shows the warning message when end user tries to go to a

page that doesn't exists, for example: http://localhost/topcat/pagel234 as you
can see in the following image:

http://localhost/topcat/pagel1234

New
numc DLUG

Top Cat

rnuNi rauc DANMFLEC FAUVULC Aapuwul 1|

Oops! That page ‘'t be found.

It looks like nothing was Fou is location. Maybe try one of the links

Search
Recent Posts /‘9

test gallery

Hello world!

Markup: HTML Tags and Formatting
Markup: Image Alignment

Markup: Text Alignment

Most Used Categories

Post Formats (16)

Uncategorized (13)

Here, we first search for the term (# 1), and then we get the message (# 2). Below the
message, we get the search box (# 3) —same one as in search.php —so we can search
for something that exists in the system, as maybe, we have misspelled the page. Below
that, we see some other widgets (# 4) —Recent Posts, Most Used Categories, and so
on—that will give us more options to find the stuff that we are looking for. So, at first,
we should change the color of the title by adding an archive-title class to this line:

<hl class="page-title archive-title"><?php e('Oops! That page
can’t be found.', 'topcat'); ?></hl>

[165]

Working with Template Files

As we don't have the sidebar on this page and it can be helpful to end user,
we should add it to our search.php page just before the call for the footer:

<?php get sidebar(); ?>
<?php get footer(); ?>

Let's see how our page looks like after the changes:

Oops! That page can't be found.
I fecka ik cthing s Fourd a2 thia kocation. Maye oy orw o the Links below or nasarch?

Recent Posts

st galiy
[R

Tags

1 UGG i i i iz g st Gl commn@nts
content css...edge tase embeds axcerpt v foatured Image

v pew allzry himil 130 2 fetpaciclayan E ek s e MEFKUD ..

tmt it pogimsie POEE FOrMAES genes shortoode

stnrciard DEITIP1E LS Hitle brittur vitos vtwoprm sordpraa e

It looks pretty good, right?

Modifying search.php

The search.php file is in the same level as archive.php and its purpose is to show
the results of the search, and if there are no results, it should show the message. As
we already did a lot of customization, we just need to do the basic styling and test
the search. At this moment, we don't have a search form, but we can test the search
by adding parameters to the URL, for example:

http://localhost/topcat/?s=test

[166]

Chapter 8

Here, we are adding the ?s=test parameter, which means that we are searching for
any post or page that contains the test term. Our result is:

Search Results for: test

1 December 11,2014 | | 2 Uncategorized | (&' Edit

Tags:

Leave a comment

The result looks good, as we have found the matches for our search. The only thing
that we should change is the color of the page title; in our case, this is Search Results
for: test; to distinguish it from the post title, TEST GALLERY. In order to do this, we
just have to go to search.php and add the archive-title class to this line:

<hl class="page-title archive-title"><?php printf(_ ('Search
Results for: %s', 'topcat'), '' . get search query()

''); ?></hl>

This is the result:

Search Results for: test
TEST4SALLERY

BAD ber 11,2014 | | 2 Uncategorized | (¢’ Edi

Tags:

Leave a comment

[167]

Working with Template Files

Summary

In this chapter, we have learned about the hierarchy of template files, excerpts, how
to customize the paging navigation, how to style sticky posts, archive.php, 404.
php, and search.php.

In the next chapter, we will work on static pages and their templates and we will
learn how to add extra functionality with plugins. We will cover the home page, as
its layout has more elements than other pages and it doesn't have a sidebar, which
means that we will add another css file for that case.

[168]

Working with Static Pages
and Adding the Extra
Functionality with Plugins

We have left the best for last. With this chapter, we are wrapping the development
part of our book.

Posts are entries listed in reverse chronological order on the blog home page or
on the posts page if you have set one wpadmin-> Settings->Reading. If you have
created any sticky posts, those will appear before the other posts. If you are using
WordPress as a blogging platform you will be mostly using posts there. You can
organize your posts by using categories and tags.

Pages are static and are not listed by date. Pages do not use tags or categories. An
About page is the classic example of a static page.

Static pages are a crucial part of WordPress themes as we are giving our customers
premade solutions that they can configure to their needs.

Let's see what we will cover in this chapter:

* Creating and assigning the page template
* Creating alternative styles for the home page

* Setting the slider plugin

[169]

Working with Static Pages and Adding the Extra Functionality with Plugins

* Setting the services plugin
* Checking whether there are services and how to list them
* Making the home page responsive

* Creating the Contact Us page with a contact us plugin that is a part
of Jetpack

Home page

Home page is the landing page of our website and its purpose is to attract customers
and provide the most important information. As home page usually has a different
look than other pages, we have to create a custom code in order to match our needs.
Here is the look that we want for our home page:

o

e [y Professienal Meve Management & Organizing Experts

HOME ELOG FRONTPAGE SAMPLE PAGE ABOUT THETESTS LEVEL1 LOREMIPSUM PAGEA PAGEB

1

2 -
-

Lorem ipsum dolor sit amet, consec =COFebiscng elit, sed do eivsmod tempor incididunt ut labore st dolore magna aligua. Ut enim ad minim
weniam, quis nostrud exercialies ullamco laboris nisi uk aliquip ex #a commodo consequak. Duls sute irure dolor in reprehenderitin volupkabe velit
=sze cillum dolore eu pariatur. Excepgeur sink occaecat cupidatat non proident, sunk in culpa gui officia deserunt mollik anim id esk
laborum
NEMO ENIM SEDUT NEQUE PORRO Quis
IPSAM PERSPICIATIS Negue parre quisquam est. qui Quis sutem vel sum jure
Nemo enim ipsam voluptabem Sed ut perspiciatis unde omnis dolorem ipsum guia doleor sic reprehenderit quiin ea
guia voluptas sit aspematur aut iste natus error sit woluptatem amet, consectetur, adipisci velit, voluptate velit esse guam nihil
odit aut Fugit, sed guia accusantium doloremous sed quia non numguam eius malestiae consequatur, vel
Eonseguuntur magni dolores lsudantium, botam rem madi termpara incidunt uk illwm gui delorem eum Fugiat
eos qui ratione voluptatem aperiam, eague ipsa quae abills lsbore 2k dolore magnam gue veluptas nulls pariatur?
sEqui nesciunt. imventore veritatis ot guasi aliguam quaerst voluptatem. Ut
architecto beatas vitae dicta enim ad minima veniam, quis
sunt explicaba. mostrum exercitationem ullam
corporis suscipit laboricsam,

[170]

Chapter 9

As we can see from the preceding screenshot, we will have three sections there:
the slider (1), short description (2) and the list of services (3). All these features
are optional, although I advise using them all, as they became a de-facto standard for
business-oriented templates in the last few years.
B If you want to know more about the features for business templates,
check the following sites:

* https://wordpress.org/themes/search/business/

%%‘ * http://themeforest.net/category/wordpress/
corporate
Here, you will see that a majority of themes have the features that I
- have just mentioned -

The home page template

As we have mentioned, we are going to create a custom template that will serve the
purpose of the home page. In order to do this we have to go in our editor and create
the front -page.php file. In this file, we should add the following code, in order to
make this file a page template:

/*
Template Name: Home Page

*/

When we added this code, we got a new option in our page editor. However, before
we make any changes, we should go to the page editor by navigating to wpadmin |
Pages | Add New and create a new page with the Home name. After this, we will be
able to see the template dropdown in the Page Attributes section on the right, and
there, we should choose the Home Page template:

Page Attributes
Parent

(no parent) v
Template

Home Page hd

That is how we assign the template to the page in editor.

[171]

https://wordpress.org/themes/search/business/
http://themeforest.net/category/wordpress/corporate
http://themeforest.net/category/wordpress/corporate

Working with Static Pages and Adding the Extra Functionality with Plugins

u We could assign anything to the template name. We are just
~ using Template Name: Home Page for consistency and to
Q make our life easier, as this template name is clearly saying

what this template is about.

Now, we should go to Appearances | Customize in wpadmin and assign a Home
page as Static Front Page:

Static Front Page &

Your theme supports a static frent

® "A static page

Front page

Home A

In the previous image, in the step #1, we are choosing a radio option A static page, and
in step #2, we are choosing our Home page from the dropdown. Now, when we click
on a home link in our menu or on a logo, we will be taken to our new home page.

Styles for the home template

As we were able to see from the first image at the beginning of this chapter, our
home page is going to look different than other pages. It will not have the right
sidebar and the content will take 100 percent. Because of all this, we should have a
separate CSS file for this purpose.

o As we already have a content -sidebar. css file in our
~ layouts folder, I recommend that you create a copy of this
Q file. We can reuse a lot of code there and we should name
the new file content.css.

[172]

Chapter 9

In order to use content . css on our home page, we have to add this code to our
functions.php file:

if (is_page template('front-page.php')) {
wp_enqueue_ style('topcat-layout-css',

get_template directory uri() . '/layouts/content.css');

}

else

{

wp_enqueue_ style('topcat-layout-css', get template directory
uri() . '/layouts/content-sidebar.css');

}

In the content. css file, we should make some changes. For example, we should
change this class:

.site-main
margin: 0 5% 0 0;

}
To the following:

.site-main {
margin: 0;

}

We should also delete the .site-content .widget-area class, as we are not going
to use the widget area in this template.

Then, in the desktop styles media query:

/*desktop styles*/
@media only screen and (min-width:769px)

We should make the content area taking 100% instead of 70%, and delete the float, as
we don't need it :

.content-area {
width: 100%;

[173]

Working with Static Pages and Adding the Extra Functionality with Plugins

In order to display the content entered in the editor in our home template, we have
to add this code to home-page . php:

<?php if (have posts()) : while (have posts()) : the post();?>
<?php the content(); ?>
<?php endwhile; endif; ?>

Slider plugin

As we want to make our site more interactive, we should install a s1ider plugin.
There are a lot of free and premium slider plugins that we could use, but as this is
a training book, we will use the free one so that everybody can have the access to it.
For this purpose, we will use a Meta Slider, which is currently the most popular
free slider plugin on the WordPress.org website.

It can be downloaded from here: https://wordpress.org/plugins/ml-slider/.

_ For my professional projects, I was using a LayerSlider, which is a
% premium plugin. You can check it out here: http: //codecanyon.
A net/item/layerslider-responsive-wordpress-slider-

plugin-/1362246.

The great thing with our Meta Slider plugin is that we can set it up in its own editor,
grab a shortcode, paste it in our page, and that's it. Shortcodes are custom features
that can be called from the post or page editor; for example, gallery can be called with
[gallery]. Our Meta Slider will be called with this code: [metaslider id=1734].

Now, let's set up the slider:

Slides 1 B A e Settings Save & Preview m
General
R. Slides. vo Slider Coin Slider

i
’
3 A ~ :
¥ EON 7 <o co i one Tied Gallery iake sure that everything spaces nicely.
' BRGLEO
FE N Width 1000 [px
3N :
i URL O Height m B :w
Image Slide
Effect Fade v

K General
_,- Theme Default
2 This is some text after the Tiled Gallery just to make sure that everything spaces nicely.
] Arrows w

Image Slide Navigaton g

[174]

https://wordpress.org/plugins/ml-slider/
http://codecanyon.net/item/layerslider-responsive-wordpress-slider-plugin-/1362246
http://codecanyon.net/item/layerslider-responsive-wordpress-slider-plugin-/1362246
http://codecanyon.net/item/layerslider-responsive-wordpress-slider-plugin-/1362246

Chapter 9

Here, we should first add the first slide, and then choose the image (#1), general
description (#2), and URL (#3).

Please note that I didn't choose anything for our
%= URLs at this point.

Then, we should choose which slider we want to use, as Meta Slider has many
options. In this case, let's use the first option: Flex slider (#4). As our content width
is 1000px, we should choose a width of 1000px (#5), too and a height of 273px (#6).

These sizes work with images that I have used, and I recommend
- that you use the same images.
%;%‘ These images were provided as a part of the Theme Unit Test Data
and we can find them by just choosing the Add slide option in
Media Library, and they should be somewhere on the first page.

After dimensions, we should choose the Fade effect (#7) and the Default theme (#8),
and we should also select the Arrows checkbox (#9) and Dots for the navigation.
Let's look at the advanced settings:

Advanced Settings

i mo O
,,,,, . 0
e
. O
e delay 10000 | ms
animationspeed | 600 = ms
- Herfzanzal v

Deweloper options

CS5 classes
—
Mo confilct mode D

[175]

Working with Static Pages and Adding the Extra Functionality with Plugins

In the advanced settings, we should choose:

* The Stretch option (#1)
* Center align (#2)

* Auto play (#3)

* Hover pause (#4)

* Print CSS (#5)

* Print]JS (#6)

For the final step, we should copy the shortcode from the usage section and paste it
in the page editor:

Permalink: http://localhost/topcat/ | View Page

O Add Media || [} Add slider || €03 Add Sl Visual | Text (HTML)

3 : 7 % a
b i link b-quote ul ol li code maore close tags o

[metaslider id=1734]

In our case, the code is [metaslider id=1734], and in your case, the code
(id number) may be different.

The Services section (list of services)

In this section, we will create the option to list services, and in order to do that,
we have to create the option for our users to add services. The best way to do this is
to use the plugin, which will add custom post services to our wpadmin dashboard.

Custom posts help end user differentiate one type of post from
other as in the database, all posts are saved on the same place. In
% our example, our user can choose the services option in wpadmin
T~ and add new services. Later on, when we want to show results,
we are going to search for posts of the type service to display.

I have created the plugin that will add custom post type services to wpadmin, and
this plugin can be downloaded from https://github.com/dejanmarkovic/nyto-
services-cpt.

[176]

https://github.com/dejanmarkovic/nyto-services-cpt
https://github.com/dejanmarkovic/nyto-services-cpt

Chapter 9

When we download the plugin, we will just have to install and activate it, and then

we will see the Services option in wpadmin:

Dashboard

g Services

Services

Appearance

Then, we should go there and add new services, same as we add any other post

or page:

All (4) | Published (4) | Trash (1)

Bulk Actions |v| Apply All da
O Title

[0 Nemo enim ipsam
Edit Quick Edit Trash View
0 Sed ut perspiciatis

[0 Neque porro

[0 Quis

Services Addnew M

In the step 1 (#1), we will press the Add New button to add a new service, and in the

step 2 (#2), we can see the services that are already added.

[177]

Working with Static Pages and Adding the Extra Functionality with Plugins

% In your case, you will have to add services first in order
s to see the results in the step 2.

After we add services to our system, we should go and handle the results in our
front-page.php file:

<?php
get_header(); 7>
<div id="primary" class=" area"r
<main id="main" class="site-main"” role="main"> 1
<?php if { have posts())} : while (have posta{)) : the post():;?>
<iphp the econtent|(); 7>
<?php endwhile; endif; 2>
<!-- check if nyto-services-cpt plugin is installed (it i quired if we are going -zlse the Services feature)| ——
<?php if (is_plugin_active({ 'nypg-services-cpt/nytg services_cpt.php')) {
7>
<!=-- Display custom posts of type sezvice -->
<?php = new WP Cuery(array('posc type' => ‘servicey
<Iphp . -
if ($loocp->found posts > 0) {
ice_class = ''; _
if cop->found_posts <= 4) { -
ervice_class = zound(100 2
1
7>
<i=-= begin aservices row -—>
<zeetion elass="inline-bleock-center serviees_ seetion">
<?php while | $locp->have_posts()) : $
<div class=<?php echo 'perec’. v
<?php echo "<hZ class=" vice—-title">" . get_the_titlel).
<span class="entry service "=
<?php the_content(): ?>
</apan>
</div> ¢!-- end services column wrapper -->
<?php endwhile; 2>
<fsection <!-- end services row —-»
<Iphp } T I B SRy Y
<?php } H - z xists 7+
</main>
</dive<i=-= $primary -->
<?php get foorer(); 7>

First (#1), we check whether our plugin is installed and activated. If the plugin is not
there, we should not display the services. This means that if our end user installs the
plugin and adds the services but later on, changes his/her mind and uninstalls the
plugin, the services should not be displayed. Next (#2), we execute a query first in
order to get posts of the type of service; then (#3), we check whether there are any
services in the database, and if there are, then we will display them; if not, we will
not display anything in this section. As you can see, each of the sections is optional,
as we have mentioned previously. Later on (#4), we define a $service_class
variable that is going to be used as a CSS helper for our layout.

[178]

Chapter 9

Next (#5), we check whether there are 4 or less services in the database, as this
solution is customized for up to four services.

This code can handle only up to 4 services, and that
= will be enough for our project.

Later on (#6), we are doing a calculation for our service class; if there is only one
service in the database, the services section will take 100 percent of that width;

if there are 2 services, they will take 50 percent each; if there are 3 services, each
service will take 33 percent; if there are 4 services, each service will take 25 percent.
For these cases, we are going to use CSS classes' perc33, perc25, and so on:

/* percentage size of services boxes */
.perc33{
max-width: 33%;
}
.perc25{
width: 25%;
}
.percl00{
width: 100%;
}
.perc50{
width: 50%;

This CSS code should go to the content . css file's desktop
styles media query:
A /*desktop styles*/
@media only screen and (min-width:769px)

Next (#7), we add classes which make sure that services will be center-aligned:

/*align services to center */

.inline-block-center {
text-align: center;

}

.inline-block-center div {
display: inline-block;
text-align: left;

[179]

Working with Static Pages and Adding the Extra Functionality with Plugins

[This CSS code should go to the style. css file.]

Later on (#8), we loop through the list of services:

<?php while ($loop-s>have posts()) : $loop->the post(); ?>
Next (#9), we add $service_class, which has the perc prefix (the percentage).

Then (#10), we define the services title and add a service-title class. We should
also add the styling to styles.css for the service-title class:

.service-title(
color: #0480Db5;
font-size: 2.2rem;
font-size: 22px;
line-height: 22px;
text-transform: uppercase;
font-family: 'Open Sans', sans-serif;
text-align: center;

[This CSS code should go to the style. css file.]

Next (#11), we add the service-content CSS class to the markup, and the code for
that class should be the following:

.service-content
margin: 20px;

}
Finally, (#12) we are displaying the content part with the_content() function.

As our services are nested in the <section> tag, here is more of CSS code that
handles margins, padding, and a border:

.services_section

{
margin: 20px 0px;
padding: 10px;

}

section div {
padding: 15px;

[180]

Chapter 9

margin: 5px;
border-left-style: solid;
border-left-width: 1px;
display: table;
border-color: #ececec;

section div:first-child ({
border-left-width: 0;

This CSS code should go to the content . css file's desktop
styles media query:
I /*desktop styles*/

@media only screen and (min-width:769px)

The services functionality is an extra functionality, which means
that it is not a design/theme functionality and because of that, it
should be put in a plugin as a separate feature. With this option, we
give our end user a choice to use that functionality (or not) and at
the same time, we follow the best WordPress practices (in this case,

M separating the content from design). Here is the link to a great article at
WP Tavern that explains why we (the theme developers) are doing this:
http://wptavern.com/why-wordpress-theme-developers-
are-moving-functionality-into-plugins. Thereis a great
library called the TGM Plugin Activation that we can use to require
the recommended plugins, and it can be downloaded from http://
tgmpluginactivation.com/. Covering this library is out of the

L scope of this book, but I strongly recommend that you use it. _

Making our home page responsive

We have already started making our home page responsive by adding some code to
the content . css desktop style media queries. Now, we should make some classes
mobile phone friendly, and we will execute all these changes in the mobile phone
styles media query in the content .css emedia only screen max-width:480px.

At first, we don't really need a slider on the mobile phone size screen, so we should
hide it:

.metaslider(
display: none;

[181]

http://wptavern.com/why-wordpress-theme-developers-are-moving-functionality-into-plugins
http://wptavern.com/why-wordpress-theme-developers-are-moving-functionality-into-plugins
http://tgmpluginactivation.com/
http://tgmpluginactivation.com/

Working with Static Pages and Adding the Extra Functionality with Plugins

Then, we should take the display, flex, and the border from section:

section {
margin: 20px Opx;
padding: 10px;

section div {
padding: 15px;
margin: 5px;
border-left-style: none;

section div:first-child ({
border-left-width: 0;

}
Finally, we have to customize our percentage for services' CSS classes:

.perc33{
max-width: 100%;
display: block;
}
.perc25{
max-width: 100%;
display: block;
}
.percl00{
max-width: 100%;
display: block;

.perc50{
max-width: 100%;
display: block;

}

With this code, each service will go into its own row.

[182]

Chapter 9

Here is the final look on the mobile phone size screen:

PAGEA

Larem ipsum dobor sit amet, consectetur adigiscing elit, sed do

eiusmod bempor re et dalore magna aligua. Ut

enim ad minim veniam, quis nestrud sxerdtation ullames Laboris

nisi ut aliguip ex ea commodo consequat. Duis aute irure dobor in

reprehenderit in volupkate velit esse cillum dolore eu Fugiat nulls
pariatur. Excepteur sint oocaecat cupidatat non proident, suntin

culpa qui officia deserunt mollit anim id est laborum

NEMO ENIM IPSAM

le= i nesciunt.

SED UT PERSPICIATIS

[Eed ut perspicatis unde amnis iste natus error sit veluptatem sccwsantiom
2 slnremaue Laudantium, totam rem aperiam, =35 e ipsa quas 3k s

nwentore vericatis ek quasi architecto beatae vitae dicta sunt explicabe.

NEQUE PORRO

Mequs porrs quisouam est, qui dolorem ipsum guia delsr sizamat,
sansectetur, adipiss velit, sed quia non numauam sius madi temgara
nsidunt ok labars =t dolrs ma

m abguam quasrat volupkstem. Uk enim

ad minima veniam, guis naskrum «: Eicre=m ullam carparis suscipit

labariosam, nisi uk aliquid =x =a commedi consequatur?

Quis

|Quis autem wel eum iure reprehenderit qui in ga volupkate velit esse guam
mitil molestize consmguatus, velillum qui Solorem sum Fugiss qus velustas
ulla pariatur?

Archives Archives

The Contact Us page

What would be the purpose of our business site if our customers can't contact us?
This is why we are going to create a contact us page. Before we do this, we should

install the Jetpack plugin as one of the options has a contact form plugin:

L0+ Beautiful Math
O i@ Carousel

O E Contact Form

Activate

[183]

Working with Static Pages and Adding the Extra Functionality with Plugins

First (#1), we can see the Contact Form option, and then (#2), we should click on
Activate to activate the contact form.

After we activate this option, we should create the Contact Us page, and in the
editor, we will be able to choose the Add Contact Form option:

Contact US

Permalink: http://localhost/topcat/contact-us/ | Edit | View Page | GetShortink

@] Add Media | | [} Add slider ||) Add Slider | [ES] Add Contact Form

After clicking on Add Contact Form (#1), we will see the form builder where we will
be able to choose fields that we want to use:

Add Contact Form

Here’s what your form will look like

Name

Email
| -

Comment

This form doesn't have any kind of captcha option, as it is directly
s wired to the Akismet service, so it doesn't really need it.

[184]

Chapter 9

Finally, after we accept all the options, the shortcode will be added to our form:

Contact US

Permalink: http://localhost/topcat/contact-us/ | Edit | ViewPage || Get Shortink

Q7 Add Media | [} Add slider || €2 Add Slider | | B8] Add Contact Form visual | Text (HTML)

b | 7| link || b-quote | del || ins || img || ul || ol || li || code || more || close tags =

Contact US [contact-form][contact-field label="Name' type='name’ required='1"/][contact-field label="Email’
type="email' required='1'/][contact-field label='Comment' type='textarea' required='1'/][/contact-form]

We will just have to publish the page, and that's it:

Rrivocanon | mamtnen saLumNg

[]w Professicnal Move Management & Organizing Experts

HOME BELOG CONTACTUS FRONTPAGE SAMPLE PAGE ABOUTTHETESTS LEVEL1 LOREMIPSUM PAGEA

PAGE B
This iz a sticky post. There are a Few things
Contact US to verify: The sticky post should be
Mame (required distinctly recognizable in some way in
comparison to normal posts. You can style
the sticky class if you are using the
Email paost_clzss() Function ko generate your
ma rEan s post classes, which is a best practice. They
should show at the very top [...] Read
Maore —
Comment (required
Read More —
Archives
Submite December 2014
October 2014

[185]

Working with Static Pages and Adding the Extra Functionality with Plugins

Summary

In this chapter, we have learned about static pages, slider, shortcodes, how to make
our home page responsive, and how to create the contact us page.

By now, you should have a basic understanding of the development of a responsive
theme in WordPress.

Now, the only thing left to do is to learn how to test our theme and how to properly
submit it to WordPress.org by following the WordPress Codex.

Without further ado, let's move on to our final chapter.

[186]

10

Submitting Your Theme
to WordPress.org

If you have been patient enough to stick with us until here, you should have a clear
understanding of WordPress's responsive theme development and the steps involved
in it. Your responsive WordPress theme looks beautiful and there is only one thing
left to do before you introduce it to the world. Yeah, you guessed it correctly.

In this chapter, you will learn about fine-tuning your theme to follow the WordPress
Codex in order to submit it to the WordPress.org repository.

There is still a lot of work left and without further ado, in this chapter, you will
learn about:

* Polishing code before submission

* Applying the editor styles

* Validating the HTML and CSS code

* Validating the JavaScript and PHP code

* Adding the readme. txt file

* Adding the screenshot.png file

* Running a theme check plugin

* Submitting your theme to WordPress

[187]

Submitting Your Theme to WordPress.org

Polishing code before submission

In order for our theme to be accepted, we have to make sure it meets the standards
of WordPress.org, and in order to do that we have to test it and apply proper fixes.
I have intentionally saved this for the last chapter as this should be the most
important step before we submit the code to the WordPress.org repository. So let's
do this together.

Please check the look/behavior before and after applying
= each change as that is the best way to learn.

Let's take a look at the following steps:

1. Ona front-page.php file please add this code:
<?php include once (ABSPATH. 'wp-admin/includes/plugin.php') ;

?>

The preceeding code is added just before the code that checks whether the
nyto-services plugin is installed:

<?php if (is_plugin active('nyto-services-

cpt/nyto_services cpt.php')) {

This code is adding the plugin. php library to the frontend pages as this
library is used only in wp-admin backend. If we don't add this code to our
home page, it will be broken.

2. When we check our theme on the cell phone, our main navigation is
expanding too much on the sections where we have child elements. To fix
this, delete the position: relative; property inside .main-navigation
ul ul declaration which is located around line 623 in styles.css.

3. We want to have proper padding for our content when viewed on all
devices. The best way to do this is to delete padding properties from
class .content-area in all media queries (desktop, tablet, and cell phone)
and just add this code:
.content-area {
padding: 3rem;

}

The preceding code needs to be added to the neutral area (area before those
queries) in the content-sidebar. css file. We are not adding that code to the
content.css file as there we have the slider and code from the services
plugin, and that content doesn't need any padding.

[188]

Chapter 10

To make the header section with site branding look better, delete this code
from style.css:
.logo-container {

padding: 0 10px;

}

Then, add the following code to end of the style.css file:
.site-branding{

padding: lrem;

}
With this code, we are adding a padding of 1rem to our logo

In style.css, find the .site-footer .widget class and change it with
this code:
.site-footer .widget {

float: left;

margin: 0 lrem 2rem Orem;

width: 30%;

}

This code makes sure that widget margins are proper (text or images are not
going outside of their blocks)

If we are logged in in frontend preview, the wp-admin toolbar may be
broken. Just delete wp_deregister style('open-sans'); from
functions.php in order to fix the broken wp-admin toolbar in frontend view.

We want to make the site's tagline to be of the same color:

In style.css, find the .site-description class and change the color
property from #2B2B2B to #0480B5

In content-sidebar.css, find the .site-description class and delete the
color property together with its value

In content.css, find the .site-description class and delete the color
property together with its value

We now want to improve the look of services that are listed on our home
page. Since we have borders and paddings there, we should update those
classes in content .css:
.perc33{
max-width: 31%;
}
.perc25{
width: 23%;

[189]

Submitting Your Theme to WordPress.org

}

.perc50{
width: 47%;

}

As we can see from the preceding code, we have just reduced the values in
order to make the services fit in one row

Also, we should add this code to content.css in order to make sure our
services are top-aligned:

.perc33, .perc25, .perc50,.percl00 {
vertical-align: top;

}

We also have to make sure that our blue color is the same in all places, so in
style.css, change the background color from #579DB5 to #0480B5 around
lines 542, 560, 581, 585.

In style.css, on line 505, we should change font-weight: 800; to font-
weight: 500.

In style.css, online 524, we should add border-right: 1px solid
#6666 ;.

In style.css, on line 527, consider the following code:

.main-navigation a {
font-size: 15px;
font-size: 1.5rem;
display: block;
text-decoration: none;
color: white;
padding: 1l4px 10px;

}
Change the preceding code to:

.main-navigation a ({
color: #FFF;
display: block;
height: auto;
margin: 0;
padding: 14px 10px;
text-decoration: none;

}

We have added height : auto here and have taken out the font sizes.

[190]

Chapter 10

In style.css, on line 559, consider the following block of code:

.main-navigation li:hover > a {
color: #FFF;
background: #0480B5;

}
Change this to the following block of code:

.main-navigation li:hover > a {
color: #FFF;
background: #543018;

}

Here, we have changed the background color from blue to brown.

In style.css, on line 566, consider the following code:

.main-navigation ul ul a:hover {
background: #0480B5;

}
Change this to the following block of code:

.main-navigation ul ul a:hover {
background: #543018;

}

We have changed the background color here from blue to brown.

In style.css, on line 578, consider the following code:

.main-navigation .current page item
.main-navigation .current-menu-item
.main-navigation .current page item

vV VvV V V
@
=
0
2
0]
2]

.main-navigation .current-menu-item
background: #0480B5;

}
Change this to the following block of code:

.main-navigation .current_page_item > a,
.main-navigation .current-menu-item > a,
.main-navigation .current_page_item > a:hover,
.main-navigation .current-menu-item > a:hover {

background: #543018;

}

We have changed the background color here from blue to brown.

[191]

Submitting Your Theme to WordPress.org

In content-sidebar.css and content.css, in @media only screen and
(min-width:769px) and @emedia only screen and (min-width:481px)
and (max-width:768px), add the following code:
#menu-main-menu 1i {

width: 130px;

text-align: center;

}

Here we are making menu size fixed, 130px on the desktop and tablet.

In content-sidebar.css and content.css in media query for phones, add
this code:

@media only screen and (max-width:480px)
#menu-main-menu 1i af
width: 100%;

}

We are making menu items to have a width of 100% in mobile styles.

In styles.css, add this code to end of file:

.main-navigation

{

font-size: 1.2rem;
font-size: 12px;
}
Here we are making menu items to have the font size of 1.2rem.
Finally, we have to make sure that all menu items are having the same right

border. In order to do that, we have to add this fix to global.js:

jQuery ("#menu-main-menu") .addClass('clear') ;

var containerheight = jQuery ("#menu-main
menu") .height () ;

jQuery ("#menu-main-
menu") .children() .css ("height", containerheight) ;
10. In functions.php, find this code:

add_theme support('custom-header', apply filters('topcat custom

header args', array(
'default-image' = '',
'default-text-color' => '000000"',
'width' => 150,
'height' => 200,
'flex-height' => true,
'wp-head-callback' => 'topcat header_ style',

[192]

Chapter 10

'admin-head-callback' => 'topcat admin header style',
'admin-preview-callback' => 'topcat admin header image',

)))

Here, change the width and height as follows:

'width' => 220,
'height' => 100,

I think that the logo with bigger width and smaller height will fit better on
our template and this is the fix.

Applying the editor styles

Before we submit our work to WordPress.org, we have to double-check our theme

to make sure it's valid and meets all requirements of WordPress.org. As the _
underscores theme is a starter theme, it currently doesn't provide editor styles. Editor
styles are the styles for the WordPress editor in wpadmin (the backend). The purpose
of these styles is to match the look of pages or posts on frontend when the end user
goes to the editor. For example, if we go to the http://localhost/topcat/markup-
html-tags-and-formatting/ post, we'll see the following screenshot:

Headings
Header one

Header two

Header three
Header four
Header five

Header six
Blockquotes
Single line blockquote:

Stay hungry. Stay foolish.

Multi line blockquote with a cite reference:

People think focus means saying yes to the thing you've got to focus on. But that's
not what it means at all. It means saying no to the hundred other good ideas that
there are. You have to pick carefully. I'm actually as proud of the things we haven't
done as the things | have done. Innovation is saying no to 1,000 things.

[193]

Submitting Your Theme to WordPress.org

Then, if we open the same post in the editor in wpadmin, we get the following:

Headings
Header one

Header two
Header ﬂ'u‘eﬁ
Header four

[Header five

[Eeader six

Blockquotes
Single line blockquote:
Stay hungry. Stay foolish.
[Multi line blockquote with a cite reference:

People think focus means saying yes to the thing you've got to focus on. But that's not what it means at all. It means saying no to the hundred other
good ideas that there are. You have to pick carefully. I'm actually as proud of the things we haven't done as the things I have done. Innovation is
saying no to 1,000 things.

|Steve Jobs - Apple Worldwide Developers' Conference, 1997

From the preceding screenshot, we can see that the font family is not the same
(step 1), the font color is not the same (step 2), and the blockquote styling (custom
HTML tag styling) is not applied (step 3). To fix this issue, we have to do the
following two things:

1. Implement custom editor styles, custom-editor-style.css. In this file, we
just have to add this code:

@import url('style.css');

body {
background: none repeat scroll 0 0 #FFF;
font-family: "Open Sans",sans-serif;
line-height: 14px;
margin: 5px 10px;
padding: 5px ;

}

Here, we are importing our theme's styles first, and then we are making

sure that the background color is white in the editor (as from our theme's
styles, the silver color would be the default one and we don't want that in the
editor). We are making sure our font family is applied too.

2. Add editor styles in functions php:

function topcat add editor styles()

{

add_editor_ style(array('custom-editor-style.css',
get_template directory uri() . '/css/open-sans.css'));

[194]

Chapter 10

}

add_action('after setup theme', 'topcat add editor styles');

Here, we are adding our custom Google fonts and hooking our custom styles
to the core. This is the result:

Headings
Header one

Header two|
Header three
Header four

Header five
Header six

Blockquotes

ingle line blockquote:

Stay hungry. Stay foolish.

Peaple think focus means saying yes te the thing you've got to focus on. But that's not wi
other goad ideas that there are. You have to pick carefully. 'm actually as proud of the
Innovation is saying na to 1,000 things.

Validating the HTML and CSS code

In order for our theme to be accepted at WordPress.org, we have to validate our
HTML and CSS code.

For this operation, I strongly recommend that you use two
. browsers [being logged in with one —for example, IE—and
% testing (logged out) with the other, for example, FF]. As
L= you stay logged in in the FF, you might see some validation
errors/warnings from the WordPress toolbar. As they are
not our errors, they should be ignored.

For this purpose, I am using the Web Developer plugin for Firefox, which can be
downloaded from this location: https://addons.mozilla.org/en-US/firefox/
addon/web-developer/. When you install this plugin, you will get a Web Developer
toolbar just under the URL (address) bar:

€ | @ Mozila Foundation (US) | https://addons mozilla.org/en-Us/firefox/addon/web-develope

@ Disable- & Cookies- » CS5-] Forms- & Images- @ Information- [5 Miscellaneous- 7 Outline- f Resize- % Tools- [@ View Source- [[}] Options-

[195]

https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/

Submitting Your Theme to WordPress.org

The great thing about the Web Developer plugin is the validation options under the
Tools section. If you want to validate the code without the plugin, you will have

to go to the www.w3 . org website manually. With the WD plugin, you just go to the
Tools section, and you will be able to choose many options. My favorite timesavers
are the Validate Local CSS and Validate Local HTML options. When we click on
these options, our page will be validated against w3.org's validator, and we will see
the following result:

Errors found while checking this document as HTML5!

~
Q You may have more errors or less errors than I have.

Take a look at the results carefully. Some of the errors I've

had were actually the errors of a Meta Slider plugin and we
N . .
should not fix these as plugins are not part of our theme.

I would strongly recommend that you go trough as many posts as you can in order
to validate HTML and CSS. If we are creating a custom page template, such as
front-page.php in the previous chapter, we should also make sure that they are
tested thoroughly. We should not have any errors or warnings there, although some
posts use deprecated tags, like this one: http://localhost/topcat/markup-html-
tags-and-formatting/. For this post, I've got a number of errors, for example, The
acronym element is obsolete. Use the abbr element instead. These errors
should be ignored, as these posts are just old examples.

I also strongly recommend that you subscribe to the theme review team mailing
list, and if you have any questions, feel free to ask them there. The theme review
team's page is available here: https://make.wordpress.org/themes/. I highly
recommend that you follow the blog of the Automattic's theme division, which is
available at http://themeshaper.com/.

Validating the JavaScript code

To validate and debug the JS code, I recommend that you use a Console tab
in Firebug.

[196]

www.w3.org
https://make.wordpress.org/themes/
http://themeshaper.com/

Chapter 10

Firebug is an FF plugin that really helps with debugging HTML, CSS, and
JS. It can be downloaded from https://addons.mozilla.org/en-
US/firefox/addon/firebug/.

%i‘ Chrome users should use Chrome Developer Tools, which are part of
g Chrome.

To access both of these tools, you can just press F12 and they will show up
on your page.

Now, just choose the Console tab in any of these tools and browse the test pages or
posts. If there is a warning or an error, it will appear here.

Blockquotes

. ¥ < > Conscle = | HIML (55 Script DOM Nel Cook] -« SE8
war Persist Profle || A8 Ermors Wamings o Debugiefo Coolies 0

Validating the PHP code

The PHP code should be valid all the time, but sometimes, fixing errors and
warnings just takes too much of our time. Displaying errors and warnings can
sometimes be so distracting that we have to disable displaying them. If we do that,
then we should fix these problems at least before we submit our code, in this case,
the theme to the public repository.

Debugging the setup

In order to see the errors, we should add this code to the wp-config.php file that is
located in the root folder of our WordPress installation:

define ('WP_DEBUG', true);
// Enable Debug logging to the /wp-content/debug.log file
define ('WP_DEBUG LOG', true);

// Disable display of errors and warnings
define ('WP_DEBUG DISPLAY', true);
@ini_set ('display errors',1);

// Use dev versions of core JS and CSS files
(only needed if you are modifying these core files)
define('SCRIPT_DEBUG', false) ;

[197]

https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/

Submitting Your Theme to WordPress.org

1
‘Q Note that we have set display errors to true:

@ini_set ('display errors',1);

This setting (displaying errors) should only be applied
_ toour local/dev environment. It should always be
% disabled on the staging and production environments,
s as it's unprofessional for end users to see the errors.
At the same time, it is also a security risk, as we are
providing the system information to everybody.

More information on setting a debug environment can be found at http://codex.

wordpress.org/Debugging in WordPress.

Multiple wp-config.php sets

As we want to test our code in as many different environments as we can, I
recommend that you code and test in two environments: local (XAMPP on

Windows) and dev server (Linux/Centos). Because of this, we have to have two
different wp-config.php solutions as our credentials are different on different
servers (and yours should be too). For this purpose, I am using a wordpress-multi-
env-config setup that can be downloaded from https://github.com/studio24/
wordpress-multi-env-config. Although this approach has a number of files, it's

very easy to set up. In our setup, we should use:
® wp-config.php
® wp-config.env.php
®* wp-config.development.php

* wp-config.staging.php

In wp-config.php, we should comment out:

// Define WordPress Site URLs if not already set in config files

/*
if (!defined('WP_SITEURL')) ({

define ('WP_SITEURL', $protocol . rtrim($hostname, '/'));

if (!defined('WP_HOME')) {
define ('"WP_HOME', $protocol . rtrim($hostname, '/'));

[198]

http://codex.wordpress.org/Debugging_in_WordPress
http://codex.wordpress.org/Debugging_in_WordPress
https://github.com/studio24/wordpress-multi-env-config
https://github.com/studio24/wordpress-multi-env-config

Chapter 10

In wp-config.env.php, we should set up our environments:

switch ($hostname) ({
case 'localhost':
define ('WP_ENV', 'development');
break;

case 'topcat.mywebsite.com':

define ('WP_ENV', 'staging');
break;
/*
case 'www.domain.com':
default:
define ('WP_ENV', ‘'production');
*/

}

I strongly recommend that you set up at least a development and staging
environment; if you have a similar setup, which means you have at least one
local computer and server.

In wp-config.development .php, we should set database credentials:

define ('DB_NAME', 'your db name') ;

/** MySQL database username */

define ('DB_USER', 'your db user name');

/** MySQL database password */

define ('DB_PASSWORD', 'your db password) ;

/** MySQL hostname */

define ('DB_HOST', 'localhost or your servers host name');

We should also put here our debugging settings, which we just mentioned.

In wp-config.staging.php, we should have the database and debugging settings,
and that's it.

If we have an error/warning or a notice, we should see something like this:

Mokice: Use of undefined constant topcat - assumed "topcat’ in C\Users\LPAC006013
\Dropbox\htdocs backup\topcat\wp-content\themes\topcat\inc\template-tags.php
on line 129

[199]

Submitting Your Theme to WordPress.org

Let's see the code that was creating a problem:

echo edit post link(_ (' Edit ', 'topcat'), '| <i
class="fa fa-pencil-square-o"></i> "',
'"') ;

The issue here was that we didn't put the topcat value in single quotes.
Let's take a look at the comparison among notices, errors, and warnings.

The following data is found at http://php.net/manual/en/errorfunc.
constants.php.

" Run-time notices. Indicate that the script encountered something that could
indicate an error, but could also happen in the normal course of running a script."

In our case, we didn't use the single quotes and our code didn't break the page, but it
was pointed to us by the debugger that we should fix the code.

" Fatal run-time errors. These indicate errors that can not be recovered from, such
as a memory allocation problem. Execution of the script is halted."

This means that when we have errors in our code, it will break the page/script, and
that should be fixed immediately.

" Run-time warnings (non-fatal errors). Execution of the script is not halted."

This means that we are being warned of an issue but that issue is not breaking
the code.

We should do our best to avoid having any of these (notices, errors, or warnings) in
our production-ready code.

Adding the readme.txt file

Every theme that is submitted to the WordPress.org repository should have the
readme. txt file. In that file, we should put the information regarding the theme's
contributors/authors and tags that describe theme features.

The readme. txt file for our theme is available together with other files provided
with this chapter and also on the GitHub page for our theme at https://github.
com/dejanmarkovic/topcat-£final.

[200]

http://php.net/manual/en/errorfunc.constants.php
http://php.net/manual/en/errorfunc.constants.php
https://github.com/dejanmarkovic/topcat-final
https://github.com/dejanmarkovic/topcat-final

Chapter 10

Adding the screenshot.png file

The screenshot . png file is an important file as we can provide the screenshot or
some other information regarding our theme there (in our case, we are providing
the logo for our theme). The screenshot . png file should be of the size 880 x 600px
or 387 x 290px. The screenshot .png file for our theme is available together with
other files provided with this chapter and also on the GitHub page for our theme:
https://github.com/dejanmarkovic/topcat-£final.

More info regarding screenshot . png can be found at https://codex.wordpress.
org/Theme Development#Screenshot.

Running a theme check plugin

As we have validated all the code, we still have one more check to do, and that is to
run a theme check plugin. Before we run it, we first have to enable it. To do that, we
have to go again to Developer plugin Tools | Developer and click on INACTIVE -
Click to Activate; the result is:

heme Check ACTIVE
Details A simple and easy way to test your theme for all the latest WordPress standards and practices. A great theme development tool!

Then, we should run the theme check by going to Appearance | Theme Check and
choosing our theme from the drop-down menu and clicking on the Check it! option:

TopCat w|| Checkit! [J Suppress INFO.

Theme Info:

Title TopCat

Version 0.1

After this, we will get a result like this:

WARNING: .git Hidden Files or Folders found.

REQUIRED: Please remove any extraneous directories like .git or .svn from the ZIP file before uploading it.

RECOMMENDED: No reference to add_theme_support("title-tag”) was found in the theme. It is recommended that the theme implement this functionality for WordPress 4.1 and above.
INFO: Possible hard-coded links were found in the file footer.php.

Line 19: <?php printf(_ ('Theme: 31§s by 32§s.', 'topcat'), 'topcat!, 'Underscores.me')i 2> —->

INFO: footer.php The theme appears to use include or require. If these are being used to include separate sections of a template from independent files, then get_template_part() should be used
instead.

Line 14: <?php reguire('sidebar-footer.php'); 2>

[201]

https://github.com/dejanmarkovic/topcat-final
https://codex.wordpress.org/Theme_Development#Screenshot
https://codex.wordpress.org/Theme_Development#Screenshot

Submitting Your Theme to WordPress.org

As we can see from the preceding screenshot, we have to fix the things that are
marked in red. All these errors/warnings are self-explanatory. The first two mention
that we should take out Git references (directories and files) before we submit the
code, as the WordPress.org repository is using subversion and also because we don't
want to mix our own repository stuff with the public repository.

I also strongly recommend that you look into RECOMMENDED and INFO.

After we fix all the errors, we should go and submit our theme here:
https://wordpress.org/themes/upload/.

I also strongly advise that you read the theme Handbook here: https://make.
wordpress.org/themes/handbook/review/.

Summary

In this chapter, we learned about applying the editor styles; validating the HTML,
CSS, JavaScript and a PHP code; running theme unit tests; and submitting your
theme to WordPress.org. This concludes our book.

By now, you have learned how to develop a responsive theme in WordPress and
how to submit the theme to WordPress.org, following the WordPress Codex.

You are now ready for your own WordPress theme adventure and that can be
working for the agency by creating the themes, starting your own freelance business,
or maybe starting your own WordPress theme development company. The choice is
yours. Good luck in your future endeavors!

[202]

https://wordpress.org/themes/upload/
https://make.wordpress.org/themes/handbook/review/
https://make.wordpress.org/themes/handbook/review/

Symbols

404.php template
modifying 165, 166

A

archive.php template
modifying 163, 164

Bitnami 11
body class
URL 57
breakpoints 8
business-oriented templates
URL 171

C

code
polishing, before submission 188-192
comments
navigating 130-132
styling 128,129
title, styling 127
working with 125, 126
Contact Us page 183-185
Content Delivery Network (CDN) 41
content-single.php file
analyzing 79-84
content section 93-98
post's metadata, styling 89-93
post template, modifying 87-89
template, improving 84

C

Index

SS
code, validating 195, 196
with media queries, URL 50

D

debug environment

URL 198

Developer plugin

URL 14

dots per inch (DPI) 5
dynamic_sidebar() function

codex page, URL 107

E

editor styles

applying 193, 194

ellipsis symbol 155
em values 44-50
excerpts

about 154-157
URL 155

F

fatal run-time errors 200
featured image

about 135, 136, 157, 158
resizing 138-140
setting up 137, 138

Firebug

URL 197

flexible images 10
fluid grids

about 9
framework, negative features 10

[203]

framework, positive features 10

URL 9
Font Awesome icons
URL 5
footer
editing 116-123
functions.php
setting up 37-42

H

hard crop mode
URL 138

header 55-59

hellip 155

home page
about 170
making responsive 181, 182
styles 172,173
template 171,172

HTML code
validating 195, 196

image captions
resizing 140-142
image galleries
about 142-145
making responsive 146, 147

J

JavaScript code
validating 196
Jetpack 32

L

LayerSlider
URL 174
layout
making centered 54, 55

masonry
URL 121

media queries
about 6,7
adding 50-52
breakpoints 8
URL 6

menu
accessibility 65-67
basics 61
creating 61
responsive 67-71
styling 62-65

Modernizr
URL 41

N

NetBeans
URL 36

(0

Open Sans
URL 39

P

page view (PV) 83
paging navigation
customizing 158-161
PHP code
validating 197
PHPEclipse
URL 36
PhpStorm
URL 36
pixels per inch (PPI) 5
post template
metadata, styling 89-93
modifying 87-89
post thumbnails 135

R

readme.txt file
reference link 200
register_sidebar() function
codex page, URL 105
rem values 44-50

[204]

responsive web design (RWD)
about 1,2
concepts 2
flexible images 10
fluid grids 9
media queries 6,7
scaling 4
screen density, problems 5, 6
screen density, solutions 6
URL 1,6
Viewport, controlling 2,3
run-time
warnings 200

S

scaling, RWD
about 4
screen density 5
screen density
about 5
problems 6
solutions 5
screenshot.png file
reference link 201
Search Engine Optimization (SEO) 83
search.php template
modifying 166, 167
services section 176-181
setup
debugging 197
setup styles.css
setting up 42-44
sidebars
about 105-111
styling 112-115
single post templates
analyzing 74-79
slider plugin
about 174,175,176
URL 174
static pages 169
sticky posts
styling 162
Superfish jQuery plugin
URL 66

T

tags
displaying 98, 99
post navigation 99-102

template, content-single.php file

header, improving 85-87
improving 84

template files
about 20-151
Author 20
Author URI 20
Description 20
License 21
License URI 21
page structure 23-30
Tags 21
Text Domain 21
Theme Name 20
Theme URI 20
Version 20

TGM Plugin Activation
URL 181

theme
about 19
subfolders 31, 32
testing, URL 13
unit test data, installing 13
unit test data, URL 95
URL 12

theme check plugin
running 201, 202

tool
selecting, for project 35-37

U

underscores theme
about 12
URL 12

unit test data
URL 13

\'

videos
working with 148, 149

[205]

Viewport
controlling 2, 3

w

WAMPP 11
Web Developer plugin
URL 195
widgets
about 103, 104
footer, editing 117-124
sidebars 105-110
sidebars, styling 112-116
WordPress
CSS Coding Standards, URL 36

HTML Coding Standards, URL 36

installing, URL 12

JavaScript Coding Standards, URL 36

page, URL 169

permalinks, setting 17-19

PHP Coding Standards, URL 36

template files 20-22

theme 19

theme, subfolders 31, 32
WordPress environment

Developer plugin, installing 14, 15

installing 11, 12
setting up 11,12

underscores theme, setting up 12,13

WordPress template hierarchy
analyzing 152-154
URL 152
World Wide Web (WWW) 83
wpadmin
URL 176
wp-config.php sets
about 198-200
readme.txt file, adding 200
reference link 198
screenshot.png file, adding 201
WP Tavern article
URL 181

X

XAMPP 11

[206]

1 open source

community experience distilled
PUBLISHING

Thank you for buying
WordPress Responsive Theme Design

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

- .
K T]open source®
\. \ I J cc:rn'rnunityr experience distilled
WordPress Web Application
Development
ISBN: 978-1-78328-075-9 Paperback: 376 pages

Develop powerful web applications quickly using
cutting-edge WordPress web development techniques

1. Develop powerful web applications rapidly
with WordPress.

WordPress Web 2
Application Development '

Practical scenario-based approach with
ready-to-test source code.

3. Learning how to plan complex web
applications from scratch.

WordPress Complete
ISBN: 978-1-90481-189-3 Paperback: 304 pages
A comprehensive, step-by-step guide on how

to set up, customize, and market your blog
using WordPress

1. Clear practical coverage of all aspects
of WordPress.

2. Concise, clear, and easy to follow, rich
with examples.

3. In-depth coverage of installation, themes,
syndication, and podcasting.

Please check www.PacktPub.com for information on our titles

WordPress Multisite
Administration

nultisita

community experience distilled

1 110pen source™
CINT | com

WordPress Multisite

Administration
ISBN: 978-1-78328-247-0 Paperback: 106 pages

A concise guide to set up, manage, and customize your
blog network using WordPress multisite

1. Learn how to configure a complete, functional,
and attractive WordPress Multisite.

2. Customize your sites with WordPress themes
and plugins.

3. Set up, maintain, and secure your
blog network.

WordPress Plugin

Development

WordPress Plugin Development

Beginner's Guide
ISBN: 978-1-84719-359-9 Paperback: 296 pages

Build powerful, interactive plugins for your blog and
to share online

1. Everything you need to create and distribute
your own plugins following WordPress
coding standards.

2. Walk through the development of six complete,
feature-rich, real-world plugins that are being
used by thousands of WP users.

3. Written by Vladimir Prelovac, WordPress
expert and developer of WordPress plugins
such as Smart YouTube and Plugin Central.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Responsive Web Design
with WordPress
	The concepts of RWD
	Controlling Viewport
	Scaling
	The screen density

	Problems and solutions with the screen density

	Techniques in RWD
	Media queries
	Breakpoints

	Fluid grids
	Flexible images and media

	Setting up the WordPress environment
	Installing and setting up WordPress
	Setting up the underscores theme
	Installing the WordPress theme's unit
test data
	Installing the Developer plugin

	Summary

	Chapter 2: Understanding the WordPress Theme Structure
	Setting WordPress permalinks
	What is a WordPress theme?
	Template files
	The page structure of template files
	Theme subfolders

	Summary

	Chapter 3: Getting Started with Responsive Layout
	Choosing the right tool for our project
	How to setup functions.php
	How to setup styles.css
	The em and rem values

	Adding media queries
	Summary

	Chapter 4: Learn How to Create the Header and Navigation
	Making our layout centered
	Dealing with the header
	How to create a menu and make it responsive and accessible
	Menu basics
	Styling our menu

	How to make our menu accessible
	How to make our menu responsive

	Summary

	Chapter 5: Customizing Single
Post Templates
	Analyzing single post templates
	Analyzing the content-single.php file
	Template improvements
	Header improvements

	Implementing changes to the post template
	Styling post's metadata
	Content section

	Tags
	Post navigation

	Summary

	Chapter 6: Responsive Widgets, Footer, and Comments
	Widgets
	Sidebars
	Styling sidebars
	Editing the footer

	Working with comments
	Styling comments title
	Styling comments
	Comments navigation
	Summary

	Chapter 7: Working with Images
and Videos
	Featured images
	Setting up a featured image
	Resizing featured images
	Image captions
	Image galleries
	Making the gallery responsive
	Working with videos
	Summary

	Chapter 8: Working with Template Files
	The WordPress template hierarchy
	Excerpts
	Featured images
	Customizing the paging navigation
	Styling sticky posts
	Modifying archive.php
	Modifying 404.php
	Modifying search.php
	Summary

	Chapter 9: Working with Static Pages and Adding the Extra Functionality with Plugins
	Home page
	The home page template
	Styles for the home template
	Slider plugin
	The Services section (list of services)
	Making our home page responsive
	The Contact Us page
	Summary

	Chapter 10: Submitting Your Theme
to WordPress.org
	Polishing code before submission
	Applying the editor styles
	Validating the HTML and CSS code
	Validating the JavaScript code
	Validating the PHP code
	Debugging the setup
	Multiple wp-config.php sets
	Adding the readme.txt file
	Adding the screenshot.png file

	Running a theme check plugin
	Summary

	Index

