

Yii2 By Example

Develop complete web applications from scratch
through practical examples and tips for beginners
and more advanced users

Fabrizio Caldarelli

BIRMINGHAM - MUMBAI

Yii2 By Example

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1230915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-741-1

www.packtpub.com

www.packtpub.com

Credits

Author
Fabrizio Caldarelli

Reviewers
Tristan Bendixen

Samuel Liew

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Anand Singh

Technical Editor
Vivek Arora

Copy Editors
Ameesha Smith-Green

Laxmi Subramanian

Project Coordinator
Mary Alex

Proofreader
Safis Editing

Indexer
Tejal Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Fabrizio Caldarelli is an Italian programmer who started his professional career
in his youth by programming with desktop-oriented languages, the first being Visual
Basic. From the year 2000 onward, he spent 5 years developing software to manage
radio broadcasts. During that period, he studied C#.NET to make porting of all
software versus this new platform.

During the same period, he learned web programming, HTML, and ASP, and
in 2003, he began to develop software using PHP as the default programming
language for web pages. During those years, he collaborated as a teacher for PHP
programming courses with http://www.html.it/, an important online reference
for developers in Italy.

In 2008, he added new skills to his experience by starting to develop mobile projects
for Nokia devices with Symbian C++, and a few years later, he started working on
projects for iOS, Android, and naturally Windows phone.

After many PHP-based web projects, in late 2012, he moved on to the Yii framework
as his primary framework for developing web applications.

Since then, he has built many important projects based on Yii 1 and later on Yii 2, day
by day discovering the powerful improvement that Yii provides to getting work done.

Now he lives in Sacrofano, a small town near Rome, with his wife, Serena.

I want to thank Erika Accili for supporting me during the writing and
organization of this book. I also want to thank my wife, Serena, for
sustaining me during all the work, and for the rest of her life indeed!

http://www.html.it/

About the Reviewers

Tristan Bendixen is currently pursuing a master's degree as a software engineer,
having been passionate about programming for most of his life. He has worked as a
developer on diverse projects, ranging from commercial and corporate websites to
mobile phone apps and desktop applications.

He continues to work as a software developer alongside his studies, on paid projects,
as well as some open source ones, which he helps with when time permits.

I would like to thank my beloved mother and younger brother for
their love and support in my constant endeavors to become a better
developer, and my friends at Aalborg University for being awesome
sparring partners on projects and classes alike.

Samuel Liew is a full-stack web developer who enjoys producing solutions with
interesting and challenging requirements. He has experience of developing a diverse
range of websites, such as governmental sites, public utilities, real estate, investor
relations, contests, touchscreen kiosks, iPad feedback apps, blogs and magazines,
and media news. He has also been involved with creating two proprietary
content management systems using C#.NET/MongoDB and PHP/Yii/MySQL.
His latest accomplishment is the development of a microstock photography website
(http://vivistock.com) using the Yii Framework, which involves e-commerce
transactions and implements heavy business logic.

http://vivistock.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Starting with Yii2 1

Requirements and tools 2
Installing Yii2 with Composer 2
Application structure 3
Application properties 6

Common application components 7
Handling application events 9
The MVC pattern in Yii2 10

Naming convention 10
Configuring the debug toolbar 11
Using the logger 14
Example – Hello world from scratch with the Yii basic template
and bootstrap template 14

Summary 17
Chapter 2: Creating a Simple News Reader 19

Creating Controller and Action 20
Creating a view to display a news list 23
How the controller sends data to view 24

Example – create a controller to display the static news items list
and details using the bootstrap template 25

Splitting the common view content into reusable views 29
Example – render partial in view 30

Creating static pages 31
Example – add a contact page 32

Sharing data between views and layout 34
Example – change the layout background based on a URL parameter 35

Table of Contents

[ii]

Layout with dynamic block 36
Example – add a dynamic box to display advertising info 37

Using multiple layouts 38
Example – using different layouts to create responsive and
nonresponsive content layout for the same view 39

Summary 40
Chapter 3: Making Pretty URLs 41

Using pretty URLs 41
Custom URL rules 43

Example – list news items by year or category 44
Default parameters in rules 47

Example – the index page to display the links list 48
The complete URL rule parameters 49
The URL pattern to support the multilanguage view 50
Creating the rule class 52
Summary 55

Chapter 4: Creating a Room through Forms 57
Creating a Model 57

Example – a Model to store room data 58
Using ActiveForm 61

Example – creating a new room from the HTML form 62
Format date, time, and numbers 65
Uploading files 67

Example – uploading an image of a room 67
Summary 71

Chapter 5: Developing a Reservation System 73
Configuring a DB connection 74

Example – creating rooms, customers, and reservations tables 76
Example – test connection and executing the SQL query 78

Using Gii to create room, customer, and reservation models 81
Using ActiveRecord to manipulate data 88

Example – query rooms list with ActiveRecord 91
Working with relationships 96

Example – using a relationship to connect rooms, reservations,
and customers 103

How to save a model from a form 109
Example – creating and updating a room from a form 112

Table of Contents

[iii]

Setting up the GMT time zone 118
Using multiple database connections 120

Example – configuring a second DB connection to export data
to a local SQLite DB 121

Summary 125
Chapter 6: Using a Grid for Data and Relations 127

Introduction 128
DataProvider for grids 128
Using a grid 130
Custom columns in a grid 131

Example – displaying a reservations list by clicking on a customer
grid row 131

Filters in GridView 137
Displaying and filtering ActiveRecord relational data in a
grid's column 140
A summarized footer row in a grid 144

Example – extending GridView to customize the footer row in a grid 147
Multiple grids on one page 148

Example: managing the reservations and rooms grids in the
same view 149

Summary 152
Chapter 7: Working on the User Interface 153

Using Gii to generate CRUD 154
Example – using CRUD to manage rooms, reservations,
and customers using Gii 155

Customize JavaScript and CSS 158
Example – using JavaScript and CSS to display advertising
columns that disappear if not enough space is available 160

Using AJAX 163
Example – reservation details loaded from the customers'
drop-down lists 165

Using the Bootstrap widget 169
Example: using datepicker 170

Multiple models in the same view 175
Example – saving multiple customers at the same time 176

Saving linked models in the same view 179
Example – creating a customer and reservation in the same view 180

Summary 183

Table of Contents

[iv]

Chapter 8: Log in to the App 185
Creating a user login 186

Example – a login form to access 190
Configuring user authorization 196

Example – creating an ACF to authorize the users 197
RBAC 198

Example – configuring RBAC to set permissions for users 202
Mixing ACF and RBAC 208

Example – managing users' roles to access rooms, reservations,
and customers 208

Summary 210
Chapter 9: Frontend to Display Rooms to Everyone 211

Using an advanced template to split frontend and backend 212
Configuring an application using init 214

Example – creating frontend for public access 216
Sharing ActiveRecord models among applications 217

Example – displaying available rooms in the frontend site 218
Customizing a URL in the advanced template 222

Example – using the advanced template in the same domain 223
How to use the advanced template in the shared hosting 226
Summary 226

Chapter 10: Localize the App 227
Setting the default language 227
File-based translations 228

Example – using file-based translation for the entire website 230
Placeholders formatting 235
DB-based translations 237

Example – translating room descriptions using DB 239
Summary 242

Chapter 11: Creating an API for Use in a Mobile App 243
Configuring a REST app in the advanced template 244
Creating a controller 247

Example – creating a controller to manage rooms 250
Authentication 254

Example – using authentication to get a customers list 258
New controller action 260

Example – getting a rooms list for a reservation 262
Customizing authentication and response 264

Example – status response node in data received 268

Table of Contents

[v]

Other forms of export – RSS 274
Example – creating an RSS with a list of available rooms 276

Summary 279
Chapter 12: Create a Console Application to Automate
the Periodic Task 281

Interacting with console applications 282
Creating a console controller 284

Example – setting an alarm flag for expired reservation 287
Formatting the output from the console 289
Implementing and executing cron jobs 291

Example – sending an e-mail with new reservations of the day 292
Summary 295

Chapter 13: Final Refactoring 297
Creating widgets 298

Example – creating a widget with a carousel 300
Creating components 303

Example – creating a component that creates a backup of the
MySQL database and sends an e-mail to the administrator 306

Creating modules 309
Generating an API documentation 311

Example – using an API documentation to generate a doc of app
and services 312

Summary 316
Index 317

[vii]

Preface
This book covers the use of the Yii2 framework from scratch up to build a complete
web application.

Yii is a high-performance PHP framework that is best for developing Web 2.0
applications that provide fast, secure, and professional features to rapidly create
robust projects. However, this rapid development requires the ability to organize
common tasks together to build a complete application. It's all too easy to get
confused about the use of these technologies.

So, walking through practical examples will help you understand how these
concepts must be used and realize a successful application.

What this book covers
Chapter 1, Starting with Yii2, provides basic knowledge about the Yii2 framework,
starting from requirements to explain every single functionality. Then, we will use
debugging and logging tools to trace our code and provides find errors. Finally,
we will write our first project based on the basic template.

Chapter 2, Creating a Simple News Reader, creates our first controllers and relative
views. We will explore static and dynamic views, learn how to render views in
layout and pass data from controller to view, and then look at reusing views
through partial views and blocks.

Chapter 3, Making Pretty URLs, shows how to implement pretty URLs, which is
useful for search engine optimization. We will also create examples where we
used custom rules to parse and create the URL. Finally, we will learn how to
build more customized URL rules through Rule classes.

Preface

[viii]

Chapter 4, Creating a Room through Forms, shows how to build a Model class from
scratch and send data from view to controller using form, which is created using the
Yii2 ActiveForm widget. We will also look at commonly used methods to format
data and send files from the form.

Chapter 5, Developing a Reservation System, explains how to configure a database
connection and execute SQL queries from scratch with DAO support for the
framework. Next, we will find out how to use Gii and get to know about the
advantages it has in creating models from the database table structure. Gii creates
models that extend the ActiveRecord class, and, through its use, we will finally
learn how to manipulate data.

Chapter 6, Using a Grid for Data and Relations, presents the GridView widget for
displaying data, directly or relationed. A fundamental topic inside GridView is
Data Provider, the way to provide data to GridView. We will learn how to get
Data Provider from ActiveRecord, Array, or SQL, based on the available sources.

Chapter 7, Working on the User Interface, discusses the User Interface and how Yii
helps us with its core functionalities.

Chapter 8, Log in to the App, shows how to apply user authentication and authorization
to an app. The first step is to create authenticated access to the application. For this
purpose, we will create a database table to manage users and associate it to the Yii
user component through a user model that extends IdentityInterface.

Chapter 9, Frontend to Display Rooms to Everyone, explains how to use Yii to build a
modern web project based on frontend and backend applications. We will find out
the differences between basic and advanced templates, installing our first advanced
project based on advanced templates.

Chapter 10, Localize the App, shows how to configure multiple languages in our app.
We will discover that there are two storage options to handle internationalization:
files and databases.

Chapter 11, Creating an API for Use in a Mobile App, creates an API for use in mobile
apps through the use of powerful tools provided by Yii. We will adopt the approach
of creating a new application in order to distribute RESTful Web Services, instead of
mixing web and API controllers.

Chapter 12, Create a Console Application to Automate the Periodic Task, explains how to
write a console application and allows you to discover the main differences between
web and console apps.

Chapter 13, Final Refactoring, helps you to reuse code using widgets and components.
We will create some practical examples on how to use them.

Preface

[ix]

What you need for this book
The minimum requirements for this book are: a host on the Web, local or remote,
based on the PHP 5.4 environment and having a MySQL database server installed
(no specific version for it).

For writing code, it is enough to have a simple highlighted syntax editor, such as
block notes, TextEdit, Notepad++, PSPad, Aptana, and so on.

Who this book is for
This book is intended for anyone who wants to discover the Yii Framework or
master its practical concepts. Beginner-level users will find some introductive
theory in every chapter that explains the topics treated, with a lot of code showing
all their practical aspects. Advanced users will find many examples with special
cases illustrated and common mistakes solved.

Basic programming experience with PHP and object-oriented programming
is required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now, create the view with this content in basic/views/my-authentication/
login.php."

A block of code is set as follows:

<?php
return [
 2 => [
 'operator',
],
 1 => [
 'admin',
],
];

Preface

[x]

Any command-line input or output is written as follows:

$ curl -H "Accept: application/json" http://hostname/yiiadv/api/web/test-
rest/index

[{"id":1,"name":"Albert","surname":"Einstein"},{"id":2,"name":"Enzo","sur
name":"Ferrari"},{"id":4,"name":"Mario","surname":"Bros"}]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Starting with Yii2
Yii2 is a complete rewrite of the first version of one of the most famous PHP
frameworks. It is a well-documented framework with a very active community.

Officially, we can find three types of support: a guide, for a complete navigation
through framework topics at http://www.yiiframework.com/doc-2.0/guide-
index.html, a reference to explore all classes that compose the framework at
http://www.yiiframework.com/doc-2.0/index.html, and finally forum
support at http://www.yiiframework.com/forum/.

In this chapter, we will go through the following:

• Requirements and tools
• Installing Yii2 with Composer
• Application structure
• Application properties

 ° Common application components
 ° Handling application events
 ° Pattern MVC in Yii2

• Naming convention
 ° Configuring debug toolbar
 ° Using logger
 ° Example – hello world from scratch with the Yii basic template and

bootstrap template

http://www.yiiframework.com/doc-2.0/guide-index.html
http://www.yiiframework.com/doc-2.0/guide-index.html
http://www.yiiframework.com/doc-2.0/index.html
http://www.yiiframework.com/forum/

Starting with Yii2

[2]

Requirements and tools
The basic requirements for Yii2 are a web server (local or remote) and PHP v.5.4 (or
newer). It is recommended to have a shell (or command line) access to the machine
(local or remote) where we store the code, as there are scripts that it will be very
beneficial to use in the development of complex applications. We can also develop
the application locally and upload it to the web server when we wish to test it.

For remote hosting, there are multiple options. We can use a simple web hosting
service (with PHP v.5.4 support) or we can opt for virtual or dedicated server
hosting. Keep in mind that with the former option, if the server doesn't meet the
PHP requirements, it can be difficult to change whatever is wrong.

Yii2 has a script, requirements.php, which checks whether our hosting meets the
requirements to run Yii2 application.

Installing Yii2 with Composer
Composer is a tool for dependency management in PHP. Yii2 uses it to install itself
and other vendors' modules (for example, bootstrap).

It is also possible to install Yii2 in the old way, by downloading the complete
package and transferring it to the host, local or remote, where the framework will
be installed. However, Composer will give us many benefits, like the ability to
easily update the framework and ensure that all package dependencies are satisfied.
Composer is de facto the new way to install and maintain projects, so I recommend
using it from the start. If you are unsure about using Composer, it's worth
mentioning that most users will need to learn two or three commands at most, so it's
not a steep learning curve.

Yii2 has two available templates to start with: basic and advanced. We will start
with the basic template, but we will also see in the next chapters how to use
advanced templates.

So, let's look at how to install Yii2 with Composer. We need to access the folder
through the console, where the web server's httpdocs point to and launch these
commands:

curl -s http://getcomposer.org/installer | php

php composer.phar global require "fxp/composer-asset-plugin:1.0.0"

php composer.phar create-project --prefer-dist yiisoft/yii2-app-basic
basic

Chapter 1

[3]

These commands are useful if we are in the Linux or Mac environment. On Windows,
you need to download Composer-Setup.exe from Composer's official website and
run it.

The first command gets the http://getcomposer.org/installer URL and passes
it to PHP to create the composer.phar file.

The second command installs the Composer asset plugin, which allows us to manage
bower and npm package dependencies through Composer.

The third and final command installs Yii2 in a directory named basic. If you want,
you can choose a different directory name.

During the installation, Composer may ask for our GitHub
login credentials and this is normal because Composer needs
to get enough API rate limit to retrieve the dependent package
information from GitHub. If you don't have a GitHub account,
this is the right moment to create a new one!

If we are using Windows, we need to download it from https://getcomposer.org
and run it. The last two commands will be the same.

We have installed Yii2!

To test it, point to http://hostname/basic/web and we should see the My Yii
Application page.

Application structure
Yii2's application structure is very clear, precise, and redundant (for advanced
applications).

The contents of the basic folder should be as follows:

Folder names Description
assets This includes the files (.js and .css) referenced

in the web page and dependencies of the app.
commands This includes the controllers used from the

command line.
config This includes the controllers used from web.
mail This is the mail layout repository.
models This includes the models used in the whole

application.

http://getcomposer.org/installer
https://getcomposer.org

Starting with Yii2

[4]

Folder names Description
runtime This is used from Yii2 to store runtime data

as logs.
tests This includes all the test's repositories

(unit, functional, fixtures, and so on).
vendor This includes the third-party module repositories

managed by Composer.
views This contains PHP files, divided into folders that

refer to controller names, used to render the main
content of the page template. It is mainly called
from the controller's actions to render the display
output. A folder named layout contains the page
template's PHP files.

web This is the entry point from web

Open web/index.php to view content:

<?php
// comment out the following two lines when deployed to production
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/../config/web.php');

(new yii\web\Application($config))->run();

Here, the first two constant definitions are very important.

YII_DEBUG defines whether you are in debug mode or not. If we set this, we will
have more log information and will see the detail error call stack.

YII_ENV defines the environment mode we are working in, and its default value
is prod. The available values are test, dev, and prod. These values are used in
configuration files to define, for example, a different DB connection (local database
different from remote database) or other values, always in configuration files.

Since we are at the start of our project, it is recommended to set YII_DEBUG to true,
in order to have more detailed information in case we make a mistake in our code,
instead of the unhelpful, blank.

Chapter 1

[5]

The following table contains a list of all Yii2's objects:

Objects Description

Models, Views, and
Controllers

These are the common objects to apply the MVC
pattern to:

• Models are data representation and
manipulation, usually from the database

• Views are used to present data to the
end user

• Controllers are objects that process requests
and generate responses

Components These are objects that contain logic. The user can
write his own components to create reusable
functionalities.
For example, a component could be a currency
converter object, which can be used at many
instances in our application.

Application Components They are singletons that can be called at any point
in the app. Singleton means an object instanced just
one time in the entire application (so the object will
always be the same).
The difference between Application Components
and Components is that the first can have just one
instance in the whole application.

Widgets These view reusable objects, containing both
logic and rendering code. A widget could be, for
example, a box displaying today's weather info.

Filters These are objects that run before or after the
execution of Controller actions. A filter can be
used to change the format response output of
the page, for example, from HTML to JSON.

Modules This contains all the objects of an app, such as
Models, Views, Controller, Components, and so
on; we can consider them as subapp, containing
reusable sections (for example, user management).

Extensions Extensions are modules packaged, that we can
easily manage using Composer.

Starting with Yii2

[6]

Application properties
A Yii2 application can be configured through several properties.

The properties that need to be configured in any application are listed in the
following table:

Properties Description
id This indicates a unique ID to distinguish this application from

others. It is mainly used programmatically. An example of
this property is basic.

basePath This specifies the root directory of the application. This path
is the starting point for all the other types of application
objects, such as models, controllers, and views. An example of
this property is dirname(__DIR__).

The other common properties are listed in the following table:

Properties Description

aliases This indicates an alias name for path definitions. They are
defined using a key/value array and they are very useful
when we need to set a path as a constant that live in the
whole application. We type an alias preceded by an @
character. An example of this property is '@fileupload'
=> 'path/to/files/uploaded'.

bootstrap This property allows you to configure an array of
components to be run during the application bootstrap
process. A common usage is to load the log or profile
component, gii, or any other component. Be careful not
to load too many components, otherwise the response
performance of your pages may degrade. An example of
this property is 'log', 'gii'.

catchAll This property captures every request and it is used in the
maintenance mode of the site.

components This property points out a list of application components
that you can use in the whole application.

language This property specifies the language used to display the
content. An example of this property is 'language' =>
'en'.

modules This property points out a list of application modules that
can be used in the application.

Chapter 1

[7]

Properties Description

name This property indicates the name of your app. An example
of this property is 'name' => 'My App'.

params This property specifies an array of parameters, through
key/value pairs. This is a container for global params, such
as the administrator's e-mail address.

timeZone This property indicates the time zone that should be
used in the application. An example of this property is
'timeZone' => 'Europe/Rome'.

charset This property points out the charset used in the application.
The default value is UTF-8.

defaultRoute This property contains a route to be used when a request
does not a specify one. This property has different default
values according to the environment we are using.
For web applications, this value will be site, so that
SiteController could be used to handle these requests.
For console applications, this value will be help, so that
yii\console\controllers\HelpController can
be used invoking its index action that will display help
information.

Common application components
Here's a list of the most-used application components:

• request: This component handles all client requests and provides methods
to easily get parameters from server global variables, such as $_SERVER,
$_POST, $_GET, and $_COOKIES.
The default state has enableCookieValidation set to true, so you need to
set cookieValidationKey parameter as shown in this example:
'request' => [
'cookieValidationKey' => 'hPpnJs7tvs0T4N2OGAY',
],

• cache: This component helps you handle cache data. Yii2 defaults to the
FileCache instance for the cache, but we can also configure an ApcCache,
DbCache, MemCache, and so on.
The following is a standard installation of Yii2:
'cache' => [
'class' => 'yii\caching\FileCache',
],

Starting with Yii2

[8]

• user: This component deals with user authentication in the app. The most
important parameter is the identityClass parameter, which defines the
class that contains the user's model data, in order to have a specific method
to log in or log out a user from the app.
Consider the following example:

'user' => [
'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],

• errorHandler: This component provides functionalities to handle uncaught
errors and exceptions. It can be configured by specifying the action to run.
Consider the following example:

'errorHandler' => [
'errorAction' => 'site/error',
],

• mailer: This component configures mailer connection parameters to the
system that will send an e-mail. Usually, it is the same machine hosting
our website, so the default values are probably correct.
Consider the following example:
'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
 // send all mails to a file by default. You have to set
 // 'useFileTransport' to false and configure a transport
 // for the mailer to send real emails.
 'useFileTransport' => true,
],

• log: This component is mainly used in the debug environment to log the app
execution. We can set the debug level and destination.
Consider the following example:

'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],

Chapter 1

[9]

• db: This component handles a database connection. We can have several db
configuration in our app; in this case, we can define more components with
the Connection class located at yii\db\.
Consider the following example:
db => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'dbuser'',
 'password' => 'dbpassword',
 'charset' => 'utf8',
],

Handling application events
During its lifecycle, an application can trigger many events. These events can be
declared in application configuration or programmatically. Common triggers are
beforeRequest, afterRequest, beforeAction, and afterAction, but every
object can have its own events.

For example, a common use of events is to set mysql db timezone.

To set the time zone to UTC in db component configuration, we must define a
handler for the afterOpen event:

'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=mydb',
 'username' => 'dbuser',
 'password' => 'dbpassword',
 'charset' => 'utf8',

 'on afterOpen' => function($event) {
 $event->sender->createCommand("SET time_zone = '+00:00'")-
 >execute();
 }
],

An anonymous function, attached to on afterOpen event handlers, has an $event
parameter, which is an instance of the yii\base\ActionEvent class. This class has
a $sender object that refers to the sender of the event. In this case, $sender refers to
the instance of database components (db). This property may also be null when this
event is a class-level event.

Starting with Yii2

[10]

The MVC pattern in Yii2
Yii2 is built according to the Model-View-Controller (MVC) design pattern.

Models, representing logic, are objects extended from \yii\base\Model, which offer
many features such as attribute, attribute labels, massive assignment (to fill object
attributes directly for an array), validation rules, and data exporting.

Normally, in common apps, a Model will be generated from the database, extending
yii\db\ActiveRecord that implements the Active Record design pattern, with
many methods to manipulate data. Yii2 provides Gii, a tool used to generate Model
classes directly from the database's table structure.

Controllers, the bridge between view and model, are class instances extending from
yii\base\Controller, used to process requests and generate responses.

Controllers mainly contain functions whose name starts with the action prefix that
allows the framework to recognize those functions as routes, which can be requested.

Finally, we will look at views that deal with displaying data to end users that are
mainly rendered in the page layout from controllers.

Naming convention
In order to allow auto-loading, Yii2 uses a simple standard to set names.

Routes that refer respectively to module, controller, and the action requested take the
following format:

ModuleID/ControllerID/ActionID

We will look at each element in detail as follows:

• The ModuleID is optional, so often the format is ControllerID/ActionID
• The ModuleID must be specified in the module's configuration property,

under the same name
• The ControllerID and ActionID should contain only English characters in

lowercase, digits, underscores, dashes, and forward slashes

An example of route is http://hostname/index.php?r=site/index, where site is
the ControllerID and index is the ActionID.

Chapter 1

[11]

Starting from ControllerID, it is very easy to create the Controller class name. Just
turn into uppercase the first letter of each word separated by dashes, then remove
dashes and append the suffix Controller. If ControllerID contains slashes, just apply
the rules to the part after the last slash in the ID. This is possible because controllers
can be collected in subfolders, starting from app\controllers.

The following are some examples:

• Shop points to app\controllers\ShopController
• Preferred number points to app\controllers\

PreferredNumberController

• Admin/users account points to app\controllers\admin\
UsersAccountController

Routes are passed to entry script basic/web/index.php through the r parameter.

The default page http://hostname/basic/web/
index.php is equivalent to http://hostname/
basic/web/index.php?r=site/index.

Configuring the debug toolbar
It is important to have a rich collection of tools to make development easier in
displaying some useful information about requests and responses.

For this purpose, Yii2 provides a toolbar that displays several types of info.

A common way to activate the debug toolbar is to set in config/web.php:

'bootstrap' => ['debug'],
'modules' => [
 'debug' => 'yii\debug\Module',
]

Now you can set the following values:

• debug to bootstrap config node
• debug to modules config node, using the Module class under yii\debug\

http://hostname/basic/web/index.php

Starting with Yii2

[12]

The default installation of the Yii2 basic template already enables the debug toolbar,
as we can see at the bottom of the config/web.php configuration file. The Gii module
is also enabled as well, but we will work with it later.

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

This config entry is only valid in the YII_ENV_DEV mode. So, we must check
whether the web/index.php YII_ENV variable has the dev value (as shown in
the default installation).

Debug toolbar closed

If we try to reload the web page at basic/web/index.php after these checks,
we should see the following screenshot:

Debug toolbar opened

The right arrow reports that the debug toolbar is active but closed. If we click on
it, the complete toolbar will open. Now, click on any item, the debug panel will
be displayed.

By default, the debug toolbar can be used only in localhost. However, if we are
using Yii2 in the remote hosting environment, we set the allowedIPs property
of the debug module.

$config['modules']['debug'] = [
 'class' => 'yii\debug\Module',
 'allowedIPs' => ['127.0.0.1', '::1']
];

In allowedIPs there is only localhost (in the IPv4 and IPv6 forms). We need to put
our Internet connection and IP source address here, which can be easily found using
any my IP service on the Internet, such as http://www.whatismyip.com/.

http://www.whatismyip.com/

Chapter 1

[13]

If our IP source is, for example, 1.2.3.4, we must add this entry to allowedIPs,
in this way:

$config['modules']['debug'] = [
 'class' => 'yii\debug\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '1.2.3.4']
];

Remember that if we do not have an Internet connection with a static IP, this IP
might change. So we need to check whether allowedIPs contains our current IP.

You could also use an asterisk * to allow all IP addresses, so you do not have to deal
with dynamic IP issues. If you do this, you need to remember to remove the asterisk
before deployment. Finally, at the bottom of our current configuration config/web.
php, you will see the following code:

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = [
 'class' => 'yii\debug\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '1.2.3.4']
];
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Let's return to the basic/web/index.php webpage and take a look at the debug
info panel.

The debug information is distributed in the menu:

• Configuration: This is the installed PHP version and configuration and also
the installed Yii2 framework version.

• Request: This is the info about the request just sent, displaying parameters
of the request, headers of the request and other useful data as response and
session data.

• Logs: This involves the actions performed by Yii2 during the execution.
There are additional filters in this section to select the types of logs to
be displayed.

• Performance Profiling: This includes info about timing and duration
of process.

• Database: This includes info about all database query occurred; we can
filter for type of query to locate a specific query.

Starting with Yii2

[14]

It is possible to filter all data using internal grid filter or to filter for all, latest or
selecting among the last 10 rows of the log on top of the content pane.

Using the logger
In the Yii2 application, the debug info is stored using the log component. We can use
this tool both in the development and production environment, but for reasons of
performance and security in production, we should log only the important messages.

The default configuration file of the Yii2 basic template provides log entry in the
components property of config/web.php:

'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],

Example – Hello world from scratch with the
Yii basic template and bootstrap template
It is now time to code our first project using Yii2.

If we have not installed Yii2 yet, we will to do it now using Composer as follows:

1. Open Command Prompt to the web server.
2. Go to the document root of the web server (/var/www in a Linux machine).
3. Launch these commands (as described in the Installing Yii with

Composer section):
curl -s http://getcomposer.org/installer | php

php composer.phar global require "fxp/composer-asset-
plugin:1.0.0"

php composer.phar create-project --prefer-dist yiisoft/yii2-
app-basic basic

Chapter 1

[15]

Now, we need a fresh installation of Yii2 in the basic folder of the web server
document root. Point the browser to http:/hostname/basic/web and we
should see Yii2's congratulations page:

An example of the Hello world page

We will create our first action to display a memorable hello world on the screen.

We know from the Application properties section, in the defaultRoute entry, that the
SiteController controller will be called when no route is specified in request.

So, we enter basic/controllers and open SiteController.php, which is the
default controller.

In the SiteController class definition, we add a new method at the top, called
actionHelloWorld, without parameters.

public function actionHelloWorld()
{
 echo 'hello world'
}

Starting with Yii2

[16]

Let's save the file and point to http://hostname/basic/web/index.php?r=site/
hello-world.

You should see a blank page with hello world.

Pay attention when using the name route convention. Uppercase letters
are translated to lowercase and dashes.

This is fantastic, but now we just want to put hello world within the page template.

We must now create a view with the content of response hello world!. In order to do
this, we need to create a file named helloWorld.php as the name of the action under
views/site. The naming convention need not necessarily be the same here because
the view file is not automatically called from the framework.

This file only contains the hello world text.

We update SiteController with the following code:

public function actionHelloWorld()
{
 return $this->render('helloWorld');
}

In the actionHelloWorld() method, $this refers to the SiteController's instance,
and render() will insert the views/helloWorld.php file content in the main content
layout page.

The extension of the view file, .php, is automatically added from the framework to
view the name parameter passed to the render method.

What if we want to pass a parameter, such as name, to actionHelloWorld()?
Formally, we need to add just one parameter to actionHelloWorld() in SiteController
as follows:

public function actionHelloWorld($nameToDisplay)
{
 return $this->render('helloWorld',
 ['nameToDisplay' => $nameToDisplay]
);
}

Then, under view/site/helloWorld.php add the following code:

Hello World <?php echo $nameToDisplay ?>

Chapter 1

[17]

With the update of actionHelloWorld(), we will pass as a second parameter,
an array of variables, that will be visible and used in View.

When we use parameters in the action function, we must remember that they
will be mandatory and we must respect the order when passing it to the request.

To avoid this obligation, we can use the old method, parsing parameters into
the function:

public function actionHelloWorld()
{
 $nameToDisplay = Yii::$app->request->get('nameToDisplay');
 // Equivalent to
// $nameToDisplay =
isset($_GET['nameToDisplay'])?$_GET['nameToDisplay']:null;

 return $this->render('helloWorld',
 ['nameToDisplay' => $nameToDisplay]
);
}

With this solution, we can decide whether to pass the nameToDisplay parameter to
request. The default value of the nameToDisplay parameter will be null, but we can
decide to assign a different value.

The following is a URL example passing the nameToDisplay parameter Foo:

http://hostname/basic/web/index.php?r=site/hello-
world&nameToDisplay=Foo

Summary
In this chapter, we looked at a basic understanding of the Yii2 framework, starting
from requirements to explain the main features. Then we used debugging and
logging tools to trace our code and were able to find errors. Finally, we wrote our
first project based on the basic template.

Next, you will learn how to create our controllers and views, to create custom
interaction with frontend users.

[19]

Creating a Simple
News Reader

This chapter explains how to write your first controller in order to display news
items list and details, make interactions between controllers and views, and then
customize the view's layout.

In this chapter, we will go through the following:

• Creating controller and action
• Creating a view to display the news list
• How the controller sends the data to view

 ° Example – create a controller to display the static news items list
and details

• Split the common view content into reusable views
 ° Example – render partial in view

• Creating static pages
• Share data between views and layout

 ° Example – change layout background based on the URL parameter

• Layout with dynamic blocks
 ° Example – add dynamic box to display advertising info

• Using multiple layouts
 ° Example – using different layout to create responsive and not

responsive layout for the same view

Creating a Simple News Reader

[20]

Creating Controller and Action
In order to handle a request, the first thing to do is to create a new controller.

The things you must remember while creating a file controller are as follows:

• The namespace at the top (in basic application usually app\controllers)
• The use path for used class
• The controller class must extend the yii\web\Controller class
• The actions are handled from controller functions whose name starts with

action and the first letter of each word is in uppercase

Let's point to basic/controllers and create a file named NewsController.php.

Then, create a class with the same name as the file and extend it from controller;
finally, create an action named index to manage request for news/index:

<?php

// 1. specify namespace at the top (in basic application usually
app\controllers);
namespace app\controllers;

// 2. specify 'use' path for used class;
use Yii;
use yii\web\Controller;

// 3. controller class must extend yii\web\Controller class;
// This line is equivalent to
// class NewsController extends yii\web\Controller
class NewsController extends Controller
{
// 4. actions are handled from controller functions whose name
starts with 'action' and the first letter of each word is
uppercase;
 public function actionIndex()
 {
 echo "this is my first controller";
 }
}

Chapter 2

[21]

If we try to point the browser to http://hostname/basic/web/index.php?r=news/
index, we will see a blank page with the notice this is my first controller.

Now, let's see which common errors can occur when we ignore those four things to
remember mentioned at the top of this chapter.

The namespace defines the hierarchical organization for names used in our application.
If we forget to declare a namespace, Yii2 with YII_DEBUG set to true in web/index.php,
will display the following error message:

The missing Controller namespace

Yii2 reports an error in an excellent way, giving us the possibility to solve it by
checking if we are missing the namespace.

Then, the Use keyword is employed to specify the complete path of a class in the
application. A class that has a path/to/class/ClassName complete path, can be
referenced in the app using only ClassName if we put an use path/to/class/
ClassName just after namespace declaration.

Creating a Simple News Reader

[22]

However, if we use just ClassName without defining the use declaration at the top
of the file, an error such as the following can occur:

This error is simple to explain, but harder to find, especially for beginners.

In this case, the screenshot shows that it has been used the Controller name (after
the extends keyword) at row 9. Since there is no complete path for the Controller
class name, Yii2 will try to look for the Controller class under app\controllers,
without finding it.

To solve this problem, we must change Controller with yii\web\Controller at
row 9 and for all the next rows that will use the Controller class name without
defining a complete class path, or that insert a use declaration at the top of the file,
we must employ yii\web\Controller.

A controller is always a subclass of yii\web\Controller or simply, if we have used
the keyword use, a subclass of Controller. Action names follow the rules described
in the previous chapter.

Chapter 2

[23]

Creating a view to display a news list
Now, we will create a simple news list in a view named itemsList. We will point to
this view from NewsController, so we have to:

• Create a news folder under basic/views, that NewsController will use as
the base folder to search for the views to be rendered (according to the view
names' rules explained in the previous chapter)

• Create an itemsList.php file under basic/views/news

Now, open basic/views/news/itemsList.php, create an array with a list of data
and display the output with a simple table of items:

<?php
 $newsList = [
 ['title' => 'First World War', 'date' => '1914-07-28'],
 ['title' => 'Second World War', 'date' => '1939-09-01'],
 ['title' => 'First man on the moon', 'date' => '1969-07-
 20']
];
?>

<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <td><?php echo $item['title'] ?></td>
 <td><?php echo $item['date'] ?></td>
 </tr>
 <?php } ?>
</table>

Then, we need to create an action provided by a function named actionItemsList
that will be rendered by http://hostname/basic/web/index.php?r=news/items-
list.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Creating a Simple News Reader

[24]

Pay attention to names for routes, controllers, and actions:
• The route for this action is news/items-list (lowercase and

words separated by dashes);
• The controller class name is NewsController (uppercase with

the word Controller in the end);
• The action function name in NewsController is

actionItemsList (the function name has action word as
prefix, dashes in the route are removed, and the first letter of
each word is in uppercase);

The function to append in the NewsController class is as follows:

public function actionItemsList()
{
 return $this->render('itemsList');
}

The render() method that belongs to \yii\web\Controller, displays in the layout
content of the view passed as the first parameter. When the framework is looking for
the view, it will append .php extension to the name passed as the first parameter of
the render() method and it will look for it in basic/view/news. The last member of
the path is the name that is calling the render() method.

Now, we can point to http://hostname/basic/web/index.php?r=news/items-
list, to see our beautiful table!

How the controller sends data to view
In the previous paragraph, we have seen how to display the content view. However,
the view should only be responsible for displaying data, and not for manipulation.
Consequently, any work on data should be done in controller action and then passed
to view.

The render() method in the action of the controller has a second parameter, which
is an array whose keys are names of variables, and values are the content of these
variables available in view context.

Now, let's move all data manipulation of our itemsList example in controller,
leaving out just the code to format the output (such as HTML).

The following is the content of the actionItemsList() controller:

public function actionItemsList()
{

Chapter 2

[25]

 $newsList = [
 ['title' => 'First World War', 'date' => '1914-07-28'],
 ['title' => 'Second World War', 'date' => '1939-09-01'],
 ['title' => 'First man on the moon', 'date' => '1969-07-20']
];

 return $this->render('itemsList', ['newsList' => $newsList]);
}

In views/news/itemsList.php, we only have the following code:

<?php // $newsList is from actionItemsList ?>
<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <th><?php echo $item['title'] ?></th>
 <th><?php echo $item['date'] ?></th>
 </tr>
 <?php } ?>
</table>

Thus, we have correctly split the working of controller and view.

Example – create a controller to display the
static news items list and details using the
bootstrap template
Our next goal is to complete the news reader displaying details of single news in
another page.

Since we are going to use the same data for list and detail, we will extract the
$newsList data from action to a function, in order to be reused for more actions.

In NewsController, we will have the following code:

public function dataItems()
{
 $newsList = [
 ['title' => 'First World War', 'date' => '1914-07-28'],
 ['title' => 'Second World War', 'date' => '1939-09-01'],

Creating a Simple News Reader

[26]

 ['title' => 'First man on the moon', 'date' => '1969-07-20']
];

 return $newsList;
}

public function actionItemsList()
{
 $newsList = $this->dataItems();

 return $this->render('itemsList', ['newsList' => $newsList]);
}

After this, we will create a new function in NewsController, actionItemDetail,
that is used to handle requests of detail of a news item. This function will expect a
parameter, which will allow to filter the correct items from $newsList, for example,
the title.

The following is the content of actionItemDetail:

public function actionItemDetail($title)
{
 $newsList = $this->dataItems();

 $item = null;
 foreach($newsList as $n)
 {
 if($title == $n['title']) $item = $n;
 }

 return $this->render('itemDetail', ['item' => $item]);
}

Next we have to create a new view file in views/news named itemDetail.php.

The following is the content of itemDetail.php located under views/news/:

<?php // $item is from actionItemDetail ?>

<h2>News Item Detail<h2>

Title: <?php echo $item['title'] ?>

Date: <?php echo $item['date'] ?>

Chapter 2

[27]

If we point to http://hostname/basic/web/index.php?r=news/item-detail
without passing the title parameter, we will see the following screenshot:

It displays an error that tells us that the title parameter is missing.

Try to pass First%20%World%20War as the title parameter to the URL, like this
http://hostname/basic/web/index.php?r=news/item-detail&title=First%20
World%20War; the following will be the output:

That is what we are expecting!

Finally, we want to connect together itemsList and itemDetail. In views/news/
itemsList.php, we must change the title content into an anchor element, as follows:

<?php // $newsList is from actionItemsList ?>
<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>

Creating a Simple News Reader

[28]

 <th><a href="<?php echo Yii::$app->urlManager-
 >createUrl(['news/item-detail' , 'title' => $item['title']])
 ?>"><?php echo $item['title'] ?></th>
 <th><?php echo $item['date'] ?></th>
 </tr>
 <?php } ?>
</table>

To build a link, there is an available component, urlManager, which allows us to
create links through the createUrl() method. The parameter in createUrl() is
an array that contains the route path and variable to pass to the URL. To learn more
about this method, just refer to the link http://www.yiiframework.com/doc-2.0/
yii-web-urlmanager.html#createUrl%28%29-detail.

In our case, we have news/item-detail as the route to be called and the title
parameter to be passed to the URL.

The date can be formatted using the built-in formatter
component. For example, to to display a date in the
d/m/Y format, d/m/Y : Yii::$app->formatter-
>asDatetime($item['date'], "php:d/m/Y");.

It is advisable to use a unique identifier to pass data between routes. For this
purpose, we add a third parameter, named id, to identify a record univocally.

The following is the content of NewsController:

public function dataItems()
{
 $newsList = [
 ['id' => 1, 'title' => 'First World War', 'date' => '1914-07-
 28'],
 ['id' => 2, 'title' => 'Second World War', 'date' => '1939-
 09-01'],
 ['id' => 3, 'title' => 'First man on the moon', 'date' =>
 '1969-07-20']
];
 return $newsList;
}

public function actionItemsList()
{
 $newsList = $this->dataItems();
 return $this->render('itemsList', ['newsList' => $newsList]);
}

http://www.yiiframework.com/doc-2.0/yii-web-urlmanager.html#createUrl%28%29-detail
http://www.yiiframework.com/doc-2.0/yii-web-urlmanager.html#createUrl%28%29-detail

Chapter 2

[29]

public function actionItemDetail($id)
{
 $newsList = $this->dataItems();

 $item = null;
 foreach($newsList as $n)
 {
 if($id == $n['id']) $item = $n;
 }

 return $this->render('itemDetail', ['item' => $item]);
}

Then, change the parameter in the createUrl parameter in views/news/
itemsList.php:

<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <th><a href="<?php echo Yii::$app->urlManager-
 >createUrl(['news/item-detail' , 'id' => $item['id']])
 ?>"><?php echo $item['title'] ?></th>
 <th><?php echo Yii::$app->formatter->asDatetime($item['date'],
 "php:d/m/Y"); ?></th>
 </tr>
 <?php } ?>
</table>

Splitting the common view content into
reusable views
Sometimes, views share the same common portion of content. In the examples made
until now, we have seen that a common area for itemsList and itemDetail could
be copyright data, which displays a disclaimer about copyright info.

In order to make this, we must put the common content in a separate view and call it
using the renderPartial() method of controller (http://www.yiiframework.com/
doc-2.0/yii-base-controller.html#renderPartial%28%29-detail). It has the
same types of parameters of the render() method; the main difference between the
render() and renderPartial() methods is that render() writes a view content in
layout and renderPartial() writes only view contents to output.

http://www.yiiframework.com/doc-2.0/yii-base-controller.html#renderPartial%28%29-detail
http://www.yiiframework.com/doc-2.0/yii-base-controller.html#renderPartial%28%29-detail

Creating a Simple News Reader

[30]

Example – render partial in view
In this example, we create a common view for both itemsList and itemDetail
about copyright data.

Create a view file named _copyright.php in views/news.

Usually, in Yii2's app, a view name that starts with underscore
stands for common reusable view.

In this file, put only a text for copyright into views/news/_copyright.php:

<div>
 This is text about copyright data for news items
</div>

Now, we want to display this view inside the itemsList and itemDetail views.

Change the content in itemsList.php located at views/news/ as follows:

<?php echo $this->context->renderPartial('_copyright'); ?>
<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <th><a href="<?php echo Yii::$app->urlManager-
 >createUrl(['news/item-detail' , 'id' => $item['id']]) ?>">
 <?php echo $item['title'] ?> </th>
 <th><?php echo Yii::$app->formatter->asDatetime($item['date'],
 'php:d/m/Y'); ?></th>
 </tr>
 <?php } ?>
</table>

Then, change the content in itemDetail.php located at views/news/ as follows:

<?php // $item is from actionItemDetail ?>
<?php echo $this->context->renderPartial('_copyright'); ?>
<h2>News Item Detail<h2>

Title: <?php echo $item['title'] ?>

Date: <?php echo $item['date'] ?>

Chapter 2

[31]

We have put a common code at the top of the file in both views:

<?php echo $this->context->renderPartial('_copyright'); ?>

This will render the content of the _copyright.php view without layout.

Pay attention! Since renderPartial() is a method of the Controller
class and $this refers to the View class in the view file, to access from
$this to renderPartial() we will use the context member, which
represents the Controller object in the View object.

Creating static pages
All websites contain static pages, whose content is static.

To create a static page in a common way, we need to:

• Create a function (action) to execute action in Controller
• Create a view for static content

Append the following action to Controller:

public function actionInfo()
{
 return $this->render('info');
}

Then, create a view in views/controller/action-name.php. This procedure is
simple but too long and redundant.

Yii2 provides a quick alternative, adding static pages to the actions() method of
Controller as follows:

public function actions()
{
 return [
 'pages' => [
 'class' => 'yii\web\ViewAction',
],
];
}

With this simple declaration, we can put all static content under views/
controllerName/pages.

Creating a Simple News Reader

[32]

Finally, we can point to the URL with route controller_name/page and the view
parameter with the name of a view file such as http://hostname/basic/web/
index.php?r=controllerName/pages&view=name_of_view.

Example – add a contact page
After we have learned how to create a static page, it is time to write a contact page.

Let's put a short static content in views/site/pages/contact.php as follows:

To contact us, please write to info@example.com

Then, let's add a page attribute in the return array from the actions() method
of Controller. To simplify, we will use SiteController that has this default
implementation of the actions() method:

 public function actions()
 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
 'captcha' => [
 'class' => 'yii\captcha\CaptchaAction',
 'fixedVerifyCode' => YII_ENV_TEST ? 'testme' : null,
],
];
 }

After the last attribute, we will append the page attribute, and the following will be
the result:

 public function actions()
 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
 'captcha' => [
 'class' => 'yii\captcha\CaptchaAction',
 'fixedVerifyCode' => YII_ENV_TEST ? 'testme' : null,
],
 'pages' => [
 'class' => 'yii\web\ViewAction',
],
];
 }

Chapter 2

[33]

Now, every request to site/pages/ is routed using the ViewAction class, which
handles it simply by rendering static content of relative view.

Test it by clicking on http://hostname/basic/web/index.php?r=site/
pages&view=contact, and we should see this:

We can customize the last part of the route with these changes:

• The attribute name of array returned from the actions() method
of Controller

• Set the viewPrefix attribute of the ViewAction class declaration with the
first part of the URL that we want to use to reach the pages

• Change the name of the subfolder under views/controllerName

For example, we want to use static as the last part of the URL to reach static pages
in SiteController.

We want to point to http://hostname/basic/web/index.php?r=site/
static&view=contact to display the contact view.

This will be the ViewAction node in the array from the actions() method of
SiteController:

 'static' => [
 'class' => 'yii\web\ViewAction',
 'viewPrefix' => 'static'
],

We must also change the name of the static pages subfolder, renaming it from
views/site/pages to views/site/static, and we can point to http://hostname/
basic/web/index.php?r=site/static&view=contact.

Creating a Simple News Reader

[34]

Sharing data between views and layout
Yii2 provides a standard solution to share data between views and layout,
through the params property of the View component that you can use to
share data among views.

This is a standard solution since the params property exists
in all views and it is attached to the View component.

This property, params, is an array that we can use without any restriction.

Imagine that we want to fill the breadcrumb element in the layout to track the path
of navigation.

Open the main layout at views/layouts/main.php; you should find the default
implementation of breadcrumb just before declaring the footer:

 <div class="container">
 <?= Breadcrumbs::widget([
 'links' => isset($this->params['breadcrumbs']) ?
 $this->params['breadcrumbs'] : [],
]) ?>
 </div>

We need to fill the breadcrumbs property of params in view to display from any
view to the layout custom path. For example, we want to display breadcrumbs
in the SiteController index.

Go to views/site/index.php and add the following code at the top of the file:

$this->params['breadcrumbs'][] = 'My website';

Since we are in view file, $this refers to View component.

Go to http://hostname/basic/web/index.php?r=site/index to see the
breadcrumb bar appearing at the top of the page:

Chapter 2

[35]

Example – change the layout background
based on a URL parameter
Another example of communication between view and layout is, for instance,
to change the layout background color based on a URL parameter.

We need to change the background of route site/index passing the bckg
parameter in URL.

Therefore, we must open views/site/index.php and put this code at the top:

<?php
$backgroundColor =
isset($_REQUEST['bckg'])?$_REQUEST['bckg']:'#FFFFFF';
$this->params['background_color'] = $backgroundColor;

This code will set $backgroundColor to #FFFFFF (white color), if it is not passed
to the bckg parameter, otherwise it will be passed a value.

Then, set the params attribute of View component in order to write its content
in layout.

Open views/layout/main.php, and, in the body tag, apply the style based on
params['background_color'] passed from view.

Then, let's change the layout of the body tag with the following:

<?php
$backgroundColor = isset($this->params['background_color'])?$this-
>params['background_color']:'#FFFFFF'; ?>
<body style="background-color:<?php echo $backgroundColor ?>">

Finally, go to http://hostname/basic/web/index.php?r=site/
index&bckg=yellow to have a yellow background or to http://hostname/basic/
web/index.php?r=site/index&bckg=#FF0000 to have a red one.

In this example, we are setting the background property of params
only in views/site/index.php. Other views do not set this
property, so if we have not checked whether background_color
property exists in the layout file, we will receive an error of missing
the attribute from the framework, which means:

$backgroundColor = isset($this-
>params['background_color'])?$this-
>params['background_color']:'#FFFFFF';

Creating a Simple News Reader

[36]

Layout with dynamic block
The use of the params property to allow communication between view and layout,
is advisable for simple cases, but there are some more complex cases where we must
share the block of HTML.

For example, think about the advertising box in layout (usually left or right column
of the template), that could change according to the view that is being displayed.

In this case, we need to pass the entire block of HTML code from view to layout.

For this purpose, this framework provides Block statements, where we can define
entire blocks of data to send from view to layout.

Using Blocks means to define the Block statement in view and display it in another
view, usually layout.

We define the Block statement in view as follows:

<?php $this->beginBlock('block1'); ?>
...content of block1...
$this->endBlock(); ?>

Here, beginBlock and endBlock define the beginning and the end of the block1
named statement. This content is saved into the blocks property of the view
component with the block1 attribute.

We can access this block through $view>blocks[$blockID] in every view,
including layout.

To render a block in layout view, if available, use the following code:

<?php if(isset($this->blocks['block1']) { ?>
 <?php echo $this->blocks['block1'] ?>
<?php } else { ?>
 … default content if missing block1 attribute
<?php } ?>

Obviously, we can define all the blocks that we want.

Chapter 2

[37]

Example – add a dynamic box to display
advertising info
In this example, we will see how to display, when available, a box with advertising
info that displays data sent from view.

The first thing to do is to add a block in layout displaying data.

Enter in views/layouts/main.php and change div with container class as follows:

<div class="container">
 <?= Breadcrumbs::widget([
 'links' => isset($this->params['breadcrumbs']) ? $this-
 >params['breadcrumbs'] : [],
]) ?>

 <div class="well">
 This is content for blockADV from view

 <?php if(isset($this->blocks['blockADV'])) { ?>
 <?php echo $this->blocks['blockADV']; ?>
 <?php } else { ?>
 <i>No content available</i>
 <?php } ?>
 </div>

 <?= $content ?>
</div>

We have added a div with the well class to display the content of blockADV, if
available. If blockADV is available in $this->blocks, it will display its content;
otherwise, it will display no content available, as a courtesy message.

Now, we will create a new action in NewsController, called advTest, and then
will create a brand new view.

Let's start off by creating a file in views/news/advTest.php with the
following content:

This is a test where we display an adv box in layout view

<?php $this->beginBlock('blockADV'); ?>

 Buy this fantastic book!

<?php $this->endBlock(); ?>

Creating a Simple News Reader

[38]

We can insert any content in a block; in this case, we have put in text.

The position where block is defined in view is not important.

Then, open NewsController and add a new action advTest:

public function actionAdvTest()
{
 return $this->render('advTest');
}

Now, point the browser to http://hostname/basic/web/index.php?r=news/adv-
test and we will see the following screenshot:

All other pages will only show no content available in the screenshot.

Using multiple layouts
During the building of a website or a web application, usually it could be required to
render different views with different layouts. Think about, for example, the lists and
details of news made in this chapter.

The layout is managed by the $layout property of Controller; main is the default
value for this property.

Just set this property to change the layout file where to render the content of the view.

Chapter 2

[39]

There are some important rules to write the value of the $layout property:

• A path alias (for example, @app/views/layouts/main).
• An absolute path (for example, /main) is where the layout value starts with

a slash. The actual layout file will be looked for under the application layout
path, which defaults to @app/views/layouts.

• A relative path (for example, main) is where the actual layout file will be
looked for under the context module's layout path, which defaults to the
views/layouts directory under the module directory.

• The Boolean value false is where no layout will be applied.

If the layout value does not contain a file extension,
it will use the default .php.

Example – using different layouts to create
responsive and nonresponsive content layout
for the same view
In this example, we will create a new action in NewsController that will change its
layout depending on a value passed in the URL.

First, add a new action in NewsController called actionResponsiveContentTest:

public function actionResponsiveContentTest()
{
 $responsive = Yii::$app->request->get('responsive', 0);

 if($responsive)
 {
 $this->layout = 'responsive';
 }
 else
 {
 $this->layout = 'main';
 }

 return $this->render('responsiveContentTest', ['responsive' =>
 $responsive]);
}

Creating a Simple News Reader

[40]

In this action, we get a responsive parameter from the URL and set the $responsive
variable to this value or 0 if not passed.

Then, set the $layout property of Controller to responsive or not according to the
$responsive value, and pass this variable to view.

Then, create a new view in views/news/responsiveContentTest.php:

<?php if($responsive) { ?>
 This layout contains responsive content
<?php } else { ?>
 This layout does not contain responsive content
<?php } ?>

This displays a different text block according to the $responsive value.

Finally, make a clone of main layout copying views/layouts/main.php in views/
layouts/responsive.php and change in a new file views/layouts/responsive.
php:

<div class="container"> in <div class="container-fluid"
style="padding-top:60px">

This change makes the div container fluid (responsive), in other words, its content is
resized with respect to percentage available in the horizontal space (instead the fixed
value).

If we point to http://hostname/basic/web/index.php?r=news/responsive-
content-test, we will see content in a fixed layout. Instead, if we pass the
responsive parameter with value 1, http://hostname/basic/web/index.
php?r=news/responsive-content-test&responsive=1, we will see the content
in a full width screen.

Summary
In this chapter, after understanding how a Yii2 app is structured, we have created
our first Controllers and relative views. We have seen static and dynamic views,
we have learned how to render views in layout and pass data from Controller to
View and then we have looked at reusing Views through partial views and blocks.

Finally, we have manipulated layouts, changing them conditionally.

In the next chapter, we will display URLs in a pretty format, which is very important
for all search engine optimization (SEO) activities on the website. Then, we will learn
how to create a custom URL handler to manage any required URL customizations.

[41]

Making Pretty URLs
This chapter explains how to configure URL rules and make URLs pretty, in particular
for search engines. We will cover the following topics in this chapter:

• Using Pretty URLs
• Custom URL rules

 ° Example – news items list by year or category

• The default parameters in rules
 ° Example – the index page to display list links

• Complete URL rule parameters
• The URL pattern to support a multilanguage view
• Creating the rule class

Using pretty URLs
The URL format is very important for SEO. People do not pay attention to
URLs (some browsers does not display them at all), but search engines make
correspondences between text in the page and the URL.

Until now, we have used this type of URL index.php?r=site/index or index.
php?r=site/about, where r indicates the parameter route to follow. Now, we
will see how to change these formats in site/index and site/about, that are
more easily readable and useful for search engines.

In order to use pretty URLs, we need to configure Yii2 to handle them, and this
can be done in a couple of minutes.

Making Pretty URLs

[42]

First of all, we must ensure that all requests are rewritten to web/index.php.
In Linux, we can change web server configuration using Apache and insert the
.htaccess file in Yii2's app root folder, if this file does not exist. The .htaccess
file allows us to override some default configuration of the web server.

In the Linux environment, the filename starting with dot
indicates that this file is hidden.

The content of .htaccess is the same as Yii1:

RewriteEngine on

If a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
Otherwise forward it to index.php
RewriteRule . web/index.php

If the app root is /var/www/vhosts/yiiapp/basic, we will insert .htaccess in
/var/www/vhosts/yiiapp/basic.

The first row activates RewriteEngine of the web server; then, in the second and third
rows, the script checks whether the request is not in an existing file or folder; and
finally the request is rewritten to web/index.php. With these changes, all the requests
that are not existing files or path folders will be rewritten to web/index.php.

We can also configure rewrite rules in Apache configuration instead of the
.htaccess file, if we have access to this level of Apache configuration.
If the .htaccess configuration has been ignored, check whether
AllowOverride is set to All as follows:

<Directory /var/www/path/to/folder>

 AllowOverride All

</Directory>

And that is not set to None.

The last thing to do now is to configure Yii2 in order to handle a pretty URL.

Let's open config/web.php and add these contents in the components attribute:

'urlManager' => [
 'enablePrettyUrl' => true,
],

Chapter 3

[43]

Adding the enablePrettyUrl property, we have just configured urlManager to
enable the pretty URL, toggling the pretty URL format.

The previous URL index.php?r=site/index becomes /index.php/site/index
and index.php?r=site/about becomes /index.php/site/about.

Using the enablePrettyUrl property, we will have the prefix index.php again.
We can choose whether to keep it or not; however, to limit the URL length, it is
advisable to remove it.

In order to control the presence of the index.php prefix, we use another property
called showScriptName.

If we set this property to false, we will remove the first part of the URL. This is our
updated configuration:

'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

Now, point the browser to http://hostname/basic/web/site/index to view
the first page of the Yii2 application and check whether the other links are in the
pretty format.

Finally, there is another property for the urlManager component, used to enable
URL parsing based only on given URL rules, named enableStrictParsing.
If this property is true, only the rules defined in urlManager will be executed;
if there is no URL that matches the request, an error will be displayed.

Custom URL rules
Yii2 give us the opportunity to customize URL rules as we want. This can be done
using the rules property in urlManager, an array where keys are patterns and
values are corresponding routes. Patterns are common regular expression patterns,
so it is necessary to have some familiarity with regular expression.

Patterns can contain parameters that will be passed to the route. In the next example,
we will display a list of news that can be filtered through year or category parameter,
based on parameters passed to the URL.

Making Pretty URLs

[44]

Example – list news items by year or category
In this example, we will create a new Controller named News in controllers/
NewsController.php. In this new controller, we will insert a data() function
containing an array with test data, and a function named actionItemsList.

The first thing to do is to configure the rules property under the urlManager
component under config/web.php:

'rules' => [
 news/<year:\d{4}>/items-list' => ' news/items-list',
 'news/<category:\w+>/items-list' => 'test-rules/items-list',
],

Here, we have two patterns:

• news/<year:\d{4}>/items-list

• news/<category:\w+>/items-list

The first pattern catches requests with a numeric parameter with four digits, passed to
the news /items-list route as the year GET parameter. We can request 'news/2014/
items-list' or 'news/2015/items-list'.

The second pattern catches requests with the word parameter, passed to the news/
items-list route as the category GET parameter. We can request news/business/
items-list or news/shopping/items-list.

Then, we create NewsController where to define the data() function, to return
static data to be used as data source, and the actionItemsList() function to handle
requests to news/year/or/category/itemsList:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class NewsController extends Controller
{
 public function data()
 {
 return [
 ["id" => 1, "date" => "2015-04-19", "category" => "business",
 "title" => "Test news of 2015-04-19"],

Chapter 3

[45]

 ["id" => 2, "date" => "2015-05-20", "category" => "shopping",
 "title" => "Test news of 2015-05-20"],
 ["id" => 3, "date" => "2015-06-21", "category" => "business",
 "title" => "Test news of 2015-06-21"],
 ["id" => 4, "date" => "2016-04-19", "category" => "shopping",
 "title" => "Test news of 2016-04-19"],
 ["id" => 5, "date" => "2017-05-19", "category" => "business",
 "title" => "Test news of 2017-05-19"],
 ["id" => 6, "date" => "2018-06-19", "category" => "shopping",
 "title" => "Test news of 2018-06-19"]
];
 }

 public function actionItemsList()
 {
 // if missing, value will be null
 $year = Yii::$app->request->get('year');
 // if missing, value will be null
 $category = Yii::$app->request->get('category');

 $data = $this->data();
 $filteredData = [];

 foreach($data as $d)
 {
 if(($year != null)&&(date('Y', strtotime($d['date'])) ==
 $year)) $filteredData[] = $d;
 if(($category != null)&&($d['category'] == $category))
 $filteredData[] = $d;
 }

 return $this->render('itemsList', ['year' => $year, 'category'
 => $category, 'filteredData' => $filteredData]);
 }

Finally, we create a view in views/news/itemsList.php, displaying the parameter
used, year or category, and a list of results:

<?php if($year != null) { ?>
List for year <?php echo $year ?>
<?php } ?>
<?php if($category != null) { ?>
List for category <?php echo $category ?>
<?php } ?>

Making Pretty URLs

[46]

<table border="1">
 <tr>
 <th>Date</th>
 <th>Category</th>
 <th>Title</th>
 </tr>

<?php foreach($filteredData as $fd) { ?>
 <tr>
 <td><?php echo $fd['date'] ?></td>
 <td><?php echo $fd['category'] ?></td>
 <td><?php echo $fd['title'] ?></td>
 </tr>
<?php } ?>
</table>

Now, let's point to http://hostname/basic/web/news/2015/items-list to
display the items list filtered out by year:

List items filtered by year

Try to change the year between news and items list to see how the data result
changes in the list. The rules that are created allow us to display the items list filtered
by category. Point to http://hostname/basic/web/news/business/items-list to
see the list filtered by business category:

Chapter 3

[47]

List items filtered by category

We can also point to http://hostname/basic/web/news/shopping/items-list to
see the list filtered by shopping category.

Default parameters in rules
In rules, all the parameters that are declared are required; if the URL misses some
parameter, the rule will not be applied. This problem can be solved using the default
property of rule.

The URL rule structure has a parameter, named defaults, containing default
parameters to be passed as default. Parameter defaults is an array, where keys
are names of parameters and values are their corresponding values.

For example, change the second rule to a complete array and add ['category' =>
'shopping'] as the default property rule:

'rules' => [
 'news/<year:\d{4}>/items-list' => 'news/items-list',
 [
 'pattern' => 'news/<category:\w+>/items-list',
 'route' => 'news/items-list',
 'defaults' => ['category' => 'shopping']
]
],

Now, if we point to http://hostname/basic/web/news/items-list without
specifying the year or category parameter, the first rule will be skipped and the
second one will be executed using shopping as the default value, because the
category is missing.

Making Pretty URLs

[48]

Example – the index page to display the
links list
Now, create an index page to see how to create these custom URLs. In this page,
we will display URL links to have the data filtered by year (for the last 5 years)
and links to view the data filtered by category (shopping and business).

URLs are made using yii\helpers\Url, along with the to() method, where the
first parameter can be:

The first parameter can be:

• An array that will be passed to the toRoute() method to generate the
URL. The first item of this array is the route to be rendered and the
other items are the parameters to be passed to the route; for example,
Url::to(['news/items-list', 'year' => 2015]).

• A string with a leading @; this is treated as an alias, and the corresponding
aliased string will be returned

• An empty string that returns the currently requested URL.
• A normal string that will be returned as it is.

Create a simple actionIndex in NewsController:

public function actionIndex()
{
 return $this->render('index');
}

Then, create a view for the index action under views/news/index.php:

<?php

use yii\helpers\Url;
use yii\helpers\Html;

?>

Filter data by year:

 <?php $currentYear = date('Y'); ?>
 <?php for($year=$currentYear;$year>($currentYear-5);$year--) {
 ?>
 <?php echo Html::a('List items by year '.$year,
 Url::to(['news/items-list', 'year' => $year])) ?>

Chapter 3

[49]

 <?php } ?>

Filter data by category:

 <?php $categories = ['business', 'shopping']; ?>
 <?php foreach($categories as $category) { ?>
 <?php echo Html::a('List items by category '.$category,
 Url::to(['news/items-list', 'category' => $category])) ?>
 <?php } ?>

Point to http://hostname/news/index and it will display:

Index of the available filtered data

The complete URL rule parameters
The URL rule contains the following parameters:

• defaults: As we have seen, we can declare default GET parameters that this
rule provides

• encodeParams: This value indicates whether the parameters should be
encoded or not

Making Pretty URLs

[50]

• host: This is the host info part of a URL
• mode: This indicates whether this rule should be used for parsing the requested

URL or creating a URL
• name: This is the name of the rule
• pattern: This is the pattern to be used to parse and create the path info part

of a URL
• route: This is the route of the controller action
• suffix: This is the URL suffix used for this rule (.json, .html, and so on)
• verb: This is the HTTP verb that this rule should match with (GET, POST,

DELETE, and so on)

The URL pattern to support the
multilanguage view
There are different ways to display the same view in different languages. A basic
approach to support multilanguage views could be to insert a language code at the
start of the route. For example, the previous route news/index will become en/
news/index in English language, it/news/index in Italian language, fr/news/
index in French language, and so on.

Append this rule in the rules property of UrlManager:

[
 'pattern' => '<lang:\w+>/<controller>/<action>',
 'route' => '<controller>/<action>',
],

All the requests that have a language ID as the prefix in the path info, will be
matched and passed to the <controller>/<action> route with the $lang
parameters passed in GET.

Now, create a new action named actionInternationalIndex in NewsController
to test the multilanguage support:

public function actionInternationalIndex()
{
 // if missing, value will be 'en'
 $lang = Yii::$app->request->get('lang', 'en');

 Yii::$app->language = $lang;

 return $this->render('internationalIndex');
}

Chapter 3

[51]

In this action, $lang is taken from GET parameters. If the request does not contain
the $lang parameter, the en value will be used as default.

Create new view in views/news/internationalIndex.php to check the language
code passed to the URL.

Requested language for this page is:

<?php echo Yii::$app->language ?>

Verify whether this action is working correctly by visiting http://hostname/news/
international-index:

Setting the English language

We are visualizing this page in English because no language code was passed to the
URL. Consequently, the default language code, en, has been used. However, if we
write the language code in the URL, the result will change.

For example, pointing to http://hostname/basic/web/it/news/international-
index will display the following:

Setting the Italian language

This response gives us the confirmation that we have used it as the language code.

Making Pretty URLs

[52]

In this simple approach to support multi language, we
get the $lang value from the request, as we have done in
actionInternationalIndex; however, this is redundant
and has to be generalized in all the requests. We could create a
BaseController class as the base class for every Controller
and then override the beforeAction() method, where we
can set the Yii::$app->language parameter.

Creating the rule class
URL rules declared in terms of pattern-route pairs can cover the majority of projects.
However, it is not flexible enough with dynamic data, where the URL could be any
format and value stored in the database.

Now, we need to display item details using a URL that contains only the item title,
such as http://hostname/basic/web/news/Test news of 2015-04-19

There is no way to solve this with URL rules, as we have done until now.

A more general solution to parse and create URL requests is using Rule classes.

The Rule class extends Object and implements UrlRuleInterface.

The next example will explain how to display item details, finding it from the
title (defined in data() array of objects), and parsing and creating routes with
a Rule class.

The route displayed in the browser will have the news/title format.

For this purpose, create a new folder components under the basic folder if it does
not exist, and create components/NewsUrlRule.php with the following content:

<?php

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\Object;

class NewsUrlRule extends Object implements UrlRuleInterface
{

 public function createUrl($manager, $route, $params)
 {

Chapter 3

[53]

 if ($route === 'news/item-detail') {
 if (isset($params['title'])) {
 return 'news/'.$params['title'];
 }
 }
 return false; // this rule does not apply
 }

 public function parseRequest($manager, $request)
 {
 $pathInfo = $request->getPathInfo();

 if (preg_match('%^([^\/]*)\/([^\/]*)$%', $pathInfo, $matches)) {
 if($matches[1] == 'news')
 {
 $params = ['title' => $matches[2]];
 return ['news/item-detail', $params];
 }
 else
 {
 return false;
 }
 }
 return false; // this rule does not apply
 }
}

The first method, createUrl() receives $manager, $route, and $params.
With route and params, the framework builds the URL. In this case, we check
whether the route passed is equivalent to news/item-detail and if it is so,
return the corresponding URL.

The second method, parseRequest() receives $manager and $request.
A match with a custom regular expression will be done to extract the required
parts, using the $request data. The process will return the route, to be executed.

Now, link these components to urlManager of the web.php file located at config/,
appending the following lines in the rule property of the urlManager component:

[
'class' => 'app\components\NewsUrlRule',
// ...configure other properties...
],

Making Pretty URLs

[54]

The next thing to do is to create actionItemDetail in NewsController, as follows:

public function actionItemDetail()
{
 $title = Yii::$app->request->get('title');

 $data = $this->data();

 $itemFound = null;

 foreach($data as $d)
 {
 if($d['title'] == $title) $itemFound = $d;
 }

 return $this->render('itemDetail', ['title' => $title,
'itemFound' => $itemFound]);
}

In this action, we simply find the item starting from the title received from the route.
We pass the title and itemFound to view.

The last file to create is view under views/news/itemDetail.php:

Detail item with title <?php echo $title ?>

<?php if($itemFound != null) { ?>
 <table border="1">
 <?php foreach($itemFound as $key=>$value) { ?>
 <tr>
 <th><?php echo $key ?></th>
 <td><?php echo $value ?></td>
 </tr>
 <?php } ?>
 </table>

 Url for this items is: <?php echo yii\helpers\Url::to(['news/item-
detail', 'title' => $title]); ?>

<?php } else { ?>
 <i>No item found</i>
<?php } ?>

Chapter 3

[55]

Item detail output

In this view, the item details (if the item is found) along with how to build the URL
of the item detail will be displayed.

Summary
In this chapter, we saw how to implement pretty URLs, which is useful for search
engine optimization. We also created examples where we used custom rules to parse
and create the URL. Finally, we learned how to build more customized URL rules
through Rule classes.

In the next chapter, we will cover the use of a database, which is a fundamental
aspect of every web application. We will start from the configuration of a database
connection through to the tools that Yii2 makes available to developers, and to build
a complete reservation system based on database data, using framework widgets.

[57]

Creating a Room
through Forms

This chapter explains how to write a model class to store data that will be sent
from View to Controller using a form, with validating input, formatting data,
and uploading files. In this chapter, we will cover the following topics:

• Creating a Model
 ° Example – a model to store room data

• Using ActiveForm
 ° Example – creating a new room from the HTML form

• Formatting date, time, and numbers
• Uploading files

 ° Example – uploading an image of the room

Creating a Model
The first step to manipulate data between View and Controller is to create a Model.
A Model is a class that extends the Model class located under yii\base\, the base
used for data models.

This is a suitable class for providing simple solutions in order to encapsulate data,
assign content from array (form data), and validate data using rules. The Model base
class implements the following commonly used features:

• Attribute declaration: By default, every public class member is considered
a model attribute; we can access all the members using the attributes
property of Model.

Creating a Room through Forms

[58]

• Attribute labels: Each attribute may be associated with a label for display
purposes; we can extend the attributeLabels() method to return labels
related to public members of Model.

• Massive attribute assignment: We can fill the member's content of Model
by passing an entire array of values. This is convenient when we need to
fill a model with data from the form.

• Scenario-based validation: Model provides rules to validate data. We can
choose which ones apply according to the scenario, a keyword that defines
the rules to apply.

While performing data validation, Model also raises the following events:

• EVENT_BEFORE_VALIDATE: This is an event raised at the beginning of
validate()

• EVENT_AFTER_VALIDATE: This is an event raised at the end of validate()

You can directly use Model to store model data or extend it with customization.

Example – a Model to store room data
Now, let's create Model to store room data. To create this, we choose to name all
fields with words written in lowercase characters and separated by underscores.

We can identify these fields of Model as follows:

• floor: In a more generic situation, we consider this as a string member
• room_number: This is an integer member
• has_conditioner: This is an integer member with two values 0 and 1
• has_tv: This is an integer member with two values 0 and 1
• has_phone: This is an integer member with two values 0 and 1
• available_from: This is a date member that it is represented with a string

in PHP
• price_per_day: This is a float member
• assistance_email: This is a string member containing an e-mail address
• description: This is a string member

Chapter 4

[59]

Now, create the Model class, named Room as the base class, in the previous field list,
creating a file under basic/models/Room.php with the following content:

<?php
namespace app\models;
use Yii;
use yii\base\Model;
class Room extends Model {
 public $floor;
 public $room_number;
 public $has_conditioner;
 public $has_tv;
 public $has_phone;
 public $available_from;
 public $price_per_day;
 public $description;
}

The second thing to do is to append the attributeLabels() method in order to give
a label to every member. This is not necessary, but it is a useful method to get labels
displayed in the end user frontend.

public function attributeLabels()
{
 return [
 'floor' => 'Floor',
 'room_number' => 'Room number',
 'has_condition' => 'Condition available',
 'has_tv' => 'TV available',
 'has_phone' => 'Phone available',
 'available_from' => 'Available from',
 'price_per_day' => 'Price (EUR/day)',
 'description' => 'Description',
];
}

The last thing is to create rules to validate data. Rules are based on validators, whose
defaults are listed as follows:

• boolean: yii\validators\BooleanValidator
• captcha: yii\captcha\CaptchaValidator
• compare: yii\validators\CompareValidator
• date: yii\validators\DateValidator

Creating a Room through Forms

[60]

• double: yii\validators\NumberValidator
• email: yii\validators\EmailValidator
• exist: yii\validators\ExistValidator
• file: yii\validators\FileValidator
• filter: yii\validators\FilterValidator
• image: yii\validators\ImageValidator
• in: yii\validators\RangeValidator
• integer: yii\validators\NumberValidator
• match: yii\validators\RegularExpressionValidator
• required: yii\validators\RequiredValidator
• safe: yii\validators\SafeValidator
• string: yii\validators\StringValidator
• trim: yii\validators\FilterValidator
• unique: yii\validators\UniqueValidator
• url: yii\validators\UrlValidator

A Rule is an array whose values are in the following order:

• A string or an array to define an attribute or list of attributes to apply the rule
• The type of validator
• The on attribute to define which scenario to use
• The other parameters, depending on the validator that is used

Write the rules() method of the Room Model class:

/**
 * @return array the validation rules.
 */
public function rules()
{
 return [
 ['floor', 'integer', 'min' => 0],
 ['room_number', 'integer', 'min' => 0],
 [['has_conditioner', 'has_tv', 'has_phone'], 'integer',
 'min' => 0, 'max' => 1],
 ['available_from', 'date', 'format' => 'php:Y-m-d'],
 ['price_per_day', 'number', 'min' => 0],
 ['description', 'string', 'max' => 500]
];
}

Chapter 4

[61]

The preceding code is explained as follows:

• The first rule establishes that floor is an integer, with 0 as the minimum value
• The second rule establishes that room_number is an integer, with 0 as

the minimum value; we can put together floor and room in a single rule,
melting them into an array as the first parameter of a single rule

• The third rule establishes that has_condition, has_tv, and has_phone are
integers with possible values between 0 and 1 (formally a Boolean value)

• The fourth rule establishes that available_from is a date
• The fifth rule establishes that price_per_day is a number and its minimum

value is 0
• The last rule establishes that description is a string with a maximum of

500 characters

These rules will be applied when the validate() method of Model is called. This
method is automatically called when we attempt to call the save() method.

Using ActiveForm
Now we will create an HTML form in view to send data from view to controller.
We could build a form in the standard way using the form tag and input fields, but
Yii2 provides helper classes that simplify the building of a form and its content.

For this purpose, we will use ActiveForm, a widget that builds an interactive HTML
form for one or multiple data models.

As for any Yii2 widget, we will indicate with the begin()static method, the moment
we start using it, and with the end()static method, the moment we stop using it,
from yii\widgets\ActiveForm. The code between these methods will be placed in
the form:

$form = ActiveForm::begin();
... content here ...
ActiveForm::end();

The first method, begin(), returns an object that we can use inside the content to
create the input fields. This method accepts an array as the parameter to indicate
configuration attributes to be applied. The last method, end(), marks the end of
the widget, so this can be rendered with its content.

Creating a Room through Forms

[62]

Now, we need some input fields to insert in the code, which is done using the
field() method of the ActiveForm instance that we just created. This method
requires two parameters: model and field name and returns an object of type
ActiveField. With this method, we just demand ActiveForm to create a new
field; however, in this case, we also need to specify the type of field we want.

This operation is made calling a method from ActiveField relative to the kind
of input to the instance. The most common are:

• label(): This is used to generate a label tag
• textInput(): This is used to generate an input field with type text
• textarea(): This is used to generate a textarea tag
• radio(): This is used to generate an input field with type radio
• checkbox(): This is used to generate an input field with type checkbox

Example – creating a new room from the
HTML form
Firstly, create a new controller, RoomsController, under basic/controllers/
RoomsController.php with an action named create:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Room;

class RoomsController extends Controller
{
 public function actionCreate()
 {
 $model = new Room();
 $modelCanSave = false;

 if ($model->load(Yii::$app->request->post()) && $model-
 >validate()) {
 $modelCanSave = true;
 }

 return $this->render('create', [
 'model' => $model,

Chapter 4

[63]

 'modelSaved' => $modelCanSave
]);
 }
}

At the start of the create() method, we create a new instance of the Room class
assigned to the $model variable. The load() method fills the $model attributes with
data taken from the key position named $model->formName() of an array passed
as parameters. By default, $model->formName() returns the class name of the object,
as shown in the following code:

$model->load(Yii::$app->request->post())

The preceding code is equivalent to:

if (isset($_POST[$model->formName()])) {
 $this->setAttributes($_POST[$model->formName()]);
}

Going back to the load()&&validate() condition, if load() returns true, validate()
will also be executed and all rules in the rules() method of model will be evaluated.

In this case, Model is ready to be saved to the data store (in the database in the next
chapters). Now, it is important to mark this condition with a simple variable named
$modelCanSave, passed to the create view.

Create a file for the create view under basic/views/rooms/create.php:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\helpers\Url;
use yii\helpers\ArrayHelper;
?>

<?php if($modelCanSave) { ?>
<div class="alert alert-success">
 Model ready to be saved!
</div>
<?php } ?>

<?php $form = ActiveForm::begin(); ?>
<div class="row">
 <div class="col-lg-12">
 <h1>Room form</h1>
 <?= $form->field($model, 'floor')->textInput() ?>
 <?= $form->field($model, 'room_number')->textInput() ?>

Creating a Room through Forms

[64]

 <?= $form->field($model, 'has_conditioner')->checkbox() ?>
 <?= $form->field($model, 'has_tv')->checkbox() ?>
 <?= $form->field($model, 'has_phone')->checkbox() ?>
 <?= $form->field($model, 'available_from')->textInput() ?>
 <?= $form->field($model, 'price_per_day')->textInput() ?>
 <?= $form->field($model, 'description')->textarea() ?>
 </div>
</div>
<div class="form-group">
 <?= Html::submitButton('Create' , ['class' => 'btn btn-
 success']) ?>
</div>
<?php ActiveForm::end(); ?>

If the $modelCanSave variable is true, an alert div with the green background
will be displayed to notify that $model is loaded and validate (ready to be saved
in database).

For the test code, point to http://hostname/basic/web/rooms/create.
The following screen should appear:

Create room HTML form

Chapter 4

[65]

The framework automatically takes care of the validation checks on input fields,
corresponding to the rules list in the rules() method of Model. We can check this
by typing characters in the Floor input. We should see the following screenshot:

The validation check of the integer field

The validation informs us that Floor must be an integer, as required in the rules list.
Once all the fields are filled with correct values (date format, yyyy-mm-dd), just click
on the Create button and we should see a box with green background displaying
Model ready to be saved.

Format date, time, and numbers
Now, let's see how to format the date, time, and numeric fields. Yii2 provides helpers
for each of these types.

To format a value, we will use Yii::$app->formatter; this object belongs to the
Formatter class located under yii\i18n\ and supports many types of formatting.
All the methods used for this purpose start with an as prefix. Therefore, the asDate
method will be used to format dates, and the asCurrency method will be used to
format currencies.

The first parameter of each formatting method is the value to be formatted and other
fields refer to the format to be used and other optional parameters.

Let's change the view content by adding content of the Model that is ready to be saved:

<?php if($modelCanSave) { ?>
<div class="alert alert-success">
 Model ready to be saved!

 These are values:

 Floor: <?php echo $model->floor; ?>

Creating a Room through Forms

[66]

 Room Number: <?php echo $model->room_number; ?>

 Has conditioner: <?php echo Yii::$app->formatter-
 >asBoolean($model->has_conditioner); ?>

 Has TV: <?php echo Yii::$app->formatter->asBoolean($model-
 >has_tv); ?>

 Has phone: <?php echo Yii::$app->formatter->asBoolean($model-
 >has_phone); ?>

 Available from (mm/dd/yyyy): <?php echo Yii::$app->formatter-
 >asDate($model->available_from,'php:m/d/Y'); ?>

 Price per day: <?php echo Yii::$app->formatter-
 >asCurrency($model->price_per_day,'EUR'); ?>

</div>
<?php } ?>

If $model is ready to be saved, in the box with the green background, we will have
the output of each of the fields of Model.

In this example, we have used:

• The boolean formatter for has_condition, has_tv, and has_phone
members uses the default representation of false and true values; defaults
are No for false and Yes for true, but we can change this behavior setting in
the $booleanFormat member of Yii::$app->formatter

• The date formatter for available_from member takes the date format to
be used as the second parameter; this date format can be represented with
PHP date function style or ICU standard

• The currency formatter for the price_per_day member is the second
parameter with three characters type of currency to be used

This is how the box with the content of Model appears:

Show summary of Model content when validation is successful

Chapter 4

[67]

Uploading files
The common task when data is sent from view to controller is uploading files.
Also, in this case, Yii2 provides a convenient helper to handle this task: yii\web\
UploadedFile. This class has two important methods: getInstance() (in plural
form getInstances()) and saveAs().

The first method, getInstance(), allows us to get the file from the form's input
field, while the second method, saveAs(), as its name implies, allows us to save
file input field content to the server filesystem.

Before we start with the example, it is important to create a folder that will contain
the uploaded files. The best place to create this folder is at the root directory of the
application. So create a folder named uploadedfiles under the basic/ folder.

Make sure that this folder is writable.

Next, to centralize configuration, define an alias for this new folder, so that we
can change this path from app configuration. Enter in basic/config/web.php
and append the aliases property, if it does not exist, to the $config array with
these lines:

'aliases' =>
[
 '@uploadedfilesdir' => '@app/uploadedfiles'
],

@app is a system aliases that defines the application's root directory.

Example – uploading an image of a room
In this example, we will see how to upload an image of a room.

We need to make changes in model, view, and controller. Let's start with model.

In model, we need to add a new property, named fileImage, with its specific rule.

This is the final version of Model:

<?php
namespace app\models;

Creating a Room through Forms

[68]

use Yii;
use yii\base\Model;
class Room extends Model
{
 public $floor;
 public $room_number;
 public $has_conditioner;
 public $has_tv;
 public $has_phone;
 public $available_from;
 public $price_per_day;
 public $description;

 public $fileImage;

 public function attributeLabels()
 {
 return [
 'floor' => 'Floor',
 'room_number' => 'Room number',
 'has_conditioner' => 'Conditioner available',
 'has_tv' => 'TV available',
 'has_phone' => 'Phone available',
 'available_from' => 'Available from',
 'price_per_day' => 'Price (Eur/day)',
 'description' => 'Description',
 'fileImage' => 'Image'
];
 }

 /**
 * @return array the validation rules.
 */
 public function rules()
 {
 return [
 ['floor', 'integer', 'min' => 0],
 ['room_number', 'integer', 'min' => 0],
 [['has_conditioner', 'has_tv', 'has_phone'],
 'integer', 'min' => 0, 'max' => 1],
 ['available_from', 'date', 'format' => 'php:Y-m-d'],
 ['price_per_day', 'number', 'min' => 0],
 ['description', 'string', 'max' => 500],

 ['fileImage', 'file']
];
 }
}

Chapter 4

[69]

In rules, for the fileImage field, we can add many types of validation; for example,
check if required, check mime type (.gif, .jpeg, and .png).

Next, we will use the static method getInstance() of the UploadedFile class in
controller, to get the file from the input file field and then use saveAs to save in the
specific folder. This is the final version of RoomsController:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Room;

class RoomsController extends Controller
{
 public function actionCreate()
 {
 $model = new Room();
 $modelCanSave = false;

 if ($model->load(Yii::$app->request->post()) && $model-
 >validate()) {

 $model->fileImage = UploadedFile::getInstance($model,
 'fileImage');

 if ($model->fileImage) {
 $model->fileImage-
 >saveAs(Yii::getAlias('@uploadedfilesdir/' .
 $model->fileImage->baseName . '.' . $model-
 >fileImage->extension)));
 }

 $modelCanSave = true;
 }

 return $this->render('create', [
 'model' => $model,
 'modelSaved' => $modelCanSave
]);
 }
}

Creating a Room through Forms

[70]

UploadedFile::getInstance gets the file from the $_FILES array to fill the
fileImage property of Model with its data.

The last thing to do is to update the create view content, by appending the
fileInput field. This is the final version:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\helpers\Url;
use yii\helpers\ArrayHelper;
?>

<?php if($modelCanSave) { ?>
<div class="alert alert-success">
 Model ready to be saved!

 These are values:

 Floor: <?php echo $model->floor; ?>

 Room Number: <?php echo $model->room_number; ?>

 Has conditioner: <?php echo Yii::$app->formatter-
 >asBoolean($model->has_conditioner); ?>

 Has TV: <?php echo Yii::$app->formatter->asBoolean($model-
 >has_tv); ?>

 Has phone: <?php echo Yii::$app->formatter->asBoolean($model-
 >has_phone); ?>

 Available from (mm/dd/yyyy): <?php echo Yii::$app->formatter-
 >asDate($model->available_from,'php:m/d/Y'); ?>

 Price per day: <?php echo Yii::$app->formatter-
 >asCurrency($model->price_per_day,'EUR'); ?>

 Image:
 <?php if(isset($model->fileImage)) { ?>
 <img src="<?php echo Url::to('@uploadedfilesdir/'.$model-
 >fileImage->name) ?>" />
 <?php } ?>
</div>
<?php } ?>

<?php $form = ActiveForm::begin(['options' => ['enctype' =>
'multipart/form-data']]); ?>
<div class="row">
 <div class="col-lg-12">
 <h1>Room form</h1>
 <?= $form->field($model, 'floor')->textInput() ?>
 <?= $form->field($model, 'room_number')->textInput() ?>

Chapter 4

[71]

 <?= $form->field($model, 'has_conditioner')->checkbox() ?>
 <?= $form->field($model, 'has_tv')->checkbox() ?>
 <?= $form->field($model, 'has_phone')->checkbox() ?>
 <?= $form->field($model, 'available_from')->textInput() ?>
 <?= $form->field($model, 'price_per_day')->textInput() ?>
 <?= $form->field($model, 'description')->textarea() ?>

 <?= $form->field($model, 'fileImage')->fileInput() ?>
 </div>
</div>
<div class="form-group">
 <?= Html::submitButton('Create' , ['class' => 'btn btn-
 success']) ?>
</div>
<?php ActiveForm::end(); ?>

Take care of the last row of this example, ActiveForm::end() that closes the body
of the $form widget defined at the top of the file using the ActiveForm::begin()
method.

In this example, the ActiveForm widget has been created by
filling the enctype property of the configuration array with the
multipart/form-data value, which allows us to send the binary
data other than the form text parameters. However, this does not
deal with Yii or PHP, because this is an HTML requirement for
notifying the browser how to send files to the server.

In this view, if the model has been validated and the fileImage property is filled,
the corresponding image will be displayed.

Summary
In this chapter, we saw how to build a Model class from scratch and send data from
view to controller using form, created using Yii2 ActiveForm widget. We also looked
at the common useful methods to format data and sent files from the form.

In the next chapter, you will learn how to work with databases and save model data
from view form to database.

[73]

Developing a
Reservation System

In this chapter, you will learn how to configure and manage databases, using SQL or
ActiveRecord directly, then you will see how to solve common tasks, such as saving
single and multiple models from a form, and how to create data aggregation and
filtered views.

We will cover the following topics in this chapter:

• Configuring a DB connection:
 ° For example, creating rooms, customers, and reservations tables

• For example, testing a connection and executing a SQL query
• Using Gii to create room, customer, and reservation models
• Using ActiveRecord to manipulate data:

 ° For example, querying rooms list with ActiveRecord

• Working with relationships:
 ° For example, using relationships to connect rooms, reservations,

and customers

• How to save a model from a form:
 ° For example, creating and updating a room from a form

• Setting up the GMT time zone
• Using multiple database connections:

 ° For example, configuring a second DB connection to export data
to a local SQLite DB

Developing a Reservation System

[74]

Configuring a DB connection
Yii2 offers a high-level layer to access databases, built on top of PHP Data Objects
(PDO).

This framework allows us to manipulate a database table's content through the use of
ActiveRecord objects. This encapsulates methods to access single or multiple records,
as well as filtering, joining, and ordering data in an intuitive way.

Again, we can work with databases using plain SQL, but this means that we must
handle dissimilarities in SQL languages passing through different databases (MySQL,
SQL Server, Postgres, Oracle, and so on), which means losing Yii2 facilities.

A database object connection is an instance of yii\db\Connection:

$db = new yii\db\Connection([
 'dsn' => 'mysql:host=localhost;dbname=my_database',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
]);

In this example, we have a connection to a MySQL Server with a mysql connection
string to the database my_databases, setting my_username as username and my_
password as password. Moreover, we set charset to utf8 in order to guarantee
standard charset use. This is a standard database connection entry.

Other common available connection strings are:

• MySQL and MariaDB: mysql:host=localhost;dbname=mydatabase
• SQLite: sqlite:/path/to/database/file
• PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase
• MS SQL Server (via mssql driver): mssql:host=localhost;dbname=mydata

base

• Oracle: oci:dbname=//localhost:1521/mydatabase

Chapter 5

[75]

If we do not provide a direct driver to database and we have to use
ODBC, we will have a sample of the ODBC connection object as follows:

$db = new yii\db\Connection([

 'driverName' => 'mysql',

 'dsn' =>
 'odbc:Driver={MySQL};Server=localhost;Database=
 my_database',

 'username' => 'my_username',

 'password' => 'my_password',

 'charset' => 'utf8',

]);

For convenience, we will set the database connection as an application component
because it will be adopted in many points of the application. In basic/config/web.
php:

return [
 // ...
 'components' => [
 // ...
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=my_database',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
],
],
 // ...
];

In the basic template, database configuration is in a separate
file, generally basic/config/db.php.
If we open basic/config/web.php, we can see that the
db.php file fills the db property of the main configuration.

Developing a Reservation System

[76]

Example – creating rooms, customers,
and reservations tables
Now, we need a MySQL database instance to work with. Open the DB administration
panel as phpMyAdmin (if provided) or access the DB directly using a console
and create a new database named my_database, associated with the username
my_username and the password my_password.

In this example, we will create three database tables to manage rooms, customers,
and reservations data.

A room will have the following fields:

• id as an integer
• floor as an integer
• room_number as an integer
• has_conditioner as an integer
• has_tv as an integer
• has_phone as an integer
• available_from as the date
• price_per_day as a decimal
• description as text

The script of the room table will be:

CREATE TABLE `room` (
 `id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `floor` int(11) NOT NULL,
 `room_number` int(11) NOT NULL,
 `has_conditioner` int(1) NOT NULL,
 `has_tv` int(1) NOT NULL,
 `has_phone` int(1) NOT NULL,
 `available_from` date NOT NULL,
 `price_per_day` decimal(20,2) DEFAULT NULL,
 `description` text);

A customer will have the following fields:

• id as an integer
• name as a string
• surname as a string
• phone_number as a string

Chapter 5

[77]

The script of the customer table will be

CREATE TABLE `customer` (
 `id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `name` varchar(50) NOT NULL,
 `surname` varchar(50) NOT NULL,
 `phone_number` varchar(50) DEFAULT NULL
);

A reservation will have the following fields:

• id as an integer
• room_id as an integer that is a reference to a room table
• customer_id as an integer that is a reference to a customer table
• price_per_day as a decimal
• date_from as the date to specify check in
• date_to as the date to specify check out
• reservation_date as a timestamp of creation
• days_stay as an integer

The script of the reservation table will be:

CREATE TABLE `reservation` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `room_id` int(11) NOT NULL,
 `customer_id` int(11) NOT NULL,
 `price_per_day` decimal(20,2) NOT NULL,
 `date_from` date NOT NULL,
 `date_to` date NOT NULL,
 `reservation_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
);

Finally, place basic/config/web.php in the components property:

$db = new yii\db\Connection([
 'dsn' => 'mysql:host=localhost;dbname=my_database',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
]);

Then we are ready to test the connection to the DB.

Developing a Reservation System

[78]

Example – test connection and executing
the SQL query
Now let's see how to test the DB connection.

Put some rooms data in the database table:

INSERT INTO `my_database`.`room` (`id`, `floor`, `room_number`,
`has_conditioner`, `has_tv`, `has_phone`, `available_from`,
`price_per_day`, `description`)
VALUES
(NULL, '1', '101', '1', '0', '1', '2015-05-20', '120', NULL),
(NULL, '2', '202', '0', '1', '1', '2015-05-30', '118', NULL);

Database queries are made using the yii\db\Command object, which is created
statically by the yii\db\Connection::createCommand() method.

The most important methods to retrieve data from a command are:

• queryAll(): This method returns all the rows of a query, where each array
element is an array that represents a row of data; if the query returns no data,
the response is an empty array

• queryOne(): This method returns the first row of the query, that is, an array,
which represents a row of data; if the query returns no data, the response is
a false Boolean value

• queryScalar(): This method returns the value of the first column in the first
row of the query result; otherwise false will be returned if there is no value

• query(): This is the most common response that returns the yii\db\
DataReader object

Now we will display the room table's content in different ways.

We will update RoomsController in basic/controllers/RoomsController.php.
In this file, we will append an index action to fetch data and pass it to view:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class RoomsController extends Controller
{

Chapter 5

[79]

 public function actionIndex()
 {
 $sql = 'SELECT * FROM room ORDER BY id ASC';

 $db = Yii::$app->db;

 $rooms = $db->createCommand($sql)->queryAll();

 // same of
 // $rooms = Yii::$app->db->createCommand($sql)->queryAll();

 return $this->render('index', ['rooms' => $rooms]);
 }
}

The content of actionIndex() is very simple. Define the $sql variable with the SQL
statement to be executed, then fill the $rooms array with the query result, and finally
render the index view, passing the rooms variable.

In the view content, in basic/views/rooms/index.php, we will display the $rooms
array in a table to exploit Bootstrap CSS's advantages, and apply the table class to
the table HTML tag.

This is the content of basic/views/rooms/index.php, where we can also see the
data formatter used:

<table class="table">
 <tr>
 <th>Floor</th>
 <th>Room number</th>
 <th>Has conditioner</th>
 <th>Has tv</th>
 <th>Has phone</th>
 <th>Available from</th>
 <th>Available from (db format)</th>
 <th>Price per day</th>
 <th>Description</th>
 </tr>
 <?php foreach($rooms as $item) { ?>
 <tr>
 <td><?php echo $item['floor'] ?></td>
 <td><?php echo $item['room_number'] ?></td>
 <td><?php echo Yii::$app->formatter-
 >asBoolean($item['has_conditioner']) ?></td>

Developing a Reservation System

[80]

 <td><?php echo Yii::$app->formatter-
 >asBoolean($item['has_tv']) ?></td>
 <td><?php echo ($item['has_phone'] == 1)?'Yes':'No'
 ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($item['available_from']) ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($item['available_from'], 'php:Y-m-d') ?></td>
 <td><?php echo Yii::$app->formatter-
 >asCurrency($item['price_per_day'], 'EUR') ?></td>
 <td><?php echo $item['description'] ?></td>
 </tr>
 <?php } ?>
</table>

The floor and room_number fields are directly displayed.

The next two fields has_conditioner and has_tv are shown by employing
a Boolean formatter supplied by Yii2; the Boolean formatter will use the locale
defined during the configuration of Yii2.

The next field has_phone renders its value as the previous two fields; the reason
for this is to indicate how to produce the same output of a Boolean formatter in a
standard PHP style.

Then, the available_from field is rendered using the date formatter in two
different ways, directly and passing the format to be used. Or, if no parameter
is passed, it adopts the default format.

Again, the price_per_day field is rendered through the currency formatter,
passing the currency as a parameter. If no parameter is passed, the default value
will be used. The last field description is displayed directly. Point your browser
to http://hostname/basic/web/rooms/index to see the content as follows:

A list of rooms

Chapter 5

[81]

Using Gii to create room, customer,
and reservation models
Yii2 provides a powerful tool to generate models, controllers, and CRUD (create,
read, update, and delete) actions, forms, modules, and extensions: Gii.

At the bottom of the basic/config/web.php file, placed in the basic standard
configuration, there is a block of code that enables Gii:

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Verify that these lines are present, otherwise append them at the bottom of the
web.php file before the return $config statement. The last check is in basic/web/
index.php. Verify that YII_ENV is dev, with this line:

defined('YII_ENV') or define('YII_ENV', 'dev');

Now, we can point our browser to http://hostname/basic/web/gii, and we
should see this error page:

Forbidden access to Gii

This page will be displayed since access to Gii is locked by a password.

Developing a Reservation System

[82]

We need to add extra configuration to the gii module, passing other allowed IPs.
Gii's configuration has an attribute named allowedIPs, which consents to specify
which IP addresses can access the Gii page:

 'allowedIPs' => ['127.0.0.1', '::1', '192.168.178.20']

In this extract, Gii will accept access from a localhost (in the IPv4 form with 127.0.0.1
and IPv6 form with ::1) and from 192.168.178.20, which should be our IP address
in private network.

If the Yii2 application is running on an external hosting, we will set our IP public
address in this list of allowed IPs. For example, if our IP is 66.249.64.76, this entry
will be appended to existent (if we want maintain other permitted access points):

 'allowedIPs' => ['127.0.0.1', '::1', '192.168.178.20',
'66.249.64.76']

To allow access from everywhere (useful in the development stage), we can add * in
this list, which means that the Gii page can be accessed from every IP address:

'allowedIPs' => ['127.0.0.1', '::1', '192.168.178.20', '*']

Consequently, the content of gii]['gii'] = 'yii\gii\Module' is:

 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '192.168.178.20',
 '*']]; configuration in basic/config/web.php will be:
if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 //$config['modules'
}

Now, we are able to access to Gii from any IP.

Chapter 5

[83]

Refresh the browser by clicking on the page http://hostname/basic/web/gii and
we can finally see its content:

Successful access to Gii

Now, click on the Start button of Model Generator; we will have a form of Model
Generator where Table Name is the unique field to fill in. When we start to type
the table name, auto-suggestion will display the possible choices. After doing this,
when we move to the Model Class field, this will be automatically filled in by a
framework. The other fields can be left with the default settings.

Type room in Table Name and then click on the Model Class field. This field will be
filled with Room, which is the filename in the models folder.

Clicking on the Preview button will display the path where the file will be created
and the action will be applied (it should be the overwrite value because we created
it in the previous chapter).

Finally, click on the Generate button to complete this action. A response message
will give us information about the execution of this operation.

Developing a Reservation System

[84]

This is the form with a successful result:

Model Generator of Gii

Repeat this operation for the other two tables: reservations and customers.

Now, we have three models in the basic/models folder: Room.php,
Reservation.php, and Customer.php.

Let's explain what Gii has done. Open the basic/models/Room.php file, and we
have three methods:

• tableName()

• rules()

• attributeLabels()

Chapter 5

[85]

The first method, tableName(), simply returns the name of table to which this model
is linked:

 public static function tableName()
 {
 return 'room';
 }

The second method, rules(), is important because it contains rules validation to be
checked when the validate() method is launched (it is launched automatically in
the save() method) or a massive attributes assignment as:

$model->attributes = arrayWithData;

This is the content of the rules() method:

 public function rules()
 {
 return [
 [['floor', 'room_number', 'has_conditioner', 'has_tv',
 'has_phone', 'available_from'], 'required'],
 [['floor', 'room_number', 'has_conditioner', 'has_tv',
 'has_phone'], 'integer'],
 [['available_from'], 'safe'],
 [['price_per_day'], 'number'],
 [['description'], 'string']
];
 }

The first rule specifies that the fields floor, room_number, has_condition, has_
tv, and avaiable_from are mandatory because they are passed to the required
validator. Moreover, they must be an integer, as required by the second rule.

Fields that are not in rules, will be skipped in a massive assignment
because they are considered unsafe (since they are not present in rules).
So it is necessary that when a field that has not got a validator rule,
it must have an entry in the 'safe' validator.

The fourth rule specifies that the price_per_day field is a number, while the last
rule states that description is a string.

These rules are read automatically from the database field type
and constraint.

Developing a Reservation System

[86]

The last method attributeLabels() specifies the representation of fields in the
display view as a form, grid, and so on.

This is the content of attributeLabels():

 public function attributeLabels()
 {
 return [
 'id' => 'ID',
 'floor' => 'Floor',
 'room_number' => 'Room Number',
 'has_conditioner' => 'Has Conditioner',
 'has_tv' => 'Has Tv',
 'has_phone' => 'Has Phone',
 'available_from' => 'Available From',
 'price_per_day' => 'Price Per Day',
 'description' => 'Description',
];
 }

Yii2 reports—in the model—any relationship between the tables present in a
database. We have the Reservation model that has links to Room and Customer.

Follow these instructions to make the framework able to create a relationship in
the model:

1. Check that the database tables use the InnoDB engine (which supports
relationships and foreign keys).

2. In the Reservation table, add two indexes, respectively for the room_id
and customer_id fields:
ALTER TABLE `reservation` ADD INDEX (`room_id`) ;
ALTER TABLE `reservation` ADD INDEX (`customer_id`) ;

3. In the Reservation table, add two constraints to the room and
customer tables:
ALTER TABLE `reservation` ADD FOREIGN KEY (`room_id`)
REFERENCES `room` (`id`) ON DELETE RESTRICT ON UPDATE
RESTRICT ;
ALTER TABLE `reservation` ADD FOREIGN KEY (`customer_id`)
REFERENCES `customer` (`id`) ON DELETE RESTRICT ON UPDATE
RESTRICT ;

Chapter 5

[87]

In these constraints, we used RESTRICT for DELETE and UPDATE
operations. RESTRICT avoids the deletion of reservations that refer
to customers or rooms that we are trying to delete. Therefore, to
delete a customer or room that figures in reservations, we will be
required to first delete the reservations.
This behavior ensures that important data such as reservations is
never deleted automatically (in a cascade) when deleting a room or
a customer. An error message will be displayed when you try to do
this to a reservation linked to the customer or room.
In other contexts, a commonly used keyword is CASCADE, which
removes all data that refers to linked tables.

Open Gii again and navigate to http://hostname/basic/web/gii, then click on
the Start button in Model Generator and type room in Table Name. Click on the
Preview button at the bottom of the page and this time you will see that models/
Room.php exists and the action is overwrite, unflagged.

Click on the check near 'overwrite' and then on the Generate button. In this way, we
have forced to overwrite the Room model with the relational data from the Room table.

Now, basic/models/Room.php contains a new method named getReservations at
the bottom, with this content:

 /**
 * @return \yii\db\ActiveQuery
 */
 public function getReservations()
 {
 return $this->hasMany(Reservation::className(),
 ['room_id' => 'id']);
 }

This method returns an ActiveQuery instance, which is used to build a query to be
dispatched to the database.

Developing a Reservation System

[88]

When called as a property, this method will return the list of reservations
linked to the model.
You might encounter the case where $model is an instance of the Room
class for example: $reservationsList = $model->reservations;
In this case, fill the $reservationsList variables with a list of
reservations related to this Room model.
This is not surprising, although the hasMany method returns an
ActiveQuery object.
If we explore the __get() method of BaseActiveRecord (which is the
base class of ActiveRecord) that handles the property requirements, we
can see these lines of code:

 $value = parent::__get($name);

 if ($value instanceof ActiveQueryInterface)
{

 return $this->_related[$name] = $value-
 >findFor($name, $this);

 } else {

 return $value;

 }

This returns linked results when the $value content is an instance of
ActiveQueryInterface (which is an interface implemented by the
ActiveQuery class).

Using ActiveRecord to manipulate data
ActiveRecord offers a convenient way to access and manipulate data stored in
a database. This class is linked to a database table and represents a row of the
linked table. Its attributes are the fields of the table and its methods allow us to
perform common actions on database, such as selecting, inserting, or updating
SQL statements.

Many common databases are supported by ActiveRecord, such as:

• MySQL
• PostgreSQL
• SQLite
• Oracle
• Microsoft SQL Server

Chapter 5

[89]

Also, some NoSQL databases are supported, such as:

• Redis
• MongoDB

ActiveRecord reads the table structure every time it is instanced and makes available
table columns as its properties. Every change to the table structure is immediately
available in the ActiveRecord object.

Therefore, if a table contains the fields id, floor, and room_number, and if $model
is an instance of yii\db\ActiveRecord, in order to access these fields, it will be
enough to type:

$id = $model->id;
$floor = $model->floor;
$room_number = $model->room_numer;

ActiveRecord handles properties request with the __get magic method and catches
the respective content of a table column. In the previous paragraph, you saw how to
create a model class from database tables to extend yii\db\ActiveRecord with Gii.
The syntax used by ActiveRecord is simple and redundant, so it is easy to remember.
Now let's look at how to query data from a database with ActiveRecord.

Data is fetched from a database through an \yii\db\ActiveQuery object to build
the query, and finally calls on one() or all() methods to get an ActiveRecord object
or a list of ActiveRecord objects.

An ActiveQuery object is returned from an ActiveRecord object by calling its static
method ::find().

If Room is a model (and subclasses ActiveRecord), an ActiveQuery will be
returned from:

// $query is an ActiveQuery object
$query = Room::find();

ActiveQuery objects provide methods to build the query with names such as in
SQL expression.

The most common ones are:

• where() to add conditions
• orderBy() to apply an order
• groupBy() to make aggregations

Developing a Reservation System

[90]

Almost all of these methods support a parameter that can be a string or an array.
If it is a string, it will be passed exactly as it is to the SQL query; if it is an array,
a key will be used as the column name, and a value as the corresponding value.
For example, we want to build query to find a room on the first floor:

$query = Room::find()->where('floor = 1');
// equivalent to
$query = Room::find()->where(['floor' => 1]);

For complex conditions, where() supports the operator format where the condition
is an array with:

[operator, operand1, operand2, …]

For example, we want to build a query to find a room on the first floor:

$query = Room::find()->where(['>=', 'floor', 1]);
// equivalent to
$query = Room::find()->where('floor >= 1';

Other conditions can be added using andWhere() or orWhere(), by just using the
and or or logical link.

An array parameter of the where() method is preferable to a string, because we
can easily split the field name from its content and set the second parameter of the
where() method with an array with pair keys => values of parameters.

After creating a query object, to get data from an ActiveQuery, we will have:

• one(): This method returns an ActiveRecord object or null if not found
• all(): This method returns a list of ActiveRecord objects or an empty

array if not found

So, to get rooms on the first floor, we must write:

$query = Room::find()->where(['floor' => 1]);
$items = $query->all();
// equivalent to
$items = Room::find()->where(['floor' => 1])->all();

Chapter 5

[91]

There is a more concise syntax to fetch data from an ActiveRecord:
the findOne() and findAll() methods, which return a single
ActiveRecord or a list of ActiveRecords. The only difference from the
previous methods is that they accept a single parameter, which can be:

• A number to filter by primary key
• An array of scalar values to filter by a list of primary key values

(only for findAll() because findOne() returns a single
ActiveRecord)

• An array of name-value pair to filter by a set of attribute values

Other common methods of ActiveRecord are:

• validate(): This method is used to apply rules validation to attributes
of a model

• save(): This method is used to save a new model or to update one
that already exists (if the save() method is applied to a fetched
ActiveRecord object)

• delete(): This method is used to delete a model

Example – query rooms list with ActiveRecord
In this example, we will query the rooms list using ActiveRecord and filter through
the following fields: floor, room_number, and price_per_day with operators
(>=, <=, and =).

A data filter will take place using the SearchFilter container to encapsulate all of
the filter data inside a single array.

Starting from a view, create a new file with the path basic/views/rooms/
indexFiltered.php.

In this view, we will put the search filter on the top and then a table to display
the results.

We have three fields to filter: floor, room_number, and price_per_day, all with an
operator. The data filter will be passed to the controller and the filter selected will be
kept after executing actionIndexFiltered in the controller.

Developing a Reservation System

[92]

This is the content of the view concerning the filtered form:

<?php
use yii\helpers\Url;

$operators = ['=', '<=', '>='];

$sf = $searchFilter;

?>

<form method="post" action="<?php echo Url::to(['rooms/index-
filtered']) ?>">
 <input type="hidden" name="<?= Yii::$app->request->csrfParam;
 ?>" value="<?= Yii::$app->request->csrfToken; ?>" />

 <div class="row">
 <?php $operator = $sf['floor']['operator']; ?>
 <?php $value = $sf['floor']['value']; ?>
 <div class="col-md-3">
 <label>Floor</label>

 <select name="SearchFilter[floor][operator]">
 <?php foreach($operators as $op) { ?>
 <?php $selected = ($operator ==
 $op)?'selected':''; ?>
 <option value="<?=$op?>"
 <?=$selected?>><?=$op?></option>
 <?php } ?>=
 </select>
 <input type="text" name="SearchFilter[floor][value]"
 value="<?=$value?>" />
 </div>

 <?php $operator = $sf['room_number']['operator']; ?>
 <?php $value = $sf['room_number']['value']; ?>
 <div class="col-md-3">
 <label>Room Number</label>

 <select name="SearchFilter[room_number][operator]">
 <?php foreach($operators as $op) { ?>
 <?php $selected = ($operator ==
 $op)?'selected':''; ?>

Chapter 5

[93]

 <option value="<?=$op?>"
 <?=$selected?>><?=$op?></option>
 <?php } ?>
 </select>
 <input type="text"
 name="SearchFilter[room_number][value]"
 value="<?=$value?>" />
 </div>

 <?php $operator = $sf['price_per_day']['operator']; ?>
 <?php $value = $sf['price_per_day']['value']; ?>
 <div class="col-md-3">
 <label>Price per day</label>

 <select name="SearchFilter[price_per_day][operator]">
 <?php foreach($operators as $op) { ?>
 <?php $selected = ($operator ==
 $op)?'selected':''; ?>
 <option value="<?=$op?>"
 <?=$selected?>><?=$op?></option>
 <?php } ?>
 </select>
 <input type="text"
 name="SearchFilter[price_per_day][value]"
 value="<?=$value?>" />
 </div>
 </div>

 <div class="row">
 <div class="col-md-3">
 <input type="submit" value="filter" class="btn btn-
 primary" />
 <input type="reset" value="reset" class="btn btn-
 primary" />

 </div>
 </div>
</form>

Developing a Reservation System

[94]

Pay attention:
At the beginning of the view, there is a keyword use, which explains
the complete path of the Url class. If we remove it, the framework
will search the Url class requested in the <form> tag in the current
namespace, that is app/controllers.
After declaring the <form> tag, we inserted:
<input type="hidden" name="<?= Yii::$app->request-
>csrfParam; ?>" value="<?= Yii::$app->request-
>csrfToken; ?>" />

This is mandatory to allow the framework to verify the sender of the
post data.
The $searchFilter variable is used as $sf to provide a more
concise form.

Now update RoomsController in basic/controllers/RoomsController.php
and add a new action named actionIndexFiltered. Create an ActiveQuery object
from Room and check whether there is content in the SearchFilter keyword of the
$_POST array.

For every present filter, a condition will be added to $query using the andWhere
method, passing an operator, field name, and value. For a more concise form of the
actioned content, we put a filtered field in the loop, because they have the same
redundant structure (operator and value):

 public function actionIndexFiltered()
 {
 $query = Room::find();

 $searchFilter = [
 'floor' => ['operator' => '', 'value' => ''],
 'room_number' => ['operator' => '', 'value' => ''],
 'price_per_day' => ['operator' => '', 'value' => ''],
];

 if(isset($_POST['SearchFilter']))
 {
 $fieldsList = ['floor', 'room_number',
 'price_per_day'];

 foreach($fieldsList as $field)
 {
 $fieldOperator =
 $_POST['SearchFilter'][$field]['operator'];

Chapter 5

[95]

 $fieldValue =
 $_POST['SearchFilter'][$field]['value'];

 $searchFilter[$field] = ['operator' =>
 $fieldOperator, 'value' => $fieldValue];

 if($fieldValue != '')
 {
 $query->andWhere([$fieldOperator, $field,
 $fieldValue]);
 }
 }
 }

 $rooms = $query->all();

 return $this->render('indexFiltered', ['rooms' => $rooms,
 'searchFilter' => $searchFilter]);

 }

Finally, we need to display the results in a table format. So at the bottom of the view,
add a table to display the content of the filtered rooms (copied from basic/views/
rooms/index.php):

<table class="table">
 <tr>
 <th>Floor</th>
 <th>Room number</th>
 <th>Has conditioner</th>
 <th>Has tv</th>
 <th>Has phone</th>
 <th>Available from</th>
 <th>Available from (db format)</th>
 <th>Price per day</th>
 <th>Description</th>
 </tr>
 <?php foreach($rooms as $item) { ?>
 <tr>
 <td><?php echo $item['floor'] ?></td>
 <td><?php echo $item['room_number'] ?></td>
 <td><?php echo Yii::$app->formatter-
 >asBoolean($item['has_conditioner']) ?></td>
 <td><?php echo Yii::$app->formatter-
 >asBoolean($item['has_tv']) ?></td>

Developing a Reservation System

[96]

 <td><?php echo ($item['has_phone'] == 1)?'Yes':'No'
 ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($item['available_from']) ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($item['available_from'], 'php:Y-m-d') ?></td>
 <td><?php echo Yii::$app->formatter-
 >asCurrency($item['price_per_day'], 'EUR') ?></td>
 <td><?php echo $item['description'] ?></td>
 </tr>
 <?php } ?>
</table>

Now point the browser to http://hostname/basic/web/rooms/index-filtered
and this should be displayed:

A list of rooms with filters

We can create tests by changing the filter values and operators as much as we want.

Working with relationships
ActiveRecord provides us with skills to work with relationships between database
tables. Yii2 employs two methods to establish the relationship between the current
and other ActiveRecord classes: hasOne and hasMany, which return an ActiveQuery
based on the multiplicity of the relationship.

The first method hasOne() returns at most one related record that matches the
criteria set by this relationship, and hasMany() returns multiple related records
that match the criteria set by this relationship.

Both methods require that the first parameter is the class name of the related
ActiveRecord and that the second parameter is the pair of primary keys that are
involved in the relationship: the first key is relative to a foreign ActiveRecord and
the second key is related to the current ActiveRecord.

Chapter 5

[97]

Usually, hasOne() and hasMany() are accessed from properties that identify which
object (or objects) will be returned.

The method in this example is:

class Room extends ActiveRecord
{
 public function getReservations()
 {
return $this->hasMany(Reservation::className(), ['room_id' =>
'id']);
 }
}

By calling $room->reservations, framework will execute this query:

SELECT * FROM `reservation` WHERE `room_id` = id_of_room_model

The use of the hasOne() method is similar, and as an example will look like this:

class Reservation extends ActiveRecord
{
 public function getRoom()
 {
return $this->hasOne(Room::className(), ['id' => 'room_id']);
 }
}

Calling $reservation->room, framework will execute this query:

SELECT * FROM `room` WHERE `id` = reservation_id

Remember that when we call a property that contains the hasOne() or hasMany()
methods, a SQL query will be executed and its response will be cached. So, the next
time that we call the property, a SQL query will not be executed and the last cached
response will be released.

This approach to get related data is called lazy loading, which means that data is
loaded only when it is effectively requested.

Now let's write an example to display the last reservation details about a room.
Create a reservations model class using Gii if you have not done so before.

First of all, we need some data to work with. Insert this record in the customer table:

INSERT INTO `customer` (`id` ,`name` ,`surname` ,`phone_number`)
VALUES (NULL , 'James', 'Foo', '+39-12345678');

Developing a Reservation System

[98]

In the reservation table, insert these records:

INSERT INTO `reservation` (`id`, `room_id`, `customer_id`,
`price_per_day`, `date_from`, `date_to`, `reservation_date`)
VALUES (NULL, '2', '1', '90', '2015-04-01', '2015-05-06', NULL),
(NULL, '2', '1', '48', '2019-08-27', '2019-08-31',
CURRENT_TIMESTAMP);

Open the room model in basic/models/Room.php and append this property
declaration at the bottom of the file:

 public function getLastReservation()
 {
 return $this->hasOne(
 Reservation::className(),
 ['room_id' => 'id']
)
 ->orderBy('id');
 }

As said before, hasOne() and hasMany() return an ActiveQuery instance.
We can append any methods to complete the relationship as we have done
before by appending the orderBy() method to get the first record.

Create a new action named actionLastReservationByRoomId($room_id) in the
Rooms controller, with the following content:

 public function actionLastReservationByRoomId($room_id)
 {
 $room = Room::findOne($room_id);

 // equivalent to
 // SELECT * FROM reservation WHERE room_id = $room_id
 $lastReservation = $room->lastReservation;

 // next times that we will call $room->reservation, no sql
 query will be executed.

 return $this->render('lastReservationByRoomId', ['room' =>
 $room, 'lastReservation' => $lastReservation]);
 }
 Finally, create the view in
 basic/views/rooms/lastReservationByRoomId.php with this
 content:<table class="table">
 <tr>
 <th>Room Id</th>
 <td><?php echo $lastReservation['room_id'] ?></td>
 </tr>

Chapter 5

[99]

 <tr>
 <th>Customer Id</th>
 <td><?php echo $lastReservation['customer_id'] ?></td>
 </tr>
 <tr>
 <th>Price per day</th>
 <td><?php echo Yii::$app->formatter-
 >asCurrency($lastReservation['price_per_day'], 'EUR')
 ?></td>
 </tr>
 <tr>
 <th>Date from</th>
 <td><?php echo Yii::$app->formatter-
 >asDate($lastReservation['date_from'], 'php:Y-m-d')
 ?></td>
 </tr>
 <tr>
 <th>Date to</th>
 <td><?php echo Yii::$app->formatter-
 >asDate($lastReservation['date_to'], 'php:Y-m-d') ?></td>
 </tr>
 <tr>
 <th>Reservation date</th>
 <td><?php echo Yii::$app->formatter-
 >asDate($lastReservation['reservation_date'], 'php:Y-m-d
 H:i:s') ?></td>
 </tr>
</table>

Point your browser to http://hostname/basic/web/rooms/last-reservation-
by-room-id?room_id=2 to visualize this frame:

A visualization of the last reservation of a room with id = 2

Developing a Reservation System

[100]

Only the last reservation inserted in the database will be displayed.

What about displaying all the last reservations for each room in a single table?

Here, the lazy loading approach will have performance issues because for every
room, it will execute a single SQL query to get data for the last reservation. This is
a code snippet in the view:

for($roomsList as $room)
{
 // SELECT * FROM reservation WHERE room_id = $room->id
 $lastReservation = $room->lastReservation;
}

In order to complete the script's execution, it will execute as many related SQL
queries as the number of rooms, and when the number of rooms grows, this solution
will not be efficient anymore.

The Yii2 framework provides another type of loading data, named eager loading,
to solve this kind of problem.

Eager loading is applied using the with() method of ActiveQuery. This method's
parameters can be either one or multiple strings, or a single array of relation names
and the optional callbacks to customize the relationships.

When we get a rooms list, if we apply the with() method to the query, a second
SQL query will automatically be executed and this will return the list of the last
reservations for each room.

With this example, we will get a rooms list and a list of the lastReservation
relation for each room entry. In this way, when we refer to $room-
>lastReservation, no other SQL query will be executed:

// SELECT * FROM `room`
// SELECT * FROM `reservation` WHERE `room_id` IN (room_id list from
previous select) ORDER BY `id` DESC
$rooms = Room::find()
->with('lastReservation')
->all();

// no query will be executed
$lastReservation = $rooms[0]->lastReservation;

Chapter 5

[101]

Let's write a complete example to get a full list of the last reservations for each
room. In basic/controllers/RoomsController.php, append a new action
named actionLastReservationForEveryRoom():

 public function actionLastReservationForEveryRoom()
 {
 $rooms = Room::find()
 ->with('lastReservation')
 ->all();

 return $this->render('lastReservationForEveryRoom',
['rooms' => $rooms]);
 }

This action will pass a list of rooms named lastReservationForEveryRoom to the
view, together with the lastReservation relation loaded using the eager loading.

Create a view named lastReservationForEveryRoom.php in basic/views/rooms/
lastReservationForEveryRoom.php:

<table class="table">
 <tr>
 <th>Room Id</th>
 <th>Customer Id</th>
 <th>Price per day</th>
 <th>Date from</th>
 <th>Date to</th>
 <th>Reservation date</th>
 </tr>
 <?php foreach($rooms as $room) { ?>
 <?php $lastReservation = $room->lastReservation; ?>
 <tr>
 <td><?php echo $lastReservation['room_id'] ?></td>
 <td><?php echo $lastReservation['customer_id'] ?></td>
 <td><?php echo Yii::$app->formatter-
 >asCurrency($lastReservation['price_per_day'], 'EUR')
 ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($lastReservation['date_from'], 'php:Y-m-d')
 ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($lastReservation['date_to'], 'php:Y-m-d') ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($lastReservation['reservation_date'], 'php:Y-m-d
 H:i:s') ?></td>
 </tr>
 <?php } ?>
</table>

Developing a Reservation System

[102]

In this view, the last reservation data will be displayed for each room. Since the first
room has no reservations, an empty row will be displayed. This is the result:

Last reservation for every room

There are two variants to the with() method: joinWith() and
innerJoinWith() , which apply a left join or an inner join to a
primary query.
For example, this is the use of joinWith() with:

 $rooms = Room::find()

 ->leftJoinWith('lastReservation')

 ->all();

The preceding code snippet is equivalent to:
SELECT `room`.* FROM `room` LEFT JOIN `reservation` ON
`room`.`id` = `reservation`.`room_id` ORDER BY `id`
DESC

SELECT * FROM `reservation` WHERE `room_id` IN (room_
id
list from previous sql respone) ORDER BY `id` DESC

Remember that the inner join selects all rows from both tables as long as
there is a match between the columns in both tables; instead, the left join
returns all rows from the left table (room), with the matching rows in the
right table (reservation). The result is NULL in the right side when there
is no match.

Sometimes it happens that we need more than one level of relationship between tables.
For example, we could find a customer related to a room. In this case, starting from the
room, we pass through the reservation and go from the reservation to the customer.

The relationship here will be:

room -> reservation -> customer

If we want to find out the customer object from the room object, just type:

$customer = $room->customer;

Chapter 5

[103]

Generally, we have more levels of relationship, but in this case only two (reservation
and customer).

Yii2 allows us to specify a junction table using the via() or viaTable() method.
The first one, via(), is based on an existing relationship in the model, and it
supports two parameters:

• Relation name
• A PHP callback parameter to customize the associated relation

The second method, viaTable(), is based on direct access to a physical table in the
database and supports three parameters:

• The first parameter is a relation or table name
• The second parameter is the link associated with the primary model
• The third parameter is a PHP callback to customize the associated relation

Example – using a relationship to connect
rooms, reservations, and customers
In this example, we will look at how to build a single view that displays the rooms,
reservations, and customers lists at the same time; when a user clicks on the Detail
button of rooms record, the reservations list will be filtered with data linked to that
room. In the same way, when a user clicks on the Detail button of a reservations
record, the customers list will be filtered with data linked to that reservation.

If no parameter is passed (a condition that occurs when a page is called for the first
time), either the rooms, reservations, or customers list contains a full record of data
from the respective tables.

Start writing actionIndexWithRelationships in basic/controllers/
RoomsController.php. This is the task list for this action:

• Check which parameter of detail has been passed (room_id identifies that
the reservations list has to be filled in with the data filtered using room_id,
while reservation_id identifies that the customers list has to be filled with
the data filtered using reservation_id)

• Fill in three models: roomSelected, reservationSelected, and
customerSelected to display the details and fill in three arrays of models:
rooms, reservations, and customers

Developing a Reservation System

[104]

This is the complete content of actionIndexWithRelationships:

 public function actionIndexWithRelationships()
 {
 // 1. Check what parameter of detail has been passed
 $room_id = Yii::$app->request->get('room_id', null);
 $reservation_id = Yii::$app->request-
 >get('reservation_id', null);
 $customer_id = Yii::$app->request->get('customer_id',
 null);

 // 2. Fill three models: roomSelected, reservationSelected
 and customerSelected and
 // Fill three arrays of models: rooms, reservations and
 customers;
 $roomSelected = null;
 $reservationSelected = null;
 $customerSelected = null;

 if($room_id != null)
 {
 $roomSelected = Room::findOne($room_id);

 $rooms = array($roomSelected);
 $reservations = $roomSelected->reservations;
 $customers = $roomSelected->customers;
 }
 else if($reservation_id != null)
 {
 $reservationSelected =
 Reservation::findOne($reservation_id);

 $rooms = array($reservationSelected->room);
 $reservations = array($reservationSelected);
 $customers = array($reservationSelected->customer);
 }
 else if($customer_id != null)
 {
 $customerSelected = Customer::findOne($customer_id);

 $rooms = $customerSelected->rooms;
 $reservations = $customerSelected->reservations;
 $customers = array($customerSelected);
 }

Chapter 5

[105]

 else
 {
 $rooms = Room::find()->all();
 $reservations = Reservation::find()->all();
 $customers = Customer::find()->all();
 }

 return $this->render('indexWithRelationships',
 ['roomSelected' => $roomSelected, 'reservationSelected' =>
 $reservationSelected, 'customerSelected' =>
 $customerSelected, 'rooms' => $rooms, 'reservations' =>
 $reservations, 'customers' => $customers]);
 }

Remember to add the use keyword for Customer and Reservation
classes at the top of the RoomsController file:

use app\models\Reservation;

use app\models\Customer;

The second part of the action body requires more attention, because there are filled in
selected models and list models in this specific position.

Only one parameter at a time can be selected between $room_id, $reservation_id,
and $customer_id. When one of these three parameters is selected, three arrays of
the Room, Reservation, and Customer model will be filled in, using the relationships
in the model. For this purpose, models must have all the relationships employed in
the previous code.

Let's make sure that all the relationships exist in the models.

The Room model in basic/models/Room.php must have both getReservations()
and getCustomers() defined, which both use the via() method to handle the
second level of relationship:

 public function getReservations()
 {
 return $this->hasMany(Reservation::className(),
 ['room_id' => 'id']);
 }
public function getCustomers()
 {
 return $this->hasMany(Customer::className(), ['id' =>
 'customer_id'])->via('reservations');
 }

Developing a Reservation System

[106]

The Reservation model in basic/models/Reservation.php must have
getCustomer() and getRoom(), both returning a single related model:

 public function getRoom()
 {
 return $this->hasOne(Room::className(), ['id' =>
 'room_id']);
 }

 public function getCustomer()
 {
 return $this->hasOne(Customer::className(), ['id' =>
 'customer_id']);
 }

Finally, the Customer model in basic/models/Customer.php must have
getReservations() and getRooms(), which use the via() method to handle
the second level of relationship:

 public function getReservations()
 {
 return $this->hasMany(Reservation::className(),
 ['customer_id' => 'id']);
 }

 public function getRooms()
 {
 return $this->hasMany(Room::className(), ['id' =>
 'room_id'])->via('reservations');
 }

Now write a view file in basic/view/rooms/indexWithRelationships.php.
We will split the HTML page into three parts (three tables), using the CSS provided
by Bootstrap (which we will examine widely in the next few chapters).

The first table will be for the rooms list, the second table for the reservations list,
and the last one for the customers list:

<?php
use yii\helpers\Url;
?>

<a class="btn btn-danger" href="<?php echo Url::to(['index-with-
relationships']) ?>">Reset

Chapter 5

[107]

<div class="row">
 <div class="col-md-4">
 <legend>Rooms</legend>
 <table class="table">
 <tr>
 <th>#</th>
 <th>Floor</th>
 <th>Room number</th>
 <th>Price per day</th>
 </tr>
 <?php foreach($rooms as $room) { ?>
 <tr>
 <td><a class="btn btn-primary btn-xs" href="<?php
 echo Url::to(['index-with-relationships',
 'room_id' => $room->id]) ?>">detail</td>
 <td><?php echo $room['floor'] ?></td>
 <td><?php echo $room['room_number'] ?></td>
 <td><?php echo Yii::$app->formatter-
 >asCurrency($room['price_per_day'], 'EUR') ?></td>
 </tr>
 <?php } ?>
 </table>

 <?php if($roomSelected != null) { ?>
 <div class="alert alert-info">
 You have selected Room #<?php echo
 $roomSelected->id ?>
 </div>
 <?php } else { ?>
 <i>No room selected</i>
 <?php } ?>
 </div>

 <div class="col-md-4">
 <legend>Reservations</legend>
 <table class="table">
 <tr>
 <th>#</th>
 <th>Price per day</th>
 <th>Date from</th>
 <th>Date to</th>
 </tr>
 <?php foreach($reservations as $reservation) { ?>
 <tr>

Developing a Reservation System

[108]

 <td><a class="btn btn-primary btn-xs" href="<?php
 echo Url::to(['index-with-relationships',
 'reservation_id' => $reservation->id])
 ?>">detail</td>
 <td><?php echo Yii::$app->formatter-
 >asCurrency($reservation['price_per_day'], 'EUR')
 ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($reservation['date_from'], 'php:Y-m-d')
 ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($reservation['date_to'], 'php:Y-m-d')
 ?></td>
 </tr>
 <?php } ?>
 </table>

 <?php if($reservationSelected != null) { ?>
 <div class="alert alert-info">
 You have selected Reservation #<?php echo
 $reservationSelected->id ?>
 </div>
 <?php } else { ?>
 <i>No reservation selected</i>
 <?php } ?>

 </div>
 <div class="col-md-4">
 <legend>Customers</legend>
 <table class="table">
 <tr>
 <th>#</th>
 <th>Name</th>
 <th>Surname</th>
 <th>Phone</th>
 </tr>
 <?php foreach($customers as $customer) { ?>
 <tr>
 <td><a class="btn btn-primary btn-xs" href="<?php
 echo Url::to(['index-with-relationships',
 'customer_id' => $customer->id])
 ?>">detail</td>
 <td><?php echo $customer['name'] ?></td>
 <td><?php echo $customer['surname'] ?></td>
 <td><?php echo $customer['phone_number'] ?></td>

Chapter 5

[109]

 </tr>
 <?php } ?>
 </table>

 <?php if($customerSelected != null) { ?>
 <div class="alert alert-info">
 You have selected Customer #<?php echo
 $customerSelected->id ?>
 </div>
 <?php } else { ?>
 <i>No customer selected</i>
 <?php } ?>
 </div>
</div>

Test the code by pointing your browser to http://hostname/basic/rooms/index-
with-relationships. This should be the result of trying to filter a room on the
second floor:

Rooms with relationships between reservations and customers

How to save a model from a form
Let's now look at how to save a model from a form, which could be a new or an
updated model.

The steps you need to follow are:

1. In the action method, create a new model or get an existing model.
2. In the action method, check whether there is data in the $_POST array.
3. If there is data in $_POST, fill in the attributes property of the model with

data from $_POST and call the save() method of the model; if save() returns
true, redirect the user to another page (the details page, for example).

Developing a Reservation System

[110]

From now on, we will continue to use widgets and helper classes provided by the
framework. In this case, the HTML form will be rendered using the yii\widget\
ActiveForm class.

The most simple form we can write is the following:

<?php
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'login-form',
]) ?>
 …
 …
 …
<?php ActiveForm::end() ?>

This code generates a form HTML tag with login-form as the id attribute and
empty content; the method and action attributes are respectively, by default, the
post and same action URL that generated the form. Other properties about AJAX
validation and client validation can be set, as you will see further on.

The widget $form is created by employing a static method ActiveForm::begin,
passing as an array that contains attributes of a form HTML tag (id, action, method,
and so on) a configuration parameter and a key named options to specify all the
extra options that we want to pass to form the HTML tag. Finally, the form will
be completed when we call the static method ActiveForm::end(). Between the
begin() and end() methods of the form, we can insert all the content needed.

In particular, the input fields of the form can be managed using the ActiveField
widget. The ActiveField widget related to an attribute of model is created by
calling the field() method of the $form object:

$field = $form->field($model, 'attribute');

The object returned from the field() method is a generic field that we can specialize
by simply applying other methods to generate all the common kinds of input fields:
hidden, text, password, file, and so on. This returns the same ActiveField $field
object, and consequently other methods can be applied in a cascade.

Chapter 5

[111]

A text field input is created with:

$textInputField = $field->textInput();

Or can be created simply like this:

$textInputField = $form->field($model, 'attribute')->textInput();

This variable $textInputField is again an ActiveField (the same object of $field),
so we can apply all the other methods required to complete our input field; for
example, if we need to place a hint in input field, we can use:

$textInputField->hint('Enter value');

Or we can simply use:

$textInputField = $form->field($model, 'attribute')->textInput()-
>hint('Enter value');

Additional framework in addition automatically takes into account the attribute's
validation rules, which are defined in the rules() method of the model class.
For example, if an attribute is required and we click on it and pass it to another
field without typing anything, an error alert will be displayed reminding us that
the field is required.

When an input field is created using the ActiveField widget, the id and name
properties of this input will have this format: model-class-name_attribute-name
for id and model-class-name[attribute-name] for name. This means that all the
attributes of the model will be passed to the controller action when we submit the
form grouped in a container array named the same as the model class.

For example, if the $model class is Room and the attribute is floor whose content is
12, create a text field from the $form object:

<?php echo $floorInputField = $form->field($model, 'floor')
->textInput()->hint('Enter value for floor');

This outputs the following HTML:

<input id="Room_floor" name="Room[floor]" value="12"
placeholder="Enter value for floor" />

Developing a Reservation System

[112]

Example – creating and updating a room from
a form
Just from following the instructions in the previous paragraph, we will try to create
and update a room from the HTML form.

We now update the previously created actionCreate() method in RoomsController
with some code to instantiate a new model object, check the content of the $_POST
array, and if it is set, we call save() on the model:

 public function actionCreate()
 {
 // 1. Create a new Room instance;
 $model = new Room();

 // 2. Check if $_POST['Room'] contains data;
 if(isset($_POST['Room']))
 {
 $model->attributes = $_POST['Room'];

 // Save model
 if($model->save())
 {
 // If save() success, redirect user to action view.
 return $this->redirect(['view', 'id' => $model->id]);
 }
 }

 return $this->render('create', ['model' => $model]);
 }

To update the view in basic/views/rooms/create.php, pass:

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>

<div class="row">

Chapter 5

[113]

 <div class="col-lg-6">

 <h2>Create a new room</h2>

 <?php $form = ActiveForm::begin(['id' => 'room-form']) ?>

 <?php echo $form->field($model, 'floor')->textInput(); ?>
 <?php echo $form->field($model, 'room_number')-
 >textInput(); ?>
 <?php echo $form->field($model, 'has_conditioner')-
 >checkbox(); ?>
 <?php echo $form->field($model, 'has_tv')->checkbox(); ?>
 <?php echo $form->field($model, 'has_phone')->checkbox();
 ?>
 <?php echo $form->field($model, 'available_from')-
 >textInput(); ?>
 <?php echo $form->field($model, 'price_per_day')-
 >textInput(); ?>
 <?php echo $form->field($model, 'description')-
 >textArea(); ?>
 <?php echo Html::submitButton('Save', ['class' => 'btn
 btn-primary']); ?>
 <?php ActiveForm::end() ?>
 </div>
</div>

By default, ActiveForm::begin() creates a form that has client validation enabled;
therefore, the form will be submitted only when all the validation rules are satisfied
as the submit button is rendered using yii\helpers\Html.

Pay attention to the top of view that contains the use keyword to define the complete
path of the classes Html and ActiveForm:

use yii\widgets\ActiveForm;
use yii\helpers\Html;

Developing a Reservation System

[114]

Point your browser to http://hostname/basic/rooms/create to display the form
to create a new room. The following screenshot shows what you should display,
reporting in it some particular conditions:

The form to create a new room

This screenshot presents different states of fields: the floor input has a red border
because it has the wrong type of content (it must be an integer!), the room number
has a green border to indicate that is correct, and the Available From field has a red
border because it is required but the user left it blank. The framework provides a
more concise form to fill in attributes if $_POST data is available:

$model->load(Yii::$app->request->post());

Chapter 5

[115]

This fills in the attributes of the model if the $_POST[model-class] content is
available, and with this suggestion we can change the actionCreate content
as follows:

 public function actionCreate()
 {
 // 1. Create a new Room instance;
 $model = new Room();

 // 2. Check if $_POST['Room'] contains data and save
 model;
 if($model->load(Yii::$app->request->post()) && ($model-
 >save()))
 {
 return $this->redirect(['detail', 'id' => $model-
 >id]);
 }

 return $this->render('create', ['model' => $model]);
 }

This is extraordinarily concise! Similarly, we can handle the update action to save
changes to an existing model.

We can make a reusable form by putting its content in an external. Create a new file
in basic/views/rooms/_form.php (the first underscore indicates that this is a view
that is includable in other views) and cut and paste the code about form generation
from the create view to this new _form view:

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>
<?php $form = ActiveForm::begin(['id' => 'room-form']) ?>

<?php echo $form->field($model, 'floor')->textInput(); ?>
<?php echo $form->field($model, 'room_number')->textInput(); ?>
<?php echo $form->field($model, 'has_conditioner')->checkbox(); ?>
<?php echo $form->field($model, 'has_tv')->checkbox(); ?>
<?php echo $form->field($model, 'has_phone')->checkbox(); ?>
<?php echo $form->field($model, 'available_from')->textInput(); ?>
<?php echo $form->field($model, 'price_per_day')->textInput(); ?>
<?php echo $form->field($model, 'description')->textArea(); ?>

Developing a Reservation System

[116]

<?php echo Html::submitButton('Create', ['class' => 'btn btn-
primary']); ?>

<?php ActiveForm::end() ?>

In the basic/views/rooms/create.php file, instead of the form code, just put the
code to render the _form view in it:

<?php echo $this->render('_form', ['model' => $model]); ?>

When we modify the create view, remember to pass $model
as the second parameter to render the _form view.

We are ready to build the update flow in order to update the room content from
a form. Firstly, create an action in basic/controllers/RoomsController.php
named actionUpdate, passing $id as a parameter that identifies the primary key
to find the model.

In this action, we will put some code to get the model based on the id primary key,
check whether the $_POST array contains data, and then save the model:

 public function actionUpdate($id)
 {
 // 1. Create a new Room instance;
 $model = Room::findOne($id);

 // 2. Check if $_POST['Room'] contains data and save
 model;
 if(($model!=null) && $model->load(Yii::$app->request-
 >post()) && ($model->save()))
 {
 return $this->redirect(['detail', 'id' => $model-
 >id]);
 }

 return $this->render('update', ['model' => $model]);
 }

This is basically equivalent to the code for the create action. Now, create the update
view in basic/views/rooms/update.php with the following content:

<div class="row">

 <div class="col-lg-6">

 <h2>Update a room</h2>

Chapter 5

[117]

 <?php echo $this->render('_form', ['model' => $model]); ?>
 </div>

</div>

From the database, check for one existing room and type the id value of this URL in
your browser: http://hostname/basic/rooms/update?id=id-found.

For example, if id of an existing room is 1, type this URL in your browser:

http://hostname/basic/rooms/update?id=1

This will show a form with the filled in field based on the model attributes' content.

This example is complete, having built the detail view, which shows the content of
model attributes. Create an action named actionDetail, passing $id as a parameter,
which identifies the primary key to find the model:

 public function actionDetail($id)
 {
 // 1. Create a new Room instance;
 $model = Room::findOne($id);

 return $this->render('detail', ['model' => $model]);
 }

Then, create the detail view to display some of the model attributes' values in
basic/views/rooms/detail.php:

<table class="table">
 <tr>
 <th>ID</th>
 <td><?php echo $model['id'] ?></td>
 </tr>
 <tr>
 <th>Floor</th>
 <td><?php echo $model['floor'] ?></td>
 </tr>
 <tr>
 <th>Room number</th>
 <td><?php echo $model['room_number'] ?></td>
 </tr>
</table>

Now after successfully creating or updating model, the detail view will be displayed
with the content of some attributes of the model.

Developing a Reservation System

[118]

Setting up the GMT time zone
It is important to set the default time zone for date/time management.

Usually, when we refer to date/time, do not pay attention to which time zone value
is being referred to.

For example, if we live in Rome and want to spend our next holiday in New York,
when we receive the check-in date/time from the hotel, we must consider which
time zone time is being referred to (whether local or remote).

When we display a date/time value that could be misunderstood, it is always
recommended to add a time zone reference to it. The time zone is expressed
through positive or negative hours compared to a reference that is usually
GMT (Greenwich Mean Time).

For example, if it is 9 p.m. in Rome (GMT +1), in GMT time it will be 8 p.m. (GMT +0),
3 p.m. in New York (GMT -5), and finally 12 p.m. in Los Angeles (GMT -8).

Therefore, it is necessary to establish a common shared time value. For this purpose,
it is advisable to use GMT as the time reference for all values and operations on values.

We need to configure the time zone in two environments:

• In an application, set the timeZone attribute of a configuration; this will set
the default time zone for all functions about the date and time

• Some databases, such as MySQL, do not have internal management of time
zones, so every value uses the default time zone of the database or the time
zone configured during connection from the application to the database;
we will set the default time zone during the connection to the database

Complete the first step. Open basic/config/web.php and add the timeZone property
with the GMT value in the config array, for example, after the basePath property:

 'timeZone' => 'GMT',

The second step is setting the time zone for the database connections, if the database,
such as MySQL, does not provide it. This is done globally by adding this code in
the on afterOpen event. Open basic/config/db.php and append it as the last
attribute in an array (usually the last attribute is charset):

'on afterOpen' => function($event) {
$event->sender->createCommand("SET time_zone = '+00:00'")->execute();
}

Chapter 5

[119]

This code means that once the connection with the database is opened, the SQL
query SET time_zone = +00:00 will be executed for every connection that we are
going to establish with the database, and every date/time field value and function
related to the GMT (+00:00) time zone will be considered.

Let's make a test. Create a new controller that simply displays the current date/time
and time zone, in basic/controllers/TestTimezoneController.php with an
action named actionCheck():

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class TestTimezoneController extends Controller
{
 public function actionCheck()
 {
 $dt = new \DateTime();
 echo 'Current date/time: '.$dt->format('Y-m-d H:i:s');
 echo '
';
 echo 'Current timezone: '.$dt->getTimezone()->getName();
 echo '
';
 }
}

Point your browser to http://hostname/basic/web/test-timezone/check.
This is what my browser displayed:

Current date/time: 2015-05-27 19:53:35
Current timezone: GMT

And, the local time (in Rome) was 21:53:35, because Rome was then at +02:00 GMT
due to daylight savings time.

If we comment the timeZone property in the app configuration in basic/config/
web.php, we will see the default server time zone that is in my browser:

Current date/time: 2015-05-27 21:53:35
Current timezone: Europe/Rome

Developing a Reservation System

[120]

This confirms that we have changed the default timezone property for all date/time
functions. The last check to perform is on the database. Create a new action named
actionCheckDatabase to verify that the database's default time zone for the current
(and every) connection is GMT:

public function actionCheckDatabase()
{
 $result = \Yii::$app->db->createCommand('SELECT NOW()')-
 >queryColumn();

 echo 'Database current date/time: '.$result[0];
}

Point your browser to http://hostname/basic/web/test-timezone/check-
database. This is what my browser displayed:

Database current date/time: 2015-05-27 20:12:08

And the local time (in Rome) was 22:12:08, because Rome was then at +02:00 GMT.

Remember that, from now on, all date/time information displayed in a database
refers to the GMT time zone, although this specification was missing (as we can
see in the previous database's current date/time).

Another strategy to handle the GMT time zone in a database's
date/time column is to store the value as a timestamp, which
is by definition an integer that indicates the number of seconds
from 01/01/1970 at 00:00:00 in the GMT (UTC) time zone; so it
is immediately understandable that field is a date/time with the
GMT time zone, but remember that any database function applied
to it will be executed using the database's default time zone.

Using multiple database connections
Applications can require multiple database connections so that they can send and
get data from different sources.

Using other database sources is incredibly simple. The only thing to do is to add
a new database entry in the main configuration and use ActiveRecord support.
All the operations on records will be transparent for the developer.

Chapter 5

[121]

Here are some examples of connection strings (dsn) to configure access to
other databases:

• MySQL and MariaDB: mysql:host=localhost;dbname=mydatabase
• SQLite: sqlite:/path/to/database/file
• PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase
• CUBRID: cubrid:dbname=demodb;host=localhost;port=33000
• MS SQL Server (via the sqlsrv driver): sqlsrv:Server=localhost;Databa

se=mydatabase

• MS SQL Server (via the dblib driver): dblib:host=localhost;dbname=myd
atabase

• MS SQL Server (via the mssql driver): mssql:host=localhost;dbname=myd
atabase

• Oracle: oci:dbname=//localhost:1521/mydatabase

Example – configuring a second DB
connection to export data to a local SQLite DB
We now want to add a new database connection to a SQLite DB. When we use
a database, we have to make sure that the PDO driver is installed in the system,
otherwise PHP cannot handle it.

Open basic/config/web.php and the inner components attribute, and append
a new attribute named dbSqlite with the following attributes:

 'dbSqlite' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'sqlite:'.dirname(__DIR__).'/../db.sqlite',
],

This entry will use a DB SQLite named db.sqlite, which we can find in the
dirname(__DIR__).'/../web/db.sqlite' path, under the /basic/web folder.
If this file does not exist, it will be created (if a write permission is present in the /
basic/web folder).

Be sure that the /basic/web folder is writable, otherwise it will be
impossible for the framework to create a db.sqlite file.

Create a new controller to handle actions in this new database. This will be put in /
basic/controllers/TestSqliteController.php.

Developing a Reservation System

[122]

Insert the first action named actionCreateRoomTable in this new controller, which
will create the same structure of the Room table from MySQL in dbSqlite:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class TestSqliteController extends Controller
{
 public function actionCreateRoomTable()
 {
 // Create room table
 $sql = 'CREATE TABLE IF NOT EXISTS room (id int not null,
floor int not null, room_number int not null, has_conditioner int not
null, has_tv int not null, has_phone int not null, available_from date
not null, price_per_day float, description text)';
 \Yii::$app->dbSqlite->createCommand($sql)->execute();
 echo 'Room table created in dbSqlite';
 }
}

Pay attention so that in actionCreateRoomTable, the database
instance is taken from: \Yii::$app->dbSqlite.

Point your browser to http://hostname/basic/web/test-sqlite/create-room-
table and create a db.sqlite file in basic/web and a room table in it.

As we have mentioned before, if the PDO driver is correctly installed, a blank page
with the Room table created in dbSqlite text will be displayed.

Now we want to clone the room table from MySQL to SQLite to make a backup of
this table. We need to save the records from MySQL to SQLite and verify the data
stored to display it in a table.

Create a new action named actionBackupRoomTable() that executes these steps:

1. Create a room table (if it does not exist).
2. Delete all the records from the room in dbSqlite (alias truncate).
3. Load all the records from the room table in MySQL (using ActiveRecord).

Chapter 5

[123]

4. Insert every single record from MySQL into SQLite.
5. Render the view to display data from SQLite with the table (to verify that the

copy succeeded).

The content of the actionBackupRoomTable() action is:

 use app\models\Room;

 public function actionBackupRoomTable()
 {
 // Create room table
 $sql = 'CREATE TABLE IF NOT EXISTS room (id int not null,
 floor int not null, room_number int not null,
 has_conditioner int not null, has_tv int not null,
 has_phone int not null, available_from date not null,
 price_per_day float, description text)';
 \Yii::$app->dbSqlite->createCommand($sql)->execute();

 // Truncate room table in dbSqlite
 $sql = 'DELETE FROM room';
 \Yii::$app->dbSqlite->createCommand($sql)->execute();

 // Load all records from MySQL and insert every single
 record in dbqlite
 $models = Room::find()->all();

 foreach($models as $m)
 {
 \Yii::$app->dbSqlite->createCommand()->insert('room',
 $m->attributes)->execute();
 }

 // Load all records from dbSqlite
 $sql = 'SELECT * FROM room';
 $sqliteModels = \Yii::$app->dbSqlite->createCommand($sql)-
 >queryAll();

 return $this->render('backupRoomTable', ['sqliteModels' =>
 $sqliteModels]);
 }

Developing a Reservation System

[124]

Finally, create a view backupRoomTable in basic/views/test-sqlite/
backupRoomTable.php with the following content to display data from dbSqlite:

<h2>Rooms from dbSqlite</h2>

<table class="table">
 <tr>
 <th>Floor</th>
 <th>Room number</th>
 <th>Has conditioner</th>
 <th>Has tv</th>
 <th>Has phone</th>
 <th>Available from</th>
 <th>Available from (db format)</th>
 <th>Price per day</th>
 <th>Description</th>
 </tr>
 <?php foreach($sqliteModels as $item) { ?>
 <tr>
 <td><?php echo $item['floor'] ?></td>
 <td><?php echo $item['room_number'] ?></td>
 <td><?php echo Yii::$app->formatter-
 >asBoolean($item['has_conditioner']) ?></td>
 <td><?php echo Yii::$app->formatter-
 >asBoolean($item['has_tv']) ?></td>
 <td><?php echo ($item['has_phone'] == 1)?'Yes':'No'
 ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($item['available_from']) ?></td>
 <td><?php echo Yii::$app->formatter-
 >asDate($item['available_from'], 'php:Y-m-d') ?></td>
 <td><?php echo Yii::$app->formatter-
 >asCurrency($item['price_per_day'], 'EUR') ?></td>
 <td><?php echo $item['description'] ?></td>
 </tr>
 <?php } ?>
</table>

Chapter 5

[125]

Navigate your browser to http://hostname/basic/web/test-sqlite/backup-
room-table, which should display a similar output to this:

The list of rooms from the SQLite database

We can now download the db.sqlite file from http://hostname/basic/web/
db.sqlite to preserve a backup copy of the room table!

Summary
In this chapter, you mastered how to configure a database connection and execute
SQL queries from scratch with DAO support of the framework. Next, you found
out how to use Gii and got to know about the advantages it has in creating models
from the database table structure. Gii creates models that extend the ActiveRecord
class and through its use, you finally learned to manipulate data. All the examples
are accompanied with a visualization grid that shows data, which is graphically
enhanced by Bootstrap's presence in Yii2.

We carefully analyzed the common topic of tables' relationships, which must be
managed in models and then displayed in views.

At the end of the chapter, after you learned to manipulate data with ActiveRecord,
you wrote a complete flow to save data from a HTML form to a database. Finally,
you learned the importance of setting the GMT time zone in date/time fields and
using other database sources in the same application in order to make a backup of
the primary database.

In the next chapter, you will learn to use and customize the grid widget to improve
data visualization.

Chapter 6

[127]

Using a Grid for
Data and Relations

We will cover the following topics in this chapter:

• DataProvider for grids
• Using grids
• Custom columns in grids:

 ° For example: displaying a reservations list by clicking on a customer
grid row

• Filters in GridView
• Displaying and filtering ActiveRecord relational data in a grid's column
• Summarizing the footer row in a grid:

 ° For example: extending GridView to customize the footer row in
a grid

• Multiple grids on one page:
 ° For example: managing reservations and room grids in the same view

Using a Grid for Data and Relations

[128]

Introduction
In the previous chapter, you learned how to get data from databases. Now it is
time to use a fundamental widget provided by framework: GridView. The first
topic we'll cover is data input format expected by a grid. Then we will analyze the
default implementation of a grid and proceed to look at customizations to display
the relationship between data. Finally, you will learn to extend the grid base class to
display everything we need in a grid layout.

DataProvider for grids
GridView is the widget provided by Yii2 to display data in a grid layout.

This widget requires that data used as an input source is an extension of the abstract
class yii\data\BaseDataProvider.

To deal with a data source, DataProvider supplies some additional actions to handle
pagination and sorting.

BaseDataProvider has a method named getModels() that returns a list of items for
the current page. This means that we could also use DataProvider to paginate data
from a source and display it as we need to.

By default, the framework has three core classes that extend yii\data\
BaseDataProvider:

• yii\data\ActiveDataProvider

• yii\data\ArrayDataProvider

• yii\data\SqlDataProvider

The first one, ActiveDataProvider, uses a yii\db\Query instance from
ActiveRecord as a data source. The parameter array is passed to the constructor and
the yii\db\Query object is filled out in the query attribute:

// build an ActiveDataProvider with an empty query and a pagination
with 35 items for page
$provider = new \yii\data\ActiveDataProvider([
 'query' => Room::find(),
 'pagination' => [
 'pageSize' => 35,
],
]);

// get all rooms in current page
$rooms = $provider->getModels();

Chapter 6

[129]

ActiveDataProvider is the most used DataProvider, since it depends directly on
ActiveRecord, the best way to interact with databases.

The second point, ArrayDataProvider, uses an array of items that can be sorted
or paginated as a data source. This provider is employed when data can not be
represented with ActiveRecord, for example, when they are taken from another data
source, such as a JSON REST service or RSS feed.

The primary difference between ActiveDataProvider is that all data should be
immediately passed to a construct:

// build an ArrayDataProvider with an empty query and a pagination
with 40 items for page
$provider = new \yii\data\ArrayDataProvider([
 'allModels' => Room::find()->all(),
 'pagination' => [
 'pageSize' => 40,
],
]);

// get all rooms in current page
$rooms = $provider->getModels();

In this snippet, we took data from an ActiveRecord to show the differences between
ActiveDataProvider and ArrayDataProvider. For this last provider, all the modes
should be passed to the constructor.

So, if the Room table has 10,000 records, with ActiveDataProvider 35 items at a
time will be loaded, while through ArrayDataProvider they will be loaded all from
scratch (with big performance issues).

The last one, SqlDataProvider, uses a SQL query as a data source. If we create
pagination with this provider, we will need to also pass the totalCount attribute
to the constructor to inform DataProvider how many records the SQL query
should return:

// return total items count for this sql query
$itemsCount = \Yii::$app->db->createCommand('SELECT COUNT(*) FROM
room')->queryScalar();

// build a SqlDataProvider with a pagination with 10 items for
page

$dataProvider = new \yii\data\SqlDataProvider([
 'sql' => 'SELECT * FROM room',

Using a Grid for Data and Relations

[130]

 'totalCount' => $itemsCount,
 'pagination' => [
 'pageSize' => 10,
],
]);

// get the user records in the current page
$models = $dataProvider->getModels();

Using a grid
Now that we know how to get a data input source to pass to GridView, let's
look at how to implement it. Minimal implementation of GridView requires two
attributes for an array passed to a constructor: dataProvider and columns. The first
parameter, dataProvider, is the one we want to use in order to manipulate the data.

The second parameter, columns, represents the columns of the table to be displayed,
for example:

<?= \yii\grid\GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 'id',
 'floor',
 'room_number',
 'available_from:datetime',
 'price_per_day:currency',
],
]) ?>

This code will display a table with data from $dataProvider and five columns: id,
floor, room_number, available_from, and price_per_day; the last two columns
are formatted firstly using datetime and secondly using currency. Colons are used
to specify the formatter to be applied to the column data.

The aspect of the table can be customized with many attributes and
by default, the table layout is rendered using Bootstrap.

Columns in the grid table can be identified using strings, but in general they are
configured in terms of yii\grid\Column classes.

Chapter 6

[131]

Custom columns in a grid
As mentioned in the previous paragraph, the columns property of the GridView
widget is mainly filled with strings.

When we need to apply a specific format, such as currency or date/time, we can
append this specification to the column name with a colon and the type used for
formatting, as currency or datetime.

But the most general form of a GridView column is an object of the yii\grid\
Column class, derived by the yii\grid\DataColumn class.

A GridView column extended by the yii\grid\Column class is rendered using an
array with the following keys:

 [
// can be omitted, as it is the default
'class' => 'yii\grid\DataColumn',

 'attribute', // name of model attribute
 'format', // format use to display data
 'header', // header of column
 'footer', // footer of column
 'visible', // flag to set visibility
 'content' // callback to print data
],

There are also other parameters but these ones are the most used.

Example – displaying a reservations list by
clicking on a customer grid row
We are now ready to create a customer grid that contains a reference to the linked
reservation list in every row. First of all, make sure that the structure and the data for
the customer and reservation tables is the following:

--
-- Structure of Table `customer`
--

CREATE TABLE IF NOT EXISTS `customer` (
 `id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `name` varchar(50) NOT NULL,

Using a Grid for Data and Relations

[132]

 `surname` varchar(50) NOT NULL,
 `phone_number` varchar(50) DEFAULT NULL,
 PRIMARY KEY (`id`)
);

--
-- Data Dump of Table `customer`
--

INSERT INTO `customer` (`id`, `name`, `surname`, `phone_number`)
VALUES
(1, 'James', 'Foo', '+39-12345678'),
(2, 'Bar', 'Johnson', '+47-98438923');

--
-- Structure of Table `reservation`
--

CREATE TABLE IF NOT EXISTS `reservation` (
 `id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `room_id` int(11) NOT NULL,
 `customer_id` int(11) NOT NULL,
 `price_per_day` decimal(20,2) NOT NULL,
 `date_from` date NOT NULL,
 `date_to` date NOT NULL,
 `reservation_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `room_id` (`room_id`),
 KEY `customer_id` (`customer_id`)
);

--
-- Data Dump of table `reservation`
--

INSERT INTO `reservation` (`id`, `room_id`, `customer_id`,
`price_per_day`, `date_from`, `date_to`, `reservation_date`)
VALUES
(1, 2, 1, 90.00, '2015-04-01', '2015-05-06', '2015-05-24
22:45:37'),
(2, 2, 1, 48.00, '2019-08-27', '2019-08-31', '2015-05-24
22:45:37'),
(3, 1, 2, 105.00, '2015-09-24', '2015-10-06', '2015-06-03
00:21:14');

Chapter 6

[133]

Create a new controller named CustomersController in basic/controllers/
CustomersController.php with the actionGrid action to display a list in the
grid view:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Customer;
use yii\data\ActiveDataProvider;

class CustomersController extends Controller
{
 public function actionGrid()
 {
 $query = Customer::find();

 $dataProvider = new ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' =>
 $dataProvider]);

 }
}

This action actionGrid simply creates a data provider with all the data from the
customer (unfiltered) and with a pagination that displays ten items on a page.
Finally, render the grid view.

This is the content of the grid view in basic/views/customers/grid.php:

<?php
use yii\grid\GridView;
use yii\helpers\Html;
?>

<h2>Customers</h2>

<?= GridView::widget([

Using a Grid for Data and Relations

[134]

 'dataProvider' => $dataProvider,
 'columns' => [
 'id',
 'name',
 'surname',
 'phone_number',

 [
 'header' => 'Reservations',
 'content' => function ($model, $key, $index, $column) {
 return Html::a('Reservations',
 ['reservations/grid', 'Reservation[customer_id]'
 => $model->id]);
 }
],

 [
 'class' => 'yii\grid\ActionColumn',
 'template' => '{delete}',
 'header' => 'Actions',
],
],
]) ?>

The last two columns require particular explanation.

The penultimate one, Reservation, displays a link to give you access to the list
of all customer reservations. We have put Reservations as the header and filled
the content property with dynamic data passed from the callback function, which
returns an HTML link to the reservations/index route with a parameter indicating
customer_id selected.

The last column headed Actions displays the ActionColumn with the single action
delete to remove the selected record.

Point your browser to http://hostname/basic/customers/grid and you should
have the following output:

Chapter 6

[135]

The Customers grid using the GridView widget

The language used in GridView is configured in basic/config/
web.php with the language property. This property has a global
effect on every core widget.

We can complete this example by just putting a counter near the Reservations link
to indicate the number of reservations for each customer.

For this purpose, we need to add a new relation named getReservationsCount to
the Customer model in basic/models/Customer.php, which returns the number of
reservations linked to the customer:

 public function getReservationsCount()
 {
 return $this->hasMany(\app\models\Reservation::className(),
 ['customer_id' => 'id'])->count();
 }

Now we can modify the penultimate column with:

 [
 'header' => 'Reservations',
 'content' => function ($model, $key, $index, $column) {
 $title = sprintf('Reservations (%d)', $model-
 >reservationsCount);
 return Html::a($title, ['reservations/grid',
 'Reservation[customer_id]' => $model->id]);
 }
],

Using a Grid for Data and Relations

[136]

If we refresh our browser now, we will see near the Reservations anchor link, the
correct number of reservations for that customer appears.

This example represents the complete reservations list displayed when a user clicks
on the link Reservations.

Create ReservationsController as a new file in basic/controllers/
ReservationsController.php with an action grid and the following content:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Reservation;
use yii\data\ActiveDataProvider;

class ReservationsController extends Controller
{
 public function actionGrid()
 {
 $query = Reservation::find();

 if(isset($_GET['Reservation']))
 {
 $query->andFilterWhere([
 'customer_id' =>
 isset($_GET['Reservation']['customer_id'])?
 $_GET['Reservation']['customer_id']:null,
]);
 }

 $dataProvider = new ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' =>
 $dataProvider]);

 }
}

Chapter 6

[137]

In this controller, we applied an andFilterWhere condition to query whether
$_GET['Reservation'] is set. The andFilterWhere()method will apply a filter
passed as a parameter only if the condition is not empty. So if
$_GET['Reservation']['customer_id'] is not set, the andFilterWhere()
condition parameter will have a null value and will not be appended to any other
query condition.

Filters in GridView
GridView has a core feature of being able to simplify filter rows just by putting an
additional row below the header row.

Filters are mainly text input but in general they can be any type of control and we
can customize them as much as we want.

Filters can be activated by filling out the GridView widget property filterModel
with an instance of the model class and automatically a new row will be created
below the header, containing working text inputs.

Filter text inputs have a name attribute filled with the model class name, which
includes the field name. In this way, we will pass data to a controller, including
everything in a single array; a variable that can easily be used to populate a search
model massively.

Automatic text input filters are created only for attributes that belong
to at least one rule in the rules() method of ActiveDataProvider;
otherwise it is enough that attributes belong to the safe validator.

Let's create an example with the reservations grid.

We will fill out the filterModel property to apply filters to GridView, for example:

<?= \yii\grid\GridView::widget([
 ...
 'filterModel' => $searchModel,
 ...
?>

Here, $searchModel is an instance of the Reservation model class that we will pass
to the view from the grid action of ReservationsController.

Using a Grid for Data and Relations

[138]

Now let's create actionGrid() in ReservationsController in
basic/controllers/ReservationsController.php:

 <?php

public function actionGrid()
 {
 $query = \app\models\Reservation::find();

 $searchModel = new \app\models\Reservation();
 if(isset($_GET['Reservation']))
 {
 $searchModel->load(\Yii::$app->request->get());

 $query->andFilterWhere([
 'id' => $searchModel->id,
 'customer_id' => $searchModel->customer_id,
 'room_id' => $searchModel->room_id,
 'price_per_day' => $searchModel->price_per_day,
]);
 }

 $dataProvider = new \yii\data\ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' =>
 $dataProvider, 'searchModel' => $searchModel]);

 }

The $searchModel instance is filled with the content of $_GET['Reservation'],
in line:

 $searchModel->load(Yii::$app->request->get());

Then, $query is updated with the content of non-null attributes.

Remember that the ActiveRecord's load() method will get values from
the array enclosed in the model class name, applied as the key to the array
passed as the first function parameter.

Chapter 6

[139]

Browse to http://hostname/basic/reservations/grid and type 2 in the Room
ID column filter (the second column). This should be the output:

Using filters in the GridView widget

We can also choose to customize the way we render a filter. Imagine using the Room
ID column filter as a drop-down list instead of an input textbox.

We only need to fill out the filter property of Room ID with dropDownList.
It is advisable to use the Html helper class to render dropDownList using the
activeDropDownList() method. The active prefix stands for ActiveRecord. This
method dropDownList() requires three parameters: the model class, the attribute of
the model class, and finally an array key-value where key is the value attribute of the
<option> tag and value is the text of the <option> tag.

We will use yii\helpers\ArrayHelper to create the array key-value, where
the key is the id attribute of the model and the value is the return value of a
callback function.

This is how the file in basic/views/reservations/grid.php changes:

<?php
$roomsFilterData = yii\helpers\ArrayHelper::map(app\models\
Room::find()->all(), 'id', function($model, $defaultValue) {
 return sprintf('Floor: %d - Number: %d', $model->floor, $model-
>room_number);
});
?>

<?= \yii\grid\GridView::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'columns' => [
 'id',

 [

Using a Grid for Data and Relations

[140]

 'header' => 'Room',
 'filter' => \Html::activeDropDownList($searchModel,
 'room_id', $roomsFilterData, ['prompt' => '--- all']),
 'content' => function($model) {
 return $model->room->floor;
 }
],

This is the expected output:

GridView with the dropdown list filter

Displaying and filtering ActiveRecord
relational data in a grid's column
Let's now focus on relational data in GridView, a common topic that is easily solved
by itself.

Think about the reservations grid, which has two relational fields: room_id and
customer_id, referring respectively to room and customer tables. What if we want
to immediately display the customer's surname, or room number?

At this point, our goal is to display relational data, for example, the customer's
surname instead of customer_id in GridView. Fields that refer to related data are
expressed with the relation attribute.

In the reservation grid view, customer is the relation to get a related customer and
surname is the field to keep.

Therefore, to display the customer's surname, it is enough to insert this column (as a
string) in the reservations grid view:

 'customer.surname'

Chapter 6

[141]

This is equivalent to:

 [
 'attribute' => 'customer.surname'
]

A column named surname will be displayed. If we want to change column name to
Customer, we use this:

 [
 'header' => 'Customer',
 'attribute' => 'customer.surname'
]

We could use custom properties to get data, for example,
getnameAndSurname to get the personal details of a
specific customer.
Insert a new property in the Customer model:

public function getNameAndSurname() {

 return $this->name.' '.$this->surname;

}

Then this will be the column in the GridView:
 [

 'header' => 'Customer',

 'attribute' => 'customer.nameAndSurname'

]

We now want to filter the Customer column. Since the customer.surname attribute
is not in the rules() method of the Reservation model, we need to extend this
class to handle extra attributes.

So, create a new class named ReservationSearch in basic/models/
ReservationSearch.php with the following content:

<?php

class ReservationSearch extends app\models\Reservation
{
 public function attributes()
 {
 // add related fields to searchable attributes

Using a Grid for Data and Relations

[142]

 return array_merge(parent::attributes(),
 ['customer.surname']);
 }

 public function rules()
 {
 // add related rules to searchable attributes
 return array_merge(parent::rules(),[['customer.surname',
 'safe']]);
 }

}

This extension simply adds a new attribute and a new rule attached to this attribute.
The name of the attribute is customer.surname.

We now have to change the actionGrid() action in ReservationsController
to make a connection to the customer table that permits us to filter based on the
customer's surname.

This is the content of actionGrid() of ReservationsController in basic/
controllers/ReservationsController.php:

 public function actionGrid()
 {
 $query = \app\models\Reservation::find();

 $searchModel = new \app\models\ReservationSearch();
 if(isset($_GET['ReservationSearch']))
 {
 $searchModel->load(\Yii::$app->request->get());

 $query->joinWith(['customer']);
 $query->andFilterWhere(
 ['LIKE', 'customer.surname', $searchModel-
 >getAttribute('customer.surname')]
);

 $query->andFilterWhere([
 'id' => $searchModel->id,
 'customer_id' => $searchModel->customer_id,
 'room_id' => $searchModel->room_id,
 'price_per_day' => $searchModel->price_per_day,

]);

Chapter 6

[143]

 }

 $dataProvider = new \yii\data\ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' =>
 $dataProvider, 'searchModel' => $searchModel]);

 }

Be careful to ensure that $searchModel is instanced from the
ReservationSearch class, as much as $_GET, parameter used
to get data is instanced from ReservationSearch instead of
Reservation (because it has changed class).

Filtering an action on the customer's surname in actionGrid() is made using these
lines of code:

 $query->joinWith(['customer']);
 $query->andFilterWhere(
 ['LIKE', 'customer.surname', $searchModel-
 >getAttribute('customer.surname')]
);

We make a join and if the customer.surname attribute is not null, then there will be
a new filter. Browse to http://hostname/basic/reservations/grid and type Fo
in the Customer column filter. You should see this:

Filtering using relational data

Using a Grid for Data and Relations

[144]

A summarized footer row in a grid
One feature of GridView is that it shows summarized or statistical data, usually as
a footer row or first row, to get the data immediately (instead of scrolling down the
page to the bottom of the grid).

A column of the GridView widget has an attribute named footer to identify the last
row of the current pagination. A value filled in this attribute will be placed in the last
row of the grid.

By default, showing the footer is disabled; to enable the footer, it is enough to set
the attribute showFooter of GridView to true. Then, we need to insert data in the
'footer' attribute of the column that we want to show.

For example, we want to display the average price per day of rooms.

Add this code at the top of the grid view in basic/views/reservations/grid.php
to calculate the average of price per day:

<?php
use yii\grid\GridView;
use yii\helpers\Html;
?>

<h2>Reservations</h2>

<?php
$sumOfPricesPerDay = 0;
$averagePricePerDay = 0;

if(count($dataProvider->getModels()) > 0)
{
 foreach($dataProvider->getModels() as $m) $sumOfPricesPerDay
 += $m->price_per_day;
 $averagePricePerDay = $sumOfPricesPerDay /
 sizeof($dataProvider->getModels());
}
?>

<?php
$roomsFilterData = yii\helpers\ArrayHelper::map(
app\models\Room::find()->all(), 'id', function($model,
$defaultValue) {
 return sprintf('Floor: %d - Number: %d', $model->floor,
 $model->room_number);

Chapter 6

[145]

});
?>

<?= app\components\GridViewReservation::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'showFooter' => true,
 'columns' => [
 'id',

 [
 'header' => 'Room',
 'filter' => Html::activeDropDownList($searchModel,
 'room_id', $roomsFilterData, ['prompt' => '--- all']),
 'content' => function($model) {
 return $model->room->floor;
 }
],

 [
 'header' => 'Customer',
 'attribute' => 'customer.surname',
],

 [
 'attribute' => 'price_per_day',
 'footer' => Yii::$app->formatter-
 >asCurrency($resultQueryAveragePricePerDay, 'EUR')
],

 'date_from',
 'date_to',

 [
 'class' => 'yii\grid\ActionColumn',
 'template' => '{delete}',
 'header' => 'Actions',
],
],
]) ?>

Be careful! In this example, count is made using the models of the current
pagination. If the grid is composed of more pages, it will only show the average
value for the current page!

Using a Grid for Data and Relations

[146]

This count can consider all records (also filtered ones), making the calculation based
not only on the models of the current pagination but also on the result of a query.
Add the average count in actionGrid() of ReservationsController:

 public function actionGrid()
 {
 $query = \app\models\Reservation::find();

 $searchModel = new \app\models\ReservationSearch();
 if(isset($_GET['ReservationSearch']))
 {
 $searchModel->load(\Yii::$app->request->get());

 $query->joinWith(['customer']);
 $query->andFilterWhere(
 ['LIKE', 'customer.surname', $searchModel-
 >getAttribute('customer.surname')]
);

 $query->andFilterWhere([
 'id' => $searchModel->id,
 'customer_id' => $searchModel->customer_id,
 'room_id' => $searchModel->room_id,
 'price_per_day' => $searchModel->price_per_day,

]);

 }
 $resultQueryAveragePricePerDay = $query-
 >average('price_per_day');

 $dataProvider = new \yii\data\ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' =>
 $dataProvider, 'searchModel' => $searchModel,
 'resultQueryAveragePricePerDay' =>
 $resultQueryAveragePricePerDay]);

 }

Chapter 6

[147]

The average is calculated from the average() method of the $query object (so the
filter will be considered, if it is filled out) and passed to the view, so the code at the
top of the view to execute calculation is no longer needed because we have correctly
moved it to the Controller action.

Then change the footer content of the price_per_day column:

 [
 'attribute' => 'price_per_day',
 'footer' => sprintf('Average: %0.2f',
 $resultQueryAveragePricePerDay)
],

Now the average count will be independent of pagination.

Example – extending GridView to customize
the footer row in a grid
In a highly customized GridView, it is required to show data in positions not
handled by default by GridView, or it is required to apply specific changes (such as
merging a column).

In either of these cases and when it is impossible to create the desired output with
attributes of GridView, it will be necessary to subclass the GridView widget.

The GridView widget has specific methods to render different parts of it:
renderTableBody(), renderTableFooter(), renderTableHeader(),
renderTableRow(), and so on.

Think about the previous example. Now, we also want to gather the first three
columns in the footer to display the Average label, the unique value in the price_
per_day column, and the last four columns with an empty space.

Create a new component that extends the yii\grid\GridView widget in basic/
components/GridViewReservation.php with this content:

<?php

namespace app\components;

use Yii;
use yii\web\Controller;
use yii\grid\GridView;

class GridViewReservation extends GridView

Using a Grid for Data and Relations

[148]

{
 public function renderTableFooter()
 {
 // Search column for 'price_per_day'
 $columnPricePerDay = null;
 foreach($this->columns as $column)
 {
 if(get_class($column) == 'yii\grid\DataColumn')
 {
 if($column->attribute == 'price_per_day')
 $columnPricePerDay = $column;
 }
 }

 $html = '<tfoot><tr>';
 $html .= '<td colspan="3">Average:</td>';
 $html .= $columnPricePerDay->renderFooterCell();
 $html .= '<td colspan="4"><i>this space is intentionally
 empty</i></td>';
 $html .= '</tr></tfoot>';

 return $html;
 }
}

This component just extends yii\grid\GridView and overrides the
renderTableFooter() method to make the required customization (mainly
merging cells). The only logic in this code is to find the price_per_day column,
cycling the array of columns given by $this->columns, where $this refers to
the GridView object.

Multiple grids on one page
Every Yii2 widget has so much encapsulated in it that using multiple GridView
widgets is a simple activity that involves making few changes.

The only parameters indeed that are not customizable with the DataProvider model
class are pageParam and sortParam, which define the current page index and the
parameters used to order a grid.

Suppose, for example, that we have two GridViews filled with two different data
providers, $firstDataProvider and $secondDataProvider.

Chapter 6

[149]

In the controller, we will set the pageParam and sortParam parameters of
each DataProvider:

$firstDataProvider->pagination->pageParam = 'first-dp-page';
$firstDataProvider->sort->sortParam = 'first-dp-sort';

$secondDataProvider->pagination->pageParam = 'second-dp-page';
$secondDataProvider->sort->sortParam = 'second-dp-sort';

If we miss these definitions when changing a page or sorting a column, this
action will also affect the other GridView in the same page because we have not
distinguished the two grid view parameters.

Example: managing the reservations and
rooms grids in the same view
The purpose of this example is to display both the reservations and rooms grids in
the same page completely independent from each other.

In ReservationsController in basic/controllers/ReservationsController.
php, create a new action named actionMultipleGrid() with the following content:

 public function actionMultipleGrid()
 {
 /**
 * Reservations
 */
 $reservationsQuery = \app\models\Reservation::find();
 $reservationsSearchModel = new
 \app\models\ReservationSearch();

 if(isset($_GET['ReservationSearch']))
 {
 $reservationsSearchModel->load(\Yii::$app->request-
 >get());

 $reservationsQuery->joinWith(['customer']);
 $reservationsQuery->andFilterWhere(
 ['LIKE', 'customer.surname',
 $reservationsSearchModel-
 >getAttribute('customer.surname')]
);

 $reservationsQuery->andFilterWhere([
 'id' => $reservationsSearchModel->id,

Using a Grid for Data and Relations

[150]

 'customer_id' => $reservationsSearchModel-
 >customer_id,
 'room_id' => $reservationsSearchModel->room_id,
 'price_per_day' => $reservationsSearchModel-
 >price_per_day,

]);
 }

 $reservationsDataProvider = new
 \yii\data\ActiveDataProvider([
 'query' => $reservationsQuery,
 'sort' => [
 'sortParam' => 'reservations-sort-param',
],
 'pagination' => [
 'pageSize' => 10,
 'pageParam' => 'reservations-page-param'
],
]);

 /**
 * Rooms
 */
 $roomsQuery = \app\models\Room::find();
 $roomsSearchModel = new \app\models\Room();

 if(isset($_GET['Room']))
 {
 $roomsSearchModel->load(\Yii::$app->request->get());

 $roomsQuery->andFilterWhere([
 'id' => $roomsSearchModel->id,
 'floor' => $roomsSearchModel->floor,
 'room_number' => $roomsSearchModel->room_number,
 'has_conditioner' => $roomsSearchModel-
 >has_conditioner,
 'has_phone' => $roomsSearchModel->has_conditioner,
 'has_tv' => $roomsSearchModel->has_conditioner,
 'available_from' => $roomsSearchModel-
 >has_conditioner,

]);

Chapter 6

[151]

 }

 $roomsDataProvider = new \yii\data\ActiveDataProvider([
 'query' => $roomsQuery,
 'sort' => [
 'sortParam' => 'rooms-sort-param',
],
 'pagination' => [
 'pageSize' => 10,
 'pageParam' => 'rooms-page-param'
],
]);

 return $this->render('multipleGrid', [
 'reservationsDataProvider' =>
 $reservationsDataProvider, 'reservationsSearchModel'
 => $reservationsSearchModel,
 'roomsDataProvider' => $roomsDataProvider,
 'roomsSearchModel' => $roomsSearchModel,
]);

 }

We have detached the reservations declaration from the rooms declaration in order
to clearly distinguish each from the other. Be careful to ensure that you defined
sortparam and pageparam for either of the DataProvider.

Now we create a new view in basic/views/reservations/multipleGrid.php:

<?php
use yii\grid\GridView;
use yii\helpers\Html;
?>

<h2>Reservations</h2>
<?= GridView::widget([
 'dataProvider' => $reservationsDataProvider,
 'filterModel' => $reservationsSearchModel,
 'columns' => [
 'id',
 'room_id',
 'attribute' => 'customer.surname',
 'price_per_day',
 'date_from',

Using a Grid for Data and Relations

[152]

 'date_to'
],
]) ?>

<h2>Rooms</h2>
<?= GridView::widget([
 'dataProvider' => $roomsDataProvider,
 'filterModel' => $roomsSearchModel,
 'columns' => [
 'id',
 'floor',
 'room_number',
 'has_conditioner:boolean',
 'has_phone:boolean',
 'has_tv:boolean',
 'available_from',
],
]) ?>

The two grids are completely independent and we can now order or change a page
without interfering with other grids.

Summary
In this chapter, we presented the GridView widget to display data, directly or
relational. A fundamental topic when discussing GridView is DataProvider, which
is a way to provide data to GridView. You learned how to get DataProvider from
ActiveRecord, an array, or SQL, based on the available source.

After the first simple implementation of GridView, you comprehended the
customization in a column and displayed the relational data coming from other
tables, using an extension of the model class to add extra features as new attributes.
Next, we illustrated how to filter data in GridView to select only specific rows.

Just before the end of the chapter, you saw how to show, summarize, and customize
a footer and more in the GridView by subclassing the core widget yii\grid\
GridView. Finally, the last topic concerned the use of more than one grid in the same
page, with a special focus on the few changes that need to occur in order to avoid
them interfering with each other.

In the next chapter, you will learn to customize the user interface with CSS, JavaScript,
widgets, and tools such as Gii that are directly provided from the framework.

[153]

Working on the
User Interface

In this chapter, you will discover how powerful Gii is as a tool. It provides support
for CRUD actions, as well as creating a controller and its respective views.

We will cover the following topics related to the user interface in this chapter:

• Using Gii to generate create, read, update, and delete (CRUD) actions:
 ° For example – using CRUD to manage rooms, reservations,

and customers using Gii

• Customizing JavaScript and CSS:
 ° For example – using JavaScript and CSS to display advertising

columns that disappear if there is not enough space available

• Using AJAX:
 ° For example: reservation details loaded from customers'

drop-down lists

• Using the Bootstrap widget:
 ° For example – using datepicker

• Viewing multiple models in the same view:
 ° For example – saving multiple customers at the same time

• Saving linked models in the same view:
 ° For example – creating a customer and reservation in the same view

Working on the User Interface

[154]

It is now time for you to learn what Yii2 supports in order to customize the JavaScript
and CSS parts of web pages. A recurrent use of JavaScript is to handle AJAX calls, that
is, to manage widgets and compound controls (such as a dependent drop-down list)
from jQuery and Bootstrap.

Finally, we will employ jQuery to dynamically create more models from the same
class in the form, which will be passed to the controller in order to be validated
and saved.

Using Gii to generate CRUD
We introduced Gii in Chapter 5, Developing a Reservation System, to generate models.
Now we want to use Gii to create CRUD actions with a controller and views.

Type http://hostname/basic/web/gii in your browser to return to the Gii
welcome page. Click on the Start button of the CRUD section. We have to fill
out four fields:

• Model Class: This is the ActiveRecord class associated with the table
where CRUD will be built; this class should be provided using the fully
qualified namespaced path, for example: app\models\ModelClass.

• Search Model Class: This is the name of the search model class to be
generated and extended from the model class; this class will provide
useful methods and extensions to be used when searching the record.
This should be provided using the fully qualified namespaced path,
for example: app\models\ModelClassSearch.

• Controller Class: This is the name of the controller class to be generated;
this class should be provided using the fully qualified namespaced path
and the CamelCase format for the name, starting with an uppercase letter,
for example: app\controller\MyCustomController.

• View Path: This is the directory where the view created from the controller
actions will be stored. We can use path, alias @app/views, to indicate the
base path for the views file, for example: @app/views/myCustom to indicate
the base path of the MyCustomController views, that will be filled by default
to @app/views/controller-id.

Then, we can customize BaseControllerClass, the widget used in the index page,
to enable the state of I18N and the code template, but it is okay to leave them with
the default values.

Chapter 7

[155]

If we check Enable I18N, we must then look after the translations in app
messages for each attribute label. This will be covered in a later chapter.

Example – using CRUD to manage rooms,
reservations, and customers using Gii
In this example, we will create complete CRUD actions to manage rooms, reservations,
and customers.

In the earlier chapter, we dealt with Gii CRUD actions to create a form. We must now
repeat these instructions for all three models: the room, reservation, and customer
model class. To distinguish files created with Gii from files created manually in the
previous chapters, we will append the Gii suffix to the controller's class name.

Browse to the Gii welcome page at http://hostname/basic/web/gii, click on the
Start button in the CRUD section, and fill out the fields with the following values to
create CRUD actions for the Room model class:

• Model Class: app\models\Room
• Search Model Class: app\models\RoomSearch
• Controller Class: app\controllers\RoomsWithGiiController
• View Path: @app/views/rooms-with-gii

Then, repeat this operation for the Reservation model class:

• Model Class: app\models\Reservation
• Search Model Class: app\models\ReservationSearch
• Controller Class: app\controllers\ReservationsWithGiiController
• View Path: @app/views/reservations-with-gii

Finally, repeat them for the Customer model class:

• Model Class: app\models\Customer
• Search Model Class: app\models\CustomerSearch
• Controller Class: app\controllers\CustomersWithGiiController
• View Path: @app/views/customers-with-gii

Make sure that the View Path has a slash (/) in the path and
not a backslash (\) as the namespaced path in the model class,
search model class, and controller class.

Working on the User Interface

[156]

The following screenshot shows the fields filled out to generate CRUD actions for the
Room model class:

CRUD Generator from Gii

While navigating in the folder structure, you will see that Gii has created three
new files in basic/controllers, named RoomsWithGiiController.php,
ReservationsWithGiiController.php, and CustomersWithGiiController.php.

Chapter 7

[157]

Each of these files contains five actions:

• actionCreate(): This action is used to create a new model object
• actionView(): This action is used to view the details of a model object
• actionUpdate(): This action is used to update an existing model object
• actionDelete(): This action is used to delete an existing model object
• actionIndex(): This action is used to display, using the grid layout,

a list of model objects

Open the basic/models folder and you will find three new files: RoomSearch.php,
ReservationSearch.php (which should already exist), and CustomerSearch.php.

Each of these files basically contains a search() method, which returns the
ActiveDataProvider to be used to display data in GridView, passing some
filter conditions.

Finally, open the basic/views folder and you will find three new folders:
roomsWithGii, reservationsWithGii, and customersWithGii; each one
containing six files:

• _form.php

• _search.php

• create.php

• index.php

• update.php

• view.php

View files that start with an underscore are considered by default in Yii2 as subviews,
or rather views that are called by other views.

The first two files start with an underscore; effectively if we open create.php and
update.php, we will notice that, at the end of these files, the render() method is
called using the _form.php view. Both the create and update view will use the same
_form view to display the form to edit fields.

The last four files, create.php, index.php, update.php, and view.php are views
that refer to the same actions in the controller. By default, they all have a breadcrumb
and a title for each page.

Working on the User Interface

[158]

Make some tests that browse, for example, to http://hostname/basic/web/rooms-
with-gii/index or http://hostname/basic/web/rooms-with-gii/index, to see
some excellent works made by Gii.

This is the index action result of RoomsWithGiiController:

The output of the RoomsWithGiiController index action

Customize JavaScript and CSS
As mentioned before, in this chapter, you will discover how to use frontend interaction.
Using JavaScript and CSS is fundamental to customize frontend output.

Differently from Yii1, where calling JavaScript and CSS scripts and files was done
using the Yii::app() singleton, in the new framework version, Yii2, this task is
part of the yii\web\View class.

There are two ways to call JavaScript or CSS: either directly passing the code to be
executed or passing the path file.

When passing the code directly to be executed, we will use the Heredoc
syntax provided by PHP to avoid handling strings escaping.

The registerJs() function allows us to execute the JavaScript code with three
parameters:

• The first parameter is the JavaScript code block to be registered
• The second parameter is the position where the JavaScript tag should be

inserted (the header, the beginning of the body section, the end of the body
section, enclosed within the jQuery load() method, or enclosed within the
jQuery document.ready() method, which is the default)

Chapter 7

[159]

• The third and last parameter is a key that identifies the JavaScript code
block (if it is not provided, the content of the first parameter will be used
as the key)

On the other hand, the registerJsFile() function allows us to execute a JavaScript
file with three parameters:

• The first parameter is the path file of the JavaScript file
• The second parameter is the HTML attribute for the script tag, with

particular attention given to the depends and position values, which are
not treated as tag attributes

• The third parameter is a key that identifies the JavaScript code block (if it's
not provided, the content of the first parameter will be used as the key)

CSS, similar to JavaScript, can be executed using the code or by passing the path file.

The registerCss() function allows us to execute CSS code with three parameters:

• The first one is the CSS code block to be registered
• The second one is the HTML attributes for the style tag
• The third and last parameter is a key that identifies the JavaScript code

block (if it is not provided, the content of the first parameter will be used
as the key)

The registerCssFile() function allows us instead to execute a CSS file with
three parameters:

• The first one is the path file of the CSS file
• The second parameter is the HTML attribute for the link tag, with particular

attention given to the depends value, which is not treated as a tag attribute
• The third parameter is a key that identifies the JavaScript code block (if it's

not provided, the content of the first parameter will be used as the key)

Generally, JavaScript or CSS files are published in the basic/web folder, which is
accessible without restrictions.

So, when we have to use custom JavaScript or CSS files, it is recommended to put
them in a subfolder of the basic/web folder, which can be named as css or js.

By default, the folder for CSS files basic/web/css should
already exist. But we still need to create basic/web/js for
JavaScript files.

Working on the User Interface

[160]

In some circumstances, we might be required to add a new CSS or JavaScript file
for all web application pages. The most appropriate place to put these entries is
AppAsset.php, a file located in basic/assets/AppAsset.php. In it we can add
CSS and JavaScript entries required in web applications, even using dependencies
if we need to.

Example – using JavaScript and CSS to
display advertising columns that disappear
if not enough space is available
This sample is suitable if you need to use JavaScript and CSS customizations together.

Think about the layout built as three vertical columns, typical of a blog system.
One column of 200 pixels on the left (usually for advertising), one central column
of 1000 pixels (usually for content) and one of 200 pixels on the right (usually again
for advertising).

If the browser size is at least 1,400 pixels wide, we want all three columns to be shown
(the content and two columns for advertising).

If there is not enough space for all the columns and the browser's width size is
between 1,200 and 1,400 pixels, only the left and central columns will be shown
(only a column for advertising and one for the content. Finally, if the browser's width
size is under 1,200 pixels, only the central column with content will be shown).

Also, our goal is to ensure that these columns are always centered in the browser.

Create a new controller class in basic/controllers/ThreeColumnsController.
php, to handle the action to render the view file:

<?php
namespace app\controllers;

use Yii;
use yii\web\Controller;

class ThreeColumnsController extends Controller
{
 public function actionIndex()
 {
 return $this->render('index.php');
 }
}

Chapter 7

[161]

Furthermore, create a new view folder in basic/views/three-columns and insert
index.php file in it to store view content.

Basically, this is the content necessary to build a three column layout:

<div id="layout">
 <div id="colSx" class="column">
 Content of SX Column
 </div>
 <div id="colCenter" class="column">
 Content of Central Column
 </div>
 <div id="colDx" class="column">
 Content of DX Column
 </div>
</div>

The CSS class column will only be used to enhance cells' visibility with a black
border around them.

At this point, we will center the layout and fix the columns' width using the
registerCss() method at the top of the view file:

<?php

$this->registerCss(<<< EOT_CSS

 .column
 {
 border:1px solid black;
 }

 #layout
 {
 position:relative;
 margin:0pt auto;
 width:1400px;
 }

 #colSx
 {
 width:200px;
 float:left;
 }

Working on the User Interface

[162]

 #colCenter
 {
 width:1000px;
 float:left;
 }

 #colDx
 {
 width:200px;
 float:left;
 }

EOT_CSS
);

?>

Point your browser to http://hostname/basic/web/three-columns/index and
you will get the following content:

Content width split into three columns

We must handle the resize browser event through JavaScript to manage the columns
visualization using the dimension rules defined at the start of this chapter.

We will use the registerJs() method, passing only the code to be executed:

<?php
$this->registerJs(<<< EOT_JS

 function resizeLayout()
 {
 var windowWidth = $(window).width();

 if(windowWidth > 1400)
 {
 $('#colSx').css('display', 'block');
 $('#colCenter').css('display', 'block');

Chapter 7

[163]

 $('#colDx').css('display', 'block');
 $('#layout').css('width', 1400);
 }
 else if((windowWidth>1200)&&(windowWidth<=1400))
 {
 $('#colSx').css('display', 'block');
 $('#colCenter').css('display', 'block');
 $('#colDx').css('display', 'none');
 $('#layout').css('width', 1200);
 }
 else if(windowWidth<1200)
 {
 $('#colSx').css('display', 'none');
 $('#colCenter').css('display', 'block');
 $('#colDx').css('display', 'none');
 $('#layout').css('width', 1000);
 }

 }

 $(window).resize(function() {
 resizeLayout();
 });

 $(function() {
 resizeLayout();
 });

EOT_JS
);
?>

Refresh your browser to http://hostname/basic/web/three-columns/index
and resize it to the desired width, and the columns visualization should change
depending on the available space in the specific width.

Using AJAX
Yii2 provides appropriate attributes for some widgets to make AJAX calls; sometimes,
however, writing a JavaScript code in these attributes will make code hard to read,
especially if we are dealing with complex codes.

Consequently, to make an AJAX call, we will use external JavaScript code executed
by registerJs().

Working on the User Interface

[164]

This is a template of the AJAX class using the GET or POST method:

<?php
$this->registerJs(<<< EOT_JS

 // using GET method
$.get({
 url: url,
 data: data,
 success: success,
 dataType: dataType
});

 // using POST method
$.post({
 url: url,
 data: data,
 success: success,
 dataType: dataType
});

EOT_JS
);
?>

An AJAX call is usually the effect of a user interface event (such as a click on a
button, a link, and so on). So, most of the time an AJAX call is directly connected
to the .on() event of jQuery on the HTML elements (anchors, buttons, and so on).
For this reason, it is important to remember how Yii2 renders the name and id
attributes of input fields.

When we call Html::activeTextInput($model, $attribute) or in the same
way use <?= $form->field($model, $attribute)->textInput() ?>.

The name and id attributes of the input text field will be rendered as follows:

• id : The model class name separated with a dash by the attribute name in
lowercase; for example, if the model class name is Room and the attribute is
floor, the id attribute will be room-floor

• name: The model class name that encloses the attribute name, for example,
if the model class name is Reservation and the attribute is price_per_day,
the name attribute will be Reservation[price_per_day]; so every field
owned by the Reservation model will be enclosed all in a single array

Chapter 7

[165]

Example – reservation details loaded from the
customers' drop-down lists
In this example, there are two drop-down lists and a detail box. The two drop-down
lists refer to customers and reservations; when user clicks on a customer list item, the
second drop-down list of reservations will be filled out according to their choice.

Finally, when a user clicks on a reservation list item, a details box will be filled out
with data about the selected reservation.

Create a new action in basic/controllers/ReservationsController.php named
actionDetailDependentDropdown():

 public function actionDetailDependentDropdown()
 {
 $showDetail = false;

 $model = new Reservation();

 if(isset($_POST['Reservation']))
 {
 $model->load(Yii::$app->request->post());

 if(isset($_POST['Reservation']['id'])&&
 ($_POST['Reservation']['id']!=null))
 {
 $model =
 Reservation::findOne($_POST['Reservation']['id']);
 $showDetail = true;
 }
 }

 return $this->render('detailDependentDropdown', ['model'
 => $model, 'showDetail' => $showDetail]);
 }

In this action, we will get the customer_id and id parameters from a form based on
the Reservation model data and if it are filled out, the data will be used to search
for the correct reservation model to be passed to the view.

There is a flag called $showDetail that displays the reservation details content if the
id attribute of the model is received.

Working on the User Interface

[166]

In ReservationsController, there is also an action that will be called using AJAX
when the user changes the customer selection in the drop-down list:

 public function actionAjaxDropDownListByCustomerId($customer_id)
 {
 $output = '';

 $items = Reservation::findAll(['customer_id' =>
 $customer_id]);
 foreach($items as $item)
 {
 $content = sprintf('reservation #%s at %s', $item->id,
 date('Y-m-d H:i:s', strtotime($item-
 >reservation_date)));
 $output .= \yii\helpers\Html::tag('option', $content,
 ['value' => $item->id]);
 }

 return $output;
 }

This action will return the <option> HTML tags filled out with reservations data
filtered by the customer ID passed as a parameter.

Now let's look at the view in basic/views/reservations/
detailDependentDropdown.php:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\helpers\ArrayHelper;
use yii\helpers\Url;
use app\models\Customer;
use app\models\Reservation;

$urlReservationsByCustomer = Url::to(['reservations/ajax-drop-down-
list-by-customer-id']);
$this->registerJs(<<< EOT_JS

 $(document).on('change', '#reservation-customer_id',
 function(ev) {

 $('#detail').hide();

 var customerId = $(this).val();

Chapter 7

[167]

 $.get(
 '{$urlReservationsByCustomer}',
 { 'customer_id' : customerId },
 function(data) {
 data = '<option value="">---
 choose</option>'+data;
 $('#reservation-id').html(data);
 }
)
 ev.preventDefault();
 });

 $(document).on('change', '#reservation-id', function(ev) {
 $(this).parents('form').submit();
 ev.preventDefault();
 });

EOT_JS
);

?>

<div class="customer-form">
 <?php $form = ActiveForm::begin(['enableAjaxValidation' =>
 false, 'enableClientValidation' => false, 'options' => ['data-
 pjax' => '']]); ?>

 <?php $customers = Customer::find()->all(); ?>
 <?= $form->field($model, 'customer_id')-
 >dropDownList(ArrayHelper::map($customers, 'id',
 'nameAndSurname'), ['prompt' => '--- choose']) ?>

 <?php $reservations = Reservation::findAll(['customer_id' =>
 $model->customer_id]); ?>
 <?= $form->field($model, 'id')->label('Reservation ID')-
 >dropDownList(ArrayHelper::map($reservations, 'id',
 function($temp, $defaultValue) {
 $content = sprintf('reservation #%s at %s', $temp->id,
 date('Y-m-d H:i:s', strtotime($temp->reservation_date)));
 return $content;
 }), ['prompt' => '--- choose']); ?>

 <div id="detail">
 <?php if($showDetail) { ?>
 <hr />

Working on the User Interface

[168]

 <h2>Reservation Detail:</h2>
 <table>
 <tr>
 <td>Price per day</td>
 <td><?php echo $model->price_per_day ?></td>
 </tr>
 </table>
 <?php } ?>
 </div>

 <?php ActiveForm::end(); ?>

</div>

At the top of the view, there are handlers for changes in the customers and
reservations drop-down list.

If the customer drop-down list is changed, the detail div will be hidden, an AJAX
call will get all the reservations filtered by customer_id, and the result will be
passed as content to the reservations drop-down list. If the reservations drop-down
list is changed, a form will be submitted.

Next in the form declaration, we can find first of all the customer drop-down
list and then the reservations list, which uses a closure to get the value from
the ArrayHelper::map() methods. We could add a new property in the
Reservation model by creating a function starting with the prefix get, such as
getDescription(), and put in it the content of the closure, or rather:

public function getDescription()
{
$content = sprintf('reservation #%s at %s', $this>id, date('Y-m-d
H:i:s', strtotime($this>reservation_date)));
 return $content;
}

Or we could use a short syntax to get data from ArrayHelper::map() in this way:

 <?= $form->field($model, 'id')->dropDownList(ArrayHelper::map(
 $reservations, 'id', 'description'), ['prompt' => '---
 choose']); ?>

Finally, if $showDetail is flagged, a simple details box with only the price per day of
the reservation will be displayed.

Chapter 7

[169]

Point your browser to http://hostname/basic/web/reservations/detail-
dependent-dropdown:

Dynamic reservation details being loaded from the customer drop-down list

Using the Bootstrap widget
Yii2 supports Bootstrap as a core feature. Bootstrap framework CSS and JavaScript
files are injected by default in all pages and we could even use this feature to only
apply CSS classes or call our own JavaScript function provided by Bootstrap.

However, Yii2 embeds Bootstrap as a widget, and we can access this framework's
capabilities like any other widget.

The most used are:

Class name Description
yii\bootstrap\Alert This class renders an alert Bootstrap component
yii\bootstrap\Button This class renders a Bootstrap button
yii\bootstrap\Dropdown This class renders a Bootstrap drop-down menu

component
yii\bootstrap\Nav This class renders a nav HTML component
yii\bootstrap\NavBar This class renders a navbar HTML component

For example, yii\bootstrap\Nav and yii\bootstrap\NavBar are used in the
default main template.

Working on the User Interface

[170]

This is an extract from the main layout view (in basic/views/layouts/main.php):

 <?php
 NavBar::begin([
 'brandLabel' => 'My Company',
 'brandUrl' => Yii::$app->homeUrl,
 'options' => [
 'class' => 'navbar-inverse navbar-fixed-top',
],
]);
 echo Nav::widget([
 'options' => ['class' => 'navbar-nav navbar-
 right'],
 'items' => [
 ['label' => 'Home', 'url' => ['/site/index']],
 ['label' => 'About', 'url' =>
 ['/site/about']],
 ['label' => 'Contact', 'url' =>
 ['/site/contact']],
 Yii::$app->user->isGuest ?
 ['label' => 'Login', 'url' =>
 ['/site/login']] :
 ['label' => 'Logout (' . Yii::$app->user-
 >identity->username . ')',
 'url' => ['/site/logout'],
 'linkOptions' => ['data-method' =>
 'post']],
],
]);
 NavBar::end();
 ?>

Example: using datepicker
Yii2 also supports, by itself, many jQuery UI widgets through the JUI extension for
Yii2, yii2-jui.

If we do not have the yii2-jui extension in the vendor folder, we can get it from
Composer using this command:

php composer.phar require --prefer-dist yiisoft/yii2-jui

Chapter 7

[171]

In this example, we will discuss the two most used widgets: datepicker and
autocomplete. First let's have a look at the datepicker widget. This widget can be
initialized using a model attribute or by filling out a value property. The following is
an example made using a model instance and one of its attributes:

echo DatePicker::widget([
 'model' => $model,
 'attribute' => 'from_date',
 //'language' => 'it',
 //'dateFormat' => 'yyyy-MM-dd',
]);

And here is a sample of the value property's use:

echo DatePicker::widget([
 'name' => 'from_date',
 'value' => $value,
 //'language' => 'it',
 //'dateFormat' => 'yyyy-MM-dd',
]);

Now create a new controller named JuiWidgetsController in basic/
controllers/JuiWidgetsController.php:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Reservation;

class JuiWidgetsController extends Controller
{
 public function actionDatePicker()
 {
 $reservationUpdated = false;

 $reservation = Reservation::findOne(1);

 if(isset($_POST['Reservation']))
 {
 $reservation->load(Yii::$app->request->post());

Working on the User Interface

[172]

 $reservation->date_from = Yii::$app->formatter-
 >asDate(date_create_from_format('d/m/Y',
 $reservation->date_from), 'php:Y-m-d');
 $reservation->date_to = Yii::$app->formatter->asDate(
 date_create_from_format('d/m/Y', $reservation-
 >date_to), 'php:Y-m-d');

 $reservationUpdated = $reservation->save();
 }

 return $this->render('datePicker', ['reservation' =>
 $reservation, 'reservationUpdated' =>
 $reservationUpdated]);
 }
}

In this action, we define the $reservation model, picking from the reservations
database table with id 1.

When data is sent via POST, the date_from and date_to fields will be converted from
the d/m/y to the y-m-d format to make it possible for the database to save data. Then
the model object is updated through the save() method. Using the Bootstrap widget,
an alert box will be displayed in the view after updating the model.

Create the datePicker view in basic/views/jui-widgets/datePicker.php:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\jui\DatePicker;

?>

<div class="row">
 <div class="col-lg-6">
 <h3>Date Picker from Value
(using MM/dd/yyyy format
 and English language)</h3>
 <?php
 $value = date('Y-m-d');

 echo DatePicker::widget([
 'name' => 'from_date',
 'value' => $value,
 'language' => 'en',

Chapter 7

[173]

 'dateFormat' => 'MM/dd/yyyy',
]);
 ?>
 </div>
 <div class="col-lg-6">

 <?php if($reservationUpdated) { ?>
 <?php
 echo yii\bootstrap\Alert::widget([
 'options' => [
 'class' => 'alert-success',
],
 'body' => 'Reservation successfully updated',
]);
 ?>
 <?php } ?>

 <?php $form = ActiveForm::begin(); ?>

 <h3>Date Picker from Model
(using dd/MM/yyyy format
 and italian language)</h3>

 <label>Date from</label>
 <?php
 // First implementation of DatePicker Widget
 echo DatePicker::widget([
 'model' => $reservation,
 'attribute' => 'date_from',
 'language' => 'it',
 'dateFormat' => 'dd/MM/yyyy',
]);
 ?>

 <?php
 // Second implementation of DatePicker Widget
 echo $form->field($reservation, 'date_to')-
 >widget(\yii\jui\DatePicker::classname(), [
 'language' => 'it',
 'dateFormat' => 'dd/MM/yyyy',

Working on the User Interface

[174]

]) ?>

 <?php
 echo Html::submitButton('Send', ['class' => 'btn btn-
 primary'])
 ?>

 <?php $form = ActiveForm::end(); ?>

 </div>
</div>

The view is split into two columns, left and right. The left column simply displays
a DataPicker example from the value (fixed to the current date). The right column
displays an alert box if the $reservation model has been updated and the next two
kinds of widget declaration too; the first one without using $form and the second
one using $form, both outputting the same HTML code.

In either case, the DatePicker date output format is set to dd/MM/yyyy through
the dateFormat property and the language is set to Italian through the language
property.

Point your browser to http://hostname/basic/web/jui-widgets/date-picker
to see the following output:

Using datepicker

Chapter 7

[175]

Multiple models in the same view
Often, we can find many models of same or different class in a single view.
First of all, remember that Yii2 encapsulates all the views' form attributes in the
same container, named the same as the model class name. Therefore, when the
controller receives the data, these will all be organized in a key of the $_POST
array named the same as the model class name.

If the model class name is Customer, every form input name attribute will be
Customer[attributeA_of_model] This is built with: $form->field($model,
'attributeA_of_model')->textInput().

In the case of multiple models of the same class, the container will again be
named as the model class name but every attribute of each model will be
inserted in an array, such as:

Customer[0][attributeA_of_model_0]
Customer[0][attributeB_of_model_0]
…
…
…
Customer[n][attributeA_of_model_n]
Customer[n][attributeB_of_model_n]

These are built with:

$form->field($model, '[0]attributeA_of_model')->textInput();
$form->field($model, '[0]attributeB_of_model')->textInput();
…
…
…
$form->field($model, '[n]attributeA_of_model')->textInput();
$form->field($model, '[n]attributeB_of_model')->textInput();

Notice that the array key information is inserted in the
attribute name!

So, when data is passed to the controller, $_POST['Customer'] will be an array
composed by the Customer models and every key of this array, for example,
$_POST['Customer'][0] is a model of the Customer class.

Working on the User Interface

[176]

Example – saving multiple customers at the
same time
Now let's see how to save three customers at once. We will create three containers,
one for each model class that will contain some fields of the Customer model.

Create a view in basic/views/customers/createMultipleModels.php that
contains a block of input fields repeated for every model passed from the controller:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $model app\models\Room */
/* @var $form yii\widgets\ActiveForm */
?>

<div class="room-form">

 <?php $form = ActiveForm::begin(); ?>

 <div class="model">

 <?php for($k=0;$k<sizeof($models);$k++) { ?>
 <?php $model = $models[$k]; ?>
 <hr />
 <label>Model #<?php echo $k+1 ?></label>
 <?= $form->field($model, "[$k]name")->textInput() ?>
 <?= $form->field($model, "[$k]surname")->textInput() ?>
 <?= $form->field($model, "[$k]phone_number")-
 >textInput() ?>
 <?php } ?>

 </div>

<hr />

 <div class="form-group">
 <?= Html::submitButton('Save', ['class' => 'btn btn-
 primary']) ?>
 </div>

Chapter 7

[177]

 <?php ActiveForm::end(); ?>

</div>

For each model all the fields will have the same validator rules of the Customer class,
and every single model object will be validated separately.

Next create a new action in the customers controller in basic/controllers/
CustomersController.php, named actionCreateMultipleModels. If the
$_POST['Customer'] content is set, and if they are all validated and finally
redirected to the grid action, it will save them all together; otherwise it will
create three models of the Customer class:

 public function actionCreateMultipleModels()
 {
 $models = [];

 if(isset($_POST['Customer']))
 {
 $validateOK = true;

 foreach($_POST['Customer'] as $postObj)
 {
 $model = new Customer();
 $model->attributes = $postObj;
 $models[] = $model;

 $validateOK = ($validateOK && ($model-
 >validate()));
 }

 // All models are validated and will be saved
 if($validateOK)
 {
 foreach($models as $model)
 {
 $model->save();
 }

 // Redirect to grid after save
 return $this->redirect(['grid']);
 }
 }

Working on the User Interface

[178]

 else
 {
 for($k=0;$k<3;$k++)
 {
 $models[] = new Customer();
 }
 }

 return $this->render('createMultipleModels', ['models' =>
 $models]);
 }

It can be useful to create models in the controller because a large number of them
and other validation checks are configured here.

Browse to http://hostname/basic/web/customers/create-multiple-models to
see the complete page:

Multiple models in the same view

Chapter 7

[179]

Saving linked models in the same view
It could be convenient to save different kind of models in the same view. This
approach allows us to save time and to navigate from every single detail until a final
item that merges all data is created. Handling different kind of models linked to each
other it is not so different from what we have seen so far. The only point to take care
of is the link (foreign keys) between models, which we must ensure is valid.

Therefore, the controller action will receive the $_POST data encapsulated in the
model's class name container; if we are thinking, for example, of the customer
and reservation models, we will have two arrays in the $_POST variable, $_
POST['Customer'] and $_POST['Reservation'], containing all the fields
about the customer and reservation models.

Then all data must be saved together. It is advisable to use a database transaction
while saving data because the action can be considered as ended only when all the
data has been saved.

Using database transactions in Yii2 is incredibly simple! A database transaction starts
with calling beginTransaction() on the database connection object and finishes
with calling the commit() or rollback() method on the database transaction object
created by beginTransaction().

To start a transaction:

$dbTransaction = Yii::$app->db->beginTransaction();

Commit a transaction, to save all the database activities:

$dbTransaction->commit();

Rollback a transaction, to clear all the database activities:

$dbTransaction->rollback();

So, if a customer was saved and the reservation was not (for any possible reason),
our data would be partial and incomplete. Using a database transaction, we will
avoid this danger.

Working on the User Interface

[180]

Example – creating a customer and
reservation in the same view
We now want to create both the customer and reservation models in the same view
in a single step. In this way, we will have a box containing the customer model fields
and a box with the reservation model fields in the view.

Create a view in basic/views/reservations/createCustomerAndReservation.
php, with the fields from the customer and reservation models:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\helpers\ArrayHelper;
use \app\models\Room;
?>

<div class="room-form">

 <?php $form = ActiveForm::begin(); ?>

 <div class="model">

 <?php echo $form->errorSummary([$customer, $reservation]); ?>

 <h2>Customer</h2>
 <?= $form->field($customer, "name")->textInput() ?>
 <?= $form->field($customer, "surname")->textInput() ?>
 <?= $form->field($customer, "phone_number")->textInput() ?>

 <h2>Reservation</h2>
 <?= $form->field($reservation, "room_id")-
 >dropDownList(ArrayHelper::map(Room::find()->all(), 'id',
 function($room, $defaultValue) {
 return sprintf('Room n.%d at floor %d', $room-
 >room_number, $room->floor);
 })); ?>
 <?= $form->field($reservation, "price_per_day")->textInput()
 ?>
 <?= $form->field($reservation, "date_from")->textInput() ?>
 <?= $form->field($reservation, "date_to")->textInput() ?>

 </div>

 <div class="form-group">
 <?= Html::submitButton('Save customer and room', ['class'
 => 'btn btn-primary']) ?>

Chapter 7

[181]

 </div>

 <?php ActiveForm::end(); ?>

</div>

We have created two blocks in the form to fill out the fields for the customer and
the reservation.

Now, create a new action named actionCreateCustomerAndReservation in
ReservationsController in basic/controllers/ReservationsController.php:

 public function actionCreateCustomerAndReservation()
 {
 $customer = new \app\models\Customer();
 $reservation = new \app\models\Reservation();

 // It is useful to set fake customer_id to reservation
 model to avoid validation error (because customer_id is
 mandatory)
 $reservation->customer_id = 0;

 if(
 $customer->load(Yii::$app->request->post())
 &&
 $reservation->load(Yii::$app->request->post())
 &&
 $customer->validate()
 &&
 $reservation->validate()
)
 {

 $dbTrans = Yii::$app->db->beginTransaction();

 $customerSaved = $customer->save();

 if($customerSaved)
 {
 $reservation->customer_id = $customer->id;
 $reservationSaved = $reservation->save();

 if($reservationSaved)
 {
 $dbTrans->commit();
 }
 else {
 $dbTrans->rollback();
 }

Working on the User Interface

[182]

 }
 else {
 $dbTrans->rollback();
 }
 }

 return $this->render('createCustomerAndReservation', [
'customer' => $customer, 'reservation' => $reservation]);
 }

Ensure you pay attention to these two matters:

• $reservation->customer_id = 0: With this code, we avoid the validation
error relating to the customer_id requirement that appears when
$reservation is validated

• The database transaction will be committed only if the customer model and
reservation model's save action are completed

Browse to http://hostname/basic/web/reservations/create-customer-and-
reservation to see the complete page:

A customer and reservation created together

Chapter 7

[183]

Summary
In this chapter, we discussed about the user interface and how Yii helps us with its core
functionalities. The first important tool that Yii provides is Gii, which facilitates CRUD
actions and views' creation, which we used in Gii to manage rooms, reservations, and
customers, for example.

Next we saw how to embed JavaScript and CSS in a layout and views, with file
content or an inline block. This was applied to an example that showed you how to
change the number of columns displayed based on the browser's available width;
this is typically a task for websites or web apps that display advertising columns.

Again on the subject of JavaScript, you learned how to implement direct AJAX calls,
taking an example where the reservation detail was dynamically loaded from the
customers drop-down list.

Next we looked at Yii's core user interface library, which is built on Bootstrap and we
illustrated how to use the main Bootstrap widgets natively, together with DatePicker
(probably the most commonly used jQuery UI widget).

Finally, the last topics covered were multiple models of the same and different classes.
We looked at two examples on these topics: the first one to save multiple customers at
the same time and the second to create a customer and reservation in the same view.

In the next chapter, we will explain how to set up login authentication and
authorization, and will reach these goals from scratch.

[185]

Log in to the App
This chapter will explain how to set up login authentication and authorization.
Logging in is a fundamental step to protect our application and you will learn
how to reach these goals from scratch, using the web management free extension
that is broadly available on the Internet.

We will cover the following topics in this chapter:

• Creating a user login:
 ° For example: creating login form to access

• Configure a user authorization
 ° For example: creating an access control filter to authorize

• Role Based Access Control (RBAC)
 ° For example: configuring RBAC to set permissions for users

• Mixing Access Control Filter (ACF) and RBAC

 ° For example: managing users' roles to access rooms, reservations,
and customers

The first step will be creating an authenticated access to our app using a database
table to manage users and associate it to the Yii user component, through a user
model that extends IdentityInterface. We will provide an example of how to
use it: building a login form to authenticate the user.

The next step will be to control what actions a user can perform, using ACF and
RBAC. We will follow some examples using ACF and RBAC, and in the latter case
we will build a complete authorization manager from scratch.

Log in to the App

[186]

Creating a user login
The application's security starts with two well distinguished phases of the same user
login: authentication and authorization.

The first one, authentication, is the process of verifying a user's identity, usually
using a username and password, or email and password, process. Authentication is
completed when the user has been recognized and their state has been preserved for
further requests.

The second one, authorization, is the process of verifying that the user has the
permission to execute a specific action.

Since http requests are stateless, we need to preserve the login status,
which means that there is no data context sharing among them. This limit
is solved by sessions, mainly files where the web server stores the data. A
filename is used as a session identifier and passed to the browser through
a cookie or URL parameter of links contained in the HTML response.
In this way, the browser keeps the session active by sending the session
identifier to the web server through a cookie or a parameter in the request
URL, and the web server knows which file contains the session data.
A database table can be used instead of files with the same functionalities.

Yii2 implements authentication through the yii\web\User component, which
manages the user authentication status and also contains a reference to the
identityClass that represents the concrete object that we are referring to.

An identityClass class should implement five methods:

• findIdentity(): This method looks for an instance of an identity class using
the ID provided as parameter. It is commonly used when we need to keep
the login status via a session.

• findIdentityByAccessToken(): This one looks for an instance of the identity
class using the access token provided by the parameter. It is commonly used
when we need to authenticate using a single secret token.

• getId(): This one returns the ID of the identity instance.
• getAuthKey(): This method returns the key used to verify the cookie-based

login when the login has been completed using a cookie sent by the browser
(when Remember me is checked during the login).

• validateAuthKey(): This method verifies that the provided authKey passed
as a parameter is correct (in the cookie-based login).

Chapter 8

[187]

Often the identityClass class corresponds to a record of the User database table.
For this reason, usually the identityClass class implements IdentityInterface
and extends ActiveRecord.

It is now time to implement authentication. The first thing to do is to configure yii\
web\User components and its identityClass. Open the basic/config/web.php
file and add the user property to components if it does not already exist:

 'components' => [
 …
 …
 'user' => [
 'identityClass' => 'app\models\User',
],
],

Next, we have to create a database table where we store the users' records:

CREATE TABLE `user` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `username` varchar(255) NOT NULL,
 `auth_key` varchar(32) NOT NULL,
 `password_hash` varchar(255) NOT NULL,
 `access_token` varchar(100) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

Notice that we do not have a password field, but we have a
password_hash field. This because passwords are stored using the
hashing method. In models, we will have a setter setPassword()
method that gets plain text passwords to fill in the password_hash field.

Finally, let's update the basic/models/User class that handles the login status by
implementing IdentityInterface and connect it to the user table of database. This
is a common implementation for basic/models/User:

<?php
namespace app\models;

use Yii;
use yii\base\NotSupportedException;
use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

Log in to the App

[188]

class User extends ActiveRecord implements IdentityInterface
{
 public static function tableName()
 {
 return 'user';
 }

 public static function findIdentity($id)
 {
 return static::findOne(['id' => $id]);
 }

 public static function findIdentityByAccessToken($token, $type
 = null)
 {
 return static::findOne(['access_token' => $token]);
 }

 public static function findByUsername($username)
 {
 return static::findOne(['username' => $username]);
 }

 public function getId()
 {
 return $this->getPrimaryKey();
 }

 public function getAuthKey()
 {
 return $this->auth_key;
 }

 public function validateAuthKey($authKey)
 {
 return $this->getAuthKey() === $authKey;
 }

 public function validatePassword($password)
 {
 return Yii::$app->security->validatePassword($password,
 $this->password_hash);
 }

Chapter 8

[189]

 public function setPassword($password)
 {
 $this->password_hash = Yii::$app->security-
 >generatePasswordHash($password);
 }

 public function generateAuthKey()
 {
 $this->auth_key = Yii::$app->security-
 >generateRandomString();
 }

}

If our application also uses a cookie-based authentication, we need to fill
in the auth_key field too, as this will be passed to the client in the http
response. It is convenient to populate the auth_key field automatically
when a new user is inserted by overriding the beforeSave() method
in the \app\models\User model:

 public function beforeSave($insert)
 {
 if (parent::beforeSave($insert)) {
 if ($this->isNewRecord) {
 $this->auth_key = \Yii::$app->security-
 >generateRandomString();
 }
 return true;
 }
 return false;
 }

User components provide methods to log in, log out, and access the identityClass,
and they verify the effectiveness of the user authentication.

To verify whether the user is well authenticated, use the following:

// whether the current user is a guest (not authenticated)
$isGuest = Yii::$app->user->isGuest;

When a user is authenticated and we have an instance of the \app\models\User
model, we could complete the authentication by calling:

// find a user identity with the specified username.
// note that you may want to check the password if needed

Log in to the App

[190]

$userModel = User::findOne(['username' => $username]);

// logs in the user
Yii::$app->user->login($userModel);

Then, when we need to access the identity class:

// access to identity class that it is equivalent to $userModel
$identity = Yii::$app->user->identity;

Finally, to log the user out:

Yii::$app->user->logout();

Example – a login form to access
In this example, we will create a login form and complete the user authentication.
To proceed it is necessary to create a user database table from a SQL query, as
described in the previous paragraph.

To add a user, just insert a new record in the user table, with foo as the username
and foopassword as the password:

INSERT INTO `user` (
`username` ,
`password_hash` ,
)
VALUES (
'foo',
'$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW'
);

A password is hashed using the bcrypt method and cost with value 12,
available on the Internet through a quick Google search.

Then, create a new controller named MyAuthentication in basic/controllers/
MyAuthenticationController.php and ensure it contains two actions:
actionLogin and actionLogout.

The actionLogin method gets the username and password data from $_POST and
uses an $error variable to pass an error description to the view. If the username
and password data is filled in, the user will be found in the database table and the
inserted password will be validated, and after that the user will be logged in.

Chapter 8

[191]

Finally, actionLogout simply logs the user out from the session and redirects the
browser to the login page:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

use app\models\User;

class MyAuthenticationController extends Controller
{
 public function actionLogin()
 {
 $error = null;

 $username = Yii::$app->request->post('username', null);
 $password = Yii::$app->request->post('password', null);

 $user = User::findOne(['username' => $username]);

 if(($username!=null)&&($password!=null))
 {
 if($user != null)
 {
 if($user->validatePassword($password))
 {
 Yii::$app->user->login($user);
 }
 else {
 $error = 'Password validation failed!';
 }
 }
 else
 {
 $error = 'User not found';
 }
 }

 return $this->render('login', ['error' => $error]);
 }

Log in to the App

[192]

 public function actionLogout()
 {
 Yii::$app->user->logout();
 return $this->redirect(['login']);
 }

}

Now, create the view with this content in basic/views/my-authentication/login.
php. Before a user can log in, a form with the username and password to be filled
in will be displayed. When the username and password match an entry in the user
database table, a confirmation message and a logout button will be displayed:

<?php
use \yii\bootstrap\ActiveForm;
use \yii\helpers\Html;
use \yii\bootstrap\Alert;
?>

<?php
if($error != null) {
 echo Alert::widget(['options' => ['class' => 'alert-danger'
], 'body' => $error]);
}
?>

<?php if(Yii::$app->user->isGuest) { ?>

 <?php ActiveForm::begin(); ?>

 <div class="form-group">
 <?php echo Html::label('Username', 'username'); ?>
 <?php echo Html::textInput('username', '', ['class' => 'form-
 control']); ?>
 </div>

 <div class="form-group">
 <?php echo Html::label('Password', 'password'); ?>
 <?php echo Html::passwordInput('password', '', ['class' =>
 'form-control']); ?>
 </div>

 <?php echo Html::submitButton('Login', ['class' => 'btn btn-
 primary']); ?>

Chapter 8

[193]

 <?php ActiveForm::end(); ?>

<?php } else { ?>

 <h2>You are authenticated!</h2>

 <?php echo Html::a('Logout', ['my-authentication/logout'],
 ['class' => 'btn btn-warning']); ?>

<?php } ?>

Test it by pointing the browser to http://hostname/basic/web/my-
authentication/login and after filling out the form with foo as the username
and foopassword as the password, this should be displayed:

Login form to access

After clicking on the Login button, you should see:

Successful authentication

Log in to the App

[194]

This method does not provide error handling for the fields, because we are not
using a model to create form fields. If we had created a form model with username
and password fields, we could have added rules validation to this model and seen
input error handling (such as missing field value, wrong field length, and so on).
Fortunately, Yii2 has a login form model ready to use in basic/models/LoginForm.
php.

If we had wanted to use this model, we would have created a new action named
actionLoginWithForm in MyAuthenticationController that handles login fields
through the model instead of parameters from $_POST:

 public function actionLoginWithModel()
 {
 $error = null;

 $model = new \app\models\LoginForm();
 if ($model->load(Yii::$app->request->post())) {
 if(($model->validate())&&($model->user != null))
 {
 Yii::$app->user->login($model->user);
 }
 else
 {
 $error = 'Username/Password error';
 }
 }

 return $this->render('login-with-model', ['model' =>
 $model, 'error' => $error]);
 }

This is the content of basic/views/my-authentication/login-with-model.php:

<?php
use \yii\bootstrap\ActiveForm;
use \yii\helpers\Html;
use \yii\bootstrap\Alert;
?>

<?php
if($error != null) {
 echo Alert::widget(['options' => ['class' => 'alert-danger'
], 'body' => $error]);
}
?>
<?php if(Yii::$app->user->isGuest) { ?>

Chapter 8

[195]

 <?php $form = ActiveForm::begin([
 'id' => 'login-form',
]); ?>

 <?= $form->field($model, 'username') ?>

 <?= $form->field($model, 'password')->passwordInput() ?>

 <div class="form-group">
 <?= Html::submitButton('Login', ['class' => 'btn btn-
 primary', 'name' => 'login-button']) ?>
 </div>

 <?php ActiveForm::end(); ?>

<?php } else { ?>
 <h2>You are authenticated!</h2>

 <?php echo Html::a('Logout', ['my-authentication/logout'],
 ['class' => 'btn btn-warning']); ?>
<?php } ?>

We can look at the output by pointing our browser to http://hostname/basic/
web/my-authentication/login-with-model.

If we try to submit the form without filling out all the fields, we will immediately get
errors because they are activated by the form client-side validation:

Login error using the model

We can customize the LoginForm model class as we want if standard behavior is not
enough for our purposes.

Log in to the App

[196]

Configuring user authorization
Yii has two methods to authorize users: ACF and RBAC.

The first one, ACF, is used in applications that require a minimal and simple access
control. Basically, its behavior is based on five parameters:

• allow: This parameter specifies whether this is an allow or deny rule;
possible values are allow or deny

• actions: This parameter specifies which actions this rule matches,
and they are declared using an array of string

• roles: This parameter specifies which user roles this rule matches;
possible values are ?' and @, which mean respectively guest user and
authenticated user

• ips: This parameter specifies which client IP address this rule matches;
the IP address that can contain * as a wildcard

• verbs: This parameter specifies which verb (request method) this
rules matches

By default, if no rule matches, access will be denied.

ACF is enabled by overwriting the behaviors() method of Controller and
populating its access property with the content of some (or every one) of the
preceding parameters.

 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['login', 'logout', 'signup', 'index'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'signup', 'index'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],
],
],
];
 }

Chapter 8

[197]

In this example, the login, logout, signup, and index actions are enabled for guest
users (all users) and the logout action is enabled only for authenticated ones.

ACF has many other parameters that can be defined, such as controllers , to
define which controllers this rule matches (if it is empty, this means all controllers);
matchCallback whose value is a PHP callable function called to verify whether this
rule can be applied or not; and finally denyCallback, whose value is a PHP callable
function used when this rule will deny access.

When a rule is denied, there are two different behaviors according to the role of the
user. If a guest is denied, a denied rule will call the yii\web\User::loginRequired()
method to redirect the user's browser to the login page; if the user is authenticated,
it will throw a yii\web\ForbiddenHttpException exception.

This behavior can be customized using the denyCallback property mentioned
earlier, and by defining the correct callable PHP function.

Obviously, any detail about the logged in user is not considered by this type of
authorization. During configuration in the behaviors() method, in fact, no detail
about the user ever appears (for example, role). So we cannot define more precisely
which conditions a user can execute or not a controller action.

ACF suggests only if we have to limit access to an authenticated user, without
needing some other details to allow the controller action to be executed.

But in all those cases in which it is enough to limit access based on the condition
that the user is logged in or not, it is the best approach. In the REST API with limited
access (where only the authenticated users are able to make calls), ACF is probably
the best solution.

Example – creating an ACF to authorize the
users
Now let's look at how to create an ACF to authorize the user to display or not display
the page content.

We have two actions: actionPrivatePage and actionPublicPage. The first one is
accessible only from an authenticated user and the second one is publically accessible.

In MyAuthenticationController.php, let's add the behaviors() method with the
following content:

 public function behaviors()
 {
 return [

Log in to the App

[198]

 'access' => [
 'class' => AccessControl::className(),
 'only' => ['public-page', 'private-page'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['public-page'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['private-page'],
 'roles' => ['@'],

],
],

 // Callable function when user is denied
 'denyCallback' => function($rule, $data) {
 $this->redirect(['login']);
 }
],
];
 }

This method applies an ACF to only two actions, actionPublicPage and
actionPrivatePage (based only on the property value) and restricts access
for private pages that specify the roles as @.

Then, we added the denyCallback property to indicate how the behavior should
appear when access is denied to the user. In this case, we set it so that the user
should be redirected to the login action of MyAuthenticationController.

RBAC
RBAC is the right choice when we need more granularity of authorization controls.

RBAC involves two parts:

• The first one is to build up the RBAC authorization data
• The second one is to use the authorization data to perform further

access controls

Chapter 8

[199]

We'll start now by building up the RBAC authorization data. RBAC can be initialized
in two ways: through PhpManager, instancing the yii\rbac\PhpManager component
that will store RBAC data in the @app/rbac folder, and through DbManager,
instancing the yii\rbac\DbManager component, which will use four database tables
to store its data.

We need to configure the authManager application component in the main
configuration file using one of the authorization managers, yii\rbac\PhpManager
or yii\rbac\DbManager.

The following code shows how to configure authManager in basic/config/web.
php using the yii\rbac\PhpManager class:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
],
 // ...
],
];

The following code shows how to configure authManager in basic/config/web.
php using the yii\rbac\DbManager class:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\DbManager,
],
 // ...
],
];

Both these methods are based on three objects: permissions, roles, and
rules. The permissions method represents actions that can be controlled;
roles are a set of permissions to which the target can be enabled or less; and
rules are extra validations that will be executed when a permission is checked.
Finally, permissions or roles can be assigned to users and identified by the
IdentityInterface::getId() value of the Yii::$app->user component.

When access permissions do not change, we could create a console command to
launch in case, or once, permissions are changed. However, we will not discuss
that now as you will see the console command in-depth in the next chapters.

Log in to the App

[200]

Instead, we will write permissions using a fake action to only execute permissions,
roles, and assignments settings.

In basic/controllers/MyAuthenticationController.php, add this action named
actionInitializeAuthorizations:

 public function actionInitializeAuthorizations()
 {
 $auth = Yii::$app->authManager;

 // Reset all
 $auth->removeAll();

 // add "createReservation" permission
 $permCreateReservation = $auth-
 >createPermission('createReservation');
 $permCreateReservation->description = 'Create a
 reservation';
 $auth->add($permCreateReservation);

 // add "updatePost" permission
 $permUpdateReservation = $auth-
 >createPermission('updateReservation');
 $permUpdateReservation->description = 'Update
 reservation';
 $auth->add($permUpdateReservation);

 // add "operator" role and give this role the
 "createReservation" permission
 $roleOperator = $auth->createRole('operator');
 $auth->add($roleOperator);
 $auth->addChild($roleOperator, $permCreateReservation);

 // add "admin" role and give this role the
 "updateReservation" permission
 // as well as the permissions of the "operator" role
 $roleAdmin = $auth->createRole('admin');
 $auth->add($roleAdmin);
 $auth->addChild($roleAdmin, $permUpdateReservation);
 $auth->addChild($roleAdmin, $roleOperator);

 // Assign roles to users. 1 and 2 are IDs returned by
 IdentityInterface::getId()
 // usually implemented in your User model.
 $auth->assign($roleOperator, 2);
 $auth->assign($roleAdmin, 1);
 }

Chapter 8

[201]

Before calling this action from your browser, make sure that the
folder in basic/rbac already exists and that it is writable.

In order to start this action from the beginning, two permissions and two roles are
created, then the createReservation permission is added as a child to the operator
role and the updateReservation permission is added as a child to the admin role,
together to the operator role.

If we check the createReservation permission for the user with the roleOperator
role, it will be successfully confirmed. The same happens if we check the user with
adminOperator. But when we check the updateReservation permission on the user
with the roleOperator role, it will be denied since that permission is not assigned to
that specific role.

Permissions and role names can be chosen without restrictions,
because they are used as parameters when checking permissions.

Now let's point our browser to http://hostname/basic/my-authentication/
initialize-authorizations in order to launch the permissions creation.

The content of files created through this action in the basic/rbac folder are simply
arrays. This is the content of the items.php file:

<?php
return [
 'createReservation' => [
 'type' => 2,
 'description' => 'Create a reservation',
],
 'updateReservation' => [
 'type' => 2,
 'description' => 'Update reservation',
],
 'operator' => [
 'type' => 1,
 'children' => [
 'createReservation',
],
],
 'admin' => [
 'type' => 1,
 'children' => [

Log in to the App

[202]

 'updateReservation',
 'operator',
],
],
];

This is the content of assignments.php:

<?php
return [
 2 => [
 'operator',
],
 1 => [
 'admin',
],
];

Finally, to check the user authorization, it is enough to call the yii\web\
User::can() method:

if (\Yii::$app->user->can()) {
 // create reservation permission is enabled to current user
}

Example – configuring RBAC to set permissions for
users
In this example, we will create a user permissions management
system from scratch, based on RBAC. We will create a new controller
named AuthorizationManagerController in basic/controllers/
AuthorizationManagerController.php that will display all the users
and all the available permissions and roles from the database. This example
is based on the user database table already used in the previous paragraphs.

Let's take a look at its structure again:

CREATE TABLE `user` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `username` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `auth_key` varchar(32) COLLATE utf8_unicode_ci NOT NULL,
 `password_hash` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `access_token` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL,
 PRIMARY KEY (`id`)
)

Chapter 8

[203]

We will truncate the database table and insert these records, five items, to be used in
the next examples:

TRUNCATE user;

INSERT INTO `user` (`id`, `username`, `auth_key`, `password_hash`,
`access_token`) VALUES
(1, 'foo', '', '$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.
y34XBUfBWB4cppW',
NULL),
(2, 'userA', '',
'$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW',
NULL),
(3, 'userB', '',
'$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW',
NULL),
(4, 'userC', '',
'$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW',
NULL),
(5, 'admin', '',
'$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW',
NULL);

Now that we have data to work with, we can pass to write code.

The first method to create in this controller is initializeAuthorizations(),
which has to initialize all the available authorizations in the system:

 <?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use yii\filters\AccessControl;
use app\models\User;
use app\models\LoginForm;

class MyAuthenticationController extends Controller
{

public function initializeAuthorizations()
 {
 $auth = Yii::$app->authManager;

 $permissions = [

Log in to the App

[204]

 'createReservation' => array('desc' => 'Create a
 reservation'),
 'updateReservation' => array('desc' => 'Update
 reservation'),
 'deleteReservation' => array('desc' => 'Delete
 reservation'),

 'createRoom' => array('desc' => 'Create a room'),
 'updateRoom' => array('desc' => 'Update room'),
 'deleteRoom' => array('desc' => 'Delete room'),

 'createCustomer' => array('desc' => 'Create a
 customer'),
 'updateCustomer' => array('desc' => 'Update
 customer'),
 'deleteCustomer' => array('desc' => 'Delete
 customer'),
];

 $roles = [
 'operator' => array('createReservation', 'createRoom',
 'createCustomer'),
];

 // Add all permissions
 foreach($permissions as $keyP=>$valueP)
 {
 $p = $auth->createPermission($keyP);
 $p->description = $valueP['desc'];
 $auth->add($p);

 // add "operator" role and give this role the
 "createReservation" permission
 $r = $auth->createRole('role_'.$keyP);
 $r->description = $valueP['desc'];
 $auth->add($r);
 if(false == $auth->hasChild($r, $p)) $auth-
 >addChild($r, $p);
 }

 // Add all roles
 foreach($roles as $keyR=>$valueR)
 {
 $r = $auth->createRole($keyR);
 $r->description = $keyR;

Chapter 8

[205]

 $auth->add($r);

 foreach($valueR as $permissionName)
 {
 if(false == $auth->hasChild($r, $auth-
 >getPermission($permissionName))) $auth-
 >addChild($r, $auth->getPermission($permissionName));
 }

 }

 // Add all permissions to admin role
 $r = $auth->createRole('admin');
 $r->description = 'admin';
 $auth->add($r);
 foreach($permissions as $keyP=>$valueP)
 {
 if(false == $auth->hasChild($r, $auth-
 >getPermission($permissionName))) $auth->addChild($r,
 $auth->getPermission($keyP));
 }
 }
}

At the top of this method, we created a permissions and roles list, then we assigned
them to the Yii authorization component. Take care to ensure that, after calling this
method for the first time, you check whether any children already exist by calling
the hasChild method on every addChild() insert attempt.

We have created a role for each permission, because assign()
and revoke() take a role and not a permission as a first parameter,
so we are required to replicate a role for every permission.

Next, we can create actionIndex(), which launches the previous initialize
authorizations, getting all the users and populating an array with all the permissions
assigned to every user. This is the content of the actionIndex() method:

 public function actionIndex()
 {
 $auth = Yii::$app->authManager;

 // Initialize authorizations
 $this->initializeAuthorizations();

Log in to the App

[206]

 // Get all users
 $users = User::find()->all();

 // Initialize data
 $rolesAvailable = $auth->getRoles();
 $rolesNamesByUser = [];

 // For each user, fill $rolesNames with name of roles
 assigned to user
 foreach($users as $user)
 {
 $rolesNames = [];

 $roles = $auth->getRolesByUser($user->id);
 foreach($roles as $r)
 {
 $rolesNames[] = $r->name;
 }

 $rolesNamesByUser[$user->id] = $rolesNames;
 }

 return $this->render('index', ['users' => $users,
 'rolesAvailable' => $rolesAvailable, 'rolesNamesByUser' =>
 $rolesNamesByUser]);
 }

Follow the content of the index action view in basic/views/authorization-
manager/index.php:

<?php
use yii\helpers\Html;
?>

<table class="table">
 <tr>
 <td>User</td>
 <?php foreach($rolesAvailable as $r) { ?>
 <td><?php echo $r->description ?></td>
 <?php } ?>
 </tr>

 <?php foreach($users as $u) { ?>
 <tr>

Chapter 8

[207]

 <td><?php echo $u->username ?></td>

 <?php foreach($rolesAvailable as $r) { ?>
 <td align="center">
 <?php if(in_array($r->name, $rolesNamesByUser[$u-
 >id])) { ?>
 <?php echo Html::a('Yes', ['remove-role',
 'userId' => $u->id, 'roleName' => $r->name]); ?>
 <?php } else { ?>
 <?php echo Html::a('No', ['add-role', 'userId'
 => $u->id, 'roleName' => $r->name]); ?>
 <?php } ?>
 </td>
 <?php } ?>
 </tr>
 <?php } ?>

</table>

This loops for each user's content of the $rolesAvailable array. To see this output,
point your browser to http://hostname/basic/web/authorization-manager/
index:

Users/Permissions table

Every permission status is a link to the actions of adding a role or removing a role
(depending on the current status).

Now we must create the last two actions: add a role and revoke a role to the user:

 public function actionAddRole($userId, $roleName)
 {
 $auth = Yii::$app->authManager;

 $auth->assign($auth->getRole($roleName), $userId);

Log in to the App

[208]

 return $this->redirect(['index']);
 }

 public function actionRemoveRole($userId, $roleName)
 {
 $auth = Yii::$app->authManager;

 $auth->revoke($auth->getRole($roleName), $userId);

 return $this->redirect(['index']);
 }

Mixing ACF and RBAC
ACF contains a property named role that is usually filled with ? to indicate
that access is available for all users, and @ to indicate that access is restricted to
authenticated ones. But there is a third option that refers its content to the role
name of the RBAC system.

For each controller, therefore, it is enough to overwrite behaviors() by specifying
the roles that can access the actions inside the controller and then to associate users
to the role, in order to allow or deny access.

Example – managing users' roles to access
rooms, reservations, and customers
In this example, we will show you how to manage the access to the controller actions
using ACF and RBAC.

We will use the foo user to simulate an authenticated user for RoomsController.
The first thing to do is to extend the behaviors() method of RoomsController
in basic/controller/RoomsController.php with this content:

Use yii\filters\AccessControl;

 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'rules' => [

Chapter 8

[209]

 [
 'allow' => true,
 'actions' => ['create'],
 'roles' => ['operator'],
],
 [
 'allow' => true,
 'actions' => ['index'],
],
],

],
];
 }

With this code, we will guarantee access to the create action only to users with the
operator role, while the index action access is given to all users and all other actions
are denied to everyone.

So, if we try to browse to http://hostname/basic/web/rooms/create, we should
see an error page with a forbidden error. This is because we are trying to access a
page with insufficient permissions.

Now, we can execute the authentication simply by going to http://hostname/
basic/web/my-authentication/login and typing foo as the username and
foopassword as the password, since we already created a user with these credentials
in the database in the previous chapter. We should see a successfully logged in page.

The last thing to do is to assign the operator role to the foo user. We can use
the authorization manager just created in http://hostname/basic/web/
authorization-manager/index. Now, click on the cell referring to the foo user and
the operator role. In this way, we have assigned the operator role to the foo user.

Finally, we can refresh the rooms creation page at http://hostname/basic/web/
rooms/create. We can see now the create action page of the rooms controller.

Log in to the App

[210]

Summary
In this chapter, you learned how to apply user authentication and authorization
to an app. The first step was to create an authenticated access to the application.
For this purpose, we created a database table to manage users and associated it to
the Yii user component through a user model that extends IdentityInterface.

The first example in this chapter was building a login form to authenticate the user.
The next step was to control which actions a user can perform or not, and this was
the case for the authorization phase too. As you saw, Yii provides two solutions for
this matter: ACF and RBAC. We configured a controller to use ACF and then you
saw how RBAC is a more powerful tool to manage user authorization with more
granularity. Finally, we built an authorization manager all by ourselves.

In the next chapter, we will cover topics such as installing and using an advanced
template and having multiple apps in the same context.

[211]

Frontend to Display Rooms
to Everyone

This chapter will cover topics about using templates to have multiple apps in the
same context.

Yii, indeed, allows you to have an advanced installation able to contain multiple
instances of an Yii application. Therefore, every folder in the project is actually a
new Yii application.

We will see how to install and configure the project, share data between them,
and finally customize the URL to make them pretty for the search engine.

We will cover the following topics in this chapter:

• Using an advanced template to split frontend and backend
• Configuring an application using init

 ° Example – creating frontend for public access

• Sharing ActiveRecord models among applications
 ° Example – displaying available rooms in frontend site

• Customizing a URL in an advanced template
 ° Example – using advanced templates in the same domain

• How to use advanced templates in shared hosting

Frontend to Display Rooms to Everyone

[212]

Using an advanced template to split
frontend and backend
Until now, we have seen simple applications with only one single entry point to
access. However, a single entry point isn't enough for more general applications.
In advanced web applications, in fact, we have not just a single entry point but
often three: frontend, backend, and a common area used as shared zone for every
entry point.

The frontend entry point is a public access that is available to all users
without restrictions.

On the other hand, the backend entry point is a restricted access available only
for authenticated users that have administration roles for managing content in
the web application.

Finally, the common entry point is used to share data between entry points.

Think about a reservation system, where frontend is the website displaying room
availability and prices, while backend is the administration area, where operators
can manage rooms.

In the same way, another example of frontend and backend could be a newspaper
website that comprises a frontend area with news publically visible to all users,
and a backend area where journalists can insert news.

Now that we know the differences between frontend and backend and their aim,
we will create an advanced Yii application.

The steps to install an advanced template of the Yii application are similar to the
ones to install basic templates.

It is highly recommended, at this point, to have a console
access the host, where we can put files.

Locate the web hosting document root folder in the web hosting. Starting from it,
we will launch commands to create the advanced application in a new subfolder
named yiiadv, which stands for Yii installation with the advanced template.

We will install the Yii advanced template using Composer as it is the most
recommended way. If we have not installed Composer as the global application
yet, we can install it now in the yiiadv folder.

Chapter 9

[213]

The following are the instructions to install Yii advanced template starting from
document root folder:

$ curl -sS https://getcomposer.org/installer | php

$ php composer.phar global require "fxp/composer-asset-plugin:~1.0.0"

$ php composer.phar create-project --prefer-dist yiisoft/yii2-app-
advanced yiiadv

By opening the yiiadv subfolder, we can see some new folders beside the basic
template, which are as follows:

• backend: This folder is the entry point for the backend application of
the project

• common: This folder is the entry point for the application containing
common data for the other applications in the project

• console: This folder is the entry point for the console application of
the project

• frontend: This folder is the entry point for the frontend application
of the project

This structure is the result of the experience on developing the web application.
Backend and frontend entry points have been formerly discussed; the common
entry point is an area where to put data (common models, components, and so on)
shared among all the other applications in the project.

Every application in the project (backend, frontend, common,
and console) is considered as a single namespace in the web
application. So, when we refer to RoomsController in the
frontend, the complete class namespace will be frontend/
controllers/RoomsController.

This installation is still raw and requires an initialization using the init command.
However, if we try to open any of these applications, we can recognize the same
basic template structure with assets, config, controllers, models, runtime,
views, and web subfolders. So, a basic template application can be considered the
only unique application in an advanced template one.

Finally, in the advanced template properties, every application starting point is
always in web/index.php. For example, for the frontend application, the starting
point is frontend/web/index.php.

Frontend to Display Rooms to Everyone

[214]

Configuring an application using init
Apart from having multiple kinds of configuration, we can have multiple entry
points in advanced applications.

In advanced web applications, in fact, we also have a different approach in the
development stage. We usually have two environments: development and production.
In the first one, we make tests using fake users, data, and so on, while in the second
one we must take care to guarantee the proper functioning of the project.

Therefore, we will have different sets of configuration files and parameters based on
environments where we will work in.

We could wish, in fact, to test the application using the development database
instead of the production database, or specific parameters available only in a
specific environment.

Indeed, the init command offers this capability to switch different configuration
and parameters for different environments. Basically, there are two environments:
development and production.

A first initialization is needed to make sure that the project could work.

The init command can be launched both in interactive mode as well as in
noninteractive (silent) one.

In the interactive mode, starting from the yiiadv folder:

$ php init

And in a noninteractive (silent) mode:

$ php init --env=Development --overwrite=All

In both modalities, we need to specify only the target environment if we want to
overwrite all the current configuration files.

This command will simply copy the content of the chosen environment (according to
the type of selected environment) in the respective application folder, with the same
name starting from root.

For example, open the folder in environments/dev/backend. We will see two
folders: config and web, containing the first two configuration files and the other
files index.php and index-test.php. These files will overwrite the corresponding
files in the backend folder starting from the root folder of the project.

Chapter 9

[215]

So, if we launch the preceding command with parameters of init, the content of the
folders in environments/dev (the backend, common, console, and frontend folders)
will be copied in the backend, common, console, and frontend folders starting from
the root folder of the project.

Also, with this command, other operations such as making some folders writable
or applying specific values to configuration properties, are accomplished. However,
the init command is mainly used to switch different configurations and index.php
files.

Starting from any application of the project (backend, frontend, common, and console),
configuration values and parameters taken from the top of any application's index.
php file (backend, frontend, common, or console) are read in the following sequence:

• common/config/main.php

• common/config/main-local.php

• config/main.php

• config/main-local.php

This means that the config parameters are initially read firstly from common/
config/main.php then from common/config/main-local.php, then again from
application config/main.php, and finally from application config/main-
local.php. The properties with same name will be overwritten during the reading
of other configuration files.

Therefore, if the same configuration property is declared in all four configuration files,
its value will be the same as config/main-local.php, which is the last configuration
file to be read.

Since, we locally have a last chance to apply differences towards a specific property
of configuration with the -local version of files, the content of environment
subfolders will be only about the -local version of a specific file. For example, if we
open environments/dev/backend/config path, we will see only main-local.php
and params-local.php, practically the last two filenames that index.php will read
in sequence.

So if we change the database connection parameters in environments/dev/
backend/config/main-local.php and then apply init with the dev target
environment, this file will overwrite backend/config/main-local.php. This
is the last configuration file that backend/web/index.php will read during its
bootstrap (if we browse /backend/web/index.php).

Frontend to Display Rooms to Everyone

[216]

Now that we have executed the init command in the dev environment, we can
point the browser to http://hostname/yiiadv/frontend/web and we should
see the same congratulations page of the basic template.

In the same way, the backend entry point is also available pointing to
http://hostname/yiiadv/backend/web, where a login form is displayed
by default (this is because it is a restricted area).

If we want to add a new application in the project, it is enough
to copy the content of frontend or backend folder to another new
folder in the project.

Example – creating frontend for public access
As we have seen, the frontend application is a reachable pointing browser to
http://hostname/yiiadv/frontend/web.

However, the first thing to set in the frontend access is URL-friendly customization;
this is because it is important that our public website is well positioned in the search
engine.

As we have done in the basic template, we can render pretty URLs in the advanced
template too, following these two steps:

1. Create the .htaccess file in yiiadv/frontend/web.
2. Add the urlManager component in yiiadv/frontend/config/main.php.

In step 1, it is enough to create a file in yiiadv/frontend/web/.htaccess with the
following content:

RewriteEngine on

If a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
Otherwise forward it to index.php
RewriteRule . index.php

This code will make the web server URL rewrite work, rewriting all requests to the
index.php file in yiiadv/frontend/web.

Chapter 9

[217]

While, in step 2, we must add the urlManager property in yiiadv/frontend/
config/main.php:

 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

Now we can refresh the web browser to http://hostname/yiiadv/frontend/web
and navigation to the URL link on the top, and we can see, for instance, that URL is
in pretty form.

We can consider the frontend folder as a Yii standalone application and we can
create controllers, views, models, and so on.

Sharing ActiveRecord models among
applications
Although every folder in the main Yii project could be considered a Yii standalone
application, with its own controllers, models, views, and so on, it is conventionally
accepted that all shared data are located in the common folder.

So every shared model (such as User, Room, Reservation, and Customer) that
could be used in other Yii applications, should be inserted in common/models,
under the common\models namespace.

From my point of view, when an application needs to use an ActiveRecord from
common/models, I rather prefer to point to an extended version in its namespace,
so as to have a chance again to add custom methods or properties to model for
that application.

For example, consider we have the Room model in common/models:

<?php
namespace common\models;
class Room extends ActiveRecord
{
….
….
}

Frontend to Display Rooms to Everyone

[218]

In the backend application, we will create an empty extension to the Room class from
common namespace:

<?php
namespace backend\models;
class Room extends \common\models\Room
{
}

In this way, we have the possibility to add custom methods or properties to that
specific application (namespace), if needed.

Therefore, every controller, view, or model in backend namespace will point to \
backend\models\Room, when it needs to refer to the Room ActiveRecord.

Example – displaying available rooms in the
frontend site
This example will emphasize the few differences between basic and advanced
applications occurring in the developing phase.

The first thing to do is to check whether the database configuration is right,
since we have just initialized an advanced application.

The database configuration on the production server can be
found in common/config/main.php, whereas the database
configuration on the developing server is located in common/
config/main-local.php, which overwrites the configuration
in common/config/main.php.

Open common/config/main.php and add the db property to the configuration array:

 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii_db',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
],

Change the database properties (host, username, and password) according to our
configuration parameters.

Chapter 9

[219]

Remember to comment out the database configuration in common/
config/main-local.php to avoid overwriting configurations.

In this way, we will have complete access to the database and tables previously
created, and to rooms' data, indeed.

Now, we are ready to create:

1. The Room model.
2. The Rooms controller.
3. View of index action of the Rooms controller.

The first step requires the use of Gii. By default, Gii is enabled with basic
configuration in the frontend application (only from localhost).

We will overwrite this configuration so as to use Gii from everywhere. Therefore, in
the frontend local configuration (frontend/config/main-local.php), which has
the following lines:

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';

Replace them with these ones:

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['*']
];

Now, we can finally access Gii from everywhere. Using the browser, go to http://
hostname/yiiadv/frontend/web/gii; a welcome page should be displayed.

Go to Model Generator and fill the first field, Table Name, with room, the name of
model we are creating, just as we have done in the previous chapters.

Since, we are working with the advanced template, model files (like other objects
created by Gii) will be created in the frontend namespace, or rather in frontend/
models.

Frontend to Display Rooms to Everyone

[220]

Therefore, it is necessary to change the first field of Model Generator, Namespace,
so as to switch from app/models to common/models, the shared area of common data:

Gii model generator in advanced template

In common/models, there should be a Room.php file containing the model of the
Room table.

The second step it is to create the controller and the action of the controller to
display the rooms list.

Let's create the controller under frontend/controllers/RoomsController.php
with the following content:

<?php
namespace frontend\controllers;

use Yii;
use yii\web\Controller;
use yii\data\ActiveDataProvider;
use common\models\Room;

Chapter 9

[221]

class RoomsController extends Controller
{
 public function actionIndex()
 {
 $dataProvider = new ActiveDataProvider([
 'query' => Room::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);

 return $this->render('index', [
 'dataProvider' => $dataProvider,
]);
 }
}

Make sure that the namespace declaration on top is frontend\controllers, since
every application in the web project has its own namespace (in this case, frontend).

We should never directly subclass yii\web\Controller, instead
we should create a custom controller for each application, for example,
frontend\controllers\BaseController, and then subclass it
from every controller that we will create in frontend\controllers.

Finally, the third step is to create view content of index action in frontend/views/
rooms/index.php:

<div class="row">
<?php foreach($dataProvider->getModels() as $model) { ?>
 <div class="col-md-3" style="border:1px solid gray; margin-
 right:10px; padding:20px;">
 <h2>Room #<?= $model->id ?></h2>
 Floor: <?= $model->floor ?>

 Number: <?= $model->room_number; ?>
 </div>
<?php } ?>
</div>

Frontend to Display Rooms to Everyone

[222]

This will produce the following output with the data available in the database:

Rooms availability in the frontend

Customizing a URL in the advanced
template
When working with multiple applications in the same project, you might require
access from an application to another, for example, from the backend to a frontend
link. This is because we want to display public page rendering in the frontend after
inserting data in the backend.

The urlManager property is customized with references about the application
where it is defined. However, we can add specific properties to refer to the
respective application.

Therefore, in common/config/main.php, we can add these two properties:

 'urlManagerFrontend' => [
 'class' => 'yii\web\urlManager',
 'baseUrl' => '/yiiadv/frontend/web',
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

 'urlManagerBackend' => [
 'class' => 'yii\web\urlManager',
 'baseUrl' => '/yiiadv/backend/web',
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

Chapter 9

[223]

For example, we can get a URL to frontend from everywhere. It is enough to write
this code echo Yii::$app->urlManagerFrontend->createUrl(...) to create a
URL from frontend.

It is necessary to put the .htaccess file in the web folder of
each application that has the enablePrettyUrl property in
the urlManager configuration.

Yii also provides convenient aliases to application paths, other than the default
aliases of the basic template:

• @common: This is the common directory
• @frontend: This is the frontend web application directory
• @backend: This is the backend web application directory
• @console: This is the console directory

Example – using the advanced template in
the same domain
We have seen that the advanced template creates more applications in the same web
application than we can reach using /frontend or /backend or any other application
name prefix in the URL. However, it is not advisable, especially for frontend, that all
URLs contain a /frontend prefix.

We want to have this URL format for frontend: http://hostname/yiiadv/; and
this one for backend: http://hostname/yiiadv/admin (we can choose the name
we want).

All requests have to be managed on the /yiiadv folder level. So, we will add an
.htaccess file in the /yiiadv folder that it will dispatch to the correct route.

Here is a list of the actions that must be performed:

1. Configure .htaccess in /yiiadv to handle all requests.
2. Configure the backend application to customize its baseUrl.
3. Configure the frontend application to customize its baseUrl.

It is obvious that steps 2 and 3 must be repeated for any other application, for which
we want to manipulate the base URL.

Frontend to Display Rooms to Everyone

[224]

For step 1, let's put the .htaccess file with the following content in the /yiiadv
folder:

RewriteEngine on
For Backend
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_URI} ^/yiiadv/admin
RewriteRule ^admin(/.+)?$ /yiiadv/backend/web/$1 [L,PT]
For Frontend
RewriteCond %{REQUEST_URI} !index.php
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ /yiiadv/frontend/web/$1

Therefore, in the Backend block of .htaccess, we catch requests in /yiiadv/admin
and redirect them to the yiiadv/backend/web/ base URL.

For step 2, the backend requests capture is completed when we also make these
changes in backend configuration, adding the request property in backend/
config/main.php:

 'request' => [
 // !!! insert a secret key in the following (if it is
 empty) - this is required by cookie validation
 'cookieValidationKey' => '2OofX7Q9e-
 EQLSK5BEk70_07fUXkka8y',
 'baseUrl' => '/yiiadv/admin',
],

Now, point the browser to http://hostname/yiiadv/admin and if we did
everything correctly we should finally be able to see the login page.

Make sure there is a request attribute in the configuration array
in backend/config/main-local.php; we need to comment
this otherwise it will overwrite request in the backend/
config/main.php file that we have just changed.

Finally, just like we have done with backend requests, in step 3, we need to change
the request property for frontend requests under frontend/config/main.php in
the configuration:

 'request' => [
 // !!! insert a secret key in the following (if it is
 empty) - this is required by cookie validation

Chapter 9

[225]

 'cookieValidationKey' =>
 'ear8GcRjBGXQgKVwfEpbApyj7Fb0UKXk',
 'baseUrl' => '/yiiadv',
],

Now, point the browser to http://hostname/yiiadv and if we did everything
correctly, we should see the congratulation page of the frontend.

As the last part of this example, if we want to reach the frontend to the
http://hostname URL and backend to the http://hostname/admin URL,
we must put an .htaccess file in the document root folder with this content:

RewriteEngine on
For Backend
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_URI} ^/admin
RewriteRule ^admin(/.+)?$ /yiiadv/backend/web/$1 [L,PT]
For Frontend
RewriteCond %{REQUEST_URI} !index.php
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ /yiiadv/frontend/web/$1

Then, we must change the request property of the frontend configuration in
frontend/config/main.php with:

 'request' => [
 // !!! insert a secret key in the following (if it is
 empty) - this is required by cookie validation
 'cookieValidationKey' =>
 'ear8GcRjBGXQgKVwfEpbApyj7Fb0UKXk',
 'baseUrl' => '',
],

Finally, change the request property of the backend configuration in backend/
config/main.php with:

 'request' => [
 // !!! insert a secret key in the following (if it is
 empty) - this is required by cookie validation
 'cookieValidationKey' => '2OofX7Q9e-
 EQLSK5BEk70_07fUXkka8y',
 'baseUrl' => '/admin',
],

In this way, the frontend is now reachable pointing the browser to http://hostname
and the backend to http://hostname/admin.

Frontend to Display Rooms to Everyone

[226]

How to use the advanced template in the
shared hosting
In my opinion, almost all applications should use the advanced template, since it
provides the right project structure from the very start, so as to immediately handle
frontend and backend occurring in every web project.

However, we have also seen that the advanced template requires a console access
to execute installation and initialization commands. So, if we have a remote hosting
without this capability, it could be difficult for us to install and use Yii with the
advanced template.

If we cannot add the console capability to remote hosting, we have two possibilities:

• Create the project in the local environment where we can install what
we want and need; it is enough to locally install a WAMP or a LAMP
distribution (based on the operating system of the hosting machine)
and then launch the composer command to install Yii

• Launch the init command to initialize the project (it could be initialized
from start in production mode so that no other changes are needed)

Therefore, the project is ready to be uploaded to remote hosting. Remember that
project environment is in production mode, but in this way, we do not have to change
the configuration manually if we want to pass from development to production mode.

Summary
In this chapter, we saw how to use Yii to build a modern web project based on
frontend and backend applications. We have found out differences between basic
and advanced templates, installing our first advanced project based on advanced
templates.

Then we have used the init command to customize development or production
environment in which to make the application run. Then we have written an
example to display in the frontend rooms list, similar to what we have done in
the previous basic template.

Finally, we customized URLs to make them pretty also in the advanced template, to
refer to frontend and backend without URL application prefix. We also learned how
to use advanced templates in shared hosting that does not have access to the console.

In the next chapter, we will explain how to write a multilingual app, adapt, and
render the app in different languages without changes to the source code.

[227]

Localize the App
This chapter explains how to write a multilingual app. Localization, also known as
Internationalization (I18N), takes care that a software application can be adapted
and rendered in different languages without changes in the source code. This is
particularly important in a web application where users speak different languages.

Yii provides powerful tools to handle this task, choosing from the file or
database approach (according to the application's complexity). We will cover
the following topics:

• Setting the default language
• File-based translations

 ° Example – using file-based translation for the entire website

• Placeholders formatting
• DB-based translations

 ° Example – translating the room's description using DB

Setting the default language
A Yii application uses two kinds of languages: source language and target language.

Source language specifies the language employed to write the source code; the
default setting is en-US, and it is advisable not to change this value since English is
the most used and known language in software development. On the other hand,
there is a target language used to display content to end users, and we are going to
work specifically on this aspect.

Localize the App

[228]

This language can be set in the configuration file using the language property:

return [
 // set target language to be Italian
 'language' => 'it-IT',

];

Alternatively, you can use the following code:

// change target language to Italian
\Yii::$app->language = 'it-IT';

Now, let's see how to handle app localization in practice.

File-based translations
This is the most simple way to translate text messages from one language to another.
Basically, there are one or more files for each language containing keywords with
text representations; we will put these keywords in the source code where the
framework will replace them with text.

The pairs of keyword-text translations are grouped by categories representing
the filenames where they are stored. These pairs are array keys-values, where key
indicates keywords, and value indicates text translations.

By default, the path folder containing translations for a specific language is in @app/
messages/<language>/<category>.php. Therefore, if we are writing translations
for the app category and the en-US language, for example, the complete path for
the translation file will be in @app/messages/en-US/app.php.

Going to the source code, translations are activated using the Yii::t() static
method that accepts four parameters, but only the first two are required; the first
one is the category, and the second one is the message to translate.

Now, we want to make an example where we will write a classic Hello World! in
two languages: English and Italian. However, it will be just as easy to translate it in
any other language.

Chapter 10

[229]

Working on the previous basic templated project, write a new controller named
FileTranslatorController in basic/controllers/FileTranslatorController.
php with the following content:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class FileTranslatorController extends Controller
{
 public function actionIndex()
 {
 \Yii::$app->language = 'en-US';
 $englishText = \Yii::t('app', 'Hello World!');

 \Yii::$app->language = 'it-IT';
 $italianText = \Yii::t('app', 'Hello World!');

 return $this->render('index', ['englishText' =>
 $englishText, 'italianText' => $italianText]);
 }
}

The first two source code rows in actionIndex() will set the app language to en-US,
and then they will store the content of Hello World! key of the basic/messages/
en-US/app.php file in the $englishText variable.

In the same way, the last two source code rows in actionIndex() will set the app
language to it-IT, and then they will store the content of Hello World! key of the
basic/messages/it-IT/app.php file in the $italianText variable.

The view content in basic/views/file-translator/index.php is simply
as follows:

Display Hello World! in two language: English and Italian

In English:

Localize the App

[230]

<?= $englishText ?>

In Italian:
<?= $italianText ?>

Now, we need to define file languages for English and Italian translations.

If the messages folder does not exist in basic/messages, we will just create it;
then, create two new folders named en-US and it-IT. In each folder, add a new
file named app.php.

For the file with the English translations in basic/messages/en-US/app.php, let's
write:

<?php

return [
 'Hello World!' => 'Hello world!',
];

?>

While for Italian translations in basic/messages/it-IT/app.php, let's write:

<?php

return [
 'Hello World!' => 'Ciao Mondo!',
];

?>

You can browse to http://hostname/basic/file-translator/index to view
the output.

Example – using file-based translation for the
entire website
Applying translations to the entire website is tedious, and, above all, there is a high
possibility that you will miss some translations. Yii provides a powerful tool to
automatically produce the message's PHP files for all the languages we want.

Chapter 10

[231]

This powerful tool is a console command named message; therefore,
we require a console access.

This command requires two steps:

1. Creating a configuration file where we will indicate the languages property,
or which languages we want to support in the project and the messagePath
property, or rather, where to store translated messages.

2. Launching the message command.

For step 1, go to the console, in the project's root folder, where the yii file is located.

If we are working on a basic template, we will launch the following command:

$./yii message/config config/i18n.php

The first parameter, message/config, is the action config invoked on the controller
message, and the second parameter is the file path where we want to save the
configuration (in this case, config/i18n.php, but we can write anything).

If we are working on an advanced template, we will launch the following command:

./yii message/config common/config/i18n.php

The only difference is that, in the last command, we specified that the configuration file
for message command translations is in common/config instead of the config folder.

Now, if we open config/i18n.php, we should see the default configuration file for
the message command that should look like this:

<?php

return [
 // string, required, root directory of all source files
 'sourcePath' => __DIR__ . DIRECTORY_SEPARATOR . '..',
 // array, required, list of language codes that the extracted
 messages
 // should be translated to. For example, ['zh-CN', 'de'].
 'languages' => ['de'],
 // string, the name of the function for translating messages.
 // Defaults to 'Yii::t'. This is used as a mark to find the
 messages to be
 // translated. You may use a string for single function name
 or an array for

Localize the App

[232]

 // multiple function names.
 'translator' => 'Yii::t',
 // boolean, whether to sort messages by keys when merging new
 messages
 // with the existing ones. Defaults to false, which means the
 new (untranslated)
 // messages will be separated from the old (translated) ones.
 'sort' => false,
 // boolean, whether to remove messages that no longer appear
 in the source code.
 // Defaults to false, which means each of these messages will
 be enclosed with a pair of '@@' marks.
 'removeUnused' => false,
 // array, list of patterns that specify which
 files/directories should NOT be processed.
 // If empty or not set, all files/directories will be
 processed.
 // A path matches a pattern if it contains the pattern string
 at its end. For example,
 // '/a/b' will match all files and directories ending with
 '/a/b';
 // the '*.svn' will match all files and directories whose name
 ends with '.svn'.
 // and the '.svn' will match all files and directories named
 exactly '.svn'.
 // Note, the '/' characters in a pattern matches both '/' and
 '\'.
 // See helpers/FileHelper::findFiles() description for more
 details on pattern matching rules.
 'only' => ['*.php'],
 // array, list of patterns that specify which files (not
 directories) should be processed.
 // If empty or not set, all files will be processed.
 // Please refer to "except" for details about the patterns.
 // If a file/directory matches both a pattern in "only" and
 "except", it will NOT be processed.
 'except' => [
 '.svn',
 '.git',
 '.gitignore',
 '.gitkeep',
 '.hgignore',
 '.hgkeep',
 '/messages',

Chapter 10

[233]

],

 // 'php' output format is for saving messages to php files.
 'format' => 'php',
 // Root directory containing message translations.
 'messagePath' => __DIR__,
 // boolean, whether the message file should be overwritten
 with the merged messages
 'overwrite' => true,

 /*
 // 'db' output format is for saving messages to database.
 'format' => 'db',
 // Connection component to use. Optional.
 'db' => 'db',
 // Custom source message table. Optional.
 // 'sourceMessageTable' => '{{%source_message}}',
 // Custom name for translation message table. Optional.
 // 'messageTable' => '{{%message}}',
 */

 /*
 // 'po' output format is for saving messages to gettext po
 files.
 'format' => 'po',
 // Root directory containing message translations.
 'messagePath' => __DIR__ . DIRECTORY_SEPARATOR . 'messages',
 // Name of the file that will be used for translations.
 'catalog' => 'messages',
 // boolean, whether the message file should be overwritten
 with the merged messages
 'overwrite' => true,
 */
];

The configuration is very clear to read, so we will only explain its main properties:
languages, messagePath, and except.

The languages property defines which languages are supported in the web project.
For example, we could write:

'languages' => ['en', 'it', 'fr'],

Localize the App

[234]

The preceding command supports and autogenerates messages for the English,
Italian, and French languages.

The messagePath property defines where autogenerated messages should be saved.
It is advisable to point to the messages folder (that must be created if it does not
exist); in this way, we can write the following in the basic template:

'messagePath' => __DIR__ . DIRECTORY_SEPARATOR . '..' .
DIRECTORY_SEPARATOR . 'messages',

Here, __DIR__ refers to the config file folder, while in the basic template, it is the
basic/config folder.

Once we have launched the message command, it will look for all folders and
subfolders containing .php files, as indicated in the only property (only .php
files will be processed).

Therefore, in the project's root folder, there are some folders, such as vendor,
not relevant for our purpose.

So, we will add the /vendor value to the except property, in order to indicate that
the message command will not look inside this folder, in this way:

 'except' => [
 '.svn',
 '.git',
 '.gitignore',
 '.gitkeep',
 '.hgignore',
 '.hgkeep',
 '/messages',
 '/vendor'
],

For step 2, we will now try to launch the command:

$./yii message config/i18n.php

It will find the Yii::t marker, defined in the translator property, in all the files
in the folders and subfolders specified in the sourcePath property, considering the
except property to exclude files and folders where we do not want to look.

The translated messages will be created (if they do not exist) in the messagePath
folder, in our case, in the messages folder starting from the project's root folder.

If there are no Yii::t markers in all the searched files, the relative language's
subfolder will be empty.

Chapter 10

[235]

For example, open SiteController in basic/controller/SiteController.php
and change the actionIndex content as follows:

 public function actionIndex()
 {
 $message = \Yii::t('app', 'this message must be translated!');

 return $this->render('index');
 }

Now, relaunch the message command:

$./yii message config/i18n.php

Then, check the basic/messages/en folder. We will find an app.php file that
contains the this message must be translated key to which we must fill the
value to specify the translation.

Placeholders formatting
The Yii:t method is not only limited to replace strings with their translation in
other languages, but it handles the specific formatting of source strings to support
many kinds of generalization.

Firstly, Yii:t() supports placeholders in the following two formats:

• String in the {nameOfPlaceholder} format
• Integer in the {0} format, and this type of placeholder is zero-based

Value arrays to replace the placeholder are passed as the third parameter to the
Yii:t() method.

For example, we want to display a page with only Hello World, I'm ... by
appending the custom name to the text.

Create basic/controllers/FileTranslatorController.php:

 public function actionHelloWorldWithName($name='')
 {
 $text = \Yii::t('app', 'Hello World! I\'m {name}', ['name'
 => $name]);

 return $this->render('helloWorldWithName', ['text' =>
 $text]);
 }

Localize the App

[236]

Now, create the view in basic/views/file-translator/helloWorldWithName.
php simply with the following command:

<?= $text ?>

It will display the $text value passed from the controller.

Test it by pointing the browser to http://hostname/basic/web/file-translator/
hello-world-with-name, also passing the ?name= parameter, otherwise there will
be no name at the end of the text.

Translations can be prepared using the message command that we have just seen:

$./yii message config/i18n.php

This will automatically create a new marker Hello World! I\'m {name} in the
basic/messages subfolders.

The placeholders can be specialized with two other attributes: ParameterType and
ParameterStyle, adding a comma after PlaceholderName. So, the full form to
specify a placeholder will be as follows:

{PlaceholderName, ParameterType, ParameterStyle}

Here, ParameterType can be:

• number : The ParameterStyle can be an integer, currency, percent, or custom
pattern (for example, 000)

• date: The ParameterStyle can be short, medium, long, full, or custom pattern
(for example, dd/mm/yyyy)

• time: The ParameterStyle can be short, medium, long, full or custom pattern
(for example, hh:mm)

• spellout: There is no ParameterStyle
• ordinal: There is no ParameterStyle
• duration: There is no ParameterStyle

The most used message formatting is probably plural, and that allows us to specify
different key strings based on the number passed as a parameter.

Consider the following code as an example:

// if $n = 0, it shows "There are no books!"
// if $n = 1, it shows "There is one book!"

Chapter 10

[237]

// if $n = 4, it shows "There are 4 books!"

echo \Yii::t('app', 'There {n, plural, =0{are no books} =1{is one
book} other{are # books}}!', ['n' => $n]);

Here, =0 stands for the message to be displayed when $n is 0, =1 stands for the
message to be displayed when $n is 1, and other stands for the message to be
displayed when $n is other than 0 and 1.

DB-based translations
Yii also supports database as a storage option for message translations.

It has to be explicitly configured in the config/web.php file if we are working
in the basic template, or in common/config/main.php, if we are working in the
advanced template.

Next, we need to add two more database tables to manage message sources and
message translations.

Start by creating database tables, as suggested in Yii's official documentation at
http://www.yiiframework.com/doc-2.0/yii-i18n-dbmessagesource.html:

CREATE TABLE source_message (
 id INTEGER PRIMARY KEY AUTO_INCREMENT,
 category VARCHAR(32),
 message TEXT
);

CREATE TABLE message (
 id INTEGER,
 language VARCHAR(16),
 translation TEXT,
 PRIMARY KEY (id, language),
 CONSTRAINT fk_message_source_message FOREIGN KEY (id)
 REFERENCES source_message (id) ON DELETE CASCADE ON UPDATE
RESTRICT
);

Table names can be customized in the configuration file.

http://www.yiiframework.com/doc-2.0/yii-i18n-dbmessagesource.html

Localize the App

[238]

Table source_message will store all messages written with the source language;
table message will store all translations; both tables are joined together by the id
field.

In the next example, let's insert one record for each table:

INSERT INTO `source_message` (`id`, `category`, `message`) VALUES
(1, 'app', 'Hello World from Database!');

INSERT INTO `message` (`id`, `language`, `translation`) VALUES
(1, 'it', 'Ciao Mondo dal Database!');

Now, it is time to apply some changes to the configuration. We need to insert the
i18n property in the components section of the configuration in config/web.php
(based on the basic template):

'components' => [
 // ...
 'i18n' => [
 'translations' => [
 'app' => [
 'class' => 'yii\i18n\DbMessageSource',
 //'messageTable' => 'message,
 //'sourceMessageTable' => 'source_message,

],
],
],
],

This component, i18n, uses yii\i18n\PhpMessageSource as a class by default, and
has employed itself for file-based translation.

Now, we want to display the message in Italian. Create a new action
in basic/controllers/FileTranslatorController.php named
actionHelloWorldFromDatabase(), with the following content:

 public function actionHelloWorldFromDatabase()
 {
 \Yii::$app->language = 'it';
 $text = \Yii::t('app', 'Hello World from Database!');

 return $this->render('helloWorldFromDatabase', ['text' =>
$text]);
 }

Chapter 10

[239]

The view in basic/views/file-translator/helloWorldFromDatabase will show
the $text content:

<?= $text ?>

Test it by pointing the browser to http://hostname/basic/web/file-translator/
hello-world-from-database. If all is correct, we should see Ciao Mondo dal
Database!, which is the Italian version of Hello World from Database!.

Example – translating room descriptions
using DB
This example will show you how to translate the room's description using the
database as the storage option. We will create models for message and source_
message database tables, since we are going to use ActiveRecord to manage records
in all the tables that control translations.

Firstly, we are going to create models for message and source_message database
tables using Gii. In the basic template, point the browser to http://hostname/
basic/web/gii, and then go to the model generator. Gii will create Message and
SourceMessage models in the basic/models folder.

Next, we want to create a form that contains descriptions both in the original
language and in all other translations.

For this purpose, we will create a view in basic/views/rooms/
indexWithTranslatedDescriptions.php, as follows:

<?php
use yii\helpers\Url;
use yii\widgets\ActiveForm;
?>

<div class="row">
 <div class="col-md-4">
 <legend>Rooms with translated descriptions</legend>

 <?php $form = ActiveForm::begin([]); ?>
 <table class="table">
 <tr>
 <th>#</th>
 <th>Floor</th>
 <th>Room number</th>
 <th>Description - English</th>

Localize the App

[240]

 <th>Description - Italian</th>
 <th>Description - French</th>
 </tr>
 <?php for($k=0;$k<count($rooms);$k++) : ?>
 <?php $room = $rooms[$k]; ?>
 <input type="hidden" name="Room[<?= $k ?>][id]"
 value="<?= $room->id ?>" />
 <tr>
 <td><?php echo $k+1 ?></td>
 <td><?php echo $room->floor ?></td>
 <td><?php echo $room->room_number ?></td>
 <td><input type="text" name="Room[<?= $k
 ?>][description][en]" value="<?= $room-
 >description ?>" /></td>
 <td><input type="text" name="Room[<?= $k
 ?>][description][it]" value="<?= Yii::$app-
 >i18n->translate('app', $room->description,
 [], 'it') ?>" /></td>
 <td><input type="text" name="Room[<?= $k
 ?>][description][fr]" value="<?= Yii::$app-
 >i18n->translate('app', $room->description,
 [], 'fr') ?>" /></td>
 </tr>
 <?php endfor; ?>
 </table>

 <input type="submit" class="btn btn-primary" value="Submit
 descriptions" />
 <?php ActiveForm::end(); ?>
 </div>
</div>

We will check for other language translations using the Yii::$app->i18n-
>translate method that accepts:

• Category
• Message to be translated
• Parameters of messages
• Language

Chapter 10

[241]

It is now time to add actionIndexWithTranslatedDescriptions() in basic/
controllers/RoomsController.php:

 public function actionIndexWithTranslatedDescriptions()
 {
 if(isset($_POST['Room']))
 {
 $roomsInput = $_POST['Room'];
 foreach($roomsInput as $item)
 {
 $sourceMessage =
 \app\models\SourceMessage::findOne(['message' =>
 $item['description']]);

 // If null, I need to create source message
 if($sourceMessage == null)
 {
 $sourceMessage = new
 \app\models\SourceMessage();
 }
 $sourceMessage->category = 'app';
 $sourceMessage->message =
 $item['description']['en'];
 $sourceMessage->save();

 $otherLanguages = ['it', 'fr'];

 foreach($otherLanguages as $otherLang)
 {
 $message = \app\models\Message::findOne(['id'
 => $sourceMessage->id, 'language' =>
 $otherLang]);
 if($message == null)
 {
 $message = new \app\models\Message();
 }
 $message->id = $sourceMessage->id;
 $message->language = $otherLang;
 $message->translation =
 $item['description'][$otherLang];
 $message->save();
 }

Localize the App

[242]

 // Room to update
 $roomToUpdate =
 \app\models\Room::findOne($item['id']);
 $roomToUpdate->description =
 $item['description']['en'];
 $roomToUpdate->save();
 }
 }

 $rooms = Room::find()
 ->all();

 return $this->render('indexWithTranslatedDescriptions',
 ['rooms' => $rooms]);
 }

If we have trouble accessing the URL, check the access property
returned by the behaviors() method of this controller to ensure that
this action is allowed.

On top of this code, we will check whether the $_POST array is filled; in this case, we
will get the $sourceMessage object from descriptions passed from the view. Next,
we can create or update the message model for whatever language we want. In the
end, we will also save the room object, eventually with its description field changed.

With this solution, anytime we want to change a description, a new record will be
created since the text has been changed.

Summary
In this chapter, we have seen how to configure multiple languages in our app. We
have found out that there are two storage options to handle internationalization: file
and database. File is suggested for small projects and database for bigger ones.

We have discovered how to grab placeholders from the entire website through the
'message' command from the console and how to create placeholders that contain
formatting information.

Finally, we have configured the database as a storage target for translations, and we
have created a complete example to handle room description in different languages.

In the next chapter, we will learn how to create RESTful web services using the new
integrated management of Yii 2.

[243]

Creating an API for
Use in a Mobile App

In this chapter, you will learn how to create RESTful Web Services with the new
integrated management of Yii 2.

You will learn how to create a new application to manage the api environment and
how to create a controller using the default base classes provided by the framework.

Then, we will cover authentication methods and you'll learn how to customize the
response output format. We'll also discuss:

• Configuring the REST app in the advanced template
• Creating a controller:

 ° For example: creating a controller to manage rooms

• Authentication:
 ° For example: using authentication to get a customers list

• New controller actions:
 ° For example: getting a rooms list for a reservation

• Customizing authentication and the response
 ° For example: status response node in received data

• Other forms of export – RSS:

 ° For example: creating RSS with a list of available rooms

Creating an API for Use in a Mobile App

[244]

Configuring a REST app in the advanced
template
Before using the advanced template, it is advisable to configure RESTful Web Services,
since, as you saw in previous chapters, this configuration allows you to easily add a
new application in the same project.

Yii provides many built-in features to create RESTful Web Services and it reduces
the code needed to implement it that is always structured with models, controllers,
and actions.

These are its main features:

• Default actions (index, view, create, update, delete, and options) in yii\
rest\ActiveController, which is the base controller suggested to override

• A response format selectable from input
• Customized authentication and authorization
• Caching and rate limiting

Yii applies well-established knowledge about RESTful Web Services creation, such
as how to present metadata in the response output. So, it is advisable that we follow
the framework guidelines as far as possible; in this way, we will write commonly
manageable REST APIs.

The first thing to do with an advanced template is to create a new application in the
same project, for example renaming it api. Yii has not got a built-in functionality to
create a new application, but it only takes a few steps to complete this task.

Starting from the root of our project, we will create, as well as for other applications
(common, backend, frontend, and console), a new folder named api with the
following command:

$ mkdir api

Now, enter in api and let's create these five subfolders:

$ mkdir config

$ mkdir web

$ mkdir controllers

$ mkdir runtime

We must only create files for the first two folders, and the others will be left
temporarily empty.

Chapter 11

[245]

Another possible solution would be to copy complete content
from other applications, such as frontend or backend, to the
new application destination folder and then to clear content
that is not useful.

In the config folder, we must create two files: main.php and params.php. The
second file, params.php, will be temporarily empty as we have not got any
parameters to store in it, such as:

<?php
return [
];

The content of api/config/main.php will, instead, be:

<?php
$params = array_merge(
 require(__DIR__ . '/../../common/config/params.php'),
 require(__DIR__ . '/../../common/config/params-local.php'),
 require(__DIR__ . '/params.php')
);

return [
 'id' => 'app-api',
 'basePath' => dirname(__DIR__),
 'controllerNamespace' => 'api\controllers',
 'bootstrap' => ['log'],
 'modules' => [],

 'components' => [

 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

 'user' => [
 'identityClass' => '\common\models\User',
 'enableSession' => false,
 'loginUrl' => null
],

 'log' => [

Creating an API for Use in a Mobile App

[246]

 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],

],
 'params' => $params,
];

Then, we will create an index.php file in the web folder with the following content:

<?php
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/../../vendor/autoload.php');
require(__DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');
require(__DIR__ . '/../../common/config/bootstrap.php');

$config = yii\helpers\ArrayHelper::merge(
 require(__DIR__ . '/../../common/config/main.php'),
 require(__DIR__ . '/../../common/config/main-local.php'),
 require(__DIR__ . '/../config/main.php')
);

$application = new yii\web\Application($config);
$application->run();

Still in the web folder, we will create the .htaccess file to handle a pretty URL:

RewriteEngine on

If a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
Otherwise forward it to index.php
RewriteRule . index.php

Chapter 11

[247]

Finally, we have to add a new alias in common/config/bootstrap regarding the
api application:

Yii::setAlias('api', dirname(dirname(__DIR__)) . '/api');

Our job is complete, as we finally have a brand new application from scratch.

Be sure to make the runtime folder writable, since the framework
will write in it runtime data such as log files.

Creating a controller
Yii provides two base classes: \yii\rest\Controller and \yii\rest\
ActiveController that we can extend when we are creating a new controller
for RESTful web services.

Both of these classes contain the following useful common features, in execution order:

1. The response output as required from the request (content negotiator).
2. The HTTP method validation.
3. Authentication.
4. Rate limiting.

The second class \yii\rest\ActiveController adds more functionalities through
ActiveRecord, such as handling user authorization and a set of already existing
actions: index, view, create, update, delete, and options.

We will see that Yii provides all the necessary information to get the response
status and content through the body and HTTP header.

Let's create a controller to extend \yii\rest\Controller or rather
without ActiveRecord. Create a new controller in api/controllers/
TestRestController.php:

<?php
namespace api\controllers;

use yii\rest\Controller;

class TestRestController extends Controller

Creating an API for Use in a Mobile App

[248]

{
 private function dataList()
 {
 return [
 ['id' => 1, 'name' => 'Albert', 'surname' =>
 'Einstein'],
 ['id' => 2, 'name' => 'Enzo', 'surname' => 'Ferrari'
],
 ['id' => 4, 'name' => 'Mario', 'surname' => 'Bros']
];
 }

 public function actionIndex()
 {
 return $this->dataList();
 }
}

In the preceding code, we have a method dataList, which returns an array
of objects, and an actionIndex method that provides the index action for
TestRestController and returns that list.

Many examples can be executed using a web browser (requested by
employing the GET verb). Generally, however, we need a specific
tool to test RESTful web services, such as Postman for example, an
excellent extension for the Chrome browser or the curl command
for advanced users.

The first feature of \yii\rest\Controller is to arrange the response output format,
dynamically based on the request, which is also called content negotiation.

Indeed, we can try to launch this request through http://hostname/yiiadv/api/
web/test-rest/index in our browser, or through specific tools using the GET verb
and the Accept HTTP header set to application/xml, or by using curl, as follows:

$ curl -H "Accept: application/xml"
http://hostname/yiiadv/api/web/test-rest/index

<?xml version="1.0" encoding="UTF-8"?>

<response><item><id>1</id><name>Albert</name><surname>Einstein</
surname></item><item><id>2</id><name>Enzo</name><surname>Ferrari</
surname></item><item><id>4</id><name>Mario</name><surname>Bros</
surname></item></response>

Chapter 11

[249]

In these cases, we will get a response based on the XML data:

The XML data response to test-rest/index

However, if we change the Accept header to application/json, we will get a
response based on the JSON data:

$ curl -H "Accept: application/json" http://hostname/yiiadv/api/web/test-
rest/index

[{"id":1,"name":"Albert","surname":"Einstein"},{"id":2,"name":"Enzo","sur
name":"Ferrari"},{"id":4,"name":"Mario","surname":"Bros"}]

In these cases, we will get a response based on the JSON data:

The JSON data response to test-rest/index

The same data will be rendered in different ways according to the Accept header
sent from the client.

Creating an API for Use in a Mobile App

[250]

The second feature, HTTP method validation, allows you to specify which verbs are
available for a resource. Verbs are defined in the behaviors() method, which must
be extended to modify this setting:

 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['verbs'] = [
 'class' => \yii\filters\VerbFilter::className(),
 'actions' => [
 'index' => ['get'],
],
];
 return $behaviors;
 }

In this case, we only set the GET verb to the index action, because keys of the
actions attribute of behaviors['verbs'] are the actions and the value is an
array containing supported HTTP methods.

If we launch http://hostname/yiiadv/api/web/test-rest/index using the
GET verb (as a browser request), we will continue to display the result. However,
if we change the HTTP method to the POST verb, for example, we will get an
exception error:

An exception error using the wrong verb

This is because only the GET verb is supported by the index action.

In the next sections, we will explain the third and fourth features, authentication and
rate limiting.

Example – creating a controller to manage
rooms
With this example, we will apply the concepts dealt with in the previous chapter,
in this case using \yii\rest\ActiveController as the base class instead of \
yii\rest\Controller, since we are going to employ an ActiveRecord class to
manipulate data.

Chapter 11

[251]

Create a new controller in api/controllers/RoomsController.php:

<?php
namespace api\controllers;

use yii\rest\ActiveController;

class RoomsController extends ActiveController
{
 public $modelClass = 'common\models\Room';
}

This controller implicitly contains these actions:

• actionIndex that returns a list of models, accessible only with GET
and HEAD HTTP methods

• actionView that returns details about the mode, accessible only with
the GET and HEAD HTTP methods by passing the id parameter

• actionCreate that creates a new model, accessible only with the POST
HTTP methods

• actionUpdate that updates an existing model, accessible only with the
PUT and PATCH HTTP methods

• actionDelete that deletes an existing model, accessible only with the
DELETE HTTP method

• actionOptions that returns the allowed HTTP methods

Now, let's try to launch all these methods.

Launch actionIndex at http://hostname/yiiadv/api/web/rooms using the
GET method:

[
{
 "id": 1,
 "floor": 1,
 "room_number": 101,
 "has_conditioner": 1,
 "has_tv": 0,
 "has_phone": 1,
 "available_from": "2015-05-20",
 "price_per_day": "120.00",

Creating an API for Use in a Mobile App

[252]

 "description": "description 1"

},

 {
 "id": 2,
 "floor": 2,
 "room_number": 202,
 "has_conditioner": 0,
 "has_tv": 1,
 "has_phone": 1,
 "available_from": "2015-05-30",
 "price_per_day": "118.00",
 "description": "description 2"
 }
]

We will get all the records in the database as an array of the JSON object and
HTTP header, along with the successful status code and pagination details:

X-Pagination-Current-Page: 1
X-Pagination-Page-Count: 1
X-Pagination-Per-Page: 20
X-Pagination-Total-Count: 2

If we launch the same URL using the HEAD HTTP method, we will only get the
HTTP HEADER response without a body, so we will get only the pagination
information.

Finally, if we launch the same URL with an unsupported HTTP method, for
example the PUT method, we will get two important HTTP headers:

• The status code header set to 405 Method Not Allowed
• The Allow header set to GET, HEAD

The status code header says that a method is not supported, and the Allow header
returns a list of supported HTTP methods for that action.

Now, launch actionView on http://hostname/yiiadv/api/web/rooms/
view?id=1 using the GET method:

{
 "id": 1,
 "floor": 1,

Chapter 11

[253]

 "room_number": 101,
 "has_conditioner": 1,
 "has_tv": 0,
 "has_phone": 1,
 "available_from": "2015-05-20",
 "price_per_day": "120.00",
 "description": "description 1"
}

If we try to launch a nonexistent ID, for example http://hostname/yiiadv/api/
web/rooms/view?id=100, using the GET method, we will get this body response:

{
 "name": "Not Found",
 "message": "Object not found: 100",
 "code": 0,
 "status": 404,
 "type": "yii\\\\web\\\\NotFoundHttpException"
}

The HTTP status code header will be set to 404 Not Found to specify that the
requested item (id=100) does not exist. Using only the HEAD HTTP method, we
will get information from the HTTP status code set to 404. The Create and Update
actions require that the client sends body content of the object to be created or updated.

By default, Yii recognizes only the application/x-www-form-urlencoded and
multipart/form-data input formats. In order to enable the JSON input format,
we need to configure the parsers property of the request's application component
in the api/config/main.php file:

'request' => [
 'parsers' => [
 'application/json' => 'yii\web\JsonParser',
]
]

After configuring the JSON input parser, we can call http://hostname/yiiadv/
api/web/rooms/create using the POST HTTP method to create a new room and
pass, for example, this JSON:

 {
 "floor": 99,
 "room_number": 999,
 "has_conditioner": 1,

Creating an API for Use in a Mobile App

[254]

 "has_tv": 1,
 "has_phone": 1,
 "available_from": "2015-12-30",
 "price_per_day": "48.00",
 "description": "description room 999"
 }

If no error occurred, we will get:

201 Created as HTTP Header Status Code

Object just created as body content

If we are missing some required fields and there are validation errors, we will get:

422 Data Validation Failed

An array of field-message to indicate which validation errors occurred

The same thing needs to be done for an update action, in this case, however, we
will call http://hostname/yiiadv/api/web/rooms/update and pass the id URL
parameter using the PUT or PATCH HTTP method. In this case, only the HTTP
header status code 200 OK will be a successful response and the update object will be
returned as body content.

Finally, actionDelete is used by calling http://hostname/yiiadv/api/web/
rooms/delete, by passing the id URL parameter, and using the DELETE HTTP
method. A successful execution will return 204 No Content as the HTTP status
code; otherwise, it will be 404 Not Found.

Authentication
There are three kinds of authentication:

• HTTP Basic Auth (the HttpBasicAuth class): This method uses the WWW-
Authenticate HTTP header to send the username and password for every
request

• Query parameter (the QueryParamAuth class): This method uses an access
token passed as query parameter in the API URL

• OAuth 2 (the HttpBearerAuth class): This method uses an access token that
is obtained by the consumer from an authorization server and sent to the API
server via HTTP bearer tokens

Yii supports all the methods mentioned, but we can also easily create a new one.

Chapter 11

[255]

To enable authentication, follow these steps:

1. Configure the user application component in the configuration, setting
enableSession to false in order to make user authentication status not
persistent using a session across requests. Next, set loginUrl to null to
show the HTTP 403 error instead of redirecting it to the login page.

2. Specify which authentication method we want to use, configuring the
authenticator behavior in API controller classes.

3. Implement yii\web\IdentityInterface::findIdentityByAccessTok
en() in the user identity class.

The first step ensures that REST requests are really stateless, but if
you need to persist or store session data, you can skip this step.

Step 1 can be configured in api/config/main.php:

 'components' => [
 ...
 'user' => [
 'identityClass' => 'common\models\User',
 'enableSession' => false,
 'loginUrl' => null
],
];

Step 2 requires that we extend the behaviors() controller method, specifying a
single authenticator:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => yii\filters\auth\HttpBasicAuth::className(),
];
 return $behaviors;
}

Or we can do this by specifying multiple authenticators:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [

Creating an API for Use in a Mobile App

[256]

 'class' => yii\filters\auth\CompositeAuth::className(),
 'authMethods' => [
 yii\filters\auth\HttpBasicAuth::className(),
 yii\filters\auth\HttpBearerAuth::className(),
 yii\filters\auth\QueryParamAuth::className(),
],
];
 return $behaviors;
}

Finally, step 3 requires the implementation of findIdentityByAccessToken()
of the identityClass specified in the configuration file.

In a simple scenario, the access token can be stored in a column of the User table
and then retrieved:

 public static function findIdentityByAccessToken($token, $type
 = null)
 {
 return static::findOne(['access_token' => $token]);
 }

At the end of the configuration, every request will try to authenticate the user in
the beforeAction() method of the same controller.

Now, let's take a look at the first authentication method, HTTPBasicAuth. This
method requires us to set the auth property to the callable PHP function; if it is
not set, the username will be used as the access token passed to the \yii\web\
User::loginByAccessToken() method.

The basic implementation of the HttpBasicAuth authentication is:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' =>
 yii\filters\auth\HttpBasicAuth::className(),
 'auth' => function($username, $password) {
 // return null or identity interface
 // For example search by username and password
 return \common\models\User::findOne(['username' => $username,
 'password' => $password);
 }

 /*

Chapter 11

[257]

 'auth' => [$this, 'httpBasicAuthHandler'],
 */
];
 return $behaviors;
}

public function httpBasicAuthHandler($username, $password)
{
 // For example search by username and password
 return \common\models\User::findOne(['username' => $username,
 'password' => $password]);
}

The callable PHP function stored by the auth property can be represented as an
inline function, or as an array, whose first value is the object and the second is the
function name to be called, by passing $username and $password parameters.

Check how PHP is running through phpinfo(). If you display CGI/FCGI, then you need
to add SetEnvIf Authorization .+ HTTP_AUTHORIZATION=$0 in .htaccess to
use HTTP Auth from PHP.

The second authentication method is query parameter, by using the QueryParamAuth
class. With this method, a query parameter named access-token must be passed
to the URL. Then, it will call the \yii\web\user::loginByAccessToken()
method, passing access-token as the first parameter. This function will return an
IdentityInterface or null.

The URL parameter name can be changed using tokenParam in the authentication
declaration:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' =>
 yii\filters\auth\QueryParamAuth::className(),
 'tokenParam' => 'myAccessToken'
];
 return $behaviors;
}

With this configuration, the URL must be http://hostname/
url?myAccessToken=...

Creating an API for Use in a Mobile App

[258]

The last authentication method, OAuth 2, requires an authorization server from
which we will get the bearer token to pass to the REST API server, which is similar
to QueryParamAuth.

Example – using authentication to get a
customers list
In this example, we are going to authenticate ourselves by using two methods at
the same time: HTTPBasicAuth and QueryParamAuth. When using QueryParamAuth
with an access token, we will first call a publically accessible action to get an access
token that the user will pass to all the other actions as the query URL parameter.

We will start by creating a new model from the Customer database table
and putting it into the common/models folder. Then, we will create a new
user in the User database table using, for example, foo as the username and
$2a$12$xzGZB29iqBHva4sEYbJeT.pq9g1/VdjoD0S67ciDB30EWSCE18sW6 as the
password (this is equivalent to the hashed bar text).

Create a new controller in api/controllers/CustomersController.php
that only extends the behaviors() method to implement HTTPBasicAuth and
QueryParamAuth:

<?php
namespace api\controllers;

use yii\rest\ActiveController;
use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\QueryParamAuth;

class CustomersController extends ActiveController
{
 public $modelClass = 'common\models\Customer';

 public function behaviors()
 {
 $behaviors = parent::behaviors();

 $behaviors['authenticator'] = [
 'class' => CompositeAuth::className(),
 'authMethods' => [
 [
 'class' => HttpBasicAuth::className(),

Chapter 11

[259]

 'auth' => function($username, $password)
 {
 $out = null;
 $user =
 \common\models\User::findByUsername($username);
 if($user!=null)
 {
 if($user->validatePassword($password)) $out = $user;
 }
 return $out;
 }
],
 [
 'class' => QueryParamAuth::className(),
]
]
];

 return $behaviors;
 }
}

In HTTPBasicAuth, we implement the auth property inside the configuration array
by checking $username and then validating the password. If the username and
password match each other, it will return the user found or will otherwise be null.

QueryParamAuth, instead, does not need any property other than the class, since we
will use access-token as the query parameter name. Nevertheless, to complete this
task, we need an action that will return the related user's access token after passing
both the username and password.

For this purpose, we will add the actionAccessTokenByUser() method, which
looks for the user with the $username and $password parameters passed. If the user
already exists, its access_token property will be updated with a random string, so
every time we call this action, access_token will change and the previous one will
be cancelled:

 public function actionAccessTokenByUser($username,
 $passwordHash)
 {
 $accessToken = null;

 $user = \common\models\User::findOne(['username' =>
 $username, 'password_hash' => $passwordHash]);
 if($user!=null)

Creating an API for Use in a Mobile App

[260]

 {
 $user->access_token = Yii::$app->security-
 >generateRandomString();
 $user->save();
 $accessToken = $user->access_token;
 }
 return ['access-token' => $accessToken];
 }

Finally, to test HTTPBasicAuth, we need to pass the WWW-Authentication header
by calling the http://hostname/yiiadv/api/web/customers/index URL.

If we want to use QueryParamAuth, we need to:

• Get access-token returned from http://hostname/yiiadv/api/web/
customers/access-token-by-user, by passing the username and
hashed password

• Call http://hostname/yiiadv/api/web/customers/index?access-token,
by passing the access-token property value received from the previous request

QueryParamAuth calls the findIdentityByAccessToken() function of
IdentityInterfaces(the user mode). So, check that the method is implemented, and if
it's not, implement it as follows:

public static function findIdentityByAccessToken($token,
$type = null)
 {
 return User::findOne(['access_token' => $token]);
 }

Pay attention, as this way of using access tokens allows the use of the REST API
with the same credentials for only one client at a time. This is because any time an
access-token-by-user is called, a new access-token will be created. Therefore,
it should be created a relation one-to-many between users and access-token in
order to provide multiple clients with access using the same username/password
credentials.

New controller action
It is very simple to add new actions to the REST API controller. We only need to
remember three differences in the web controller:

• Verb setting for the new action
• Authenticate the setting for the new action
• Output for the new action

Chapter 11

[261]

The first two steps are configured in the behaviors() method of the controller:

 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['verbs'] = [
 'class' => \yii\filters\VerbFilter::className(),
 'actions' => [
 'myCustomAction' => ['get', 'head'],
],
];

 $behaviors['authenticator'] = [
 'except' => 'myCustomAction',
 'class' => HttpBasicAuth::className(),
];

 return $behaviors;
 }

public function actionMyCustomAction()
{
 …
 …

}

In the first part of the behaviors() method, we will only set the get and head HTTP
methods to call the myCustomAction action. If we try to call this action with other
HTTP methods, we will get a not supported exception.

In the last part of the behaviors() method, we will set it so that myCustomAction
has not got authentication, since it is in the except property.

The third difference, output for the new action, states that we have different ways to
return data. We can use:

• A key-value pair array to create a single object from scratch
• An ActiveRecord instance to create a single object
• An ActiveRecord array to create a list of objects
• A data provider

In this last case, the framework will automatically output pagination information
and links to other pages (if present).

Creating an API for Use in a Mobile App

[262]

Example – getting a rooms list for a
reservation
In this example, we need to create a Reservation model in the common/models
folder using Gii.

Then, we create a new controller in api/controllers/ReservationsController.
php:

<?php
namespace api\controllers;

use Yii;
use yii\rest\ActiveController;
use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\QueryParamAuth;

class ReservationsController extends ActiveController
{
 public $modelClass = 'common\models\Reservation';

 public function actionIndexWithRooms()
 {
 $reservations = \common\models\Reservation::find()->all();

 $outData = [];
 foreach($reservations as $r)
 {
 $outData[] = array_merge($r->attributes, ['room' =>
 $r->room->attributes]);
 }
 return $outData;
 }

}

Now, let's call http://hostname/yiiadv/api/web/reservations/index-with-
rooms, where we will display a list of reservations, in each of which the room property
is expanded together with the content of room object related to the reservation.

Chapter 11

[263]

Take care to ensure that the room relation already exists in the
Reservation model. If not, we must add this relation to the
Reservation model:

 public function getRoom()

 {

 return $this->hasOne(Room::className(),
['id' =>
 'room_id']);
 }

However, this solution is inefficient since we always get all the rows and if there
are too many of them, this can result in it being too expensive for us. To solve this
problem, we could use a DataProvider created from a set of data found, or better
yet, a more simple solution automatically provided by Yii.

Indeed, Yii provides some easy ways to display relations and filter returned fields.
For example, there could be fields that we do not want to show, such as a password,
private data, and so on.

Models have these methods:

• fields(): By default, classes that extend yii\base\Model::fields()
return all the model attributes as fields, while classes that extend yii\
db\ActiveRecord::fields() only return the attributes that have been
populated from the DB

• extraFields(): By default, classes that extend yii\base\
Model::extraFields() return nothing, while classes that extend yii\db\
ActiveRecord::extraFields() return the names of the relations that have
been populated from the DB

The first method, fields(), is a key-value array where the key is the name of the
field returned. The value can be empty if the returned content is the attribute with
the same name as the key, a string indicating which attribute to get the returned
value from, or a callable PHP function to manipulate the returned value.

The second method, extraFields(), is a string array whose values are relations
defined in the model class.

Finally, to dynamically filter the requested field, we append the fields parameter to
the requested URL and the expand parameter to get a list of relations from the models.

So, if we call http://hostname/yiiadv/api/web/reservations/
index?expand=room, we will get the same result but we will also have the
pagination and loaded models that are only necessary for that page.

Creating an API for Use in a Mobile App

[264]

However, it would be more convenient for us to distribute an URL without special
parameters, such as the expand and fields, for example, in order to avoid confusion
among developers who will use these APIs.

We can use actionIndexWithRooms as a wrapper for actionIndex with an
expanded parameter in this way:

 public function actionIndexWithRooms()
 {
 $_GET['expand'] = 'room';
 return $this->runAction('index');
 }

With this solution, the http://hostname/yiiadv/api/web/reservations/index-
with-rooms URL is simply a wrapper for http://hostname/yiiadv/api/web/
reservations/index?expand=room but this prevents developers from having to
remember which parameters to pass to the URL to obtain the necessary nodes in
the response.

Customizing authentication and
response
Yii allows us to quickly create a custom authentication method for our application.
This is useful because in some cases, the previously mentioned authentications are
not sufficient.

A custom authentication model can be made by extending the yii\filters\auth\
AuthMethod class, which implements yii\filters\auth\AuthInterface that
requires overriding the authenticate ($user, $request, and $response) method:

<?php

namespace api\components;

use yii\filters\auth\AuthMethod;
use Yii;

class CustomAuthMethod extends AuthMethod {

 public function authenticate($user, $request, $response) {
 …
 …
 …
}

Chapter 11

[265]

…
…
…
}

Even though the REST API should be stateless, or rather should not save session
data, it could be necessary to store some information or preferences during a
session across requests.

So, if we need to support a session, we can start it through the authenticate()
method called in the beforeAction() event. The idea is to use QueryParamAuth
using access-token as the session ID to identify the current session.

For this purpose, we will create a new folder in api\components to store the
custom SessionAuth method.

This is the content of the api/components/SessionAuth.php file where the
query URL parameter is named sid:

<?php

namespace api\components;

use yii\filters\auth\AuthMethod;
use Yii;

class SessionAuth extends AuthMethod {
 public $tokenParam = 'sid';

 public function authenticate($user, $request, $response) {
 $accessToken = $request->get($this->tokenParam);

 if (is_string($accessToken)) {

 Yii::$app->session->id = $accessToken;

 $identity = isset(Yii::$app-
 >session['loggedUser'])?Yii::$app-
 >session['loggedUser']:null;

 if ($identity !== null) {
 return $identity;
 }
 }
 if ($accessToken !== null) {
 $this -> handleFailure($response);

Creating an API for Use in a Mobile App

[266]

 }
 return null;
 }

}

It is also necessary to create an action to start the session; otherwise, the user will
not be stored in the session.

So, create a new controller called UsersController in api/controllers/
UsersController.php to handle the login:

<?php
namespace api\controllers;

use Yii;
use yii\rest\ActiveController;
use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\QueryParamAuth;
use api\components\SessionAuth;
use common\models\User;

class UsersController extends ActiveController
{
 public $modelClass = 'common\models\User';

 public function behaviors()
 {
 $behaviors = parent::behaviors();

 $behaviors['authenticator'] = [
 'except' => ['login'],
 'class' => SessionAuth::className(),
];

 return $behaviors;
 }

 public function actionLogin($username, $passwordHash)
 {
 $dataOut = null;

 $user = User::findOne(['username' => $username,
 'password_hash' => $passwordHash]);

Chapter 11

[267]

 if($user != null)
 {
 $session = Yii::$app->session;
 $session->open();

 $session['loggedUser'] = $user;

 $sid = $session->id;

 $dataOut = ['sid' => $sid];
 }

 return $dataOut;
 }
}

As earlier defined, in the behaviors() method, the actions of this controller, except
for login, will authenticate against the SessionAuth component that
checks primarily whether a user has successfully executed the login action.

We now call http://hostname/yiiadv/api/web/users/
login?username=&passwordHash= and fill out the username and passwordHash
fields. It returns the session ID to access the session data. Also, the loggedUser
property is filled out in the session with the user model data.

Now, we can store shared information among requests as a typical web application.

Now, let's see how to customize a response in RESTful Web Services. First of all, this
operation could be needed when we have to add, for example, extra information,
such as explicit error messages to display in the client or operation status code.

The custom response must extend \yii\web\Response and override the send()
method, as follows:

<?php
namespace api\components;

use yii\rest\ActiveController;
use Yii;
use yii\web\Response;

class ApiResponse extends \yii\web\Response
{

 public function send()

Creating an API for Use in a Mobile App

[268]

 {
 ..
 ..
 ..
 }
}

This send() method manipulates data stored in the object properties, mainly in
the $this->data variable.

This customization, which we will see in detail in the next example, is incomplete,
as the send() method should implement all the manipulations of data made
from the \yii\web\Response version. We must remember that Yii returns data
based on the Accept HTTP header passed from the client and many other
convenient functionalities.

It is possible to maintain this behavior simply by calling parent::send() before
returning from the send() function, as follows:

 public function send()
 {
 ..
 ..
 parent::send();
 }

Because, as said before, send() uses the $this->data variable as a container for
data to be sent.

Example – status response node in data
received
Now, let's apply the concepts seen in the previous chapter to add extra data into a
response. This practice is useful when we need to return to client information about
the operation status and extra data such as detailed error messages.

The purpose of this example is to return a response with two attributes:

• The status attribute containing three properties: response_code with
an integer value indicating the operation state, response_message with
a string value representation of response_code and response_extra
with a custom text string

• The data attribute containing the expected output data

Chapter 11

[269]

We will use a class containing all the integer codes and their text representations
as a response code, since the integer value will be used to fill in the response_code
property and a string representation to fill in the response_message property.

Create a new class file in api/components/ApiResponseCode.php with this content:

<?php
namespace api\components;

class ApiResponseCode
{
 const ERR_OK = 0;
 const ERR_LOGIN_REQUIRED = 1;
 const ERR_METHOD_NOT_FOUND = 2;
 const ERR_NOT_FOUND = 3;
 const ERR_NOT_SAVED = 4;
 const ERR_DUPLICATE = 5;
 const ERR_INPUT_DATA_FORMAT = 6;

 public static function responsesExtras()
 {
 return [
 ApiResponseCode::ERR_OK => '',
 ApiResponseCode::ERR_LOGIN_REQUIRED => 'Login required
 to use this interface',
 ApiResponseCode::ERR_METHOD_NOT_FOUND => 'Interface
 not found',
 ApiResponseCode::ERR_NOT_FOUND => 'Record not found',
 ApiResponseCode::ERR_NOT_SAVED => 'Error in saving',
 ApiResponseCode::ERR_DUPLICATE => 'Duplicated record',
 ApiResponseCode::ERR_INPUT_DATA_FORMAT => 'Input data
 format incompatible',
];
 }

 public static function responseExtraFromCode($rc)
 {
 $al = ApiResponseCode::responsesExtras();
 return (isset($al[$rc]))?$al[$rc]:null;
 }

 public static function responseMessages()
 {
 return [
 ApiResponseCode::ERR_OK => 'OK',

Creating an API for Use in a Mobile App

[270]

 ApiResponseCode::ERR_LOGIN_REQUIRED =>
 'ERR_LOGIN_REQUIRED',
 ApiResponseCode::ERR_METHOD_NOT_FOUND =>
 'ERR_METHOD_NOT_FOUND',
 ApiResponseCode::ERR_NOT_FOUND => 'ERR_NOT_FOUND',
 ApiResponseCode::ERR_NOT_SAVED => 'ERR_NOT_SAVED',
 ApiResponseCode::ERR_DUPLICATE => 'ERR_DUPLICATED',
 ApiResponseCode::ERR_INPUT_DATA_FORMAT =>
 'ERR_INPUT_DATA_FORMAT',
];
 }

 public static function responseMessageFromCode($rc)
 {
 $al = ApiResponseCode::responseMessages();
 return (isset($al[$rc]))?$al[$rc]:null;
 }
}

In this component, we defined a list of constants that represent all response codes
that can be sent to a client. For each response code, there will be a relative text
representation returned by the responseMessage() static method. Then, there will
also be an array of extra text messages returned by responseExtras() that will fill
the response_extra property if no specific text extra is passed.

Finally, we must write the component that extends \yii\web\Response named
ApiResponse in api/components/ApiResponse.php. In this component, we will
define three custom properties: statusResponseCode, statusResponseMessage,
and statusResponseExtra, which we are going to fill with content composing in
the status property.

In this way, we will have a convenient method, fillStatusResponse(), based on
the $code parameter, which will automatically fill in both the statusResponseExtra
and statusResponseMessage properties.

The core of this component is the overridden send() method that will return
status with ERR_OK as response message and 0 as response code by default if
there are no client errors (as authentication, not found, and so on.). This is unless
a developer changes the values of statusResponseCode, statusResponseExtra,
and statusResponseMessage, or manually or automatically calls its properties with
fillStatusResponse().

Otherwise, if there are some client errors, we will support Not Authenticated
and Not Found errors.

Chapter 11

[271]

This is the content of the api/components/ApiResponse.php file:

<?php
namespace api\components;

use Yii;
use yii\web\Response;

class ApiResponse extends Response
{
 public $statusResponseCode;
 public $statusResponseMessage;
 public $statusResponseExtra;

 /**
 * Set response code and extra from code.
 *
 * Response extra will be filled based on $extraData value
 * If $extraData is null, response extra will be value from
 ApiResponseCode::responseExtraFromCode($code)
 * If $extraData is string, response extra will be filled with
 this value
 */
 public function fillStatusResponse($code, $extraData=null)
 {
 $responseExtra =
 ApiResponseCode::responseExtraFromCode($code);
 $responseMessage =
 ApiResponseCode::responseMessageFromCode($code);

 if($extraData == null)
 {
 $statusResponseExtra = $responseExtra;
 }
 else
 {
 $statusResponseExtra = $extraData;
 }

 $this->statusResponseCode = $code;
 $this->statusResponseMessage = $responseMessage;
 $this->statusResponseExtra = $statusResponseExtra;
 }

 /**

Creating an API for Use in a Mobile App

[272]

 * Override send() method.
 *
 * $this->data member contains data released to client.
 */
 public function send()
 {
 $responseMessage =
 ApiResponseCode::responseMessageFromCode($this-
 >statusResponseCode);

 if($this->isClientError)
 {
 $dataOut = $this->data;

 if($this->statusCode == 401) { // Not authorized
 $dataOut = null;

 $this->fillStatusResponse(ApiResponseCode:
 :ERR_LOGIN_REQUIRED);
 }
 else if($this->statusCode == 404) { // Non found
 $dataOut = null;

 $this-
 >fillStatusResponse(ApiResponseCode:
 :ERR_METHOD_NOT_FOUND);
 }

 $this->data = ['status' => ['response_code' => $this-
 >statusResponseCode, 'response_message' => $this-
 >statusResponseMessage, 'response_extra' => $this-
 >statusResponseExtra], 'data' => $dataOut];

 }
 else
 {
 $this->data = ['status' => ['response_code' => $this-
 >statusResponseCode, 'response_message' =>
 $responseMessage, 'response_extra' => $this-
 >statusResponseExtra], 'data' => $this->data];
 }

 parent::send();
 }

 public function init()

Chapter 11

[273]

 {
 parent::init();

 $this->statusResponseCode = ApiResponseCode::ERR_OK;
 }

}

Finally, we have to change the configuration file api/config/main.php by adding
the response property as a component to indicate to use a custom response class:

 'response' => [

 'format' => yii\web\Response::FORMAT_JSON,
 'charset' => 'UTF-8',
 'class' => '\api\components\ApiResponse',

],

Let's make some attempts. Try to call the non-existent URL http://hostname/
yiiadv/api/web/reservations/index-inexistent.

This will be the output, correctly returning data as null and the status with the error
explained:

The response with an error after calling a non-existent URL

Then, try to call a URL that requires authentication: http://hostname/yiiadv/api/
web/customers/index, which we already implemented in the previous paragraphs.

This will be the output, correctly returning data as null and the status with the error
explained:

The response with an error when calling the URL with authentication

Creating an API for Use in a Mobile App

[274]

Finally, we try to call a URL that returns data: http://hostname/yiiadv/api/web/
rooms/index, which is already implemented in the previous paragraphs.

This will be the output, correctly returning data as filled and successful as the status:

A response with a successful output

Other forms of export – RSS
Yii allows us to create a custom format response to output data. The response
format can be changed based on the Accept HTTP header sent by the client or done
programmatically. When Yii receives a request, it searches for an available response
formatter based on the Accept HTTP header value and finally calls the format
($response) method of the response formatter found.

Therefore, there are three steps to create custom responses:

1. Implementing the yii\web\ResponseFormatterInterface interface.
2. Adding a new custom formatter response property in the configuration file.
3. Extending the behaviors() method of the controller to handle specific

Accept HTTP header values.

Chapter 11

[275]

The first step requires us to implement the yii\web\ResponseFormatterInterface
interface and extend its method format ($response). Data to be formatted is stored
in the $response->data property, and the response to client must be filled out in the
$response->content property:

<?php
namespace api\components;

use yii\web\ResponseFormatterInterface;

class RssResponseFormatter implements ResponseFormatterInterface
{
 public function format($response)
 {
 $response->getHeaders()->set('Content-Type',
 'application/rss+xml; charset=UTF-8');
 if ($response->data !== null) {
 $response->content = "<rss></rss>";
 }
 }
}

The second step requires us to add a reference to the custom response formatter.
For this purpose, we will use the formatters property of response, which is an
array where keys are the format names, and the array values are the corresponding
configurations to create formatter objects:

 'response' => [
 'formatters' => [

 'rss' => [
 'format' => 'raw',
 'charset' => 'UTF-8',
 'class' =>
 '\api\components\RssResponseFormatter',
],

]

],

Creating an API for Use in a Mobile App

[276]

The third step requires us to extend the behaviors() method of the controller
in order to handle specific Accept HTTP header values and indicate to the
framework which response formatter to use according to the Accept HTTP
header value, for example:

 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['contentNegotiator']['formats']
 ['application/rss+xml'] = 'rss';
 return $behaviors;
 }

When a client sends a request with the Accept HTTP header set to application/
rss+xml, this controller will use the rss formatter (read from the configuration
file) to prepare the response. If we specify a formatter that does not exist in the
configuration file, we will get InvalidConfigException.

Example – creating an RSS with a list of
available rooms
Now, let's look at how to create an RSS response formatter for the available rooms.

First of all, we must create the complete response formatter component in api/
components/RssResponseFormatter.php:

<?php
namespace api\components;

use yii\web\ResponseFormatterInterface;

class RssResponseFormatter implements ResponseFormatterInterface
{
 public function format($response)
 {
 $response->getHeaders()->set('Content-Type',
 'application/rss+xml; charset=UTF-8');
 if ($response->data !== null) {
 $rssOut = '<?xml version="1.0" encoding="UTF-8"?>';
 $rssOut .= '<rss>';
 $rssOut .= '<channel>';
 foreach($response->data as $d)
 {
 $rssOut .= '<item>';

Chapter 11

[277]

 $rssOut .= sprintf('<title>Room #%d at floor
 %d</title>', $d['id'], $d['floor']);
 $rssOut .= '</item>';
 }
 $rssOut .= '</channel>';
 $rssOut .= '</rss>';

 $response->content = $rssOut;;
 }
 }
}

The RSS response formatter must implement the format ($response) method to
correctly implement yii\web\ResponseFormatterInterface. When the format
($response) method is invoked, it will set the Content-Type HTTP header to
application/rss+xml, use data that is ready to be sent from the $response->data
property, and fill in the $response->content property, which is the final content
received by the client.

Then, we must change the api/config/main.php file to add the response property
with the support of the new response formatter:

 'response' => [
 'formatters' => [

 'rss' => [
 'format' => 'raw',
 'charset' => 'UTF-8',
 'class' =>
 '\api\components\RssResponseFormatter',
],

]
],

The formatter property is an array of the response formatter where the keys are
the format names and the values are the corresponding configurations to create
formatter objects.

In this case, we configured a new formatter called rss that represents the \api\
components\RssResponseFormatter component.

Finally, we have to configure the behaviors() method in the controller to handle
the Accept HTTP header with the application/rss+xml value.

Creating an API for Use in a Mobile App

[278]

Open the RoomsController file in api/controllers/RoomsController.php and
add the extension to the behaviors() method:

 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['contentNegotiator']['formats']
 ['application/rss+xml'] = 'rss';
 return $behaviors;
 }

Starting from the base configuration of $behaviors inherited from
parent::behaviors(), the contentNegotiator attribute contains a reference to
formats for the Accept HTTP header value. The array keys are the Accept HTTP
header value that is supported, and the values are the corresponding response
formatter.

If we try to make the following request:

GET /yiiadv/api/web/rooms/index HTTP/1.1
Host: hostname
Accept: application/rss+xml

We should display the following response:

The RSS response output

We can also use the response formatter programmatically. It is enough to set
the format of the Yii::$app->response application component to a configured
response formatter in the configuration file.

For example, we can add a new action named actionIndexRss in RoomsController
that will output data using RssResponseFormatter in this way:

 public function actionIndexRss()
 {
 \Yii::$app->response->format = 'rss';

 $provider = new \yii\data\ActiveDataProvider([

Chapter 11

[279]

 'query' => \common\models\Room::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);

 return $provider;
 }

Summary
In this chapter, we created api for use in a mobile app through the use of the powerful
tools provided by Yii. We adopted the approach of creating a new application in order
to distribute RESTful web services, instead of mixing web and api controllers. For this
purpose, at the beginning of the chapter, we configured a new REST application using
the advanced template.

After configuring the RESTful web service environment, we discovered two kinds of
api controllers that Yii provides by default, then we created controllers with custom
data and data from ActiveRecord.

Next, we found out the default authentication methods for RESTful Web Services
provided by framework and you learned how to use them.

Finally, we focused on how to customize the response output format, taking an
example of how to create an RSS version of the available data.

In the next chapter, you will learn how to write a console application and will look
at the differences between web and console apps.

[281]

Create a Console
Application to Automate

the Periodic Task
In this chapter, we will learn how to write a console application and will discover
the main differences between web and console apps.

Then, we will create our first console controller, using a practical example to
illustrate how to update a database table.

In the final paragraphs, we will see how to set output colors and text formats and
how to implement a complete periodic task, such as sending an e-mail with daily
reservations. We will cover the following topics in this chapter:

• Interacting with console applications
• Creating a console controller

 ° Example – setting an alarm flag for expired reservation

• Formatting the output from the console
• Implementing and executing cron jobs

 ° Example – sending an e-mail with new reservations of the day

Create a Console Application to Automate the Periodic Task

[282]

Interacting with console applications
The console is the third application installed by default with the advanced template.

This app is configured to launch commands through a console access, and it has the
same application structure of those already seen in the previous chapters. Therefore,
in this section, we require a console access to the host.

Compared to the web and API applications used until now, there are some differences.

The public properties of a controller, in fact, are visible from the command line as
option. It is required to extend the option() method of the controller to make those
properties available. Also, based on specific action, action parameters are passed as
arguments of the command line.

Finally, a console controller action can return an exit code, a number where 0
indicates that everything is OK, a best practice for console application development.

Here is a typical usage of the console application starting from a shell:

yii <route> [--option1=value1 --option2=value2 ... argument1
argument2 ...]

The elements of the preceding code are explained as follows:

• route: This indicates the controller/action path to be called
• option: This indicates the accessible public properties of the controller for

that specific action; we can access only the public properties returned by the
options() method of the controller

• argument: This indicates the arguments to be passed to the controller action

There is an option always available, appconfig, to indicate which
path of the configuration files you must use. If it is not set, the
default configuration file will be adopted.

Yii provides a set of core console applications, which we can access by calling the
help controller (being a web application, the default action will be index), so as
to display everything concerning the list of available console controllers or details
about a single controller or action controller.

Let's consider an example; open the command line (in this case, a Linux shell) and
type the following from the project root:

$./yii help

Chapter 12

[283]

This will display an output similar to the following (partially displayed):

This is Yii version 2.0.4.

The following commands are available:

- asset Allows you to combine and compress
your JavaScript and CSS files.

 asset/compress (default) Combines and compresses the asset files
according to the given configuration.

 asset/template Creates template of configuration file
for [[actionCompress]].

- cache Allows you to flush cache.

 cache/flush Flushes given cache components.

 cache/flush-all Flushes all caches registered in the
system.

 cache/flush-schema Clears DB schema cache for a given
connection component.

 cache/index (default) Lists the caches that can be flushed.

…

…

Here, the first grouping level represents the controller names (with relative
descriptions on the right), and the second level includes the actions of the relative
controller. We will require a more deep response when passing the name of
controller to help it:

$./yii help message

To display the controller description and the list of the actions, we can also require
help about the complete route (controller/action) typing:

$./yii help message/config

This returns an output containing the description of the action, its usage, and the
options available:

DESCRIPTION

Creates a configuration file for the "extract" command.

The generated configuration file contains detailed instructions on

Create a Console Application to Automate the Periodic Task

[284]

how to customize it to fit for your needs. After customization,

you may use this configuration file with the "extract" command.

USAGE

yii message/config <filePath> [...options...]

- filePath (required): string

 output file name or alias.

OPTIONS

--appconfig: string

 custom application configuration file path.

 If not set, default application configuration is used.

--color: boolean, 0 or 1

 whether to enable ANSI color in the output.

 If not set, ANSI color will only be enabled for terminals that support
it.

--interactive: boolean, 0 or 1 (defaults to 1)

 whether to run the command interactively.

Creating a console controller
A console controller is totally similar to the web controllers that we created earlier.
It extends the \yii\console\Controller base class and can return an integer value
indicating the status response of the action (0 stands for successful execution of the
action), also named exit code.

The public properties of the controller can be made available as an option only if
their names are returned by the options() method that accepts actionID as the
parameter; so the response can be customized according to actionID.

The response of the options() method is an array of text string that represents
the public property names of the controller.

Chapter 12

[285]

Starting from the advanced template application that we previously installed in the
yiiadv folder, let's create a new console controller named MyExampleController in
console/controllers/MyExampleController.php with the following content:

<?php

namespace console\controllers;

use \yii\console\Controller;

/**
 * This is an example controller
 */
class MyExampleController extends Controller
{
 public $option1;
 public $option2;

 public function options($action)
 {
 return ['option1'];
 }

 /**
 * Simply return a welcome text
 */
 public function actionTest($param1)
 {
 echo 'this is my first controller using console
 application';
 echo "\n";
 echo "You have passed param1 with value: ".$param1;
 echo "\n";
 echo "Value of option1 is: ".$this->option1;
 echo "\n";

 // equivalent to return 0;
 return Controller::EXIT_CODE_NORMAL;
 }

}

?>

Create a Console Application to Automate the Periodic Task

[286]

This controller contains two public properties, but only option1 will be usable from
the console, since it is returned by the options() method. We will display the result
of the following command:

$./yii help my-example

The preceding command will return the following output:

DESCRIPTION

This is an example controller

SUB-COMMANDS

- my-example/test Simply return a welcome text

To see the detailed information about individual sub-commands, enter:

 yii help <sub-command>

If we need other details about the test action, we can launch the preceding
command specifying the complete route:

$./yii help my-example/test

Now, try to launch the command with the route my-example/test, without any
parameter:

$./yii my-example/test

We will receive an error about missing param1. The following is the correct syntax:

$./yii my-example/test "this is value for param1"

The preceding command will return the following output without any value for
option1:

this is my first controller using console application

You have passed param1 with value: this is value for param1

Value of option1 is:.

We can also pass the value option1 by appending --option1 to the command,
as follows:

$./yii my-example/test "this is value for param1" --option1="this is
value for option1"

Chapter 12

[287]

The preceding command will return a complete output, as follows:

this is my first controller using console application

You have passed param1 with value: this is value for param1

Value of option1 is: this is value for option1

Example – setting an alarm flag for expired
reservation
Now, let's consider an example to illustrate how to use console commands to
execute maintenance operations.

In console controllers, we can access all the models, components, and extensions
available in the project, as well as what we have done in the web application.
Therefore, we will manipulate data in the same way as we should do for a web
application.

Starting from the reservation database table used in the previous chapters, we
will add a new Boolean field, named expired, to set which reservations are out
of the end date.

This is the structure of the reservation table to store data in the MySQL Server:

CREATE TABLE `reservation` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `room_id` int(11) NOT NULL,
 `customer_id` int(11) NOT NULL,
 `price_per_day` decimal(20,2) NOT NULL,
 `date_from` date NOT NULL,
 `date_to` date NOT NULL,
 `reservation_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `expired` int(1) NOT NULL DEFAULT '0',
 PRIMARY KEY (`id`)
)

Now, let's insert some records to make a simulation. We will update the expired
field with value 1 if today is after date_to value; otherwise, it will be 0.

These are the records to insert in the reservation database table:

INSERT INTO `reservation` (`id`, `room_id`, `customer_id`,
`price_per_day`, `date_from`, `date_to`, `reservation_date`,
`expired`) VALUES
(1, 2, 1, 90.00, '2015-02-10', '2015-05-23', '2015-05-24
22:45:37', 0),

Create a Console Application to Automate the Periodic Task

[288]

(2, 2, 1, 48.00, '2019-08-27', '2019-08-31', '2015-05-24
22:45:37', 0),
(3, 1, 2, 105.00, '2015-09-24', '2015-10-06', '2015-06-03
00:21:14', 0),
(4, 1, 2, 150.00, '2015-06-22', '2015-06-28', '2015-06-21
22:24:25', 0),
(5, 1, 2, 150.00, '2015-07-22', '2015-08-28', '2015-06-21
22:24:34', 0);

Make sure that users exist in user database table

Now, create a new console controller in console/controllers/
ReservationsController.php with the following content:

<?php

namespace console\controllers;

use \yii\console\Controller;

/**
 * Manage reservations
 */
class ReservationsController extends Controller
{
 /**
 * Update 'expired' field of reservations
 */
 public function actionUpdateExpired()
 {
 $models = \common\models\Reservation::find()->all();

 foreach($models as $m)
 {
 echo sprintf('Check reservation #%d - date_to = %s -
 status : %s', $m->id, $m->date_to, (strtotime($m-
 >date_to)<=time())?'OK':'Expired');
 echo "\n";
 // Set expired field. I'll for every model because if
 we could have changed 'date_to' value.
 $m->expired = (strtotime($m->date_to)<=time())?0:1;
 $m->save();
 }

Chapter 12

[289]

 // equivalent to return 0;
 return Controller::EXIT_CODE_NORMAL;
 }
}
?>

In actionUpdateExpired, we display for each model some data to the console,
such as id, date_to, and status. Then, we will set for each model the value of
the expired field, based on the date_to value.

Finally, we will launch this command:

$./yii reservations/update-expired

This will return the following output:

Check reservation #1 - date_to = 2015-05-23 - status : OK

Check reservation #2 - date_to = 2019-08-31 - status : Expired

Check reservation #3 - date_to = 2015-10-06 - status : Expired

Check reservation #4 - date_to = 2015-06-28 - status : OK

Check reservation #5 - date_to = 2015-08-28 - status : OK

Formatting the output from the console
The base class console controller yii\console\Controller supports methods to
display colored and formatted output.

There are two standard methods to display the output, which are as follows:

• stdout: This prints a string to STDOUT
• strerr: This prints a string to STDERR

Both these methods support more parameters: the first is the text string to be
displayed, and the other includes the formatting options that can be passed to
make a pretty output.

There are formatting options for colors and typing; these are defined by constants
from \yii\helpers\Console; for example, BG_CYAN for cyan background color,
BG_RED for red background color, and UNDERLINE for underlined text.

Let's see an example using the following code:

$this->stdout("Hello?\n", Console::BOLD);

Create a Console Application to Automate the Periodic Task

[290]

This will display Hello? (with a carriage return) with bold font. Sometimes, it could be
possible that no effect will be displayed, since our terminal does not support colors.

In this case, a method of the console controller will help us verify our terminal
capabilities: isColorEnabled() returns a Boolean indicating whether the terminal
supports ANSI colors.

Both the methods strout and strerr are applied to the whole text string and
are passed as the first parameter. If we want to apply some features only to a
single part of the text, we must use the ansiFormat method that returns an
ANSI-formatted string.

Let's take an example. Create a controller to check whether the console supports
ANSI or not, and try to print the colored text if this feature is supported.

Then, create a new controller named ColorController in console/controllers/
ColorController.php with this content:

<?php

namespace console\controllers;

use \yii\console\Controller;
use \yii\helpers\Console;

/**
 * Colors dedicated controller
 */
class ColorController extends Controller
{
 /**
 * Simply return a welcome text
 */
 public function actionIsClientEnabled()
 {
 if($this->isColorEnabled())
 {
 $this->stdout('OK, terminal supports colors!');
 }
 else
 {
 $this->stdout('NOT OK, terminal does not support
 colors!');

Chapter 12

[291]

 }

 $this->stdOut("\n");

 // equivalent to return 0;
 return Controller::EXIT_CODE_NORMAL;
 }

 public function actionPrintColouredText()
 {
 $colouredText = $this->ansiFormat('This text is coloured',
 Console::FG_RED);
 $normalText ="This text is normal";

 $this->stdout(sprintf("%s - %s\n", $normalText,
 $colouredText));
 }

}

?>

We call launch to check if client supports ANSI colors or not:

$./yii color/is-client-enabled

And to display colored text (if the client supports it):

$./yii color/print-coloured-text

The Console class under \yii\helpers\ contains many other useful methods
to format text and output, such as confirm() or prompt() to get input from the
user, or progress to create a progress bar to display the execution state.

Implementing and executing cron jobs
The main usage of console applications consists in the execution of periodic tasks
using cron job (on Linux or Unix machines).

We can use console applications to send massive e-mails to perform system
maintenance or to check a specific status of the application.

In the next example, we will see how to send an e-mail with a summary of the
reservations made in the current date.

Create a Console Application to Automate the Periodic Task

[292]

Example – sending an e-mail with new
reservations of the day
This example illustrates how to send an e-mail with a summary of new daily
reservations.

First of all, let's configure the mailer component in console/config/main.php,
if it is not already configured.

It is enough to pass a few parameters to the component:

 'components' => [
 ..
 ..

 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
 'viewPath' => '@common/mail',
 // send all mails to a file by default. You have to
 set
 // 'useFileTransport' to false and configure a
 transport
 // for the mailer to send real emails.
 'useFileTransport' => true,
],
..
..
],
];

The class parameter indicates the class that handles the component, viewPath,
which indicates where views of the e-mail, or rather e-mail templates, are stored;
the last parameter useFileTransport indicates the e-mail sending method.

Now, in ReservationsController, under console/controllers/
ReservationsController.php, add the method, actionReservationsOfTheDay,
which sends the content of daily reservations:

 public function actionReservationsOfTheDay($currentDate=null)
 {
 if($currentDate == null) $currentDate = date('Y-m-d');
 $models = \common\models\Reservation::find()-
 >where('DATE(reservation_date) = "'.$currentDate.'"')-
 >all();

Chapter 12

[293]

 \Yii::$app->mailer->compose(['html' =>
 'reservationsOfTheDay-html', 'text' =>
 'reservationsOfTheDay-text'], ['models' => $models,
 'currentDate' => $currentDate])
 ->setFrom('myemail@example.com')
 ->setTo('administrator@example.com')
 ->setSubject('Reservations of the day: '.$currentDate)
 ->send();

 }

It is advisable to put the from e-mail parameter, for example, in a
params.php file, which contains all the global parameters available
in the whole application.

This method simply gets the currentDate parameter from the input so that we can
change the evaluation date as we need; the action body finds reservations for the
input date and passes them to the e-mail view reservationsOfTheDay in the html
and text format.

Now, we must create the content of the e-mail format, creating two files in common/
mail: reservationsOfTheDay-html.php and reservationsOfTheDay-text.php.

This is the content of the HTML version:

There are <?= count($models) ?> reservations for the date <?=
$currentDate ?>

<?php if(count($models)>0) { ?>
 This is a summary:

 <table>
 <tr>
 <td>Reservation #</td>
 <td>Room</td>
 <td>Customer</td>
 <td>Price per day</td>
 <td>Date from</td>

Create a Console Application to Automate the Periodic Task

[294]

 <td>Date to</td>
 </tr>

 <?php foreach($models as $m) { ?>
 <tr>
 <td><?= $m->id ?></td>
 <td><?= $m->room->floor.' '.$m->room->number ?></td>
 <td><?= $m->customer->surname.' '.$m->customer->name
 ?></td>
 <td><?= $m->price_per_day ?></td>
 <td><?= $m->date_from ?></td>
 <td><?= $m->date_to ?></td>
 </tr>
 <?php } ?>

 </table>
<?php } else { ?>
 <i>There is no summary for current date</i>
<?php } ?>

This is the corresponding content in text format (not required for the HTML
e-mail client):

There are <?= count($models) ?> reservations for the date <?=
$currentDate ?>

<?php if(count($models)>0) { ?>
 This is a summary

 <?php foreach($models as $m) { ?>
 Reservation #: <?= $m->id ?> - Room: <?= $m->room->floor.'
 '.$m->room->number ?> - Customer: <?= $m->customer-
 >surname.' '.$m->customer->name ?> - Price per day: <?=
 $m->price_per_day ?> - Date from: <?= $m->date_from ?> -
 Date to: <?= $m->date_to ?>
 <?php } ?>
<?php } else { ?>
 There is no summary for the current date
<?php } ?>

The command can be executed by launching:

$./yii reservations/reservations-of-the-day

Chapter 12

[295]

We can also call the pass date parameter to change the date to check, for example, to
check the reservations made on 2015-08-05:

$./yii reservations/reservations-of-the-day "2015-08-05"

The last thing to do is to attach that command to a periodic task scheduler according
to the operating system, for instance, cron in the Linux or Unix environment.

Summary
In this chapter, we have discussed the third kind of default application installed
with Yii's advanced template, the console application.

We have seen the primary differences between console and web applications, and
we have learned how to create our first console controller, handling options and
parameters to pass to the actions. Then, we have applied a console application with
a concrete example, such as making maintenance operation to the reservation table
in order to update the status of the reservations to expired.

Then, we focused on how the console application can make pretty outputs, using
colors and text formatting features.

Finally, we have mastered how to create a complete periodic task with a console
controller action to send a daily summary e-mail containing reservations made
in current date.

In the final chapter, we will see the final stage of our development, where we
have to make the code reusable but, especially, maintainable.

[297]

Final Refactoring
This is the final stage of our development. Now that we have written all the working
code, we must make it reusable but most importantly, maintainable. This chapter will
help you to reuse code by means of widgets and other components. We will see some
practical examples on how to use them. Then, we will deal with documentation, an
important aspect of app development that allows everyone to quickly learn how a
project is structured and built.

For the documentation, we are going to use the two most important tools provided
by the framework in order to build API and guide references, making a real-life
example. We will cover the following topics:

• Creating widgets
 ° Example – creating a widget with a carousel

• Creating components
 ° Example – creating a component that creates a backup of the MySQL

database and sends an e-mail to the administrator

• Creating modules
• Generating the API documentation

 ° Example – using API documentation to generate doc of the app

Final Refactoring

[298]

Creating widgets
A widget is a reusable client-side code (containing JavaScript, CSS, and HTML) with
minimal logic wrapped in a yii\base\Widget object that we can easily insert and
apply in any view.

Building a widget requires you to extend two methods of yii\base\Widget:

• The init() method initializes the object
• The run() method executes the object

In order to instance a widget, it is enough to call the static widget() method that
accepts just one parameter or better still an array containing values for its public
properties.

The following is an example:

 MyWidget::widget(['prop1' => 'value of prop1', …])

This returns a string containing widget output, passing its value value of prop1
for its prop1 public properties.

If we need to insert an extra code in a widget's execution (for example, in the
ActiveForm widget), we have a more complex way of instantiating the widget,
using the begin() and end() methods.

The first method, begin(), accepts a function parameter with a configuration array
to pass to the widget, and it will return the widget object.

When the second method, end(), is called, the code between these two methods
will be displayed and simultaneously, the end() method directly echoes the output
of the widget run() method:

 $widget = MyWidget::begin(['prop1' => 'value of prop1', …]);

 ..
 .. I can use $widget object here ..
 ..

 MyWidget::end();

As for any other views, in the run() method, we can refer to a view file, through the
render() method, in order to display the widget output.

Chapter 13

[299]

For example, a widget could be a real-time date/time clock. For this purpose, we
will build a clock based on a block containing the date/time string updated by the
JavaScript code. We can pass to widget construct time some values concerning for
example, the color of the border box.

To make an instance, let's start with the basic template app (but this is obviously
also valid for the advanced template app). Create a new folder (if it does not exist)
named components in the root of the project at the same level of controllers,
models, views, and so on, which will contain all the widgets we want to build.

Then, in this folder, we will create a new file named ClockWidget.php with the
complete path basic/components/ClockWidget.php:

<?php

namespace app\components;

use yii\base\Widget;

class ClockWidget extends Widget
{

 public function init()
 {
 \yii\web\JqueryAsset::register($this->getView());
 }

 public function run()
 {
 return $this->render('clock');
 }

}

In the init() method, we have also made references to the jQuery asset to request
the framework to load the jQuery plugin, since we need it in the view file.

In the run() method, we have rendered the clock view, whose content will be
discussed in next rows.

Final Refactoring

[300]

So, create a new folder at basic/components/views and, within it, a new file named
clock.php with the following code:

<?php

$this->registerJs(<<< EOT_JS

 function ClockWidget_refresh_datetime()
 {
 var dateTimeString = new Date().toString();
 $('#ClockWidget_realtime_clock').html(dateTimeString);
 }

 setInterval(ClockWidget_refresh_datetime,1000);

 ClockWidget_refresh_datetime();
EOT_JS
);

?>

<div style="border:1px solid black;padding:5px;width:200px;text-
align:center">

</div>

This code simply displays a box with a string containing real-time values of the
current date and time, updated every second.

Finally, we can use our widget in any view using this code:

<?= \app\components\ClockWidget::widget(); ?>

Example – creating a widget with a carousel
In this example, we will create a widget that consists of a carousel with some rooms
(we can choose which one to display by passing them to the widget with the public
property). Again, we will use a basic template application; however, everything is
equally applicable to the advanced template apps.

For this example, we will create a new controller to use its view as a widget container.

Chapter 13

[301]

So, let's create this new controller named TestCarouselController at basic/
controller/TestCarouselController.php. From here, we will pass the models
property, consisting of a list of maximum three rooms:

<?php

namespace app\controllers;

use yii\web\Controller;
use app\models\Room;

class TestCarouselController extends Controller
{
 public function actionIndex()
 {
 $models = Room::find()->limit(3)->all();

 return $this->render('index', ['models' => $models]);
 }
}

Next, we will create the view at basic/views/test-carousel/index.php with the
widget output as follows:

This is a carousel widget with some rooms:
<?=
\app\components\CarouselWidget\CarouselWidget::widget(['models' =>
$models, 'options' => ['style' => 'border:1px solid black;text-
align:center;padding:5px;']]); ?>

This builds the widget filling and its public properties models and options.

Now it is time to create our widget. To isolate the widget from another code as much
as possible, we create a specific widget folder at the basic/components folder, under
a subfolder named CarouselWidget inside of which we will create the widget file
named CarouselWidget.php.

This widget includes a public property, models that contains the room's model that
has been passed from the container view. It is necessary to pass these models to the
Carousel widget at \yii\bootstrap\Carousel as an array of this kind:

items => [
['content' => '...', 'caption' => '...'],
['content' => '...', 'caption' => '...'],
['content' => '...', 'caption' => '...'],
...
];

Final Refactoring

[302]

In this way, in the init() method, we will create an internal representation of the
models according to the Bootstrap Yii2 widget expectation.

Finally, in the run() method, we will output the view now in the views folder at
basic/components/CarouselWidget/views. This is the widget content; remember
that it is stored in CarouselWidget.php at basic/components/CarouselWidget:

<?php

namespace app\components\CarouselWidget;

use yii\base\Widget;

class CarouselWidget extends Widget
{
 public $carouselId = 'carouselWidget_0';
 public $options = [];
 public $models = [];

 private $carouselItemsContent;

 public function init()
 {
 // It is not necessary because yii bootstrap Carousel
 widget will load it automatically
 // \yii\jui\JuiAsset::register($this->getView());

 $this->carouselItemsContent = [];
 foreach($this->models as $model)
 {
 $caption = sprintf('<h1>Room #%d</h1>', $model->id);
 $content = sprintf('This is room #%d at floor %d with
 %0.2f€ price per day', $model->id, $model->floor,
 $model->price_per_day);
 $itemContent = ['content' => $content, 'caption' =>
 $caption];
 $this->carouselItemsContent[] = $itemContent;
 }

 }

 public function run()
 {

Chapter 13

[303]

 return $this->render('carousel', ['carouselItemsContent'
 => $this->carouselItemsContent]);
 }

}

The widget view, called in the run() method, will be stored in the carousel.php file
at basic/components/CarouselWidget/views:

<?php $styleOption = isset($this->context->options['style'])?$this-
>context->options['style']:''; ?>
<div id="<?php echo $this->context->id ?>" style="<?php echo
$styleOption ?>">
 <?php
 echo \yii\bootstrap\Carousel::widget([
 'id' => $this->context->carouselId,
 'items' => $carouselItemsContent

]);
 ?>

</div>

Browsing to http://hostname/basic/web/test-carousel/index, we will see the
carousel widget (only text, but we can also insert some images within).

Creating components
A component is a reusable object that should contain only logic, and it is callable
from every point of the app. In a component, we put all the functions that are
usable in more than one place of the app.

Technically, a component extends yii\base\Component that implements the
property, event and behavior features. We can have two kinds of component:
component and application component. The only difference between them is
that the second has to be also configured in the configuration file of the app in
the components property and it is available as a property from the Yii::$app
object. Examples of application components are db, user, and so on.

Usually, components are stored in the components folder starting from the root
folder of the project.

Final Refactoring

[304]

Let's see how to create a simple custom component:

namespace app\components;

use Yii;
use yii\base\Component;

class MyComponent extends Component
{
..
..
}

We can instantiate this component as follows:

$myCmp = new \app\components\MyComponent();

Then, we will have a new instance of the MyComponent object.

If we want to render this component into the application component and access
to it through Yii::$app->myComponent, we must update the configuration file,
web.php, at basic/config:

'components' => [
 ..
 ..
 'myComponent' => [
 'class' => '\app\components\MyComponent'
],
]

At this point, we can call myComponent using:

Yii:$app->myComponent

Remember that an application component is a single and
shared instance of the same object.

Chapter 13

[305]

We can make custom initializations when a component is instantiated by overriding
the init() method of the component.

A concrete example of the component (or the application component, according to
our needs) could be sending an SMS to the SMS gateway for the app.

The component could be:

namespace app\components;

use Yii;
use yii\base\Component;

class SmsGateway extends Component
{
 public function send($to, $text)
 {
 ..
 ..
 ..
 }
}

This example is suitable to use this component as an application component:

'components' => [
 ..
 ..
 'smsgw' => [
 'class' => '\app\components\SmsGateway
],
]

That is usable directly from:

Yii:$app->smsgw->send('+3913456789', 'hello world!');

Another common example for an application component could be an object to send
push notifications to mobile devices, which is made in the same way as the previous
SMS gateway object.

Final Refactoring

[306]

Example – creating a component that creates
a backup of the MySQL database and sends
an e-mail to the administrator
This example will show a common task concerning the creation of backup copies
for the main database and the alert messages that the administrator receives
once complete.

A backup will be taken using the command line MySQL tool.

Maintenance operations should be executed in a console environment since they can
be scheduled (every day, every week, two days a week, and so on), and they could
cause a web server timeout (usually, if an operation is not finished, the web server
will return a timeout error after 30 seconds) if this operation takes longer than the
maximum time available. So we will start by creating a console controller in the
advanced template that we previously installed.

Remember that the project root folder for the advanced template is yiiadv.

Create a new component in Maintenance.php at yiiadv/common/components with
this content:

<?php
namespace common\components;

use Yii;
use yii\base\Component;

class Maintenance extends Component
{
 public function launchBackup($database, $username, $password,
 $pathDestSqlFile)
 {
 $cmd = sprintf('mysqldump -u %s -p%s %s > %s', $username,
 $password, $database, $pathDestSqlFile);
 $outputLines = [];
 exec($cmd, $outputLines, $exitCode);

 return ['cmd' => $cmd, 'exitCode' => $exitCode,
 'outputLines' => $outputLines];
 }
}
?>

Chapter 13

[307]

The launchBackup() method will launch mysqldump (which should be installed in
the system) by passing the username, password, database, and the destination file
path where the SQL output of this command is to be stored.

Then, it will return an array with these values: command, exit code of command,
and its possible output text. Now let's create the console controller that we will use
to launch the command. We could also launch it from a web controller, for example
after clicking on a button.

Let's create the console controller in MaintenanceController.php at yiiadv/
console/controllers:

<?php

namespace console\controllers;

use \yii\console\Controller;
use \yii\helpers\Console;
use \common\components\Maintenance;

class MaintenanceController extends Controller
{
 public function actionBackupDatabase()
 {
 $tmpfname = tempnam(sys_get_temp_dir(), 'FOO');
 $obj = new Maintenance();
 $ret = $obj->launchBackup('username', 'password',
 'database_name', $tmpfname);

 if($ret['exitCode'] == 0)
 {
 $this->stdOut("OK\n");
 $this->stdOut(sprintf("Backup successfully stored in:
 %s\n", $tmpfname));
 }
 else
 {
 $this->stdOut("ERR\n");
 }

 // equivalent to return 0;
 return $ret['exitCode'];
 }

}

?>

Final Refactoring

[308]

Let's make some considerations:

• We could set the launchBackup() method of the maintenance component
as static by avoiding to create an instance of the object; however, if we keep
it nonstatic, we could also use it as application component. Otherwise, if we
mark the method as static, and then use it as application component when
calling the static method launchBackup() from the object, we will receive
a warning from PHP.

• We could move the file creation inside the launchBackup() method
because in this case it is a temporary file, but generally we could use
a specific file path.

• We could avoid passing database info and get it from Yii parameters,
if we store them in the parameters file.

A more complete action is to back up and send an e-mail to the administrator,
containing the backup result and eventually, if needed, also the backup file:

 public function actionBackupDatabaseAndSendEmail()
 {
 $tmpfname = tempnam(sys_get_temp_dir(), 'FOO'); // good
 $obj = new Maintenance();
 $ret = $obj->launchBackup('username', 'password',
 'database_name', $tmpfname);

 $emailAttachment = null;
 if($ret['exitCode'] == 0)
 {
 $this->stdOut("OK\n");
 $this->stdOut(sprintf("Backup successfully stored in:
 %s\n", $tmpfname));

 $textEmail = 'Backup database successful! Find it in
 attachment';
 $emailAttachment = $tmpfname;
 }
 else
 {
 $this->stdOut("ERR\n");

 $textEmail = 'Error in backup database! Check it!';
 }

 $emailMsg = Yii::$app->mailer->compose()

Chapter 13

[309]

 ->setFrom('from@example.com')
 ->setTo('to@example.com')
 ->setSubject('Backup database')
 ->setTextBody($textEmail);

 if($emailAttachment!=null) $emailMsg-
 >attach($emailAttachment, ['fileName' =>
 'backup_db.sql']);
 $emailMsg->send();

 // equivalent to return 0;
 return $ret['exitCode'];
 }

Creating modules
A module is practically an application inside the main application. In fact, it is
organized as a directory that is called the base path of the module. Within the
directory, there are folders containing its controllers, models, views, and other
code, just like in an application.

Follow the typical structure of a module:

myCustomModule/
 Module.php the module class file
 controllers/ containing controller class files
 DefaultController.php the default controller class file
 models/ containing model class files
 views/ containing controller view and
 layout files
 layouts/ containing layout view files
 default/ containing view files for
 DefaultController
 index.php the index view file

The module class file is instanced when a module is being accessed and it is used to
share data and components for code, such as application instances.

The module class file has these characteristics:

• It is by default named Module.php
• It is instanced once during the code execution
• It is located directly under the module's base path
• It extends from yii\base\Module

Final Refactoring

[310]

Let's look at an example of a module class for myCustomModule (under the
app\modules\myCustomModule namespace):

namespace app\modules\myCustomModule;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->params['foo'] = 'bar';
 // ... other initialization code ...
 }
}

As a standard application, a module can have its own configuration based on a
config file that has the same contents of a standard application:

<?php
return [
 'components' => [
 // list of component configurations
],
 'params' => [
 // list of parameters
],
 ..
 ..
 ..
];

We load this in the init() method of the module:

public function init()
{
 parent::init();
 // initialize the module with the configuration loaded from
config.php
 \Yii::configure($this, require(__DIR__ . '/config.php'));
}

Then, we create and use controllers, models, and views in the same way we do with
a normal application.

Chapter 13

[311]

We always have to take care to specify the right namespace
at the top of every file.

Finally, to use a module in an application, we simply configure the application by
listing the module in the module's property of the application. The following code
in the application configuration uses the forum module:

[
 'modules' => [
 'myCustomModule' => [
 'class' => 'app\modules\myCustomModule\Module',
 // ... other configurations for the module ...
],
],
]

Generating an API documentation
Documentation is definitively one of the most important aspects of an app, since
it provides information about its flows and structures. Unfortunately, it is often
omitted due to lack of time.

Yii give us a powerful tool to automatically generate a pretty documentation.
Basically, it uses all the documentation comments present in the app, those starting
with /** instead of the classic /*.

Therefore, we have the advantage that comments in the code are used to produce a
complete documentation.

Inside these comments, there are few keywords that are usable according to the
context—file, class, or function/method.

In case of a file, the most common keywords to put on top are:

• @link url, where url is the reference URL linked to the file
• @copyright text, where text is the content of copyright
• @license url, where url is the reference to license content

In case of a class, the most common keywords to put on top are:

• @author name, where name is the name of the author
• @since version, where version is the version of the project in which this

class has been included

Final Refactoring

[312]

In case of a function/method, the most common keywords to put on top are:

• @param type name, where type is the type of parameter and name is the
name of the parameter passed as an argument of the function

• @return type, where type is the returned type
• @throws class, where class is the exception class thrown by the exception

Besides API documentation, Yii provides tools to create pretty guide files that are
in the .md format (typical of GitHub). It is easy to find information on formatting
a .md file by surfing the Internet.

Example – using an API documentation to
generate a doc of app and services
Let's now see which commands automatically produce a documentation from the
Yii app.

There are two kinds of documentation:

• API documentation, which is a reference of each .php file in the project,
completed with doc comments referred to a single file, class, or function

• Guide, which is a pretty manual for the app, created using the .md files
that Yii renders in pretty .html files

The first step is to install api-doc, if it is not already present.

Point to the project root folder and launch this command:

$ php composer.phar require --prefer-dist yiisoft/yii2-apidoc

This will install the yii2-apidoc extension.

If this command is not properly complete, launch also a
Composer update as follows:
$ php composer.phar update

Now we can launch the command to produce an API documentation starting from
the project root folder:

$ vendor/bin/apidoc api ./ ../app-doc

Chapter 13

[313]

The parameters are as follows:

• The first parameter, api, identifies the command to execute
• The second parameter, ./, identifies the path of the source files to scan
• The third parameter, ../app-doc, identifies the destination folder of the

created documentation

After launching the command, going to the ../app-doc folder on a browser will
show us the API documentation created by the framework.

When we make any changes in the source file, it is necessary to relaunch the
command to update the API documentation. The second kind of documentation
is the guide, a set of .html files produced by .md files.

So we need to create a folder, starting from the project root folder, for example,
the folder named guide, where we will put all the .md files that we want to convert
into .html pretty files from the command guide.

Now we are ready to launch the command to create our guide, which is totally
similar to the previously made API command:

$ vendor/bin/apidoc guide ./guide ../app-doc

This command will convert all the .md files present in the ./guide folder into
.html files, storing them in the ../app-doc folder (together with the API
documentation files).

Let's make a concrete example. Starting with the basic template project, create a
new controller named TestDocController in TestDocController.php at basic/
controllers:

<?php

/**
 * This file contains a controller to demonstrate api documentation
tool.
 *
 * @link http://www.example.com/
 * @copyright Copyright (c) 2015
 * @license http://www.example.com/license/
 */

namespace app\controllers;

Final Refactoring

[314]

use Yii;
use yii\web\Controller;

/**
 * This is a controller class to demonstrate api documentation tool.
 *
 * @author Fabrizio Caldarelli
 * @since 1.0
 */
class TestDocController extends Controller
{
 /**
 * Make sum of the operands
 *
 * @param float $a first operand
 * @param float $b second operand
 * @return float sum of parameters
 * @author
 */
 public function makeSum(float $a, float $b)
 {
 return $a+$b;
 }
}

Now open a shell console on host, and from the project root folder, launch the
command to generate the API documentation:

$ vendor/bin/apidoc api ./ ../app-doc

This will create the documentation for all files starting with the root folder (./)
and storing the HTML result files in ../app-doc.

Now, on your browser, go to http://hostname/app-doc and we will display
the API documentation index page. Search for TestDocController.php in the
side menu and click on it. This should be the output:

Chapter 13

[315]

TestDocController API documentation

Now, we want to demonstrate the second kind of documentation—guide
documentation.

Create a folder from the project root folder named app-guide. In it, put a new file
named test-doc-controller.md with the following content:

TestDoc Controller

This is the guide for TestDoc Controller.

Functionalities

It is provided makeSum function, that makes a sum of two values passed
as parameter

```
$a = 10;
$b = 20;
$c = $this->makeSum(float $a, float $b)     // $c = 30;
```


Final Refactoring

[316]

Go to the shell console of the hosting and from the project root folder, launch the
command to generate the guide documentation:

$ vendor/bin/apidoc guide ./app-guide ../app-doc

This will create the guide documentation for all .md files in the ./app-guide folder
and will store .html results in ../app-doc.

On your browser go to http://hostname/app-doc/guide-test-doc-controller.
html, you should see the following screen:

TestDocController guide documentation

Summary
In this final chapter, you learned how to make reusable and easily maintainable
code, using widgets and components. Talking about reusable view code (HTML,
JavaScript, and CSS), we introduced widgets, defined and focused on the benefits
they add to the project. Next, you learned to build and use them, and finally, we
did a practical example by building a new widget from scratch. Talking of reusable
logic code, we discovered its components, distinguished between components and
application components, and also did some practical examples by building useful
components for real-life problems.

Then we mastered the documentation generator, specifically API and guide
documentation. You learned how to launch and use the tools provided by Yii.
Finally, we built a controller class to explain, with a practical example, how to
build the API reference and the guide reference for that controller.

[317]

Index
A
ACF

creating, for user authorization 197, 198
ACF, and RBAC

mixing 208
action

adding, to REST API controller 260, 261
creating 20-22

ActiveForm
using 61-65

ActiveRecord
methods 91
rooms list, querying with 91-96
used, for manipulating data 88-90

ActiveRecord models
sharing, among applications 217

ActiveRecord relational data
displaying, in grid's column 140-143

advanced template
REST app, configuring in 244-246
URL, customizing in 222, 223
used, for splitting backend 212, 213
used, for splitting frontend 212, 213
using, in same domain 223-225
using, in shared hosting 226

AJAX
using 163, 164

alarm flag
setting, for expired reservation 287-289

API documentation
generating 311
used, for generating doc of app and

services 312-316
application components

cache 7

db 9
errorHandler 8
log 8
mailer 8
request 7
user 8

application events
handling 9

application properties
about 6
aliases 6
basePath 6
bootstrap 6
catchAll 6
charset 7
components 6
defaultRoute 7
id 6
language 6
modules 6
name 7
params 7
timeZone 7

applications
ActiveRecord models, sharing among 217
configuring, init used 214, 215

 authentication
about 254
enabling 255-258
HTTP Basic Auth 254
OAuth 2 254
query parameter 254
used, for obtaining customers list 258-260

available rooms
displaying, in frontend site 218-221

[318]

B
backend

splitting, advanced template used 212, 213
basic folder, Yii2's application structure

assets 3
commands 3
config 3
mail 3
models 3
runtime 4
tests 4
vendor 4
views 4
web 4

bootstrap template
used, for creating controller 25-28

Bootstrap widget
using 169

C
cache component 7
carousel

widget, creating with 300-303
commands, for retrieving data

query() 78
queryAll() 78
queryOne() 78
queryScalar() 78

common view content
splitting, into reusable views 29

components
creating 303-308

Composer
about 2
URL 3
Yii2, installing with 2, 3

console
output, formatting from 289-291

console applications
interacting with 282, 283

console controller
creating 284-287

contact page
adding 32, 33

content negotiation 248
controller

creating 20-22, 247-250
creating, for room management 250-253
creating, for static news items list

display 25-28
data, sending to view 24, 25

createUrl() method
reference link 28

cron jobs
executing 291
implementing 291

CRUD
generating, Gii used 154
used, for managing customers 155-157
used, for managing reservations 155-157
used, for managing rooms 155-157

CSS
used, for displaying advertising

columns 160-163
custom authentication method

creating, for application 264-268
custom columns

displaying, in grid 131
customer and reservation models

creating, in same view 180-182
customers list

obtaining, authentication used 258-260
customize CSS 158-160
customize JavaScript 158-160
custom responses

creating 274
custom URL rules

about 43
example 44-48

D
data

manipulating, ActiveRecord used 88-91
sharing, between views and layout 34

DataProvider, for grids 128, 129
date

formatting 65, 66
datepicker

using 170-174

[319]

DB
used, for translating room

descriptions 239-242
DB-based translations 237, 238
db component 9
DB connection

testing 78-80
DB connection configuration

about 74, 75
customers, creating 76, 77
data, exporting to local SQLite DB 121-125
reservations, creating 76, 77
rooms, creating 76, 77

debug toolbar
configuring 11-13

default language
setting 227, 228

documentation 311
dynamic box

adding, for advertising info display 37

E
e-mail

sending, with summary of new
daily reservations 292-294

errorHandler component 8
expired reservation

alarm flag, setting for 287-289

F
file-based translations

about 228-230
using, for entire website 230-235

file controller
creating 20

files
image of room, uploading 67-71
uploading 67

filters, in GridView 137-140
footer row customization

GridView, extending for 147, 148
form

room, creating from 112-117
room, updating from 112-117

frontend
creating, for public access 216
splitting, advanced template used 212, 213

frontend site
available rooms, displaying in 218-221

G
Gii

used, for creating customer model 81-88
used, for creating reservation model 81-88
used, for creating room model 81-88
used, for generating CRUD 154

GMT time zone
setting up 118-120

grid
custom columns, displaying in 131
using 130

GridView
about 128
extending, for footer row

customization 147, 148

H
Hello world example, with Yii basic

template and bootstrap
template 14-17

HTTP Basic Auth 254

I
identityClass class

methods 186
init

used, for configuring application 214, 215

J
JavaScript

used, for displaying advertising
columns 160-163

L
layout

with dynamic block 36

[320]

layout background
modifying, based on URL parameter 35

lazy loading 97
linked models

saving, in same view 179
log component 8
logger

using 14
login form

creating, example 190-195

M
mailer component 8
message command 231
methods, ActiveRecord

delete() 91
save() 91
validate() 91

methods, identityClass class
findIdentity() 186
findIdentityByAccessToken() 186
getAuthKey() 186
getId() 186
validateAuthKey() 186

Model
creating 57-61

Model base class, features
attribute declaration 57
attribute labels 58
massive attribute assignment 58
scenario-based validation 58

Model-View-Controller (MVC) design
pattern, Yii2 10

modules
creating 309, 310

multiple customers
saving, at same time 176-178

multiple database connections
using 120

multiple grids
displaying, on one page 148, 149

multiple layouts
example 39, 40
using 38

multiple models
finding, in same view 175

N
naming convention 10, 11
numeric fields

formatting 65, 66

O
OAuth 2 254
objects, Yii2

Application Components 5
Components 5
Controllers 5
Extensions 5
Filters 5
Models 5
Modules 5
Views 5
Widgets 5

output
formatting, from console 289-291

P
parameters, URL rule

defaults 49
encodeParams 49
host 50
mode 50
name 50
pattern 50
route 50
suffix 50
verb 50

PHP Data Objects (PDO) 74
placeholders formatting 235-237
Pretty URLs

using 41-43
public access

frontend, creating for 216

Q
query parameter 254

[321]

R
RBAC

configuring, for setting
permissions 202-207

overview 198-202
relationships

used, for connecting rooms, reservations,
and customers 103-111

working with 96-103
render partial, in view

example 30
renderPartial() method

reference link 29
request component 7
reservation

rooms list, obtaining for 262, 263
reservation details

loading, from customers' drop-down
lists 165-168

reservations, and rooms grids
managing, in same view 149-152

reservations list
displaying, by clicking on customer grid

row 131-137
response

returning, with attributes 268-274
REST API controller

actions, adding to 260, 261
REST app

configuring, in advanced template 244-246
reusable views

common view content, splitting into 29
Role Based Access Control. See RBAC
room descriptions

translating, DB used 239-242
rooms list

obtaining, for reservation 262, 263
querying, with ActiveRecord 91-96

RSS response formatter
about 274, 276
creating, for available rooms 276-278

rule class
creating 52-55

S
shared hosting

advanced template, using in 226
SQL query

executing 78-80
static pages

creating 31
summarized footer row, in grid 144-147

T
time

formatting 65, 66

U
URL

customizing, in advanced template 222, 223
URL pattern

multilanguage view support 50, 51
URL rule

parameters 49
user authorization

ACF, creating for 197, 198
configuring 196, 197

user component 8
user login

creating 186-190
users' roles

managing, for controller actions
access 208, 209

V
view

creating, for news list display 23, 24

W
widgets

about 298
creating 298-300
creating, with carousel 300-303

[322]

Y
Yii

reference link, for database tables 237
Yii2

about 1
application structure 3-5
installing, with Composer 2, 3
Model-View-Controller (MVC) design

pattern 10
objects 5
references 1
requisites 2
tools 2

Thank you for buying
Yii2 By Example

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Yii Project Blueprints
ISBN: 978-1-78328-773-4 Paperback: 320 pages

From conception to production, learn how to develop
real-world applications with the Yii framework

1. Develop real-world web applications through
easy-to-follow, step-by-step processes.

2. Create eight projects from beginning to end to
help you explore the full power of Yii.

3. Build a fast, user-based, database-driven
content management system with a dashboard
and RESTful API.

Web Application Development
with Yii 2 and PHP
ISBN: 978-1-78398-188-5 Paperback: 406 pages

Fast-track your web application development using
the new generation Yii PHP framework

1. Implement real-world web application
features efficiently using the Yii development
framework.

2. Each chapter provides micro-examples that
build upon each other to create the final macro-
example, a basic CRM application.

3. Filled with useful tasks to improve the
maintainability of your applications.

Please check www.PacktPub.com for information on our titles

Yii Application Development
Cookbook
Second Edition
ISBN: 978-1-78216-310-7 Paperback: 408 pages

A Cookbook covering both practical Yii application
development tips and the most important Yii features

1. Learn how to use Yii even more efficiently.

2. Full of practically useful solutions and concepts
you can use in your application.

3. Both important Yii concept descriptions and
practical recipes are inside.

Beginning Yii [Video]
ISBN: 978-1-78216-448-7 Duration: 02:44 hours

Fast track your web application development by
harnessing the power of the Yii PHP framework

1. Develop sophisticated Web 2.0 apps using PHP
and Yii.

2. Ideal for PHP developers new to Yii and
framework-based development.

3. Build powerful, reliable, and scalable apps fast.

4. Clear and concise video tutorials from an
experienced Yii developer.

 .

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting with Yii2
	Requirements and tools
	Installing Yii2 with Composer
	Application structure
	Application properties
	Common application components
	Handling application events
	The MVC pattern in Yii2

	Naming convention
	Configuring the debug toolbar
	Using the logger
	Example – Hello world from scratch with the Yii basic template and bootstrap template

	Summary

	Chapter 2: Creating a Simple News Reader
	Creating Controller and Action
	Creating a view to display a news list
	How the controller sends data to view
	Example – create a controller to display the static news items list and details using the bootstrap template

	Splitting the common view content into reusable views
	Example – render partial in view

	Creating static pages
	Example – add a contact page

	Sharing data between views and layout
	Example – change the layout background based on a URL parameter

	Layout with dynamic block
	Example – add a dynamic box to display advertising info

	Using multiple layouts
	Example – using different layouts to create responsive and nonresponsive content layout for the same view

	Summary

	Chapter 3: Making Pretty URLs
	Using pretty URLs
	Custom URL rules
	Example – list news items by year or category

	Default parameters in rules
	Example – the index page to display the
links list

	The complete URL rule parameters
	The URL pattern to support the multilanguage view
	Creating the rule class
	Summary

	Chapter 4: Creating a Room through Forms
	Creating a Model
	Example – a Model to store room data

	Using ActiveForm
	Example – creating a new room from the HTML form

	Format date, time, and numbers
	Uploading files
	Example – uploading an image of a room

	Summary

	Chapter 5: Developing a Reservation System
	Configuring a DB connection
	Example – creating rooms, customers,
and reservations tables
	Example – test connection and executing
the SQL query

	Using Gii to create room, customer,
and reservation models
	Using ActiveRecord to manipulate data
	Example – query rooms list with ActiveRecord

	Working with relationships
	Example – using a relationship to connect rooms, reservations, and customers

	How to save a model from a form
	Example – creating and updating a room from a form

	Setting up the GMT time zone
	Using multiple database connections
	Example – configuring a second DB connection to export data to a local SQLite DB

	Summary

	Chapter 6: Using a Grid for Data and Relations
	Introduction
	DataProvider for grids
	Using a grid
	Custom columns in a grid
	Example – displaying a reservations list by clicking on a customer grid row

	Filters in GridView
	Displaying and filtering ActiveRecord relational data in a grid's column
	A summarized footer row in a grid
	Example – extending GridView to customize the footer row in a grid

	Multiple grids on one page
	Example: managing the reservations and rooms grids in the same view

	Summary

	Chapter 7: Working on the User Interface
	Using Gii to generate CRUD
	Example – using CRUD to manage rooms, reservations, and customers using Gii

	Customize JavaScript and CSS
	Example – using JavaScript and CSS to display advertising columns that disappear
if not enough space is available

	Using AJAX
	Example – reservation details loaded from the customers' drop-down lists

	Using the Bootstrap widget
	Example: using datepicker

	Multiple models in the same view
	Example – saving multiple customers at the same time

	Saving linked models in the same view
	Example – creating a customer and reservation in the same view

	Summary

	Chapter 8: Log in to the App
	Creating a user login
	Example – a login form to access

	Configuring user authorization
	Example – creating an ACF to authorize the users
	RBAC
	Example – configuring RBAC to set permissions for users

	Mixing ACF and RBAC
	Example – managing users' roles to access rooms, reservations, and customers

	Summary

	Chapter 9: Frontend to Display Rooms to Everyone
	Using an advanced template to split frontend and backend
	Configuring an application using init
	Example – creating frontend for public access

	Sharing ActiveRecord models among applications
	Example – displaying available rooms in the frontend site

	Customizing a URL in the advanced template
	Example – using the advanced template in
the same domain

	How to use the advanced template in the shared hosting
	Summary

	Chapter 10: Localize the App
	Setting the default language
	File-based translations
	Example – using file-based translation for the entire website

	Placeholders formatting
	DB-based translations
	Example – translating room descriptions using DB

	Summary

	Chapter 11: Creating an API for Use in a Mobile App
	Configuring a REST app in the advanced template
	Creating a controller
	Example – creating a controller to manage rooms

	Authentication
	Example – using authentication to get a customers list

	New controller action
	Example – getting a rooms list for a reservation

	Customizing authentication and response
	Example – status response node in data received

	Other forms of export – RSS
	Example – creating an RSS with a list of available rooms

	Summary

	Chapter 12: Create a Console Application to Automate the Periodic Task
	Interacting with console applications
	Creating a console controller
	Example – setting an alarm flag for expired reservation

	Formatting the output from the console
	Implementing and executing cron jobs
	Example – sending an e-mail with new reservations of the day

	Summary

	Chapter 13: Final Refactoring
	Creating widgets
	Example – creating a widget with a carousel

	Creating components
	Example – creating a component that creates a backup of the MySQL database and sends an e-mail to the administrator

	Creating modules
	Generating an API documentation
	Example – using an API documentation to generate a doc of app and services

	Summary

	Index

