

Zend Framework 2 Application
Development

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Table of Contents

Zend Framework 2 Application Development
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com

Support files, eBooks, discount offers and more
Why Subscribe?
Free Access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Let's Build a Social Network
Why ZF2?
What are we going to build?

Building a user profile
Posting text
Uploading pictures
Sharing links
Posting comments
Building news reader
Registering and logging in
E-mails
Public APIs

The approach – API-centric app
Summary

2. Setting Up the Environment

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Using the provided virtual machine
Installing the required software
Getting a copy of the files
Vagrantfile
VirtualBox subnet
ZF2 skeleton
Hosts file
Vagrant commands

Summary
3. Scratching the Surface of Zend Framework 2

Bootstrap your app
Configuration array
PSR-0 and autoloaders
ServiceManager
EventManager
ModuleManager
Request object
Response object

The request object
The router

SimpleRouteStack
TreeRouteStack
Hostname
Literal
Method
Part
Regex
Scheme
Segment
Wildcard
Query

DispatchListener
Front controller

InjectApplicationEvent
ServiceLocatorAware
EventManagerAware
Controller plugins
Controller types

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

AbstractActionController
AbstractRestfulController

The response object
An example is worth a thousand words

The config folder
Language files
Module.php
Src folder
View folder

Summary
4. The First Request/Response – Building the User Wall

API development
Requirements
Working with the database

Zend\Db\Adapter
Zend\Db\TableGateway
Zend\Db\RowGateway
Setting up the connection

ViewManager configuration
Creating the Users module

Creating the UsersTable.php file
Module configuration
The module.php file

Adding the Wall module
Module.php contents
Module configuration
Adding the IndexController.php file

The API-Error approach
Adding the Common module
Modifying the application.config.php file
Modifying the Module.php file
Modifying the module.config.php file
Adding the ApiErrorListener.php file

Frontend
Adding the Users module

Contents of the Module.php file
Creating the User.php file

Requesting the wall content

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the Module.php file
Module configuration
Changes in the IndexController.php file

Outputting the user wall
Summary

5. Handling Text Content – Posting Text
API development

Requirements
Working with the database
Understanding the module structure
Creating UserStatusesTable.php
Extending IndexController.php
Modifying module.config.php

Frontend
Creating Status.php
Modifying User.php
View
TextStatusForm.php
text-content-form.html
Modifying IndexController.php
Extending ApiClient.php

Summary
6. Working with Images – Publishing Pictures

API development
Requirements
Working with the database
Changes on the module structure
Creating the UserImagesTable.php file
Extending the IndexController.php file
Changing the module.config.php file

Frontend
Creating the Image.php file
Adding the ImageForm.php file
Showing the form in the image-content-form.phtml file
Extending the User.php file
Modifying the index.phtml file
Modifying the IndexController.php file
Modifying the layout.phtml file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
7. Dealing with URLs – Posting Links

API development
Requirements
Working with the database
Changes in the module structure
Adding the UserLinksTable.php file
Modifying the IndexController.php file
Creating the Url.php file
Modifying the module.config.php file

Frontend
Creating the link entity
Adding the LinkForm.php file
Creating the image-content-form.phtml file
Extending the index.phtml file
Changing the User.php file
Modifying the IndexController.php file

Summary
8. Dealing with Spam – Akismet to the Rescue

API development
Requirements
Working with the database
Module structure
Installing Akismet service
Modifying the local.php file
Adding the UserCommentsTable.php file
Creating the Spam.php file
Extending the IndexController.php file
Table gateways

Frontend
Adding the Comment.php file
Adapting the Status.php file
Modifying the Image.php and Link.php file
Adding the CommentForm.php file
Adding the comment-content-form.phtml file
Modifying the IndexController.php file
Extending the index.phtml file

Summary

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

9. Let's Read Feeds – A News Reader
Overview
API development

Requirements
Working with the database
Expanding the module structure
The module.config.php file
The Module.php file
Adding the UserFeedsTable.php file
Adding the UserFeedArticleTable.php file
The contents of the IndexController.php file
Creating the CliController.php file
The ApiErrorListener.php file

Frontend
The API module

Modifying the ApiClient.php file
The Feeds module

The contents of module.config.php
The IndexController.php file
Entities and forms
The menu-feed-container.phtml file
The index.phtml file

The Common module
The global.php file
The layout.phtml file

Summary
10. Sign Up

Overview
API development

Requirements
Working with the database
The module structure
Extending UsersTable.php
The IndexController.php file

Frontend
The signup.phtml file
The SignupForm.php file
The signup-form.phtml file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

User.php
The contents of the IndexController.php file
The index.phtml file
Changes in the ApiClient.php file

Summary
11. Log in

Overview
API development

Requirements
Overview of the module structure
The module.config.php file
Creating the LoginController.php file

Frontend
The login form
Changes in the ApiClient.php file
Creating a new authentication adapter
The IndexController.php file
The login.phtml file
Changes in module.config.php
The global.php file
The layout.phtml file
ACLs
Modules
The index.phtml file
Wall IndexController.php

Summary
12. Sending E-mails

Overview
API development

Requirements
The module structure
Adding the mailer.php file
The email-layout.phtml file
The view welcome.php file
The view new-comment.phtml file
Modifying the IndexController.php file
The IndexController.php file on the Wall module
The challenge

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
13. OAuth 2.0 Protocol Securing our API

Overview
API development

The module structure
Installing the OAuth 2.0 component
Modifying LoginController.php
Adding OAuthListener.php to the Common module
Other changes in the Common module

Frontend
Modifying ApiClient.php
Modifying Api.php

Following the OAuth 2.0 flow
The challenge
Summary

Index

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Zend Framework 2 Application
Development

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Zend Framework 2 Application
Development
Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written permission
of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-210-0

www.packtpub.com

Cover Image by Tim Green (<thisistimgreen@gmail.com>) via Flickr InMail

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.packtpub.com
mailto:thisistimgreen@gmail.com

Credits
Author

Christopher Valles

Reviewers

Richard Ainger

Gabriel García Fernández

Doug Johnson

Brent Shaffer

Acquisition Editor

James Jones

Lead Technical Editor

Madhuja Chaudhari

Technical Editors

Shashank Desai

Krishnaveni Haridas

Ankita Thakur

Project Coordinator

Amey Sawant

Copy Editors

Mradula Hegde

Sayanee Mukherjee

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Kirti Pai

Adithi Shetty

Laxmi Subramaniam

Proofreaders

Chrystal Ding

Clyde Jenkins

Indexer

Monica Ajmera Mehta

Graphics

Sheetal Aute

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

About the Author
Christopher Valles is a Software Engineer from Barcelona, Spain, currently based in
London, UK. He started developing when he was seven using a Vtech kid laptop that
was strangely shipped with a simple version of the BASIC programming language.
Since then, he has explored more than 16 different programming languages ranging from
Assembler to PHP, Python, and GO.

Chris also stepped into the sysadmin role and has been managing systems since he
started working in this industry. He has taken care of servers right from simple
webservers to infrastructures on the Cloud and internal Mac infrastructures. He is an
Apple Certified Support Professional and Apple Certified Technical Coordinator.

His desire to learn and experiment has driven him to explore other fields, such as
machine learning and robotics. He currently owns close to five robots and has built
more than 20 over the past years. If you don't find him on the computer, he is probably
spending time in the kitchen cooking delicious recipes.

The sectors where Chris has worked ranges from adult content websites and payment
processors to social networks and the gaming industry. Presently, he's working as a
Software Engineer at Hailo Networks, Ltd.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Acknowledgments
First of all, I want to thank my lovely girlfriend for supporting me along the way of this
journey. I know for sure that this would have not been possible without her, and I will
be always grateful to her.

I also thank my friends, Gabriel Garcia and Tasos Bitsios, who where there answering
my questions and sharing with me their thoughts about the book, chapters, and the code.
Last but not least, I want to thank all the reviewers who helped me with their comments,
specially Brent Shaffer for his patience and help on the implementation of OAuth 2.0
and for letting me use his library in this book.

I want to mention some people who, over the years, have contributed somehow to the
person I am today and have encouraged me to follow my dreams, keep exploring new
stuff, pursue new challenges, and supported me with all my crazy ideas. My parents
Vicente Vallés Serrat and Manuela Ramos González, my brother Bryan Vallés Ramos,
my first boss Òscar Martínez Ciuró, and Stuart Helen Overton-Smith for getting on the
plane with me, teaching me how to fly, and helping me accomplish my dream of being a
pilot. A special mention goes for my cats, Schrödinger and Bones, for giving me
company and staying with me at 4 a.m. while I was writing.

Finally, I also want to thank all the people who made efforts and invested time
researching the polyphasic sleep cycles and shared their knowledge for free on the
Internet. To write this book, I switched to everyman sleep cycle that allowed me to stay
awake 19 hours per day for the last six months.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

About the Reviewers
Richard Ainger is a Software Engineer and all-round computer enthusiast residing in
Australia.

Since becoming passionate about computers at an early age, Richard has explored a
variety of programming languages including PHP, Java, C, and MIPS ASM. Richard has
also branched outside of the more traditional desktop development and smartphone
environments and has been an active developer of homebrew software for the PSP
gaming system.

More recently, Richard has been enjoying developing software solutions for The Cyber
Institute (TCI), a leader in the e-learning space within Australia. TCI is responsible
for creating learning systems and content for some of the biggest names in Australia.

Every spare moment, Richard devotes extending his knowledge into new areas of
software development trying to keep up with the constantly evolving field of software
and web development.

I would like to thank the talented people I work with daily at TCI from whom I have
learned a lot. I would also like to thank Christopher Valles and the people at Packt
Publishing for giving me the opportunity to review and provide feedback during the
production of this book.

Gabriel García Fernández is a Computer Engineer based in Barcelona working as
Project Manager and CTO at Urban Ventures S.L. He has been working as a Web
Developer for many years before becoming a tech manager.

He has an entrepreneurial mind, proactive, with a strong focus on team management and
employees' motivation. He is very adaptable, self-motivated, and easily develops
empathy with people and is always ready to learn. He is passionate about Agile
methodologies and web development.

He spends his free time with his girlfriend, his family, going out with friends, or reading
(literature is one of his passions).

Doug Johnson first discovered a knack for programming at Dartmouth College while
tracking down a programming error in an orbital simulation that led to a citation in

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Physics. He has programmed applications in many languages, including C, C#, Delphi,
PHP, and JavaScript and taught programming and scripting at the college level.

As the founder and owner of an accounting software consultancy, he developed
customized solutions for business problems in the SMB market, primarily in medicine
and manufacturing. Working with several companies, he has written health-care- and
electronic-health-record software and served for several years on the IHE standards
committee for eye care, co-writing one of the profiles.

He is currently developing tax software for Intuit, and he also develops websites and
web applications using Drupal, Zend Framework, and AngularJS, primarily in the not-
for-profit space.

He likes to cook and is developing a website called CookLoose that aims to teach how
to go from being a non-cook to a competent cook.

I'd like to thank my wife who builds systems into our household that allows me to live
comfortably while not paying any real attention to how she does it. She has designed a
kitchen that anyone can work in. She doesn't understand a thing about what I do for a
living but is still willing to listen to me going on and on about the latest, coolest thing
I've discovered as long as I make her coffee in the morning.

Brent Shaffer is a Computer Scientist and musician living in Salt Lake City, Utah. He
works for Adobe Systems, Inc. in the Web Services team for the Adobe Marketing
Cloud platform. The Web Services team oversees all API Framework responsibilities
for the Adobe Marketing Cloud, such as third-party integrations, authentication with
OAuth 2.0, rate limiting, throttling, and traffic monitoring.

Brent also works remotely, performing with his band More Hazards More Heroes, a
folk duo from Nashville, TN. His band has performed across the country their music has
been featured in GoPro commercials and Hollywood films.

Brent is a longtime PHP and Symfony Framework advocate, and has worked closely
with the community, writing plugins and official documentation for both the Symfony 1.x
and 2.x projects.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

www.PacktPub.com

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of
books.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print and bookmark content
On demand and accessible via web browser

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.PacktPub.com

Preface
Nowadays, the programming scene is full of frameworks, and they move really fast,
providing more and more functionalities. When we have to choose a framework, every
developer has different requirements. But usually in the business environment we want
to choose something that assures somehow a continuity on the framework, stability, and
a good community behind.

Zend Framework is well known for being a really stable framework chosen by a lot of
companies from really big to small ones. They have a huge community behind and a lot
of people contribute in a way or another.

The first version of ZF was released in 2007, and since then they continue updating the
project. Right now the code is old and tied to solutions that made sense in the past; the
technology has advanced and new techniques and approaches have appeared. In this
situation it makes perfect sense to try to incorporate them to the framework, but
integrating these with the old code is just a nightmare because too many things have to
be changed. In order to get the most from the new techniques, the solution was to do a
new framework from scratch and implement the new concepts from the core and build
everything around it.

That's what happened in September 2012, the first release of ZF2 was launched after a
lot of work, discussions, and lines of code, and now we have it available to build the
next generation of online services.

This new version was created from scratch using the best approaches for every problem
and is really fresh and flexible. All the components have been revised and a lot of them
rewritten, they also solved well-known problems from ZF1.

In this book we will review all the changes made in ZF2. The book is written with a
hands-on approach, so you will learn the concepts while programming and building
something that is actually usable. We will create a social network from scratch using 90
percent of all the components available in ZF2. So, we will cover a huge part of it, and
definitely all you will need in the future is to write your applications.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

What this book covers
Chapter 1, Let's Build a Social Network, explains how we can create or build a social
network. It also covers how we can architect a social network.

Chapter 2, Setting Up the Environment, is important because if you do not understand it
you will not be able to do anything! Let's see how to use Vagrant and virtual machines.

Chapter 3, Scratching the Surface of Zend Framework 2, is essential to get the
knowledge of the basic components of the framework and also to help understand
concepts introduced later on.

Chapter 4, The First Request/Response – Building the User Wall, is essential in a
social network. It is where the users can see the content, and where we can see how the
API-centric approach works.

Chapter 5, Handling Text Content – Posting Text, is the simplest action a user can do.
We will learn how to create forms and validate them.

Chapter 6, Working with Images – Publishing Pictures, is something people love to do
on social networks. We will learn how to handle images and file uploads.

Chapter 7, Dealing with URLs – Posting Links, is essential to share things we found on
the Internet. This is the perfect excuse to see how to scrap contents of other websites
and create custom validators.

Chapter 8, Dealing with Spam – Akismet to the Rescue, explains how to protect
ourselves from the spammers in the Internet.

Chapter 9, Let's Read Feeds – A News Reader, is something we use almost every day.
Why don't we integrate it and learn how to deal with feeds on our social network?

Chapter 10, Sign Up, is the basic thing people have to do to start using a service that
will store data tailored to them. And, as usual, we will have to send the typical
confirmation e-mail. How do we accomplish that task?

Chapter 11, Log In, is something we are used to doing and our users will need to do.
We will see how to be sure that our users are who they say and authenticate them.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 12, Sending E-mails, is a link everyone has used at least once. We will cover
in-depth the e-mail sending mechanism and we will see how to organize the views for
e-mails.

Chapter 13, OAuth 2.0 Protocol Securing our API, is essential if we don't want people
to use it in the Web for which it was not designed. As we will expose the API to the
world, we should learn how to protect it.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

What you need for this book
For this book, you will need a computer, of course. In terms of software required, you
don't have to be worried; all the components we use are open source, and everything is
provided on the virtual machine we will set up in Chapter 2, Setting Up the
Environment. The only thing you will need to do manually is install the last version of
VirtualBox available for your operating system; the rest will be done almost
automatically by the Vagrant scripts we provide.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Who this book is for
This book is for developers that want to start using Zend Framework 2 and want to
build applications of an important size. We will cover a different approach on
application architecture so this will also be helpful for you.

You don't need to have any experience with the framework or with Zend Framework 1,
but if you have, it will be easier for you; but remember, it's not required. A good and
solid knowledge of PHP 5.3 and an object-oriented paradigm is required because the
whole framework is based on that and is strongly object oriented.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "On implementing this functionality, we will
see how the new Zend\Form element handles the upload of files and how to process
them."

A block of code is set as follows:

config.vm.box = "ubuntu-12.04"
config.vm.box_url = "http://files.vagrantup.com/precise64.box"
config.vm.network :private_network, ip: "192.168.56.2"

Any command-line input or output is written as follows:

cd /var/source-api
php composer.phar self-update
php composer.phar install
cd /var/source-client
php composer.phar self-update
php composer.phar install

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "This validator
belongs to the Email field."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase to address it.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded on our website, or added to any list of existing
errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us
with the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

mailto:copyright@packtpub.com

Questions
You can contact us at <questions@packtpub.com> if you are having a problem with
any aspect of the book, and we will do our best

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

mailto:questions@packtpub.com

Chapter 1. Let's Build a Social Network
In this chapter, we will see an overview of what we are going to build through this
book, a social network. Also, we will cover the technical solution chosen to build it
from scratch and thereby getting the most out of Zend Framework 2.

By the end of this chapter, you should have a good understanding of how the API-centric
approach works and a clear picture of the project that we will build through this book.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Why ZF2?
Zend Framework 2, as you might know, is a framework that allows you to build
applications using the components provided. The framework uses the best practices of
the industry and the components are extensively tested and proven to be good. This
means that you will build your application on top of a robust base.

The benefits of using a Zend framework against using your own framework is that you
benefit from the knowledge of all the contributors of the project. Also, it will be easier
to get more developers on board as it's a known framework with the documentation
available online, and there are a lot of people who already know it or have worked with
it.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

What are we going to build?
The objective of this book is to show you as many components of Zend Framework 2
(ZF2) as possible. In order to achieve this, we will build a basic social network that
will allow the user to post text, pictures, links, comments, and so on. This will cover all
the basics of the framework and also demonstrate the usage of the majority of the
components in common real-life scenarios.

Let's see all the functionalities and sections this social network will offer to the users.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Building a user profile
The user wall will be the main section where users can share content. Users will be
able to post text, images, and URLs.

By building this section, we will experiment with the first request and building blocks
of ZF2, and in the meantime we are going to see the technical approach chosen for the
project in action.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Posting text
Users will be able to post text on their wall and also on their friends' walls using a
simple form. To accomplish this, we will have a look at how forms work and how to
use filters and validators to ensure that the data is secure and correct.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Uploading pictures
Pictures are one of the forms of media shared extensively by users of social networks.
In our case, we will give users the opportunity to do this. On implementing this
functionality, we will see how the new Zend\Form element handles the upload of files,
and how to process them.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Sharing links
URLs are the last thing users will be able to share on the profile. A description will
appear automatically with the link. This functionality will allow us to discover how to
crawl contents from remote websites, filter them, and store them.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Posting comments
People also enjoy commenting on the content of others people and we will give the user
a way to do this on our social network. An interesting part of ZF2 will be used in this
section to fight spam. We will see how to use third-party services using Akismet.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Building news reader
Building news reader is a big section on the project. From here, the user will be able to
add, remove, read, and organize RSS feeds. We will use Zend\Feed to do basic RSS
actions and provide the frontend with data.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Registering and logging in
A basic action that users should be able to do is register and login to the social network.
We will provide them with the forms to do this. We are going to integrate the session
handling through Zend\Session and the login functionality using
Zend\Authentication on this project.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

E-mails
Another functionality that social networks provide is keeping the user updated about
what is happening while he/she is away. We will implement a notification system and
also a way to recover the password if you lose it. On building this section of the
project, we will see the Zend\Mail component in action and how to use it to send e-
mails.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Public APIs
The last functionality we will provide in our project is the ability to integrate our data
and functionalities in other projects. In order to accomplish this, we will expose our
API to the outside world using OAuth 2.0. Here, we will learn how to put an OAuth 2.0
authentication mechanism with ZF2 in place.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The approach – API-centric app
To build the social network, we will use an approach called API-centric. First of all,
for those who are unfamiliar with the term API, it is an interface that we build to expose
functionality. By doing this, we allow other applications to interact with us. For
example, a news website can expose an API to allow people to retrieve articles from
their archive by specifying the date of the article, the author, and so on.

An API-centric application is an application that executes all functionality that make
calls to an internal API. For example, if a user on our social network is going to post a
picture, our app will pass the image and details of the user to the API to execute the
actual steps needed to store the image and publish it on the user profile.

The API-centric architecture looks like the following figure:

As you can see, API is the central point and everything else is built around it. The web
app, the mac app, and so on are the clients that consume API. Now, let's compare the
lifecycle of a request between an app-centric approach and a traditional model.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

As you can see, in the traditional model you made requests directly to the server. The
server in this case contains the logic of the client and also the business logic. In the API-
centric model, the request is made from the browse to the client app; this application
can be on the same server as the API or on a separate machine. Then, the client app will
issue a request to the API. After this, the request will go back to the client app and
finally to the user. In this case, we are separating the code of the client app from the
code of the API. The client app acts as a proxy for the API that has the business logic.
Note that the image doesn't represent the time spent on the request.

Since the explosive increase in the usage of smartphones, an increasing number of web
applications have ended up with an application on the phone. Some of themjust adapt
the website to the phone screen size by removing or redesigning the interface, while
others choose to build a native application that will run on the phone of the visitor.

The first benefit of this approach for our social network is that the core of the
application is just an API and all the related clients will rely on it to use the
functionality. This means we have a good separation of concerns, and we will have
separated the business logic from the client logic. This will allow us to create a website
to access the service and the possibility of building a native application for mobile
phones or even a desktop program using the same API in future.

The second benefit is that the API is stateless; this means that the calls made to the API
will not include anything about the session, and there is no session handling/management
involved. This sounds wrong at the beginning but allows the developer to build a
RESTful API that will not rely on the state of the user session or data stored on the
session.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Note

RESTful is the application of the REST architecture in web services. REST is an
architectural style for designing networked applications. The idea behind it is to avoid
complex mechanisms and use plain HTTP. A typical RESTful web service will use
HTTP to do the four CRUD (Create, Retrieve, Update, and Delete) operations.

Another benefit is that the code can be tested further as you don't have to recreate the
whole user session in order to test a functionality.

If we take a look at this approach from the server-side point of view, we can see some
benefits; as we are separating the responsibilities of every component, we can assign
different machines and resources to each of them. This way of organizing the servers
allows us also to scale the components we need independent of the others.

One downside of the approach we can easily see is that if the API goes down,
everything will go down and the clients will not be able to do anything.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
In this chapter we saw the concept of the project that we are going to build throughout
this book. We also described in detail each part of the social network, the
functionalities that will be available to the user, and the components that we will learn
on building each section.

We also introduced the technical approach that we will use to build the social network,
how it works, the benefits and downsides of using it, and why we choose this option
instead of a more conventional one.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 2. Setting Up the Environment
In this chapter, we will focus on the environment setup to be able to carry on with the
next chapters. With this environment, you'll be able to put into practice all the examples
provided in this book and try out everything.

By the end of this chapter, your computer will be ready to execute all the source code
that we will develop in this book and will allow you to interact with the social network.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Using the provided virtual machine
Every computer is different, not only the hardware but also the software, operating
system, user preferences, and so on. When you are the only developer in the team or you
are developing solo, you usually only care about the differences between your machine
and the server. This is completely different when you are in a team with more than one
developer, because you share the code with people and you have to somehow ensure
that your code executes exactly the same way as in the machine of another developer in
the team.

A lot of techniques or approaches have been used to try to solve this issue and one of
them is virtual machines (VM). A virtual machine is a simulation of a real machine
using virtual components that mimics the computer architecture and allows you to run an
operating system inside it. This also removes the issue of different operating systems
across developers, such as Linux, Mac OS, or Windows.

This approach allows us to have the exact same copy of the machine and that means the
same configuration, architecture, operating system, and software. Although we are using
the same copy of the machine, anyone can make changes on the virtual machine, which
would make our systems different again. To minimize this issue, we are going to use a
tool called Vagrant.

Vagrant allows you to create and configure reproducible and portable virtual machines
in an automated way. This tool relies on another piece of software called VirtualBox,
which is basically the one that is going to give us the ability to virtualize our
development environment and run the exact same copy.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Installing the required software
There are a few steps we should follow to get the environment up and running. For the
installation instructions of the software, we will follow the guidelines on the websites,
because if the software gets an update and the installation method changes, our
instructions will be outdated. Following the ones found on the official website, we'll be
assured that we have the latest instructions for the software that we are using.

The first step is to install VirtualBox. To do that, follow the instructions at
https://www.virtualbox.org/wiki/Downloads.

Once VirtualBox is up and running, we can jump to the installing of Vagrant. We will
again refer to the website for instructions on installation, which are available at
http://docs.vagrantup.com/v1/docs/getting-started/index.html#install_vagrant.

The final piece of software we need to install is Git. You can find the installation
instructions for your system at http://git-scm.com/downloads.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

https://www.virtualbox.org/wiki/Downloads
http://docs.vagrantup.com/v1/docs/getting-started/index.html#install_vagrant
http://git-scm.com/downloads

Getting a copy of the files
When you have VirtualBox, Vagrant, and Git installed on your system, we can jump to
setup and configure the VM we are going to use. Let's see the following steps that are
involved in the process:

1. Create a new folder to store the code from the book, this can be in your Documents
folder, home folder, or even on the Desktop.

2. After that, open terminal if you're on Mac/Linux; open git bash if you're on
Windows.

3. Navigate to the folder you just created using the cd command.
4. Get a copy of the Vagrant scripts by executing the following command:

git clone https://github.com/christophervalles/ZF2-Vagrant.git

5. After getting a copy of the files, we need to execute a command inside the folder
we just cloned. To do that, first enter that folder using the cd command. In my case,
it looks like the following command:

cd ZF2-Vagrant

6. We need to initialize the sub modules by executing the following command:

git submodule update --init --recursive

7. After initializing the submodules, open the contents of the folder with your favorite
text editor.

8. We need to adapt the configuration values of Vagrantfile to suit your system.
The instructions can be found in the following section.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Vagrantfile
This is an overview of all the sections inside Vagrantfile, which will help you
understand every piece of configuration code and how to tweak it to suit your system.

The first section looks like the following code snippet:

config.vm.synced_folder "~/source-api", "/var/source-api"
config.vm.synced_folder "~/source-client", "/var/source-client"

These two lines allow us to share a folder between our host computer and the
VirtualBox. This means that we will edit the source code on the host machine and it will
be executed on the VM. The line is composed of the command itself and two
parameters: the first one indicating the path to the folder we want to share on our host
machine and the second one the path of the shared folder inside the VM.

We need to adapt the first parameter to point the VM to the right folder on our host
machine. In my case, the API code is located at ~/source-api and the client code will
be at ~/source-client. If you stored your code on the desktop or somewhere else,
adjust these two lines to point to the right folders on your host machine.

The next section on the configuration file looks like the following code snippet:

config.vm.box = "ubuntu-12.04"
config.vm.box_url = "http://files.vagrantup.com/precise64.box"
config.vm.network :private_network, ip: "192.168.56.2"

The first line specifies the name we want for the virtual machine; in our case, we don't
need to change it.

The second line is a URL to download the base image; this is used by Vagrant to
download the base operating system in case you don't have it. This parameter should not
be changed.

The third line is the one you would probably want to tweak. In this line, we are defining
the IP that the VM will have on our subnetwork. If you already have multiple VMs in the
same subnetwork, you must adapt the given value to assign a new IP.

config.vm.provider :virtualbox do |vb|
 vb.customize ["modifyvm", :id, "--memory", "1024"]
end

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

These lines of code manage the amount of RAM memory we assign from our host to the
VM. The default value is 1024 MB, but for our purpose, this can be changed to 512 MB
or less; however, if you have plenty of RAM memory, just leave this value as it is.

VirtualBox has a few options for network adapters; the most common ones are Bridge,
NAT, and host-only. In our setup, we will use NAT provided by default with Vagrant
and host-only.

The NAT interface will connect the virtual machine to the Internet, using our computer
as a router.

The host-only interface will connect our computer and the virtual machine using a
subnetwork; this will allow us to have a static IP for the virtual machine without having
to rely on our router and without consuming an IP of our main network.

Now we are going to take a look at the next section of code. The first line is to specify
the folder where we have the recipes stored and the rest of the code is to add the
recipes we want in the order we need them to be executed. In your case, you don't need
to change anything.

Vagrant is using a piece of software called Chef to make the changes on the target
computer, in our case a virtual machine. We use recipes to describe to Chef how we
want certain configurations on the computer. Also, the recipes explain to Chef how the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

software gets installed on the system.

chef.cookbooks_path = "./cookbooks"

chef.add_recipe "apt"
chef.add_recipe "mysql::server"
chef.add_recipe "nginx"
chef.add_recipe "php-fpm"
chef.add_recipe "php::module_apc"
chef.add_recipe "php::module_curl"
chef.add_recipe "php::module_gd"
chef.add_recipe "php::module_mysql"
chef.add_recipe "custom::db"
chef.add_recipe "custom::hosts"
chef.add_recipe "custom::vhosts"

The last piece of configuration is a JSON structure that will set up a few configuration
variables for Chef. These variables will be accessed from the recipes and will allow us
to inject some data from Vagrantfile to customize the recipes and the final output of the
Chef execution. This can be illustrated from the following code snippet:

chef.json = {
 :mysql => {
 :server_root_password => "root",
 :server_repl_password => "repl",
 :server_debian_password => "debian"
 },
 :nginx => {
 :default_site_enabled => false
 }
}

As you can see, we are setting up a password for MYSQL users and also disabling the
default virtualhost nginx file. Nothing needs to be changed on these two blocks of
configuration for our setup.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

VirtualBox subnet
In order to set up the host-only adapter, we should first set up a subnet between our
computer and the virtual machine. The following is the step-by-step procedure, which
shows how everything can be done:

1. Open the VirtualBox preference panel and click on Network. Your panel may
differ from the one shown in the following screenshot, but you should be able to
find the network section pretty easily:

2. Click on the Add button to add a new subnet if the list is empty. Otherwise, jump to
the next step.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

3. Click on the Edit button to review if the settings are as we need them. Notice that
the name of the network can differ, but that will not affect the system.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

4. After clicking on the Edit button, a new section will appear showing an IP address
and a network mask. Make sure that the values are similar to the ones shown on the
following screenshot. Also, make sure that DHCP Server is unchecked by clicking
on the DHCP Server tab.

5. Save all the changes.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

ZF2 skeleton
The last step is to download the Zend Framework 2 Skeleton application from the
official Zend GitHub and put it on the two folders we are sharing with the VM. Then,
we should install the dependencies of the framework using the composer.

To download the code, you can clone it using git or just download a ZIP file. For this
example, we will download the ZIP file from
https://github.com/zendframework/ZendSkeletonApplication/archive/master.zip.

After downloading the ZIP file, we need to uncompress the file in the two folders we
share with the VM; in my case these folders are located in my home folder at
~/source-api and ~/source-client. The folders should look like the following
screenshot when uncompressed:

Notice that you need to put two ZF2 installations, one on each folder.

After that, we should install all the dependencies using the composer. To achieve that,
we need to first launch the virtual machine.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

https://github.com/zendframework/ZendSkeletonApplication/archive/master.zip

Hosts file
The last change we have to do in our host machine is point the hostname of the virtual
host to the actual IP. This is an easy step and can be accomplished in two different ways
depending on whether you are working on *nix or Windows. For *nix systems, execute
the following two command lines:

sudo echo '192.168.56.2 zf2-api' >> /etc/hosts
sudo echo '192.168.56.2 zf2-client' >> /etc/hosts

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

1. If you are working on Windows, you should run the Notepad as Administrator. To
do that, go to the Start menu, click on All Programs, then go to Accessories, and
finally, right-click on Notepad. On the contextual menu, you should see an option
called Run as Administrator as shown in the following screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.packtpub.com
http://www.packtpub.com/support

2. Now that Notepad is open, you should go to File | Open and select the option All
Files in the file type drop-down list.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

3. After this, you should type the following path on the top bar to open the file:
C:\Windows\System32\drivers\etc

4. When you type the path, you should see a window like the following screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

5. Now you should open the hosts file shown in the list.
6. Once the file is open, you should manually add the following two code lines at the

end:

192.168.56.2 zf2-api
192.168.56.2 zf2-client

7. The file after the change will look like the following screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

8. Now, save the file and you are ready for the next steps.

Note

When editing the hosts file, the IP you specify should match the IP of the virtual
machine. If you have changed the IP on the Vagrantfile for any reason, make sure
that the hosts file is pointing to the right IP.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Vagrant commands
We are now closer to having the environment ready to see the default project on our
browser. We need to tell Vagrant to build the virtual machine based on the recipes and
configurations we have and then install the dependencies of the framework. To do that,
we have to open a terminal window or a command prompt depending on your operating
system, and navigate to the folder where we have Vagrantfile. When we are there, we
should run the following command:

vagrant up

After issuing the command, Vagrant will start building the virtual machine based on the
configuration. If you don't get any errors in the build phase, you will have a VM up and
running.

Note

In some machines with Windows, when issuing the vagrant up command, an error
appears. If that happens, try to start the virtual machine from the VirtualBox GUI and the
error will disappear. The most common one says VT-x features locked or unavailable
in MSR. If that's the case, you will need to enable the virtualization features on the
BIOS of your computer. To enable that, refer to the manual of your computer.

As a reference, take a look at the Vagrant commands you can find here as you will need
to use them while working on the project.

Command Description

vagrant up
This will create the virtual machine if doesn't exist. Otherwise, it will just start the virtual machine if it
stops.

vagrant
destroy

This will completely destroy the virtual machine. Sounds bad, but we can recreate it with the help of the
recipes we have inside the cookbooks folder.

vagrant
suspend

This command will suspend the virtual machine, will pause it so we can continue from the point we left
it.

vagrant
resume

This will resume the virtual machine from the point we left it after we issued the vagrant suspend
command.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

vagrant
halt

This will completely stop the virtual machine and is similar to powering off the system.

Now that we have the virtual machine running, we should install the dependencies of
ZF2. To do this, we need to enter the virtual machine. To accomplish that, we need to
launch the git bash program or terminal, depending on your operating system. Navigate
to the folder where we have Vagrantfile and execute the following command:

Vagrant ssh

This command will connect the git bash program or terminal to the virtual machine and
allow us to execute commands inside the virtual machine.

When executed, you will see a new prompt with a line like the following code line:

vagrant@precise64:~$

This means we are now inside the virtual machine and we can proceed to install the
dependencies. In order to do that, we need to execute the following commands:

cd /var/source-api
php composer.phar self-update
php composer.phar install
cd /var/source-client
php composer.phar self-update
php composer.phar install

If you followed all the steps and didn't get any nasty error message, you should be able
to open the browser, go to http://zf2-client or http://zf2/api, and see something like the
following screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://zf2-client
http://zf2/api

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
In this chapter, we learned a lot of different concepts related to the development
environment. We saw how developers manage to work with the same environment and
how they reduce the differences between them as much as possible by using virtual
machines. Also, we learned how to use a powerful tool called Vagrant, combined with
VirtualBox and Chef, to build a development environment. This environment will be
used throughout this book to build our awesome social network and now your machine
is ready to go.

In the next chapter, we will start reviewing the main components of the framework, how
they interact to fulfill a request, and also the specific details of each one with their
possible configurations.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 3. Scratching the Surface of
Zend Framework 2
In this chapter, we will focus on the basic elements of Zend Framework 2. You will get
an in-depth look at the components involved on a simple request/response operation and
this knowledge will be used and expanded on throughout the book. After that we will
review how the welcome page is loaded.

By the end of this chapter, you will know the lifecycle of a request and how to interact
with the different components of the framework to produce some output.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Bootstrap your app
There are two ways to bootstrap your ZF2 app. The default is less flexible but handles
the entire configuration, and the manual is really flexible but you have to take care of
everything.

The goal of the bootstrap is to provide to the application, Zend\Mvc\Application,
with all the components and dependencies needed to successfully handle a request. A
Zend Framework 2 application relies on the following six components:

Configuration array
ServiceManager instance
EventManager instance
ModuleManager instance
Request object
Response object

As these are the pillars of a ZF2 application, we will take a look at how these
components are configured to bootstrap the app.

To begin with, we will see how the components interact from a high perspective and
then we will jump into details of how each one works. When a new request arrives to
our application, ZF2 needs to set up the environment to be able to fulfill it. This process
implies reading configuration files and creating the required objects and services; attach
them to the events that are going to be used and finally create the request object based
on the request data.

Once we have the request object, ZF2 will tell the router to do his job and will inspect
the request object to determine who is responsible for processing the data.

Once a controller and action has been identified as the one in charge of the request, ZF2
dispatches it and gives the controller/action the control of the program in order to
execute the code that will interpret the request and will do something with it. This can
be from accepting an uploaded image to showing a sign-up form and also changing data
on an external database.

When the controller processes the data, sometimes a view object is generated to
encapsulate the data that we should send to the client who made the request, and a
response object is created.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

After we have a response object, ZF2 sends it to the browser and the request ends.

Now that we have seen a very simple overview of the lifecycle of a request we will
jump into the details of how each object works, the options available and some
examples of each one.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Configuration array
Let's dissect the first component of the list by taking a look at the index.php file:

chdir(dirname(__DIR__));

// Setup autoloading
require 'init_autoloader.php';

// Run the application!
Zend\Mvc\Application::init(require 'config/application.config.php')-
>run();

As you can see we only do three things. The first thing is we change the current folder
for the convenience of making everything relative to the root folder. Then we require the
autoloader file; we will examine this file later. Finally, we initialize a
Zend\Mvc\Application object by passing a configuration file and only then does the
run method get called.

The configuration file looks like the following code snippet:

return array(
 'modules' => array(
 'Application',
),
 'module_listener_options' => array(
 'config_glob_paths' => array(
 'config/autoload/{,*.}{global,local}.php',
),
 'module_paths' => array(
 './module',
 './vendor',
),
),
);

This file will return an array containing the configuration options for the application.
Two options are used: modules and module_listener_options. As ZF2 uses a
module organization approach, we should add the modules that we want to use on the
application here. The second option we are using is passed as configuration to the
ModuleManager object. The config_glob_path array is used when scanning the
folders in search of config files and the module_paths array is used to tell
ModuleManager a set of paths where the module resides.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Note

ZF2 uses a module approach to organize files. A module can contain almost anything,
simple PHP files, view scripts, images, CSS, JavaScript, and so on. This approach will
allow us to build reusable blocks of functionality and we will adhere to this while
developing our project.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

PSR-0 and autoloaders
Before continuing with the key components, let's take a closer look at the
init_autoloader.php file used in the index.php file. As is stated on the first block
comment, this file is more complicated than it's supposed to be. This is because ZF2
will try to set up different loading mechanisms and configurations.

if (file_exists('vendor/autoload.php')) {
 $loader = include 'vendor/autoload.php';
}

The first thing is to check if there is an autoload.php file inside the vendor folder; if
it's found, we will load it. This is because the user might be using composer, in which
case composer will provide a PSR-0 class loader. Also, this will register the
namespaces defined by composer on the loader.

Note

PSR-0 is an autoloading standard proposed by the PHP Framework Interop Group
(http://www.php-fig.org/) that describes the mandatory requirements for autoloader
interoperability between frameworks. Zend Framework 2 is one of the projects that
adheres to it.

if (getenv('ZF2_PATH')) {
 $zf2Path = getenv('ZF2_PATH');
} elseif (get_cfg_var('zf2_path')) {
 $zf2Path = get_cfg_var('zf2_path');
} elseif (is_dir('vendor/ZF2/library')) {
 $zf2Path = 'vendor/ZF2/library';
}

In the next section we will try to get the path of the ZF2 files from different sources. We
will first try to get it from the environment, if not, we'll try from a directive value in the
php.ini file. Finally, if the previous methods fail the code, we will try to check
whether a specific folder exists inside the vendor folder.

if ($zf2Path) {
 if (isset($loader)) {
 $loader->add('Zend', $zf2Path);
 } else {
 include $zf2Path . '/Zend/Loader/AutoloaderFactory.php';
 Zend\Loader\AutoloaderFactory::factory(array(
 'Zend\Loader\StandardAutoloader' => array(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.php-fig.org/

 'autoregister_zf' => true
)
));
 }
}

Finally, if the framework is found by any of these methods, based on the existence of the
composer autoloader, the code will just add the Zend namespace or will instantiate an
internal autoloader, Zend\Loader\Autoloader, and use it as a default.

As you can see, there are multiple ways to set up the autoloading mechanism on ZF2 and
at the end what matters is which one you prefer, as all of them in essence will behave
the same.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

ServiceManager
After all this execution of code, we arrive at the last section of the index.php file
where we actually instantiate the Zend\Mvc\Application object.

As we said, there are two methods of creating an instance of Zend\Mvc\Application.
In the default approach, we call the static method init of the class by passing an
optional configuration as the first parameter. This method will take care of instantiating
a new ServiceManager object, storing the configuration inside, loading the modules
specified in the configuration, and getting a configured Zend\Mvc\Application.

ServiceManager is a service/object locator that implements the Service Locator design
pattern; its responsibility is to retrieve other objects.

$serviceManager = new ServiceManager(
 new Service\ServiceManagerConfig($smConfig)
);
$serviceManager->setService('ApplicationConfig', $configuration);
$serviceManager->get('ModuleManager')->loadModules();

return $serviceManager->get('Application')->bootstrap();

As you can see, the init method calls the bootstrap() method of the
Zend\Mvc\Application instance.

Note

Service Locator is a design pattern used in software development to encapsulate the
process of obtaining other objects. The concept is based on a central repository that
stores the objects and also knows how to create them if required.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

EventManager
This component is designed to provide multiple functionalities. It can be used to
implement simple observer patterns, and also can be used to do aspect-oriented design
or even create event-driven architectures.

The basic operations you can do over these components is attaching and detaching
listeners to named events, trigger events, and interrupting the execution of listeners
when an event is fired.

Let's see a couple of examples on how to attach to an event and how to fire them:

//Registering an event listener
$events = new EventManager();
$events->attach(array('EVENT_NAME'), $callback);
//Triggering an event
$events->trigger('EVENT_NAME', $this, $params);

Inside the bootstrap method of Zend\Mvc\Application, we are registering the events
of RouteListener, DispatchListener, and ViewManager. After that, the code is
instantiating a new custom event called MvcEvent that will be used as the target when
firing events. Finally, this piece of code will fire the bootstrap event.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

ModuleManager
Zend Framework 2 introduces a completely redesigned ModuleManager. This new
module has been built with simplicity, flexibility, and reuse in mind. These modules can
hold everything from PHP to images, CSS, library code, views, and so on.

The responsibility of this component in the bootstrap process of an app is loading the
available modules specified by the config file. This is accomplished by the following
code line located in the init method of Zend\Mvc\Application:

$serviceManager->get('ModuleManager')->loadModules();

This line, when executed, will retrieve the list of modules located at the config file and
will load each module.

Each module has to contain a file called Module.php with the initialization of the
components of the module if needed. This will allow the module manager to retrieve the
configuration of the module. Let's see the usual content of this file:

namespace MyModule;

class Module
{
 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\ClassMapAutoloader' => array(
 __DIR__ . '/autoload_classmap.php',
),
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/' .
__NAMESPACE__,
),
),
);
 }

 public function getConfig()
 {
 return include __DIR__ . '/config/module.config.php';
 }
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

As you can see we are defining a method called getAutoloaderConfig() that
provides the configuration for the autoloader to ModuleManager. The last method
getConfig() is used to provide the configuration of the module to ModuleManager; for
example, this will contain the routes handled by the module.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Request object
This object encapsulates all data related to a request and allows the developer to
interact with the different parts of a request. This object is used in the constructor of
Zend\Mvc\Application and also is set inside MvcEvent to be able to retrieve when
some events are fired.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Response object
This object encapsulates all the parts of an HTTP response and provides the developer
with a fluent interface to set all the response data. This object is used in the same way
as the request object. Basically it is instantiated on the constructor and added to
MvcEvent to be able to interact with it across all the events and classes.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The request object
As we said, the request object will encapsulate all the data related to a request and
provide the developer with a fluent API to access the data. Let's take a look at the
details of the request object in order to understand how to use it and what it can offer to
us:

use Zend\Http\Request;

$string = "GET /foo HTTP/1.1\r\n\r\nSome Content";
$request = Request::fromString($string);

$request->getMethod();
$request->getUri();
$request->getUriString();
$request->getVersion();
$request->getContent();

This example comes directly from the documentation and shows how a request object
can be created from a string, and then access some data related with the request using
the methods provided. So, every time we need to know something related to the request,
we will access this object to get the data we need.

If we check the code on Zend\Http\PhpEnvironment\Request.php, the first thing we
can notice is that the data is populated on the constructor using the superglobal arrays.
All this data is processed and then populated inside the object to be able to expose it in
a standard way using methods.

To manipulate the URI of the request you can get/set the data with three methods, two
getters and one setter. The only difference with the getters is that one returns a plain
string and the other returns an HttpUri object.

getUri() and getUriString()
setUri()

To retrieve the data passed in the request, there are a few specialized methods
depending on the data you want to get:

getQuery()

getPost()

getFiles()

getHeader() and getHeaders()

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

About the request method, the object has a general way to know the method used,
returning a string or nine specialized functions that will test specific methods based on
the RFC 2616, which defines the standard methods for an HTTP request.

getMethod()

isOptions()

isGet()

isHead()

isPost()

isPut()

isDelete()

isTrace()

isConnect()

isPatch()

Finally, two more methods are available in this object that will test special requests
such as AJAX and requests made by a flash object.

isXmlHttpRequest()

isFlashRequest()

Notice that the data stored on the superglobal arrays when populated on the object are
converted from an Array to a Parameters object.

The Parameters object lives in the Stdlib section of ZF2, a folder where common
objects can be found and used across the framework. In this case, the Parameters class
is an extension of ArrayObject and implements ParametersInterface that will bring
ArrayAccess, Countable, Serializable, and Traversable functionality to the
parameters stored inside the object. The goal with this object is to provide a common
interface to access data stored in the superglobal arrays. This expands the ways you
can interact with the data in an object-oriented approach.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The router
This component of the framework has been rewritten from scratch and it's really
powerful and flexible, allowing you to create a lot of combination of routes. The main
functionality of the router is matching a request to a given controller/action. It also
assembles URLs based on the defined routes. This process is accomplished by
inspecting the URI and attempting to match it with a given route that has some
constraints, or by generating the URL based on the parameters defined on the routes.

The general flow of this component is as follows:

A request arrives and the framework creates a request object
Then the route parses the URI to identify the segments
After that the router iterates through the list of routes previously ordered
On each iteration, the segments of the URI are checked to see if it matches the
current route
When a route matches the URI, the request is dispatched to the specific controller
and action is configured on the route

We have two parts on the routing system: the router itself that holds the logic to test
URIs against routes and generate URLs, and the route that will hold the data of how to
match a specific request. The route can also hold default data, extra parameters, and so
on.

'wall' => array(
 'type' => 'Zend\Mvc\Router\Http\Segment',
 'options' => array(
 'route' => '/api/wall[/:id]',
 'constraints' => array(
 'id' => '\w+'
),
 'defaults' => array(
 'controller' => 'Wall\Controller\Index'
),
),
)

This is an example of a route. As you can see we are specifying a parameter called id
and we are adding constraints on this id.

The router in ZF2 can be used not only for HTTP requests but also for CLI applications.
In our case, we will focus our attention on the website-related router but the essence of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the router will be the same for the CLI apps.

Zend Framework 2 provides two different routers: SimpleRouteStack and
TreeRouteStack, and eight possible route types to choose from: Hostname, Literal,
Method, Part, Regex, Scheme, Segment, and Query. Here is a detailed view of all of
them.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

SimpleRouteStack
This is a basic router that gets all the configured routes and loops through them in a
LIFO order until a match is found. The routes have priority and as the router is looping
them in a LIFO order, the routes that are more likely to be matched (the ones that match
more often) should be registered last, and the one that matches less should be registered
first. Also, an easy way to set up the priority of the routes is using the third parameter of
the AddRoute() method.

$router->addRoute('foo', $route, 10);

That's an example of how you can specify priorities on routes; just pass a number and
the routes will be ordered by those values.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

TreeRouteStack
This router is a little bit more complex than SimpleRouteStack because this allows
you to create a tree of routes and will use a binary-tree algorithm to match the routes.
The basic configuration of a TreeRouteStack route will consist of the following:

A base route that will be the root of the tree and all the following routes will
extend this one.
An optional configured instance of RoutePluginManager to be able to lazy-load
routes.
Another optional parameter will be may_terminate that tells the router that no
other route will follow this one.
Finally, a child_routes array that can also be optional. If we specify routes here,
they will extend the main one; also, a child route can be another TreeRouteStack.

You can add routes one by one on both routers by using the AddRoute() method or in
batches using AddRoutes().

$route = Part::factory(array(
 'route' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' =>
'Application\Controller\IndexController',
 'action' => 'index'
)
),
),
 'child_routes' => array(
 'forum' => array(
 'type' => 'literal',
 'options' => array(
 'route' => 'forum',
 'defaults' => array(
 'controller' =>
'Application\Controller\ForumController',
 'action' => 'index'
)
)
)
)
));

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

As you can see, the first route we defined is the home page – the root of the domain.
Then we defined the route for the forum extending from the base one.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Hostname
$route = Hostname::factory(array(
 'route' => ':subdomain.domain.tld[/:type]',
 'constraints' => array(
 'subdomain' => 'fw\d{2}'
),
 'defaults' => array(
 'type' => 'json',
),
));

This is a usage example of how to configure a Hostname route. In the route parameter,
we specify the hostname to match in the URI. Also, you can set up parameters, such as
subdomain in this case.

You can set up constraints and default values on the route; in this particular example, we
are specifying a regular expression that will limit the matching of the route to all the
subdomains starting with the letters fw and followed by two digits. Sometimes you will
need to pass values to the controllers based on the URL or define some default values
for parameters on the URL. In this example we are setting the default value of type to
the json string.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Literal
This route will match a URI path literally as specified by the route parameter. As
usual, the default data will be the parameters you want returned on a match.

$route = Literal::factory(array(
 'route' => '/foo',
 'defaults' => array(
 'controller' => 'Application\Controller\IndexController',
 'action' => 'foo'
),
));

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Method
This type of route will match if the HTTP method used on the request matches the one
configured in the route using the verb parameter. We can specify multiple methods on
the same route if we separate them with comma. A valid list of request methods can be
found in the RFC 2616 Sec. 5.1.1 section.

$route = Method::factory(array(
 'verb' => 'post,put',
 'defaults' => array(
 'controller' => 'Application\Controller\IndexController',
 'action' => 'form-submit'
),
));

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Part
The Part route type not only extends TreeRouteStack but also implements
RouteInterface. It means that this route can hold a tree of possible routes based on the
URI segments. Let's explore the idea of a forum application. We want to show the home
of the website when you go to the root of the domain, and then we want to display the
forum if you go to domain.com/forum. We can accomplish that using the Part route
type and we will need to configure it as shown in the following code snippet:

$route = Part::factory(array(
 'route' => array(
 'type' => 'literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' =>
'Application\Controller\IndexController',
 'action' => 'index'
)
),
),
 'route_plugins' => $routePlugins,
 'may_terminate' => true,
 'child_routes' => array(
 'forum' => array(
 'type' => 'literal',
 'options' => array(
 'route' => 'forum',
 'defaults' => array(
 'controller' =>
'Application\Controller\ForumController',
 'action' => 'index'
)
)
)
)
));

As you can see in the previous code example, we are defining a child_routes
parameter with more routes inside, thus creating a tree of routes. Of course, the routes
added as child will extend the parent route and therefore the matching URI path. Now
with this in place if we get a request on domain.com/forum, ZF2 will inspect the
request object and will match the URI against the routes we defined. Finally, as the
forum route will match, the request will be dispatched to ForumController.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Regex
A Regex route will be based on a regular expression test match of the URI. You need to
specify regex in the regex parameter and it can be any valid regular expression.

When working with this route we have to keep two things in mind. The first one is to use
named captures on regex for any value we want to return as parameter on a match, the
second is that we need to specify a value for the spec parameter to map each regex
capture to the specific parameter. This will be used by the URL helper when building
URLs based on the routes. For instance:

$route = Regex::factory(array(
 'regex' => '/blog/(?<id>[a-zA-Z0-9_-]+)(\.(?<format>
(json|html|xml|rss)))?',
 'defaults' => array(
 'controller' => 'Application\Controller\BlogController',
 'action' => 'view',
 'format' => 'html',
),
 'spec' => '/blog/%id%.%format%',
));

In the previous example, you will notice that regex is using named captures enclosed in
<> and we are specifying the format of the URL in the spec parameter, identifying each
parameter with a text between percentage symbols. This will help the router to put the
value of the parameters in the correct place in the URL while assembling it.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Scheme
The Scheme route type will match a URI based only on the URI scheme. This route type
is similar to the Literal route because the match has to be exact and will return the
default parameters on a successful match.

$route = Scheme::factory(array(
 'scheme' => 'https',
 'defaults' => array(
 'https' => true,
),
));

As you can see in the previous code example, if the route matches, we will return a
parameter called https with a true value.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Segment
$route = Segment::factory(array(
 'route' => '/:controller[/:action]',
 'constraints' => array(
 'controller' => '[a-zA-Z][a-zA-Z0-9_-]+',
 'action' => '[a-zA-Z][a-zA-Z0-9_-]+',
),
 'defaults' => array(
 'controller' => 'Application\Controller\IndexController',
 'action' => 'index',
),
));

This is an example of how to use the Segment route that will allow us to match against
any segment of the URI path. In the route parameter, the segments are defined using a
specific notation; this is a colon followed by alphanumeric characters. The segments on
a URI can be optional and that will be denoted by enclosing the segment in brackets.

Each segment must have constraints associated with it; the constraint will be a regular
expression defining the requirements for a positive match.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Wildcard
This type of route allows you to get all the segments of a URI specifying the separator
between keys and values. Consider the following code example to get a better
understanding:

'route_name' => array(
 'type' => 'Zend\Mvc\Router\Http\Wildcard',
 'options' => array(
 'key_value_delimiter' => '/',
 'param_delimiter' => '/',
)
)

That's how the route looks when configured, and it will work like this. If you have a
URI such as /id/1/name/john, this route will return the two variables id and name.
The first one will contain the number 1 and the second will contain the string john.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Query
This is the last type of route offered by the route system of Zend Framework 2. This will
allow us to capture and define parameters on a query string. An important point is that
it's designed to be used as a child route.

$route = Part::factory(array(
 'route' => array(
 'type' => 'literal',
 'options' => array(
 'route' => 'page',
 'defaults' => array(
),
),
),
 'may_terminate' => true,
 'route_plugins' => $routePlugins,
 'child_routes' => array(
 'query' => array(
 'type' => 'Query',
 'options' => array(
 'defaults' => array(
 'foo' => 'bar'
)
)
),
),
));

In this example we can see how the route has been defined as a child of a Literal one.
Then we can use this to generate a URL with a query string. For example:

$this->url(
 'page/query',
 array(
 'name'=>'my-test-page',
 'format' => 'rss',
 'limit' => 10,
)
);

In the previous code example, we should specify /query in order to activate the child
route while assembling the URL and be able to append the parameters to the query
string of the URL generated.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

DispatchListener
One of the big changes on this new version of the framework is that everything is built
around events. That's why the dispatchers in just an event listener waiting for the
EVENT_DISPATCH event.

When this event is triggered, it will be captured by DispatchListener and this will
lead to a few things. Let us see the following code snippet step-by-step to fully
understand the dispatch flow:

$routeMatch = $e->getRouteMatch();
$controllerName = $routeMatch->getParam('controller', 'not-found');
$application = $e->getApplication();
$events = $application->getEventManager();
$controllerLoader = $application->getServiceManager()-
>get('ControllerLoader');

First the listener will retrieve information from the event itself, such as controller, route
matched, and the application, and will try to load the controller. Notice that we are
passing a second parameter to the $routeMatch->getParam() method; if for any
reason the parameter does not exists on the route, this one will be the returned value by
default.

If everything is successful, it will execute the method dispatch of the controller. Let's
see the actual code that accomplishes that.

try {
$return = $controller->dispatch($request, $response);
} catch (\Exception $ex) {
 $e->setError($application::ERROR_EXCEPTION)
 ->setController($controllerName)
 ->setControllerClass(get_class($controller))
 ->setParam('exception', $ex);
$results = $events->trigger(MvcEvent::EVENT_DISPATCH_ERROR, $e);
$return = $results->last();
if (! $return) {
$return = $e->getResult();
}
}

return $this->complete($return, $e);

The dispatch responsibility is shared between DispatchListener and the controller;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

actually the dispatch itself is located in the AbstractActionController class. This
method has the logic to examine the RouteMatch object, get the action to be called, and
figure out if it exists and is callable. If it is, it will take care of calling it and returning
the results.

$action = $routeMatch->getParam('action', 'not-found');
$method = static::getMethodFromAction($action);

if (!method_exists($this, $method)) {
$method = 'notFoundAction';
}

$actionResponse = $this->$method();
$e->setResult($actionResponse);
return $actionResponse;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Front controller
The concept of front controller no longer exists in ZF2. In this new version of the
framework, any class that implements DispatchableInterface can be a MVC
controller.

interface DispatchableInterface
{
public function dispatch(Request $request, Response $response =
null);
}

As you can see, this interface only defines one method: dispatch. You can create a
controller following this approach, but you will need to define this method and the logic
in every controller or in a parent controller. In such cases, it's much better to use the
already coded AbstractActionController that provided this method and the logic
required to dispatch a request.

The MVC layer of ZF2 provides a few more interfaces that you can implement to
provide the controllers with even more functionality. Let's take a look at the common
interfaces that can be used with controllers.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

InjectApplicationEvent
This interface is used to tell the Application instance to inject its MvcEvent into this
controller. The controller can access the request, response, and route matched using the
MvcEvent object and can modify the contents if needed. Let's see an example on how
this interface can be used inside a controller to validate that the parameter id is present
in the request:

$matches = $this->getEvent()->getRouteMatch();
$id = $matches->getParam('id', false);
if (!$id) {
 $response = $this->getResponse();
 $response->setStatusCode(500);
 $this->getEvent()->setResult('Invalid identifier; cannot complete
request');
 return;
}

The InjectApplicationEvent class defines two methods: setEvent() and
getEvent(). If you take a look at the first line of the previous code example, you can
see that we are calling getEvent() to retrieve the MvcEvent object; from there we will
call getRouteMatch() to get the RouteMatch object. From there it's just a matter of
getting a parameter providing false as the default value. In case the parameter is not in
the request, false will be returned and the condition below will succeed taking care of
returning the proper error.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

ServiceLocatorAware
In ZF2, you usually develop your controllers in a way that the dependencies are injected
on the constructor or using setters. Sometimes you can have objects that will not be
needed on every request handled by the controller and it makes no sense to have it
injected every time, for example during navigation, forms, and pagination. In this case,
you will need to use the ServiceLocatorAware interface to tell ServiceManager to
inject itself to the controller so that you can use it to retrieve the dependencies you need.

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 $config = $this->getServiceLocator()-
>get('ApplicationConfig');

 //More code here

 }
}

This is a usage example of this interface. As you can see on the class definition, we are
extending the AbstractActionController class. We said before that this controller
already provides some boilerplate code; in this case, this class not only implements this
interface but also implements InjectApplicationEvent and EventManagerAware.
So, if you stick with it while developing your controllers, you will benefit from this
automatically.

As in the case of the previous interface, this one also defines two methods:
setServiceLocator() and getServiceLocator().

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

EventManagerAware
As with the other two interfaces, this one is also to tell ServiceManager that we want
something injected by default. In this case, we want the EventManager instance to be
injected by default. This interface defines two methods: setEventManager() and
getEventManager().

Let's see how to use it on a controller:

$eventManager = $this->getEventManager();
$eventManager->trigger(INDEX_LOADED);

As you can see, once the interface is implemented, it is easy to retrieve the
EventManager instance and use it; in this case we are firing a custom event called
INDEX_LOADED.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Controller plugins
The MVC layer of Zend Framework 2 not only provides interfaces to help you with
controllers but also provides plugins to use inside controllers. There are a few types,
but the most common ones are URL, Redirect, FlashMessenger, and
PostRedirectGet. In order to ease the usage of these plugins, ZF2 provides
PluginManager. As usual, to utilize it you should define three methods:
setPluginManager(), getPluginManager(), and plugin(), unless you are extending
the AbstractActionController class that provides this by default.

$pm = $this->getPluginManager();
$flashMessenger = $pm->get('FlashMessenger');
$flashMessenger->addMessage('Using the flash messenger plugin');

As you can see in the example, it is pretty straightforward; you only need to get the
PluginManager configuration, and then get any plugin you need, referencing them by
name as in the previous code example, the FlashMessenger view helper.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Controller types
The last thing provided by the new implementation of the MVC pattern in ZF2 is a
collection of two base controllers that we can extend to create our controllers. These
two base controllers are designed to provide some functionality by default and both of
them extend a common controller called AbstractController.

AbstractActionController

As you probably may have noticed, ZF2 provides a controller called
AbstractActionController that implements all the interfaces we discussed in this
chapter. This should be your starting point for a controller. For sure you can create it
from scratch if you need it, but it will be simpler and will require less duplication of
code if we choose this provided controller at the start.

To be able to work, this controller has two conventions. The controller expects an
action parameter defined in the RouteMatch object, which means you have to define the
parameter when you define the route itself. Also, the second constraint is that the action
parameter will be converted to camelCase format, and then we will append the word
action to create the method name, which means that a method with the final name should
be present on the controller. The controller will check if the method exists, otherwise
the method notFoundAction() will be executed.

From a global point of view, if we are using this type of controller as starting point we
will need to define controller and action parameters in all the routes in order to tell the
router and dispatcher who has to fulfill the request.

namespace Foo\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class BarController extends AbstractActionController
{
 public function bazAction()
 {
 return array('title' => __METHOD__);
 }

 public function batAction()
 {
 return array('title' => __METHOD__);
 }

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

}

As you can see, a controller extending AbstractActionController is pretty short,
easy, and simple, compared to controllers made from scratch.

AbstractRestfulController

This is also a specialized version of AbstractController. In this case, this controller
will help us when we create RESTful web services.

This controller will map all the actions used on a RESTful approach to predefined
methods that we have to implement by convention. Let's see how the HTTP methods and
controller methods are connected.

HTTP
method

Controller
method Parameters Description

GET
get()

getList()
id. Optional If the id parameter is passed as an argument, get() will be called;

otherwise getList() is executed.

POST create() $data This method expects the data as an argument, usually the $_POST
superglobal array.

PUT update() id An id parameter must be present on the request to be able to update the
entity based on the provided data.

DELETE delete() id This method also needs an id to identify which entity to delete.

Also, this controller has some constrains about the response it should generate for each
action and the response codes each one should have.

HTTP
method

Response
code Headers Body content

GET 200 Nothing extra get() will return one entity and getList() a
list of entities

POST 201 The Location header should provide the
URL of the entity

The body should contain the representation
of the entity

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

PUT
200 or 202 Nothing extra A representation of the entity should be

returned

DELETE 200 or 204 Nothing extra EMPT.

The controllers that extend this one can also be used as a normal controller; this means
that you can still define methods ending in action and call them as usual. This can be
useful to organize the code that shows a form for example and the code that actually
processes the data.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The response object
The response object is a simple class that wraps the HTTP response data. There are
two ways to create a response object, the first one is using a string containing the
response and the other one is instantiating the Zend\Http\Response class.

use Zend\Http\Response;
$response = Response::fromString(<<<EOS
HTTP/1.0 200 OK
HeaderField1: header-field-value
HeaderField2: header-field-value2

<html>
<body>
 Hello World
</body>
</html>
EOS);

// OR

$response = new Response();
$response->setStatusCode(Response::STATUS_CODE_200);
$response->getHeaders()->addHeaders(array(
 'HeaderField1' => 'header-field-value',
 'HeaderField2' => 'header-field-value2',
);
$response->setContent(<<<EOS
<html>
<body>
 Hello World
</body>
</html>
EOS);

This class provides a few methods that are useful to manipulate or check the status of a
response, the most important ones are as follows:

setStatusCode() and getStatusCode()
isForbidden()

isNotFound()

isOk()

isServerError()

isRedirect()

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

An example is worth a thousand words
Ok, now that we have the knowledge, let's dissect a simple example and see how
everything is connected in the code to show the welcome page of the framework.

The folder hierarchy looks like the following screenshot:

All the code related to the welcome screen we saw in the previous chapter is located
inside the application folder inside module. When you add more functionality to a
project, it's better to separate each section and put it in its own folder. Let's see the
purpose of each folder inside a module.

Name Description

config This folder will contain the configuration file for this specific module. You can have more than one file
and also one file per environment and load them accordingly.

language Here we will store all the translation files that affect this module. We will see how the translation works
on ZF2 later in the book.

Module.php This is the configuration file for ModuleManager.

src
The source code of the module will be stored here. If you navigate to the folder you'll see that there are

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

more folders inside that separate the controllers from the models, and so on.

view The view code will be stored here. There is one folder per controller and one file inside each folder per
controller action.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The config folder
Each module can have its own config folder with configurations related to that specific
module. Later, while fulfilling a request on ZF2, the configuration of all the modules
will merge into one single configuration object allowing us to override configuration
variables of other modules if needed. Let's take a look at the module.config.php file
located inside the config folder.

As you can see, the first section is route configuration. Here, we should define the
controller, action, and extra parameters for each URL affecting this module; the routing
system should be used to fulfill the request.

'child_routes' => array(
 'default' => array(
 'type' => 'Segment',
 'options' => array(
 'route' => '/[:controller[/:action]]',
 'constraints' => array(
 'controller' => '[a-zA-Z][a-zA-Z0-9_-]*',
 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',
),
 'defaults' => array(
),
),
),
),

The previous code is the child route of the main. This new route acts as a wildcard and
allows you to drop new controllers and actions on the module without needing to change
the route. The controller and action are picked up from the URL and controlled by the
regex in the constraints section.

Let's now jump to the next section of the configuration file, service manager.

The service manager configuration is an important part of the file as it allows you to
specify all the components, classes, factories, and so on available on your module. In
this section you can specify the following data:

Configuration key Description

abstract_factories This should enumerate all the classes implementing AbstractFactoryInterface.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

aliases This allows you to map names to known services.

factories
Here, we should put all those factory classes implementing FactoryInterface, instances of
classes implementing FactoryInterface, or PHP callbacks.

invokables Classes that are instantiables on our module should be added here.

services We can add services with their corresponding names here. The value should be objects.

shared
This is a configuration array specifying the services that are shared; by default all the services
are shared.

'service_manager' => array(
 'factories' => array(
 'translator' =>
 'Zend\I18n\Translator\TranslatorServiceFactory',
),
),

Here, we are telling the ServiceManager object that it should add a new service; in
this case we are going to be using the TranslatorService factory.

As we are using the TranslatorService factory we need to configure it as follows:

'translator' => array(
 'locale' => 'en_US',
 'translation_file_patterns' => array(
 array(
 'type' => 'gettext',
 'base_dir' => __DIR__ . '/../language',
 'pattern' => '%s.mo',
),
),
),

Translation files contain only one language per file, that's why we define a pattern for
the filename of the translation files. As ZF2 supports multiple types of translation files,
we should define the type in this section. In our case we will be using gettext files.

Now we move on to the next section. This one is related to the ServiceManager object
and is where we define the controllers available and invokable, the ones that can be
used by the ServiceManager object.

'controllers' => array(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

'controllers' => array(
 'invokables' => array(
 'Application\Controller\Index' =>
'Application\Controller\IndexController'
),
),

This is only an associative array with the name of the service as keys and path as
values.

'view_manager' => array(
 'display_not_found_reason' => true,
 'display_exceptions' => true,
 'doctype' => 'HTML5',
 'not_found_template' => 'error/404',
 'exception_template' => 'error/index',
 'template_map' => array(
 'layout/layout' => __DIR__ .
'/../view/layout/layout.phtml',
 'application/index/index' => __DIR__ .
'/../view/application/index/index.phtml',
 'error/404' => __DIR__ .
'/../view/error/404.phtml',
 'error/index' => __DIR__ .
'/../view/error/index.phtml',
),
 'template_path_stack' => array(
 __DIR__ . '/../view',
),
),

The last section of the config file is related to the ViewManager component. Here we
can configure a bunch of options; the most important ones are as follows:

display_exceptions: This controls the additional information on screen about an
exception
Doctype: This is used to control the doctype we use on our layouts
not_found_template and exception_template: This controls the templates
used for not found and exception situations
template_map: This is used to specify the real path of files used and will be
pushed to a TemplateMapResolver object
template_path_stack: This is used to specify the folders where the system must
search for view files

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Language files
Inside the language folder you will see a lot of files. They can be organized into two
types: the files ending in .po and the files ending in .mo. We are using gettext in this
example and these are actual gettext files, the compiled file ends in .mo and the
readable/editable one has .po as extension. When you develop applications that are
internationalized, you'll need to provide these files. In order to create them you can use
desktop software such as PoEdit (http://www.poedit.net/) that makes life much easier
and also provides the translators with an interface to manage the strings.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.poedit.net/

Module.php
This is the file that the ModuleManager object will read to get info about the module. In
this file we define three methods. The first one called onBootstrap is used when
EVENT_BOOTSTRAP is fired and will take care of loading and setting up the translator
and ModuleRoute. As an example, ZF2 comes by default with the code to instantiate the
translator, but as this is an example we can remove it if desired.

This method should be used on your module when you need to configure or do
something when the application is being bootstrapped.

The getConfig method returns a config array of the module. This method is used by the
ModuleManager object to read the config of the module.

Finally, the last method in this file is used to configure AutoloaderListener inside
ModuleManager. Essentially we are adding the current namespace and the path where
the loader can find the files.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Src folder
This is the folder that will contain the source code of the module. Inside the folder you
can store any kind of code you need, but they will essentially be controllers, models,
and some extra stuff such as libraries and entities. In this example there is only one
controller inside the Controller folder. You will notice that the filename of the
controller follows a convention: it's the name of the controller followed by the word
Controller using camelCase.

Let's see what's inside the controller:

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 return new ViewModel();
 }
}

This example is pretty basic. There is not much code on the controller because
everything is static and stored in the view file. ZF2 is taking advantage of the
namespaces introduced in PHP 5.3, so the first thing you should do is declare the
namespace for the current file. After that we declare the components we are going to use
on the controller; in this example as we are extending AbstractActionController, so
we need to tell PHP that we want to use that specific component. As this controller is
tied to a view we should also load the ViewModel class.

Note

The namespaces were created to solve two main issues. The first one is name collision
between the code you create and constants, functions, or classes on third-party libraries.
The second reason was to allow the developer to create an alias of long names
consequent of the solution to the first problem.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

View folder
The view folder has a few folders inside; we can have as many as we want. In our case,
we have the application folder that contains all the views related to the code. If you take
a closer look you will see that there is a folder with the same name as the controller and
a file with the same name as the action. This is a good convention to have everything
organized and you should follow it as well. Then we have an error folder containing the
views used in error situations, such as a 404 not found or an exception in the execution
of the program. Finally, the last folder we have is layout. There we have the layout for
our module; we use it everywhere unless we override it in our own module. This file is
used with every controller/action and is merged with the view from the controller.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
Good job! Right now you should have a clear picture about how a request is handled in
ZF2, how the components are involved in the process, and how they are used to
complete the request. These components are the basis of ZF2, so it's really important
that you understand how to use them and how to interact with the data using these
components.

We discovered how to bootstrap the application and the options we have to customize
it. We have also learned how the request object holds the data and how to access them.
The chapter also showed how the router will use the request data and the set of routes
we configure to determine which controller and action should be executed. Also, we
saw how the dispatch process is executed and how the actual controller/action gets
called. In the meantime we explored the different solutions and helpers ZF2 provides
for some common problems and how they help us to solve them. We finally saw the last
step of the request, the response.

Now with all this knowledge, we have a solid base on which to start developing all the
components of our social network step-by-step. We will be developing the API side
using AbstractRestfulController as a base to build a web service and the
AbstractActionController class for the web client. We are going to be developing
the two sides at the same time to be able to see the progress in the browser and be able
to interact with the forms and the different features we develop.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 4. The First Request/Response
– Building the User Wall
In this chapter, we will focus on the wall of the user. We will cover the changes we
should make on the API level to provide the wall data as well as the code we need on
the client side to display the user wall. As this is the first section of the social network
we implement, we will also cover the basic access to the database. We will assume for
now that the data is already in the database; we don't care how the data arrived there
because our only job here is to show that data on the user wall. This means that the API
will provide, for now, just the access to the data and the frontend will show the data. It
is really simple and a good exercise to check how the frontend and API integrate and
work together.

By the end of this chapter, you will know how the frontend and API work together to
display a page on the social network. Also, you will understand how we manage to
connect to the database and get the data we need.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
As we are working with the API-centric architecture, we should first develop the API
code in order to provide data to the clients. This is the general approach that we will
follow through the book to develop any section of the social network.

In the previous chapter, we saw that ZF2 provides two controller types we can use. The
first one called AbstractActionController will be used on the client side to develop
the client itself. The second type, AbstractRestfulController, is the one we will
use on the API side to build a RESTful web service to provide access to the data and
functionalities.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
For the API level of the wall, we need to use a new endpoint. In this case the API will
expose the data using the URI, /wall/:id. Let's see a more formal description of this
end-point and the functionality provided.

HTTP
method

Controller
method Parameters Functionality

GET
get()

getList()
id

This is the only method providing data to the world. The id parameter is
mandatory and should contain the username. This method will return all the info
related to the user wall.

As the id is mandatory, getList() will return an HTTP error 405 Method Not
Allowed.

POST create() $data This method is not allowed.

PUT update() id This method is not allowed.

DELETE delete() id This method is not allowed.

As you can see, get() is the only method allowed at this endpoint. This method will
return the data related to the profile as a JSON encoded string. In case the user is not
found, this method will return an HTTP 404 error.

The API will always return a JSON encoded string as a result of the requests even if we
are dealing with errors; this means that the API code will not have a view per se.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Working with the database
The first task we have to complete is the database work. We will need to create a table
to store the data of the user. In order to create the table on the virtual machine, we need
to connect to the database server and then create the table in the database. The first task
is really easy because the MySQL port is open to the host machine.

Open your favorite SQL editor/manager and connect to the server using the IP of the
VM. If you haven't made changes to the IP on the Vagrantfile, it should be
192.168.56.2. As a username you should use root and as the password you must use
the one specified in Vagrantfile. If you haven't changed it, it should also be root.

If you prefer to use the command-line interface to connect to the MySQL server, it will
be like the following command line:

mysql –uroot –proot –h192.168.56.2

Once you connect, you should be able to see a database named sn.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sn |
| test |
+--------------------+
5 rows in set (0.00 sec)

Now let's create a table named users inside the sn database. This table will contain the
following fields:

Id
Username
Password
Email
Avatar_id
Name
Surname
Bio

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Location
Gender

The create table statement is as follows:

CREATE TABLE `users` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `username` varchar(50) DEFAULT NULL,
 `email` varchar(254) DEFAULT NULL,
 `password` binary(60) DEFAULT NULL,
 `avatar_id` int(11) unsigned DEFAULT NULL,
 `name` varchar(25) DEFAULT NULL,
 `surname` varchar(50) DEFAULT NULL,
 `bio` tinytext,
 `location` tinytext,
 `gender` tinyint(1) unsigned DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_username` (`username`),
 KEY `idx_email` (`email`(191))
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

As you can see, gender is a tinyint value; in this case we need a convention to
express male and female. We will use 1 for male and 0 for female.

Let's take an overview on how ZF2 manages to connect and retrieve data from a
database.

There are three main components involved with databases: Zend\Db\Adapter,
Zend\Db\TableGateway, and Zend\Db\RowGateway.

Zend\Db\Adapter

This is the most important subcomponent of Zend\Db collection of objects. This object
translates the queries we create on the code to vendor- and platform-specific code and
takes care of all the differences between them. It creates an abstraction layer in the
databases and provides a common interface.

When creating an instance of this object, we should provide minimum information such
as the driver to use, the database name to connect, and username and password for the
connection itself. After that we can use this object to query the database directly but, as
mentioned, ZF2 provides two more objects that will ease the process.

Zend\Db\TableGateway

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

This object is a representation of a table on the database and provides the usual
operations we would like to do over a table such as, select(), insert(), delete(),
or update(). This part of the library provides two implementations of
TableGatewayInterface: AbstractTableGateway and TableGateway. Two
important things we should know about this component is that we can configure it to
return each row in a RowGateway object or provide a class that will act as an entity and
will store the row data.

The other interesting functionality we should be aware of is the Features API. This
internal API allows us to extend the functionality of the TableGateway object without
the need to extend the class and customize the behavior to meet our needs. As usual ZF2
provides a few built-in features we can take advantage of:

GlobalAdapterFeature: This feature allows us to use a global adapter without
the need to inject it into the TableGateway object.
MasterSlaveFeature: This feature modifies the behavior of TableGateway to
use a specific master adapter for inserts, updates, and deletions and a slave
adapter for select operations.
MetadataFeature: This feature gives us the ability to feed TableGateway with
the column information provided by a Metadata object.
EventFeature: As you can imagine, this allows us to use events in TableGateway
and subscribe to events of the TableGateway lifecycle.
RowGatewayFeature: This modifies the behavior of TableGateway when
executing select statements and forces the object to return a ResultSet object.
When iterating the ResultSet object, we will be working with the RowGateway
objects.

Zend\Db\RowGateway

Following the concept of TableGateway, RowGateway represents a row inside the table
of the database. This object also provides some methods related to the actions we
usually make over a row, such as save() and delete(). As we mentioned before if
you use RowGatewayFeature over TableGateway, the result of the select queries will
be a ResultSet object containing instances of this object. Each object will contain the
data of the row it represents and we will be able to manipulate it, change it, and save it
back to the database, everything using the same object.

Setting up the connection

Now we have a clear understanding about each object involved in the database
connection, let's set up the code needed to actually connect to the database.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The first step is providing the information needed by Zend\Db\Adapter. We will do
this in two different config files: global.php and local.php. You can find them in the
config folder; the first one will be there and the second one should be created
manually. The reason why we use two files is because local.php will be ignored by
git as stated in the .gitignore file.

You can see in the folder that this allows us to put the general configuration that will be
committed on the global.php file, and keep the private data such as usernames and
passwords on the local.php file that will not be committed.

return array(
 'db' => array(
 'driver' => 'Pdo',
 'dsn' => 'mysql:dbname=sn;host=localhost',
 'driver_options' => array(
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
),
),
 'service_manager' => array(
 'factories' => array(
 'Zend\Db\Adapter\Adapter' =>
'Zend\Db\Adapter\AdapterServiceFactory',
),
),
);

This is the config data you should put in the global.php file. Here, we are specifying a
new entry called db and inside that we define the options: driver, dsn, and
driver_options. As you can see, all the data is pretty straightforward.

Note

When connecting to databases, ZF2 is able to use different drivers; the options available
are Mysqli, Sqlsrv, Pdo_Sqlite, Pdo_Mysql, and Pdo. If you want to know more
about the options available to connect to databases, you can check out the documentation
at http://framework.zend.com/manual/2.0/en/modules/zend.db.adapter.html.

The second block of config is related to ServiceManager. We are registering a new
service called Zend\Db\Adapter\Adapter and we are pointing it to
AdapterServiceFactory of the Db package.

Let's see the data we should add on the local.php file. Keep in mind that our VM is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://framework.zend.com/manual/2.0/en/modules%E2%80%A8/zend.db.adapter.html

running with the skip-grant-tables options so these credentials will not take effect
but it's a good practice to define the data on the config file.

return array(
 'db' => array(
 'username' => 'root',
 'password' => 'root',
),
);

As you can notice we are extending the db config section and adding the username and
password for the db connection.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

ViewManager configuration
The API response will always be text. That's the reason we are going to encode every
response as JSON. There are a few ways to accomplish this task and we will see the
most straightforward and easy. The View component in Zend is created with flexibility
in mind and provides a way to modify how the view works using strategies.

For our case, ZF2 provides us with a strategy called ViewJsonStrategy. Basically this
component attaches two methods to the EVENT_RENDERER and EVENT_RESPONSE events
of the view and modifies the way the view works based on the data we send to the
view. To make ViewJsonStrategy work, we should return the JsonModel objects on
our controllers. The JsonModel objects will be picked up by ViewJsonStrategyand.
We will take care of setting up the correct Content-Type header. After that the
component will use the provided JsonModel object to get a serialized version of the
data to be sent as a response.

To activate this strategy and start returning JSON data, we only have to add the
following four lines to the global.php file:

 'view_manager' => array(
 'strategies' => array(
 'ViewJsonStrategy',
),
),

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the Users module
This will be the first module we create and is only going to contain the TableGateway
object for the table that we just created on the database. Before starting to write the
code, we need to create a new module with the following structure:

Creating the UsersTable.php file

Now that we have the folder structure, the next step is to create a TableGateway object
in order to be able to fetch the data from the database. Let's start by creating a file
called UsersTable.php inside the Model folder and put the following code inside:

<?php
namespace Users\Model;

use Zend\Db\Adapter\Adapter;
use Zend\Db\TableGateway\AbstractTableGateway;
use Zend\Db\Adapter\AdapterAwareInterface;

class UsersTable extends AbstractTableGateway implements
AdapterAwareInterface
{
 protected $table = 'users';

 public function setDbAdapter(Adapter $adapter)
 {
 $this->adapter = $adapter;
 $this->initialize();
 }

 public function getByUsername($username)
 {
 $rowset = $this->select(array('username' => $username));

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 return $rowset->current();
 }
}

As this is the first TableGateway we created, let's have a closer look at it. First thing
we should do is declare the namespace where this class resides. After that we have to
declare the components we are going to use inside the class using the use keyword.

The class is extending AbstractTableGateway and implementing the interface,
AdapterAwareInterface. This interface allows the dependency injector to set the
adapter we have to use for the connections to the database. As we are extending
AbtractTableGateway, we have to define the name of the table we are representing;
that's the job we do when we declare the protected variable, $table. After that we
arrive at the first method. This is just the implementation of the method stated in the
interface. In this case we store the adapter on the local variable, and then we call the
initialize() method to set up the wiring on the object.

Finally, we define a custom method that we will use to get info from the table. We need
to be able to retrieve users by their username and that's the job of the last method on this
class. getByUsername() uses the internal select() method by passing an array as an
argument. This array basically is the where condition for the select statement and in this
case we are just filtering by the username column. As we are fetching the info of one
user, instead of returning Rowset we call the current() method to return the first
result. In theory we are going to have only one user with a specific username because
we defined a unique index on the username column.

Module configuration

Let's now have a look at the contents of the configuration file.

return array(
 'di' => array(
 'services' => array(
 'Users\Model\UsersTable' => 'Users\Model\UsersTable'
)
),
);

As we are just storing the TableGateway object, the only entry on the config file is to
define the availability of this object on the dependency injector.

Note

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Dependency injection is a software design pattern that allows the developer to remove
the hard-coded dependencies and makes it possible to swap them with different ones at
runtime.

The module.php file

As we have seen before in other classes, we have to define the current namespace and
import the classes we are going to use; in this case the code is as follows:

namespace Users;

After that we define a class called Module and then we jump to the first method,
getConfig() used by ModuleManager to retrieve the config file of the module. The
method looks like the following code snippet:

public function getConfig()
{
 return include __DIR__ . '/config/module.config.php';
}

As you can see we are just returning the array contained in the configuration file for the
module. We will later explore the contents of this file.

We already saw that ZF2 is PSR-0 compliant and has its own auto-loading mechanism
using the Zend\Loader components. The last method we declare on the Module class is
called getAutoloaderConfig() and it's used to tell the autoloader where it can find
the files for this module.

public function getAutoloaderConfig()
{
 return array(
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__,
),
),
);
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the Wall module
Our next task is to create the module that will contain the code related to the user wall.
Take a look at the following folder structure and recreate it inside the module folder:

Let's define the contents of the Module.php file that should be placed at the root level of
the Wall module folder. Remember that this file is the configuration class used by
ModuleManager to get extra information about our modules.

Module.php contents

As we saw before in the Users module, we have to define the current namespace and
import the classes we are going to use. In this case, the code looks exactly the same as
the Users/Module.php file and the only difference is the definition of the current
namespace.

namespace Wall;

Module configuration

Let's now review the contents of the configuration file. The first section is related to the
router and the routes we are listening to. We need to define a route to access the data
and the controller/action that will fulfill the request. Let's see the following code
snippet to know how it's configured:

'router' => array(
 'routes' => array(
 'wall' => array(
 'type' => 'Zend\Mvc\Router\Http\Segment',
 'options' => array(
 'route' => '/api/wall[/:id]',
 'constraints' => array(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'id' => '\w+'
),
 'defaults' => array(
 'controller' => 'Wall\Controller\Index'
),
),
),
),
),

As you can see, this way of configuring the routes is very verbose, but it's also very
convenient. We are defining a new route identified by the name, wall, of type
Zend\Mvc\Router\Http\Segment and we define the structure of the route with an
optional parameter, the id of the user, which in our case will be the username. We also
set up the constraint about what the id should look like. Finally, in the defaults section,
we define the controller in charge for requests sent to this URL.

Let's now dig in the last section of the configuration file that basically specifies the
controllers available on this module.

'controllers' => array(
 'invokables' => array(
 'Wall\Controller\Index' =>
 'Wall\Controller\IndexController'
),
)

This section is as simple as defining an identifier for the controller and the class of the
file containing the controller.

Adding the IndexController.php file

We have arrived at the last file of the API, the controller. Here, we put everything
together and we fulfill the request with the data the clients need. As we said before, the
controllers on the API side are based on AbstractRestfulController. That means
the action we will execute to fulfill the request is determined based on the type of
requests.

The first thing is to define the namespace where this file resides, and then the
components we will use in the class.

namespace Wall\Controller;

use Zend\Mvc\Controller\AbstractRestfulController;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

use Zend\View\Model\JsonModel;

Then we proceed to create the class itself extending AbstractRestfulController.
The class will be called IndexController.

In this controller, we have to accomplish two things: the first one is to implement the
abstract methods of the parent class and the second one is to have access to the
UsersTable object. Let's see first how we get access to the UsersTable object.

protected $usersTable;

protected function getUsersTable()
{
 if (!$this->usersTable) {
 $sm = $this->getServiceLocator();
 $this->usersTable = $sm->get(Users\Model\UsersTable');
 }
 return $this->usersTable;
}

We define a new protected variable inside the class that will hold the UsersTable
object. After that we create a new method called getUsersTable(), which will get the
UsersTable object from ServiceManager and will store it in the internal variable.

Now let's implement the methods of the parent class. We have a bunch of them as we
defined in the requirements. As we said, this controller will only respond to the get()
method, the rest will not be used. So in that case we should follow the HTTP
specification and issue a 405 code. Let's see how we deal with the methods that we
don't use and then also see how we implement the get() method.

public function getList()
{
 $this->methodNotAllowed();
}

public function create($data)
{
 $this->methodNotAllowed();
}

public function update($id, $data)
{
 $this->methodNotAllowed();
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

public function delete($id)
{
 $this->methodNotAllowed();
}

protected function methodNotAllowed()
{
 $this->response->setStatusCode(
 \Zend\Http\PhpEnvironment\Response::STATUS_CODE_405
);
}

As you see the unused methods call the methodNotAllowed() method that will set the
status code of the response to 405.

Let's see now how we tackle the get() method.

public function get($username)
{
 $usersTable = $this->getUsersTable();
 $userData = $usersTable->getByUsername($username);

 if ($userData !== false) {
 return new JsonModel($userData->getArrayCopy());
 } else {
 throw new \Exception('User not found', 404);
 }
}

The first thing we do is retrieve the UsersTable object. After that, we call the
getByUsername() method we created before. If we have data, it means that the user
exists so we proceed to return a JsonModel object containing a copy of the data. In case
the user is not in our database, we throw an exception that will be caught by a listener,
which we will implement in the next section.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The API-Error approach
Usually when we develop APIs, we use the HTTP status codes to report errors that we
encounter while processing the request. But this is not enough in most cases and we end
up creating our own objects to represent an error status on the API level. To solve this
issue and standardize the way we respond to errors on API based on JSON or XML,
two proposals are gaining track and they use the error media types, such as
application/api-problem+json and application/vnd.error+json.

In this section we will build the foundation of this approach but we will cover it in
more depth and implement it properly later to avoid overloading the chapter with a lot
of new stuff.

Adding the Common module

We will implement the API-Error listener in a new module to have the code separated
by responsibility. Let's first create the folder structure. Then we will jump to the code
we should add and how it works.

Modifying the application.config.php file

Now, the first thing we should do is add the new modules to the
application.config.php file so the framework will know that they are available. In
order to do that we need to modify the modules configuration like the following code
snippet:

'modules' => array(
 'Wall',
 'Users',
 'Common'

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

),

As you can see we just add as many entries as we have modules and they are called
after the module name.

Modifying the Module.php file

We have already seen that all the modules must have a file called Module.php. As we
discussed earlier, this file is used to get extra configuration and information about the
module and it's used by ModuleManager. For this module, we will add the usual code in
our Module.php to return the config file and configure the autoloader. Also, we will
initialize our listener when the module is being bootstrapped.

public function getConfig()
{
 return include __DIR__ . '/config/module.config.php';
}

public function getAutoloaderConfig()
{
 return array(
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__
),
),
);
}

public function onBootstrap($e)
{
 $app = $e->getTarget();
 $services = $app->getServiceManager();
 $events = $app->getEventManager();
 $events->attach(
 $services->get('Common\Listeners\Listener')
);
}

The onBootstrap() method is called when ModuleManager is bootstrapping the
module. We use this to configure the listener, adding it to EventManager.

Modifying the module.config.php file

Now that we have the first bits of our module and the manager knows what to do with it,
let's review the contents of the module.config.php file. As you will see it is really

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

simple.

return array(
 'service_manager' => array(
 'invokables' => array(
 'Common\Listeners\ApiProblemListener' =>
 'Common\Listeners\ApiProblemListener',
),
),
);

In this code, we are adding a new object as invokable to the service_manager array.
So, we will be able to retrieve it later.

Adding the ApiErrorListener.php file

Finally, let's have a look at the listener that will help us spot issues on the API and will
modulate the standard response for API-Problem in the future.

As usual, the first thing to do is declare the namespace and the components we are going
to use.

namespace Common\Listeners;

use Zend\EventManager\AbstractListenerAggregate;
use Zend\EventManager\EventManagerInterface;
use Zend\Mvc\MvcEvent;
use Zend\View\Model\JsonModel;

Right after that we will define a new class called ApiErrorListener and we will
make this class extend the AbstractListenerAggregate class, which will allow the
class to attach one or more listeners.

class ApiErrorListener implements AbstractListenerAggregate

Now we should track the events we are listening to in order to accomplish our need to
add a property to the class to store them. Then we should define the attach() method
as required by the interface, ListenerAggregateInterface. We have to attach our
methods to the events we are interested in by calling the attach() method of
EventManager and passing the event name, the method to call, and the priority as
parameters.

public function attach(EventManagerInterface $events)
{
 $this->listeners[] = $events->attach(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 MvcEvent::EVENT_RENDER,
 'ApiErrorListener::onRender',
 1000
);
}

Finally, let's see the code that inspects the response and determines if there is an error
and format it.

public static function onRender(MvcEvent $e)
{
 if ($e->getResponse()->isOk()) {
 return;
 }

 $httpCode = $e->getResponse()->getStatusCode();
 $sm = $e->getApplication()->getServiceManager();
 $viewModel = $e->getResult();
 $exception = $viewModel->getVariable('exception');

 $model = new JsonModel(array(
 'errorCode' => $exception->getCode() ?: $httpCode,
 'errorMsg' => $exception->getMessage()
));
 $model->setTerminal(true);

 $e->setResult($model);
 $e->setViewModel($model);
 $e->getResponse()->setStatusCode($httpCode);
}

Let us go line by line in this big chunk of code. At the top we check if the response is
marked as 200 OK. If it is, we don't have to continue worrying about errors; otherwise,
we retrieve the status code and the exception variable from ViewModel. We are
assuming that if something goes wrong, an exception will be thrown. That's why on our
controller if the user is not in the database, we throw an exception because it will be
caught here.

With the data we extracted, we create a new JsonModel object specifying errorCode
based on the code used in the exception; otherwise, we use the HTTP error and we also
specify errorMsg based on the text of the exception.

Then we use the setTerminal() method of the JsonModel object to set the terminal
flag to true to tell ZF2 to not wrap the returned model in a layout.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The last section of the method takes care of attaching the new JsonModel object to the
response overwriting the previous one and setting the corresponding status code.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
Nice! If you have arrived here that means that we have a shiny API to retrieve info of
the user wall. Now that we have the data on a JSON object, we have to create a
beautiful HTML client to show the information on a browser.

To build this section of the social network we need to create additional modules that
will contain all the code related to the user wall, the user data, and the API access. At
this point, as we have an API, we need some sort of a client in order to get the data. The
Api module does this job but the contents of it are still complex for us and we will see
how the concepts work later on. For now just trust me and use the code. When we reach
Chapter 7, Dealing with URLs – Posting Links, we will see how to make requests to
external URLs and then you can review the contents of the Api module and you'll
understand it.

This is what the Users module and the Wall module looks like. Create them and let's
move on and see what to do with them.

The Wall module is the one responsible for getting the data and showing it to the user.
This module uses the entity located in the Users module to store the data coming from
the API and at the same time utilizes the Api module to get the data from the backend.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Let's have a quick look at what the User entity is and then we will see the Wall module
itself.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the Users module
Right now this module is really simple and just contains the User entity that will store
the data passed from the API. Of course this module will be extended later on to add
more functionality.

Contents of the Module.php file
namespace Users;

class Module
{
 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/' .
__NAMESPACE__,
),
),
);
 }
}

These are the contents of the file. As you can see it's pretty simple and we are just
adding the module to the autoloader.

Creating the User.php file
namespace Users\Entity;

class User
{
 const GENDER_MALE = 1;

 protected $id;
 protected $username;
 protected $name;
 protected $surname;
 protected $avatar;
 protected $bio;
 protected $location;
 protected $gender;
 protected $createdAt = null;
 protected $updatedAt = null;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

[...]

This is the beginning of the file. Here, we are defining the namespace where this class
lives, the constant that represents the value of the male gender in the database, and then
a bunch of protected properties, one for each column in the database. After this the file
just contains getters and setters for the properties we just saw.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requesting the wall content
Now it's time to see how to use the Api module to get the contents of the wall and show
them to the user.

Modifying the Module.php file

As we did before with the module on the API side of the project, we should create a
new Module.php file for this module. The contents of the file are pretty standard and
now you should be able to identify what each method does.

namespace Wall;

use Zend\Mvc\ModuleRouteListener;
use Zend\Mvc\MvcEvent;

class Module
{
 public function getConfig()
 {
 return include __DIR__ . '/config/module.config.php';
 }

 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ =>
 __DIR__ . '/src/' . __NAMESPACE__,
),
),
);
 }
}

Module configuration

Let's see the contents of the configuration file. In this case we only have three sections.
Two of them will be familiar and the third one is a completely new one.

'router' => array(
 'routes' => array(
 'wall' => array(
 'type' => 'Zend\Mvc\Router\Http\Segment',
 'options' => array(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'route' => '/:username',
 'constraints' => array(
 'username' => '\w+'
),
 'defaults' => array(
 'controller' => 'Wall\Controller\Index',
 'action' => 'index',
),
),
),
),
),

The first one is the route definition. As you can see, we will have a parameter on the
URL that will be the username of the user we want to see. The route is also a
Zend\Mvc\Router\Http\Segment type as we saw in the API section. We also define
the constraints of the parameter, but we have a subtle difference with the route defined
in the API. If you take a closer look at the defaults section, we not only define the
controller but also the action that should be called. This is because the controller in the
frontend doesn't extend the controller, AbstractRestfulController. Instead, we
extend AbstractActionController.

Then, we define the controllers available; this section is really simple as we only have
one controller.

'controllers' => array(
 'invokables' => array(
 'Wall\Controller\Index' =>
 'Wall\Controller\IndexController'
),
),

Now we arrive at the new section called view_manager and take care of the
configuration of the view object. As this is the client, we will have a proper view
outputting HTML code to the browser.

'view_manager' => array(
 'display_not_found_reason' => true,
 'display_exceptions' => true,
 'doctype' => 'HTML5',
 'not_found_template' => 'error/404',
 'exception_template' => 'error/index',
 'template_path_stack' => array(
 __DIR__ . '/../view',
),

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

),

We are defining some variables here that control the information we show when an
action is not found or an exception is thrown. We also define doctype of the HTML
code. You can do it here or you can hardcode doctype in the layout. Finally, we define
two templates for specific situations and the path where the templates reside. As we are
not defining a layout file on this module, the view will fall back to the one located in the
Application module provided by ZF2 by default.

Changes in the IndexController.php file

Let's see how we connect the client to the API. This is accomplished on the
IndexController.php file.

namespace Wall\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\Stdlib\Hydrator\ClassMethods;
use Wall\Entity\User;
use Api\Client\ApiClient as ApiClient;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 $viewData = array();

 $username = $this->params()->fromRoute('username');
 $this->layout()->username = $username;
 $response = ApiClient::getWall($username);

 if ($response !== false) {
 $hydrator = new ClassMethods();

 $user = $hydrator->hydrate($response, new User());
 } else {
 $this->getResponse()->setStatusCode(404);
 return;
 }

 $viewData['profileData'] = $user;

 return $viewData;
 }
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The first chunk of code declares the namespace the controller is living on and then we
specify the components we are going to use. As you can see, the controller,
IndexController extends AbstractActionController. The only method we have is
the indexAction() method and it's the one in charge of the wall requests. If you take a
closer look, you can see that we retrieve the username from the URL. After that we pass
it to the layout, and then we use ApiClient to get the data of the wall by calling
getWall().

After that, we examine the response to see if it's successful or not; this can be improved
but for now it's enough.

If the response is correct, we decode it; remember that the communication between the
frontend and the API is done with the JSON objects. Once the data is decoded, we use a
Hydrator to store the data inside a custom entity.

The Hydrator is a component from the Stdlib section of ZF2. This type of object is
used to populate objects with data. In this case we are using a hydrator based on class
methods; this means that when the hydrator will try to populate, an object will try to use
setter functions inside the object.

After the entity has been populated, we return an array containing the user object to the
view.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Outputting the user wall
Let's now talk about the view itself. The views on ZF2 are based on layout and the
content. The content is a view by itself and can contain PHP code, use helpers, partials,
and so on. Usually we have a default layout for the application and we merge that with
the HTML generated by a view. The views are tied to controllers and actions following
a convention. Inside the view folder, the framework will search for a folder named as
the controller. Inside that folder each action will have a view and will be named before
the action name. If you review the picture of the folder structure again, you'll see that
convention in place.

If you want, you can use a template engine in order to use a different syntax in the views
instead of PHP but consider that at the end what a template engine does is convert the
special syntax to plain PHP. It will probably add a compile step in the middle to
translate the views to the final file. As ZF2 already provides good support for the view
using plain PHP, helpers, partials, and so on, we are not going to deal with how to use a
template engine. But if you want, take a look at Twig at http://twig.sensiolabs.org or
Smarty available here http://www.smarty.net.

We are not going to put the code of the view here because it's huge but we are going to
comment on how we print the info coming from the User object. If you want to take a
look at the code, just download the code that comes with this book and check it out.

<?php echo $profileData->getLocation() ?>
<?php echo $profileData->getGenderString() ?>
<?php printf(
 '%s %s',
 $profileData->getName(),
 $profileData->getSurname()
) ?>

These are a few examples on how we put the info from the User object in the view. As
you can see we are just using the getters of the class. The second example is using the
helper function we made to get the gender in a string representation.

To be able to test this functionality, we only need to insert data into the table, launch the
browser, and point to our client hostname adding the username in the URL. You should
be able to see something like the following screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://twig.sensiolabs.org
http://www.smarty.net

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
Wow! It was a long trip, congratulations!

In this chapter we covered all the basics on both the API and frontend sides.

We saw the components involved in the database access and the possibilities ZF2 gives
us, how to work with the database, and how to retrieve information based on the
parameters we have. We saw how to create a module from scratch and how to configure
it, create the routes, and process the information to output it as JSON or HTML. We
also covered how to encode and decode JSON data and how to make a simple request
to our API. We also worked with the two types of controllers provided by ZF2:
AbstractRestfulController and AbtractActionController. Finally, we saw how
to populate entities using hydrators.

Now we have the base from which to continue working on the social network. We will
keep improving its functionality and the quality of the code performing some refactors
along the way to keep it simple and maintainable. The next chapters will cover different
aspects of the framework while adding more code, more functionality, and more fun!

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 5. Handling Text Content –
Posting Text
In this chapter, we will start by adding features to the user wall. The user will now be
able to post text on their wall as a status update, and will also be able to browse
through the statuses, added previously. As usual, we will cover both the API and
frontend sides. As we implement the first form, we will discover how to do the basic
validation and filtering of the data prior to sending it to the API, and also how to
validate that on the API side.

By the end of this chapter, you will learn how to create simple forms with a couple of
fields, how to add validation to be sure that the user has provided the correct data, and
how to filter it to be sure that the information we store is safe and doesn't contain any
malicious code that can compromise the platform.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
Let's see the tasks we have to accomplish on the API level. We will update the get()
method that returns the wall data to include all the statuses of the user, and we will also
add a new method called create() to be able to insert new status into the database for
a specific user. In order to do that we need to add a new table in the database and the
corresponding table gateway. After that we'll add a new route for the create() method.
Finally on the API side, we will see how to validate and filter the data that comes from
the client.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
In order to post a new status, we will modify the endpoint we created in Chapter 4, The
First Request/Response – Building the User Wall, to accept the POST requests. Let's
see the formal requirements of the new method in the following table:

HTTP
method

Controller
method Parameters Functionality

GET
get()

getList()
id

This is the only method providing data to the world. The id parameter is
mandatory and should contain the username. This method will return all the info
related to the user wall.

As the id parameter is mandatory, getList() will return an HTTP error 405.

POST create() data
This is the method used to post content to the wall. The parameter is an array of
data containing user_id and the parameters needed to create the content.

PUT update() id This method is not allowed.

DELETE delete() id This method is not allowed.

The create() method will inspect the contents of the $data parameter to see if we
have the information needed to create the new status on the database. In the future, as we
expand this method, we will examine the data to decide the type of content we should
create.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Working with the database
As mentioned before, in order to be able to see the status updates of users, we will need
to store them somewhere. Let's now create a new table on the database that will tie the
status data to the user itself.

This table is called users_statuses and will hold the following data:

Id
User_id
Status
Created at
Updated at

The column, user_id, will be filled with id of the user located in the table, users.

Now that we have seen the data this table will store, let's see the actual statement to
create it. We need to connect to the database server through the VM as we did in
Chapter 4, The First Request/Response – Building the User Wall, to be able to execute
the following SQL statement:

CREATE TABLE `user_statuses` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `user_id` int(11) unsigned DEFAULT NULL,
 `status` text,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_user_id` (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Note

While creating tables on a database, you have to make a choice about using foreign keys
and constraints or not. Depending on the size of the tables, how they are sharded, and
the database architecture, using them can be problematic but at the end it is up to you.
For simplicity, we will not use them in this book.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Understanding the module structure
As we are going to add new files to the structure we already have, let's see how the
structure looks with the new files added to the project in the following screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating UserStatusesTable.php
Now that we have the table created on the database, let's create the table gateway to be
able to access it.

Create a new file called UserStatusesTable.php inside the Model folder of the
Users module, and let's see what we have to add inside.

As with previous classes, the first thing we should do is declare the namespace for the
class and the dependencies that we are going to use inside the class. In this case we
have the following code:

namespace Users\Model;

use Zend\Db\Adapter\Adapter;
use Zend\Db\TableGateway\AbstractTableGateway;
use Zend\Db\Adapter\AdapterAwareInterface;
use Zend\Db\Sql\Expression;
use Zend\InputFilter\InputFilter;
use Zend\InputFilter\Factory as InputFactory;

As you can see we have a lot of dependencies. You should be familiar with the first
three dependencies as they were used in Chapter 4, The First Request/Response –
Building the User Wall, when we created the UsersTable class. The next dependency
is Zend\Db\Sql\Expression. This class allows us to use SQL expressions, such as
count(*) or NOW(). The last two dependencies will provide us with the ability to
create filters that will check the input data, and will assure that they meet the
requirements we have for each parameter.

The following block of code defines the class itself, the table we are using, and the
setDbAdapter() method required by the AdapterAwareInterface interface:

class UserStatusesTable extends AbstractTableGateway implements
AdapterAwareInterface
{
 const COMMENT_TYPE_ID = 1;

 protected $table = 'user_statuses';
 const TABLE_NAME = 'user_statuses';

 public function setDbAdapter(Adapter $adapter)
 {
 $this->adapter = $adapter;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $this->initialize();
 }

As you can see this code is almost identical to the one we wrote for the UsersTable
class. You might notice that we have defined two constants called COMMENT_TYPE_ID
and TABLE_NAME. Ignore them for now, they will be handy when we arrive at Chapter 8,
Dealing with Spam – Akismet to the Rescue.

The following section shows the getByUserId() method, takes care of retrieving the
statuses of a user based on the user_id column, and orders them by the creation date
stored in the created_at column:

public function getByUserId($userId)
{
 $select = $this->sql->select()
 ->where(array('user_id' => $userId))
 ->order('created_at DESC');
 return $this->selectWith($select);
}

In this method, as we want to order the results, we use a Select object retrieved by
$this->sql->select().We then customize it with the where() method and with the
order() method. To execute a statement with a given Select object, we use the
method, selectWith(), which accepts the Select object as a parameter.

The next method we are going to review is create() as shown in the following code:

public function create($userId, $status)
{
 return $this->insert(array(
 'user_id' => $userId,
 'status' => $status,
 'created_at' => new Expression('NOW()'),
 'updated_at' => null
));
}

As you can see, we are just building an array with the data we want to insert using the
parameters passed in the method. To populate the created_at column, you have two
options; the first one will be passing the date on the format that we use for that column
on the database. The second option will be using the NOW() function from SQL to
populate the value with the current date and time from the server. We will go with the
second option, and in order to use it we should wrap the NOW() function inside an
instance of Zend\Db\Sql\Expression.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The last section of the class will be the method called getInputFilter(). Inside this
method, we will configure the input filters needed for each field. For each input, we
will define the filters and validators that apply to that specific value and will be used
while validating the input sent by the clients.

Zend Framework 2 (ZF2) provides a huge amount of filters and validators. They cover
the common needs for web applications, and usually you'll have enough with the
provided ones. If not, as always, you have the option to create your own filters and
validators by extending the appropriate classes and implementing the corresponding
methods.

Note

You can have a look at the available filters and validators at
http://framework.zend.com/manual/2.2/en/modules/zend.filter.set.html and
http://framework.zend.com/manual/2.2/en/modules/zend.validator.set.html.

Filters and validators can be used in two different ways, attached to a form or
standalone. But in both cases each field or value has its own configuration of filters and
validators and each one has its own options.

As we are working on the API, we are going to see how to use them in the standalone
approach. This is illustrated in the following code:

public function getInputFilter()
{
 $inputFilter = new InputFilter();
 $factory = new InputFactory();

The first thing we do is create an instance of the InputFilter component.

The InputFilter component can be used to filter and validate generic groups of data
using associative arrays to provide the data. This component can hold multiple
configurations of filters and validators, each one for a specific input or variable.

A new Zend\InputFilter\Factory instance is also created to be able to initialize the
InputFilter objects from a configuration stored in an array.

Note

Notice that we created an alias, InputFactory, for this object when we declared the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://framework.zend.com/manual/2.2/en/modules/zend.filter.set.html
http://framework.zend.com/manual/2.2/en/modules/zend.validator.set.html

dependency.

The following code represents the new Zend\InputFilter\Factory dependency:

 $inputFilter->add($factory->createInput(array(
 'name' => 'user_id',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
 array('name' => 'Int'),
),
 'validators' => array(
 array('name' => 'NotEmpty'),
 array('name' => 'Digits'),
 array(
 'name' => 'Zend\Validator\Db\RecordExists',
 'options' => array(
 'table' => 'users',
 'field' => 'id',
 'adapter' => $this->adapter
)
)
),
)));

The first block of code will configure the filters and validators for a field called
user_id. As a filter we add StripTags, StringTrim, or Int. The first one will
remove all the HTML tags present in the value, the second one will remove whitespaces
before and after the value itself, and the last one will try to convert a scalar value to an
integer.

Note

As a good practice you should always remove any HTML tags and sanitize the data that
comes from the user, in order to minimize the chances of being vulnerable to a Cross-
site scripting (XSS) attack. Just remember to never trust anything that comes from the
user.

In order to validate the data for this field, we need to check the following points:

The field is not empty
The value should be a number
If we are adding the status of a user, the user must exist in the user's table

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Take a look at the validators section of the configuration for the first input. The first
two are pretty easy, just including the validator and the default configuration for them
will do the job. For the third one, we will use a validator provided by ZF2 called
Zend\Validator\Db\RecordExists. This validator checks if a row exists in the
database based on a configuration. The configuration should define the table and column
to be checked if the record exists. Finally, to be able to query the database, an adapter
must be provided as shown in the following code:

 $inputFilter->add($factory->createInput(array(
 'name' => 'status',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array('name' => 'NotEmpty'),
 array(
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => 1,
 'max' => 65535,
),
),
),
)));

 return $inputFilter;
}

Now let's take a look at the second input where we will try to filter and validate the
data. The data will be the status of the user, this means text. The filter section will be
pretty standard, and we will only remove HTML tags and whitespaces before and after
the data. The validator's section will contain the NotEmpty validator, as before, to be
sure that we have the data. At the end, it makes no sense to store an empty status. After
that, we will validate the length of the text. As we defined the column on the table as
TEXT type, this will imply the minimum and maximum size of the text. With the
StringLength validator, we define that the status should have a minimum of one
character and a maximum of 65,535 characters. Also, we define the encoding of the text.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Extending IndexController.php
As we saw in the beginning of the chapter, we will need to extend the
IndexController.php file to add a new method called create(). This method was
returning a 404 response, because at that point the logic was not implemented. But now
we will add the required code to validate the data coming from the client, access the
database, store the status of the user, if the data is valid, and finally return the number of
rows affected in the operation.

We need to add a new property to the controller to hold a copy of the new table
gateway. This property will be used in the getUserStatusesTable() method to store
the object and avoid creating more than one instance as shown in the following code:

protected $userStatusesTable;

The first change we need to make in this controller is adding the status of a user when
the client requests the data of the profile. The previous version of the get() method
was as follows:

public function get($username)
{
 $usersTable = $this->getUsersTable();
 $userData = $usersTable->getByUsername($username);
 $wallData = $userData->getArrayCopy();

 if ($userData !== false) {
 return new JsonModel($wallData);
 } else {
 throw new \Exception('User not found', 404);
 }
}

Now, this method will be seen as follows:

public function get($username)
{
 $usersTable = $this->getUsersTable();
 $userStatusesTable = $this->getUserStatusesTable();

 $userData = $usersTable->getByUsername($username);
 $userStatuses = $userStatusesTable->getByUserId(
 $userData->id
)->toArray();

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $wallData = $userData->getArrayCopy();
 $wallData['feed'] = $userStatuses;

 usort($wallData['feed'], function($a, $b){
 $timestampA = strtotime($a['created_at']);
 $timestampB = strtotime($b['created_at']);

 if ($timestampA == $timestampB) {
 return 0;
 }

 return ($timestampA > $timestampB) ? -1 : 1;
 });

 if ($userData !== false) {
 return new JsonModel($wallData);
 } else {
 throw new \Exception('User not found', 404);
 }
}

Let's take a closer look at the differences. We are retrieving the new table gateway to be
able to access the status of a user. After retrieving the user data, we retrieve the status
of the user from the database by calling the method, getByUserId(), and passing the ID
of the user we just got from the database. Then, we create an array to hold the data of
the user itself and the statuses.

Earlier, we were returning just a copy of the data of the user as an array. Now we have
to compose our own array and merge the data and the statuses of the user on the same
array. Finally, instead of returning just the data of the user, we return the array we
created with both the user data and the statuses.

Now that we updated the get() method, we will be able to see the statuses of the client,
or at least the client will be able to receive this data while requesting the data of a user.
Now let's write the code for the create() method that will allow users to post new
statuses on their wall, as shown in the following code:

public function create($data)
{
 $userStatusesTable = $this->getUserStatusesTable();

 $filters = $userStatusesTable->getInputFilter();
 $filters->setData($data);

 if ($filters->isValid()) {

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $data = $filters->getValues();

 $result = new JsonModel(array(
 'result' => $userStatusesTable->create(
 $data['user_id'], $data['status']
)
));
 } else {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => $filters->getMessages()
));
 }

 return $result;
}

The first thing we do is retrieve the table gateway we are going to use. After that we get
the filters we need to validate the data sent by the client. The InputFilter component
has a method called setData(), and this is used to provide the filters and validations
with the data we want to validate. We just need to call the method passing the $data
array, which we get as a parameter for the create() method. This variable will be
populated automatically by AbstractRestfulController with the $_POST data. To
execute the validation itself, we call the method, isValid(), from the InputFilter
component that will apply to all the filters and validators on the data we passed and
will determine if the data is valid or not.

Right after that, we need to decide what to do in case the data is valid or not. In the first
case, we will insert the data to the database using the method, create(), from
UserStatusesTable, and return the affected rows in JsonModel. In case the data is
invalid, we will compose a new array specifying the errors encountered by the
InputFilter component. The error messages are going to be passed to the client in
another JsonModel.

The last bit we should add to this controller is the getUserStatusesTable() method
that will be stored in $userStatusesTable, an instance of this table gateway, as
shown in the following code:

protected function getUserStatusesTable()
{
 if (!$this->userStatusesTable) {
 $sm = $this->getServiceLocator();
 $this->userStatusesTable = $sm->get(
 'Users\Model\UserStatusesTable'

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

);
 }
 return $this->userStatusesTable;
}

As there is no change, the method is exactly the same as getUsersTable(). The only
difference is the name of the component we extract from ServiceManager.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying module.config.php
We need to update the module.config.php file of the Users module, in order to make
the UserStatusesTable class available in the dependency injector. We just need to
add the following line:

'Users\Model\UserStatusesTable' => 'Users\Model\UserStatusesTable'

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
Now that we have the data coming from the API, we can modify the frontend to show the
statuses of the user on the wall, and also create a form to allow the users to post new
content. In this section, we will see how to include the statuses on the wall, but the
important part is focused on how to create forms in ZF2, and how to attach filters and
validations to forms.

Before going further, let's see the folder structure in the following screenshot with all
the new files and folders we will add in this section of the chapter:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating Status.php
Let's start by writing the code that will show the statuses on the wall. The first thing to
do is create an entity for the status. Create a new file in the Entity folder inside the src
folder of the Wall module and put the following code inside:

namespace Wall\Entity;

use Zend\InputFilter\InputFilter;
use Zend\InputFilter\Factory as InputFactory;

class Status
{
 protected $id = null;
 protected $userId = null;
 protected $status = null;
 protected $createdAt = null;
 protected $updatedAt = null;

 public function setId($id)
 {
 $this->id = (int)$id;
 }

 public function setUserId($userId)
 {
 $this->userId = (int)$userId;
 }

 public function setStatus($status)
 {
 $this->status = $status;
 }

 public function setCreatedAt($createdAt)
 {
 $this->createdAt = new \DateTime($createdAt);
 }

 public function setUpdatedAt($updatedAt)
 {
 $this->updatedAt = new \DateTime($updatedAt);
 }

 public function getId()
 {
 return $this->id;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 }

 public function getUserId()
 {
 return $this->userId;
 }

 public function getStatus()
 {
 return $this->status;
 }

 public function getCreatedAt()
 {
 return $this->createdAt;
 }
 public function getUpdatedAt()
 {
 return $this->updatedAt;
 }

 public static function getInputFilter()
 {
 $inputFilter = new InputFilter();
 $factory = new InputFactory();

 $inputFilter->add($factory->createInput(array(
 'name' => 'status',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => 1,
 'max' => 65535,
),
),
),
)));

 return $inputFilter;
 }
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

This is the full code for the class, as you can see everything comes down to a bunch of
setters/getters for each property in the class. After that, we have the getInputFilter()
method that returns a configured chain of filters and validators that will be used with the
form we'll create later. Two small details while populating the createdAt and
updatedAt properties. We are converting the data that comes from the API to DateTime
PHP objects. This will allow us to use the dates in a better way instead of having plain
strings. The other detail is that we are casting the numbers to integers in the id and
userId properties.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying User.php
The next step is to modify the User entity to be able to hold the related statuses.

As we want to store the Status object and also populate them from here, we need to
declare the namespace of the object and also the Hydrator component we want to use,
as shown in the following code:

use Zend\Stdlib\Hydrator\ClassMethods;
use Wall\Entity\Status;

We are going to add a new property called $feed that will contain an array of entries.
For now they will be the Statuses object as follows:

protected $feed = array();

After this we know that while hydrating this object, the ClassMethod hydrator will try
to call a method called setFeed() to store the array of entries on the wall. Let's create
that method and process the data as follows:

public function setFeed($feed)
{
 $hydrator = new ClassMethods();

 foreach ($feed as $entry) {
 if (array_key_exists('status', $entry)) {
 $this->feed[] = $hydrator->hydrate(
 $entry, new Status()
);
 }
 }
}

In this section of code, we are creating a new ClassMethod hydrator to populate the
Status object based on the data we get from the API. After the object is populated, we
just store it on the array we created before as a property.

The last modification on this class is a getter that will allow us to retrieve the array of
statuses from the User object as shown in the following code:

public function getFeed()
{
 return $this->feed;
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

View
It's really hard to add the code of the view in here, because the code is usually verbose
with all the HTML tags, classes, and so on. But we will now see a simplified version of
the section that prints the statuses of a user. If you want to see the full code of the view,
please refer to the code provided for this chapter.

<?php foreach ($profileData->getFeed() as $entry) : ?>
 <p><?php echo $status->getStatus() ?></p>
<?php endforeach; ?>

As you can see, we are iterating over the result of the getFeed() method, and for each
element we are echoing the result of calling the getStatus() method. This will print a
list of status text for the current user.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

TextStatusForm.php
Now that we are able to see the statuses of a user, let's jump to the creation of the status.
First of all we need the form to retrieve the data from the user. Forms have been
completely refurbished on ZF2; they provide the best from ZF1, and also a lot of
functionality and options that are completely new. As we progress in the book, we will
see more complicated examples; but for now let's start with a simple and easy form to
get the concept in place.

Following is the content of the file, TextStatusForm.php:

namespace Wall\Forms;

use Zend\Form\Element;
use Zend\Form\Form;

class TextStatusForm extends Form
{
 public function __construct($name = null)
 {
 parent::__construct('text-content');

 $this->setAttribute('method', 'post');
 $this->setAttribute('class', 'well input-append');

 $this->add(array(
 'name' => 'status',
 'type' => 'Zend\Form\Element\Textarea',
 'attributes' => array(
 'class' => 'span11',
 'placeholder' => 'How are you?'
),
));
 $this->add(new Element\Csrf('csrf'));
 $this->add(array(
 'name' => 'submit',
 'attributes' => array(
 'type' => 'submit',
 'value' => 'Submit',
 'class' => 'btn'
),
));
 }
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

As we know from other classes, the first thing is always the current namespace and the
namespaces we want to use. When you create a form, usually we have to extend the base
form class called Form. After that everything can be accomplished in a constructor.

The first thing is to initialize the parent class. For that we call the __construct method
from the parent class passing the name of the form as the first parameter.

Right after that we start setting attributes of the form. In order to print the HTML that
creates the form in the browser of the user, we will use view helpers. If we want to
customize the attributes that are printed with the form, we should use the method,
setAttribute(). In the second block of code, we set the method and the css class for
the form.

Then, we arrive to the configuration of the form itself. We are going to add three fields:
a text area element for the status, a submit button, and a hidden field to protect us from
Cross Site Request Forgery (CSRF). ZF2 provides a way to protect us automatically
from CSRF. We only need to add an element called Csrf to our form, and the
framework will do the job of generating the token and validating it for us.

Note

CSRF is a type of malicious exploit of a website whereby unauthorized commands are
transmitted from a user that the website trusts.

When we add elements to our form, usually we only have to pass an array with the
element configuration. This array contains the name of the element, the type of the
element that can be just a simple string that ZF2 will understand or the fully qualified
class name of the element and some attributes that will be used while printing the
HTML of the object.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

text-content-form.html
We have a form, but we need to show it to the world. In order to show it, we usually use
the view helpers that allow us to print the HTML for each field. To keep the code
organized, we create a new partial and store the view code inside. Then, when we want
to show the form on the view, we just need to include the partial and pass the form as a
parameter itself.

Let's review the following code of the partial:

<?php $form = $this->form; ?>
<?php $form->prepare(); ?>
<?php echo $this->form()->openTag($form) ?>
<!-- Status input text -->
<?php echo $this->formElement($form->get('status')); ?>
<?php echo $this->formElementErrors($form->get('status')); ?>

<!-- Submit button -->
<?php echo $this->formElement($form->get('submit')); ?>

<!-- CSRF -->
<?php echo $this->formElement($form->get('csrf')); ?>
<?php echo $this->formElementErrors($form->get('csrf')); ?>

<?php echo $this->form()->closeTag() ?>

The first thing we do is call the method, prepare(), of the form. This will help us to do
some wiring internally to prepare everything for the view helpers.

After that we start using some view helpers, such as form() or formElement(), to
print the form tag or the input tag for the element we are passing as parameters. We
also use a view helper called formElementErrors() that takes an element of the form
as a parameter, takes care of checking if the validation has failed for that specific
element, and prints out a list of error messages.

To add the form to the main view, we call the partial helper as shown in the following
code:

<?php echo $this->partial(
 'forms/text-content-form.phtml',
 array('form' => $textContentForm));
?>

Note

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The partial helper allows us to include the contents of a separate view script on a
specific point of another view. You can also pass variables and data to the view that is
being included.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying IndexController.php
As we handle the creation via a form, you already know forms have an action. In our
case we need to point the form somewhere, receive the data, validate it, and show the
wall again with the error messages in case of an error.

Now, as usual we should define new classes we want to use on this class. We need to
add the form and the Status entity as follows:

use Wall\Forms\TextStatusForm;
use Wall\Entity\Status;

After that, we add the code that wires the form and does all the checks when it's
submitted as shown in the following code:

 //Check if we are submitting content
 $request = $this->getRequest();
 $statusForm = new TextStatusForm;

 if ($request->isPost()) {
 $data = $request->getPost()->toArray();

 if (array_key_exists('status', $data)) {
 $result = $this->createStatus($statusForm, $user, $data);
 }

 switch (true) {
 case $result instanceOf TextStatusForm:
 $statusForm = $result;
 break;
 default:
 if ($result == true) {
 $flashMessenger->addMessage(
 'New content posted!'
);
 return $this->redirect()->toRoute(
 'wall',
 array('username' => $user->getUsername())
);
 } else {
 return $this->getResponse()->setStatusCode(500);
 }
 break;
 }
 }

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The preceding code is responsible for checking the form, validating it, and calling the
API to store the status. Let's analyze it section by section.

The first bit of code gets the Request object, creates a new instance of
TextStatusForm, and checks if we are posting any data.

In case of a POST, we check the contents of the request to determine if we are creating a
status entry. In that case, we pass the form, the user, and the data to the
createStatus() method in order to create the status.

After calling the method, we check the returned value to see if the data was stored
correctly or a form containing errors has been returned.

In case of success, we add a new message to the flash messenger and redirect back to
the wall to show the new content.

In case of an error, we force a 500 status code. This is ugly and should be improved and
handled properly in a production ready project.

The last thing we should modify in this action is the data we pass to the view and the
configuration of the action of the form. This is really easy. Refer to the following code:

$form->setAttribute(
 'action',
 $this->url()->fromRoute(
 'wall',
 array('username' => $user->getUsername())
)
);
$viewData['profileData'] = $user;
$viewData['textContentForm'] = $form;

if ($flashMessenger->hasMessages()) {
 $viewData['flashMessages'] = $flashMessenger->getMessages();
 }

return $viewData;

Here we use the setAttribute() method of the form to set the action we want for the
form. After that we just add the form to the array we will return to the view.

After these changes on the indexAction() method, we need to create two more
methods, createStatus() and processSimpleForm() as shown in the following

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

code:

protected function createStatus($form, $user, array $data)
{
 $form->setInputFilter(Status::getInputFilter());
 return $this->processSimpleForm($form, $user, $data);
}

As you can see the createStatus() method is really simple and just configures the
InputFilter component based on the configuration we have on the Status entity and
then calls the processSimpleForm() method passing the form, the user, and the data
again as follows:

protected function processSimpleForm($form, $user, array $data)
{
 $form->setData($data);

 if ($form->isValid()) {
 $data = $form->getData();
 $data['user_id'] = $user->getId();
 unset($data['submit']);
 unset($data['csrf']);

 $response = ApiClient::postWallContent(
 $user->getUsername(), $data
);
 return $response['result'];
 }

 return $form;
}

The main responsibility of the processSimpleForm() method is to handle the creation
of wall entries coming from forms, where we don't need to do a special treatment to the
information. Basically, after validating the contents of the request against the filters and
the validations are configured, we process the data to add and remove information we
need or do not need. After that we call the method, postWallContent(), on
ApiClient to send the data to the API.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Extending ApiClient.php
The last step is to get everything working. We need to add another method to
ApiClient to be able to send data to the API as shown in the following code:

public static function postWallContent($username, $data)
{
 $url = self::$endpointHost . sprintf(
 self::$endpointWall, $username
);
 return self::doRequest($url, $data, Request::METHOD_POST);
}

This method gets the data we want to send to the API, builds a URL with the
corresponding parameters, and calls the method, doRequest(), passing the URL, the
data and specifying POST as the HTTP method to use.

We already said that for now you have to trust me on how the doRequest() method
works and to ignore the contents of it, but if you want you can start having a look at it.

The following screenshot shows how our wall looks like with our brand new form:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
Phew, those were huge changes to the code we had! Now, users are able to send their
statuses and they can see them on their walls.

In this chapter we covered how to use the filters and validators in standalone format and
also attached them to a form. We also saw how to create simple forms, how to configure
them, add elements to them, how to print them using view helpers, and how to handle
them when they are submitted back from the browser. Finally, we extended the entities
we had before to add the new content we get from the API requests.

In the next chapter it will be possible to publish images on the wall. Of course it will be
built on top of what we have already seen here.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 6. Working with Images –
Publishing Pictures
In this chapter, we are going to add functionalities to the user wall, which will allow the
users to add images. We will cover the API and frontend code as usual, and we will
discover how to handle file uploads, how to validate files, and how to handle them.

By the end of this chapter, you will know:

How to create forms that accept files
How to add validation to those files
How to handle the upload itself and the manipulation of an image

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
Let's review the changes we should do on the API level to support file uploads. We will
need a new table on the database to store the relations between the images uploaded and
the users. As we are creating a new table on the database, we will also need a table
gateway object to access the data. Finally, we are going to modify the create() method
to handle the code for the status text and add the code for the image upload.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
The requirements for the API are the same in terms of HTTP methods. The only thing we
are going to change is the way we process the data in the create() method. Essentially,
when a request arrives to the create() method, we should try to detect if we are
fulfilling a request to create a new status entry or are trying to post a new image.

The create() method will inspect the contents of the $data parameter, searching for
an entry on the array. If we find the key status in the array, we will call it the
createStatus() method, which contains the code we made in Chapter 5, Handling
Text Content – Posting Text. If we find the key image, we will call the createImage()
method that will handle the request.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Working with the database
Let's have a look at the new table we have to create. Essentially, it is the same as the
one we created for the status; the only difference is that we are going to store the
filename of the image instead of the status.

This table is called users_images and will hold the following data:

Id
User_id
Filename
Created at
Updated at

As usual, the table will also contain two columns to keep a track of the creation and
update timestamps of each row.

By now, you should be pretty confident about how to connect to the database hosted on
the VM, so we can just jump to see how the syntax to create the table looks , as shown
in the following code:

CREATE TABLE `user_images` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `user_id` int(11) unsigned DEFAULT NULL,
 `filename` varchar(44) DEFAULT '',
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_user_id` (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Changes on the module structure
Now let's have a look at how the folder and file structure will like on the API side of
the project. Notice that we added a new folder inside the public folder called images.
This is where the uploaded images are going to be stored.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the UserImagesTable.php file
We are not going to spend too much time on this file because it is a copy of
UserStatusesTable.php and we are only changing a few lines. We will essentially
copy the file and review the changes we should make.

class UserImagesTable extends AbstractTableGateway implements
AdapterAwareInterface

Of course, the first thing we should do is change the name of the class; in this case the
class will be called UserImagesTable.

The second thing we should change is the name of the table we are going to query; the
line will be as follows:

protected $table = 'user_images';

We will change one line in the create() method, but let's see the full method to have a
clear understanding about where the change should be made:

public function create($userId, $filename)
{
 return $this->insert(array(
 'user_id' => $userId,
 'filename' => $filename,
 'created_at' => new Expression('NOW()'),
 'updated_at' => null
));
}

The last method, getInputFilter(),will remain more or less the same; the only thing
we need to do is to remove the block of code that configures the validators and filters
for the status field. This will leave the method with just the configuration for the
user_id field.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Extending the IndexController.php file
Now that we have the table and the class to access data, let's see the changes we should
make in the controller and the improvements we should do in the meantime.

When a user uploads an image, it should appear on the wall as a new entry, which
means that we should return this data when the client requests the wall.

Earlier, it was easy as we just had the status updates; but now, we should somehow
merge the status updates and the images, and order the entries by the creation date from
the most recent to the ones in the past. Basically, that's the approach we are going to
follow: first retrieve the data, then merge it, and finally order it by a common column; in
this case, created_at.

public function get($username)
{
 $usersTable = $this->getUsersTable();
 $userStatusesTable = $this->getUserStatusesTable();
 $userImagesTable = $this->getUserImagesTable();

 $userData = $usersTable->getByUsername($username);
 $userStatuses = $userStatusesTable->getByUserId(
 $userData->id
)->toArray();
 $userImages = $userImagesTable->getByUserId($userData->id)
 ->toArray();

 $wallData = $userData->getArrayCopy();
 $wallData['feed'] = array_merge($userStatuses, $userImages);

 usort($wallData['feed'], function($a, $b){
 $timestampA = strtotime($a['created_at']);
 $timestampB = strtotime($b['created_at']);
 if ($timestampA == $timestampB) {
 return 0;
 }

 return ($timestampA > $timestampB) ? -1 : 1;
 });

 if ($userData !== false) {
 return new JsonModel($wallData);
 } else {
 throw new \Exception('User not found', 404);
 }

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

}

Ok, that's the whole method; let's review a couple of lines of this method .In the first
block, we get instances of the tables. Then in the second block, we get the data based on
user_id.

Next, we arrive at the merge phase; basically, we ask for an array version of the results
we just got from the db and merge them under the key feed of the array.

After that, we find the order section. We basically use the PHP method, usort(), to
sort an array based on an anonymous function we created. Inside the function, we just
check if the created_at value of one item is equal, more, or lesser than the
created_at value of the other.

Now, let's jump to the create() method and see how we are going to change it to
accommodate the new code. The first thing we should do is try to detect the type of
request and then based on that, forward the flow to a more specific method that will take
care of the request.

public function create($data)
{
 if (array_key_exists('status', $data) &&
 !empty($data['status'])) {
 $result = $this->createStatus($data);
 }

 if (array_key_exists('image', $data) &&
 !empty($data['image'])) {
 $result = $this->createImage($data);
 }

 return $result;
}

As you can see in this snippet of code, we just check if a certain key exists inside the
data. The first block tries to determine if the request is for the creation of a status and to
accomplish that, we check if the status key exists on the $data array.

The second block is related to the image a user might send. The code keeps checking for
a key called image and will forward everything to the createImage() method if the
conditions are satisfied.

Let's us now review the new method, createImage(); the method is a little bit long and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

is doing quite a lot of stuff, so we are going to see it in sections:

$userImagesTable = $this->getUserImagesTable();

The first line of the following code snippet just gets the table gateway for the images
using the getUserImagesTable() method, which we will see later.

$filters = $userImagesTable->getInputFilter();
$filters->setData($data);

In the next block, we focus on the validation of the data. This step is the same as the one
we use on the createStatus() method, the only difference is in where we get the input
filter from.

if ($filters->isValid()) {
 $filename = sprintf(
 'public/images/%s.png',
 sha1(uniqid(time(), true))
);
 $content = base64_decode($data['image']);
 $image = imagecreatefromstring($content);

 if (imagepng($image, $filename) === true) {
 $result = new JsonModel(array(
 'result' => $userImagesTable->create(
 $data['user_id'],
 basename($filename)
)
));
 } else {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => 'Error while storing the image'
));
 }
 imagedestroy($image);
} else {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => $filters->getMessages()
));
}

This is the next block of code we will encounter in this method. First of all, we have a
condition based on the validation of the data. In case it's wrong, we just return an error
message to the frontend.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

When the data is validated, we jump to handle the image. The image itself is sent by the
browser along with the request encoded in base64. The job on the API side is to store
that image in a file. To accomplish that, we first create a name for the file as we want to
avoid collisions on the filenames, and then generate a random one as follows:

$filename = sprintf(
 'public/images/%s.png',
 sha1(uniqid(time(), true))
);

As you can see here, we generate a unique ID prepending the current time and activating
the entropy flag of the uniqid() method. Then we just encode the result using the sha1
algorithm.

We do two things just after that. Firstly, we decode the image from base64 to the raw
data and store it in a variable. Secondly, we load the raw data to an image with the help
of imagecreatefromstring(), which takes a variable with the image data as a
parameter.

The last thing we do here is store the image converted to PNG; we accomplish that
using the imagepng() method and the filename we generated before. If the operation
succeeds, we store the filename in the database linked to the user_id attribute and then
return the rows affected to the client. If not, we just return an error.

The following is the full code for this method:

protected function createImage($data)
{
 $userImagesTable = $this->getUserImagesTable();

 $filters = $userImagesTable->getInputFilter();
 $filters->setData($data);
 $filters->isValid();
 if ($filters->isValid()) {
 $filename = sprintf(
 'public/images/%s.png',
 sha1(uniqid(time(), true))
);
 $content = base64_decode($data['image']);
 $image = imagecreatefromstring($content);

 if (imagepng($image, $filename) === true) {
 $result = new JsonModel(array(
 'result' => $userImagesTable->create(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $data['user_id'],
 basename($filename)
)
));
 } else {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => 'Error while storing the image'
));
 }
 imagedestroy($image);
 } else {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => $filters->getMessages()
));
 }

 return $result;
}

Finally, we have arrived on the last change we need to do on the controller. We are
going to create a method that will create an instance of the table gateway for the new
table we are using. The code doesn't need any explanation as it is almost the same as the
one we saw before:

protected function getUserImagesTable()
{
 if (!$this->userImagesTable) {
 $sm = $this->getServiceLocator();
 $this->userImagesTable = $sm->get(
 'Users\Model\UserImagesTable'
);
 }
 return $this->userImagesTable;
}

As you also know, this method uses a property called userImagesTable that should be
added to the class. The code is pretty simple and similar to the one used in the previous
chapters:

protected $userImagesTable;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Changing the module.config.php file
As we did in the previous chapter, we only have to tell Dependency Injector about the
new table gateway we have. To do that, we just need to add the following line in the
module.config.php file of the Users module:

'Users\Model\UserImagesTable' => 'Users\Model\UserImagesTable'

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
Ok, now we have the API ready to start accepting images. We will need to add a new
form on the client to accept the files from the user, validate the image, and upload it to
the API.

The following screenshot shows how the folder structure has changed:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the Image.php file
When we get the info from the API, we store it using entities and, of course, we need a
new one for the images. In this case, we will do it a bit differently. We saw that we can
store the input filter configuration in the entity; however, for now we will store it
directly on the form instead of the entity. This class is more or less the same as the
Status entity; we only have a couple of differences as follows:

public $domain = 'http://zf2-api/images/';

This property will be used in a method that generates the URL of the image. Notice that
we are passing the image to the API and storing it on that side of the application, which
means that the image should be accessible via a URL to be able to see it. That's why we
store the images in a folder inside the public folder. If you were doing this in a proper
project, you would usually serve the image from a content distribution network
(CDN) or another cookieless domain, but for the purpose of this project we will keep it
there as follows:

public function getUrl()
{
 return $this->domain . $this->getFilename();
}

This is the method that generates a URL for the current image. Basically, it creates a
new string, gluing together the domain stored as a property in the class and the filename
of the image.

The definition of CDN by Wikipedia is as follows:

A content delivery network or content distribution network (CDN) is a large
distributed system of servers deployed in multiple data centers across the
Internet. The goal of a CDN is to serve content to end users with high
availability and high performance.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the ImageForm.php file
Now we should create the form that the users will use to upload the images to the API.
It's really simple as we only have one field. The difference from the other forms is that
in this case, we are going to store the configuration of the input filters. In order to
autoconfigure the form with config, we will implement a new interface called
InputFilterProviderInterface, which will force us to implement a method called
getInputFilterSpecification(), which in turn will return the filter configurations
when called.

In order to implement the interface, we have to declare that we will use it first. This
will be done by adding the following lines:

use Zend\InputFilter\InputFilterProviderInterface;

class ImageForm extends Form implements
 InputFilterProviderInterface

You will see that when we declare the class, we also say that we will implement the
InputFilterProviderInterface interface.

Before we add the fields on the constructor, we will change them in this form just to
show that we have alternative ways to do the same things, as follows:

public function __construct($name = null)
{
 parent::__construct('image-content');

 $this->setAttribute('method', 'post');
 $this->setAttribute('class', 'well input-append');

 $this->prepareElements();
}

This is the new constructor. You can see we call the parent constructor like we do on
forms and then we set the attributes of the form, in this case, the method and class.
Finally, we call a method called prepareElements(), which will add the elements to
the form as shown in the following code:

public function prepareElements()
{
 $this->add(array(
 'name' => 'image',

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'type' => 'Zend\Form\Element\File',
 'attributes' => array(
 'class' => 'span11',
),
));
 $this->add(new Element\Csrf('csrf'));
 $this->add(array(
 'name' => 'submit',
 'attributes' => array(
 'type' => 'submit',
 'value' => 'Submit',
 'class' => 'btn'
),
));
}

This is the method we were talking about, with which we take care of the creation of the
elements of the form. In our case, we create a new element specifying
Zend\Form\Element\File as type, which will create an input of the type of file in the
view. The other couple of elements should be familiar to you, as we already used them
on other forms.

public function getInputFilterSpecification()
{
 return array(
 'image' => array(
 'required' => true,
)
);
}

This is the last method we will implement on the form and if you check, it is also the
method we should create to implement the interface. As we have already mentioned, this
method should return the input filter configuration array, so basically that's what we are
doing here. If you check the validators, we just mark the field as required because we
validate the contents of the uploaded file manually.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Showing the form in the image-content-
form.phtml file
This is the view associated with the form we just created. As you will see, it is almost
the same as the ones we created before; we just change the helper that we will use to
render the file field, which means that instead of formElement(), we use formFile(),
as shown in the following code:

<?php $form = $this->form; ?>
<?php $form->prepare(); ?>
<?php echo $this->form()->openTag($form) ?>
<!-- Status input text -->
<?php echo $this->formFile($form->get('image')); ?>
<?php echo $this->formElementErrors($form->get('image')); ?>

<!-- Submit button -->
<?php echo $this->formElement($form->get('submit')); ?>

<!-- CSRF -->
<?php echo $this->formElement($form->get('csrf')); ?>
<?php echo $this->formElementErrors($form->get('csrf')); ?>

<?php echo $this->form()->closeTag() ?>

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Extending the User.php file
We already have the code required to fulfill the feed data in the User entity, but we
need to extend it now in order to process the images posted on the wall.

public function setFeed($feed)
{
 $hydrator = new ClassMethods();

 foreach ($feed as $entry) {
 if (array_key_exists('status', $entry)) {
 $this->feed[] = $hydrator->hydrate(
 $entry, new Status()
);
 } else if (array_key_exists('filename', $entry)) {
 $this->feed[] = $hydrator->hydrate(
 $entry, new Image()
);
 }
 }
}

As you can see in the highlighted code, we added a new else if block to check if we
are processing an image. We identify the image because the entry will contain a key
called filename.

Now that the user is able to upload pictures, we can correctly process the user avatar as
follows:

public function setAvatar($avatar)
{
 if (empty($avatar)) {
 $defaultImage = new Image();
 $defaultImage->setFilename('default.png');
 $this->avatar = $defaultImage;
 } else {
 $hydrator = new ClassMethods();
 $this->avatar = $hydrator->hydrate($avatar, new Image());
 }
}

This is the new content of the method; it entirely replaces what we had before. We are
checking to see if the user has an avatar assigned in the database. If no avatar is
assigned, we will show a default image. In order to do that, we create an Image object
and manually set the filename of the avatar we want to show as default.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In case the user has an avatar assigned in the database, we just load the information
using Hydrator into an Image entity.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the index.phtml file
Now that we know how we are going to store the data sent by the API, let's see the
modifications we need to do on the view to show the new content. As is usual with
views, when the HTML is mixed with the PHP code, the modifications will be verbose
and large in number.

<?php if ($entry instanceOf \Wall\Entity\Status) : ?>
 <p><?php echo $entry->getStatus() ?></p>
<?php elseif ($entry instanceOf \Wall\Entity\Image) : ?>
 <p>
 <img src="<?php echo $entry->getUrl() ?>" />
 </p>
<?php endif; ?>

This is the main change; the other change is that instead of iterating through statuses, we
iterate through the feed. As you can see, we basically check the type of the object and
depending on the type, we show one type of content or the other.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the IndexController.php file
Let's jump to the changes we should do on the controller to be able to receive the file
uploaded by the user, validate it, and send it to the API. Also,to be able to provide a
feedback to the end user about the content posted.

Earlier, in the indexAction() method, we were detecting the submission of content by
inspecting the request and creating the new status by calling the API. Let's change that to
detect the type of content the user wants to create and redirect the flow of the app to the
method that will take care of it.

if ($request->isPost()) {
 $data = $request->getPost()->toArray();

 if (array_key_exists('status', $data)) {
 $result = $this->createStatus($statusForm, $user, $data);
 }

 if (!empty($request->getFiles()->image)) {
 $data = array_merge_recursive(
 $data,
 $request->getFiles()->toArray()
);
 $result = $this->createImage($imageForm, $user, $data);
 }
 switch (true) {
 case $result instanceOf TextStatusForm:
 $statusForm = $result;
 break;
 case $result instanceOf ImageForm:
 $imageForm = $result;
 break;
 default:
 if ($result == true) {
 $flashMessenger->addMessage(
 'New content posted!'
);
 return $this->redirect()->toRoute(
 'wall',
 array('username' => $user->getUsername())
);
 } else {
 return $this->getResponse()->setStatusCode(500);
 }
 break;
 }

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

}

We saw how we should deal with the creation of statuses in Chapter 5, Handling Text
Content – Posting Text. The same concept applies to the image request, but instead of
checking the contents of the array, we check if we have received any file within the
request; in that case, we assume that the user has uploaded an image and jump to
process it by calling the createImage() method. The way we handle the response of
the method is exactly the same as the one we saw for the status content.

Let's review the createImage() method, which is a little complicated, as shown in the
following code:

if ($data['image']['error'] != 0) {
 $data['image'] = null;
}

$form->setData($data);

These three lines basically check if there is an error while uploading the file. If we find
an error, we set the value to null to force the form validation to fail as shown in the
following code:

$size = new Size(array('max' => 2048000));
$isImage = new IsImage();
$filename = $data['image']['name'];

In the next block, we create an instance of two validators called Size() and IsImage()
that basically check the size of a file and whether the file is an image or not. Of course,
to be able to use these two new validators, we should tell PHP that we want to use them
at the beginning of the class with the following lines:

use Zend\Validator\File\Size;
use Zend\Validator\File\IsImage;

After that, we need to use a class called Zend\File\Transfer\Adapter\Http, which
will take care of receiving the file and validating it, using the validators we configured
as follows:

$adapter = new \Zend\File\Transfer\Adapter\Http();
$adapter->setValidators(array($size, $isImage), $filename);

As you can see, we create an instance of the class and then we set the validators we
configured before. As a second parameter, we are passing the name of the file we

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

extracted on the previous block as shown in the following code:

if (!$adapter->isValid($filename)){
 $errors = array();
 foreach($adapter->getMessages() as $key => $row) {
 $errors[] = $row;
 }
 $form->setMessages(array('image' => $errors));
}

Next thing we do is validate the file itself calling the isValid() method on the adapter
object. If we find errors, we will iterate over them to add them on the form as an error
message.

Now we have arrived on the big chunk of code in this method. The one that actually
receives the file, renames it to avoid filename collisions, and uploads it to the API. The
reason why we rename the pictures while they are being uploaded is to avoid two users
uploading images with the same filename and overwriting one with the other. Renaming
the file when we receive it saves us from this problem. Notice that the following blocks
of code are executed if the validation of the form is correct:

$destPath = 'data/tmp/';
$adapter->setDestination($destPath);

This is the first block in which we just define the path where we want to upload the file
and set config on the adapter. This is just a temporary folder because once the file is
uploaded to the API, we will remove it from the folder.

$fileinfo = $adapter->getFileInfo();
preg_match('/.+\/(.+)/', $fileinfo['image']['type'], $matches);
$extension = $matches[1];
$newFilename = sprintf(
 '%s.%s',
 sha1(uniqid(time(), true)),
 $extension
);

In the second block of code, we get information related to the image from the adapter,
and then we do a regular expression to get the extension of the file. After that, we
generate a new filename and if you take a look, we are doing it the same way as in the
API. However, in this case, we are reusing the original extension of the file as follows:

$adapter->addFilter('File\Rename',
 array(
 'target' => $destPath . $newFilename,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'overwrite' => true,
)
);

Now in the third block of code, we add a filter to the file adapter in order to rename the
file when we receive it. We set the target of the file passing the path and the filename,
and then we force it to overwrite. In theory, we will never have to overwrite because
the filenames are supposed to be unique. This is illustrated in the following code:

if ($adapter->receive($filename)) {
 $data = array();
 $data['image'] = base64_encode(
 file_get_contents(
 $destPath . $newFilename
)
);
 $data['user_id'] = $user->getId();

 unlink($destPath . $newFilename);

 $response = ApiClient::postWallContent(
 $user->getUsername(), $data
);
 return $response->isSuccess();
}

This is the last block of code in this method. Here, we are asking the file adapter to
receive the file and move it from the temp folder that PHP uses to the one we specified
that will execute the filters we attached.

After that, we build an array that will be the container for the data. We read the contents
of the file and then we encode it using base64 to store it as a string on the $data array;
we also add the user ID on the params.

Then, we use ApiClient to send the data to our API. After making the request, we just
remove the file from the tmp folder and return the response of the API.

Now that we have seen how to handle the file upload on the client, let's take a look at
how to provide feedback to the user using flash messages.

ZF2 provides a controller plugin called flashMessenger, which takes care of storing
the messages on the user session and removing them after certain hops or in the next
request. The first thing we will do is get a copy of the plugin and store it on a variable
inside the indexAction() method:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

$flashMessenger = $this->flashMessenger();

Then, the only thing we should do is add a success message in each case: one for the
creation of the status and another for the creation of the image. Let's see both the
sections of code with the new line added:

if ($result === true) {
 $flashMessenger->addMessage('New status posted!');
 return $this->redirect()->toRoute(
 'wall',
 array('username' => $user->getUsername())
);
} else {
 return $this->getResponse()->setStatusCode(500);
}

This one is the block related to the creation of a new status; let's review the following
block of code related to the picture:

if ($result instanceOf ImageForm) {
 $imageForm = $result;
} else {
 if ($result === true) {
 $this->flashMessenger()->addSuccessMessage(
 'Your image has been posted!'
);

 return $this->redirect()->toRoute(
 'wall',
 array('username' => $user->getUsername())
);
 } else {
 return $this->getResponse()->setStatusCode(500);
 }
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the layout.phtml file
We should modify the layout of the app to show the messages in a proper place on the
website. The only thing we should do is call the FlashMessenger view helper to
configure it and render the messages.

<div class="container wrapper">
 <?php $flash = $this->flashMessenger()->setMessageOpenFormat(
 '<div%s><button type="button" class="close"
 data-dismiss="alert" aria-hidden="true">×</button>'
)->setMessageSeparatorString('
')
 ->setMessageCloseString('</div>'); ?>
 <?php echo $flash->render('error',
 array('alert', 'alert-dismissable', 'alert-danger'));
 ?>
 <?php echo $flash->render('info',
 array('alert', 'alert-dismissable', 'alert-info'));
 ?>
 <?php echo $flash->render('default',
 array('alert', 'alert-dismissable', 'alert-warning'));
 ?>
 <?php echo $flash->render('success',
 array('alert', 'alert-dismissable', 'alert-success'));
 ?>
 <?php echo $this->content; ?>
</div>

This is the code. As you can see, the first PHP block configures the view helper with the
HTML we want to use to display the messages. After that, we tell the view helper to
print the messages on each category.

The following screenshot shows how everything looks when completed:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
Wow! This chapter was vast, but we gave the users a new functionality to use on our
social network. As people say, a picture is worth a thousand words—now they can
upload pictures!

In this chapter, we covered how to detect a request type based on the contents of the
request. We also refactored the way we were inserting the data in the database and the
way we were retrieving it. We saw how to handle file uploads from the client and the
API, and how to deal with filename collisions. We also covered how to validate file
uploads, check the file type, and the size. Finally, we saw how to provide feedback to
the user using flash messages and using the FlashMessenger view helper.

In the next chapter, we will allow our users to post URLs on their walls. Thanks to that,
we will see how to deal with requests to external sites and how to process HTML using
the Zend\Dom components.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 7. Dealing with URLs – Posting
Links
In this chapter, we will add the last bit of information a user can post to their wall. They
will be able to post links. As an extra step, we will do a refactor of the code we have
made so far in order to avoid the duplication of the code we have right now.

By the end of this chapter, you will know how to use Zend\Http\Client to get the
HTML of a web page and then extract information, such as the title. We will also cover
how to create a custom validator to use on our forms in order to validate URLs or
anything you will need.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
We will follow the same approach as the last chapter to add this functionality. We will
also need to create a new table in the database to add the link information. As usual,
when we create a new table we should also create the table gateway that we will use to
access the data. Finally, we need to create a new method that will be linked up inside
the create() method and will be called based on the data inside the request.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
The requirements for this functionality will not change in terms of the HTTP methods
we are exposing right now. The only difference is that now the create() method will
check for a new key inside the $data array. If found, we will execute another
specialized method called createLink() that will visit the web page, extract the data
we want, and store it in the database. Finally, we will need to create a custom validator
that we will re-use on the client code in order to validate a URL.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Working with the database
Now let's see the structure of the table we have to create to store the data related with
the links that a user will post. Essentially, it is the same as the one we have already
created, but we will add more fields to store the title and the URL itself.

This table is called users_links and will hold the following data:

Id
User_id
URL
Title
Created at
Updated at

In order to store data related to the creation and update times we will also add two
timestamps called created_at and updated_at.

The following is the statement to create the new table:

CREATE TABLE `user_links` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `user_id` int(11) unsigned DEFAULT NULL,
 `url` varchar(2048) DEFAULT NULL,
 `title` varchar(512) DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_user_id` (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Changes in the module structure
Now let's have a look at how the folder and file structure will look for the API side of
the project:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the UserLinksTable.php file
At the beginning this file is almost the same as the one we created before, but with a few
changes and something important that we have to highlight. Let's see the contents of the
file:

namespace Users\Model;

use Zend\Db\Adapter\Adapter;
use Zend\Db\TableGateway\AbstractTableGateway;
use Zend\Db\Adapter\AdapterAwareInterface;
use Zend\Db\Sql\Expression;
use Zend\InputFilter\InputFilter;
use Zend\InputFilter\Factory as InputFactory;
use Users\Validator\Url;

As usual we start with the current namespace and declare all the namespaces we want
to use in this class. If you review the list carefully you will see that the last one is a
custom class that implements a validator. We will review that shortly.

class UserLinksTable extends AbstractTableGateway implements
AdapterAwareInterface

In the table gateways that we create on the API side, we should declare the name of our
class, extend AbtractTableGateway, and implement AdapterAwareInterface.

protected $table = 'user_links';

Now we define the name of the table; in this case, as we already saw, the table is called
user_links.

After that we will find the methods setDbAdapter() and getByUserId(); these two
methods are exactly the same as the other table gateways that we have so we will just
copy them over to the following file:

public function create($userId, $url, $title)
{
 return $this->insert(array(
 'user_id' => $userId,
 'url' => $url,
 'title' => $title,
 'created_at' => new Expression('NOW()'),
 'updated_at' => null
));

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

}

This is the create() method of this table gateway. As you can see, we just pass to the
insert() method all the data that comes as parameters to the array. We also use the
Zend\Db\SQL\Expression object to add the NOW() value to the created_at column.

Finally, let's review the method getInputFilter(). The first section should look
familiar because essentially it is the same as the one we have in other table gateways,
but the second part has something different, as shown in the following code:

public function getInputFilter()
{
 $inputFilter = new InputFilter();
 $factory = new InputFactory();

 $inputFilter->add($factory->createInput(array(
 'name' => 'user_id',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
 array('name' => 'Int'),
),
 'validators' => array(
 array('name' => 'NotEmpty'),
 array('name' => 'Digits'),
 array(
 'name' => 'Zend\Validator\Db\RecordExists',
 'options' => array(
 'table' => 'users',
 'field' => 'id',
 'adapter' => $this->adapter
)
)
),
)));

 $inputFilter->add($factory->createInput(array(
 'name' => 'url',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim')
),
 'validators' => array(
 array('name' => 'NotEmpty'),
 array(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'name' => 'StringLength',
 'options' => array(
 'max' => 2048
)
),
 array('name' => '\Users\Validator\Url'),
),
)));

 return $inputFilter;
}

As you can see, in the URL input filter we are adding a validator called
\Users\Validator\Url. This will include the custom validator in the validator chain,
which we will create soon to validate URLs.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the IndexController.php file
Ok, we now have access to the new table we created in the database. Let's write the
code that will inspect the HTML of the link sent by the user, extract the title of the page,
and store the data in the database:

use Zend\Http\Client;
use Zend\Filter\FilterChain;
use Zend\Filter\StripTags;
use Zend\Filter\StringTrim;
use Zend\Filter\StripNewLines;
use Zend\Dom\Query;

These are the first lines we have to add to the controller next to the other classes we use
in this class. In this controller we will visit the web page pointed by the URL provided
by the user, then we will try to extract the title of the page from the HTML code using
XPath and store it. That's why we will use Zend\Http\Client and a filter chain with
StripTags, StringTrim, and StripNewLines filters.

protected $userLinksTable;

We will add this property to the class in order to store the table gateway instance that
we will create in the getUserLinksTable() method.

public function create($data)
{
 if (array_key_exists('status', $data)
 && !empty($data['status'])) {
 $result = $this->createStatus($data);
 }

 if (array_key_exists('image', $data)
 && !empty($data['image'])) {
 $result = $this->createImage($data);
 }

 if (array_key_exists('url', $data)
 && !empty($data['url'])) {
 $result = $this->createLink($data);
 }

 return $result;
}

This is the modified version of the create() method. As you can see, we add a new

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

block at the end checking if the key URL exists in the $data array. In that case we will
execute the specialized method createLink(), which will take care of the rest.

Let's now review the new specialized method that will do the hard work. As the method
is big, we will see it block by block and then the full code.

$userLinksTable = $this->getUserLinksTable();

$filters = $userLinksTable->getInputFilter();
$filters->setData($data);

This is the first block. We create an instance of the table and then we get the filters from
the table gateway. After that we set the data in the filters.

if ($filters->isValid())

This is the line that actually tests if the data passed is valid or not. In case of failure we
jump to the end of the method and return an error.

return new JsonModel(array(
 'result' => false,
 'errors' => $filters->getMessages()
));

In case the validation is successful, we proceed to create the HTTP client to get the
contents of the website.

$data = $filters->getValues();

$client = new Client($data['url']);
$client->setEncType(Client::ENC_URLENCODED);
$client->setMethod(\Zend\Http\Request::METHOD_GET);
$response = $client->send();

As you can see we get the data from the filters and then create an instance of
Zend\Http\Client. After that we just configure the options for the client and issue the
request.

if ($response->isSuccess())

As before, we test if the request was successful or not. In case of an error, we will jump
again to the end of the method. Of course if you are actually doing a production grade
application, you will handle the different reasons, for example, why it is not possible to
get the contents of the link and the act based on that. But here, for the purpose of this

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

project, returning a generic error is enough.

$html = $response->getBody();
$html = mb_convert_encoding($html, 'HTML-ENTITIES', "UTF-8");

$dom = new Query($html);
$title = $dom->execute('title')->current()->nodeValue;

This is the next block of code. As the request was successful, we can get the contents of
the website calling the getBody()method of the response object. After that we convert
the encoding of the contents from UTF-8 con HTML-ENTITIES. This is done to avoid
issues later on when we work with the HTML.

Now that the content is properly encoded we will extract the title from the HTML of the
web page. This can be done in multiple ways, using regular expressions, just doing a
search for the <title> tag and then processing the text, using a library that mimics the
jQuery CSS Selector syntax, using XPath to select nodes in an XML document, or just
by using the Zend\Dom\Query component and getting the tag by its name.

We will go with the last option that seems to be a simple one. That's what we
accomplish on the last two lines of the block of code we saw earlier.

if (!empty($title)) {
 $filterChain = new FilterChain();
 $filterChain->attach(new StripTags());
 $filterChain->attach(new StringTrim());
 $filterChain->attach(new StripNewLines());

 $title = $filterChain->filter($title);
} else {
 $title = null;
}

This is the next section we will review. Basically we check the number of elements that
match our selection and then process the contents; if we don't find any elements, we will
set the title to null.

If we get more than zero <title> elements, it means that we potentially have the info
we need. Keep in mind that if we find more than one, then something is wrong with that
website but we will not worry about that for now and will just extract the data of the
first element. Again, if you are doing this at a professional level you will have to take
care about the content of the element, validate it, and so on.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Well, now that we have found the <title> element, we will prepare the filter chain,
attaching the instances of the three filters we want to use. In this case we will remove
any HTML tag found inside the text by using the StripTags filter, then we will remove
any whitespace found at the beginning or end of the text by using the StringTrim filter;
finally, we will remove any new lines we can find by using the filter StripNewLines.

After all the configuration of the chain, we just execute the filter() method passing a
parameter, nodeValue of the first item we found, and that will give us the text we will
use as a title for the URL.

We arrive now at the last block of this method where we actually store the data on the
table we created using the table gateway and return the affected rows as a result.

return new JsonModel(array(
 'result' => $userLinksTable->create(
 $data['user_id'],
 $data['url'],
 $title
)
));

The last change we should do on the controller is add the
getUserLinksTable()method to create an instance of the table gateway and store it in
the property we created at the beginning.

protected function getUserLinksTable()
{
 if (!$this->userLinksTable) {
 $sm = $this->getServiceLocator();
 $this->userLinksTable = $sm->get(
 'Users\Model\UserLinksTable'
);
 }
 return $this->userLinksTable;
}

Ok, now that we have seen the code related to the storage side of the controller, let's
review the small changes we should do on the get() method to be able to send to the
client the links a user has on the wall.

We will add a line in the first block to get an instance of the table gateway, then in the
second block we will retrieve the data based on the used_id sent on the request and
store that in a variable called $userLinks. Finally, we will merge the $userLinks

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

variable with the $userStatuses and $userImages we were fetching before.

The following is the final code of this method:

public function get($username)
{
 $usersTable = $this->getUsersTable();
 $userStatusesTable = $this->getUserStatusesTable();
 $userImagesTable = $this->getUserImagesTable();
 $userLinksTable = $this->getUserLinksTable();

 $userData = $usersTable->getByUsername($username);
 $userStatuses = $userStatusesTable->getByUserId(
 $userData->id
);
 $userImages = $userImagesTable->getByUserId($userData->id);
 $userLinks = $userLinksTable->getByUserId($userData->id);

 $wallData = $userData->getArrayCopy();
 $wallData['feed'] = array_merge(
 $userStatuses->toArray(),
 $userImages->toArray(),
 $userLinks->toArray()
);

 usort($wallData['feed'], function($a, $b){
 $timestampA = strtotime($a['created_at']);
 $timestampB = strtotime($b['created_at']);

 if ($timestampA == $timestampB) {
 return 0;
 }

 return ($timestampA > $timestampB) ? -1 : 1;
 });
 if ($userData !== false) {
 return new JsonModel($wallData);
 } else {
 throw new \Exception('User not found', 404);
 }
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the Url.php file
This is the file that will contain the custom validator we are going to create in order to
validate the URLs provided by the users. ZF2 already provides a validator for URLs
called Zend\Validator\Uri that you can configure with different options, but this is
the perfect excuse to learn how to create and use custom validators.

namespace Users\Validator;

use Zend\Validator\AbstractValidator;

The code starts as usual by declaring the current namespace and also, in this case,
specifying that we want to use the component AbstractValidator. In order to create a
custom validator, you should implement the Zend\Validator\ValidatorInterface
interface or just extend Zend\Validator\AbstractValidator that already
implements the interface we mentioned before and gives the benefit of using the
validator in a validator chain or be used by Zend\Filter\Input.

class Url extends AbstractValidator

This is the class declaration on our file. After that we need to declare a constant that
will be used by the message template to generate the errors while validating data.

const INVALID = 'urlInvalid';

protected $messageTemplates = array(
 self::INVALID => "Invalid url given"
);

This is the section related to error messages. For each error message you should define
a constant and then inside $messageTemplates you should provide an error message
associated with the error constant. This is a simple case, but if needed, you can create
complex error messages that contain values or text based on the input given by the user,
as follows:

public function isValid($value)
{
 if (!is_string($value)) {
 $this->error(self::INVALID);
 return false;
 }

 $this->setValue($value);

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 if(!filter_var($value, FILTER_VALIDATE_URL)) {
 $this->error(self::INVALID);
 return false;
 }

 return true;
}

This is the isValid() method that will be called when we validate data. The method
only has one parameter and will be populated with the value we want to validate. The
first thing we check is the type of the value. In the case that we find something that is not
a string, we record the error using the error() method of the class and then return
false.

If the value is a string, we set the value in the object using the setValue() method and
then leverage the actual check to the PHP method filter_var(), passing the value as
the first parameter and the constant FILTER_VALIDATE_URL as the second parameter.
We will test the value returned by this method; in case of failure we will record the
error as we did before and return false. In case of success we just return true.

As you can see, it is really easy to create custom validators when needed and the
complexity can go from simple checks like this one to complex things such as requesting
things to DNS servers or connecting to other systems to check data.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the module.config.php file
As we did in the previous chapters, we should add the following line to the dependency
injector configuration of the Users module.

'Users\Model\UserImagesTable' => 'Users\Model\UserImagesTable'

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
Now we have all the required code on the API to accept URLs. Let's see the changes
required on the frontend to be able to post the URL and show the result on the wall. As
usual, let's have a look at a screenshot of the folder structure and new files.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the link entity
Let's create a new entity to store the data related to a link. This class is really easy and
just contains getters and setters for the column names. Let's see a couple of examples
and the list of properties contained inside the class.

protected $id = null;
protected $userId = null;
protected $url = null;
protected $title = null;
 protected $createdAt = null;
protected $updatedAt = null;

Now let's see two simple getters and setters.

public function setTitle($title)
{
 $this->title = $title;
}

public function setUpdatedAt($updatedAt)
{
 $this->updatedAt = new \DateTime($updatedAt);
}

public function getId()
{
 return $this->id;
}

public function getUserId()
{
 return $this->userId;
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the LinkForm.php file
Of course if we want the users to use the new functionality, we should provide them
with a way to provide us with the information we need. This form will allow them to
specify the URL of the web page they want to share, as simple as that. Again, this form
will have one special section, the field used for the URL information.

namespace Wall\Forms;

use Zend\Form\Element;
use Zend\Form\Form;

As usual we start with the following declaration of namespaces at the beginning of the
class:

class LinkForm extends Form

The declaration of the class will follow the same approach as the other forms we
already created, but in this case we are not implementing the
InputFilterProviderInterface interface because the field we are going to use will
automatically add the needed validators.

public function __construct($name = null)
{
 parent::__construct('link-content');
 $this->setAttribute('method', 'post');
 $this->setAttribute('class', 'well input-append');

 $this->prepareElements();
}

The structure of the form will follow the approach of having specialized methods for
each task. That leaves us with the following constructor:

public function prepareElements()
{
 $this->add(array(
 'name' => 'url',
 'type' => 'Zend\Form\Element\Url,
 'attributes' => array(
 'class' => 'span11',
),
));
 $this->add(new Element\Csrf('csrf'));
 $this->add(array(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'name' => 'submit',
 'attributes' => array(
 'type' => 'submit',
 'value' => 'Submit',
 'class' => 'btn'
),
));
}

This is how the prepareElements() method looks. As you can see we are adding the
field URL to allow the users to insert the URL and is a Url element. This includes the
new URL HTML5 element on the form and automatically adds the Zend\Validate\Uri
validator. Remember that if we use the Zend\Form\Element\Url element we should
use the formUrl() helper on the view.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the image-content-form.phtml file
This file will take care of rendering the fields associated with the LinkForm. The
content is similar to other files we saw before.

<?php $form = $this->form; ?>
<?php $form->prepare(); ?>
<?php echo $this->form()->openTag($form) ?>
<!-- Url input text -->
<?php echo $this->formElement($form->get('url')); ?>
<?php echo $this->formElementErrors($form->get('url')); ?>

<!-- Submit button -->
<?php echo $this->formElement($form->get('submit')); ?>

<!-- CSRF -->
<?php echo $this->formElement($form->get('csrf')); ?>
<?php echo $this->formElementErrors($form->get('csrf')); ?>

<?php echo $this->form()->closeTag() ?>

Did you see it? Yes, we are not using the formUrl() helper, instead, we are using the
usual formElement() helper. Why? Because the formElement() helper will introspect
the field we are trying to print and will decide which is the best helper for the job and
will use it. It's like a universal view helper for form elements.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Extending the index.phtml file
As usual we cannot put the entire code of the view because it's huge but we are going to
see in this section how to include the new form on the view.

<div id="wall-link">
 <?php echo $this->partial(
 'forms/link-content-form.phtml',
 array('form' => $linkContentForm)
); ?>
</div>

As you can see, we are calling a partial that includes the elements of the form and we
are passing the form itself as a parameter to that partial. When you render a partial you
can pass all the variables you want and change its name using the second parameter of
the partial() method. It accepts an array and the names you use on the keys will
become the name of the variable that contains the value you pass inside the partial.

<?php elseif ($entry instanceOf \Wall\Entity\Link) : ?>
 <p>
 <a href="<?php echo $entry->getUrl() ?>">
 <?php echo $entry->getTitle() != ''?
 $entry->getTitle() : $entry->getUrl(); ?>

 </p>
<?php endif; ?>

This is the code we will use to represent a link on the wall. It's a simple link pointing to
the URL and using the title of the website as a text of the link. It's really simple but you
can extend the base system to fetch the images of the web page and use one of them to
represent the page similar to Facebook. You can also extract the content of the
description meta tag and use it here to further explain the purpose of the website.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Changing the User.php file
As we did with the other content, we should adapt the User entity to create new entities
for the links. This is really easy and we just need to add the following lines to the
setFeed() method:

public function setFeed($feed)
{
 $hydrator = new ClassMethods();

 foreach ($feed as $entry) {
 if (array_key_exists('status', $entry)) {
 $this->feed[] = $hydrator->hydrate(
 $entry, new Status()
);
 } else if (array_key_exists('filename', $entry)) {
 $this->feed[] = $hydrator->hydrate(
 $entry, new Image()
);
 } else if (array_key_exists('url', $entry)) {
 $this->feed[] = $hydrator->hydrate(
 $entry, new Link()
);
 }
 }
}

As you can see we are adding a new case to our if block and testing if the entry has a
key called url, in which case we proceed to hydrate a new Link object.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the IndexController.php file
The following is the last file we have to modify in this chapter to make the new
functionality work:

use Wall\Forms\LinkForm;

This is the first thing to do. We should add this line to be able to use the new form we
created for the users.

Then we should make three changes in the indexAction() method in order to include
and process the new form.

$linkForm = new LinkForm();

This line goes in the block where we create the other forms; we just need to create an
instance of the new one.

if (array_key_exists('url', $data)) {
 $result = $this->createLink($linkForm, $user, $data);
}

This second block goes inside the if block that checks if we are dealing with a POST
request. In here, we are checking the type of the request based on the keys found in the
data and based on that call, the specialized method createLink(), which will take care
of the rest. The rest of the code should look familiar because it is the same one we used
on the two previous forms but we have just adapted the names of the variables to match
the new forms.

$linkForm->setAttribute(
 'action',
 $this->url()->fromRoute(
 'wall',
 array('username' => $user->getUsername())
)
);

This is the last block of code we need in this method and we will add it at the end, next
to the other two similar blocks of code we have. We are just setting the URL for the
action parameter on the form.

Now let's review the new method createLink() that we have to add. It's really simple
and looks like the other one we already added, specially with the createStatus()

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

method that is basically the same.

protected function createLink($form, $user, array $data)
{
 return $this->processSimpleForm($form, $user, $data);
}

The following screenshot shows how our wall looks with the new functionality:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
Now users are able to share their favorite websites on their wall! That's the last type of
content they can publish on their walls.

In this chapter we covered how to deal with URLs on forms using the new element
provided by ZF2. We also saw how to create custom validators that can be used to
validate anything you need!. Finally, we saw how to crawl other web pages in order to
extract the content we need.

In the next chapter we will see how to allow users to add comments to the wall entries
and how to deal with possible spam.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 8. Dealing with Spam –
Akismet to the Rescue
Before moving to another section of the social network, we still have something to add
—comments. In this chapter, users will be able to comment on the entries made on the
wall.

By the end of this chapter, you will know how to use the ZendService components to
get extra functionality. We are going to use ZendService\Askismet to protect our
service from spammers, and we will check the contents of each comment on the API
side to validate it against the Akismet servers.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
In this code, we will need to follow the same approach used in all the chapters related
with the user wall. We need to create a new table to hold the data, then create the table
gateway to be able to access the data, and finally modify the controller to add the new
type of content to the create() method.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
We are not going to modify the way API works or the way developers interact with the
API. This means that we will keep using the same HTTP methods as before and will
modify the create() method to detect new content we want to add, and redirect the job
to the proper specialized method.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Working with the database
Let's take a look at the structure of the new table we have to create to store the
comments of the users.

This table is named user_comments, and will hold the following data:

Id
User_id
Type
Entity_id
Comment
Created at
Updated at

Also, in this table, as with all the ones we already created, we will add two columns to
store the time where a record is created and updated.

The following is the statement to create the new table:

CREATE TABLE `user_comments` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `user_id` int(11) unsigned DEFAULT NULL,
 `type` tinyint(1) unsigned DEFAULT NULL,
 `entry_id` int(11) unsigned DEFAULT NULL,
 `comment` varchar(255) DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_user_id` (`user_id`),
 KEY `idx_entry_id` (`entry_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Module structure
Before we start describing the code, let's also look at the following folder structure and
the new files we will create to build this functionality:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Installing Akismet service
In order to use the Akismet service we should install the dependencies in our code. As
ZF2 uses composer, this will be an easy task. Let's see the changes we have to do in the
composer.json file to install Akismet. Alternatively, you can also use the code
provided for this chapter that has Akismet already installed.

"repositories": [
 {
 "type": "composer",
 "url": "https://packages.zendframework.com/"
 }
],

Here, we are specifying the repository where the packages for Zend Framework can be
found. After that we have to specify the package we want by adding the following line
in the required block:

"zendframework/zendservice-akismet": "2.*@dev"

After that, we should run the composer to update the dependencies that are
accomplished executing the following command:

php composer.phar update

This command should be executed in the root folder of the API project.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the local.php file
Now that we have the Akismet service installed, we need to store our API key
somewhere to be able to send it when we request it to check if a comment is spam or
not. Let's add a new section in the local.php file to store this, as follows:

'akismet' => array(
 'apiKey' => 'YOUR API KEY HERE',
 'url' => 'THE URL OF YOUR SERVICE HERE
)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the UserCommentsTable.php file
As usual when we create a new table, we should also create the table gateway object
that will allow us to work with the data stored in the database. This time, the file will
be bigger than usual because we will add the validators to check if the comment is spam
or not. As we already created a few classes similar to this one, we will just review the
queries we provided and the configuration of the filters. For the full source code refer to
the code of this chapter.

public function create($userId, $type, $entryId, $comment)
{
 return $this->insert(array(
 'user_id' => $userId,
 'type' => $type,
 'entry_id' => $entryId,
 'comment' => $comment,
 'created_at' => new Expression('NOW()'),
 'updated_at' => null
));
}

This is the method that will allow us to insert new comments in the table; entry_id
refers to the ID of the content we are commenting and the type refers to the type of
content.

public function getByTypeAndEntryId($type, $entryId)
{
 $select = $this->sql->select()->where(array(
 'type' => $type,
 'entry_id' => $entryId)
)->order('created_at ASC);
 return $this->selectWith($select);
}

This method will allow us to retrieve comments of a specific entry; we use the type of
entry and entry_id to retrieve related comments, if any. Also, you can see that we
order the rows by creation date with the new comments first.

Let's discuss now how to configure the validators for the comment. The three important
checks we want to do are as follows:

The user making the comments exists in the database
The entry we are commenting on exists in the database
The comment is not considered spam

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We will do the first two checks against the database using the RecordExists validator;
for the last check we will use a custom validator, which we will create.

Let's see the following validator and filter configuration for each field. As the method is
big, refer to the code of this chapter to see the entire code:

$inputFilter->add($factory->createInput(array(
 'name' => 'user_id',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
 array('name' => 'Int'),
),
 'validators' => array(
 array('name' => 'NotEmpty'),
 array('name' => 'Digits'),
 array(
 'name' => 'Zend\Validator\Db\RecordExists',
 'options' => array(
 'table' => 'users',
 'field' => 'id',
 'adapter' => $this->adapter
)
)
),
)));

This block is the configuration for the user_id field as usual we remove the possible
HTML tags, remove whitespaces at the beginning and end of the string, and we make
sure it's a number. To validate the field we check that it is not empty, is a digit, and the
record exists inside the users table.

$inputFilter->add($factory->createInput(array(
 'name' => 'type',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim')
),
 'validators' => array(
 array('name' => 'NotEmpty'),
 array('name' => 'Digits'),
),
)));

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The type field is easier, as we just want to filter with the usual suspects, StripTags and
StringTrim, and then we validate with NotEmpty, making sure we are dealing with a
digit.

$inputFilter->add($factory->createInput(array(
 'name' => 'entry_id',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim')
),
 'validators' => array(
 array('name' => 'NotEmpty'),
 array('name' => 'Digits'),
 array(
 'name' => 'Zend\Validator\Db\RecordExists',
 'options' => array(
 'table' => $validatorTable,
 'field' => 'id',
 'adapter' => $this->adapter
)
)
),
)));

The configuration for entry_id is exactly the same as the one we created for the user
with only one difference. The table we will use to check if the row exists is now a
variable and will be configured based on the data we get from the client.

$inputFilter->add($factory->createInput(array(
 'name' => 'comment',
 'required' => true,
 'validators' => array(
 array('name' => 'NotEmpty'),
 array(
 'name' => '\Wall\Validator\Spam',
 'options' => array(
 'apiKey' => $config['apiKey'],
 'url' => $config['url']
)
),
),
)));

This is the last field we check. As you can see we do not filter the data, because it's an
array created on the controller that will be validated directly with Spam.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the Spam.php file
Now, let's create the validator that will use Akismet to check if a comment is
considered spam or not. This time we will create a custom validator that will accept the
configuration. With this knowledge, you will be able to create any validator that you
may or may not need with the configuration.

namespace Users\Validator;

use Zend\Validator\AbstractValidator;
use ZendService\Akismet\Akismet;

We start, as usual, by defining the namespace and the components we want to use in this
class; after that we define the actual class.

class Spam extends AbstractValidator

Now we need to define some constants, one for each error condition we can find on the
validator.

const INVALID = 'invalid';
const SPAM = 'isSpam';

The first two constants refer to error conditions while validating the data, and the last
two are errors that can appear when you configure the validator.

protected $messageTemplates = array(
 self::INVALID => "Invalid input",
 self::SPAM => "The text seems to be spam"
);

As you see, we also need to define an error message attached to each error constant we
defined before.

protected $options = array(
 'apiKey' => null,
 'url' => null
);

This variable holds the available configurations for the validator. In here, we have to
define all the possible variables the validator needs to do the job, and will be populated
by the parent constructor using the setter methods.

public function __construct($options = array())

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

{
 if (!is_array($options)) {
 $options = func_get_args();
 $temp['apiKey'] = array_shift($options);
 if (!empty($options)) {
 $temp['url'] = array_shift($options);
 }

 $options = $temp;
 }

 parent::__construct($options);
}

This is the constructor of the validator. We check how the configuration data has been
passed to the validator and act accordingly. At the end, we call the parent constructor
passing the configuration data as an array.

public function getApiKey()
{
 return $this->options['apiKey'];
}

public function setApiKey($apiKey)
{
 if (empty($apiKey)) {
 throw new \Exception('API key cannot be empty');
 }

 $this->options['apiKey'] = $apiKey;
 return $this;
}

This is the setter and getter for the apiKey configuration option in the setter; we check
that the value is not empty, as the two configuration values are mandatory.

public function getUrl()
{
 return $this->options['url'];
}

public function setUrl($url)
{
 if (empty($url)) {
 throw new \Exception('The url cannot be empty');
 }

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $this->options['url'] = $url;
 return $this;
}

This is a copy of the getter and setter shown before, but in this case for the url option.

Now let's see the isValid() method that will use the configuration to connect to
Akismet using the new Akismet service we added, and validate the comment.

public function isValid($value)
{
 if (!is_array($value)) {
 $this->error(self::INVALID);
 return false;
 }

 $this->setValue($value);
 $akismet = new Akismet($this->getApiKey(), $this->getUrl());
 if (!$akismet->verifyKey($this->getApiKey())) {
 throw new \Exception('Invalid API key for Akismet');
 }
 if ($akismet->isSpam($value)) {
 $this->error(self::SPAM);
 return false;
 } else {
 return true;
 }
}

This code will create a new instance of Akismet, then will verify the API key we
provide, and finally check if the comment is considered spam or not.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Extending the IndexController.php file
In the controller, we have to modify two sections. The first is the one that processes an
incoming request to save the comment and the second is the one that requests to get a
user's wall. Let us see how to process the first request, validate that it is not spam, and
store it.

We need to add a new check in the create() method to distinguish if the request is
related with the creation of a comment.

At the end of the method we will add the following check:

if (array_key_exists('comment', $data) && !empty($data['comment'])) {
 $result = $this->createComment($data);
}

As you can see the check is similar to the ones we had before. Now we need to create
the createComment() method that will take care of the actual processing of the
comment.

The first block is as follows:

$userCommentsTable = $this->getUserCommentsTable();
$usersTable = $this->getUsersTable();
$user = $usersTable->getById($data['user_id']);

Here we are just getting two table gateways and retrieving the user who's commenting.

$data['comment'] = array(
 'user_ip' => $this->getRequest()->getServer('REMOTE_ADDR'),
 'user_agent' => $this->getRequest()->getServer(
 'HTTP_USER_AGENT'
),
 'comment_type' => 'comment',
 'comment_author' => sprintf(
 '%s %s',
 $user->name,
 $user->surname
),
 'comment_author_email' => $user->email,
 'comment_content' => $data['comment']
);

This is the array the Akismet service expects on their API level. Basically, we are

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

providing them with the IP address of the user who's creating the comment, the user
agent, a parameter to specify the type of content we are checking, the full name of the
author of the comment, the e-mail, and the content itself.

switch ($data['type']) {
 case \Users\Model\UserstatusesTable::COMMENT_TYPE_ID:
 $validatorTable =
 \Users\Model\UserstatusesTable::TABLE_NAME;
 break;
 case \Users\Model\UserImagesTable::COMMENT_TYPE_ID:
 $validatorTable =
 \Users\Model\UserImagesTable::TABLE_NAME;
 break;
 case \Users\Model\UserLinksTable::COMMENT_TYPE_ID:
 $validatorTable =
 \Users\Model\UserLinksTable::TABLE_NAME;
 break;
}

Then we need to configure the validator of the entity to check that it exists in the
database if you remember we were using a variable instead of the table name, and here
is where we determine the table name that should be used. On the client side, we will
send a type number that identifies the type of content on which we are commenting. We
will use this value to determine what table to pass in the getInputFilter() function,
which in turn will be used to validate that the status being commented on exists in the
database.

$config = $this->getServiceLocator()->get('Config');
$filters = $userCommentsTable->getInputFilter(
 $validatorTable,
 $config['akismet']
);
$filters->setData($data);

Here we are getting the configuration where we have stored the details we need for the
Akismet service. We are also passing the table name for the entry validation and the
Akismet configuration to the method that returns the input filter. After that we set the
data in the filters to be able to perform the validation.

if ($filters->isValid()) {
 $data = $filters->getValues();

 $result = new JsonModel(array(
 'result' => $userCommentsTable->create(
 $data['user_id'],

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $data['type'],
 $data['entry_id'],
 $data['comment']['comment_content']
)
));
} else {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => $filters->getMessages()
));
}

return $result;

This is the last block of the createComment() method and where we actually validate
the data. In case of success, we retrieve the data from the filter, we then insert it in the
database using the table gateway returning the results to the client. Otherwise, we return
the error with an error message specifying what happened in the validation.

In order for this method to work, we also need to create a new property in this class,
and a method called getUserCommentsTable() that will create and store a local copy
of the table gateway.

protected $userCommentsTable;

protected function getUserCommentsTable()
{
 if (!$this->userCommentsTable) {
 $sm = $this->getServiceLocator();
 $this->userCommentsTable = $sm->get(
 'Users\Model\UserCommentsTable'
);
 }
 return $this->userCommentsTable;
}

We also need to modify the table gateways and to assign to each one a type to be able to
check the content on which we are commenting, but that will be done later. Now, let's
review the changes we should make in the get() method to retrieve the content of the
wall, including the comments for each one.

$userCommentsTable = $this->getUserCommentsTable();

We need to add this line to the first block to get an instance of the comments table
gateway.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

$userStatuses = $userStatusesTable->getByUserId($userData->id)
 ->toArray();
$userImages = $userImagesTable->getByUserId($userData->id)
 ->toArray();
$userLinks = $userLinksTable->getByUserId($userData->id)
 ->toArray();

We already had these lines before, the only change we made was adding a call at the
end to retrieve the data as arrays. This in turn helped us while processing the entries to
get the comments.

$allEntries = array(
 \Users\Model\UserstatusesTable::COMMENT_TYPE_ID =>
 $userStatuses,
 \Users\Model\UserImagesTable::COMMENT_TYPE_ID =>
 $userImages,
 \Users\Model\UserLinksTable::COMMENT_TYPE_ID =>
 $userLinks
);

This array will hold the entries of each content type, and then we will use this array to
merge the contents in one array that will be ordered.

$cachedUsers = array();
foreach ($allEntries as $type => &$entries) {
 foreach ($entries as &$entry) {
 $comments = $userCommentsTable->getByTypeAndEntryId(
 $type,
 $entry['id']
);

 if (count($comments) > 0) {
 foreach ($comments as $c) {
 if (array_key_exists($c->user_id, $cachedUsers)) {
 $user = $cachedUsers[$c->user_id];
 } else {
 $user = $usersTable->getById($c->user_id);
 $cachedUsers[$c->user_id] = $user;
 }

 $entry['comments'][] = array(
 'id' => $c->id,
 'user' => $user,
 'comment' => $c->comment
);
 }
 }

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 }
}

This block of code is responsible for getting comments of each content. As you can see
we iterate through the array we just created, and then query the database. If we find
comments, we iterate over them to get a copy of the data about the author of the comment
to be able to display that data on the client. As we can have multiple comments from the
same user, we create an array, of already retrieved users to avoid getting the same data
from the database over and over again.

$wallData = $userData->getArrayCopy();
$wallData['feed'] = call_user_func_array(
 'array_merge',
 $allEntries
);

These are the last two lines we need to modify. As we have the different entries under
different keys in the $allEntries array we need to merge them to have one array with
all the entries together.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Table gateways
As we mentioned before, in order to be able to detect the content type a user is
commenting, we have to modify the table gateways to hold a unique type identifier on
each one. Check the following table to see the relation between each type and the type
assigned.

Type assigned Content

1 Statuses (text)

2 Images

3 Links

Now we have to modify the files to store this data let's see the following change we
have to do:

const COMMENT_TYPE_ID = 1;
const TABLE_NAME = 'user_statuses';

These are the new lines for the UserStatusesTable.php file; the lines will be the
same in UserImagesTable.php and UserLinksTable.php, the only difference will be
the number stored in the constant COMMENT_TYPE_ID and the name of the table stored in
TABLE_NAME.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
Now that we have our API sending back the comments for each entry on the user's wall,
we need to adapt the client code to do two things. First we create a new form and put it
beneath each entry so that users can comment on stuff. The second thing we have to do is
show the comments made by users beneath each entry. Let's see the following folder
structure for the client code:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the Comment.php file
As usual we need to create an entity to store the data related with a comment. The entity
itself is really simple, just a bunch of getters and setters. The only difference now is that
we need to store a user entity inside the comment entity that will be the author data.

namespace Wall\Entity;

use Zend\Stdlib\Hydrator\ClassMethods;
use Users\Entity\User;

These two lines are the namespace and the declaration of the ClassMethod hydrator we
are going to use to populate a User entity.

class Comment
{
 protected $id = null;
 protected $user = null;
 protected $comment = null;
 protected $createdAt = null;
 protected $updatedAt = null;

 public function setUser($user)
 {
 $hydrator = new ClassMethods();

 $this->user = $hydrator->hydrate($user, new User());
 }

 // MORE GETTERS AND SETTERS HERE
}

This is important code of the entity, for brevity the rest of the getters and setters are
removed here, but you can check the code of this chapter if you want to see the full
class.

The setUser() method is responsible for populating a User instance with the
ClassMethod hydrator.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adapting the Status.php file
Now we need to modify the entities we had for each content type to hold an array of
possible comments. We are also going to store the type of the content itself to be able to
send it to the API while commenting.

use Zend\Stdlib\Hydrator\ClassMethods;

Again, as we have to hydrate the comments we declare ClassMethods.

const COMMENT_TYPE_ID = 1;

This is the constant that will hold the type of content as you can see, it is exactly the
same as the one we have on the API side.

protected $comments = null;

We need to add a new property in the class to be able to hold the array of comments
provided by the API.

public function setComments($comments)
{
 $hydrator = new ClassMethods();

 foreach ($comments as $c) {
 $this->comments[] = $hydrator->hydrate($c, new Comment());
 }
}

This is the setter for the comments; as you can see we iterate over the comments, if any,
and populate a new Comment instance appending it to the $comments property.

public function getComments()
{
 return $this->comments;
}

public function getType()
{
 return self::COMMENT_TYPE_ID;
}

Finally, we add two getters to the class; the first will return the comments and the
second, COMMENT_TYPE_ID, will hold the type for this specific content.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the Image.php and Link.php file
The changes we have to do in these two entities are exactly the same as the ones we
made on the status, the only difference being the number stored in the constant,
COMMENT_TYPE_ID, which will be a two for Image.php and a three for Link.php.

As you can see, we are duplicating the code in the entities and it makes sense to make
the entities to extend from a base entity and put the common code in the base entity. This
task can be done by you as an exercise.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the CommentForm.php file
The form we need to allow the users to add comments is really simple. We are going to
have a textbox where users will put the comment on which itself. We will also have a
couple of hidden fields that will hold the type of content we are commenting, and the ID
of the entry we are commenting. Thanks to the hidden fields, the API will be able to
associate the comment with the corresponding entry.

The structure of the file is the same as the one we have on other forms, so we will jump
straight to the code we have on the constructor to see the fields we have.

parent::__construct('comment-content');

$this->setAttribute('method', 'post');
$this->setAttribute('class', 'well input-append');

$this->add(array(
 'name' => 'comment',
 'type' => 'Zend\Form\Element\Text',
 'attributes' => array(
 'class' => 'span11',
 'placeholder' => 'Write a comment here...'
),
));
$this->add(array(
 'name' => 'type',
 'type' => 'Zend\Form\Element\Hidden',
));
$this->add(array(
 'name' => 'entry_id',
 'type' => 'Zend\Form\Element\Hidden',
));
$this->add(array(
 'type' => 'Zend\Form\Element\Csrf'
));
$this->add(array(
 'name' => 'submit',
 'attributes' => array(
 'type' => 'submit',
 'value' => 'Submit',
 'class' => 'btn'
),
));

As you can see, the form is really simple, and we just add the fields we mentioned

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

before with the usual Cross Site Request Forgery (CSRF) protection and the submit
button.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the comment-content-form.phtml file
The content of the view for the form is similar to the one we saw before; you can see the
following code of the partial view that will be inserted in index.phtml view to print
the form:

<?php $form = $this->form; ?>
<?php $form->prepare(); ?>
<?php echo $this->form()->openTag($form) ?>
<!-- Comment input text -->
<?php echo $this->formElement($form->get('comment')); ?>

<!-- Submit button -->
<?php echo $this->formElement(
 $form->get('type')->setValue($type)
); ?>
<?php echo $this->formElement(
 $form->get('entry_id')->setValue($entryId)
); ?>
<?php echo $this->formElement($form->get('submit')); ?>

<!-- Error message -->
<?php echo $this->formElementErrors($form->get('comment')); ?>

<!-- CSRF -->
<?php echo $this->formElement($form->get('csrf')); ?>
<?php echo $this->formElementErrors($form->get('csrf')); ?>

<?php echo $this->form()->closeTag() ?>

Notice that we are setting the values of the hidden fields based in two variables, $type
and $entryId, that we expect.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the IndexController.php file
The changes we have to do on the controller are simple and short. Let's review the
changes in the indexAction() method.

use Wall\Forms\CommentForm;

First, we need to declare the usage of CommentForm by adding the following line at the
top:

$commentForm = new CommentForm();

Then we need to create an instance of the form; we will do that in the block of code
where we create the other forms.

if (array_key_exists('comment', $data)) {
 $result = $this->createComment($commentForm, $user, $data);
}

Now, in the section where we inspect the POST request, we need to add a new block to
check if the user is trying to create a comment, and then redirect the request to the
proper method.

case $result instanceOf CommentForm:
 $commentForm = $result;
 break;

When we process the form results, we need to add a new case in the switch statement
to check the return value of the createComment() method.

$commentForm->setAttribute(
 'action',
 $this->url()->fromRoute(
 'wall',
 array('username' => $user->getUsername())
)
);

This piece of code should be added next to the block where we set the attributes to the
other forms; it is exactly the same but of different form.

$viewData['commentContentForm'] = $commentForm;

This is the final line we have to add in this method to pass the form to the view and be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

able to print it.

As this form is really simple, the createComment() method will call the
processSimpleForm() parent method.

protected function createComment($form, $user, array $data)
{
 return $this->processSimpleForm($form, $user, $data);
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Extending the index.phtml file
This is the last file we have to modify to make everything work. We are going to add a
block of code right after printing the content of each entry to print the comments, if any,
and also to insert the comment form.

<?php if ($entry->getComments() !== NULL) : ?>
 <ul class="post-list">
 <?php foreach ($entry->getComments() as $i => $c) : ?>
 <li class="post">
 <section>

 <div class="post-body">
 <h4 class="post-heading">
 NAME OF USER
 </h4>
 <p><?php echo $c->getComment() ?></p>
 </div>
 </section>

 <?php endforeach; ?>

<?php endif; ?>
<?php echo $this->partial(
 'forms/comment-content-form.phtml',
 array(
 'form' => $commentContentForm,
 'type' => $entry->getType(),
 'entryId' => $entry->getId())
); ?>

The code you can see here is a simplified version of the real one, otherwise it will not
be readable. As you can see, if there are comments, we iterate over them and print each
one putting the avatar of the user, hardcoded for now, and also the name of the user and
the content of the comment. Finally, we call the partial that will render the comment
form and pass the type of entry and the entry ID to populate it on the hidden fields.

The following screenshot shows how the wall looks like now:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
We have finished the journey of the wall functionality; congratulations!

In this chapter we saw how to use external web services, such as Akismet, to further
extend the possibilities of our system; in our case, creating a custom validator that uses
the Akismet service to validate comments and determine if they are spam or not.

In the next chapter we will jump to adding external content to our website using RSS
feeds and we will learn how to integrate them and also how to cache the requests.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 9. Let's Read Feeds – A News
Reader
It's time to add a new, big functionality on our social network. Right now, users can post
a variety of content and comment on each other's content. Of course, they cannot register
themselves or log in to the page, but this problem will be fixed in the next few chapters.
From the point of view of the product, we want users to spend more time on our social
network, and that's why we are going to add a feed reader.

By the end of this chapter, you will know how to use a few components of Zend\Feed,
which will be used to parse the RSS feeds of the websites to which the user wants to
subscribe to. Then we will use the CLI version of the controllers to make a script that
will fetch the articles of the feeds every X minutes. Of course, this will be made to run
by a cronjob. At the frontend, we will see how to use Zend\Navigation in two ways:
the default easy way, and the programmatic way. We will also work with the usual
suspects, databases, table gateways, and so on. But we will review that really fast
because the focus now is on different components.

Note

A cronjob is a tool in Unix-like systems, which allows us to schedule the execution of
any program we want.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Overview
On the application, the functionality will look similar to the following screenshot:

Let's review all the sections as follows:

1. We will refactor the menu we have on the header to use a simple
Zend\Navigation.

2. This will be the menu that the user will use to select the feed they want to read. We
will program a Zend\Navigator component to populate the pages and detect the
element that is active.

3. This is a small form, which will be used to add new subscriptions.
4. This button will allow the users to remove the subscription to a feed andalso

delete the data we store on the database and the related articles.
5. This is the main section of the functionality, and this is where we are going to show

a list of the articles to be read.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
We need to do two things on the API side of the project. The first one is related to the
API we expose; we need to add methods to insert, retrieve, and delete subscriptions.
Another big task we have to do is related to the articles we need to fetch from the RSS
feeds. We will create a CLI script to fetch and store them on the database. As the first
big task is similar to what we did in the previous chapters, we will revise it quickly and
focus on the CLI script.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
The requirement on the API side will be adding a new endpoint to manage the feed
subscriptions of a user. Of course, we will need a couple of tables and a few
configurations on the database to store the information. For the CLI script, we need to
add a new CLI route on the configuration, and then create the script that will fetch the
data and store it on the database, outputting the information on the console as a feedback
to the user.

The new endpoint will be /api/feeds/:username[/:id]. Now, let's see how to use
each HTTP method on this new endpoint:

HTTP
method

Controller
method Parameters Functionality

GET
get()

getList()
None

The get() method will return an HTTP error 405, because we will not retrieve
information of a subscription directly.

The getList() method will return a list of all the feeds to which a user is
subscribed, and also the related list of posts nested inside each feed information.

POST create() data
This is the method used to add a new subscription for a user. This method will
add a new entry on the table of feeds, but will not retrieve the articles of the
feed at creation time.

PUT update() ID This method is not allowed

DELETE delete() ID
This method will be used to remove a subscription. Because an ID is
mandatory, we will need to pass the id of the feed we want to remove and this
will also trigger a removal of the related articles.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Working with the database
To store the information of the feeds and articles on the database, we need to use two
tables. The first one called user_feeds will store the subscriptions of a specific user
and the general information of that feed. The second table called user_feed_articles
will store the articles of specific feeds and the information related to each article. The
following is the structure of each table:

CREATE TABLE `user_feeds` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `user_id` int(11) unsigned DEFAULT NULL,
 `url` varchar(2048) DEFAULT NULL,
 `title` varchar(512) DEFAULT NULL,
 `icon` varchar(2048) DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_user_id` (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE TABLE `user_feed_articles` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `feed_id` int(11) unsigned DEFAULT NULL,
 `title` varchar(512) DEFAULT NULL,
 `content` text,
 `url` varchar(2048) DEFAULT NULL,
 `author` varchar(255) DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_feed_id` (`feed_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

As you can see, the data stored in the tables is self-explanatory and straightforward.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Expanding the module structure
Ok, now it's time to take a look at the structure of the folders. As usual, we will create a
new module called Feeds for this functionality. Remember to add it to the
application.config.php file. The folder structure is as follows:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The module.config.php file
This file will contain the route that we will expose on the API and also a new type of
route called console route. This new type of route will allow us to map the parameters
used to call the application from the command line to actual controllers and actions that
will take care of executing the required code. As this controls the parameters of the
command-line call, we can also specify which one we will use, if any of them are
optional, and so on.

'router' => array(
 'routes' => array(
 'news' => array(
 'type' => 'Zend\Mvc\Router\Http\Segment',
 'options' => array(
 'route' => '/api/feeds/:username[/:id]',
 'constraints' => array(
 'id' => '\d+'
),
 'defaults' => array(
 'controller' => 'Feeds\Controller\Index'
),
),
),
),
),

This is the normal route we expose on the API level. As you can see right now, the
username is mandatory, and we also have an ID that is optional. The ID will refer to the
feed ID when we delete the subscriptions. In the next chapter, we will make the
username parameter disappear because we will use the information of the Oauth 2.0
mechanism to identify who's making the request; but right now, we need to specify the
username each time we make a request.

'console' => array(
 'router' => array(
 'routes' => array(
 'feeds-process' => array(
 'options' => array(
 'route' => 'feeds process [--verbose|-v]',
 'defaults' => array(
 'controller' => 'Feeds\Controller\Cli',
 'action' => 'processFeeds'
)
)
)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

)
)
),

This is the new type of route we were talking about earlier. As you can see, the structure
is fairly similar to the default routes. The only difference is that the route parameter
specifies the parameters you have to pass to the index.php file when called from the
command line in order to execute the specific controller and the configured action. As
you can also see, there is a parameter between the square brackets, which means that the
parameter is optional. This is exactly the same as with the normal routes, but in this
case, we also have a pipe symbol and a shorter version of the same parameter. This
allows us to give longer and shorter versions of each parameter. Now, you go to the
public folder using the command line and execute the following code:

php index.php feeds process –v

The request will be sent to the CliController.php file and will be fulfilled. That's the
line with which we will configure the cronjob:

'controllers' => array(
 'invokables' => array(
 'Feeds\Controller\Index' =>
 'Feeds\Controller\IndexController',
 'Feeds\Controller\Cli' => 'Feeds\Controller\CliController'
),
),

This is the last block of code of this file, and we are only listing the available
controllers on this module and mapping them to the actual file.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The Module.php file
In this case, we do not need to add or modify any of the default code that usually comes
with this file. If you review the code on the file, you will see that we have two methods:
getConfig() and getAutoloaderConfig(), and they are the same as the ones we saw
in the previous Module.php files of other modules.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the UserFeedsTable.php file
At this point, we already saw a few table gateways, and I'm confident that you are
totally capable of creating them on your own. In this case, we will just highlight the
updateTimestamp() method that takes care of updating the updated_at column with
the current timestamp. This column will be used by the CLI script to track the last time
we fetched the articles and avoid duplicating them on the database. As usual, we have
other methods: create() that adds a new row on the table, getByUserId() that fetches
all the rows based on the user_id attribute, and the setDbAdapter() method, which
we have on all the table gateways.

public function updateTimestamp($feedId)
{
 return $this->update(array(
 'updated_at' => new Expression('NOW()')
), array(
 'id' => $feedId)
);
}

As you can see, we issue a call to the update() method passing an array with the
changes we want to make; in this case, by updating the updated_at column with the
NOW() expression. The second parameter we pass to the method is the WHERE clause,
because we don't want to mess up and update all the rows.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the UserFeedArticleTable.php file
We are not going to review this table gateway in detail because it is really simple, and
as we said before, you should be capable of doing it yourself. In this case, we have a
couple of methods: the usual create() method to insert the data on the table and the
getByFeedId() method to retrieve all the articles of a specific feed. As usual, the
setDbAdapter() method is also present in this class.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The contents of the IndexController.php file
In this controller, we will take care of retrieving the information of an RSS to insert it
on the database, and this would imply the usage of Zend\Feed.

As usual, at the beginning of the class, we add the namespace and the dependencies we
need on this controller. In this case, we also add the following line to declare that we
want to use the Zend\Feed\Reader\Reader component of ZF2:

use Zend\Feed\Reader\Reader;

As we make a query to retrieve the URL of the RSS feed and the fav icon of the page to
use as an icon on our menu, we also need a Zend\Http\Client:

use Zend\Http\Client;

Additionally, we also use the following components:

use Zend\Dom\Query;
use Zend\Validator\Db\NoRecordExists;

As is common on the other controllers, we declare a few properties at the top of the
class to hold a copy of the table gateways and avoid creating a few of them using the
following code:

protected $userFeedsTable;
protected $userFeedArticlesTable;
protected $usersTable;

The methods that are not implemented on these controllers are the same as the ones we
saw in the previous table: get() and update(). They will contain the following line to
return a 405 HTTP code to the clients:

$this->methodNotAllowed();

Let's now review each method one by one to see what they do and how they do it.

The first one we will review is getList(), which basically returns a list of all the
feeds with the associated articles nested on the information. In the first few lines of the
code, you can see that we extract the information of the user based on the mandatory
username parameter on the route. As we mentioned before, this will be amended in the
future when we implement the API authentication. But for now, the following quick and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

dirty solution will do the job:

$username = $this->params()->fromRoute('username');
$usersTable = $this->getTable('UsersTable');
$user = $usersTable->getByUsername($username);
$userFeedsTable = $this->getTable('UserFeedsTable');
$userFeedArticlesTable = $this->getTable('UserFeedArticlesTable');

$feedsFromDb = $userFeedsTable->getByUserId($user->id);
$feeds = array();
foreach ($feedsFromDb as $f) {
 $feeds[$f->id] = $f;
 $feeds[$f->id]]['articles'] = $userFeedArticlesTable
 ->getByFeedId($f->id)->toArray();
}

return new JsonModel($feeds);

As you can see, we retrieved the feeds from the table based on the user ID and then we
proceeded to extract the articles of each feed from the database. If you take a closer
look, you can see that we are creating an associative array using the ID of the feed as a
key. This is a convenient way to return the information for the frontend and be able to
quickly extract the articles we need to show, based on the feed ID. Of course, if a feed
doesn't have any articles, we will store an empty array on the articles key.

In the following section, we are going to review the delete() method, which is very
simple:

$username = $this->params()->fromRoute('username');
$usersTable = $this->getTable('UsersTable');
$user = $usersTable->getByUsername($username);
$userFeedsTable = $this->getTable('UserFeedsTable');
$userFeedArticlesTable = $this->getTable('UserFeedArticlesTable');

$userFeedArticlesTable->delete(array('feed_id' => $id));
return new JsonModel(array(
 'result' => $userFeedsTable->delete(array(
 'id' => $id,
 'user_id' => $user->id
))
));

The procedure is essentially the same, the only difference with the method we reviewed
before is that we issue a delete() call on the table gateway, passing the feed_id
attribute. The first call removes the articles from user_feed_articles, and the second

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

delete() call removes the subscription from user_feeds. As you can see, we also
used the user_id attribute on the second delete() call. This is a small protection to
avoid someone deleting a subscription of another user. Of course, if we were doing this
in a professional way, we would want to first check if the user has the subscription we
are trying to delete before we actually delete the data.

Now let's jump to the last method we are going to explain in this controller. The
create() method takes care of extracting the information given by the user from the
website and storing the subscription. We can just accept an RSS URL and store it. But
in this case, we also need to extract the favicon of the original website to use it at the
frontend. So, the user needs to provide the URL of the website instead of the URL of the
RSS; we will take care of discovering the RSS URL by using the following code:

$username = $this->params()->fromRoute('username');
$usersTable = $this->getTable('UsersTable');
$user = $usersTable->getByUsername($username);

This is the first block and as we saw before, it just retrieves the user from the database
to have access to the user data.

$userFeedsTable = $this->getTable('UserFeedsTable');
$rssLinkXpath = '//link[@type="application/rss+xml"]';
$faviconXpath = '//link[@rel="shortcut icon"]';

In the second block, of the method, we retriev an instance of the table gateway, and then
store two XPath expressions that will help us to retrieve the HTML tags that contain the
RSS URL and the favicon URL.

$client = new Client($data['url']);
$client->setEncType(Client::ENC_URLENCODED);
$client->setMethod(\Zend\Http\Request::METHOD_GET);
$response = $client->send();

The third section of code prepares the HTTP client that we will use to retrieve the
HTML and issues the request.

Now, we arrive on a conditional block that checks if we got the HTML from the
website or not. In case the request fails, we throw an exception.

if ($response->isSuccess()) {
 ...
} else {
 throw new Exception("Website not found", 404);
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Note

XPath is a query language that allow us to select nodes inside an XML document.

Keep in mind that here we are taking a shortcut with an exception. In a proper
application, you need to add this to a queue and retry in a few minutes or just retry a few
times before throwing the exception. But this is out of the scope of this book.

$html = $response->getBody();
$html = mb_convert_encoding($html, 'HTML-ENTITIES', "UTF-8");

$dom = new Query($html);
$rssUrl = $dom->execute($rssLinkXpath);

if (!count($rssUrl)) {
 return new JsonModel(array(
 'result' => false,
 'message' => 'Rss link not found in the url provided'
));
}
$rssUrl = $rssUrl->current()->getAttribute('href');

$faviconUrl = $dom->execute($faviconXpath);
if (count($faviconUrl)) {
 $faviconUrl = $faviconUrl->current()->getAttribute('href');
} else {
 $faviconUrl = null;
}

This is the code you will find inside the if block that we saw before, which of course,
is only executed if we are able to get the contents of the page.

The first two lines just retrieve the contents and take care of converting the
encoding,ensuring that there are no issues when using the HTML inside the
Zend\Dom\Query object that comes later.

The first thing we try is to retrieve the HTML tag that contains the RSS link. In case we
don't find it, we just throw an exception. After that, we store the href value on a
variable and carry on trying to get the favicon URL. In this case, the favicon is not a
critical part. So if we don't get it, we just ignore it.

The final part of this method is the following block. Here, we will load the RSS URL
using a Zend\Feed\Reader\Reader component, and use that component to extract the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

information from the RSS-like title and so on:

$rss = Reader::import($rssUrl);

return new JsonModel(array(
 'result' => $userFeedsTable->create(
 $user->id,
 $rssUrl,
 $rss->getTitle(),
 $faviconUrl
)
));

As a final note on this controller we also have the methodNotAllowed() and
getTable() methods that are similar to the ones used on the other controllers. As you
see, we use exactly the same code over and over again for the methodNotAllowed()
method which is a good candidate to be promoted as a parent class and get rid of it on
all its children.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the CliController.php file
This is the new type of controller we are going to see in this book. Actually, it is not a
new type, it is just a controller extending the AbstractActionController class,
which will be called using the command-line Interface. This means that all the
controllers extending the AbstractActionController class can be called through the
CLI, but it is your job to detect if the request is coming from the normal channels as a
HTTP request or a CLI request, and then act in one way or the other on each case. You
can check the type of the request object to determine if it is a CLI request or a normal
request. In the first case, the object will be an instance of Zend\Console\Request, and
in the latter, it will be an instance of Zend\Http\PhpEnvironment\Request.

This script will take care of retrieving the new articles found on each RSS feed on the
database. To accomplish that, we will use the updated_at field to avoid duplications
on the articles. Also, keep in mind that this script is supposed to be called by a cronjob
every X minute to refresh the articles in an automatic way.

As we are going to read the RSS feed from this controller, we need to declare the usage
of the Feed components of ZF2 as follows:

use Zend\Feed\Reader\Reader;

We need to work with the new tables and this means that we need to declare the
properties that will hold the table and the getTable() method, which will create the
instances.

protected $userFeedsTable;
protected $userFeedArticlesTable;

After all of this, we arrive on the processFeedsAction() method we called on the
console route, which is the one in charge of processing the requests. Let's see what we
have inside it.

$request = $this->getRequest();
$verbose = $request->getParam('verbose')
 || $request->getParam('v');

These are the first two lines. The objective is to check if the verbose parameter was
specified while calling the script from the command line. If you remember, we specified
two versions of the verbose parameter, the long and the short one, and that's why we
need to retrieve both here.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

$userFeedsTable = $this->getTable('UserFeedsTable');
$userFeedArticlesTable = $this->getTable('UserFeedArticlesTable');
$feeds = $userFeedsTable->select();

The following block of code gets instances of the tables we need to use, and utilizes the
first one to fetch all the feeds on the database and loop over them to execute the
following code:

foreach ($feeds as $feed) {
 if ($verbose) {
 printf("Processing feed: %s\n", $feed['url']);
 }
 $lastUpdate = strtotime($feed['updated_at']);
 $rss = Reader::import($feed['url']);

 // Loop over each channel item/entry and store relevant data
 for each
 foreach ($rss as $item) {
 $timestamp = $item->getDateCreated()->getTimestamp();
 if ($timestamp > $lastUpdate) {
 if ($verbose) {
 printf("Processing item: %s\n", $item
 ->getTitle());
 }
 $author = $item->getAuthor();
 if (is_array($author)) {
 $author = $author['name'];
 }

 $userFeedArticlesTable->create(
 $feed['id'],
 $item->getTitle(),
 $item->getContent(),
 $item->getLink(),
 $author
);
 }
 }

 if ($verbose) {
 printf("Updating timestamp\n");
 }

 $userFeedsTable->updateTimestamp($feed['id']);

 if ($verbose) {
 printf("Finished feed processing\n\n");
 }

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

}

The first part just outputs the information to the console in case the verbose parameter
is specified. Then, we get the last update from the database and convert it to a
timestamp to be able to compare it. Right after that, we import the RSS feed using the
Zend\Feed\Reader\Reader component and loop over it to access all the articles.

For each article on the feed, we extract the timestamp and compare it against the value
of the last update we have on the database. In case the article was published after the
last update, we proceed printing more debug information, and then insert the data on the
table, using the information we get from the item object.

After looping through all the articles, we print more debug information and then update
the timestamp for this feed on the database, finishing with more debug strings.

If something goes wrong while processing, the script will stop. So, if you are going to
use this on a production-ready application, you need to take care of all the exceptions
that can occur.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The ApiErrorListener.php file
Because now the controllers can be called by the normal channel or CLI, we need to
handle the errors in a different way for each case. If it is an error produced while
fulfilling an HTTP request, we need to return it using the method we have in place;
however, if an error occurs while running the CLI script, we need to output it on the
console. To fix this, we have to do a small change in the ApiErrorListener.php file,
and replace the first line of the onRender() method. Instead of just checking if the
response is OK, we are also going to test if the request is a CLI request.

 if ($e->getRequest() instanceOf \Zend\Console\Request ||
$e->getResponse()->isOk())

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
At the frontend, we are going to create a new module called Feeds, modify the API
module, and also the layout.phtml file inside the Common module. The folder structure
is as follows:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The API module
As we did before, we need to extend the ApiClient.php class and add the required
methods to interact with the new endpoint we just created on the API side of the app.

The following three changes will allow us to interface the functionality provided at the
frontend with the corresponding actions in the API.

Modifying the ApiClient.php file

The file will be modified to add three new methods: getFeeds(),
addFeedSubscription(), and removeFeedSubscription(). The definition of the
getFeeds()method is as follows:

public static function getFeeds($username)
{
 $url = self::$endpointHost . sprintf(
 self::$endpointFeeds,
 $username
);
 return self::doRequest($url);
}

The first method will just issue a GET request at the endpoint using the username
parameter on the URL. This will return the list of feeds of that user. The definition of the
addFeedSubscription() method is as follows:

public static function addFeedSubscription($username, $postData)
{
 $url = self::$endpointHost . sprintf(
 self::$endpointFeeds,
 $username
);
 return self::doRequest(
 $url,
 $postData,
 Request::METHOD_POST
);
}

This is the second method. The only difference with the first one is that now we send an
array of data to the API containing the URL of the website to which we want to
subscribe and force a specific type of request; in this case, it's POST. The definition of
the removeFeedSubscription() method is as follows:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

public static function removeFeedSubscription($username, $feedId)
{
 $url = self::$endpointHost . sprintf(
 self::$endpointSpecificFeed,
 $username,
 $feedId
);
 return self::doRequest($url, null, Request::METHOD_DELETE);
}

And this is the last method we need to add. Now the URL used to issue the request will
contain the username and also the ID of the feed we want to remove. On the request
side, we force the DELETE method because (if you remember) we are dealing with the
RESTful web service.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The Feeds module
The Feeds module is the new module we are going to add. Of course, this module will
contain all the required data to handle a new feed reader. As usual, when we create a
new module, we have to inform ZF2 about its existence. In order to accomplish this, we
only have to add the name of the module on the application.config.php file in an
appropriate configuration section.

The contents of module.config.php

Let's have a look at the contents of the module.config.php file. As you can imagine,
we are going to expose three new routes: the first, to list the contents; the second, to
handle the subscription request; the third, to handle the unsubscribed request. The routes
look as follows:

'router' => array(
 'routes' => array(
 'feeds' => array(
 'type' => 'Zend\Mvc\Router\Http\Segment',
 'options' => array(
 'route' => '/:username/feeds[/:feed_id]
 [/page/:page]',
 'constraints' => array(
 'username' => '\w+',
 'feed_id' => '\d+',
),
 'defaults' => array(
 'controller' => 'Feeds\Controller\Index',
 'action' => 'index'
),
),
),
 'feeds-subscribe' => array(
 'type' => 'Zend\Mvc\Router\Http\Segment',
 'options' => array(
 'route' => '/:username/feeds/subscribe',
 'constraints' => array(
 'username' => '\w+',
),
 'defaults' => array(
 'controller' => 'Feeds\Controller\Index',
 'action' => 'subscribe'
),
),
),

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'feeds-unsubscribe' => array(
 'type' => 'Zend\Mvc\Router\Http\Segment',
 'options' => array(
 'route' => '/:username/feeds/unsubscribe',
 'constraints' => array(
 'username' => '\w+',
),
 'defaults' => array(
 'controller' => 'Feeds\Controller\Index',
 'action' => 'unsubscribe'
),
),
),
),
),

Right after that, we need to specify the available controllers and the view manager
configuration, which is as follows:

'controllers' => array(
 'invokables' => array(
 'Feeds\Controller\Index' =>
 'Feeds\Controller\IndexController'
),
),
'view_manager' => array(
 'template_path_stack' => array(
 __DIR__ . '/../view',
),
),

The IndexController.php file

The controller will also contain three methods, one for each route we declared. The
components we need to use are as follows:

use Zend\Mvc\Controller\AbstractActionController;
use Zend\Stdlib\Hydrator\ClassMethods;
use Zend\Navigation\Navigation;
use Zend\Navigation\Page\AbstractPage;
use Zend\Paginator\Paginator;
use Zend\Paginator\Adapter\ArrayAdapter;
use Api\Client\ApiClient;
use Users\Entity\User;
use Feeds\Entity\Feed;
use Feeds\Forms\SubscribeForm;
use Feeds\Forms\UnsubscribeForm;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

As you can see, we have a mix of the components we created and the components from
ZF2. If you notice carefully, you will realize that the last two are related to the
Navigation object. We are going to learn how to add pages to it programmatically and
also how to use the default behavior.

Now, let's dissect the indexAction() method that will show the feeds with the feed
menu and the articles as follows:

$viewData = array();

$flashMessenger = $this->flashMessenger();

$username = $this->params()->fromRoute('username');
$this->layout()->username = $username;

$currentFeedId = $this->params()->fromRoute('feed_id');

$response = ApiClient::getWall($username);
if ($response !== false) {
 $hydrator = new ClassMethods();

 $user = $hydrator->hydrate($response, new User());
} else {
 $this->getResponse()->setStatusCode(404);
 return;
}
$subscribeForm = new SubscribeForm();
$unsubscribeForm = new UnsubscribeForm();
$subscribeForm->setAttribute(
 'action',
 $this->url()->fromRoute(
 'feeds-subscribe', array('username' => $username)
)
);
$unsubscribeForm->setAttribute(
 'action',
 $this->url()->fromRoute(
 'feeds-unsubscribe', array('username' => $username)
)
);

These are the first lines. We will get some data from the route, such as the username and
the current feed ID if we are looking at some articles. After that, we get the information
of the user, create an instance of the subscribed and unsubscribed form, and finally,
configure them, setting the actions that will handle their requests.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

$hydrator = new ClassMethods();
$response = ApiClient::getFeeds($username);
$feeds = array();
foreach ($response as $r) {
 $feeds[$r['id']] = $hydrator->hydrate($r, new Feed());
}

if ($currentFeedId === null && !empty($feeds)) {
 $currentFeedId = reset($feeds)->getId();
}

The following block of code takes care of getting the feeds of the user from the API and
hydrating the Feed entities. After that, we check if we are already reading articles from
a feed. If not, we assign the first feed as default, in case the user has several
subscriptions.

$feedsMenu = new Navigation();
$router = $this->getEvent()->getRouter();
$routeMatch = $this->getEvent()->getRouteMatch()->setParam(
 'feed_id',
 $currentFeedId
);
foreach ($feeds as $f) {
 $feedsMenu->addPage(
 AbstractPage::factory(array(
 'title' => $f->getTitle(),
 'icon' => $f->getIcon(),
 'route' => 'feeds',
 'routeMatch' => $routeMatch,
 'router' => $router,
 'params' => array(
 'username' => $username,
 'feed_id' => $f->getId()
)
))
);
}

This is the block of code that will create the feed menu. We have used the Navigation
component from ZF2 and added pages to it based on the feeds a user has. The
AbstractPage factory will create pages of the MVC type, which means that they are tied
to routes or pairs of controllers/actions. This also gives us a benefit; the component will
detect the element of the menu that is actively looking at the URL of the request by itself.
As we have created the pages manually, we need to help the component a little by
specifying the router where all the routes are stored and the RouteMatch object that

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

will match the URL we are fulfilling. The RouteMatch object will be used to test each
page against it and decide which one is active. Finally, while creating a page, we can
add more parameters than the ones needed, and then retrieve them. This is what we do
with the icon parameter.

$currentFeed = $currentFeedId != null? $feeds[$currentFeedId] : null;

if ($currentFeed != null) {
 $paginator = new Paginator(
 new ArrayAdapter($currentFeed->getArticles())
);
 $paginator->setItemCountPerPage(5);
 $paginator->setCurrentPageNumber(
 $this->params()->fromRoute('page')
);
 $viewData['paginator'] = $paginator;
 $viewData['feedId'] = $currentFeedId;
}

The following block of code takes care of preparing a Zend\Paginator\Paginator
component to show the posts with a paginator. As you can see in the code, we have used
the ArrayAdapter object, which allows us to pass an array of content to be paginated.
After that, we configure the paginator and assign it to the view as follows:

$unsubscribeForm->get('feed_id')->setValue($currentFeedId);

$viewData['subscribeForm'] = $subscribeForm;
$viewData['unsubscribeForm'] = $unsubscribeForm;
$viewData['feed'] = $currentFeedId;
$viewData['username'] = $username;
$viewData['feedsMenu'] = $feedsMenu;
$viewData['profileData'] = $user;

return $viewData;

This is the last block of code of this method. In here, we set the value of the hidden field
on the unsubscribe form that will contain the id of the feed the user wants to conceal.
After that, we just pass the information we need to the view.

In the following code, we are going to review the subscribeAction() and
unsubscribeAction() methods. We will put them together because they are
essentially the same and there is a difference in only one line. They are good candidates
for being refactors and I leave you with the task of mixing them and removing their
duplications.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

$username = $this->params()->fromRoute('username');
$request = $this->getRequest();

if ($request->isPost()) {
 $data = $request->getPost()->toArray();

 $response = ApiClient::addFeedSubscription(
 $username, array('url' => $data['url'])
);

 if ($response['result'] == true) {
 $this->flashMessenger()->addMessage(
 'Subscribed successfully!'
);
 } else {
 return $this->getResponse()->setStatusCode(500);
 }
 return $this->redirect()->toRoute(
 'feeds', array('username' => $username)
);
}

As you can see now, the content is really simple. After getting the request, we check if
it's a POST request. After that, we get the data from the form, and use the ApiClient
interface to send the appropriate request to the API. Based on the response obtained, we
show an error message or we redirect the user to the list of feeds where they can see the
new one.

The line that is different between them, of course, is the one that utilizes ApiClient. In
the first case, we issue a call to addFeedSubscription() and in the second case, we
issue a call to removeFeedSubscription(), as given in the following code:

$response = ApiClient::removeFeedSubscription(
 $username,
 $data['feed_id']
);

There are two things that can be improved in the preceding code. The first one is the
validation. I don't know if you noticed, but we are not checking if the form is valid or
not. I leave that as an exercise to you because you should now be confident enough to
implement that part on this code. Another thing we can improve is the error handling; for
brevity purpose, we leave the error handling behind and take shortcuts for handling
them. But as we say all the time, if you are creating a production-ready application, you
need to take care of that.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Entities and forms

This new functionality contains a couple of forms with their views, and a couple of
entities to store the new data. We already saw in the previous chapters how to create
them and the contents inside them, so we are going to skip the explanation now in order
to focus on the new things we need to learn. It is very easy to see the contents. You just
need to browse the code and read the contents of the files. I'm sure they will look
familiar to you.

The menu-feed-container.phtml file

Do you remember the feed menu we populated before? Now we want to customize the
way it looks to add our own classes and structure. In order to accomplish that, when we
render the menu, we can specify a partial that will take care of rendering the menu itself,
and that's what we are going to do now using the following code:

<ul id="subscription-list">
 <?php foreach ($container->getPages() as $p) : ?>

 <a href="<?php echo $p->getHref() ?>"
 class="<?php echo $p->isActive()? 'active' : '' ?>">
 <?php if ($p->get('icon') !== null) : ?>
 <img src="<?php echo $p->get('icon') ?>" />
 <?php endif; ?>
 <?php echo $p->getTitle() ?>

 <?php endforeach; ?>

When we deal with HTML, we usually remove some attributes to be able to fit the code
in here. So for the real version, check the code. For the explanation purpose, the
preceding version is more than enough.

While using a partial with a Navigation component, the container is exposed to us as a
variable. This is the way we have to access the pages of the menu. In this case, we
iterate over the pages to create each link. As you remember, we use a RouteMatch
object to decide whether a page is active or not and we now benefit from that using the
isActive() method. Based on that, we add or do not add a class to the link of the
menu.

Also, we mentioned that you can add more parameters to the pages and retrieve them
later. We added the icon, and now we are able to retrieve it here and use the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

information stored inside it to add the favicon of the page as an image on the menu.

Finally, you can always use the methods provided by default, for example, getTitle()
in this case, to get the name of the menu item.

The index.phtml file

As before, the view is big and ugly and this is why we are just going to focus on one
small section of the view, but that doesn't mean that you can ignore the contents of the
file. So, jump to the following code and see the file by yourself:

<?php echo $this->navigation($feedsMenu)->menu()->setPartial(
 'partials/menu-feed-container.phtml'
) ?>

This is how we can use the Navigation component we created on the controller to
render it using the custom partial we created. We are using the navigation helper to
pass the container of the menu, and then configuring it to use the partial.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The Common module
In the Common module, we are going to make a small change that will benefit from the
automated side of ZF2. We will add a new item on the header menu; but instead of
doing it manually, we are going to use the default configuration of a Navigation
component. In order to do that, we just need to specify the contents of the menu in a
configuration file, and then use the navigation helper to render a menu with the default
settings.

The global.php file

The global.php file stored in the config folder of the project is where we are going
to store the contents of the menu. It is very easy, because we add the items as an array as
given in the following code:

return array(
 'navigation' => array(
 'default' => array(
 array(
 'label' => 'Home',
 'route' => 'wall',
),
 array(
 'label' => 'Feeds',
 'route' => 'feeds',
),
)
),
 'service_manager' => array(
 'factories' => array(
 'navigation' =>
 'Zend\Navigation\Service\DefaultNavigationFactory',
),
),
);

In the navigation section, we have the default menu containing only labels and routes.
This will force the Navigation components to use MVC pages and as you are
imagining, we will benefit from the RouteMatch attribute that the component will
generate.

The second part of the config file is the service manager's configuration to point out
what we mean with navigation, and point it to the right file on the framework.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The layout.phtml file

This is the last file we need to modify to make everything work. We are going to render
the menu we just created on the config file. It's very easy because we only need to add
the lines of code where we had the old menu:

<?php $this->navigation('navigation')->findBy('route', 'wall')
 ->setParams(array('username' => $this->username)); ?>
<?php $this->navigation('navigation')->findBy('route', 'feeds')
 ->setParams(array('username' => $this->username)); ?>
<?php echo $this->navigation('navigation')->menu()
 ->setUlClass('nav')->renderMenu(); ?>

The first two lines are taking care of specifying the username value that has to be used
on the route while creating the links.

After that, in the last line, instead of passing a container to the navigation helper, we
are passing a string that will be resolved to the DefaultNavigationFactory object,
which we specified on the service manager's configuration before.

There are also two things that we need to notice here. The first one is that we can
customize the class used for the ul tag that the helper puts in place while rendering the
menu. This is accomplished using the setUlClass() method. The second thing is that
we are using the same helper as the one used for the feeds and, if you remember, we
specified a custom partial to render the menu. To avoid the usage of that partial here,
we just need to force a call to the renderMenu() method, which will render it using the
default ul/li structure.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
We just added a new big functionality that will keep our users on the social network for
more often. Congratulations!

In this chapter, we saw how to use components, for example, Zend\Feed in order to
parse RSS feeds and forget about the XML structure. We explored the usage of the
framework to create command-line interface scripts and still have access to all the
components we created and the ones provided by ZF2. Finally,we also discovered how
to create a menu using the Zend\Navigation component in the simplest way and also in
the programmatic way with a customized partial.

In the next chapter, we will give the users the option of registering on the social
network, but still they will not be able to log in. This will be covered right after the
registration chapter.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 10. Sign Up
Now that we have all the basic features on our product, we need users to use them! In
order to do that, we need to allow them to register and have an account on the social
network.

Until now, all the forms we created are fairly simple, but by the end of this chapter, you
will know how to deal with complex forms with the validation for each field, custom
error messages, and its proper handling at the frontend. You will also learn how to use
the Zend\Crypt component in order to encrypt the user's password in a really secure
way. For the signup form, we will also see how to switch the default layout to another
one when needed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Overview
The signup form looks similar to the following screenshot, including the error messages:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
The tasks we have to do on this side of the project are very simple. We just need to
accept the data sent at the frontend, validate it, and create the user on the database by
first encrypting the password of the user. As we are going to allow the users to upload
an avatar, we will also handle the processing of the image in order to show it
everywhere.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
The requirements in the API level are as follows:

Accept the POST request at the /api/users[/:id] endpoint
Process the image and store it on the server
Encrypt the password of the user before storing the data

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Working with the database
As we already have the users table, there is no need to create a table or modify it; we
are going to use the same one. But before jumping to the next section and start coding,
we need to talk about the password column in the users table.

If you notice, the password column is a BINARY(60) value. This is because the
component we are going to use to encrypt the password is based on bcrypt, and will
generate a 60-character binary string for each password we store.

Note

bcrypt is a cipher based on the Blowfish cipher that contains a salt to protect against
rainbow table attacks. Read more about it at: http://en.wikipedia.org/wiki/Bcrypt

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://en.wikipedia.org/wiki/Bcrypt

The module structure
We are going to work in the Users module created in the first few chapters of the book,
so we don't need to create new folders and files. We just need to modify the ones we
already have. The folder structure is given in the following screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Extending UsersTable.php
We need to extend this table gateway and add three new methods called create(),
updateAvatar(), and getInputFilter(). Let's review them one by one. The
create() method is as follows:

public function create($userData)
{
 $userData['created_at'] = new Expression('NOW()');

 return $this->insert($userData);
}

If you noticed, we changed the definition of the create() method. Earlier, we were
passing all the values we needed to create the row as a parameters to the method, and
then assembling an array specifying all the data while performing the insert.

The signup form will contain a lot of fields and data. Having all the data as parameters
will be impractical, and that's why in this method, we will receive an array containing
the data needed to create the table already filtered and validated (this should include
only the fields without any extra information; if not, the insert would fail). As you can
see, the only modification we did is that we added the created_at value.

This gives us another way to manage the create() methods. In fact, we can move this
generic code to a parent class and delete all the redundant code, allowing us to clean up
and keep everything simple. At this point, feel free to modify the code of the project in
order to achieve this behavior, if desired. The updateAvatar() method is as follows:

public function updateAvatar($imageId, $userId)
{
 return $this->update(array(
 'avatar_id' => $imageId
), array(
 'id' => $userId)
);
}

The updateAvatar() method is the second method we have to create, which will help
us in assigning an avatar to a user. The idea is that we need to create the user row first,
and then upload the image specifying the user_id parameter, and then update the user to
reflect the avatar_id parameter based on the image we just inserted.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

This method essentially sets the avatar_id value of a row by first filtering the id
attribute of the user.

Finally, we need to create the getInputFilter() method. Because the method is long
and repetitive, I will just highlight the areas of interest for us and things we didn't cover
before.

array(
 'name' => 'Zend\Validator\Db\NoRecordExists',
 'options' => array(
 'table' => 'users',
 'field' => 'username',
 'adapter' => $this->adapter
)
)

The following code defines the validator we are going to use in the username field to
validate that there is no other user with the same username.

array(
 'name' => 'EmailAddress',
),
array(
 'name' => 'Zend\Validator\Db\NoRecordExists',
 'options' => array(
 'table' => 'users',
 'field' => 'email',
 'adapter' => $this->adapter
)
)

There are two validators that are used on the email address: the first one checks the
format and validity of the e-mail address; the second one is used to confirm that there is
no other user with the same e-mail address.

array(
 'name' => 'StringLength',
 'options' => array(
 'min' => 1,
 'max' => 50
)
),

You will see the following type of validator everywhere, and it's used to check the
minimum and maximum size of the data:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

'validators' => array(
 array(
 'name' => 'InArray',
 'options' => array(
 'haystack' => array('0', '1')
)
),
),

This is the last validator we are going to comment. This is used to check that the value
provided belongs to one of the options we have set. In this case, the options are 0 or 1
(male, female), and the data sent by the client should only be 1 or 0.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The IndexController.php file
In the controller, we are going to add a new method called create(), which will take
care of getting the information from the client, storing the image when the user uploads
an avatar, and creating the user account.

$usersTable = $this->getUsersTable();

$filters = $usersTable->getInputFilter();
$filters->setData($unfilteredData);

if ($filters->isValid()) {
 ...
} else {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => $filters->getMessages()
));
}

return $result;

This is the skeleton of the method. As you can see, we get an instance of the users table
gateway, and then we configure the filters and validators to test the data that comes as a
parameter to the create() method. If the data is invalid, we return an error message
with the specific reason about why it failed. If the data is correct, we proceed inside the
if block, as given in the following code:

$data = $filters->getValues();

$avatarContent = array_key_exists('avatar', $unfilteredData) ?
 $unfilteredData['avatar'] : NULL;
$bcrypt = new Bcrypt();
$data['password'] = $bcrypt->create($data['password']);

The following is the first section of code executed after checking if the data is correct or
not. What we do here is retrieve the filtered data, extract the avatar, and encrypt the
password using the Bcrypt component:

$user = $usersTable->getByUsername($data['username']);
if ($usersTable->create($data)) {
 if (!empty($avatarContent)) {
 $userImagesTable = $this->getUserImagesTable();

 $filename = sprintf(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'public/images/%s.png',
 sha1(uniqid(time(), TRUE))
);
 $content = base64_decode($avatarContent);
 $image = imagecreatefromstring($content);

 if (imagepng($image, $filename) === TRUE) {
 $userImagesTable->create(
 $user['id'], basename($filename)
);
 }
 imagedestroy($image);

 $image = $userImagesTable->getByFilename(
 basename($filename)
);
 $usersTable->updateAvatar($image['id'], $user['id']);
 }

 $result = new JsonModel(array(
 'result' => true
));
} else {
 $result = new JsonModel(array(
 'result' => false
));
}

The first few lines retrieve the information from the filter and the possible image from
the original data. The $unfilteredData array comes from the client and is passed to
the create() method as the first parameter. After that, we encrypt the password of the
user using the Bcrypt component of Zend\Crypt\Password. Encrypting something
using the Bcrypt component is as easy as creating an instance and calling the create()
method on the object, passing the data you want to encrypt as the first parameter. You
may notice that right now, we are passing the data of the user to the server in plain text,
which is, of course, a security breach. If you are creating a production-ready
application, you may need to encrypt the data before sending it to the server and/or use
the HTTPS protocol while sending sensitive data.

Once we have the password encrypted, we proceed to create the user account on the
database and based on the success of that operation, we jump to process the avatar if we
need to.

To process the image, we follow the same procedure as when the user posts an image

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

on the wall. Of course, we are duplicating code here, and you can optimize it by calling
a shared method with the wall controller to avoid duplication of code.

When the image is saved on the server and the data is stored on the database, we
retrieve its ID from the database in order to update the avatar_id field on the user
table for this specific user.

Finally, when the avatar has been updated as expected on the user account, we return
true to the client.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
Let's review the work we need to do at the client side of the app. We need to create a
new layout in order to remove the header menu. After that, we have to create the signup
form and its view. Then, we should modify the controller to use the new layout and
process the signup form. We also need to modify the controller view to show the signup
form and finally adapt ApiClient to be able to send the data to the API.

The following screenshot shows the structure of the module:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The signup.phtml file
Let's start with the layout. The file is not shown in the screenshot, but it should be
placed in the Common module next to the layout.phtml file. The contents of the file are
the same as that of the layout.phtml file. The only difference is that we removed the
following lines of code:

<?php $this->navigation('navigation')->findBy('route', 'wall')
 ->setParams(array('username' => $this->username)); ?>
<?php $this->navigation('navigation')->findBy('route', 'feeds')
 ->setParams(array('username' => $this->username)); ?>
<?php echo $this->navigation('navigation')->menu()
 ->setUlClass('nav')->renderMenu(); ?>

The objective we want to achieve is a signup form without the navigation menu at the
top. You can do this by using another layout or by creating a view helper that checks the
route and based on that, shows or hides the menu.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The SignupForm.php file
The SignupForm.php file file is the file in which we are going to add all the fields
for the signup form. Because the file is huge, we will look at the following relevant
parts:

Field Type

Username Text

Email Text

Password Password

Repeat password Password

Avatar File

Name Text

Surname Text

Bio Textarea

Location Text

Gender Radio

This is the list of fields we have on the form and their types. We need to highlight that
we are also providing the label attribute and customizing the label class, as follows:

$this->add(array(
 'name' => 'location',
 'type' => 'Zend\Form\Element\Text',
 'options' => array(
 'label' => 'Location',
 'label_attributes' => array(
 'class' => 'control-label'
)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

)
));

This is the location field code. As you can see, the label attribute and class are
specified inside the options key. Almost all the form view helpers allow us to specify
their options in the following section of the field configuration:

$this->add(array(
 'name' => 'gender',
 'type' => 'Zend\Form\Element\Radio',
 'options' => array(
 'label' => 'Gender',
 'label_attributes' => array(
 'class' => 'radio'
),
 'value_options' => array(
 0 => 'Female',
 1 => 'Male'
)
)
));

The preceding code is the code for the Gender field. As you can see, we specified the
options for the radio buttons in the value_options key. This will also configure an
InArray validator based on the values provided.

For the complete code, do not hesitate to jump to the file and see it yourself.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The signup-form.phtml file
As we are trying to make a most useful and customized form, we are going to review a
few things on this file.

The way of creating a view is the same as the ones we saw before; the difference is that
we now also add the HTML code in between and customize some HTML tag attributes
based on the data provided by the PHP code and the fields.

The following structure is followed by all the fields:

<div class="control-group <?php echo count($form->get('name')-
>getMessages()) > 0 ? 'error' : '' ?>">
 <?php echo $this->formLabel($form->get('name')); ?>
 <div class="controls">
 <?php echo $this->formElement($form->get('name')); ?>
 <?php echo $this->formElementErrors()
 ->setMessageOpenFormat('<div class="help-inline">')
 ->setMessageSeparatorString(
 '</div><div class="help-inline">'
)
 ->setMessageCloseString('</div>')
 ->render($form->get('name')); ?>
 </div>
</div>

I know that is difficult to visualize, but that's what happens usually with HTML views.
The code is verbose and usually doesn't fit on one line.

The first thing we do is customize the class of the div element that contains the field.
We check if there are any error messages for a specific field; in case there are errors,
we add the error class to the class attribute of the div element.

After that, we proceed to print the label of the field. We accomplish that by using the
formLabel() helper that receives the field as a parameter. This label will contain the
control-label class, because we specified it while configuring the field in the form
file.

Then, we have more HTML to wrap the field itself and right after that, we print the field
and the error messages.

The error messages are printed using the formElementErrors() method, which

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

receives the field as a parameter; but in this case, we are also customizing the way the
helper will render the error messages. We do that by using the provided methods, such
as setMessageOpenFormat(), setMessageSeparatorString(), and
setMessageCloseString(). As you can see, we customize the helper the first time we
use it, and then it will remember the options we set for the next fields.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

User.php
In this file, we need to define the filters and validators we are going to use to validate
the data we will store. When we work with filters, we need to add the following lines
below the namespace to declare the dependencies:

use Zend\InputFilter\InputFilter;
use Zend\InputFilter\Factory as InputFactory;

After that, we can jump to creating the getInputFilter() method, which will contain
the filters and validators for the data. As we did with the form, we are going to show the
relevant sections because the method is vast.

$inputFilter->add($factory->createInput(array(
 'name' => 'username',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'NotEmpty',
 'break_chain_on_failure' => true
),
 array(
 'name' => 'StringLength',
 'options' => array(
 'min' => 1,
 'max' => 50
),
),
),
)));

This is the first example we are going to examine. Let's focus on the first validation. If
you take a closer look, you will notice that it contains an option called
break_chain_on_failure set to true. This means if the validator fails, the validation
will not continue and will be stopped there for this specific field. This is useful if you
want to avoid the user getting a lot of error messages, or things that don't make sense, or
are evident; for example, an error message saying that the value cannot be empty, and
then another error message saying that the length should be a minimum of one character.

array(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'name' => 'EmailAddress',
 'options' => array(
 'messages' => array(
 \Zend\Validator\EmailAddress::INVALID_FORMAT =>
 'The input is not a valid email address',
)
)
),

This validator belongs to the Email field. What I want to highlight here is how we can
customize error messages. What we have to do is define them on the options key with
the name messages and using it as a key of the array, use the same constant on the
validator to define the original error message. Doing this, we are overwriting the error
message for that specific error.

array(
 'name' => 'InArray',
 'options' => array(
 'haystack' => array('0', '1')
)
),

Remember we said that when you use a MultiCheck element, it adds an InArray
validator by default. Well, this is how you configure the InArray validator manually for
a specific element.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The contents of the IndexController.php file
We need to fill the contents of the indexAction() method, which we left empty in the
previous chapters. Let's review the following lines of code step-by-step:

$this->layout('layout/signup');

$viewData = array();
$signupForm = new SignupForm();
$signupForm->setAttribute('action', $this->url()->fromRoute(
 'users-signup'
));

The first thing we do is set a new layout. After that, we create the instance of our brand
new form and set the action attribute to point to the following method:

$request = $this->getRequest();
if ($request->isPost()) {
 ...
}

$viewData['signupForm'] = $signupForm;
return $viewData;

After that, we check if the request is a POST request; if it isn't, we just pass the form to
the view in order to render it if it is, we will proceed with the processing of the form
using the following code:

$data = $request->getPost()->toArray();

$signupForm->setInputFilter(User::getInputFilter());
$signupForm->setData($data);

if ($signupForm->isValid()) {
 ...
}

Here, we are getting the data from the request, configuring the filters and validators on
the form based on the configuration we made on the User entity, and after that checking
if the data sent compiles with what we expect.

$files = $request->getFiles()->toArray();
$data = $signupForm->getData();
$data['avatar'] = $files['avatar']['name'] != '' ?
 $files['avatar']['name'] : null;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

After that, we proceed to process the data itself. By using the following lines, we will
get the data filtered by the form and the possible image uploaded by the user, and merge
them together:

$size = new Size(array('max' => 2048000));
$isImage = new IsImage();
$filename = $data['avatar']['name'];

$adapter = new \Zend\File\Transfer\Adapter\Http();
$adapter->setValidators(array($size, $isImage), $filename);

if (!$adapter->isValid($filename)){
 $errors = array();
 foreach($adapter->getMessages() as $key => $row) {
 $errors[] = $row;
 }
 $signupForm->setMessages(array('avatar' => $errors));
}

Note

Notice that you can specify the size of the file using the International System of Units.
The accepted SI notation units are: KB, MB, GB, TB, PB, and EB. All these units are
converted using 1024 as the base value.

In case the user has uploaded an image, we proceed to validate the size; and in case of
an error, we set it on the form using the following code:

$destPath = 'data/tmp/';
$adapter->setDestination($destPath);

$fileinfo = $adapter->getFileInfo();
preg_match('/.+\/(.+)/', $fileinfo['avatar']['type'], $matches);
$newFilename = sprintf('%s.%s', sha1(uniqid(time(), true)),
$matches[1]);

$adapter->addFilter('File\Rename',
 array(
 'target' => $destPath . $newFilename,
 'overwrite' => true,
)
);
if ($adapter->receive($filename)) {
 $data['avatar'] = base64_encode(
 file_get_contents(
 $destPath . $newFilename

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

)
);

 if (file_exists($destPath . $newFilename)) {
 unlink($destPath . $newFilename);
 }
}

The following are the lines that move the sent data from the existing tmp folder to our
tmp folder, then renames the file to avoid collisions and reads the contents of the file.
Once the contents have been read, we remove the file and proceed to create the account
using the following code:

unset($data['repeat_password']);
unset($data['csrf']);
unset($data['register']);

$response = ApiClient::registerUser($data);

if ($response['result'] == true) {
 $this->flashMessenger()->addMessage('Account created!');
 return $this->redirect()->toRoute(
 'wall', array('username' => $data['username'])
);
}

If you remember, we expect to have all the data as one parameter of the create()
method on the API side. That is why we are getting rid of the repeat_password, csrf,
and register values. Right after that, we use the ApiClient interface to call the API
and then if the response is successful, we redirect the user to the new wall.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The index.phtml file
The index.phtml file is really simple, and we are just calling the partial that will
render the signup form, which is accomplished using the following lines of code:

<?php echo $this->partial(
 'forms/signup-form.phtml', array('form' => $signupForm)
); ?>

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Changes in the ApiClient.php file
In this file, we just need to add a new method called registerUser(), which contains
the following lines:

$url = self::$endpointHost . self::$endpointUsers;
return self::doRequest($url, $postData, Request::METHOD_POST);

Also, we need to adapt the endpoints we have for the users as follows:

protected static $endpointUsers = '/api/users';
protected static $endpointGetUser = '/api/users/%s';

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
We now have a really neat and complete form with which the users can get an account
on our social network!

In this chapter, we saw how to secure passwords using the bcrypt encryption provided
by the Zend\Crypt\Password component. We also saw how to create a complex form
with validation for each field, custom error messages, and the proper handling at the
frontend using custom classes that will turn the field to red.

In the next chapter, we will complete the cycle of the register/login functionality,
allowing the users to log in and log out from the social network with their credentials.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 11. Log in
In the previous chapter, we allowed users to create an account on our systems and now
we should give them the ability to log in and use our product.

This chapter will be really simple in terms of the API; remember we said that our API
is stateless, which means that we need not keep track of sessions. Because of that, the
changes we have to do are easy, and we just need to validate the credentials of the user.

This is completely different at the frontend, where we need to put more efforts and code
all the session-handling systems, integrate with the existing code and functionalities, and
create a form for logging in.

By the end of this chapter, you will know how to deal with authentication and
authorization using AuthenticationService and the Acl components. You will see
how to configure the permissions of each group of users and also allow them to log out.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Overview
The following screenshot shows us how the login form looks and how the wall would
look when users start commenting on others' posts:

This is how the login form will look. After logging in, the system will recognize us and
allow us to comment on the entries made by other users as given in the following
screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
As we already discussed, we need to extend the API to be able to validate the
credentials of a user and return a proper response to the client.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
The requirements at the API level are as follows:

Add a new endpoint called /api/users/login
Process the information posted there to check the credentials using bcrypt, which
we already discussed in Chapter 10, Sign Up.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Overview of the module structure
As we did in the previous chapter, we are going to work on the Users module, and we
will add a new controller. The following screenshot shows us how the folders are
organized:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The module.config.php file
We need to do a couple of changes in this file to receive requests, with the following
code:

'login' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/api/users/login',
 'defaults' => array(
 'controller' => 'Users\Controller\Login'
),
),
),

This is the new route we need to declare in order to fulfill the login requests. Because
we are adding a new controller, we should also specify the name of the controller in the
controllers/invokable section as follows:

'controllers' => array(
 'invokables' => array(
 'Users\Controller\Index' =>
 'Users\Controller\IndexController',
 'Users\Controller\Login' =>
 'Users\Controller\LoginController',
),
),

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating the LoginController.php file
In this controller, we are going accept the credentials as post parameters. Because we
are doing everything by extending AbstractRestfulController, we should place our
code in the create() method, even if we are not exactly creating something.

As we need to verify the password using the bcrypt component, we need to add the
dependency at the top of the file after defining the following namespace:

use Zend\Crypt\Password\Bcrypt;

After we declare the class, we also need to declare a new property, which will hold the
user's table and also the method to load the table gateway. At this point of time, you
should be able to complete those two tasks by yourself, but if you have to struggle to do
it, do not hesitate to check the following source code:

public function create($data)
{
 $usersTable = $this->getUsersTable();
 $user = $usersTable->getByUsername($data['username']);

 $bcrypt = new Bcrypt();
 if (!empty($user) &&$bcrypt->verify(
 $data['password'],
 $user->password)
) {
 $result = new JsonModel(array(
 'result' => true,
 'errors' => null
));
 } else {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => 'Invalid Username or password'
));
 }

 return $result;
}

These are the contents of the create() method. As you can see, we get the data of the
user from the database. If the user exists, we verify the password sent by the client
against the password stored in the database. Each time you encrypt a password with
bcrypt, the hash will be different, and that's why you cannot just do a simple

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

comparison; you must use the verify() method from the Bcrypt component, which
will take care of checking if the passwords match or not and return a true/false result.
Then, it is just a matter of sending a true or false value to the client.

As we are again using sensible information, we should do this under the HTTPS
protocol in a production-ready project to ensure that the plain text password is
encrypted by the HTTPS protocol and kept safe when sending it to the server.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
Let's review the work we need to do on the client side of the app. We need to create a
new layout in order to remove the header menu, create the signup form and its view,
modify the controller to use the new layout and process the sign-up form, modify the
controller view to show the sign-up form, and finally adapt ApiClient to be able to
send the data to the API side.

The following is the structure of the module:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The login form
In the login form, we will ask the user for the username and the password. So, the form
will be very simple. Also, when we work with forms, we need to also create the form
view and the filter configuration. I'm pretty sure that you are totally capable of creating
these files by yourself, so give it a try! Remember that you can always check the source
code provided in the book.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Changes in the ApiClient.php file
We need to add a new method named authenticate() in this object in order to be able
to authenticate the user. As you can imagine, the method is really simple and we just
need to post the data to the API as follows:

protected static $endpointUserLogin = '/api/users/login';

We need to add this line at the top of the file to define the new endpoint, and then add
the following method:

public static function authenticate($postData)
{
 $url = self::$endpointHost . self::$endpointUserLogin;
 return self::doRequest($url, $postData, Request::METHOD_POST);
}

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Creating a new authentication adapter
Usually, when you use the authentication components from ZF2, you use the DbTable
adapter that help you in verifying the credentials against a database, specifying a table
name, a username column, and a password column. In our case, as we have taken the
API-centric approach, we cannot do this directly from the client, and we need to
interface it with the API.

As usual, the ZF2 components provide multiple ways to extend them or modify their
behavior to fit our needs, and that's what we are going to do now. Create a new adapter
for the authentication component that will use the API we created to validate the
credentials. Because this is something totally new, let's review it together line by line.

We will start by creating the Api.php file at the same location as in the preceding
screenshot:

namespace Common\Authentication\Adapter;

use Zend\Authentication\Adapter\AdapterInterface;
use Zend\Authentication\Result;
use Api\Client\ApiClient;
use Users\Entity\User;
use Zend\Stdlib\Hydrator\ClassMethods;

These are the namespaces and components we are going to use in this class. As you can
see, we have also included the User entity and the ClassMethods hydrator; you will
soon understand why.

The following code defines the class that extends from the base interface for the
adapters:

class Api implements AdapterInterface

The following two properties are going to store the credentials a user sends via the
form:

private $username = null;
private $password = null;

These properties will be populated in the constructor as given in the following code:

public function __construct($username, $password)
{

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $this->username = $username;
 $this->password = $password;
}

We will create an instance of the adapter manually and specify the username and
password at that point for later usage:

public function authenticate()
{
 $result = ApiClient::authenticate(array(
 'username' => $this->username,
 'password' => $this->password
));

 if ($result['result'] === true) {
 $hydrator = new ClassMethods();
 $user = $hydrator->hydrate(
 ApiClient::getUser($this->username), new User()
);

 $response = new Result(
 Result::SUCCESS,
 $user,
 array('Authentication successful.')
);
 } else {
 $response = new Result(
 Result::FAILURE,
 NULL,
 array('Invalid credentials.')
);
 }

 return $response;
}

This is the only method specified on the adapter interface that must be implemented in
our class. We have to implement the code, which will check the credentials here and
return the result as an instance of Zend\Authentication\Result. In order to create
the result object, we need to pass the result/failure of the authentication to the instance at
construction time, using the constants provided for the class, identity data, and message.

The identity message is a payload we store on the session to identify the user; you can
store the ID of the user or the whole object. In our case, we will store an instance of the
User entity so that we can also access the data and related info.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

As you can see on the first lines of the method, we use the ApiClient method to check
with the API if the credentials are fine. Based on the result from the API, we hydrate an
instance of the User entity to store it as an identity data or we generate an error. Finally,
no matter what the result is, we generate the specified Result object with the
corresponding information in it.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The IndexController.php file
We need to do four changes on this controller. In the indexAction() method, we
should check if the user is logged in at the beginning. In that case, we do not need to
show the signup form to the user, we will redirect it to the user wall. This is
accomplished by adding the following code at the top of the method:

$auth = new AuthenticationService();
$loggedInUser = $auth->getIdentity();

if ($loggedInUser !== null) {
 return $this->redirect()->toRoute(
 'wall',
 array('username' => $loggedInUser->getUsername())
);
}

Now, the second change we need to do is at the end of the method. We want to allow the
user to log in as soon as his or her account is created. Because we are going to
authenticate the user against our API, we need to declare the components we want to use
by adding the following code at the top of the file:

use Zend\Authentication\AuthenticationService;
use Common\Authentication\Adapter\Api as AuthAdapter;

We need to add the following code before redirecting the user to the wall to log in:

$auth = new AuthenticationService();
$authAdapter = new AuthAdapter(
 $data['username'],
 $data['password']
);
$auth->authenticate($authAdapter);

In the preceding code snippet, we created an instance of AuthenticationService, and
then created an instance of our adapter aliased here as AuthAdapter. We provided the
username and the password to the constructor, and finally, we called the authenticate
method on the $auth object, passing the auth adapter.

The third change we have to do in this file is adding the loginAction() method in
order to show the login form, and also to process the login. As we are going to create an
instance of the login form, we need to import the following code at the top of the file:

use Users\Forms\LoginForm;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Now let's review the code we are going to add on the newly created method:

$viewData = array();
$flashMessenger = $this->flashMessenger();

$loginForm = new LoginForm();
$loginForm->setAttribute(
 'action', $this->url()->fromRoute('users-login')
);

The following are the first lines. As you can see, we get an instance of the flash
messenger and also create an instance of LoginForm, to set its action:

$request = $this->getRequest();
if ($request->isPost()) {
 ...
}

$viewData['loginForm'] = $loginForm;

return $viewData;

This is the structure of the new block of code. As you can see, we get the request and
check if we are processing the form or just showing it. To show it, we assign it to the
view and at the end, we also check for any messages available on the flash messenger,
and pass them to the view.

The following is the code we will execute when we are processing the form. This code
will fit on the suspension points, as we have already seen in the skeleton.

$data = $request->getPost()->toArray();

$loginForm->setInputFilter(User::getLoginInputFilter());
$loginForm->setData($data);

if ($loginForm->isValid()) {
 $data = $loginForm->getData();

 $auth = new AuthenticationService();
 $authAdapter = new AuthAdapter(
 $data['username'], $data['password']
);
 $result = $auth->authenticate($authAdapter);

 if (!$result->isValid()) {
 foreach ($result->getMessages() as $msg) {

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $flashMessenger->addErrorMessage($msg);
 }
 } else {
 return $this->redirect()->toRoute(
 'wall', array('username' => $data['username'])
);
 }
}

The code gets the data from the request and configures the filter from the User entity to
validate and filter the sent data. If the form is valid, we continue getting the data filtered
from the login form, and then we set up the authentication object, as we did in the
indexAction() method. In case the login is successful, we redirect the user to the wall;
in case of a failure, we will show the error message sent by the API using the flash
messenger.

If we allow the users to log in to our product, we also need to provide a way for them to
log out and that's the last change we have to do in this controller, as given in the
following code:

$auth = new AuthenticationService();
if ($auth->hasIdentity()) {
 $auth->clearIdentity();
}

return $this->redirect()->toRoute('users-login');

These are the contents of the logoutAction() method. As you can see, we checked if
the user has an identity or not. In case he or she has, we just clear the stored identity so
that we are not able to identify who the user is. After that, we redirect them to the login
page.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The login.phtml file
This is the view that will show the form to the user, it's really simple. As we already
saw how to add forms to the view, we will try to define the contents of this file on our
own. Remember that you can always check the source code if needed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Changes in module.config.php
In this chapter, we are adding the ability to log in and log out of our application, and we
already completed the methods needed on the controller. The last step is to create the
routes so that the methods can be accessed from a browser.

'users-login' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/login',
 'defaults' => array(
 'controller' => 'Users\Controller\Index',
 'action' => 'login'
),
),
),
'users-logout' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/logout',
 'defaults' => array(
 'controller' => 'Users\Controller\Index',
 'action' => 'logout'
),
),
),

These are the two routes you need to add to point the URLs to an appropriate method in
IndexController.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The global.php file
Now that we have two routes available to use, we need to add the links that will
actually allow the users to use the log in and log out methods. They can always
remember the URLs, but that's not always possible. To add new items on the header
menu, we need to modify this file and add the configuration of the new links, as given in
the following code:

array(
 'label' => 'Logout',
 'route' => 'users-logout',
 'resource' => 'users-logout'
),
array(
 'label' => 'Login',
 'route' => 'users-login',
 'resource' => 'users-login'
),

If you pay attention to the preceding code, you will notice that there is a new key on the
configuration called resource. We will talk more about it later, but for now we can say
that the data stored there will control if the item should be shown on the menu or not.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The layout.phtml file
As of now, the users can log in and log out, but we need to show or hide the links on the
menu properly. The navigation helper can help us on this task; however, in order to be
able to do it, we need to provide some information. We need to replace the following
lines of code:

<?php $this->navigation('navigation')->findBy('route', 'wall')
 ->setParams(
 array('username' => $this->loggedInUser->getUsername())
);
?>
<?php $this->navigation('navigation')->findBy('route', 'feeds')
 ->setParams(
 array('username' => $this->loggedInUser->getUsername())
);
?>
<?php echo $this->navigation('navigation')
->menu()->setUlClass('nav')->renderMenu(); ?>

The following code should replace the preceding code:

<?php if ($this->loggedInUser !== null) : ?>
<?php $this->navigation('navigation')->findBy('route', 'wall')
 ->setParams(
 array('username' =>
 $this->loggedInUser->getUsername()
)
);
 ?>
<?php $this->navigation('navigation')
 ->findBy('route', 'feeds')
 ->setParams(array('username' =>
 $this->loggedInUser->getUsername())
);
 ?>
<?phpendif; ?>
<?php echo $this->navigation('navigation')
 ->menu()->setUlClass('nav')->setAcl($this->acl)
 ->setRole($this->userRole)->renderMenu(); ?>

As usual, the code of the view is not as neat as we want it to be and is kind of hard to
read. But what we are essentially doing here is customizing one of the items of the menu
to point to the user wall when the user is logged in, and then providing the navigation
helper with the data needed to show or hide the items. In the following sections, we will

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

talk about what that information is, how to create it, and how to work with it.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

ACLs
ZF2 provides two ways of handling the permissions of an application. The first one and
the one which we use here is the ACLs, the second one is the Rbac. The difference
between them is that ACLs is focused on resources, which means short modules,
controllers, and actions. The Rbac model focusses more on roles and their permissions,
allowing you to create permissions that are not attached to any specific resource. If you
need something simple, you can go with Rbac; if you need something more complex, you
can go with ACLs. But you usually do almost the same with both the models and they
both more or less have the same "glue" code.

In our product, we will use ACLs; the concept behind the Access Control List is
allowing roles' request access to resources. A role is an object that needs access
somewhere and a resource is an object whose access is protected and controlled. In our
case, we will create a role called guest for the users not logged in, and another one
called member for the logged-in users. After that, we will create resources to protect
the access to all the functionalities we have in place. This sounds a little bit
complicated, but I'm sure that you will understand everything after implementing it.

As we are developing everything under specific modules, we are going to provide each
module with the ACL configuration that affects that module directly. Then we will load
it when ZF2 reads the module.

The ACL implementation on ZF2 is very flexible and allows you to store the
configuration of the roles and resources in any way you want. Actually, it's the
developer's responsibility to come up with a storage and loading mechanism. We will
now see how we are going to do it on our product, but this is surely not the only way to
do it and probably not the best one:

<?php

return array(
 'roles' => array(
 'guest',
 'member'
),
 'permissions' => array(
 'member' => array(
 'feeds',
 'feeds-subscribe',
 'feeds-unsubscribe'

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

)
)
);

The preceding code is the content of the module.acl.php file stored in the config
folder of the Feeds module. As you can see, the configuration consists of an array,
inside which we specify the roles that interact with this module and the permissions
assigned to each role. In order for a role to access a resource, the resource should be
added in here. If you look closely at our resources, you may notice that we are using the
names of our routes. In this case, the route is tied to a module, controller, and action and
the route will conform to our resource.

In this configuration, we are allowing the members to access the feeds list, the
subscription action, and the unsubscribe functionality. The guest users are not allowed
to see anything and that's why there is no key for them under the permission key.

The following is the ACL configuration of the Users module and Wall module
respectively:

return array(
 'roles' => array(
 'guest',
 'member'
),
 'permissions' => array(
 'guest' => array(
 'users-signup',
 'users-login'
),
 'member' => array(
 'users-logout'
)
)
);

return array(
 'roles' => array(
 'guest',
 'member'
),
 'permissions' => array(
 'member' => array(
 'wall'
)
)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

);

As you can see in the first block, the guest user is allowed to access the login and the
signup form, but not the logout functionality. Also, the member is not allowed to go to
the login form because he or she is already logged in, and also it is not allowed to go to
the signup.

In terms of the Wall module, the only user role allowed is the member.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modules
Now, let's see how to inform ZF2 about our ACL configuration and how to create them
in terms of objects.

On every Module.php file, we need to load the ACL configuration using bootstrap, and
then add an event listener to the route event to check if the user has the rights to access
the resource.

The objects that conforms the ACL on ZF2 are the Acl class, GenericRole class, and
GenericResource class. In order to import them, you should add the following lines of
code at the top of each Module.php file that has something to do with ACLs:

use Zend\Permissions\Acl\Acl;
use Zend\Permissions\Acl\Role\GenericRole as Role;
use Zend\Permissions\Acl\Resource\GenericResource as Resource;

We need to modify the onBootstrap() method of every module that has ACLs, to load
the configuration in every Module.php file. This is accomplished by adding the
following line at the top of the method:

$this->initAcl($e);

After that change, we need to implement the initAcl() method as follows:

public function initAcl(MvcEvent $e)
{
 if ($e->getViewModel()->acl == null) {
 $acl = new Acl;
 } else {
 $acl = $e->getViewModel()->acl;
 }

 $aclConfig = include __DIR__ . '/config/module.acl.php';
 $allResources = array();

foreach ($aclConfig['roles'] as $role) {
 if (!$acl->hasRole($role)) {
 $role = new Role($role);
 $acl->addRole($role);
 } else {
 $role = $acl->getRole($role);
 }

 if (array_key_exists(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 $role->getRoleId(), $aclConfig['permissions'])
) {
 foreach (
 $aclConfig['permissions'][$role->getRoleId()] as
 $resource) {
 if (!$acl->hasResource($resource)) {
 $acl->addResource(new Resource($resource));
 }
 $acl->allow($role, $resource);
 }
 }
 }

 $e->getViewModel()->acl = $acl;
}

Let's review what are we doing here. In order to share the object that represents the
ACL, we need to store it somewhere and be able to access it from the views and the
Module.php files. This is why the first line checks if there is something stored in the
view model. In case nothing is found, we create an instance of the Acl object.

Right after that, we load the module.acl.php config file to a variable and start iterating
over the roles. We then check if each role is already created on the ACL storage. If not,
we create it using a new instance of Role. In case it's defined, we just get its instance to
use later.

After that, we check if the module has permissions defined; in case we have them, we
iterate over them by adding the resources using the instances of Resource and then
allow the role stored on the $role variable to access the resource we just created.

This will configure the Acl object with all the roles and permissions of the Wall,
Users, and Feeds modules. Also, remember that Role and Resource are just aliases of
the classes we are really using.

Finally, after the configuration of the ACLs, we need to check if the user has access to a
specific route while loading it. In order to do it, we need to add or register a method
with the route event and then insert the code on the Common module.

At the end of the onBootstrap() method, we have to add the following lines of code to
register the listener for the event:

$e->getApplication()->getEventManager()->attach(
'route', array($this, 'checkAcl')

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

);

This will execute the checkAcl() method every time the route event is fired:

public function checkAcl(MvcEvent $e) {
 $route = $e->getRouteMatch()->getMatchedRouteName();
 $routerParams = $e->getRouteMatch()->getParams();
 $auth = new AuthenticationService();

 $userRole = 'guest';
 if ($auth->hasIdentity()) {
 $userRole = 'member';
 $loggedInUser = $auth->getIdentity();
 $e->getViewModel()->loggedInUser = $loggedInUser;
 }

 $e->getViewModel()->userRole = $userRole;

 if (substr($route, 0, 5) == 'feeds' &&
 $loggedInUser->getUsername() != $routerParams['username'])
 {
 $response = $e->getResponse();
 $response->setStatusCode(404);
 return;
 }

 if (!$e->getViewModel()->acl->isAllowed($userRole, $route)) {
 $response = $e->getResponse();
 $response->setStatusCode(404);
 return;
 }
}

This is the checkAcl() method. What we do in the first few lines is get the information
about the route, we process the data about the identity of the user and the role. Because
we only have two roles, by default the role is guest, unless the user is logged in. In that
case, we set the role manually to member.

Products with more roles is a good idea to store the role of the user on the database and
load it on the User entity, as we are storing the User entity as the identity of the user on
the session. You will be able to easily check the role associated with a user and avoid
assigning it manually.

After gathering the data, we have two big checks. The first one is a specific case for the
feeds functionality. As users are members by default, they are allowed to see the feeds,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

modify the URLs, change the username for the other feed, and access the data of another
user. In order to avoid this, we have several options. The first one we implement here is
determine if we are working with feeds routes, and then check if the username the user
is trying to access matches with his username. If they do not match, we redirect the user
to a 404 page. The second option is not implemented here, but you definitely need to
implement it in a ready-for-production application, checking the owner of the data you
are accessing against the username trying to access it on all the methods, and of course,
never trusting what is coming from the client.

The second big check we do here is to check if the role of the user is actually allowed
to access the route we are processing. In case it is not allowed, we will redirect it to a
404 page.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The index.phtml file
Finally, to finish with the changes of this chapter, we need to modify the index.phtml
page of the Wall module. As we are going to visit other people's walls, we don't want
to allow the user to publish content on other's walls (they can only post comments).

What we have to do is check in the view if we are on our own wall or on another user's
wall. We do this by using the following line of code:

<?php if ($isMyWall) : ?>

Of course, the $isMyWall variable should be populated from the controller. We do that
by adding the following lines of code:

$viewData['isMyWall'] = !empty($loggedInUser)?
$loggedInUser->getUsername() == $username : false;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Wall IndexController.php
As we already mentioned, you need to do changes in the IndexController.php file to
determine if the wall the user is accessing is his or her own or another person's wall.
Another thing you need to change in this file is the owner of the posted comments. Until
now, all the comments were assigned to the current user; however, because the users
now have the ability to log in, the comment posted should be credited to the right author.
Again, this change is pretty straightforward and we will experiment with it and try to get
it working.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
Phew! We learned a lot of concepts in this chapter.

We saw how to use the authentication components on ZF2 to allow users to log in and
log out on our application, and also to create custom adaptors to connect to different
backends. After that, we saw how ACLs work, and how to store them and recreate them
according to our needs. We also saw how to check if a specific user has appropriate
rights to access a specific functionality.

In the next chapter, we will see how to send e-mails to users and implement the forgot
password functionality to allow them to retrieve a password using the e-mail we send to
them.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 12. Sending E-mails
Our social network has a lot of functionality and the first version is almost complete. In
order to notify the users about what happens while they are away we will send them e-
mails. Specifically, they will receive a welcome e-mail when they create an account
and after that they will receive an e-mail each time someone posts a comment on their
wall.

By the end of this chapter, you will know how to send e-mails using the Zend\Mail
components. We will also see how to organize the HTML content of the e-mails, and
how to compose them using templates and layouts.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Overview
A welcome e-mail will look similar to the following screenshot; the text is lame but as
an example will work.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
All the work on this chapter will be done on the API side of the project and no changes
are required on the client. In this way, we can manage exactly what we are sending, the
recipient, and so on.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Requirements
We have a few requirements for this section of the API, which are as follows:

We need to centralize all the e-mail logic on one class
The e-mails must support HTML
The HTML must not be mixed with the PHP code and they have to be placed on a
template
The e-mails must use a common layout to simplify the changes on the skeleton of
the e-mail.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The module structure
As the code will be used in different types of controllers, we are going to add the code
to the Common module. The following screenshot shows how the folder structure will
look, along with the new files:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding the mailer.php file
This is the class where we are going to centralize all the code related to the e-mail
sending functionality and this is also the class that we have to change every time we
want to add a new e-mail to the system. The structure is very simple, we will have a
bunch of specialized methods that will take care of the information of a single e-mail
type. Then we will have a method to initialize some common code, and finally a method
that will take care of sending the actual e-mail. The following are the contents of the
mailer.php file:

namespace Common;

use Zend\Mail\Message;
use Zend\Mail\Transport\Sendmail;
use Zend\View\Renderer\PhpRenderer;
use Zend\View\Resolver\TemplateMapResolver;
use Zend\View\Model\ViewModel;
use Zend\Mime\Message as MimeMessage;
use Zend\Mime\Part as MimePart;

These are the initial lines of the class. As usual, we have declared the namespace and
imported the components we need to use. The first three use statements refer to the
Mail components.

There are different ways of sending e-mails you can deliver them locally if the e-mail
accounts are stored on the same server on which your app is running, you can relay them
to another server to send it, or you can send it from your server using some sort of mail
server. In our case, the virtual machine provided with the book has postfix installed
that allows us to send e-mails using a program called sendmail. ZF2 provides different
transport objects that do the actual job of interfacing the PHP code with the sending
program to send the e-mail; that's why, in this case, we import the
Zend\Mail\Transport\Sendmail component.

The next three lines are used to import the View components we are going to use to
process the HTML code of the e-mails.

The final two lines are used together with the Message component to be able to specify
the HTML content of the e-mail, otherwise the contents of the e-mail will be treated as
plain text, and the e-mail programs will not read the HTML code. We can define a class
using the following code:

class Mailer

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

class Mailer

As you can see, the class declaration is really simple; in this case we are not extending
from another class or implementing an interface.

The following is the first specialized method we are going to see:

public static function sendContentNotificationEmail(
 $recipientAddress, $recipientName, $authorName
){
 $subject = 'New comment on your wall!';
 $templateVars = array(
 'recipientName' => $recipientName,
 'authorName' => $authorName
);

 self::send(
 $recipientAddress,
 $recipientName,
 $subject,
 'NewComment',
 $templateVars
);
}

In this case, the sendContentNotificationEmail() method takes care only of the
content notification e-mail. This e-mail is sent every time a person posts a comment on
the user's wall.

As you can see, we expect the name and e-mail address of the recipient and the name of
the author of the comment. After that, we store the subject of the e-mail on a variable
and we build an array with the variables we want to pass to the template of the e-mail.

Finally, we call another method called send(), which will take care of sending the e-
mail. The parameters we need to pass to the send() method are the recipient's address,
the recipient's name, the subject of the e-mail, the name of the template we want to use,
and the variables we want to pass to the template. Later, we will see how the name of
the template is mapped to the actual filename of the template. The following is the
sendWelcomeEmail() method:

public static function sendWelcomeEmail(
 $recipientAddress, $recipientName
){
 $subject = 'Welcome to My Social Network';
 $templateVars = array(

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

 'recipientName' => $recipientName
);

 self::send(
 $recipientAddress,
 $recipientName,
 $subject,
 'WelcomeTemplate',
 $templateVars
);
}

The sendWelcomeEmail method will take care of sending the welcome e-mail to the
user when they create an account. As you can see, this is very similar to the one we saw
before, and expects the e-mail address and the name of the recipient. The
initResolver() method is as follows:

protected static function initResolver()
{
 $resolver = new TemplateMapResolver;
 $resolver->setMap(array(
 'MailLayout'
 => __DIR__ . '/../../view/layout/email-layout.phtml',
 'WelcomeTemplate'
 => __DIR__ . '/../../view/emails/welcome.phtml',
 'NewComment'
 => __DIR__ . '/../../view/emails/new-comment.phtml',
));

 return $resolver;
}

The preceding code takes care of initializing a component we will use on the send()
method. The code itself initializes a TemplateMapResolver object that maps keys to
the path of a file. It is in this code that we are mapping the names of our templates with
the actual path and filename of the template, and this allows us to avoid inserting paths
everywhere to specify the template we want to use. As you can see in the preceding
code, we also specify the layout we are going to use on the e-mails.

If, in the future, you need to add some more e-mails to the social network, you will need
to map here the name of the new template with the path of the file containing the HTML
message.

Now, let's see the contents of the last method of this class. It is in the send() method,
where we are going to glue all the pieces together in order to send the e-mail to the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

recipient's inbox. The send() method is as follows:

protected static function send(
 $toAddress,
 $toName,
 $subject,
 $templateName,
 $templateVars = array()
){
 $view = new PhpRenderer;
 $view->setResolver(self::initResolver());

 $viewModel = new ViewModel;
 $viewModel
 ->setTemplate($templateName)
 ->setVariables($templateVars);
 $content = $view->render($viewModel);

 $viewLayout = new ViewModel;
 $viewLayout->setTemplate('MailLayout')->setVariables(array(
 'content' => $content,
));

 $html = new MimePart($view->render($viewLayout));
 $html->type = "text/html";

 $body = new MimeMessage();
 $body->setParts(array($html));

 $mail = new Message;
 $mail->setBody($body);
 $mail->setFrom('no-reply@example.com', 'My social network');
 $mail->addTo($toAddress, $toName);
 $mail->setSubject($subject);

 $transport = new Sendmail;
 $transport->send($mail);
}

As you can see, the preceding method expects the parameters we listed before. The first
two lines of code instantiates a PhpRenderer component. This is used because our
HTML templates will include the PHP code in order to insert some useful information,
such as the name of the recipient or the name of the author who posted the content on the
wall.

After that, we create a ViewModel instance and we set the template of the model to the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

template name passed as a parameter, and we also pass the template variables to
replace them in the HTML code. Right after that, we will render the code using the
PhpRenderer object and store it in a file. At this point, PhpRenderer is using the
TemplateMapResolver object we configured before in order to translate the template
name passed as a parameter to the actual path of the file.

The next section of code is going to render the layout of the e-mail passing the content of
the e-mail as the content template variable.

Now we have a ViewModel object that contains the layout and the injected HTML code
from the e-mail message creating a longer HTML code.

We now jump to create the e-mail itself. Nowadays, e-mail messages are of the
multipart type, which means that we can use a part of the text/plain type to specify
the contents of the e-mail as plain text and another part of the text/html type to specify
the HTML version of the message.

As we are dealing with HTML, we need to specify the text/html part on the e-mail
and that's what we are doing in the next section. The content of the MimePart object is
the HTML we had stored on the $viewLayout variable we created before. Remember
that this variable contains not only the layout, but also the contents of the e-mail.

As this is a message that will contain the HTML code, we need to create a Message
class that supports the feature we are trying to use and that's why we create an
MimeMessage object.

After setting the HTML part on the MimeMessage object, we will create the final e-mail
object instantiating the Message class. We set the body, the sender's name and address,
the recipient's name and address, and the subject of the e-mail.

Finally, we will create an instance of the Sendmail transport and use it to send the e-
mail to the Internet.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The email-layout.phtml file
As usual, we are not going to paste the HTML code here because it is long, verbose,
and will not be readable at all; instead, we are just going to highlight one thing. As you
saw before, we will inject the content of the e-mail to the layout using a variable called
$content.

As this file will be parsed by the PhpRender object, we can use the PHP code and that's
how we are going to merge the HTML code of this file with the HTML code injected in
the send() method. The specific line has no mystery, it is similar to the following one:

<?php echo $content ?>

This is how we are usually going to insert the content on the e-mail. In this case, it is the
whole message, but we are going to see in the next section how we can insert the name
of the user.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The view welcome.php file
The view welcome.php file contains the code we use when we send a message to the
user who just created an account. The text is pretty lame and we just say hello.
However, as an example, it is enough.

The e-mail itself is customized with the name of the user and this is as simple as
echoing the variable sent by the method that handles the following e-mail message, if
you want to try to add more contents on the e-mail and insert more data of the user and
make it more friendly:

Hi <?php echo $recipientName ?>

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The view new-comment.phtml file
When a user posts a comment, the owner of the wall receives an e-mail notifying about
what just happened. This e-mail message is still lame but it contains the author name of
the comment. The message will contain a line similar to the following one:

Hi <?php echo $recipientName ?>,
<?php echo $authorName ?> has posted a new comment on your wall!

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying the IndexController.php file
Now that we have configured the mail system in place, we need to start calling the
system on specific situations to send a proper e-mail.

We are going to add just one line in the Users module of the IndexController file in
order to send an e-mail when the account of the user is created. The code must be
placed right after the block of code where we know for sure that the account has been
created without problems.

Mailer::sendWelcomeEmail($user['email'], $user['name']);

The line should look similar to the preceding line. As we created static methods on the
Mailer class, we don't need to create an instance. Remember, that in order to use this
class, you must import it at the beginning of the controller.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The IndexController.php file on the Wall module
The code we need to add to this controller to notify the user about the new content on
his wall is a little bit trickier due to the structure of the tables and the way in which the
data is stored.

When a request is made to this API endpoint, we know the user ID of the current author
but not the user ID of the previous author who made the original post on which is being
commented. As our e-mail has to go to the owner of the original content, we need to find
out who that user is.

To make everything a little bit uglier, we can comment on three different types of
contents, which means that we need to create an instance of a table gateway based on
the type of the contents that is being commented.

In the method we have a switch structure that we use to set the $validatorTable
value, and this is where we are going to extract the original entry based on the type of
content. The line we have to add on each case of the switch statement looks similar to
the following one:

$table = $this->getUserStatusesTable();

Of course, we will change the method call on each case to create an instance of the
corresponding table gateway.

After that we can safely get the entry and the author of the original entry using the
following code:

$entry = $table->getById($data['entry_id']);
$recipient = $usersTable->getById($entry['user_id']);

As you can see, we use the table gateway to get a row based on the ID. You will notice
that two of the three table gateways do not have the getById() method but they are
pretty simple to implement. At this point of the app, because some methods on the table
gateways are duplicated on multiple files, is a good moment to create a base table
gateway file and move the common code to the parent class and extend the children from
the new base table gateway. You should be confident enough to jump and do it in case if
you didn't refactor the table gateways before.

Finally, after we know that the comment was created successfully, we can safely send

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the message to the user using the following lines of code:

if($creationResult && $recipient['id'] != $user['id']) {
 Mailer::sendContentNotificationEmail(
 $recipient['email'], $recipient['name'], $user['name']
);
}

Can you explain why we are limiting the sending of the e-mail, where the recipient ID
and the user ID are different?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The challenge
We are near to the end of the book, and we saw a lot of things, we learned about most of
the ZF2 components and we created a basic social network from scratch. At this point, I
want to test your skills and measure how much you have learned so far by challenging
you. Of course, this will also help you to revise any part of the book to reinforce your
knowledge and master ZF2.

I want you to implement a whole new functionality on the social network that will touch
almost all the topics we saw so far. The users can now register and log in to the social
network, they can post content and read their favorite RSS feeds, but what happens if
they forget the password? How can they recover it?

In order to help them, the challenge is to build the forgotten password system we will
usually find on almost all the applications out there. The following are the requirements
for this:

A new link should be placed on the login screen to allow the user to go to the
recover password page.
The recover password page should show to the user a new form where they can
enter their e-mail address.
The system should send an e-mail to the user with a unique token assigned to their
account and a link pointing them to the recover page; the link should contain their
token.
After clicking on the link in the e-mail, the system must show the user a new form
to allow them to change their password by specifying the new password twice.
After the submission of the form, the clients have to contact the API to notify about
the change of the password. Of course, the API will require a new endpoint for this
and the new password should be encrypted using bcrypt.
Once the password has been changed, the unique token for this user should be
removed and the user should be redirected to the login page.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
In this chapter we learned how to send HTML e-mails from ZF2 and how to organize
the template to have a cleaner code and to avoid having HTML code mixed with PHP.
We also created a centralized point for sending the e-mails by simplifying the
integration by just adding a line of code at each point where an e-mail has to be sent.
Finally, we also modified the API in order to send the two e-mails we created.

The next chapter is the last one, in which we will complete our product functionality by
implementing a security layer on the API level. We will use a simpler version of OAuth
2.0 and we will modify the client and the server to communicate using this protocol.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter 13. OAuth 2.0 Protocol
Securing our API
The MVP of our product is almost finished. Due to the nature of the architecture chosen,
we have an exposed API. As we don't want people to mess around with our data and
users, we need to protect it somehow, and to accomplish that we can implement
different mechanisms to authenticate clients, but in this chapter we will implement a
simple version of OAuth 2.0. Later on, with a few modifications, we can extend the
code that we are going to put in place to allow third-party apps to use our API.

By the end of this chapter we will know how to implement the two-legged OAuth 2.0
variant in a Zend Framework 2 application and secure our APIs.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Overview
Most of the work is going to be done at the API level. The client will just implement a
few calls to the API to get the corresponding access token, and then we will be able to
query our API.

In ZF2 you can find an OAuth 2.0 component, but unfortunately the component only acts
as a client for APIs that support OAuth 2.0. There is nothing done yet on the other side
of the problem. If you want to protect your API, nothing on ZF2 is going to help you
now.

To accomplish the objective of this chapter, we are going to integrate a fabulous OAuth
2.0 server component developed by Brent Shaffer under the MIT License. This
component will allow us to forget about all the implementations of the OAuth 2.0
protocol and make it work without too much effort.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development
On this side of the project, we need to integrate the OAuth 2.0 component in order to
generate access tokens. OAuth 2.0 gives the possibility of using different grant types.
The simplest one is the Client Credentials Grant. In this scenario, the client can request
an access token by using only its client credentials. Using this type of grant, we can skip
the authorization step and after verifying the credentials of the user we can generate an
access token.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The module structure
For the functionality we are implementing, we will add a new module named OAuth,
and we will also create a new listener on the Common module. The folder structure will
look similar to the following screenshot:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Installing the OAuth 2.0 component
The first thing we need to do is install the OAuth2.0 component we mentioned before on
our project. The task is very easy and will be handled by a composer. Open the
composer.json file and place the following code in the require section:

"bshaffer/oauth2-server-php": "v1.0"

After that, you need to inform the composer to update everything. This can be
accomplished by running the following command on a terminal window inside the root
folder of the project:

phpcomposer.phar update

This will update all the dependencies and libraries to the previous version and will
also install the new component under the vendor folder.

This component will be using the database, so we need to create a few tables. The
following are the queries, which we need to run in order to create new tables. These
queries are extracted directly from the documentation of the component we are using.

CREATE TABLE oauth_clients (client_id TEXT, client_secret TEXT,
redirect_uri TEXT);

CREATE TABLE oauth_access_tokens (access_token TEXT, client_id TEXT,
user_id TEXT, expires TIMESTAMP, scope TEXT);

CREATE TABLE oauth_authorization_codes (authorization_code TEXT,
client_id TEXT, user_id TEXT, redirect_uri TEXT, expires TIMESTAMP,
scope TEXT);

CREATE TABLE oauth_refresh_tokens (refresh_token TEXT, client_id
TEXT, user_id TEXT, expires TIMESTAMP, scope TEXT);

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying LoginController.php
In this controller, we need to check if the user has sent the correct username and
password in order to create an access token. By using the access token, the user will be
able to issue calls to the API. Let's review the changes we have to do in the create()
method.

use OAuth2\Storage\Pdo;
use OAuth2\Server;
use OAuth2\GrantType\ClientCredentials;
use OAuth2\Request;
use OAuth2\Response;

These are the lines of code we need to add at the beginning. As we are using an external
library to handle all the OAuth 2.0 operations, we need to define the namespaces we
want to use.

After checking the credentials of the user and being sure that they match, we need to
create an access token. We will do that by adding the following code right after the
verification of the username and password:

$storage = new Pdo(
 $usersTable
 ->adapter
 ->getDriver()
 ->getConnection()
 ->getConnectionParameters()
);
$server = new Server($storage);
$server->addGrantType(new ClientCredentials($storage));
$response = $server->handleTokenRequest(
Request::createFromGlobals()
);
if (!$response->isSuccessful()) {
 $result = new JsonModel(array(
 'result' => false,
 'errors' => 'Invalid oauth'
));
}

return new JsonModel($response->getParameters());

Instead of just returning true to the client we need to generate an access token.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

First, we will create the PDO storage object using the connection parameters of a table
gateway.

Then, we will create the server and specify that we are working with client credentials
in order to skip the authorization step.

After that we will call the handleTokenRequest() method on the server by passing a
request. This method will take care of generating the access code.

Finally, we will check if everything went fine on the OAuth2.0 side, and we will send a
JsonModel object to the client containing the access code, the expiration time, and the
token type.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Adding OAuthListener.php to the Common
module
Now that we have the authorization mechanism in place, we need to protect the API and
check if the access token provided in the request is valid. Of course, there is one
endpoint that doesn't need to be protected by the OAuth2.0 protocol.

Now, we are going to create a new listener that will inspect all the requests and check
the access token. This will be attached to the dispatch event, which we will see later.

The structure of the file is similar to the ApiErrorListener.php file that we already
have, so feel free to copy and paste it and do the following changes:

use OAuth2\Storage\Pdo;
use OAuth2\Server;
use OAuth2\Request;
use OAuth2\Response;

The preceding are lines we need to add to the top of the OAuthListener.php file,
because we are going to use these components.

The following are the contents of the attach() method. As you can see, the listener is
attached to the dispatch event and will call a method named onDispatch():

public function attach(EventManagerInterface $events)
{
 $this->listeners[] = $events->attach(
 MvcEvent::EVENT_DISPATCH, __CLASS__ . '::onDispatch', 1000
);
}

Let's take a look at the contents of the onDispatch() method:

if ($e->getRequest() instanceOf \Zend\Console\Request) {
 return;
}

if ($e->getRouteMatch()->getMatchedRouteName() == 'login' ||
$e->getRouteMatch()->getMatchedRouteName() == 'users') {
 return;
}

$sm = $e->getApplication()->getServiceManager();

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

$usersTable = $sm->get('Users\Model\UsersTable');

$storage = new Pdo(
 $usersTable
 ->adapter
 ->getDriver()
 ->getConnection()
 ->getConnectionParameters()
);
$server = new Server($storage);
if (!$server->verifyResourceRequest(Request::createFromGlobals)){
 $model = new JsonModel(array(
 'errorCode' => $server->getResponse()->getStatusCode(),
 'errorMsg' => $server->getResponse()->getStatusText()
));

 $response = $e->getResponse();
 $response->setContent($model->serialize());
 $response->getHeaders()->addHeaderLine(
 'Content-Type', 'application/json'
);
 $response->setStatusCode(
 $server->getResponse()->getStatusCode()
);

 return $response;
}

If you remember, in one of the previous chapters, we created the RSS reader and a CLI
interface to process the feeds. This is the reason why the first thing we do here is check
that we are not processing a request made through the CLI.

After that, we check the URL that doesn't have to be protected by OAuth 2.0. The route
that we don't need to protect is called users. If we protect that endpoint, the user will
not be able to log in to the application.

After that, we again create the PDO object and the server component based on the
connection parameters.

Then we proceed to verify if the access token is valid for this resource, and this is
accomplished by calling the verifyResourceRequest() method on the server
component passing the request and response as parameters.

In case of an error, we will return a JSON response to the client specifying the issue
and also specifying the 401 HTTP code. Otherwise, we will just allow the request to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

continue.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Other changes in the Common module
Now, because the request will continue with the ApiErrorListener object, we need to
avoid processing those requests marked as 401 by the OAuth 2.0 listener. In order to
change that behavior, we need to modify the first check on the onRender() method in
the ApiErrorListener.php file. The new check will look as follows:

if ($e->getRequest() instanceOf \Zend\Console\Request
 || $e->getResponse()->isOk()
 || $e->getResponse()
 ->getStatusCode() == Response::STATUS_CODE_401
) {
 return;
}

After making this change, we need to inform the Common module about the new listener
we just created. We need to add a listener to the module configuration as follows:

return array(
 'service_manager' =>array(
 'invokables' => array(
 'Common\Listeners\ApiErrorListener' =>
 'Common\Listeners\ApiErrorListener',
 'Common\Listeners\OAuthListener' =>
 'Common\Listeners\OAuthListener'
)
)
);

As you can see, we just added a new entry specifying the path for the new listener.

Finally, we need to attach the listener to the bootstrap event on the module. This will be
done by adding the following line next to the ApiErrorListener initialization on the
onBootstrap() method in the Module.php file:

$events->attach($sm->get('Common\Listeners\OAuthListener'));

This will attach the listener to the dispatch event every time the module is bootstrapped.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frontend
Now that we have all the work done at the API level we need to adjust the frontend to
store the access token once we log in to the app and pass the access token along with the
request while accessing the API. We will also set up the expiration on the containers of
the session because the token has expiration.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying ApiClient.php
As this is the centralized point for all the API requests, this is the only place where we
need to send the access token to the API. We need to first import the Container
component by using the following code to access the sessions we are using to store the
access token:

useZend\Session\Container;

After that, we will create a new property using the following code to store the session
object to avoid creating it over and over again:

protected static $session = null;

Then we need to create the following method to retrieve the Container object:

public static function getSession()
{
 if (self::$session === null) {
 self::$session = new Container('oauth_session');
 }

 return self::$session;
}

Now that we have this code in place to access the session, we need to modify the
authenticate() method to pass the OAuth 2.0 data along with the request.

public static function authenticate($postData)
{
 $postData['grant_type'] = 'client_credentials';
 $postData['redirect_uri'] = 'http://example.com';
 $postData['client_id'] = 'zf2-client';
 $postData['client_secret'] = 'mysupersecretpass';

 $url = self::$endpointHost . self::$endpointUserLogin;
 return self::doRequest($url, $postData, Request::METHOD_POST);
}

As you can see, we have hardcoded the data in the method. We can move it to the
configuration file for convenience, but for this example you will see it clearly here.

First, we need to specify the grant type. As we are working with client credentials, we
should pass client_credentials on the grant_type variable. Then, we also need to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

send a client ID and a client secret. These two values will be similar to the consumer
key and the consumer secret found in OAuth 1.0 and basically identifies each app that
has access to OAuth 2.0 with a unique ID and a secret shared between the server and the
app.

If you are going to develop a third-party access, you will need to generate these two
values for each app you want to integrate and provide them to the developer of the app.

The last change we need to do is located in the doRequest() method and will take care
of sending the access token to the API on each request. As the backend already ignores
the access token for those URLs that don't have to be protected, we can always securely
send it.

Before setting the parameters to the client, we need to add the following lines of code:

if ($postData === null) {
 $postData = array();
}

$postData['access_token'] = self::getSession()->accessToken;

As you can see, the preceding code adds the access token to the array used to set the
parameters of the request.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Modifying Api.php
This is the last file we need to modify on the client in order to use OAuth 2.0. While
authenticating a user, we must store the access token returned by the server. Let's see the
code we need to add at the top of the authenticate() method:

if (array_key_exists('access_token', $result) &&
!empty($result['access_token'])) {
 $hydrator = new ClassMethods();
 $user = $hydrator->hydrate(
 ApiClient::getUser($this->username), new User()
);

 $session = new Container('oauth_session');
 $session->setExpirationSeconds($result['expires_in']);
 $session->accessToken = $result['access_token'];

 $response = new Result(
 Result::SUCCESS,
 $user,
 array('Authentication successful.')
);
} else {
 $response = new Result(
 Result::FAILURE, NULL , array('Invalid credentials.')
);
}

Right after calling the authenticate() method on the ApiClient object, we need to
examine the response to see if it was successful and the API returned an access token;
otherwise, we will return an error to the client. If the API returns an access token, we
need to create a new container to store the data there and we will set up the expiration
accordingly to the expiration sent by the API.

As you can see, we hydrate the user as before, but after that we create the container and
we store the data inside.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Following the OAuth 2.0 flow
To illustrate the responses we get from the OAuth 2.0 protocol a little bit, let's take a
look at the following request made on the command line:

curl -XGET http://zf2-api/api/wall/tbhot3ww

If we try to get the wall of a user without specifying the OAuth 2.0 access token as we
did in the preceding curl request, we will receive the following response:

{"errorCode":401,"errorMsg":"Unauthorized"}

Now let's try to follow the OAuth 2.0 flow in order to make a successful request. The
first thing we need to do is log in to the system and get a

l -XPOST http://zf2-api/api/users/login
--data-urlencode "username=tbhot3ww"
--data-urlencode "password=111111"
--data-urlencode "grant_type=client_credentials"
--data-urlencode "client_id=zf2-client"
--data-urlencode "client_secret=mysupersecretpass"

As you can see, we are sending the username, password, grant_type, client_id,
and the client_secret parameters in the curl request. On our PHP code, the
ApiClient object is taking care of this.

{
 "access_token":"3c90975e915d84b444d420703b5d7aca73a4f101",
 "expires_in":3600,
 "token_type":"bearer",
 "scope":null
}

This is how the response of the API will look. As you can see the response includes an
access token, which can be used for future requests.

Finally, as we have the access token, we can perform another curl request including it
to receive the wall data.

curl http://zf2-api/api/wall/tbhot3ww?
access_token=3c90975e915d84b444d420703b5d7aca73a4f101

This is how the request looks like with the access token. If you are following this

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

example, remember that you will get a different access token than mine and you will
have to update the curl request accordingly.

After issuing the request, you will receive a response that looks as follows:

{"feed":[
 {
 "id":"2",
 "user_id":"1",
 "url":"http:\/\/www.google.es",
 "title":"Google",
 "created_at":"2013-06-0122:22:55",
 "updated_at":null
 },
 {
 "id":"2",
 "user_id":"1",
 ...

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The challenge
In this chapter, we implemented a two-legged version of the OAuth 2.0 protocol
between our API and the client. I will leave the implementation of the third-party access
to the API using the components we have in place at the API level as an exercise.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary
Now our API is protected against access from unauthorized requests. ZF2 doesn't
provide anything yet to help us in implementing an OAuth 2.0 server, but in this chapter
we saw how easily we can import components from other sources.This means that we
can also use components from other frameworks and libraries.

Congratulations! You made it! You arrived at the end of the last chapter, and now you
have an impressive MVP of a social network. I hope you have learned, during this
journey, as much as I did while writing it and I hope you enjoyed reading it and coding
the examples.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Index
A

$auth object / The IndexController.php file
AbstractActionController / AbstractActionController, API development
AbstractActionController class / DispatchListener, Creating the CliController.php
file
AbstractRestfulController / AbstractRestfulController, API development,
Extending IndexController.php, Creating the LoginController.php file
ACLs / ACLs
AdapterAwareInterface / Creating the UsersTable.php file
AdapterAwareInterface interface / Creating UserStatusesTable.php
addFeedSubscription() method / Modifying the ApiClient.php file
Akismet

API development / API development
frontend / Frontend

API-centric app
about / The approach – API-centric app
architecture / The approach – API-centric app
benefits / The approach – API-centric app

Api-Error
about / The API-Error approach
common module / Adding the Common module
application.config.php, modifying / Modifying the application.config.php file
Module.php, modifying / Modifying the Module.php file
module.config.php, modifying / Modifying the module.config.php file
ApiErrorListener.php / Adding the ApiErrorListener.php file

Api.php
modifying / Modifying Api.php

ApiClient.php
extending / Extending ApiClient.php
modifications / Changes in the ApiClient.php file
modifying / Modifying ApiClient.php

ApiClient.php file
modifying / Modifying the ApiClient.php file
modifications / Changes in the ApiClient.php file

ApiClient method / Creating a new authentication adapter

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

API development, Akismet
about / API development
requisites / Requirements
database, working with / Working with the database
module structure / Module structure
Akismet service, installing / Installing Akismet service
local.php file, modifying / Modifying the local.php file
UserCommentsTable.php, adding / Adding the UserCommentsTable.php file
Spam.php, creating / Creating the Spam.php file
IndexController.php, extending / Extending the IndexController.php file
Table gateways / Table gateways

API development, e-mails
about / API development
requisites / Requirements
module structure / The module structure
mailer.php file, adding / Adding the mailer.php file
email-layout.phtml file / The email-layout.phtml file
view welcome.php file / The view welcome.php file
view new-comment.phtml file / The view new-comment.phtml file
IndexController.php file, modifying / Modifying the IndexController.php file
IndexController.php file, on wall module / The IndexController.php file on
the Wall module
challenge / The challenge

API development, images
about / API development
requisites / Requirements
database, working with / Working with the database
module structure / Changes on the module structure
UserImagesTable.php, creating / Creating the UserImagesTable.php file
IndexController.php, extending / Extending the IndexController.php file
module.config.php, changing / Changing the module.config.php file

API development, log in
about / API development
requisites / Requirements
module structure / Overview of the module structure
module.config.php file / The module.config.php file
LoginController.php file, creating / Creating the LoginController.php file

API development, news reader

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

about / API development
requisites / Requirements
database, working with / Working with the database
module structure / Expanding the module structure
module.config.php file / The module.config.php file
Module.php file / The Module.php file
UserFeedsTable.php file, adding / Adding the UserFeedsTable.php file
UserFeedArticleTable.php file, adding / Adding the
UserFeedArticleTable.php file
IndexController.php, contents / The contents of the IndexController.php file
CliController.php file, creating / Creating the CliController.php file
ApiErrorListener.php / The ApiErrorListener.php file

API development, OAuth 2.0
module structure / The module structure
OAuth component, installing / Installing the OAuth 2.0 component
LoginController.php, modifying / Modifying LoginController.php
OAuthListener.php, adding to common module / Adding OAuthListener.php to
the Common module
common module, modifications / Other changes in the Common module

API development, posting links
about / API development
requisites / Requirements
database, working with / Working with the database
module structure / Changes in the module structure
UserLinksTable.php, adding / Adding the UserLinksTable.php file
IndexController.php, modifying / Modifying the IndexController.php file
Url.php, creating / Creating the Url.php file
module.config.php, modifying / Modifying the module.config.php file

API development, posting text
about / API development
requisites / Requirements
database, working with / Working with the database
module structure / Understanding the module structure
UserStatusesTable.php, creating / Creating UserStatusesTable.php
IndexController.php, extending / Extending IndexController.php

API development, signup
about / API development
requisites / Requirements

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

database, working with / Working with the database
module structure / The module structure
UsersTable.php, extending / Extending UsersTable.php
IndexController.php file / The IndexController.php file

API development, user wall
about / API development
requisites / Requirements
database, working with / Working with the database
Zend\Db\Adapter / Zend\Db\Adapter
Zend\Db\TableGateway / Zend\Db\TableGateway
Zend\Db\RowGateway / Zend\Db\RowGateway
connection, setting up / Setting up the connection
ViewManager / ViewManager configuration
users module / Creating the Users module
UsersTable.php / Creating the UsersTable.php file
module.config.php / Module configuration, Module configuration
Module.php / The module.php file, Module.php contents
Wall Module / Adding the Wall module
IndexController.php / Adding the IndexController.php file
Api-Error / The API-Error approach
common module / Adding the Common module
application.config.php, modifying / Modifying the application.config.php file
Module.php, modifying / Modifying the Module.php file
module.config.php, modifying / Modifying the module.config.php file
ApiErrorListener.php / Adding the ApiErrorListener.php file

ApiErrorListener.php / Adding the ApiErrorListener.php file, The
ApiErrorListener.php file
apiKey configuration option / Creating the Spam.php file
API module

ApiClient.php file, modifying / Modifying the ApiClient.php file
authenticate() method / Modifying ApiClient.php, Modifying Api.php
autoload.php file / PSR-0 and autoloaders
avatar_id parameter / Extending UsersTable.php

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

B
Bcrypt component / The IndexController.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

C
checkAcl() method / Modules
client_credentials variable / Modifying ApiClient.php
comment-content-form.phtml

adding / Adding the comment-content-form.phtml file
Comment.php

adding / Adding the Comment.php file
CommentForm.php

adding / Adding the CommentForm.php file
comments

posting / Posting comments
common module

about / The Common module
global.php file / The global.php file
layout.phtml file / The layout.phtml file

config folder / The config folder
configuration keys / The config folder

Configuration array, ZF2 / Configuration array
config_glob_path array / Configuration array
content distribution network (CDN) / Creating the Image.php file
Controller method / AbstractRestfulController
create() method / Extending IndexController.php, Extending the
IndexController.php file, Requirements, Extending the IndexController.php file,
Extending UsersTable.php, Creating the LoginController.php file, Modifying
LoginController.php
createComment() method / Extending the IndexController.php file
createImage() method / Extending the IndexController.php file, Modifying the
IndexController.php file
createLink() / Requirements
createStatus() method / Modifying IndexController.php, Extending the
IndexController.php file, Modifying the IndexController.php file
Cross-site scripting (XSS) attack / Creating UserStatusesTable.php
Cross Site Request Forgery (CSRF) / TextStatusForm.php
CRUD / The approach – API-centric app
CSRF

about / TextStatusForm.php
current() method / Creating the UsersTable.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

D
$data / Requirements
DELETE / Requirements
delete() method / The contents of the IndexController.php file
Dependency Injector / Changing the module.config.php file
DispatchListener / DispatchListener

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

E
e-mails

about / E-mails, Overview
API development / API development

email-layout.phtml file / The email-layout.phtml file
environment, setting up

software, installing / Installing the required software
files copy, getting / Getting a copy of the files

error() method / Creating the Url.php file
EventFeature / Zend\Db\TableGateway
EventManager, ZF2 / EventManager
EventManagerAware / EventManagerAware

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

F
Feeds module

about / The Feeds module
module.config.php, content / The contents of module.config.php
IndexController.php file / The IndexController.php file
menu-feed-container.phtml file / The menu-feed-container.phtml file
index.phtml file / The index.phtml file

filter() method / Modifying the IndexController.php file
filter_var() / Creating the Url.php file
flashMessenger / Modifying the IndexController.php file
formElement() helper / Creating the image-content-form.phtml file
formElementErrors() / text-content-form.html
formUrl() helper / Creating the image-content-form.phtml file
front controller, ZF2

InjectApplicationEvent / InjectApplicationEvent
ServiceLocatorAware / ServiceLocatorAware
EventManagerAware / EventManagerAware
plugins / Controller plugins
types / Controller types
AbstractActionController, type / AbstractActionController
AbstractRestfulController, type / AbstractRestfulController
response object / The response object

frontend, Akismet
about / Frontend
Comment.php, adding / Adding the Comment.php file
Status.php, adding / Adapting the Status.php file
Image.php, modifying / Modifying the Image.php and Link.php file
Link.php, modifying / Modifying the Image.php and Link.php file
CommentForm.php, adding / Adding the CommentForm.php file
comment-content-form.phtml, adding / Adding the comment-content-
form.phtml file
IndexController.php, modifying / Modifying the IndexController.php file
index.phtml, extending / Extending the index.phtml file

frontend, images
about / Frontend
Image.php, creating / Creating the Image.php file
ImageForm.php, adding / Adding the ImageForm.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

form in image-content-form.phtml, showing / Showing the form in the image-
content-form.phtml file
User.php, extending / Extending the User.php file
index.phtml, modifying / Modifying the index.phtml file
IndexController.php, modifying / Modifying the IndexController.php file
layout.phtml, modifying / Modifying the layout.phtml file

frontend, log in
about / Frontend
login form / The login form
ApiClient.php file, modifications / Changes in the ApiClient.php file
new authentication adapter, creating / Creating a new authentication adapter
IndexController.php file / The IndexController.php file, Wall
IndexController.php
login.phtml file / The login.phtml file
module.config.php, modifications / Changes in module.config.php
global.php file / The global.php file
layout.phtml file / The layout.phtml file
ACLs / ACLs
modules / Modules
index.phtml file / The index.phtml file

frontend, news reader
about / Frontend
API module / The API module
ApiClient.php file, modifying / Modifying the ApiClient.php file
Feeds module / The Feeds module
module.config.php, contents / The contents of module.config.php
IndexController.php file / The IndexController.php file
entities and forms / Entities and forms
menu-feed-container.phtml file / The menu-feed-container.phtml file
index.phtml file / The index.phtml file
Common module / The Common module
global.php file / The global.php file
layout.phtml file / The layout.phtml file

frontend, OAuth 2.0
about / Frontend
ApiClient.php, modifying / Modifying ApiClient.php
Api.php, modifying / Modifying Api.php

frontend, posting links

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

about / Frontend
link entity, creating / Creating the link entity
LinkForm.php, adding / Adding the LinkForm.php file
image-content-form.phtml, creating / Creating the image-content-form.phtml
file
index.phtml, extending / Extending the index.phtml file
User.php, changing / Changing the User.php file
IndexController.php, modifying / Modifying the IndexController.php file

frontend, posting text
about / Frontend
Status.php, creating / Creating Status.php
User.php, modifying / Modifying User.php
view / View
TextStatusForm.php / TextStatusForm.php
text-content-form.html / text-content-form.html
IndexController.php, modifying / Modifying IndexController.php
ApiClient.php, extending / Extending ApiClient.php

frontend, signup
about / Frontend
signup.phtml file / The signup.phtml file
SignupForm.php file / The SignupForm.php file
signup-form.phtml file / The signup-form.phtml file
User.php / User.php
IndexController.php, contents / The contents of the IndexController.php file
index.phtml file / The index.phtml file
ApiClient.php, modifications / Changes in the ApiClient.php file

frontend, user wall
about / Frontend
Users module / Adding the Users module
wall content, requesting / Requesting the wall content
Module.php / Modifying the Module.php file
module.config.php / Module configuration
IndexController.php / Changes in the IndexController.php file
user wall, outputting / Outputting the user wall

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

G
GenericResource class / Modules
GET / Requirements
get() method / Modifying the IndexController.php file
getAutoloaderConfig() / ModuleManager, The module.php file
getById() method / The IndexController.php file on the Wall module
getByUserId() method / Creating UserStatusesTable.php
getByUsername() method / Adding the IndexController.php file
getConfig() / ModuleManager
getInputFilter() / Creating UserStatusesTable.php
getInputFilter() function / Creating Status.php, Extending the IndexController.php
file
getInputFilter() method / Adding the UserLinksTable.php file, Extending
UsersTable.php
getRouteMatch() / InjectApplicationEvent
getTable() method / The contents of the IndexController.php file, Creating the
CliController.php file
getUserImagesTable() method / Extending the IndexController.php file
getUserLinksTable() method / Modifying the IndexController.php file
getUserStatusesTable() method / Extending IndexController.php
Git

installing, URL / Installing the required software
global.php file / The global.php file, The global.php file
GlobalAdapterFeature / Zend\Db\TableGateway
grant_type variable / Modifying ApiClient.php

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

H
handleTokenRequest() method / Modifying LoginController.php
host-only interface

about / Vagrantfile
Hostname / Hostname
hosts

file / Hosts file
HTTP method / AbstractRestfulController
HttpUri object / The request object

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

I
image-content-form.phtml

creating / Creating the image-content-form.phtml file
Image.php

creating / Creating the Image.php file
modifying / Modifying the Image.php and Link.php file

ImageForm.php
adding / Adding the ImageForm.php file

imagepng() method / Extending the IndexController.php file
images

API development / API development
frontend / Frontend

index.phtml
modifying / Modifying the index.phtml file
extending / Extending the index.phtml file, Extending the index.phtml file

index.phtml file / The index.phtml file, The index.phtml file, The index.phtml file
indexAction() method / Changes in the IndexController.php file, Modifying
IndexController.php, Modifying the IndexController.php file, Modifying the
IndexController.php file, Modifying the IndexController.php file, The
IndexController.php file
IndexController.php / Changes in the IndexController.php file

extending / Extending IndexController.php, Extending the IndexController.php
file, Extending the IndexController.php file
modifying / Modifying IndexController.php, Modifying the
IndexController.php file, Modifying the IndexController.php file, Modifying
the IndexController.php file, Modifying the IndexController.php file
contents / The contents of the IndexController.php file, The contents of the
IndexController.php file

IndexController.php, wall module / Adding the IndexController.php file
IndexController.php file / The IndexController.php file, The IndexController.php
file, The IndexController.php file, Wall IndexController.php, Modifying the
IndexController.php file

on wall module / The IndexController.php file on the Wall module
initialize() method / Creating the UsersTable.php file
initResolver() method / Adding the mailer.php file
InjectApplicationEvent / InjectApplicationEvent
InputFilter component / Creating UserStatusesTable.php

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

InputFilterProviderInterface interface / Adding the ImageForm.php file, Adding the
LinkForm.php file
isValid() method / Creating the Url.php file, Creating the Spam.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

J
jQuery CSS Selector syntax / Modifying the IndexController.php file
JsonModel object / ViewManager configuration, Adding the IndexController.php
file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

L
language folder / Language files
layout.phtml

modifying / Modifying the layout.phtml file
layout.phtml file / The layout.phtml file, The layout.phtml file
Link.php

modifying / Modifying the Image.php and Link.php file
link entity

creating / Creating the link entity
LinkForm / Creating the image-content-form.phtml file
LinkForm.php

adding / Adding the LinkForm.php file
links

sharing / Sharing links
local.php file

modifying / Modifying the local.php file
logging in / Registering and logging in
log in

about / Overview
API development / API development
frontend / Frontend

login.phtml file / The login.phtml file
loginAction() method / The IndexController.php file
LoginController.php

modifying / Modifying LoginController.php
LoginController.php file

creating / Creating the LoginController.php file
logoutAction() method / The IndexController.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

M
mailer.php file

adding / Adding the mailer.php file
MasterSlaveFeature / Zend\Db\TableGateway
menu-feed-container.phtml file / The menu-feed-container.phtml file
MetadataFeature / Zend\Db\TableGateway
Method / Method
methodNotAllowed() / The contents of the IndexController.php file
module.acl.php config file / Modules
module.config.php / Module configuration

modifying / Modifying the module.config.php file, Modifying
module.config.php, Modifying the module.config.php file
changing / Changing the module.config.php file
modifications / Changes in module.config.php

module.config.php, content / The contents of module.config.php
module.config.php, users module / Module configuration
module.config.php, wall module / Module configuration
module.config.php file / The module.config.php file, The module.config.php file
module.php / Module.php, Module.php contents
Module.php

modifying / Modifying the Module.php file
/ Contents of the Module.php file
Module.php, users module / The module.php file
Module.php file / The Module.php file
ModuleManager / Configuration array, The module.php file
ModuleManager, ZF2 / ModuleManager
module_paths array / Configuration array
MvcEvent object / InjectApplicationEvent

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

N
NAT interface

about / Vagrantfile
navigation helper / The layout.phtml file
news reader

building / Building news reader
about / Overview
API development / API development

nodeValue / Modifying the IndexController.php file
NOW() function / Creating UserStatusesTable.php

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

O
OAuth 2.0

about / Overview, API development
API development / API development
module structure / The module structure
OAuth component, installing / Installing the OAuth 2.0 component
LoginController.php, modifying / Modifying LoginController.php
OAuthListener.php, adding to common module / Adding OAuthListener.php to
the Common module
flow / Following the OAuth 2.0 flow
challenge / The challenge

onBootstrap() method / Modules
onRender() method / The ApiErrorListener.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

P
part / Part
PhpRenderer component / Adding the mailer.php file
PhpRenderer object / Adding the mailer.php file
PhpRender object / The email-layout.phtml file
pictures

uploading / Uploading pictures
PoEdit

URL / Language files
POST / Requirements
posting links

API development / API development
posting text

API development / API development
frontend / Frontend

prepareElements() method / Adding the LinkForm.php file
processFeedsAction() method / Creating the CliController.php file
processSimpleForm() function / Modifying IndexController.php
PSR-0, ZF2 / PSR-0 and autoloaders
Public APIs

about / Public APIs
PUT / Requirements

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Q
query / Query

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

R
$routeMatch->getParam() method / DispatchListener
regex / Regex
registering / Registering and logging in
removeFeedSubscription() method / Modifying the ApiClient.php file
Request object, ZF2 / Request object, The request object
response object / The response object
Response object, ZF2 / Response object
ResultSet object / Zend\Db\TableGateway, Zend\Db\RowGateway
RouteMatch object / DispatchListener
router

about / The router
flow / The router
SimpleRouteStack / The router, SimpleRouteStack
TreeRouteStack / The router, TreeRouteStack
Hostname / Hostname
Literal / Literal
Method / Method
part / Part
regex / Regex
scheme / Scheme
segment / Segment
wildcard / Wildcard
query / Query

RowGatewayFeature / Zend\Db\TableGateway
RowGateway object / Zend\Db\TableGateway

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

S
scheme / Scheme
segment / Segment
select() method / Creating the UsersTable.php file
send() method / Adding the mailer.php file
sendContentNotificationEmail() method / Adding the mailer.php file
sendmail / Adding the mailer.php file
sendWelcomeEmail() method / Adding the mailer.php file
sendWelcomeEmail method / Adding the mailer.php file
ServiceLocatorAware / ServiceLocatorAware
ServiceManager, ZF2 / ServiceManager
ServiceManager object / ServiceManager
setAttribute() method / Modifying IndexController.php
setDbAdapter() method / Creating UserStatusesTable.php, Adding the
UserFeedsTable.php file, Adding the UserFeedArticleTable.php file
setUser() method / Adding the Comment.php file
setValue() method / Creating the Url.php file
signup

about / Overview
API development / API development
frontend / Frontend

signup-form.phtml file / The signup-form.phtml file
signup.phtml file / The signup.phtml file
SignupForm.php file / The SignupForm.php file
SimpleRouteStack / The router, SimpleRouteStack
skip-grant-tables option / Setting up the connection
Smarty

URL / Outputting the user wall
Spam.php

creating / Creating the Spam.php file
Src folder / Src folder
Status.php

creating / Creating Status.php
adapting / Adapting the Status.php file

StripTags filter / Modifying the IndexController.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

T
TableGateway object / Creating the Users module, Creating the UsersTable.php
file
TemplateMapResolver object / Adding the mailer.php file
text

posting / Posting text
text-content-form.html / text-content-form.html
TextStatusForm.php / TextStatusForm.php
tinyint value / Working with the database
TreeRouteStack / The router, TreeRouteStack
Twig

URL / Outputting the user wall

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

U
$unfilteredData array / The IndexController.php file
uniqid() method / Extending the IndexController.php file
updateAvatar() method / Extending UsersTable.php
Url.php

creating / Creating the Url.php file
User.php / Creating the User.php file, User.php

modifying / Modifying User.php
extending / Extending the User.php file
changing / Changing the User.php file

UserCommentsTable.php
adding / Adding the UserCommentsTable.php file

UserFeedArticleTable.php file
adding / Adding the UserFeedArticleTable.php file

UserFeedsTable.php file
adding / Adding the UserFeedsTable.php file

UserImagesTable.php
creating / Creating the UserImagesTable.php file

UserLinksTable.php
adding / Adding the UserLinksTable.php file

user profile
building / Building a user profile

users module
about / Creating the Users module, Adding the Users module
UsersTable.php / Creating the UsersTable.php file
module.config.php / Module configuration
Module.php / The module.php file, Contents of the Module.php file
User.php / Creating the User.php file

UsersTable.php, users module / Creating the UsersTable.php file
UserStatusesTable class / Modifying module.config.php
user wall

API development / API development
outputting / Outputting the user wall

user_feeds / Working with the database
user_feed_articles / Working with the database
user_id attribute / Extending the IndexController.php file
user_id field / Adding the UserCommentsTable.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

V
$viewLayout variable / Adding the mailer.php file
Vagrant

about / Using the provided virtual machine, Vagrantfile
URL, for installing / Installing the required software
commands / Vagrant commands

Vagrant, commands
vagrant up command / Vagrant commands
vagrant destroy command / Vagrant commands
vagrant suspend command / Vagrant commands
vagrant resume command / Vagrant commands
vagrant halt command / Vagrant commands

vagrant destroy command / Vagrant commands
Vagrantfile

about / Vagrantfile
code / Vagrantfile

/ Working with the database
vagrant halt command / Vagrant commands
vagrant resume command / Vagrant commands
vagrant suspend command / Vagrant commands
vagrant up command / Vagrant commands
View folder / View folder
ViewManager / ViewManager configuration
ViewModel object / Adding the mailer.php file
view new-comment.phtml file / The view new-comment.phtml file
view welcome.php file / The view welcome.php file
VirtualBox

installing, URL / Installing the required software
about / Vagrantfile
subnet / VirtualBox subnet

virtual machine
about / Using the provided virtual machine
software, installing / Installing the required software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

W
wall content

requesting / Requesting the wall content
Module.php / Modifying the Module.php file
module.config.php / Module configuration
IndexController.php / Changes in the IndexController.php file

wall module
about / Adding the Wall module
Module.php / Module.php contents
module.config.php / Module configuration
IndexController.php / Adding the IndexController.php file

wildcard / Wildcard

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

X
XPath / Modifying the IndexController.php file

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Z
Zend framework

benefits / Why ZF2?
Zend\Db\Adapter / Zend\Db\Adapter
Zend\Db\RowGateway / Zend\Db\RowGateway
Zend\Db\TableGateway / Zend\Db\TableGateway
Zend\InputFilter\Factory dependency / Creating UserStatusesTable.php
Zend\Validator\Db\RecordExists / Creating UserStatusesTable.php
ZF2

about / Why ZF2?, What are we going to build?, Creating
UserStatusesTable.php
user profile, building / Building a user profile
text, posting / Posting text
pictures, uploading / Uploading pictures
links, sharing / Sharing links
comments, posting / Posting comments
news reader, building / Building news reader
registering / Registering and logging in
e-mails / E-mails
Public APIs / Public APIs
skeleton / ZF2 skeleton
app, bootstrapping / Bootstrap your app
components / Bootstrap your app
front controller / Front controller

ZF2, components
configuration array / Configuration array
PSR-0 and autoloaders / PSR-0 and autoloaders
ServiceManager / ServiceManager
EventManager / EventManager
ModuleManager / ModuleManager
Request object / Request object, The request object
Response object / Response object
router / The router

ZIP file
URL, for downloading / ZF2 skeleton

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

	Zend Framework 2 Application Development
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Let's Build a Social Network
	Why ZF2?
	What are we going to build?
	Building a user profile
	Posting text
	Uploading pictures
	Sharing links
	Posting comments
	Building news reader
	Registering and logging in
	E-mails
	Public APIs
	The approach – API-centric app
	Summary
	2. Setting Up the Environment
	Using the provided virtual machine
	Installing the required software
	Getting a copy of the files
	Vagrantfile
	VirtualBox subnet
	ZF2 skeleton
	Hosts file
	Vagrant commands
	Summary
	3. Scratching the Surface of Zend Framework 2
	Bootstrap your app
	Configuration array
	PSR-0 and autoloaders
	ServiceManager
	EventManager
	ModuleManager
	Request object
	Response object
	The request object
	The router
	SimpleRouteStack
	TreeRouteStack
	Hostname
	Literal
	Method
	Part
	Regex
	Scheme
	Segment
	Wildcard
	Query
	DispatchListener
	Front controller
	InjectApplicationEvent
	ServiceLocatorAware
	EventManagerAware
	Controller plugins
	Controller types
	AbstractActionController
	AbstractRestfulController
	The response object
	An example is worth a thousand words
	The config folder
	Language files
	Module.php
	Src folder
	View folder
	Summary
	4. The First Request/Response – Building the User Wall
	API development
	Requirements
	Working with the database
	Zend�Db�Adapter
	Zend�Db�TableGateway
	Zend�Db�RowGateway
	Setting up the connection
	ViewManager configuration
	Creating the Users module
	Creating the UsersTable.php file
	Module configuration
	The module.php file
	Adding the Wall module
	Module.php contents
	Module configuration
	Adding the IndexController.php file
	The API-Error approach
	Adding the Common module
	Modifying the application.config.php file
	Modifying the Module.php file
	Modifying the module.config.php file
	Adding the ApiErrorListener.php file
	Frontend
	Adding the Users module
	Contents of the Module.php file
	Creating the User.php file
	Requesting the wall content
	Modifying the Module.php file
	Module configuration
	Changes in the IndexController.php file
	Outputting the user wall
	Summary
	5. Handling Text Content – Posting Text
	API development
	Requirements
	Working with the database
	Understanding the module structure
	Creating UserStatusesTable.php
	Extending IndexController.php
	Modifying module.config.php
	Frontend
	Creating Status.php
	Modifying User.php
	View
	TextStatusForm.php
	text-content-form.html
	Modifying IndexController.php
	Extending ApiClient.php
	Summary
	6. Working with Images – Publishing Pictures
	API development
	Requirements
	Working with the database
	Changes on the module structure
	Creating the UserImagesTable.php file
	Extending the IndexController.php file
	Changing the module.config.php file
	Frontend
	Creating the Image.php file
	Adding the ImageForm.php file
	Showing the form in the image-content-form.phtml file
	Extending the User.php file
	Modifying the index.phtml file
	Modifying the IndexController.php file
	Modifying the layout.phtml file
	Summary
	7. Dealing with URLs – Posting Links
	API development
	Requirements
	Working with the database
	Changes in the module structure
	Adding the UserLinksTable.php file
	Modifying the IndexController.php file
	Creating the Url.php file
	Modifying the module.config.php file
	Frontend
	Creating the link entity
	Adding the LinkForm.php file
	Creating the image-content-form.phtml file
	Extending the index.phtml file
	Changing the User.php file
	Modifying the IndexController.php file
	Summary
	8. Dealing with Spam – Akismet to the Rescue
	API development
	Requirements
	Working with the database
	Module structure
	Installing Akismet service
	Modifying the local.php file
	Adding the UserCommentsTable.php file
	Creating the Spam.php file
	Extending the IndexController.php file
	Table gateways
	Frontend
	Adding the Comment.php file
	Adapting the Status.php file
	Modifying the Image.php and Link.php file
	Adding the CommentForm.php file
	Adding the comment-content-form.phtml file
	Modifying the IndexController.php file
	Extending the index.phtml file
	Summary
	9. Let's Read Feeds – A News Reader
	Overview
	API development
	Requirements
	Working with the database
	Expanding the module structure
	The module.config.php file
	The Module.php file
	Adding the UserFeedsTable.php file
	Adding the UserFeedArticleTable.php file
	The contents of the IndexController.php file
	Creating the CliController.php file
	The ApiErrorListener.php file
	Frontend
	The API module
	Modifying the ApiClient.php file
	The Feeds module
	The contents of module.config.php
	The IndexController.php file
	Entities and forms
	The menu-feed-container.phtml file
	The index.phtml file
	The Common module
	The global.php file
	The layout.phtml file
	Summary
	10. Sign Up
	Overview
	API development
	Requirements
	Working with the database
	The module structure
	Extending UsersTable.php
	The IndexController.php file
	Frontend
	The signup.phtml file
	The SignupForm.php file
	The signup-form.phtml file
	User.php
	The contents of the IndexController.php file
	The index.phtml file
	Changes in the ApiClient.php file
	Summary
	11. Log in
	Overview
	API development
	Requirements
	Overview of the module structure
	The module.config.php file
	Creating the LoginController.php file
	Frontend
	The login form
	Changes in the ApiClient.php file
	Creating a new authentication adapter
	The IndexController.php file
	The login.phtml file
	Changes in module.config.php
	The global.php file
	The layout.phtml file
	ACLs
	Modules
	The index.phtml file
	Wall IndexController.php
	Summary
	12. Sending E-mails
	Overview
	API development
	Requirements
	The module structure
	Adding the mailer.php file
	The email-layout.phtml file
	The view welcome.php file
	The view new-comment.phtml file
	Modifying the IndexController.php file
	The IndexController.php file on the Wall module
	The challenge
	Summary
	13. OAuth 2.0 Protocol Securing our API
	Overview
	API development
	The module structure
	Installing the OAuth 2.0 component
	Modifying LoginController.php
	Adding OAuthListener.php to the Common module
	Other changes in the Common module
	Frontend
	Modifying ApiClient.php
	Modifying Api.php
	Following the OAuth 2.0 flow
	The challenge
	Summary
	Index

