

Instant Building
Multi-Page Forms
with Yii How-to

Learn to create multi-page AJAX enabled forms using Yii

Uday Sawant

BIRMINGHAM - MUMBAI

Instant Building Multi-Page Forms with Yii
How-to

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1160513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-642-9

www.packtpub.com

Credits

Author
Uday Sawant

Reviewer
Sergey Malyshev

Acquisition Editor
Joanne Fitzpatrick

Commissioning Editor
Poonam Jain

Technical Editor
Zafeer Rais

Copy Editor
Aditya Nair

Project Coordinator
Suraj Bist

Proofreader
Maria Gould

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Cover Image
Valentina Dsilva

About the Author

Uday Sawant is a software engineer with a specialization in LAMP stack and cloud
computing. He has completed his Master's in Computer Science and has a wealth of
experience in infrastructure management and networking. Currently he is working with
a startup called Anveshan Technologies as a Sr. Software Engineer.

I would like to thank my parents and my mentor Mr. Mitul Thakkar for
helping me write this book.

About the Reviewer

Sergey Malyshev is an IT specialist from Ukraine. He has been working in the IT industry
for more than 15 years, eight of which he has devoted to the development of web applications.
Out of the conviction that it's impossible to become a great specialist in all areas at the same
time, he has chosen for himself PHP, MySQL, and JavaScript as top-priority directions. During
his career, Sergey took part in developing dozens of different websites, social networks, CMS,
CRM, and ERP systems. He is not only a developer but also an architect, a project manager, and
a technical consultant. Apart from his participation in realizing some technical projects, he also
organized various advance training courses for IT specialists in the companies where he was
employed. As he has a degree in management, Sergey has taken part in the business process
automation of companies specializing in software development.

At present, Sergey is working as a software engineer in the company Sugar CRM and deals
with the development of one of the most popular customer relationship management systems
in the world. Before this he worked on developing applications based on the Yii Framework.
Some of them are the search engine for the real estate website LivingThere.com and the
corporate CMS system WebModulite for the New York design agency Blue Fountain Media.
Participation in these projects and also work on his own extension for debugging the Yii
application's Yii Debug Toolbar has helped Sergey get vast experience and expert knowledge
of the Yii framework.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface 1
Instant Building Multi-Page Forms with Yii How-to 5

Getting started with Yii (Simple) 5
Connecting to the database (Simple) 7
Using the Gii tool (Simple) 9
Creating basic forms (Simple) 13
Building multipage forms (Intermediate) 18
Validating forms (Intermediate) 23
AJAX forms (Advanced) 25
Uploading files (Advanced) 29
Using multiple models (Intermediate) 32
Customizing looks (Advanced) 35

Preface
Instant Building Multi-Page Forms with Yii How-to is a simple and descriptive how-to that
provides step-by-step recipes to help you convert your lengthy forms into short, interactive
forms. It will show you the inbuilt features of the Yii framework to help you with this tricky task.

What this book covers
Getting started with Yii (Simple) helps you set the Yii environment and create a skeleton
of the Yii application.

Connecting to the database (Simple) shows you how to set up a database connection in the
Yii application.

Using the Gii tool (Simple) covers the automated code generation features provided by Yii. We
will learn how to enable the Gii tool and create Models, CRUD, forms, and application modules.

Creating basic forms (Simple) helps you to create a basic single page form with Yii.

Building multipage forms (Intermediate) shows you how to split your lengthy single page form
into multipage forms by validating the form fields and maintaining page data on each page.

Validating forms (Intermediate) gives you details on the form field validation helpers provided
by Yii. We will look at various validation helpers, use validation rules provided by Yii, and set
our own validation rules.

AJAX forms (Advanced) helps you enable AJAX support for forms. We will take a look at the AJAX
helpers provided by Yii, AJAX-based form field validations, and AJAX-based form submission.

Uploading files (Advanced) covers the file upload features provided by Yii. We will look at how
to file field validations and restrict uploads to specific file types.

Using multiple models (Intermediate) helps you learn the use of multiple models in
a single form.

Preface

2

Customizing looks (Advanced) shows you the options provided by Yii to customize the look of
forms. Additionally, we will learn how to create and use skins and customize widgets using the
widget factory.

What you need for this book
To use the recipes, tips, and tricks of this book, you need to have the following:

 f A web server (any web server with plugins to process PHP scripts)

 f PHP version 5.2 + (5.3 recommended)

 f A database server (the book has been written with MySQL in mind, but you can
easily choose a relational database server of your choice)

 f Yii Framework

Who this book is for
This book is great for developers who have a basic understanding of the Yii framework and
want to learn about the advanced inbuilt features of Yii. It assumes that the reader has a
basic knowledge of PHP development, the working of forms, and AJAX operations.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " As we need the same form elements in
actionCreate and actionUpdate, Yii has created a single file _form.php that
contains all the form elements."

A block of code is set as follows:

'modules'=>array(
 // uncomment the following to enable the Gii tool
 /*
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>'root',
 // If removed, Gii defaults to localhost only. Edit
carefully to taste.
 'ipFilters'=>array('127.0.0.1','::1'),
), */
),

Preface

3

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

'modules'=>array(
 // uncomment the following to enable the Gii tool
 /*
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>'root',
 // If removed, Gii defaults to localhost only. Edit
carefully to taste.
 'ipFilters'=>array('127.0.0.1','::1'),
), */
),

Any command-line input or output is written as follows:

yii> framework/yiic webapp webRoot/sampleapp

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Instant Building
Multi-Page Forms

with Yii How-to

Welcome to Instant Building Multi-Page Forms with Yii How-to. This book is a simple
how-to for generating multipage forms with the Yii framework. It covers simple form
generation, CRUD generation with the graphical tool Gii, validation of forms, and use
of AJAX to validate and submit forms. Additionally, we will use Twitter Bootstrap to change
the default look of the forms/pages generated with Yii.

Getting started with Yii (Simple)
We will start with the basic setup of the Yii environment; that is, connecting to a database
server and automated generation of Gii and forms with Yii.

Getting ready
This book assumes that you are familiar with the PHP development environment and have
a basic development environment set up for PHP application development.

Download the Yii framework from http://www.yiiframework.com/ and extract its
framework folder outside your Public_html folder or web root folder. Your application
will refer to Yii Bootstrap, Yii.php, located inside the Framework folder.

Instant Building Multi-Page Forms with Yii How-to

6

How to do it...
Let's move to creating the web application. We will use the command-line utility of Yii to
generate the new Yii application.

1. Open the command prompt or a console under Linux.

2. Change the current folder to where the framework has been extracted and enter
the following command:
yii> framework/yiic webapp webRoot/sampleapp

3. Access the newly generated application at http://localhost/sampleapp/
index.php.

How it works...
The command will ask you for confirmation and will then generate the basic structure
of the Yii application. You can find the details of the directory structure at
http://www.yiiframework.com/wiki/155/the-directory-structure-of-
the-yii-project-site/.

Yii has already created a few simple pages with a Contact Us form and a Login form.
Following is the screenshot of the default Contact Us form:

Instant Building Multi-Page Forms with Yii How-to

7

Connecting to the database (Simple)
This recipe describes the steps required to set up database access in a Yii application.

Getting ready
We will use a sample application like the one created in the previous recipe. Additionally,
we will need a database server like MySQL, PostgreSQL, or SQLite; also, we will need its
credentials and some interface like PHPMyAdmin or command-line access to execute SQL
statements against our database.

How to do it...
First of all, we need to create a database.

1. Create a new database in MySQL.
2. Now, go to the sample application and change the folder to protected/config.

It contains the following three files:

 � console.php: This is the configuration file to run applications in
console mode

 � main.php:This is the configuration file for web applications
 � test.php: This is the configuration file for testing web applications

3. Open main.php and locate the following code:
'db'=>array(
 'connectionString' =>
 'sqlite:'.dirname(__FILE__).'/../data/testdrive.db',
),
// uncomment the following to use a MySQL database
 */
'db'=>array(
 'connectionString' =>
 'mysql:host=localhost;dbname=sampleapp',
 'emulatePrepare' => true,
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
),

*/

Instant Building Multi-Page Forms with Yii How-to

8

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

4. The basic application created uses the SQLite database. Remove the code for SQLite
configuration and uncomment the MySQL configuration.

5. Change the connectionString, username, and password to match your environment.
This is all you need to set the database connection.

There's more...
Yii provides the following three methods to work with database connections:

 f Active Record

 f Query Builder

 f Data Access Objects (DAO)

Models in Yii generally extend the CActiveRecord class to provide database access using
the Active Record method. This uses a complete object-oriented coding style and creates
all the necessary SQL to deal with the database server. Additionally, we can set validation
rules in models and also add pre- and post-save hooks. Yii provides the GUI tool named Gii to
generate the models for database tables. Though the Active Record method is easy to use,
it consumes more memory and needs more execution time than other methods. The sample
code to get all records from a table (say, User) will go as follows:

$users = User::model()->findAll(array('status'=>'active'));

With Query Builder, we create a command object with Yii::app()->db-
>createCommand() and then add other parts of SQL query with methods such as select,
from, where, and join. Query Builder is faster than Active Record and provides a clean API
to query the database. For example:

$command = Yii::app()->db->createCommand();
$command->select(*)->from('user')->where(array(
'status'=>'active'
));
$users = $command->queryAll();

Finally, with a DAO we create the same command as in Query Builder, but instead of adding
a query using methods, we pass the entire SQL statement to it as Yii::app()->db-
>createCommand($sql). This is the fastest method to access the database and also useful
when we need to write complex queries such as the following:

Instant Building Multi-Page Forms with Yii How-to

9

$sql = 'select * from user where status = "active"';
$users = Yii::app()->db->createCommand($sql)->queryAll();

Both Query Builder and the DAO return data in the raw-array format, whereas Active Record
returns an array of models with each representing a single row.

Using the Gii tool (Simple)
In this recipe we will take a look at the graphical tool Gii. With the Gii tool, we can generate
the following:

 f Controller

 f CRUD

 f Form

 f Model

 f Module

Getting ready
Set up a Yii environment and create a new web application. Set up the database connection
for your database server.

How to do it...
We first need to create a database table.

1. Create a database table user with the following code. This will hold all the necessary
information for user registration.
CREATE TABLE IF NOT EXISTS 'user' (
 'id' int(11) NOT NULL AUTO_INCREMENT,
 'first_name' varchar(50) NOT NULL,
 'last_name' varchar(50) NOT NULL,
 'gender' enum('male','female') NOT NULL,
 'dob' date NOT NULL,
 'address_1' varchar(255) NOT NULL,
 'address_2' varchar(255) DEFAULT NULL,
 'city' varchar(50) NOT NULL,
 'state' varchar(50) NOT NULL,
 'country' varchar(50) NOT NULL,
 'phone_number_1' varchar(50) NOT NULL,
 'phone_number_2' varchar(50) DEFAULT NULL,
 'email_1' varchar(255) NOT NULL,
 'email_2' varchar(255) DEFAULT NULL,

Instant Building Multi-Page Forms with Yii How-to

10

 'created' timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP,
 'modified' timestamp NOT NULL DEFAULT '0000-00-00
00:00:00',
 PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

2. Next, enable the Gii tool. The Gii tool is related to the database system of our
application. So, for security reasons this tool is disabled by default. We need to
enable it from main.php.
'modules'=>array(
 // uncomment the following to enable the Gii tool
 /*
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>'root',
 // If removed, Gii defaults to localhost only. Edit
carefully to taste.
 'ipFilters'=>array('127.0.0.1','::1'),
), */
),

3. Uncomment the block to enable the Gii tool and set your password in place, and then
you are done. The ipFilters line is used to restrict the access of the Gii tool to
certain IP addresses only; in this case, it's localhost (127.0.0.1 OR ::1).

4. We need to create models and controllers. To log in to the Gii tool, enter
http://localhost/sampleapp/index.php?r=gii in your address bar.
You will be provided with the login screen. Enter your password to log in.

How it works...
After you log in, you can see all the tasks that can be done with the help of the Gii tool,
as shown in the following screenshot:

Instant Building Multi-Page Forms with Yii How-to

11

The tasks shown in the previous screenshot are explained here:

 f Controller Generator: It allows you to quickly generate a new controller class
with one or more actions and the respective views. The default base class used
is Controller.

 f CRUD Generator: It generates a controller and views that implement CRUD
operations for a specified model.

 f Form Generator: It can be used to generate a view with form elements for
a specified model.

 f Model Generator: It generates a model class for a specified database table.
The base class used is CActiveRecord.

 f Module Generator: It provides a base code required by the Yii module

All these generators use the templates under the gii/generator folder. You can always
customize them or use your own templates to modify the code according to your requirements.

Let's generate a model class for our table user as shown in the following screenshot:

Instant Building Multi-Page Forms with Yii How-to

12

Fill in the Table Name field and the Model Class field will be automatically populated; change
it if required. Now click on Preview. If the database connection is properly set and Yii finds the
table user, it will create the preview of a model file.

Click on the filename to preview the file or click on the Generate button to generate the model
class. The new class will be stored in the protected/models folder.

The model class has some automatically generated functions such as tableName(), which
returns the name of the table. The function rules() is used to specify the validation rules,
the function relations() is used to specify the relations between two or more model
classes, the function attributeLabels specifies the names for the attribute/columns in
the database table, and the function search() sets the criteria for searching through the
table data.

In the same way, we can generate the CRUD (Create Retrieve Update Delete) operations
for the model user. Type the name of the model class (User) and click on the Preview button.
A list of files to be created will appear, as shown in the following screenshot:

Click on the Generate button to generate files. UserController will be generated under
protected/controllers and you can view the files under protected/view/user.

The generated controller contains some important functions, such as accessRules(),
which is used to specify access control (user-level access) for each action in this controller,
and filters(), which specifies the code to be executed before and/or after action
execution. filters() can include access-control filters, performance filters, and other
user-defined filters.

Instant Building Multi-Page Forms with Yii How-to

13

There's more...
To know more about filters(), visit the website http://www.yiiframework.com/
doc/guide/1.1/en/basics.controller#filter.

Creating basic forms (Simple)
Now we will see the creation and working of basic forms in Yii. We will use the Gii tool to
automatically generate CRUD operations and a form.

Getting ready
We will use the table user created in the Using the Gii tool recipe. Make sure you have
enabled Gii under config/main.php.

How to do it...
1. Generate a new model for the table User.

2. Generate CRUD operations with the Gii tool as specified in the Using the
Gii tool recipe.

As we need to create a simple form, we don't need additional
functionality such as admin, index, and update. Feel free to
uncheck them when generating CRUD.

How it works...
Yii creates some new files and folders, as follows:

 f protected/models/User.php: This is a model class file. It deals with
database-related tasks such as fetching and storing data, updating, and deleting.
The User class is extended from the base class CActiveRecord.

 f protected/controllers/UserController.php: This is a controller class
extended from the base class Controller. This class holds all the code for fetching
data using models, data manipulation according to requirements, and sending data
to the respective views.

 f protected/views/user: This folder holds views for all CRUD operations; names
starting with _ are partial views that are used in multiple places. The remaining files
are views for their respective action names in UserController.php.

Instant Building Multi-Page Forms with Yii How-to

14

Let's take a look at the generated controller file. Change access rules to enable any user
to access our form as follows:

return array(
 //allow all users to perform 'index' and 'view' actions
 array('allow',
 'actions'=>array('index','view', 'create'),
 'users'=>array('*'),
),

All we need to do is add actionCreate() to the actions that all users can access.

Now move to actionCreate(). This is the action when we access the form with the URL
?r=user/create. At the first line of actionCreate, we instantiate the User model. As the
POST variables are not set, the if block is skipped and the form is rendered with the view file
create, with model passed to it as a parameter.

public function actionCreate()
{
 $model=new User;
 if(isset($_POST['User']))
 {
 $model->attributes=$_POST['User'];
 if($model->save())
 $this->redirect(array('view','id'=>$model->id));
 }
 $this->render('create',array('model'=>$model));
}

In the view of create.php, we simply render the partial view with the following lines:

<?php echo $this->renderPartial('_form', array(
 'model'=>$model
)); ?>

This uses the file _form.php, which contains all the form elements and passes to it the
model that we received from actionCreate. As we need the same form elements in
actionCreate and actionUpdate, Yii has created a single file, _form.php, that
contains all the form elements. This file is used by both the actions to render the form.

In _form.php, we start with creating an instance of the CActiveForm widget.

<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'user-form',
 'enableAjaxValidation'=>false,
)); ?>

Instant Building Multi-Page Forms with Yii How-to

15

The HTML code in the following screenshot is created by this widget:

Next we create a space to render error details, if any, with following line:

<?php echo $form->errorSummary($model); ?>

This adds a DIV element to the page if there are any errors in the form fields.

Next we render all necessary input elements as follows:

<div class="row">
 <?php echo $form->labelEx($model,'last_name'); ?>
 <?php echo $form->textField($model,'last_name',array(
 'size'=>50,
 'maxlength'=>50,
)); ?>
 <?php echo $form->error($model,'last_name'); ?>
</div>

The HTML code generated can be seen in the following screenshot:

The $form->labelEx() method renders the label. It takes the parameter name from the
model's attributeLabels function. If no label is set for this attribute, the attribute name
is used as the label.

The $form->textField() method renders the actual form field. We use textField for
input with the type set to text; dropDownList to select boxes, textArea to render text
areas, hiddenField to render hidden fields respectively.

Instant Building Multi-Page Forms with Yii How-to

16

Look at the name of the input field. It has the format User[last_name];
this enables us to get all related form fields in a single User array, which
can be directly assigned to the models' attributes with a single line of code,
$model->attributes = $_POST['User'], thereby reducing the
number of lines of code.

The $form->error() method adds error messages in a separate div element if there is
any error with the data in this field.

Finally, we have added a submit button with the echo CHtml::submitButton('Create').
It creates an input element with type set to submit and is attached to the parent form by
default. We can end the form widget with $this->endWidget();.

When the user clicks on the create button, the form data is submitted to the same
actionCreate function as POST data.

Now as the $_POST['User'] field is set, the code enters the if block. We assign all
attributes marked as safe in the User variable of type POST to model with $model-
>attributes = $_POST['User']. This is called Mass Assignment.

Then on the next line, we save the model with $model->save(). The method save()
internally validates the model to check if the user has entered the valid data. Here, the
rules specified in the method rules under the User model are used to validate the form data.

public function rules()
{
 return array(
 array(
 'first_name, last_name, gender, dob, address_1,
 city, state, country, phone_number_1, email_1,
 created', 'required'
),
 array(
 'first_name, last_name, city, state, country,
 phone_number_1, phone_number_2',
 'length', 'max'=>50
),
 array('gender', 'length', 'max'=>6),
 array(
 'address_1, address_2, email_1, email_2',
 'length', 'max'=>255
),
 array('modified, dob', 'safe'),
 array(
 'id, first_name, last_name, gender, dob, address_1,

Instant Building Multi-Page Forms with Yii How-to

17

 address_2, city, state, country, phone_number_1,
 phone_number_2, email_1, email_2, created,
 modified', 'safe', 'on'=>'search'
),
);
}

In the first array, we specify all the required fields; in the next three arrays, we set the
maximum length of data for each field. In the fourth array, additionally, we mark the attributes
dob and modified as safe. We also make several attributes as safe when the scenario is
set to search.

If the validation is successful, the form data is persisted to the database and the page
is redirected to the action view, which displays all the captured data.

If the validation fails, the same model is passed to the view but now with the respective
validation errors set in it. The line $form->errorSummary($model) renders the summary
of all errors in the form and the line $form->error() adds the error line below the
respective fields.

There's more...
We have seen the automated creation of forms and CRUD operations with the Gii tool. If you
want to write a custom code to process the form and you simply want to generate the form
with all fields for the specified table, you can use the form generator tool provided by Gii.

Instant Building Multi-Page Forms with Yii How-to

18

Enter the model's class and view name and click on the Preview button. You will see the
same form generated by the Gii tool under the views folder. Click on the Generate button
to generate the actual file.

For more information on safe attributes, visit http://www.yiiframework.com/doc/
guide/1.1/en/form.model#securing-attribute-assignments.

For more information on validation rules, visit http://www.yiiframework.com/doc/
guide/1.1/en/form.model#declaring-validation-rules.

Building multipage forms (Intermediate)
In this recipe, we will separate our lengthy registration form into multiple pages.

Why do we need multipage forms? Because we don't want our visitors to scroll too much
and want to enable them to fill out forms as quickly as possible. Multipage forms look much
shorter than a single form and fit better without much change in design; most importantly,
we can group the form fields in logical sections.

Getting ready
We'll separate our existing user registration form created in the Creating basic forms
recipe, to multipage forms. The sections will be for personal information, address details,
and contact information.

How to do it...
1. All code related to the form is written in a file named _form under protected/

views/user.

2. We are dividing the input fields into three sections, so create three separate files in
the same folder with the names _page1, _page2, and _page3. Separate the code's
respective files. Some sample lines are as follows:
<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'user-form',
 'enableAjaxValidation'=>false,
 'stateful'=>true,
)); ?>

<div class="row">
 <?php echo $form->labelEx($model,'first_name'); ?>
 <?php echo $form->textField($model,'first_name',
 array(
 'size'=>50,

Instant Building Multi-Page Forms with Yii How-to

19

 'maxlength'=>50
)); ?>
 <?php echo $form->error($model,'first_name'); ?>
</div>
.....
.....
<div class="row buttons">
 <?php echo CHtml::submitButton('Next', array(
 'name'=>'page2'
)); ?>
</div>
<?php $this->endWidget(); ?>
....
<div class="row buttons">
 <?php echo CHtml::submitButton('back', array(
 'name'=>'page1'
)); ?>
 <?php echo CHtml::submitButton('Next', array(
 'name'=>'page3'
)); ?>
</div>

<div class="row buttons">
 <?php echo CHtml::submitButton('Back', array(
 'name'=>'page2'
)); ?>
 <?php echo CHtml::submitButton('submit', array(
 'name'=>'submit'
)); ?>
</div>

3. Now, in the User controller, change the code for actionCreate as follows:
public function actionCreate()
 {
 if(isset($_POST['page1']))
 {
 $model = new User('page1');
 $this->checkPageState($model, $_POST['User']);
 $view = '_page1';
 }
 elseif(isset($_POST['page2']))
 {
 $model = new User('page1');
 $this->checkPageState($model, $_POST['User']);

Instant Building Multi-Page Forms with Yii How-to

20

 if($model->validate())
 {
 $view = '_page2';
 $model->scenario = 'page2';
 }
 else
 {
 $view = '_page1';
 }
 }

 $this->render($view, array('model'=>$model));
}

4. And add a function, checkPageState(), as follows:
private function checkPageState(&$model, $data)
{
 $model->attributes = $this->getPageState('page',
 array());
 $model->attributes = $data;
 $this->setPageState('page', $model->attributes);
}

5. Lastly, create scenarios in the model User to validate each page of the form
separately. Add three arrays specifying all the required fields per page, as follows:

return array(
 array('first_name, last_name, gender, dob',
 'required', 'on'=>'page1'
),
 array('address_1, city, state, country',
 'required', 'on'=>'page2'
),
 array('phone_number_1, email_1',
 'required', 'on'=>'page3'
),

Instant Building Multi-Page Forms with Yii How-to

21

How it works...
We have separated all our input fields into three forms. Each page contains an entire
standalone form that accepts the input from the user, validates it from the server, and
stores the data till we finally submit this form. The parameter stateful passed to the
CactiveForm widget specifies the form needed to maintain the state across the pages.
To do this, Yii creates a hidden field in each form with the name YII_PAGE_STATE, as
shown in the following screenshot:

All the data submitted on the first page is stored in this hidden field and passed to the server
with the second page.

To read the data from this field we have used the method getPageState(), and to write
we have used setPageState(). We have added a private method checkPageState()
to the User controller, which reads the page state, if any, and assigns it to $model-
>attributes, then assigns data from the current form using $model->attributes =
$_POST['User'], and finally overwrites the page state with freshly combined data.

When we click on Next on _page1, we set the POST variable page2, which in turn executes
the second block in the if-else ladder in actionCreate. In this recipe, we create an
instance of the model User with scenario set to _page1 (as we need to validate the data
received from _page1). With a call to checkPageState(), we check the current page state
and add any new data from _page1 to the page state.

Then we check if the data filled is valid using $model->validate(). If the model passes
the validation we set, apply view to _page2 and set $model->scenario to _page2, to
mark the required fields on _page2. If the validation fails, we set the view to _page1 with
the validation errors set in the model.

Instant Building Multi-Page Forms with Yii How-to

22

At the end of the action, we render the selected view with the current state of the model.
If any validation errors are set, they are listed on the same page; else, the next page will
be rendered. The same steps are repeated for _page2 as well.

When the submit button is clicked on on _page3, we retrieve the previous data from the
page state using getPageState(). Here we are not using checkPageState() as now
we do not need to store any data to the page state. We simply assign the data from _page3
to the model, and if the model validates we save all the data to the database with $model-
>save(). After saving, we are redirected to actionView(), where data from all three forms
is listed as shown in the following screenshot:

Instant Building Multi-Page Forms with Yii How-to

23

Validating forms (Intermediate)
In this recipe we will look at the data-validation options provided by Yii.

Getting ready
We'll use the form we developed in the Building multipage forms recipe.

How to do it...
We have fields such as First Name, Last Name, Gender, Dob (date of birth), Phone Number
1, Phone Number 2, Email 1, and Email 2. Let's add data validation for these fields. First
name and Last Name will be text-only fields, Gender will either be male or female, and Dob
will be a date string.

Open a User model from the protected/models folder. Look for the function named
rules(). Following are the rules created for the Building multipage forms recipe:

public function rules()
{
 return array(
 array('first_name, last_name, gender, dob',
 'required', 'on'=>'page1'
),
 array('address_1, city, state, country',
 'required', 'on'=>'page2'
),
 array('phone_number_1, email_1',
 'required', 'on'=>'page3'
),
 array('first_name, last_name, city, state, country,
 phone_number_1, phone_number_2',
 'length', 'max'=>50
),
 array('gender', 'length', 'max'=>6),
 array('address_1, address_2, email_1, email_2',
 'length', 'max'=>255
),
 array('modified, dob', 'safe'),
 array('first_name, last_name, gender, dob,
 address_1, address_2, city, state,
 country, phone_number_1, phone_number_2, email_1,
 email_2, created, modified',
 'safe', 'on'=>'search'
),
}

Instant Building Multi-Page Forms with Yii How-to

24

This function defines the validation rules used by the Yii forms. The Gii tool has already
created some simple rules by reading the definition of the user table structure. For example,
the maximum length for name, City, State, and so on is 50. The field's First Name, Last
Name, Gender, Dob, Address 1, Address 2, and so on are the fields required while submitting
the form. Let's customise the rules as per our requirements.

1. To generate the first_name, last_name, city, and state name strings:
array('first_name, last_name, city, state, country',
 'type', 'type'=>'string'
),

2. To make phone numbers numeric, add the following line to the rules array:
array('phone_number_1, phone_number_2', 'numeric'),

3. To check if the e-mail address is a valid address, use this:
array('email_1, email_2', 'email'),

4. To limit the values for gender, use this:

array('gender','in','range'=>array('male','female'),
 'allowEmpty'=>false
),

5. To check Dob (date of birth) for a valid date:
array('dob', 'date', 'format'=>'mm-dd-yyyy'),

Yii provides a range of validation options. For example:

 f boolean: It checks for Boolean values; that is, true(1) or false(0)

 f compare: It compares the values against the given constant

 f captcha: For captcha code validation

 f default: To set the default values if the field is empty

 f file: To check the uploaded file's type, size, and number of files

There are many other options too.

How it works...
The rules() function returns a set of rules in a main array, with each rule specified in its
separate array for one or more attributes. These rules are used by the validate() method
of a model to determine validation of data on the server side. The save() method internally
calls this validation and requires it to succeed before saving the record.

Instant Building Multi-Page Forms with Yii How-to

25

For client-side validation, Yii sends additional JavaScript with page contents that contain
validation rules coded in JavaScript. With the following code, we can set the trigger to call
client-side validation:

<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'user-form',
 'enableAjaxValidation'=>false,

 'clientOptions'=>array(

 'validateOnSubmit'=>true,

 'validateOnChange'=>true,

),

The validateOnSubmit method calls the client-side form field validation before actually
submitting a form (on the click of a submit button), while validateOnChange triggers field
validation on the onchange event of the respective field.

There's more...
You can visit the following website for various validation rules:

 f http://www.yiiframework.com/wiki/56/

 f http://www.yiiframework.com/wiki/168/create-your-own-
validation-rule/

 f http://www.yiiframework.com/wiki/266/understanding-scenarios/

AJAX forms (Advanced)
Yii provides some useful AJAX-based options to make your forms more responsive and
interactive. You can set Yii forms to validate fields on change and/or on form submission.
This validation is performed by an AJAX call to the server validating the input fields without
refreshing the page.

In this recipe we will learn how to enable AJAX support for form validations and submissions.

Getting ready
To see this in action, we will use the simple form generated in the Creating basic forms recipe.

Instant Building Multi-Page Forms with Yii How-to

26

How to do it...
1. Open the file /protected/views/user/_form.php.

2. To enable AJAX-based server-side validation, change the property
enableAjaxValidation to true with the following code:
<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'user-form',
 'enableAjaxValidation'=>true,
)); ?>

3. To process AJAX validation requests, add the following lines to the action created
in UserController.php:
...
$model=new User;
if(isset($_POST['ajax']) && $_POST['ajax']==='user-form')
{
 echo CActiveForm::validate($model);
 Yii::app()->end();
}
if(isset($_POST['User']))
...

With this, we have enabled AJAX-based server-side validation for our form.

How it works...
When we set enableAjaxValidation to true, Yii automatically adds some JavaScript code
to our form page. This code tracks the changes in the form fields and sends a request to the
server to validate the changes. We can set the separate URL for validating the form data; by
default, the validation requests are submitted to the action attribute of the form. In our case
it is the same actionCreate attribute that is used to render the form.

In actionCreate, we have added some code to check for AJAX validation requests. If we
receive an AJAX request, we simply call the CActiveForm::validate($model) method
to validate the data. This method returns the validation results in JSON form, which is then
passed to the client browser.

If the respective fields are valid, they will be marked with CSS for denoting class success
(green color by default); else, it gets marked with red color for class error and the error
description is displayed below the respective field as well as in the error-summary section.

The problem with enableAjaxValidation is that it sends validation requests for changes
in any of the form fields, by default. This creates lot of traffic on the server.

Instant Building Multi-Page Forms with Yii How-to

27

To reduce server traffic with AJAX requests, add the following lines to the form definition:

<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'user-form',
 'enableAjaxValidation'=>true,

 'clientOptions'=>array(

 'validateOnSubmit'=>true,

 'validateOnChange'=>false,

),

)); ?>

With this line, we have disabled the validation requests on field-change events and enabled
AJAX-based validations on submitting the form. This avoids the individual validation requests
and sends a single request before final submission of the form. If this request fails, the
form submission is cancelled with the error description added to the form. After successful
validation, a regular POST request is sent to the server submitting the form.

With this additional code, you get complete AJAX-based form submission:

<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'user-form',
 'enableAjaxValidation'=>true,
 'clientOptions'=>array(
 'validateOnSubmit'=>true,
 'validateOnChange'=>false,

 'afterValidate'=>'js:submitForm', //JS function

),
)); ?>

Add the following HTML code to _form.php. This will hold the result of form submission.

Add the following JavaScript to _form.php under protected/views/user:

<script type="text/javascript">
function submitForm (form, data, hasError){
 //check for validation errors
 if (!hasError){
 var url = form.attr('action');
 $.post(url, form.serialize(), function(res){
 $('#result').html(res);
 });
 }
 // return false to avoid traditional form submit
 return false;
}
</script>

Instant Building Multi-Page Forms with Yii How-to

28

Set some additional code in the actionCreate method of UserController, as follows:

if(isset($_POST['ajax']) && $_POST['ajax']==='user-form')
{
 echo CActiveForm::validate($model);
 Yii::app()->end();
}

if(Yii::app()->request->isAjaxRequest)

{

 //do stuff like validate or save model

 //and set message accordingly

 echo 'Registration successful!!';

 Yii::app()->end();

}

What we did is set the forms afterValidate to submit AJAX request to actionCreate().
As we are not setting $_POST['ajax'], we track this event with Yii::app()->request-
>isAjaxRequest. If it's an AJAX request, simply save the model and return the success
message. This is then displayed in the span tag on the form page.

Notice that we have set the submitForm function to always return false to avoid the
traditional non-AJAX form submission.

There's more...
Additionally, Yii provides three static methods.

 f CHTML::ajaxLink()

 f CHTML::ajaxButton()

 f CHTML::ajaxSubmitButton()

These methods automatically create the respective HTML elements and additionally add the
jQuery code for AJAX-based requests/response handling.

The following lines demonstrate the use of AJAX using these helpers:

echo CHtml::ajaxLink(
 'Submit',
 array('user/view', 'id' => $id), // Yii URL
 array('update' => '#result') // jQuery selector
);

Instant Building Multi-Page Forms with Yii How-to

29

This will create an HTML link element with the name Submit. On clicking this link, a request
is posted to actionView of UserController. The first parameter provides a name or text
to be used for the link. The second parameter specifies its target or href attribute. The third
parameter specifies the AJAX option update that is set to replace the contents of the HTML
element #result.

You can process the response data on the client script with following callback function:

echo CHtml::ajaxLink(
 'Submit',
 array('user/view', 'id' => $id),
 array(
 'dataType'=>'json',
 'success' => 'js:function(data){
 console.log(data);
 alert(data.msg); //message element in response
 }'),
);

You can find more information on AJAX forms at the following links:

 f http://www.yiiframework.com/wiki/394/javascript-and-
ajax-with-yii/

 f http://www.yiiframework.com/doc/api/1.1/
CActiveForm#clientOptions-detail

Uploading files (Advanced)
Let's add the upload functionality to our registration form. We'll add a file-upload dialog,
asking the user to upload his image.

Getting ready
We'll use the form we have developed in the Creating basic forms recipe.

How to do it...
1. Let's start with editing our model User.php. Add a public attribute named $image.

public $image;

public static function model($className=__CLASS__)
{
 return parent::model($className);
}

Instant Building Multi-Page Forms with Yii How-to

30

2. Now add some validation rules for this attribute.
return array(
 array('image', 'file', 'allowEmpty' => true,
 'types' => 'jpg, jpeg, gif, png'
),
...
);

3. Add the attribute's name to this attribute:
'image'=>'Upload Photo',

4. Edit _form.php under protected/views/user to add the following lines to
enable this form to accept file uploads:
'htmlOptions' => array('enctype' => 'multipart/form-data'),
<code in uploads/_form.php>

5. Finally, add the following lines to the UserController.php action created, to save
the uploaded file:

if(isset($_POST['User']))
{
 $model->attributes=$_POST['User'];
 $model->image=CUploadedFile::getInstance($model,'image');
 if($model->save())
 {
 $path=Yii::getPathOfAlias(
 'webroot.images.'.$model->first_name
);
 $model->image->saveAs($path);
 $this->redirect(array('view','id'=>$model->id));
 }
}

That's it, we are done. Now try to fill the form, select the file to be uploaded and you can find
the uploaded file at the web_root/images folder.

How it works...
At the start, we set a public attribute to our User model to hold the file data. Next we set
some validation rules to specify that the file upload is not compulsory and the user can
upload only .jpg, .gif, and .png files.

Instant Building Multi-Page Forms with Yii How-to

31

Then we set our form to accept file uploads. As we are uploading the binary data in the form
of a file, we need to enable our form to accept binary data. We did this with 'enctype' =>
'multipart/form-data'. Additionally, the form method must be set to POST.

At this stage we are done with the upload part, but at the server side we need some logic to
process the uploaded contents. We added this functionality with the following line:

$model->image=CUploadedFile::getInstance($model,'image');

To get the uploaded contents in $model->image, we add the following line:

$model->image->saveAs($path.$model->first_name);

We have saved and received data in a file with the same name as the user's first name.
Alternatively, you can get the original filename with $model->image->getName().

We have used two components provided by Yii. Following are the two components:

 f CUploadedFile: This represents the information for an uploaded file. It's a wrapper
class for the $_FILE array that PHP uses to hold uploaded files. We have used its
getInstance() method to get the uploaded file and then used saveAs() to save
the data to the file. Additionally, we can get other information about the file, including
the name, temporary name, type, size, and errors. Get more details on the website
http://www.yiiframework.com/doc/api/1.1/CUploadedFile.

 f CFileValidator: This verifies if an attribute is receiving a valid uploaded file. With
the file validator, we can make the file field compulsory, specify the maximum
number of files, and specify the minimum and maximum limits on the file size
and a file type. We can also set the details of the errors to be displayed. By adding
the following lines in the rules array of the model, we can enable the file field
validation:

return array(
 array('image', 'file', 'allowEmpty' => true,
 'types' => 'jpg, jpeg, gif, png'
),
...
);

With these lines, we have set the image attribute to be optional and we have restricted the
file types to image files.

You can get more details from the website http://www.yiiframework.com/doc/
api/1.1/CFileValidator/.

Instant Building Multi-Page Forms with Yii How-to

32

Using multiple models (Intermediate)
This recipe explains how to use multiple models within a single form.

Getting ready
We'll use the form we have developed in the Building multipage forms recipe.

Create a new table order. This will represent the orders placed by the users.

CREATE TABLE IF NOT EXISTS 'order' (
 'id' int(11) NOT NULL AUTO_INCREMENT,
 'user_id' int(11) NOT NULL,
 'product_name' varchar(255) NOT NULL,
 'quantity' int(11) NOT NULL,
 PRIMARY KEY ('id'),
 KEY 'user_id' ('user_id')
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

Create a model for this table using the Gii tool.

How to do it...
Let's add this new model to the actionCreate method developed for multiple forms.
We will need to add one more step/page to the action as follows:

...
$this->checkPageState($model, Yii::app()->request->getPost('User',
array()));
$this->setPageState('order', Yii::app()->request->getPost('
Order', array()));

...

...
if($model->validate())
{
 $view = '_page4';
 $order = new Order();
 $order->attributes = $this->getPageState(
 'order', array()
);
}

...

else if(isset($_POST['submit']))

Instant Building Multi-Page Forms with Yii How-to

33

{
 $model = new User('page3');
 $order = new Order();
 $model->attributes = $this->getPageState(
 'page', array()
);
 $order->attributes = $_POST['Order'];
 if($model->validate())
 {
 $model->save();
 $order->user_id = $model->id;
 if($order->validate())
 {
 $order->save();
 $this->redirect(array('view', 'id'=>$model->id));
 }
 }
 $view = '_page4';
}

Next, create a view for _page4.

...
<div class="row">
 <?php echo $form->labelEx($order,'product_name'); ?>
 <?php echo $form->textField($order,'product_name'); ?>
 <?php echo $form->error($order,'product_name'); ?>
</div>
<div class="row">
 <?php echo $form->labelEx($order,'quantity'); ?>
 <?php echo $form->numberField ($order,'quantity'); ?>
 <?php echo $form->error($order,'quantity'); ?>
</div>
<div class="row buttons">
 <?php echo CHtml::submitButton('Back', array(
 'name'=>'page3')); ?>
 <?php echo CHtml::submitButton('submit', array(
 'name'=>'submit')); ?>
</div>
...

Change the submit button in the view of _page3 to the following:

<?php echo CHtml::submitButton('Next', array(
 'name'=>'page4'
)); ?>

Instant Building Multi-Page Forms with Yii How-to

34

We are done; try the new form in your browser. It will look something like the
following screenshot:

How it works...
We introduced an order model in the fourth page of our multipage form with the
following code:

if($model->validate())
{
 $view = '_page4';
 $order = new Order();
 $order->attributes = $this->getPageState('order', array());
}

First we check if the data we received in the third step for the model User is valid. If the
model validates, we set our view page to _page4. Then we create a new model named
Order. On the third line, we simply check if there's any saved state for the model Order;
this is useful if the user moves back after filling the data of Order.

In the same way, we have added some code in the third step to check if the user has moved
back from _page4 after filling the form fields. So we save the current state of _page4. Notice
the use of Yii::app()->request->getPost('User', array()) line of code. The
getPost() method is used to get the named POST value. The first parameter is the name of
the POST field and the second parameter is the default value if the POST field with the given
name is not set. Similarly, you can use the getParam() method to get the parameters of GET.

Next, in the final step, we assign the saved state to the User model, and $_POST data to
the Order model. As we have already loaded a save state on the page, $_POST will hold the
updated data (if any) or the data in that saved state.

Then we validate the User model with if($model->validate()). After successful
validation, we save the User model and assign the user's ID to the Order model with
$order->user_id = $model->id. Then we save the Order model too. If it's successful,
we redirect to view the page; else, we redirect to the fourth page to solve the form errors.

Instant Building Multi-Page Forms with Yii How-to

35

There's more...
We could use the transactional feature of the database while storing the data; that is, if the
saving of the order model fails, we could discard the User model entirely by rolling back the
transaction as follows:

if($model->validate())
{
 $transaction = Yii::app()->db->beginTransaction();
 try
 {
 $model->save();
 $order->user_id = $model->id;
 if(!$order-> save())
 throw new Exception('Order data invalid');
 $transaction->commit();
 $this->redirect(array('view', 'id'=>$model->id));
 }
 catch(Exception e)
 {
 $transaction->rollBack();
 $view = 'page4';
 }
}

For more details on database transaction visit the website en.wikipedia.org/wiki/
Database_transaction.

Transactional queries support in Yii can be looked up on the website http://www.
yiiframework.com/doc/guide/1.1/en/database.dao#using-transactions.

Customizing looks (Advanced)
In this recipe we will look at the various options to customize the look of page elements.
Yii provides attributes such as htmlOptions, labelOptions, and cssFile to add your
own CSS rules to the page elements.

How to do it...
1. Use your own class for the form as follows:

$form=$this->beginWidget('CActiveForm', array(
 'id'=>'user-form',
 'htmlOptions' => array('class' => 'myclass'),
));

Instant Building Multi-Page Forms with Yii How-to

36

2. Set the HTML options (name, ID, class, and so on) for elements as follows:
$htmlOptions = array('class'=>'myClass', 'id'=>'myId')
$form->textField($model, $attribute, $htmlOptions)

Using Skins, we can proceed as follows:

1. Enable Skins in the application configuration with the following code:
'widgetFactory'=>array(
 'class'=>'CWidgetFactory',
 'enableSkin'=>true,
)

2. To create a new skin for a widget, create a file with the name of the widget in the
Skins folder, that is, /protected/views/skins/CDetailView.php, with the
following code:
return array(
 'default'=>array(
 'htmlOptions'=>array(
 'class'=>'class_1',
),
 'template'=>'{label}{value}',
),
 'stripped'=>array(
 'htmlOptions'=>array(
 'class'=>'stripped',
),
 'template'=>'{label}{value}',
)
);

3. Use the widget with a Skin.

4. Use a default skin.
$this->widget('CDetailView);

5. Or, use our created Skin as follows:

$this->widget('CDetailView, array('skin'=>'stripped'));

Instant Building Multi-Page Forms with Yii How-to

37

How it works...
We can change the default CSS rules applied to the form elements with the parameter
htmlOptions. Here we can specify a custom CSS class or provide inline styling rules
as follows:

$htmlOptions => array('attribute' => 'value');
$form->textField($model, $attribute, $htmlOptions);
$form->dropDownList($model, $attribute, $data, $htmlOptions);

In the same way, elements such as textfield and dropdownlist and the label
radioButtonsLists provide an optional parameter $htmlOptions to customize
the look of a given element.

If all forms across your application are supposed to use the same styling rules, instead of
repeating htmlOptions for each form, you can add these rules to widgetFactory in the
application configuration. In protected/config/main.php, add the following lines:

...
'components'=>array(
 'widgetFactory'=>array(
 'class'=>'CWidgetFactory',
 'widgets'=>array(
 'CActiveForm'=>array(
 'htmlOptions'=>array(
 'class'=>'myClass1 myClass2',
),
),
),
)
...
)

Now you can specify the element with the following:

$form=$this->beginWidget('CActiveForm', array(
 'id'=>'user-form',
));

Instant Building Multi-Page Forms with Yii How-to

38

If you want some forms to use different CSS rules than the ones specified in
widgetFactory, you can do it by specifying the htmlOptions array for this form.
Additionally, you can customize form styles with the following clientOption attributes:

$form=$this->beginWidget('CActiveForm', array(
 'clientOptions'=>array(
 'errorCssClass'=>'errorClass',
 'successCssClass'=>'successClass',
 'validatingCssClass'=>'inProgress',
 'errorMessageCssClass'=>'msgClass',
)));

These attributes are explained as follows:

 f The errorCssClass attribute allows you to set the CSS class to be assigned to the
container whose associated input has the AJAX validation error

 f With the successCssClass attribute, you can set the class for the container whose
associated input passes AJAX validation

 f The validatingCssClass attribute allows you to set the CSS class to be assigned
to the container whose associated input is currently being validated via AJAX

 f The errorMessageCssClass attribute sets the CSS class to the error message
returned by AJAX validation

 f You can also change the container element for an input field with the
inputContainer attribute

For widgets such as detailView, gridView, and listView, you can specify the template
to be used to change the way these widgets are rendered.

$this->widget('zii.widgets.CDetailView', array(
 'htmlOptions'=>array('class'=>'myClass'),
 'template'=>'{label}{value}',
 ...
));

We can use Skins to customise the look of Yii widgets; all the rules we specified under
widgetFactory in main.php can be moved to the Skin files. Additionally, we can specify
multiple Skins for each widget and decide which Skin to use when we need it. When the
enableSkin option for widgetFactory is set to true, Yii will try to find the Skins before
rendering the widgets. If the Skins are not available, Yii's inbuilt styling will be used.

There's more...
You can find more details on customizing Yii widgets on the link http://danaluther.
blogspot.in/2012/02/leveraging-widgets-widget-factory-and.html.

Thank you for buying
Instant Building Multi-Page
Forms with Yii How-to

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Yii Application Development
Cookbook - Second Edition
ISBN: 978-1-78216-310-7 Paperback: 408 pages

A cookbook covering both practical Yii application
development tips and the most important Yii features

1. Learn how to use Yii even more efficiently

2. Full of practically useful solutions and concepts
you can use in your application

3. Both important Yii concept descriptions and
practical recipes are inside

Web Application Development
with Yii and PHP
ISBN: 978-1-84951-872-7 Paperback: 332 pages

Learn the Yii application development framework by
taking a step-by-step approach to building a web-based
project task tracking system from conception through
production deployment

1. A step-by-step guide to creating a modern Web
application using PHP, MySQL, and Yii

2. Build a real-world, user-based, database-driven
project task management application using the Yii
development framework

3. Start with a general idea, and finish with
deploying to production, learning everything
about Yii in between, from "A"ctive record to "Z"ii
component library

Please check www.PacktPub.com for information on our titles

Yii Rapid Application
Development Hotshot
ISBN: 978-1-84951-750-8 Paperback: 340 pages

Become a RAD hotshop with YII, the world's most
popular PHP framework

1. A series of projects to help you learn Yii and Rapid
Application Development

2. Learn how to build and incorporate key web
technologies

3. Use as a cookbook to look up key concepts, or
work on the projects from start to finish for a
complete web application

Agile Web Application
Development with Yii1.1
and PHP5
ISBN: 978-1-84719-958-4 Paperback: 368 pages

Fast-track your web application development: by
harnessing the power of the Yii PHP Framework

1. A step-by-step guide to creating a modern,
sophisticated web application using an
incremental and iterative approach to
software development

2. Build a real-world, user-based, database-driven
project task management application using the Yii
development framework

3. Take a test-driven design (TDD) approach to
software development utilizing the Yii testing
framework

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Instant Building
Multi-Page Forms
with Yii How-to
	Getting started with Yii (Simple)
	Connecting to the database (Simple)
	Using the Gii tool (Simple)
	Creating basic forms (Simple)
	Building multipage forms (Intermediate)
	Validating forms (Intermediate)
	AJAX forms (Advanced)
	Uploading files (Advanced)
	Using multiple models (Intermediate)
	Customising looks (Advanced)

